
Corrigenda: On the Complexity of Modal
Logic Variants and their Fragments

Arne Meier

May 8, 2018

“Love truth, but pardon error.” — Voltaire

This corrigenda corrects some errors from my dissertation Arne Meier, On the Complex-
ity of Modal Logic Variants and their Fragments, Gottfried Wilhelm Leibniz Universität
Hannover, Cuvillier Verlag, 2011.

Proof of Theorem 1 (1): The result is correct but the proof is wrong. It is not possible
to simulate > as by Lewis [4] done without preventing an exponential blow up.
There are no (wrongly assumed) short representations of ∧ in S1 available. Yet
the result of Theorem 1 (1) is still valid. Lück [5, Lemma 5.1, Theorem 6.1] has
shown that the lower bounds already hold for temporal depth of 2. Hence the
reduction mentioned by us works in that case as we only have two subformulas
(due to nesting depth of 2) where we need to add ∧t and the non-existence of short
representations does thus not matter as the blowup in the length of the formula is
only of constant size.

Theorem 3.4 (1), Lemma 3.5: The result and the proof are wrong. Therefore consider
a formula of the form φ = AF(p1 ∧ · · · ∧ pn) together with a Kripke structure
M = (W,R, η) of the form W = {w0, . . . , w2n}, R = { (wi, wi+1) | 1 ≤ i ≤ 2n − 1 },
and η(wi) = { pj | the jth bit in the binary representation of i is true }. In the
proof a modification of Emerson quotient construction [1] is investigated. However
the problem with this model M is its so to speak distinctness. For each world
there is a different quasi label wherefore the model produced from the quotient
construction will stay the same and hence will not be of size polynomial in |φ| and
the number of temporal operators in φ.

This fragment is not NP-complete but PSPACE-complete instead. Lück [5, Theorem
3.4] instead shows how to encode validity of quantified Boolean formulas into
formulas of this kind. By this reduction there are exponentially long paths in
the models wherefore these models cannot be guessed (as they are too large) and
invalidate the Claim in Lemma 3.5.

1

Theorem 3.4 (2) PSPACE membership {AF,AG}{AF,AG}{AF,AG}, Lemma 3.6: Both, the result and
the proof are wrong. The membership proof assumes the existence of quasi-models
in which possible contradictions must occur in at most linear depth. The induction
proof wrongly assumes that in the case of ψ ∧ χ minimal quasi models of both ψ
and χ are always contained in the model of ψ ∧ χ. Now Lück [5, Theorem 3.18
(2)] shows that it is possible to encode exponentially deep paths into the model
leading to an EXP lower bound instead contradicting the PSPACE upper bound
(under reasonable complexity separation assumptions).

Theorem 3.4 (2) PSPACE membership {AX,AF}{AX,AF}{AX,AF}, Lemma 3.6: The result is correct
but the proof is wrong. On page 37, line -5, it is claimed that an {AFAX}-formula
is satisfiable iff it is satisfiable with EG (resp., ¬AF) operators ignored and each
EG-preceded subformula is satisfiable on its own. This does not work in general as
the duality of EG and AF has been neglected. Yet the PSPACE upper bound result
is still valid as shown by Lück [5, Theorem 3.17] via a different algorithm.

Theorem 3.4 (3) EXP lower bound {AU}{AU}{AU}, Lemma 3.7 The result is correct but the
proof is wrong. The end of the proof it claims “Finally, ϕ3 stat:es that, on all paths,
the contents of all tape cells remains unchanged until either the head moves onto
the cell or πterm holds.” A direct translation of this informally given requirement to
a linear number of AU subformulas would lead to an incorrect reduction. However
the result is still valid and Lück [5, Theorem 3.18 (3)] shows that our reduction
can be slightly modified to circumvent this problem.

Theorem 3.9 (2): Several PSPACE upper bounds for CTL?-SAT are claimed with quite
a vague comment that they can be proven similar as for the CTL-cases. While
this is true for the {A,X} case, now we instead know EXP-hardness for the {A,F}
fragment from the corrections of CTL-SAT({AF}) which is now lacks a matching
upper bound.

Theorem 3.10 (2): The result and the proof is wrong. Follows from the corrections of
CTL-SAT({AF}).

Corollary 3.13 (2): The result and the proof is wrong. Follows from the corrections of
CTL-SAT({AF}). Only PSPACE-hardness is known.

Theorem 3.14: Here, only PSPACE-hardness can be shown. Follows from the corrections
of CTL-SAT({AF}).

The errors with respect to the CTL-SAT and CTL?-SAT cases are also present in the
corresponding journal publication “Arne Meier, Martin Mundhenk, Michael Thomas,
Heribert Vollmer: The Complexity of Satisfiability for Fragments of CTL and CTL?,
International Journal of Foundations of Computer Science, Vol. 20, No. 5, pp. 901—918,
2009” and have been already corrected and published in the erratum “Arne Meier, Martin
Mundhenk, Michael Thomas, Heribert Vollmer: Erratum: The Complexity of Satisfiability
for Fragments of CTL and CTL?, International Journal of Foundations of Computer
Science, Vol. 26, No. 08, pp. 1189—1190, 2015”.

2

Base independence for BF

For sake of completeness we state a construction which shows all necessary technical
details to prove base independence for the clone BF. The reduction follows the approach
of Hemaspaandra et al. [3, Theorem 3.6].

Theorem 1. Let B be a finite set of Boolean functions such that [B] = BF, and let
T ⊆ {A,E,X,F,G,U}. Then it holds that

CTL?-SAT(T , B) ≤log
m CTL?-SAT(T , {∧,∨,¬}).

Proof. The proof makes use of temporal circuits, the temporal logic variant of modal
circuits defined in [3]. Note that this kind of circuits is just a syntactic variant of a
graphical way to present formulas in a succinct way. A temporal circuit over the basis B
and set of operators T is a tuple X = (G, I,E, α, β, out), where

• (G,E) is a finite directed acyclic graph with G being the set of gates,

• I ⊆ G being the set of input gates

• α : E → N is an injective function which defines an ordering on the edges and
thereby on the children of a gate,

• β : G→ B ∪ T is a function assigning a Boolean function, or a temporal operator
to every gate such that β(g) ∈ PROP iff g ∈ I,and

• out ∈ G, the output gate,

and the following conditions are satisfied.

• If g ∈ G has in-degree 0, then β(g) is an atomic concept or one of the constants
>,⊥ (if they are in [B]).

• If g ∈ G has in-degree 1, then β(g) is a unary Boolean function from B or some
unary temporal operator T ∈ {A,E,X,F,G}.

• If g ∈ G has in-degree 2, then β(g) is a binary Boolean function from B or the
temporal operator until U.

• If g ∈ G has in-degree d > 2, then β(g) is a d-ary Boolean function from B.

The function α is needed to define the order of arguments of non-symmetric functions.
The size of a temporal circuit is the number of its gates.

Every formula ϕ can straightforwardly be transformed into a temporal circuit of linear
size that resembles the ordered tree induced by ϕ. For the backward transformation, an
exponential blowup may occur if the circuit is not tree-shaped.

In order to establish the reduction CTL?-SAT(T , B) ≤log
m CTL?-SAT(T ,BF), we

proceed analogously to [3] and translate, for any given instance ϕ of CTL?-SAT(T , B),
the formula into a temporal circuit Xϕ over the basis B and temporal operator set

3

T . This circuit can be easily transformed into a circuit X ′
ϕ over the basis {∧,∨,¬} by

replacing every ◦-gate, for ◦ ∈ B, with a sub-circuit over {∧,∨,¬}. This replacement is
possible because of [B] = BF. Further it causes only linear blowup because the size of
the sub-circuits is bounded by a constant. However, since the sub-circuits may not be
tree-shaped, we cannot directly transform X ′

ϕ back to a formula over {∧,∨,¬} and T
without exponential blowup. Instead, we will express the circuit X ′

ϕ with a new formula
f(C,ϕ) which is build from subformulas that model the gates from X ′

ϕ:

• For input gates g ∈ I, we define f ′(g) := g ↔ xi.

• If g is a gate computing the Boolean operator ◦ for some function in B and
h1, . . . , hn are the respective predecessor gates in this circuit, we define f ′(g) :=
g ↔ ◦(h1, . . . , hn).

• If T ∈ T is a unary temporal operator and h its predecessor gate in the circuit, we
define f ′(g) := g ↔ Th.

• If T = U is an until operator and h1, h2 its predecessor gates in the circuit, we
define f ′(g) := g ↔ h1Uh2.

Here ϕ ↔ ψ is a shorthand for (¬ϕ ∧ ¬ψ) ∨ (ϕ ∧ ψ). Finally the formula f(C,ϕ) is
defined as

f(C,ϕ) := out ∧
∧

gate g in C

Gf ′(C, g) , if {G,F,U} ∩ T 6= ∅,∧md(ϕ)

i=0 Xif ′(C, g) , if {G,F,U} ∩ T = ∅ and X ∈ T ,
f ′(C, g) , otherwise.

Note that ↔ is not nested in f(C,ϕ). This reduction is computable in logarithmic
space: (1) create the temporal circuit Xϕ (two binary counters for correct bracketing,
one counter for position), (2) create translated circuit X ′

ϕ (local substitutions of constant
depth), (3) create f(X ′

ϕ, ϕ) (binary counter for position in circuit, binary counter for
modal depth of ϕ). The correctness can be shown in the same way as in the proof of
[3].

Corollary 1. Let B be a finite set of Boolean functions such that [B] = BF, and let
T ⊆ {PT | P ∈ {A,E}, T ∈ {F,G,X,U} }. Then it holds that

CTL-SAT(T , B) ≤log
m CTL-SAT(T ∪ {AG}, {∧,∨,¬}).

Proof. Redefine the function f as follows

f(C,ϕ) := out ∧
∧

gate g in C

AGf ′(C, g).

4

∅

AXAF AG

AU EU

AX,AF AF,AG AX,AG

AX,AF,AG

AX,AU AX,EU

AG,AU

AF,EU

AX,AF,EU(a)

LTL

∅

F X A

U X,F A,F A,X

X,U A,U A,X,F

A,X,U(b)

NP-c. PSPACE-c. EXP-c. EEXP-c.

Figure 1: The complexity of (a) CTL-SAT(T,BF), and (b) CTL?-SAT(T,BF), all without
any restrictions to the Boolean functions. White coloured text and the dashed
borders indicate hardness result.

From Theorem 1 and Corollary 1 we achieve the corresponding complexity results
generalised to BF and the mentioned fragments. Now, in essence, there is one case left:
{AX,AF}. Here, CTL-SAT(B, {AF,AX}) is in PSPACE for B = {∧,∨,¬} [5, Theorem
3.17] and the algorithm can be adjusted as follows. For arbitrary B with [B] = BF the
presented algorithm is easily adopted to work for arbitrary bases as the relevant line 11
in the algorithm just talks about violation of quasi-label conditions which does not stick
to the allowed Boolean functions. Hence all presented cases are now generalised to BF.

Figure 1 then depicts the corrected landscape of the computational complexity of the
satisfiability problems for CTL and CTL? for all temporal fragments and the base BF.

Acknowledgements

I am very thankful to Martin Lück who cleverly spotted these errors and even was able
to present several corrections by himself [5].

References

[1] E. Allen Emerson, Temporal and Modal Logic, Chapter 16 in Handbook of Theoretical
Computer Science, Volume B: Formal Models and Semantics, 1994.

[2] E. Allen Emerson, J. Y. Halpern, Decision Procedures and Expressiveness in the
Temporal Logic of Branching Time, Journal of Comp. and Syst. Sc., 30, No. 1, 1985.

[3] E. Hemaspaandra, H. Schnoor, I. Schnoor, Generalized modal satisfiability, Journal of
Computer and System Sciences, 76, No. 7, pp. 561–578, 2010.

5

[4] H. Lewis, Satisfiability problems for propositional calculi, Math. Sys. Theory, 13, pp.
45–53, 1979.

[5] M. Lück, Quirky Quantifiers: Optimal Models and Complexity of Computation Tree
Logic, Int. J. Found. Comput. Sci., 29, 17, pp. 17–61, 2018, https://doi.org/10.
1142/S0129054118500028.

[6] A. Meier, M. Mundhenk, M. Thomas, H. Vollmer: The Complexity of Satisfiability
for Fragments of CTL and CTL?, International Journal of Foundations of Computer
Science, Vol. 20, No. 5, pp. 901—918, 2009.

[7] A. Meier, M. Mundhenk, M. Thomas, H. Vollmer: Erratum: The Complexity of
Satisfiability for Fragments of CTL and CTL?, International Journal of Foundations
of Computer Science, Vol. 26, No. 08, pp. 1189—1190, 2015

6

