
Complexity and Expressivity of
Propositional Logics with Team

Semantics
Lecture Notes ESSLLI 2024 course

Arne Meier1 Jonni Virtema2

Version of 2024-08-08

1 Leibniz Universität Hannover
2 University of Sheffield



Preface

Hello everyone,

this course is about team semantics. This formalism is a generalisation of standard
Tarskian semantics. We will focus in this course on propositional logic, although there
is also a first-order variant. The course will consist of five lectures, each focusing on
different aspects of subjective interest. It will give a small insight into the research
area around team semantics.

1. Syntax and semantics, properties, problems.

2. Expressiveness.

3. Inclusion Logic: P-complete MC, coNP-complete VAL.

4. Dependence. MC(PDL) is NP-complete. DQBF, VAL(PDL) is NEXP-complete.

5. Hyperproperties, temporal aspects. TeamLTL(inclusion, dep) is undecidable.

For each lecture, we give some references that we think are interesting and might be
helpful for further reading. Feel free to approach us in the lecture or send us an email
if you have any questions. We are happy to help.

Hannover & Sheffield, in July 2024 Arne Meier & Jonni Virtema
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Preliminary skirmish

Organisational information about the course
Material for the course:

• Lecture notes

• Slides (in advance) and writings into slides (afterwards)

• Webpage: https://www.thi.uni-hannover.de/de/esslli24

About the lecturers

Arne Meier (Leibniz University Hannover)
Research Interests: Complexity Theory, Foundations of AI, Non-
Classical Logics, Enumeration
https://arnemeier.github.io

Jonni Virtema (University of Sheffield)
Research Interests: Finite Model Theory, Temporal Logics for
Hyperproperties, Logical Foundations of Neural Networks, Com-
plexity Theory.
http://www.virtema.fi/

Prerequisites and requirements

• Complexity theory foundations, e.g., [Pap07; Sip97]

• Propositional Logic foundations, e.g., [EFT94]

• Modal Logic (only relevant for last lecture), e.g., [BRV01]

Course outline

Monday, 5th of August Syntax and Semantics, Properties, Problems.

Tuesday, 6th of August Expressivity and succintness

Wednesday, 7th of August Inclusion Logic: P-complete MC, coNP-complete VAL

Thursday, 8th of August Dependence. Show MC(PDL) is NP-complete. DQBF,
VAL(PDL) is NEXP-complete

Friday, 9th of August Hyperproperties, Temporal Aspects. TeamLTL(inclusion, dep)
is undecidable.

https://www.thi.uni-hannover.de/de/esslli24
https://arnemeier.github.io
http://www.virtema.fi/


1 Propositional Logics with Team
Semantics

Literature: [YV17]
In 2006, Dependence Logic was introduced by Jouko Väänänen in 2007 [Vää07]. It

is a logic that extends first-order logic with a new operator (the dependence atom)
for expressing dependence between variables. At its heart lies the concept of team
semantics, which is a generalization of the standard Tarskian semantics of first-order
logic to sets of assignments.
In this ESSLLI course, we will study propositional logics with team semantics. At

first, we will give some intuition about these concepts and then introduce the syntax
and semantics of the logics we will study.

Dependence and independence

What means “x depends on y” or “x and y are
independent”?

Compare it to: “x divides y”
Here: fix structure A, with well-defined division and find an assignment s : {x, a} → A.
Then: Check Tarskian semantics of A |=s“x divides y”
Caution: (In-)dependence is different. It does not manifest itself in single assignments,

but in

• tables or relations

• sets of rounds of a game

• sets of assignments ⇝ teams

(In-)Dependence Logics: Henkin-Quantifiers (1959)

φ =

(
∀x ∃y
∀u ∃v

)
P (x, y, u, v)

Semantics: over Skolem functions or via games with
imperfect information

Leon A. Henkin
(1921–2006)

© George M. Bergman, CC BY-SA 4.0
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https://commons.wikimedia.org/w/index.php?curid=46056218


2 Propositional Logics with Team Semantics

(A,P ) |= φ, if there are functions f, g : A→ A such that for all a, c ∈ A

P (a, f(a), c, g(c))

(In-)Dependence Logics: Independence-friendly logic (1989)

• First logic with quantifiers that are annotated with
independence

• Quantification: φ formula, x variable, W finite set of
variables yields expressions (∃x/W )φ and (∀x/W )φ

• Game-theoretic Semantics: In the evaluation game for
(⅁x/W )φ, the value x has to be chosen independent of
the values in W

• At two positions ((⅁x/W )φ, s) and ((⅁x/W )φ, s′) with
s(y) ̸= s′(y) for all y ∈W , the same value for x has to
be chosen

Jaakko Hintikka
(1929-2005)

© Gate220 – Own work, Public Domain

Gabriel Sandu
(∗ 1954)

© Sandu, personal authorisation
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(∗ 1950)

© MFO, Creative Commons License Attribution-Share Alike 2.0 Germany
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3 Propositional Logics with Team Semantics

Dependence Logic: A Bit of Motivation

Primary key

docent time room lecture

Antti 09:00 A.10 Genetics
Antti 11:00 A.10 Biochemistry
Antti 15:00 B.20 Ecology
Jonni 10:00 C.30 Bio-LAB
Juha 10:00 C.30 Bio-LAB
Juha 13:00 A.10 Biochemistry
...

...
...

...

Task: Consistency check of a timetable.
{docent, time} functionally determines {room, lecture}, where {room, time} does not
functionally determine {docent}.

Dependence Logic: Applications
Dependence Atom

• Models functional dependencies in sets of assignments

• Semantics: y depends on x, i.e., y is uniquely determined by x

x y z

0 1 0
0 1 1

|= dep({x}; {y})
x y z

0 1 0
0 0 1

̸|= dep({x}; {y})

Applications: Modelling of. . .

• database schemes

• deterministic behaviour

• specifications

• . . .

Team-Based Propositional Logic

Definition 1. Let PROP be a countably infinite set of propositions.

• An assignment s is a mapping s : PROP → {0, 1}.



4 Propositional Logics with Team Semantics

• Propositional Team Logic (PL):

φ ::= x | ¬x | φ ∧ φ | φ ∨ φ
where x ∈ PROP.

• A team over PROP is a set of assignments, i.e., an element of P(2PROP)

Propositional Team Semantics

Definition 2. Let T be a team and φ,ψ ∈ PL[dep]. We define T |= φ recursively via:

T |= x iff s(x) = 1 ∀s ∈ T,
T |= ¬x iff s(x) = 0 ∀s ∈ T,
T |= φ ∧ ψ iff T |= φ and T |= ψ,
T |= φ ∨ ψ iff ∃T1∃T2(T = T1 ∪ T2) s.t. T1 |= φ and T2 |= ψ.

Caution: Only atomic negation here.

Dependence Atoms
For assignment s : PROP → {0, 1} and P ⊆ PROP, s↾P is the assignment s restricted
to P only. Let P,Q ⊆ PROP.

T |= dep(P ;Q) iff ∀s, t ∈ T : s↾P = t↾P ⇒ s↾Q = t↾Q.

Notation: PL[dep] for propositional logic with dependence atoms.
Observations:

T |= dep(;Q) iff ∀s, t ∈ T : s↾Q = t↾Q (Constancy Atom),
T |= ¬dep(P,Q) iff T = ∅.

Team Semantics from the Database Perspective

propositions ≜ attributes

assignment

≜ entries

team ≜ table

docent time room lecture

Antti 09:00 A.10 Genetics
Antti 11:00 A.10 Biochemistry
Antti 15:00 B.20 Ecology
Jonni 10:00 C.30 Bio-LAB
Juha 10:00 C.30 Bio-LAB
Juha 13:00 A.10 Biochemistry
...

...
...

...
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Back to the Initial Example
primary key

docent time room lecture

Antti 09:00 A.10 Genetics
Antti 11:00 A.10 Biochemistry
Antti 15:00 B.20 Ecology
Jonni 10:00 C.30 Bio-LAB
Juha 10:00 C.30 Bio-LAB
Juha 13:00 A.10 Biochemistry
...

...
...

...

⇒ {docent, time} functionally determines {room, lecture}.

How do you express this in PL[dep]?

dep({docent, time}, {room, lecture})

We only consider Propositional Team Logic here
Caution: encode all entries in binary (Propositional Logic vs. FO)

docent room time lecture

Antti A.10 09.00 Genetics
Antti A.10 11.00 Biochemistry
Antti B.20 15.00 Ecology
Jonni C.30 10.00 Bio-Lab
Juha C.30 10.00 Bio-Lab
Juha A.10 13.00 Biochemistry

i1i2 r1r2 t1t2t3 c1c2

00 11 110 11
00 11 111 00
00 00 000 01
01 01 001 10
10 01 001 10
10 11 010 00

(Left) Sample database with 4 attributes and universe size 15.
(Right) Encoding with ⌈log2(3)⌉+ ⌈log2(3)⌉+ ⌈log2(5)⌉+ ⌈log2(4)⌉-many propositions.

Interesting and Important Properties of such Logics

property definition dep ⊆ ⊥ |
Downward closure T |= φ and T ′ ⊆ T implies T ′ |= φ ✓ × × ✓
Union closure T |= φ and T ′ |= φ implies T ∪ T ′ |= φ × ✓ ✓ ×

All logics considered here are:

flat: T |= φ⇐⇒ ∀s ∈ T : {s} |= φ

and satisfy the

Empty team property: ∅ |= φ.
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Downward Closure of PL[dep]

Lemma 3. PL[dep] is downward closed.

Proof. We give a structural inductive proof for PL[dep] formulae of length.

Induction beginning.

• Let φ = x be a proposition. If T |= x and T ′ ⊆ T , then T ′ |= x by semantics.

• Let φ = dep(P ;Q). Then, by semantics, for all s, t ∈ T with s↾P = t↾P we have
s↾Q = t↾Q. Clearly, this is still true for all subsets T ′ of T .

Induction step. Furthermore, let T |= φ. Do a case distinction according to φ. If φ is

• ¬ψ, then, as we only have atomic negation, ψ ∈ PROP. As a result, s(p) = 0 for
all s ∈ T . Accordingly, for all T ′ ⊆ T we have that T ′ |= φ.

• ψ ∧ χ, then T |= ψ and T |= ψ. By IH, we get that for all T ′ ⊆ T we have that
T ′ |= φ.

• ψ ∨ χ, then there exists two teams T1 and T2 with T = T1 ∪ T2 such that T1 |= ψ
and T2 |= χ. By IH, all T ′

1 ⊆ T1 and T ′
2 ⊆ T2 satisfy ψ and χ, respectively. Thus,

T ′ |= φ where T ′ = T ′
1 ∪ T ′

2.

There exists a different argumentation for the case of φ ∨ ψ that was pointed out by
one of the participants (thank you for that) which is also correct and works as follows.

• ψ ∨ χ. Let T |= ψ ∨ χ. By semantics, we have that there exists split T1 ∪ T2 = T
such that T1 |= φ and T2 |= ψ. Consider any team T ′ ⊆ T . Then, IH gives us
that T ′ ∩ T1 |= ψ and T ′ ∩ T2 |= χ. Hence, (T ′ ∩ T1) ∪ (T ′ ∩ T2) = T ′ by set
theory. Thus, T ′ |= φ ∨ ψ for all teams T ′ ⊂ T as T ′ was chosen arbitrarily.

In the following, we denote by Vars(φ) the set of all propositions occurring in φ.

Decision Problems

Problem: PL[dep]-MC — the model checking problem

Input: A PL[dep]-formula φ, a team T over Vars(φ)

Question: Is T |= φ true?

Problem: PL[dep]-SAT — the satisfiability problem

Input: A PL[dep]-formula φ

Question: Exists a non-empty team T over Vars(φ) with T |= φ?

Theorem 4 ([Loh12, Theorem 4.13], Proof: Thursday). PL[dep]-MC is NP-complete.

We present the simplest complexity result of these two problems: satisfiability. Due
to downward closure this problem can be reduced to satisfiability of PL.
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Satisfiability Does not Become Harder Than in the Classical Case

Theorem 5 ([Coo71; Lev73]). PL[dep]-SAT is NP-complete.

Lemma 6 (follows from downward closure). A PL[dep]-formula is satisfiable if and
only if a singleton team satisfies it.

Note that any singleton team satisfies any dependence atom!
For φ ∈ PL[dep], let φ∗ denote the formula obtained from φ by substituting all

dependence atoms with ⊤.

Lemma 7. For any φ ∈ PL[dep] and singleton team {s}, we have {s} |= φ ⇐⇒
{s} |= φ∗.

A straightforward induction proves the lemma.

Proof of Thm. 5. NP-hardness follows from NP-completeness of SAT(PL). Inclusion
to NP follows from it as well via the above two lemmas: φ ∈ PL[dep] is satisfiable iff
φ∗ ∈ PL is.

Inclusion (Wednesday)
Inspired by “inclusion dependencies” from database theory.
Let p1, . . . , pk and q1, . . . , qk be propositions. Write p̄, q̄ for p1, . . . , pk and q1, . . . , qk,
respectively.

T |= p1 · · · pk ⊆ q1 · · · qk iff ∀u ∈ T ∃ v ∈ T : u(p̄) = v(q̄)

Theorem 8 ([Hel+20, Cor. 3.6]). PL[⊆]-SAT is EXP-complete.

Theorem 9 ([Hel+19, Thm. 13]). PL[⊆]-MC is P-complete.

Looking Beyond the Horizon: Independence
Caution: Also exists in stochastics; two events are independent if the occurrence of

one does not influence the probability of the other occurring

But:
• logical independence compatible with this

• every possible pattern for (x, y) occurs, but how often does not matter

• knowing only x/y gives no information about the other

T |= p1 · · · pk⊥r1···rℓq1 · · · qn iff ∀ (u, v) ∈ T × T s.t. u(r̄) = v(r̄)

∃w ∈ T : u(p̄r̄) = w(p̄r̄) ∧ w(q̄) = v(q̄)

“the variables in p̄ are completely independent of q̄ for each constant value of r̄”

Theorem 10 ([Han+18]). PL[⊥]-SAT and PL[⊥]-MC are NP-complete.

Note that it is possible to translate independence atoms to dependence atoms [Gal12].
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Looking Beyond the Horizon: Exclusion

T |= p1 · · · pk | q1 · · · qk iff ∀ (u, v) ∈ T × T : u(p̄) ̸= v(q̄)

Theorem 11 (by vanilla SAT, [Coo71; Lev73]). PL[|]-SAT is NP-complete.

In the following, we will use a complexity class which makes use of the concept of
oracle Turing machines. Intuitively, an oracle Turing machine is a classical Turing
machine that has an additional oracle tape and three additional states. One to
trigger the oracle question q?, one for the positive oracle answer q+ and one for the
negative oracle answer q−. An oracle call is usually charged one time unit. For further
information on that topic consider the textbook of Sipser [Sip97].

Implication
A formula φ entails a formula ψ if and only if every team that satisfies φ also satisfies
ψ, written φ |= ψ. A set of formulae Σ entails a formula φ if and only if every team
that satisfies all formulae in Σ also satisfies φ, written Σ |= φ.

Problem: PL[dep]-IMP — the entailment problem for PL[dep]

Input: a set of PL[dep]-formulae Σ, a PL[dep]-formula φ

Question: Is Σ |= φ true?

Theorem 12 ([Han19, Thm. 5.6, Thm. 6.1]). PL[dep]-IMP is coNEXPTIMENP-
complete.

As an idea for the membership result, we need to guess a team of potentially
exponential size such that the left side is satisfied and the right side is falsified. For
these, we need to model check also the formulae which can be done in NP (Thm. 4).
Note that the result of the implication problem can also be strengthened to the extended
modal dependence logic EMDL [Ebb+13].

Conclusion of Lecture 1

• Team semantics

• Dependence Atoms

• Inclusion, Exclusion, Independence

• Complexity of Satisfiability of PL[dep]

• Properties of PL[dep]



2 Expressive power of team-based
logics

Literature: [YV17; Hel+14]
Next we will discuss about the experessive power of team based logics. What kind

of properties can be expressed in these logics? Can we precisely characterise those
properties that can be expressed in these logics?

How to characterise expressivity – Tarski’s semantics

Definition 13. If φ is formula of propositional logic, with variables p1 . . . , pn, one can
say that φ defines the n-ary Boolean function fφ : {0, 1}n → {0, 1} defined

s 7→ s(φ),

where s is an assignment for the variables p1 . . . , pn.

One can then ask, which Boolean functions can be expressed in propositional logic. In
fact, propositional logic is expressively complete (in the standard Tarskian setting). It
is not difficult to write the definition of any Boolean function in propositional logic by
simply writing out a big disjunction of all the combinations of assignments to variables
that are mapped to true by the Boolean function.

Proposition 14. Every Boolean function can be defined in propositional logic.

How can we generalise this definition and result to logics with team semantics?
Remember that the satisfying element in team semantics is a set of assignments, and
that will then need to be reflected in any meaningful experssivity characterisation
result.

How to characterise expressivity – Team semantics – definitions
In team semantics setting, a propositional formula defines a set of teams that satisfy it.

Definition 15. We define

Teams(φ) := {T | T |= φ}

We then want to know, what are the families of teams that can be written as Teams(φ)
by some formula φ.
Definitions of downward/union closure and flatness generalise to families of teams.

Definition 16. A family of teams T is

9



10 Expressive power of team-based logics

• downward closed, if (T ∈ T and S ⊆ T ) implies S ∈ T .

• union closed, if T, S ∈ T implies T ∪ S ∈ T .

• flat, if T ∈ T if and only if {t} ∈ T , for all t ∈ T .

These properties, together with the empty team property constitute the main closure
properties of team-based logics, and are in fact closely connected to each other, as can
be seen from the following results.

Properties of families of teams

Proposition 17. A family of teams T is flat if and only if it is union & downward
closed and ∅ ∈ T .

Proof. Left-to-right direction if trivial. For the right-to-left direction, assume that T is
union & downward closed and that ∅ ∈ T . Now the left-to-right direction of

T ∈ T ⇐⇒ ∀t ∈ T : {t} ∈ T

follows from downward closure, while the converse direction follows from union closure.
The empty team property is required to omit the special case of T = ∅.

Proposition 18. Let T be a flat family of teams. Then T ∈ T if and only if T ⊆ ⋃ T .

Proof. Left-to-right direction is trivial and follows directly from the definition of a
union.
Right-to-left direction: By Proposition 17, T is union closed and downward closed.
From union closure of T it follows that

⋃ T ∈ T . Now since T is downward closed and
T ⊆ ⋃ T , if follows that T ∈ T .

How to characterise expressivity – Team semantics – results
We have already seen (and partly proved) the following closure results:

Proposition 19. • A family of teams defined by a PL-formula is flat.

• PL[dep]-definable team families are downward closed and include the empty team.

Proof. Flatness is proven by structural induction. The cases for atomic formulae follow
directly from their semantics. The case for ∧ is trivial. Assume flatness holds for φ
and ψ.

T |= φ ∨ ψ ⇐⇒ T1 |= φ and T2 |= ψ for some T1 ∪ T2 = T

By IH, the right-hand side is equivalent to: ∀t ∈ T : {t} |= φ or {t} |= ψ. This is again
equivalent to ∀t ∈ T : {t} |= φ ∨ ψ, due to the empty team property.

Interestingly the above results can be strengthened to if and only if!
We will first show that every flat family of teams is definable in propositional logic.

From the fact that PL is flat, our first precise characterisation follows.
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Expressivity of PL with team semantics

Proposition 20. For every flat family T there exists a PL-formula φ such that
T = Teams(φ).

Proof. Let T be a flat family of teams using proposition symbols p1, . . . , pn. For every
assignment s over the propositions p1, . . . , pn, let φs be a PL-formula whose only
satisfying assignment is s. This exists by Proposition 14. We will then define

Φ :=
∨

s∈
⋃

T

φs

and claim that T = Teams(Φ). It is easy to check that T |= Φ if and only if T ⊆ ⋃ T .
By Proposition 18, the latter holds if and only if T ∈ T .

We have proven our first characterisation result:

Theorem 21. A family of teams is definable in PL if and only if the family is flat.

We will next turn towards the characterisation of the expressivity of PL[dep]. We
have already shown that the logic is downward closed and has the empty team property.
Before proving the converse direction of the characterisation, we will consider a simpler
logic that turns out to be equi-expressive with PL[dep].

Expressivity: the downward closed case
Let’s consider an extension PL[6] of PL with the so-called Boolean disjunction

T |= φ6 ψ if and only if T |= φ or T |= ψ.

The following proposition can be proven by structural induction. We only show the
case for 6 for downward closure.

Proposition 22. PL[6] is downward closed and has the empty team property.

Proof. Let S ⊆ T be teams such that T |= φ6 ψ and that φ and ψ define downward
closed properties. Then, by the semantics of 6, T |= φ or T |= φ. By induction
hypothesis S |= φ or S |= φ. And finally, by the semantics of 6, S |= φ6 ψ.

It is easy to note that dependence atoms can be expressed in PL[6]:

T |= dep(p1, . . . , pn, q) if and only if T |=
∨

b∈{⊥,⊤}n

(
pb11 ∧ · · · ∧ pbnn ∧ (q 6 ¬q)

)
,

where p⊥ := ¬p and p⊤ := p. In order to realise that the above translation is indeed
correct, note first that a team T satisfies q 6 ¬q, if and only if the truth value of q is
constant in T . That is, every assignment in T gives the same truth value for q. Now

T |=
∨

b∈{⊥,⊤}n

(
pb11 ∧ · · · ∧ pbnn ∧ (q 6 ¬q)

)
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if and only if we can split T into 2n many pieces Tb, b ∈ {⊥,⊤}n, such that each piece

Tb |=
(
pb11 ∧ · · · ∧ pbnn ∧ (q 6 ¬q)

)
.

Hence, we are saying that T can be split into 2n pieces according to the truth values
given to p1, . . . , pn, and in each of those pieces the truth value of q is constant.
This is equivalent to saying that p1, . . . , pn functionally determine q, that is T |=
dep(p1, . . . , pn, q).
We are now ready to formalise our second characterisation result.

Expressive power of PL[6]

Theorem 23. A family of teams is definable in PL[6] if and only if the family is
downward closed and includes the empty team.

Proof. We need to show that every downward closed family of teams that includes the
empty team is definable in PL[6] as the converse direction follows from Proposition 22.
Let T be a family of teams with the aforementioned properties. Define

Φ := 6
T∈T

∨
s∈T

φs, where φs is a formula whose only satisfying assignment is s.

We claim that Teams(Φ) = T . If S |= Φ, there is some T ∈ T s.t. S |= ∨
s∈T φs.

Thus S ⊆ T and hence S ∈ T , for T is downward closed. Conversely, if S ∈ T then
S |= ∨

s∈S φs, and thus S |= Φ.

The formula Φ can be made smaller by considering only subset maximal teams in T in
the definition of Φ.

We have already shown that every PL[dep]-formula can be translated to an equivalent
PL[6]-formula with an exponential blow-up in the size of the formula. Interestingly,
the converse direction holds as well. We will next show that the expressive power
of PL[dep] and PL[6] coincide, and that exponential blow-up is sometimes necessary
when PL[dep]-formulae are translated to PL[6].

Types and characterising formulae
We define some auxiliary notation and formulae:

• TypeΨ(s) := {φ ∈ Ψ | s |= φ}, for a set of PL-formulae Ψ and an assignment s.

• For Γ ⊆ Ψ, define θΓ :=
∧
ψ∈Γ ψ ∧ ∧

ψ∈Ψ\Γ ¬ψ, where the negation in ¬ψ is
pushed to the atomic level.

It is easy to check that TypeΨ(s) = Γ if and only if s |= θΓ.

• TypeΨ(T ) := {TypeΨ(s) | s ∈ T}, for a team T .

Lemma 24. Assume that T and S be teams and let Ψ be a finite set of PL-formulae.

1. For each ψ ∈ Ψ, T |= ψ if and only if ψ ∈ ⋂
TypeΨ(T ).
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2. If T |=6Ψ and TypeΨ(S) ⊆ TypeΨ(T ), then S |=6Ψ.

Proof. (1.) If T |= ψ, then by Proposition 19 (flatness), s |= ψ for every s ∈ T , which
means that ψ ∈ TypeΨ(s) for every s ∈ T . On the other hand, if ψ ∈ ⋂

TypeΨ(T ),
then s |= ψ for every s ∈ T . By Proposition 19 (flatness), it follows that T |= ψ.

(2.) Assume that T |= 6Ψ and TypeΨ(S) ⊆ TypeΨ(T ). Thus, T |= ψ for some
ψ ∈ Ψ, and by claim (1.), ψ ∈ ⋂

TypeΨ(T ). Since TypeΨ(S) ⊆ TypeΨ(T ), it follows

that ψ ∈ ⋂
TypeΨ(S). Thus, S |= ψ, and consequently S |=6Ψ.

Expressive power of PL[dep]
Consider next the formula stating that the truth value w.r.t. a set of propositions
Ψ ⊆ PROP is constant:

γ :=
∧
p∈Ψ

dep(p).

Hence T |= γ if and only if |TypeΨ(T )| ≤ 1. Define now recursively

γ0 := p ∧ ¬p, γk+1 := (γk ∨ γ).

It is easy to show by induction that T |= γk if and only if |TypeΨ(T )| ≤ k.

Lemma 25. If Ψ ⊆ PROP is a finite set of propositions and T ̸= ∅ a team, there is a
ξT ∈ PL[dep] s.t. for every S

S |= ξT ⇐⇒ TypeΨ(T ) ̸⊆ TypeΨ(S).

Proof. Let |TypeΨ(T )| = k + 1. Recall θΓ is a characterisic formula of Γ. We define

ξT :=
( ∨
Γ∈X

θΓ

)
∨ γk, where X = P(Ψ) \ TypeΨ(T ).

Now given a team S we have

S |= ξT ⇐⇒ there are T1, T2 s.t. T1 ∪ T2 = S,TypeΨ(T1) ⊆ X, |TypeΨ(T2)| ≤ k

⇐⇒ |TypeΨ(T ) ∩ TypeΨ(S)| ≤ k

⇐⇒ TypeΨ(T ) ̸⊆ TypeΨ(S).

We have already shown that every PL[dep]-formula can be translated to an equivalent
PL[6]-formula. We are now ready to show the converse.

Theorem 26. PL[6] is equi-expressive with PL[dep].

Proof. PL[6] ≤ PL[dep] direction: Let φ = 6Ψ be a PL[6]-formula in a normal
form, where Ψ ⊆ PL. Define

η :=
∧

T ̸∈Teams(φ)

ξT , where ξT is as in Lemma 25.
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Intuitively S |= η iff no falsifying team of φ is completely subsumed by S. Above, we
consider teams over proposition symbols that occur in φ, which makes η finite.
By definition η is a PL[dep]-formula. To prove that Teams(η) = Teams(φ), assume
first that S ∈ Teams(φ), and consider any T ̸∈ Teams(φ). It follows from Lemma 24
that TypeΨ(T ) ̸⊆ TypeΨ(S). Hence by Lemma 25, S |= ξT . Thus S ∈ Teams(η).

Assume then that S ̸∈ Teams(φ). Since TypeΨ(S) ⊆ TypeΨ(S), it follows from Lemma
25 that S ̸|= ξS . Thus S ̸∈ Teams(η).

We have now showed that PL[6] and PL[dep] both capture the team families that
are downward closed and include the empty team. What remains is to show that the
exponential blow-up in the translation from PL[dep] to PL[6] is inevitable.

Dimensions of team families

Definition 27. The lower dimension dim(φ) of a formula φ to is the least n such that

T |= φ ⇐⇒ S |= φ for all S ⊆ T s.t. |S| ≤ n.

The lower dimension of a flat formula is 1, and for a dependence atom it is 2. The lower
dimension is not easy to approximate compositionally, for that we define the notion
of upper dimension. Define M(φ) as the set of subset maximal teams satisfying φ.

Definition 28. The upper dimension Dim(φ) of a formula φ is the cardinality of
M(φ).

Interestingly, Dim(φ) can be given sharp compositional estimates, and it can be shown
that dim(φ) ≤ Dim(φ). We omit the proof of dim(φ) ≤ Dim(φ), but it can be found
in [Hel+14].
Next we present the compositional estimates for Dim(φ).

Estimates for the upper dimension

Lemma 29. We have the following upper dimension estimates for φ,ψ ∈ PL[6]:

1. Dim(p) = Dim(¬p) = 1.

2. Dim(φ ∧ ψ) ≤ Dim(φ)Dim(ψ).

3. Dim(φ ∨ ψ) ≤ Dim(φ)Dim(ψ).

4. Dim(φ6 ψ) ≤ Dim(φ) + Dim(ψ).

Proof. We omit the cases for (1) and (3), since (1) is trivial, and (3) is analogous to
(2).
Case (2): Note that Teams(φ ∧ ψ) = Teams(φ) ∩ Teams(ψ). By IH, Teams(φ) and
Teams(ψ) are finitely generated by M(φ) and M(ψ), respectively. Moreover, |M(φ)| ≤
Dim(φ) and |M(ψ)| ≤ Dim(ψ). It is immediate that

M(φ ∧ ψ) ⊆ {T ∩ U | T ∈M(φ), U ∈M(ψ)}.
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Clearly, by the IH the right-hand side of the inclusion above also generates the
family Teams(φ ∧ ψ). The inclusion now implies |M(φ ∧ ψ)| ≤ |M(φ) ×M(ψ)| ≤
Dim(φ)Dim(ψ). Hence, Dim(φ ∧ ψ) ≤ Dim(φ)Dim(ψ).
Case (4): For the Boolean disjunction, it holds that

M(φ6 ψ) ⊆M(φ) ∪M(ψ)

and the right-hand side of the inclusion generates the family Teams(φ 6 ψ). The
dimension estimate follows immediately.

Next we will show, how the notion of a dimension can be used to prove that
dependence atoms cannot have short definitions in PL[6].

What are dimensions good for?

Proposition 30. Dim(dep(p1, . . . , pn, q)) = 22
n

.

Proposition 31. For φ ∈ PL[6], Dim(φ) ≤ 2k, where k is the number of occurrences
of 6 in φ.

Theorem 32. Let φ ∈ PL[6] such that Teams(φ) = Teams(dep(p1, . . . , pn, q)). Then
φ contains more than 2n symbols.

Proof. By Prop 30, Dim(φ) = Dim(dep(p1, . . . , pn, q)) = 22
n

. Thus 22
n ≤ 2occ6(φ) by

Prop. 31, implying 2n ≤ occ6(φ). Hence φ has at least 2n Boolean disjunctions.

Thus, any translation from PL[dep] to PL[6] leads to an exponential blow-up.
In addition to characterisations of expressivity in the downward closed setting similar

results exist for union closed logics.

Expressivity of propositional inclusion logic

Theorem 33. A family of teams is definable in PL[⊆] if and only if it is union closed
and includes the empty team.

Proof. We will omit the proof, which combines ideas from the characterisation of PL[6]
and its equivalence with PL[dep]. The result was first shown in [HS15].

Conclusion of Lecture 2

• Properties of families of teams.

• Expressivity characterisation of PL[6].

• Equivalence of PL[6] and PL[dep].

• Expressivity characterisation of PL[⊆].
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Literature: [Hel+19; Hel+20]
Interestingly to note, PL[⊆] definable classes of propositional teams are exactly those

C such that

• ∅ ∈ C and

• C is union closed (X ∈ C, Y ∈ C ⇒ X ∪ Y ∈ C).
The latter we will prove in the following.

Inclusion
Inspired by

”
inclusion dependencies“ from database theory.

T |= p1 · · · pk ⊆ q1 · · · qk iff ∀u ∈ T ∃ v ∈ T : u(p̄) = v(q̄)

Lemma 34. PL[⊆] is union closed.

Proof. Let φ ∈ PL[⊆] and T1 |= φ and T2 |= φ and T1 ̸= T2. We do an induction on
the structure of φ.

• φ = p: T1 |= p and T2 |= p imply T1 ∪ T2 |= p.

• φ = p̄ ⊆ q̄: as T1 |= p̄ ⊆ q̄ and T2 |= p̄ ⊆ q̄, we have in each case that for all
u ∈ T1 there is a v ∈ T1 such that u(p̄) = v(q̄) and for all u ∈ T2 there is a v ∈ T2
such that u(p̄) = v(q̄). As a result, for all u ∈ T1 ∪ T2 there is a v ∈ T1 ∪ T2 such
that u(p̄) = v(q̄). This means that T1 ∪ T2 |= p̄ ⊆ q̄.

• φ = α ∧ β: by IH, T1 ∪ T2 |= α and T1 ∪ T2 |= β. Thus T1 ∪ T2 |= α ∧ β.
• φ = α ∨ β: by IH, T1 ∪ T2 |= α and T1 ∪ T2 |= β. Thus T1 ∪ T2 |= α ∨ β.

The union closure property allows us to give a simple proof that the validity problem
for PL[⊆] is coNP-complete.

Validity in Team Semantics
A formula φ is valid if T |= φ for all teams T such that the propositions in φ are in the
domain of T .

Problem: VAL(L) – the validity problem for logic L
Input: a L-formula φ

Question: Is φ valid?

16
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Validity in Inclusion Logic is Hard

Theorem 35. VAL(PL[⊆]) is coNP-complete.

Proof. Hardness: VAL(PL) is coNP-complete.
Membership:

1. PL[⊆] is union closed.

2. φ ∈ PL[⊆] is valid iff φ is valid on singleton teams.

3. On singleton teams inclusion atoms can be eliminated.

p1, . . . , pn ⊆ q1, . . . , qn can be rewritten as (p1 ↔ q1) ∧ · · · ∧ (pn ↔ qn)

4. Check validity of the PL-translatee.

Foundations: Monotone circuit value problem
A monotone circuit is a finite directed, acyclic graph in which each node is either:

• an input gate labelled with a Boolean variable xi,

• a disjunction gate with indegree 2,

• a conjunction gate with indegree 2.

There is exactly one node with outdegree 0, called the output gate.

Problem: MCVP — monotone circuit value problem

Input: a monotone circuit C and an input b1, . . . , bn ∈ {0, 1}
Question: is the output of the circuit 1

Proposition 36 ([Gol77]). MCVP is P-complete w.r.t. ≤log
m -reductions.

Model-Checking for Inclusion Logic

Theorem 37 ([Hel+19, Thm. 3.5]). PL[⊆]-MC is P-complete.

Ideas:

Lower bound: reduce from MCVP

Upper bound: use a labelling algorithm to compute a maximum satisfying team
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P-hardness: Idea of the reduction from MCVP to PL[⊆]-MC

• gate gi ⇝ assignment si

• proposition pi for each gate gi (where g0 is the output gate), p⊥ and p⊤

• special propositions pk=i∨j for disjunction gates

• si ∈ T if gi has value 1

si(p) :=


1 if p = pi or p = p⊤,

1 if p = pk=i∨j or p = pk=j∨i for some j, k ≤ m,

0 otherwise.

• s⊥(p) = 1 iff p = p⊥ or p = p⊤ (no other si maps p⊥ to 1)

• create a formula φC that quantifies truth value of each gate and ensures correct
propagation

More details: P-hardness of PL[⊆]-MC.
After skipping some technicalities we arrive at

T |= p⊤ ⊆ p0 iff s0 ∈ T
T |= pi ⊆ pj iff si ∈ T implies sj ∈ T

T |= pk ⊆ pk=i∨j iff sk ∈ T implies that si ∈ T or sj ∈ T

Recall: gates that are in the team T have a value 1.

Express gate properties:

ψout=1 := p⊤ ⊆ p0,

ψ∧ :=
∧

{pi ⊆ pj | (gj , gi) ∈ E and α(gi) = ∧},

ψ∨ :=
∧

{pk ⊆ pk=i∨j | i < j, (gi, gk) ∈ E, (gj , gk) ∈ E, and α(gk) = ∨}

Encoding MCVP: the final puzzle pieces
More truth about the team:

T :=
{
si | α(gi) ∈ {∧,∨}

}
∪
{
si | α(gi) ∈ {xi | bi = 1}

}
∪ {s⊥}

Now we claim that

T |= ¬p⊥ ∨ (ψout=1 ∧ ψ∧ ∧ ψ∨) iff output of the circuit is 1.

Crux 1: split requires guessing a team Y for the right disjunct that encodes the valuation
of the circuit.
Crux 2: ¬p⊥ and s⊥ ensure that Y is nonempty and deal with the propagation of the
value 0 by the subformulae of the form pi ⊆ pj .

In the following, we present a full formal proof.
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Proof. We will establish a ≤log
m -reduction from MCVP to the model checking problem

of PL[⊆] under lax semantics. Since MCVP is P-complete, the claim follows. More
precisely, we will show how to construct, for each monotone Boolean circuit C with n
input gates and for each input b⃗ for C, a team XC,⃗b and a PL[⊆]-formula φC such that

XC,⃗b |= φC if and only if the output of the circuit C with the input b⃗ is 1.

We use teams to encode valuations of the circuit. For each gate vi of a given circuit,
we associate an assignment si. The crude idea is that if si is in the team under
consideration, the value of the gate vi with respect to the given input is 1. The formula
φC is used to quantify a truth value for each Boolean gate of the circuit, and then for
checking that the truth values of the gates propagate correctly. We next define the
construction formally.

Let C = (V,E, α) be a monotone Boolean circuit with n input gates and one output

gate and let b⃗ = (b1 . . . bn) ∈ {0, 1}n be an input to the circuit C. We stipulate that
V = {v0, . . . , vm} and that v0 is the output gate of C. Define

τC := {p0, . . . , pm, p⊤, p⊥} ∪ {pk=i∨j | i < j, α(vk) = ∨, and (vi, vk), (vj , vk) ∈ E}.
For each i ≤ m, we define the assignment si : τC → {0, 1} as follows:

si(p) :=


1 if p = pi or p = p⊤,

1 if p = pk=i∨j or p = pk=j∨i for some j, k ≤ m,

0 otherwise.

Furthermore, we define s⊥(p) = 1 iff p = p⊥ or p = p⊤. We note that the assignment
s⊥ will be the only assignment that maps p⊥ to 1. We make use of the fact that for
each gate vi of C, we have that s⊥(pi) = 0. We define

XC,⃗b
:=

{
si | α(vi) ∈ {∧,∨}

}
∪
{
si | α(vi) ∈ {xi | bi = 1}

}
∪ {s⊥},

that is, XC,⃗b consists of assignments for each of the Boolean gates, assignments for
those input gates that are given 1 as an input, and of the auxiliary assignment s⊥.
Let X be any nonempty subteam of XC,⃗b such that s⊥ ∈ X. We have

X |= p⊤ ⊆ p0 iff s0 ∈ X

X |= pi ⊆ pj iff (si ∈ X implies sj ∈ X) (3.1)

X |= pk ⊆ pk=i∨j iff (i < j, (vi, vk), (vj , vk) ∈ E,α(vk) = ∨
and sk ∈ X implies that si ∈ X or sj ∈ X).

Recall the intuition that si ∈ X should hold iff the value of the gate vi is 1. Define

ψout=1 := p⊤ ⊆ p0,

ψ∧ :=
∧

{pi ⊆ pj | (vj , vi) ∈ E and α(pi) = ∧},

ψ∨ :=
∧

{pk ⊆ pk=i∨j | i < j, (vi, vk) ∈ E, (vj , vk) ∈ E, and α(vk) = ∨},
φC := ¬p⊥ ∨ (ψout=1 ∧ ψ∧ ∧ ψ∨).
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We claim that XC,⃗b |= φC iff the output of C with the input b⃗ is 1.
The idea of the reduction is the following: The disjunction in ϕC is used to guess a

team Y for the right disjunct that encodes the valuation β of the circuit C. The right
disjunct is then evaluated with respect to the team Y with the intended meaning that
β(vi) = 1 whenever si ∈ Y . Note that Y is always as required in (3.1). The formula
ψout=1 is used to state that β(v0) = 1, whereas the formulae ψ∧ and ψ∨ are used to
propagate the truth value 1 down the circuit. The assignment s⊥ and the proposition
p⊥ are used to make sure that Y is nonempty and to deal with the propagation of the
value 0 by the subformulae of the form pi ⊆ pj .

Now observe that the team XC,⃗b can be easily computed by a logspace Turing
machine which scans the input for ∧-gates, ∨-gates, and true input gates, and then
outputs the corresponding team members si in a bitwise fashion. The formula φC can
be computed in logspace as well:

1. the left disjunct does not depend on the input,

2. for ψ∧ we only need to scan for the ∧-gates and output the inclusion-formulae
for the corresponding edges,

3. for ψ∨ we need to maintain two binary counters for i and j, and use them for
searching for those disjunction gates that satisfy i < j.

Consequently, the reduction can be computed in logspace.

Computing a Maximum Satisfying Team
By maxsub(T, φ), we denote the maximum subteam T ′ of T such that T ′ |= φ, i.e., for
all T ′ ⊊ T ′′ ⊆ T , we have T ′′ ̸|= φ.
Union closure of PL[⊆] ensures that this always exists.

Lemma 38 (for a proof, see [Hel+19, Lemma 5.1]). If φ is a proposition symbol, its
negation, or an inclusion atom, then maxsub(T, φ) can be computed in polynomial time
with respect to |T |+ |φ|.

Interesting case: inclusion atoms (edges between assignments when agree on some
variables; successively delete vertices with out-degree 0). For literals (propositions or
their negations) the claim follows via flatness.

P-algorithm for PL[⊆]-MC
Important properties:

• Each team T has a unique maximal subteam satisfying a given formula φ.

• For literals maxsub(T, φ) is computable in polynomial time (Lemma 38).

Idea of the algorithm checking whether T |= φ:

1. Build the syntactic tree of φ and label each of its nodes with T .



21 Inclusion Logic

2. Bottom up part of the algorithm:

a) For literals φ labelled by Y , replace Y by maxsub(Y, φ).

b) For other nodes; update their label depending on their connective, their
previous label and their child nodes new labels.

3. Top down part of the algorithm:

a) Starting from root, update labels depending on the connective, previous label
and the parent nodes new label.

4. Go to 2.

The labelling algorithm is decreasing and each round takes only polynomial time.

Membership in P: more formally
approach: use a labelling function fi of occurrences of subformulae of input φ and start
with f0(ψ) = T for every sub-occurrence ψ

bottum-up part (odd i):

• for literals ψ: fi(ψ) := maxsub(fi−1(ψ), ψ)

• fi(ψ ∧ θ) := fi(ψ) ∩ fi(θ)

• fi(ψ ∨ θ) := fi(ψ) ∪ fi(θ)

top-down part (even i > 0):

• If ψ = θ ∧ γ, let fi(θ) := fi(γ) := fi(θ ∧ γ).

• If ψ = θ ∨ γ, let fi(θ) := fi−1(θ) ∩ fi(θ ∨ γ) and fi(γ) := fi−1(γ) ∩ fi(θ ∨ γ).

Claim: f∞(φ) = T iff T |= φ

Proof. We will present a labelling algorithm for model checking T |= φ. Let subOcc(φ)
denote the set of all occurrences of subformulae of φ. Below we denote occurrences as if
they were formulae, but we actually refer to some particular occurrence of the formula.
A function f : subOcc(φ) → P(T ) is called a labelling function of φ. We will next

give an algorithm for computing a sequence f0, f1, f2, . . ., of such labelling functions.

• Define f0(ψ) =W for each ψ ∈ subOcc(φ).

• For odd i ∈ N, define fi(ψ) bottom up as follows:

1. For literal ψ, define fi(ψ) := maxsub(fi−1(ψ), ψ).

2. fi(ψ ∧ θ) := fi(ψ) ∩ fi(θ).
3. fi(ψ ∨ θ) := fi(ψ) ∪ fi(θ).

• For even i ∈ N larger than 0, define fi(ψ) top to bottom as follows:
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1. Define fi(φ) := fi−1(φ) ∩ T .
2. If ψ = θ ∧ γ, define fi(θ) := fi(γ) := fi(θ ∧ γ).
3. If ψ = θ∨γ, define fi(θ) := fi−1(θ)∩fi(θ∨γ) and fi(γ) := fi−1(γ)∩fi(θ∨γ).

By a straightforward induction on i, we can prove that fi+1(ψ) ⊆ fi(ψ) for every
ψ ∈ subOcc(φ). The only nontrivial induction step is that for fi+1(θ) and fi+1(γ),
when i + 1 is even and ψ = θ ∧ γ. To deal with this step, observe that, by the
definition of fi+1 and fi, we have fi+1(θ) = fi+1(γ) = fi+1(ψ) and fi(ψ) ⊆ fi(θ), fi(γ).
Note also that for even i + 1 the direction of the proof is from larger formulae to
subformulae; in particular we may assume that fi+1(ψ) ⊆ fi(ψ). Now by connecting
the previous observations, we obtain that fi+1(θ) = fi+1(ψ) ⊆ fi(ψ) ⊆ fi(θ) and
fi+1(γ) = fi+1(ψ) ⊆ fi(ψ) ⊆ fi(γ).
It follows that there is an integer j ≤ 2 · |W | · |φ| such that fj+2 = fj+1 = fj . We

denote this fixed point fj of the sequence f0, f1, f2, . . . by f∞. By Lemma 38 the
outcome of maxsub(·, ·) is computable in polynomial time with respect to its input.
That being, clearly fi+1 can be computed from fi in polynomial time with respect to
|W |+ |φ|. On that account f∞ is also computable in polynomial time with respect to
|W |+ |φ|.

We will next prove by induction on ψ ∈ subOcc(φ) that f∞(ψ) |= ψ. Note first that
there is an odd integer i and an even integer j such that f∞ = fi = fj .

1. If ψ is a literal, the claim is true since f∞ = fi and fi(ψ) = maxsub(fi−1(ψ), ψ).

2. Assume next that ψ = θ ∧ γ, and the claim is true for θ and γ. Since f∞ = fj ,
we have f∞(ψ) = f∞(θ) = f∞(γ), as a result, by induction hypothesis, f∞(ψ) |=
θ ∧ γ.

3. In the case ψ = θ ∨ γ, we obtain the claim f∞(ψ) |= ψ by using the induction
hypothesis, and the observation that f∞(ψ) = fi(ψ) = fi(θ) ∪ fi(γ) = f∞(θ) ∪
f∞(γ).

In particular, if f∞(φ) = T , then T |= φ. Consequently, to complete the proof of the
lemma, it suffices to prove that the converse implication is true, as well. To prove this,
assume that T |= φ. Then for each ψ ∈ subOcc(φ), there is a team Tψ such that

1. Tφ = T .

2. If ψ = θ ∧ γ, then Tψ = Tθ = Tγ .

3. If ψ = θ ∨ γ, then Tψ = Tθ ∪ Tγ .
4. If ψ is a literal, then Tψ |= ψ.

We prove by induction on i that Tψ ⊆ fi(ψ) for all ψ ∈ subOcc(φ). For i = 0, this is
obvious, since f0(ψ) = W for all ψ. Assume next that i+ 1 is odd and the claim is
true for i. We prove the claim Tψ ⊆ fi(ψ) by induction on ψ.

1. If ψ is a literal, then fi+1(ψ) = maxsub(fi(ψ), ψ). Since Tψ |= ψ, and by
induction hypothesis, Tψ ⊆ fi(ψ), the claim Tψ ⊆ fi+1(ψ) is true.
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2. Assume that ψ = θ ∧ γ. By induction hypothesis on θ and γ, we have Tψ = Tθ ⊆
fi+1(θ) and Tψ = Tγ ⊆ fi+1(γ). For this reason, we get Tψ ⊆ fi+1(θ)∩ fi+1(γ) =
fi+1(ψ).

3. The case ψ = θ ∨ γ is similar to the previous one; we omit the details.

Assume then that i + 1 is even and the claim is true for i. This time we prove the
claim Tψ ⊆ fi(ψ) by top to bottom induction on ψ.

1. By assumption, Tφ = T , whence by induction hypothesis, Tφ ⊆ fi(φ) ∩ T =
fi+1(φ).

2. Assume that ψ = θ ∧ γ. By induction hypothesis on ψ, we have Tψ ⊆ fi+1(ψ).
Since Tψ = Tθ = Tγ and fi+1(ψ) = fi+1(θ) = fi+1(γ), this implies that Tθ ⊆
fi+1(θ) and Tγ ⊆ fi+1(γ).

3. Assume that ψ = θ ∨ γ. Using the fact that Tθ ⊆ Tψ, and the two induction
hypotheses on i and ψ, we see that Tθ ⊆ fi(θ) ∩ Tψ ⊆ fi(θ) ∩ fi+1(ψ) = fi+1(θ).
Similarly, we see that Tγ ⊆ fi+1(γ).

It follows now that T = Tφ ⊆ f∞(φ). Since f∞(φ) ⊆ f2(φ) ⊆ T , we conclude that
f∞(φ) = T . This completes the proof of the implication T |= φ ⇒ f∞(φ) = T .

Satisfiability for Inclusion Logic

Theorem 39 ([Hel+20, Cor. 3.6]). PL[⊆]-SAT is EXP-complete.

Short ideas:

Upper bound: equivalence preserving translation to SAT in PDL with global and
converse modalities

Lower bound: reduce from succinct Path-Systems variant (our focus)

The upper bound result is established by an equivalence-preserving translation to
propositional dynamic logic extended with the global and converse modalities. It is
well-known that this logic is complete for EXP [BRV01; Hem96; Eij14]. In fact, we will
only need multimodal logic with the global modality for our purposes.
Let Π and R be countably infinite sets of proposition symbols and binary relation

symbols, respectively. The following grammar defines a modal language L:

φ ::= p | ¬φ | (φ1 ∧ φ2) | ⟨R⟩φ | ⟨E⟩φ,

where p ∈ Π, R ∈ R, and E is a novel symbol. The (classical Kripke-styled) semantics
of L is defined with respect to ordinary pointed Kripke models (M,w) for multimodal
logic.

Let M = (W, {R}R∈R, V ) be a Kripke model, where V : Π → P(W ) is the valuation
function interpreting proposition symbols. Let w ∈ W . The following clauses define
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the semantics of L; note that we use the turnstile ⊩ instead of |=, which is reserved for
team semantics in this lecture.

M,w ⊩ p ⇔ w ∈ V (p)

M,w ⊩ ¬φ ⇔M,w ̸⊩ φ
M,w ⊩ φ1 ∧ φ2 ⇔M,w ⊩ φ1 and M,w ⊩ φ2

M,w ⊩ ⟨R⟩φ ⇔M,u ⊩ φ for some u such that wRu

M,w ⊩ ⟨E⟩φ ⇔M,u ⊩ φ for some u ∈W

We next define a satisfiability-preserving translation from propositional inclusion
logic into L. We let [R] and [E] denote ¬⟨R⟩¬ and ¬⟨E⟩¬, respectively. Before we fix
the translation, we define some auxiliary formulae. Let θ be a formula of PL[⊆]. We let
SUB(θ) denote the set of subformulae of θ; we distinguish all instances of subformulae,
so for example p ∧ p has three subformulae (the right and the left instances of p and
the conjunction itself).
For each formula φ ∈ SUB(θ), fix a fresh proposition symbol pφ that does not

occur in θ. We next define, for each φ ∈ SUB(θ), a novel auxiliary formula χφ. If
φ ∈ SUB(θ) is a literal p or ¬p, we define χφ := [E]

(
pφ → φ

)
.

For the remaining subformulae φ of θ, with the exception of inclusion atoms, the
formula χφ is defined as follows:

χφ∧ψ := [E]
(
(pφ∧ψ ↔ pφ) ∧ (pφ∧ψ ↔ pψ)

)
,

χφ∨ψ := [E]
(
pφ∨ψ ↔ (pφ ∨ pψ)

)
.

We then define the formulae χα where α ∈ SUB(θ) is an inclusion atom. We appoint
a fresh binary relation Rα for each inclusion atom in θ. Assume α denotes the inclusion
atom p1 · · · pk ⊆ q1 · · · qk. We define

χ+
α :=

∧
i∈{1,...,k}

[E]
(
(pα ∧ pi) → ⟨Rα⟩(pα ∧ qi)

)
,

χ−
α :=

∧
i∈{1,...,k}

[E]
(
(pα ∧ ¬pi) → ⟨Rα⟩(pα ∧ ¬qi)

)
,

χα := χ+
α ∧ χ−

α ∧
∧

i∈{1,...,k}

[E]
(
⟨Rα⟩qi → [Rα]qi

)
.

Finally, we define φθ := pθ ∧
∧

φ∈SUB(θ)

χφ.

Note that clearly the size of the formula φθ is polynomial with respect to the size of
θ. The intuition why this translation works is as follows. We use auxiliary propositions
pφ for each formula φ ∈ SUB(θ) so that their extensions correspond to teams where φ
is true. The above clauses capture the truth conditions of team semantics so that, for
example, pφ∨ψ will ultimately correspond to a team where φ∨ψ is true iff both pφ and
pψ will correspond to teams where φ and ψ are true, respectively. The same is true for
other operators in addition to ∨. Additionally, the translation has clauses that deal
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with atomic formulae. The treatment on inclusion atoms in particular requires some
intricate conditions to be satisfied. They have been dealt with via using the auxiliary
binary predicates Rα, as will be established in the following proof.

Proof. We will show that any formula θ of propositional inclusion logic is satisfiable if
and only if its translation φθ is. Furthermore, θ is satisfiable over a domain W if and
only if φθ is satisfiable over W , and accordingly, we also get the desired result for finite
satisfiability. L has the finite model property since it clearly translates to two-variable
logic via a simple extension of the standard translation (see [BRV01] for the definition
of standard translation).
Let M = (W,R, V ) be a Kripke model. Let I(θ) ⊆ SUB(θ) be the set of inclusion

atoms in θ. Assume that X |= θ, where X is a nonempty team. We next define
a multimodal Kripke model N := (W,R, {Rα}α∈ I (θ), V ∪ U), where U : { pφ | φ ∈
SUB(θ)} → P(W ) extends the valuation function V . Define U(pθ) = X. Accordingly,
we have M,U(pθ) |= θ. Working from the root towards the leaves of the parse tree of
θ, we next interpret the remaining predicates pφ inductively such that the condition
M,U(pφ) |= φ is maintained.
Assume U(pψ∧ψ′) has been defined. We define U(pψ) = U(pψ′) = U(pψ∧ψ′). As

U(pψ∧ψ′) |= ψ ∧ ψ′, we have U(pψ) |= ψ and U(pψ′) |= ψ′.
Assume then that U(pψ∨ψ′) has been defined. As a result, there exist sets S and

S′ such that S |= ψ and S′ |= ψ′, and furthermore, S ∪ S′ = U(pψ∨ψ′). We define
U(pψ) = S and U(pψ′) = S′.
We have now fixed an interpretation for each of the predicates pφ. The relations Rα,

where α is an inclusion atom, remain to be interpreted. Let p1 · · · pk ⊆ q1 · · · qk be an
inclusion atom in θ, and denote this atom by α. Call T := U(pα). Let u ∈ T . Since
T |= α, there exists a point v ∈ T such that for each i ∈ {1, . . . , k}, u ∈ V (pi) if and
only if v ∈ V (qi). Define the pair (u, v) to be in Rα. In this fashion, consider each
point u in T and find exactly one corresponding point v for u, and put the pair (u, v)
into Rα. This fixes the interpretation of Rα.

Let w ∈ X = U(pθ). Recalling how the sets U(pφ) were defined, it is now routine to
check that N,w ⊩ φθ.
We then consider the converse implication. Consequently, we assume that N,w ⊩ φθ,

where N is some multimodal Kripke model in the signature of φθ and w a point in the
domain of N . We let W denote the domain and V the valuation function of N . For
each φ ∈ SUB(θ), define the team Xφ := V (pφ). We will show by induction on the
structure of θ that for each φ ∈ SUB(θ), we have Xφ |= φ. Once this is done, it is
clear that Xθ |= θ.
Furthermore, we have Xθ ≠ ∅ as w ∈ V (pθ) (because N,w ⊩ φθ). Now recall the

definition of the formulae χφ, where φ ∈ SUB(θ). Let p ∈ SUB(θ). It is clear that
Xp |= p, since N,w ⊩ χp. Similarly, we infer that X¬q |= ¬q for ¬q ∈ SUB(θ).

Consider then a subformula p1 · · · pk ⊆ q1 · · · qk of φ. Denote this inclusion atom by
α. Consider a point u ∈ Xα. If u satisfies pi for some i ∈ {1, . . . , k}, then we infer that
since N,w ⊩ χ+

α , there exists a point vi ∈ Xα that satisfies qi. Similarly, if u satisfies
¬pj , we infer that since N,w ⊩ χ−

α , there exists a point vj ∈ Xα that satisfies ¬qj . To
conclude that Xα |= α, it suffices to show that all such points vi and vj can be chosen
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such that vi = vj for all i, j ∈ {1, . . . , k}. This follows due to the third conjunct of χα.
Concerning the third conjunct, note here carefully that [E]

(
⟨Rα⟩qi → [Rα]qi

)
implies

that [E]
(
⟨Rα⟩¬qi → [Rα]¬qi

)
. Having established the basis of the induction, the rest

of the argument is straightforward.

Persistent subsets

Definition 40. Let A = (A,S) be a structure with A = {1, . . . , n} and S ⊆ A3. A
subset P of A is S-persistent if it satisfies the condition

(∗) if i ∈ P , then there are j, k ∈ P such that (i, j, k) ∈ S.

Problem: PER

Input: structures A = (A,S) with A = {1, . . . , n} and S ⊆ A3

Question: exists some S-persistent set P ⊆ A such that n ∈ P

Theorem 41 (closely related to PathSystems [GHR95, p. 171]). PER is P-complete.

A succinct variant of PER

• represent structures A = (A,S) by Boolean circuits C with inputs of length 3ℓ

• A = (A,S)
C
⇝ (AC , SC) with AC = {1, . . . , 2ℓ}

• for all i, j, k ∈ A, let (i, j, k) ∈ SC if and only if C accepts the input tuple

(a1, . . . , aℓ, b1, . . . , bℓ, c1, . . . , cℓ) ∈ {0, 1}3ℓ,

where i = bin(a1 . . . aℓ), j = bin(b1 . . . bℓ) and k = bin(c1 . . . cℓ).

Problem: S-PER

Input: Boolean circuits C with inputs of length 3ℓ

Question: exists some SC-persistent set P ⊆ AC such that 2ℓ ∈ P

Theorem 42 ([Hel+19, Lem. 3.4]). S-PER is EXP-hard with respect to ≤pm-reductions.

As a rough idea, one can show EXP-hardness by a generic reduction from alternating
PSPACE Turing machines

EXP-hardness of PL[⊆]: prerequisites
To show: S-PER ≤pm PL[⊆]-SAT.
Notation: T (p1, . . . , pn) := {(s(p1), . . . , s(pn)) ∈ {0, 1}n | s ∈ T}
Note that the semantics of inclusion atoms can now be expressed as

M,T |= p1 · · · pn ⊆ q1 · · · qn ⇐⇒ T (p1, . . . , pn) ⊆ T (q1, . . . , qn).
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Encoding S-PER into PL[⊆]
C is a Boolean circuit with 3ℓ input gates ordered g1, . . . , gm such that g1, . . . , g3ℓ are
the input gates and gm is the output gate.

• fix propositions pi for each gate gi

• define for each gate a PL[⊆] formula θi:

θi =


pi ↔ ¬pj if gi is a NOT gate with input gj

pi ↔ (pj ∧ pk) if gi is an AND gate with inputs gj and gk

pi ↔ (pj ∨ pk) if gi is an OR gate with inputs gj and gk

Note: ↔ is usual shorthand for flat formulas

Then: ψC :=
(∧

3ℓ+1≤i≤m θi
)
∧ pm. (truth values of pi match acc. computation of C)

Encoding persistency into the formula
Input gate propositions: p1, . . . , pℓ, pℓ+1, . . . , p2ℓ︸ ︷︷ ︸

=:q1,...,qℓ

, p2ℓ+1, . . . , p3ℓ︸ ︷︷ ︸
=:r1,...,rℓ

The final formula:

φC := ψC ∧ q1 · · · qℓ ⊆ p1 · · · pℓ ∧ r1 · · · rℓ ⊆ p1 · · · pℓ ∧ pm · · · pm ⊆ p1 · · · pℓ

Claim: C is a positive instance of S-PER if and only if φC is satisfiable.

We will prove only ⇒. For the other direction, we define the SC-persistent set as

{bin(a1 . . . aℓ) | (a1, . . . , aℓ) ∈ T (p1, . . . , pℓ)}.

“⇒” of the claim
In the following, we also present a proof in full details.

Proof. Let C be a Boolean circuit with 3ℓ input gates. Let g1, . . . , gm be the gates of
C, where g1, . . . , g3ℓ are the input gates and gm is the output gate. We fix a distinct
Boolean variable pi for each gate gi. Let Φ be the set {p1, . . . , pm} of proposition
symbols. We define for each i ∈ {3ℓ+1, . . . ,m} a formula θi ∈ PL[⊆](Φ) that describes
the correct operation of the gate gi (where ↔ is the usual shorthand for flat formulae):

θi =


pi ↔ ¬pj if gi is a NOT gate with input gj

pi ↔ (pj ∧ pk) if gi is an AND gate with inputs gj and gk

pi ↔ (pj ∨ pk) if gi is an OR gate with inputs gj and gk

Let ψC be the formula
(∧

3ℓ+1≤i≤m θi
)
∧ pm. That being so, ψC essentially says that

the truth values of pi, 1 ≤ i ≤ m, match an accepting computation of C.
Now we can define a formula φC of PL[⊆](Φ) which is satisfiable if and only if C is

a positive instance of S-PER. For the sake of readability, we denote here the variables
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corresponding to the input gates gℓ+1, . . . , g2ℓ by q1, . . . , qℓ. Similarly, we denote the
variables p2ℓ+1, . . . , p3ℓ by r1, . . . , rℓ.

φC := ψC ∧ q1 · · · qℓ ⊆ p1 · · · pℓ ∧ r1 · · · rℓ ⊆ p1 · · · pℓ ∧ pm · · · pm ⊆ p1 · · · pℓ.

Note that φC can clearly be constructed from the circuit C in polynomial time.
Assume first that φC is satisfiable. That being so there is a nonempty team T such

that T |= φC . Consider the model AC = (AC , SC) that corresponds to the circuit C.
We define a subset P of AC as follows: P := {bin(a1 . . . aℓ) | (a1 . . . aℓ) ∈ T (p1, . . . , pℓ)}.

Observe first that since T |= pm and T |= pm · · · pm ⊆ p1 · · · pℓ, (1, . . . , 1) ∈
T (p1, . . . , pℓ) and that being so 2ℓ = bin(1 . . . 1) ∈ P . On that account, it suffices to
show that P is SC -persistent. To prove this, assume that i = bin(a1 . . . aℓ) ∈ P . Then
there is a state w ∈ T such that w ∈ V (pt) ⇐⇒ at = 1 for 1 ≤ t ≤ ℓ.
Define now bt, ct ∈ {0, 1}, 1 ≤ t ≤ ℓ, by the condition

bt = 1 ⇐⇒ s(qt) = 1 and ct = 1 ⇐⇒ s(rt) = 1.

As T |= ψC , it follows from flatness that s |= ψC for every s ∈ T . By the definition
of ψC , this means that the circuit C accepts the input tuple (a1, . . . , aℓ, b1, . . . , bℓ,
c1, . . . , cℓ). That being the case, (i, j, k) ∈ SC , where j = bin(b1 . . . bℓ) and k =
bin(c1 . . . cℓ).
We still need to show that j, k ∈ P . To see this, note that since T |= q1 · · · qℓ ⊆

p1 · · · pℓ, there exists s ∈ T such that

s(pt) = 1 ⇐⇒ s(qt) = 1 ⇐⇒ bt = 1 for 1 ≤ t ≤ ℓ.

Accordingly, (b1, . . . , bℓ) ∈ T (p1, . . . , pn), and on that account j ∈ P . Similarly we see
that k ∈ P .
To prove the other implication, assume that C is a positive instance of the problem

S-PER. Then there is an SC -persistent set P ⊆ AC such that 2ℓ ∈ P . We let T the team
such that T is the set of all tuples (a1, . . . , am) ∈ {0, 1}m that correspond to an accepting
computation of C and for which bin(a1 . . . aℓ), bin(aℓ+1 . . . a2ℓ), bin(a2ℓ+1 . . . a3ℓ) ∈ P .
We will now show that T |= φC , and accordingly φC is satisfiable. Note first that

T |= ψC , since by the definition of T , for any s ∈ T , the truth values of pi w.r.t. s
correspond to an accepting computation of C.
To prove T |= q1 · · · qℓ ⊆ p1 · · · pℓ, assume that (b1, . . . , bℓ) ∈ T (q1, . . . , qℓ). Then

i := bin(b1 . . . bℓ) ∈ P , and since P is SC-persistent, there are j, k ∈ P such that
(i, j, k) ∈ SC . Accordingly, there is a tuple (a1, . . . , am) ∈ {0, 1}m corresponding to an
accepting computation of C such that (a1, . . . , aℓ) = (b1, . . . , bℓ), j = bin(aℓ+1 . . . a2ℓ)
and k = bin(a2ℓ+1 . . . a3ℓ). This means that (a1, . . . , am) is in T , and that being the
case (b1, . . . , bℓ) ∈ T (p1, . . . , pℓ). The claim M,T |= r1 · · · rℓ ⊆ p1 · · · pℓ is proved in the
same way.
Note that since T |= pm, we have T (pm, . . . , pm) = {(1, . . . , 1)}. Furthermore, since

2ℓ = bin(1 . . . 1) ∈ P and P is SC -persistent, there is an element (a1, . . . , am) ∈ T such
that (a1, . . . , aℓ) = (1, . . . , 1). Consequently, we see that (1, . . . , 1) ∈ T (p1, . . . , pℓ), and
as a result T |= pm · · · pm ⊆ p1 · · · pℓ.
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Conclusion of Lecture 3

• PL[⊆]-MC is P-complete.

• PL[⊆]-SAT is EXP-complete.

• PL[⊆]-VAL is coNP-complete.



4 Complexity of propositional
dependence logic and beyond

Literature: [Vir17; Han+18]
In this section, we explore the complexity of validity and model checking for PL[dep].

Canonical complete problems: SAT and QBF

SAT [Coo71]

Input: Boolean formula θ
Question: Is θ satisfiable?

Complete for: NP (Thm. 5)

QBF (Stockmeyer and Meyer, 1973)

Input: Quantified Boolean formula
ϕ := Q1p1 . . . Qnpnθ

Question: Is ϕ true?

Complete for: PSPACE

W.l.o.g. θ in 3CNF

θ = (p1 ∨ p2 ∨ ¬p3) ∧ (¬p2 ∨ ¬p4 ∨ p5) ∧ . . .

Model Checking for Dependence Logic

Theorem 43 ([Loh12, Theorem 4.13]). PL[dep]-MC is NP-complete.

Proof ideas:

Membership: Use nondeterminism for splitjunctions.

Hardness: reduce from 3SAT.

Membership in NP

Proof. The following recursive algorithm Check(formula ϕ, team T ) shows membership
in NP.

1. switch ϕ:

2. case ϕ = p ∈ PROP: foreach s ∈ T do if not s(p) then return 0 endfor return 1.

3. case ϕ = ¬p, p ∈ PROP: foreach s ∈ T do if s(p) then return 0 endfor return 1.

4. case ϕ = dep(P,Q): foreach (s, t) ∈ T × T do if s↾P = t↾P and s↾Q ≠ t↾Q
then return 0 endfor return 1.

30
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5. case ϕ = ψ ∧ θ: return Check(ψ, T ) ∧Check(θ, T ).

6. case ϕ = ψ ∨ θ: guess T1, T2 with T1 ∪ T2 = T , if T1 ∪ T2 ̸= T then return 0
else return Check(ψ, T1) ∧Check(θ, T2).

Runtime of one call is O(||T ||+ ||ϕ||+ ||T ||2), where || · || denotes the encoding length.
We have |ϕ| recursion depth. Together still polynomial in the input length. Correctness
via induction on formula structure.

NP Lower Bound

Proof. Show 3SAT ≤pm PL[dep]-MC. Let ϕ =
∧m
i=1(ℓi,1 ∨ ℓi,2 ∨ ℓi,3) be a 3CNF

formula over variables {x1, . . . , xn}. Assume without loss of generality, that ϕ does not
contain any tautological clauses (i.e., a clause where a variable x and its negation ¬x is
contained). We define the team T = {s1, . . . , sm} over variables {v1, . . . , vn, p1, . . . , pn},
where the intuitive meaning is that every assignment encodes a clause. The assignment
si maps vj to 1, if variable xj occurs in clause i with parity si(pj). Formally

si(vj) =

{
1, if xj is in clause i

0, otherwise.

si(pj) =

{
1, if xj is positive in clause i

0, otherwise.

Note that the otherwise case for si(pj) contains the case where neither xj nor ¬xj are
in clause i. Let ψ :=

∨n
j=1(vj ∧ dep({pj})). We claim that ϕ is satisfiable iff T |= ψ.

“⇒”: Let I be a satisfying assignment for ϕ. Now note that since I(ϕ) = 1, each
clause is made true by some variable xj . So we split the assignments (that correspond
to clauses) into groups T1, . . . , Tn such that in Ti are those clauses that xi makes true.
Formally construct T1, . . . , Tn ⊆ T :

Tj := {si ∈ T | si(vj) = 1, si(pj) = I(xj)}
Since I(ϕ) = 1, each clause is made true by some variable xj with the parity I(xj) and
thus T1 ∪ · · · ∪ Tn = T . Now, by the selection of Tj , Tj |= vj ∧ dep({pj}) for 1 ≤ j ≤ n
and hence T |= ψ.
“⇐”: Now, assume T |= ψ. Hence, T = T1 ∪ · · · ∪ Tn with Tj |= vj ∧ dep({pj})

for 1 ≤ j ≤ n. We will show how to construct a satisfying assignment I for ϕ from
T1, . . . , Tn. Let bj denote the constant value given for pj in Tj . If Tj = ∅, we set bj := 1.
We then define I such that

I(xj) = bj .

We have to prove that I is well defined, and that I(ϕ) = 1. It is immediate that I
is well defined as the definition sets the truth value of every variable uniquely once.
It suffices to show that I makes every clause of ϕ true. Let Ci be some clause of
ϕ and si its corresponding assignment. We know that si ∈ Tj , for some j. Since
Tj |= vj ∧ dep({pj}), we obtain that xj occurs in Ci with parity bj . Thus I makes Ci
true.
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Canonical complete problems: DQBF

DQBF (Peterson, Reif, Azhar, 2001)

Input: Dependency Quantified Boolean formula
ϕ := ∀p1 . . . ∀pm∃q1 . . . ∃qnθ and constraints c⃗1, . . . , c⃗n

Question: Is ϕ true?

Complete for: NEXPTIME

• The constraint c⃗i is a tuple of the universally quantified variables of which the
existentially quantified variable qi may depend on.

• A DQBF formula ∀p1 . . . ∀pm∃q1 . . . ∃qnθ with constraints c⃗1, . . . , c⃗n is true, if the
the following formula with Boolean function quantification

∃f1 . . . fn∀p1 . . . ∀pmθ(f1(c⃗1)/q1, . . . fn(c⃗n)/qn)

is true. Note that fi is a Boolean function (Skolem function) which is used to
interpret qi given the values of the variables in c⃗i.

• Note how close the above is to dep(c⃗1, q1) ∧ · · · ∧ dep(c⃗n, qn) ∧ θ!

As hinted above DQBF and PL[dep] are closely connected. Next we will show that
the validity problem for PL[dep] is NEXPTIME complete by a reduction from DQBF,
which uses dependence atoms to describe constraints.

The validity problem for PD is in NEXPTIME
We start with a simple lemma that reduces validity of PL[dep] to model checking on
an exponentially large team.
If D ⊆ PROP, we denote by 2D the set of all assignments s : D → {0, 1}.

Lemma 44. A PL[dep]-formula φ with proposition symbols in D is valid iff 2D |= φ.

Proof. Left-to-right direction is trivial and the converse follows from downward closure.

Lemma 45. The validity problem for PL[dep] is in NEXPTIME.

Proof. Let φ ∈ PL[dep] whose variables are in D. By Lemma 44, φ is valid iff 2D |= φ.
The size of 2D is 2|D| ≤ 2|φ|. Therefore 2D can be constructed from φ in exponential
time. By Theorem 43, there exists an NP algorithm (with respect to |2D|+ |φ|) for
checking whether 2D |= φ. Clearly this algorithm is in NEXPTIME with respect to
|φ|.

The validity problem for PD is NEXPTIME-hard
We will associate each DQBF-formula µ with a corresponding PL[dep]-formula φµ. Let

µ =
(
∀p1 . . . ∀pn∃q1 . . . ∃qk θ, (c⃗1, . . . , c⃗k)

)
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be a DQBF-formula and denote by Dµ the set of propositional variables in µ, i.e.,
Dµ := {p1, . . . , pn, q1, . . . , qk}. For each tuple of propositional variables c⃗i, i ≤ k, we
stipulate that c⃗i = (pi1 , . . . , pini

). Thus ni denotes the lenth of c⃗i. Define

φµ := θ ∨
∨
i≤k

dep(pi1 , . . . , pini
, qi).

We will show that µ is true if and only if the PL[dep]-formula φµ is valid. By Lemma 44,
it suffices to show that µ is valid if and only if 2Dµ |= φµ. Since DQBF is NEXPTIME-
complete and φµ is polynomial with respect to µ, it follows that the validity problem
for PL[dep] is NEXPTIME-hard.

Proof of correctness. Assume first that µ is valid, i.e., that ∀p1 . . . ∀pn∃q1 . . . ∃qk θ is
valid under the constraint (c⃗1, . . . , c⃗k). Therefore, for each i ≤ k, there exists a function
fi : {0, 1}ni → {0, 1} such that

for every assignment s : {p1, . . . , pn} → {0, 1} : s′ |= θ, (4.1)

where s′ := s
(
q1 7→ f1

(
s(c⃗1)

)
, . . . , qk 7→ fk

(
s(c⃗k)

))
. Our goal is to show that

2Dµ |= θ ∨
∨
i≤k

dep(pi1 , . . . , pini
, qi).

It suffices to show that there exist some Y,Z1, . . . Zk ⊆ 2Dµ such that Y ∪Z1∪· · ·∪Zk =
2Dµ , Y |= θ, and Zi |= dep(pi1 , . . . , pini

, qi), for each i ≤ k. We define the team Zi, for
each i ≤ k, by using the function fi. Define

Zi := {s ∈ 2Dµ | s(qi) ̸= fi
(
s(pi1), . . . , s(pini

)
)
}, for each i ≤ k.

Since propositional variables have only 2 possible values, we conclude that, for each
i ≤ k, Zi |= dep(pi1 , . . . , pini

, qi). Thus⋃
1≤i≤k

Zi |=
∨
i≤k

dep(pi1 , . . . , pini
, qi). (4.2)

Note that s(qi) = fi
(
s(pi1), . . . , s(pini

)
)
holds for every s ∈ (2Dµ \ Zi) and every i ≤ k.

Define then
Y := 2Dµ \

⋃
1≤i≤k

Zi.

Clearly, for every s ∈ Y and i ≤ k, it holds that s(qi) = fi
(
s(pi1), . . . , s(pini

)
)
. Recall

that, for each i ≤ k, c⃗i = (pi1 , . . . , pini
). Thus from (4.1), it follows that s |= θ, for

every s ∈ Y . Since θ is a PL-formula, we conclude by flatness of PL that Y |= θ. From
this together with (4.2), we conclude that 2Dµ |= φµ.
Assume then that 2Dµ |= φµ. Thus there exist some Y1, . . . , Yk, Z such that Y1 ∪

· · · ∪ Yk ∪ Z = 2Dµ , Z |= θ, and

Yi |= dep(pi1 , . . . , pini
, qi), for each i ≤ k.
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Assume that we have picked Y1, . . . , Yk, Z such that Z is minimal. We will show that
then Z |= dep(pi1 , . . . , pini

, qi), for each i ≤ k. Assume for the sake of a contradiction
that, for some i ≤ k, there exist s, t ∈ Z such that

s(pi1) = t(pi1), . . . , s(pini
) = t(pini

) but s(qi) ̸= t(qi).

Clearly either Yi ∪ {s} |= dep(pi1 , . . . , pini
, qi) or Yi ∪ {t} |= dep(pi1 , . . . , pini

, qi). This
contradicts the fact that Z was assumed to be minimal.
We will then show that, for every a1, . . . , an ∈ {0, 1}, there exists some assignment s

in Z that expands
(p1, . . . , pn) 7→ (a1, . . . , an).

Fix a1, . . . , an ∈ {0, 1}. Now, for every i ≤ k, since Yi |= dep(pi1 , . . . , pini
, qi), it

follows that for any two s′, s′′ ∈ Yi that expand (p1, . . . , pn) 7→ (a1, . . . , an), it holds
that s′(qi) = s′′(qi). Thus, for each i ≤ k, there exists a truth value bi ∈ {0, 1} such
that there is no expansions of (p1, . . . , pn, qi) 7→ (a1, . . . , an, bi) in Yi. Therefore, the
assignment (p1, . . . , pn, q1, . . . , qk) 7→ (a1, . . . , an, b1, . . . , bk) is not in Yi, for any i ≤ k.
Thus the assignment (p1, . . . , pn, q1, . . . , qk) 7→ (a1, . . . , an, b1, . . . , bk) is in Z. Hence,
for every a1, . . . , an ∈ {0, 1}, there exists some expansion of (p1, . . . , pn) 7→ (a1, . . . , an)
in Z.

Now, for each i ≤ k, we define a function fi : {0, 1}ni → {0, 1} as follows. Define

fi(a1, . . . , ani) := s(qi),

where s is an assignment in Z that expands (pi1 , . . . pini
) 7→ (a1, . . . , ani

). Since
Z |= dep(pi1 , . . . , pini

, qi), for each i ≤ k, the functions fi are well defined. Recall that,
for each i ≤ k, c⃗i = (pi1 , . . . pini

). Now since θ is syntactically a PL-formula and since
Z |= θ, it follows from flatness of PL that s′ |= θ, for each s′ ∈ Z. Clearly the functions
fi, for i ≤ k, are as required in (4.1). Thus we conclude that (4.1) holds. Thus µ is
valid.

A logic to rule them all

The extension of PL with the contradictory negation PL[∼]

X |= ∼φ ⇐⇒ X ̸|= φ

is very expressive and all connectives studied in team sematics can be defined in it.

The connectives below can be defined in PL[∼] with polynomial blow up.

X |= φ6 ψ ⇔ X |= φ or X |= ψ,

X |= φ⊗ ψ ⇔ ∀Y,Z ⊆ X : if Y ∪ Z = X, then Y |= φ or Z |= ψ,

X |= φ→ ψ ⇔ ∀Y ⊆ X : if Y |= φ, then Y |= ψ,

X |= max(p1, . . . , pn) ⇔ {(s(p1), . . . , s(pn)) | s ∈ X} = {0, 1}n.
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Also dependence/inclusion/independence atoms can be expressed in PL[∼] with poly-
nomial blow up [LV19].

Expression Defining PL[∼]-formula

φ⊗ ψ ∼(∼φ ∨ ∼ψ)

φ6 ψ ∼(∼φ ∧ ∼ψ)

φ→ ψ (∼φ6 ψ)⊗∼(p ∨ ¬p)

dep(p) p6 ¬p

dep(p1, . . . , pn, q)
∧n
i=1 dep(pi) → dep(q)

max(p1, . . . , pn) ∼∨n
i=1 dep(pi)

Interestingly, the satisfiability and validity problems for PTL are interdefinable with
polynomial size definitions. In particular, this implies that there is not much difference
between SAT and VAL in PTL-setting.

PTIME Reductions Between Validity and Satisfiability
Note: X |= ∼(p ∧ ¬p) iff X is non-empty.

For φ ∈ PL[C,∼], define

φSAT := max(x⃗) → ((p ∨ ¬p) ∨ (φ ∧ ∼(p ∧ ¬p))),
φVAL := max(x⃗) ∧ (∼(p ∧ ¬p) → φ),

where x⃗ lists the variables of φ

Theorem 46. • φ is satisfiable iff φSAT is valid.

• φ is valid iff φVAL is satisfiable.

Oracle Turing Machines
The exponential-time hierarchy corresponds to the class of problems that can be
recognized by an exponential-time alternating Turing machine with constantly many
alternations.

In 1983 Orponen characterized the classes ΣEXP
k and ΠEXP

k of the exponential time
hierarchy by polynomial-time constant-alternation oracle Turing machines that query
to k oracles.

Orponen’s characterization can be generalised to exponential-time alternating Turing
machines with polynomially many alternations (i.e. the class AEXPTIME(poly)) by
allowing queries to polynomially many oracles.
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Idea: SAT for PL[∼] is Hard for AEXPTIME(poly)
AEXPTIME(poly) = “alternating exponential time with polynomially many alterna-
tions”.

We relate AEXPTIME(poly) with alternating polynomial time Turing machines that
query to oracles obtained from a quantifier prefix of polynomial length.

Alternation can be replaced by a sequence of word quantifiers

We then relate computations of these deterministic oracle Turing machines with the
satisfiability problems of PL[∼].

Characterization via Oracle Machines
The classes ΣEXP

k and ΠEXP
k of the exponential time hierarchy are characterized by

polynomial-time constant-alternation oracle Turing machines that query to k oracles
(Orponen 1983).

Theorem 47. A set A belongs to the class AEXPTIME(poly) iff there exist a polynomial
f and a polynomial-time alternating oracle Turing machine M such that, for all x,

x ∈ A iff Q1A1 . . . Qf(n)Af(n)(M accepts x with oracles (A1, . . . , Af(n))),

where n is the length of x and Q1, . . . , Qf(n) alternate between ∃ and ∀, i.e Qi+1 ∈
{∀,∃} \ {Qi}.

Characterization Without Alternation
Alternating Turing machine can be replaced by a sequence of word quantifiers over a
deterministic Turing machine (Chandra, Kozen, and Stockmeyer 1981).

Theorem 48. A set A belongs to the class AEXPTIME(poly) iff there exists a polynomial-
time deterministic oracle Turing machine M∗ such that x ∈ A iff

Q1A1 . . . Qf(n)Af(n)Q
′
1y⃗1 . . . Q

′
g(n)y⃗g(n)

(M∗ accepts (x, y⃗1, . . . , y⃗g(n)) with oracle (A1, . . . , Af(n))),

where Q1, . . . , Qf(n) and Q
′
1, . . . , Q

′
g(n) are alternating sequences of quantifiers ∃ and ∀,

and each y⃗i is a g(n)-ary sequence of propositional variables where n is the length of x.

g is a polynomial that bounds the running time of M .

From Turing Machines to SAT(PL[⊆,∼])
The whole computation of an oracle Turing machine is encoded to a team X.

Encoded information is accessed via expressions of the form:

∃s ∈ X s.t. {s} |= φ, where φ is in PL.

In PL[∼] the above is written as X |= ∼¬φ.
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Example
The membership of a binary string a⃗ in an oracle Ai is expressed by the statement

∃s ∈ X s.t. {s} |= q⃗ = a⃗ ∧ r⃗ = bin(i).

Tuple q⃗ lists the propositions used to encode the content of oracles.

Tuple r⃗ encodes the indices of the oracles.

In PL[∼] this is written as

X |= ∼¬(q⃗ = a⃗ ∧ r⃗ = bin(i)).

Simulating Quantification
Recall:

• The whole computation is encoded in a team.

• The decoding uses statements: ∃s ∈ X s.t. {s} |= φ.

• X |= φ⊗ ψ iff ∀Y, Z s.t. Y ∪ Z = X: Y |= φ or Z |= ψ.

• X |= φ ∨ ψ iff ∃Y, Z s.t. Y ∪ Z = X: Y |= φ and Z |= ψ.

We use ∨ to simulate existential quantification of relations and points.

We use ⊗ to simulate universal quantification of relations and points.

Idea of Quantification

• Fix the domain D of the encoding to be a huge team consisting of all assignments
for variables.

• ∃Y φ(Y ) 7→ ∃A ⊆ D: (D \A) |= φ.

• ∀Y φ(Y ) 7→ ∀A ⊆ D: (D \A) |= φ.

• Maintain uniformity in quantification. (Arities of A and D do not coincide.)
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Example of Quantification
Our encoding uses variables p1, . . . , pn: max(p1, . . . , pn)

Existential quantification of the oracle Ai: r⃗ = bin(i) ∨ (α ∧ φ).

Formula α takes care of the uniformity. (⊆ or ⊥c needed)

α := max(y⃗) ∧ y⃗ ⊥ q⃗r⃗

r encodes names of oracles, q encodes content of oracles, y encodes everything else.

Complexity of PL[∼]

Theorem 49. SAT(PL[∼]) is AEXPTIME(poly)-complete.

Proof. Hardness: By simulating polynomial time alternating oracle Turing machines.
Membership: Guess a possibly exponential-size team T and do APTIME model checking.

Corollary 50. VAL(PL[∼]) is AEXPTIME(poly)-complete.

Theorem 51. MC(PL[∼]) is PSPACE-complete

Complexity Results

Logic SAT VAL MC

PL NP 0 coNP 0 NC[1] 1

PL[dep] NP 3 NEXPTIME 4 NP 2

PL[⊥c] NP7 in coNEXPTIMENP7
NP7

PL[⊆] EXP 5 coNP7 in P 6

PL[∼] AEXPTIME(poly)7 AEXPTIME(poly)7 PSPACE8

0 Cook 1971, Levin 1973, 1 Buss 1987, 2 Ebbing, Lohmann 2012, 3 Lohmann, Vollmer
2013, 4 Virtema 2014, 5 Hella, Kuusisto, Meier, Vollmer 2015, 6 Hella, Kuusisto, Meier
and Virtema 2019, 7 Hannula, Kontinen, Virtema, Vollmer 2018, 8 Müller 2014.

Conclusion of Lecture 4

• DQBF is a canonical NEXPTIME-complete problem.

• SAT(PL[dep]) and MC(PL[dep]) are NP-complete.
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• VAL(PL[dep]) is NEXPTIME-complete.

• SAT(PL[∼]) and VAL(PL[∼]) are AEXPTIME(poly)-complete.

• MC(PL[∼]) are PSPACE-complete.



5 Recent Trends: Hyperproperties

Literature: [Vir+21; Gut+22]
In this lecture, we give an introduction into a recent trend in the field of team

semantics, namely the study of hyperproperties. First, we will explain syntax and
semantics of classical temporal logics (LTL, CTL, and CTL⋆). Afterwards, we give
a thorough motivation of hyperproperties and their importance in the context of
verification and specification of concurrent systems. We will show how these properties
can be expressed in a logic with team semantics.

Temporal Logic

• Dates back to Arthur Norman Prior (1914–1969)

• New modalities neXt,Until,Future,Global

• and quantifiers: All paths,Exists a path

• ‘From Philosophical to Industrial Logics’ [Var09]

Arthur N. Prior
(1914–1969)

© Courtesy of Martin Prior, Prior in 1953, Cranmer Square, Christchurch, New
Zealand, personal authorisation

Temporal Logic: Semantics by Example

Xφ: φ

Fφ: φ

Gφ: φ φ φ φ φ φ

φUψ: φ φ φ ψ

s1 s2

s3

s4 s5

E[greenUblue]

EF(blue ∧ AXgreen)

EGblue

40
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A Temporal Lanscape of Logics

CTL⋆

LTL CTL

CTL⋆: Syntax
φ ::= ⊤ | x | φ ∧ φ | ¬φ | Xφ | φUφ | Eφ,

LTL: Formulae Eφ with

φ ::= ⊤ | x | φ ∧ φ | ¬φ | Xφ | φUφ,

CTL: Syntax
φ ::= ⊤ | x | φ ∧ φ | ¬φ | EXφ | E[φUφ] | AFφ,

where x ∈ PROP.

State and Path Formulae
Regarding the formulae of CTL⋆, we follow the terminology of Emerson and Sis-
tla [ES84].

S1: Any atomic proposition is a state formula.

S2: If ψ,φ are state formula, then so are φ ∧ ψ, and ¬ψ.
S3: If ψ is a path formula, then Eψ is a state formula.

P1: Any state formula is a path formula.

P2: If ψ,φ are path formulae, then so are φ ∧ ψ, ¬ψ.
P3: If ψ,φ are path formulae, then so are Xφ, [φUψ].

Intuitively, (S1), (P1), (P2), and (P3) form LTL.

Kripke Frames and Paths

Definition 52. A frame F is a tuple F = (W,R), where W is a set of worlds and R is
its transition relation, i.e., R ⊆W ×W and R is total (every state has ≤ 1 successor).

Definition 53. Let PROP be an countably infinite set of symbols. A model is a
tuple M = (F , V ), where F = (W,R) is a frame and V : PROP → P(W ) is a labeling
function.
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Definition 54. A path π = w0, w1, . . . in a frame (W,R) is an infinite sequence of
states such that (wi, wi+1) ∈ R for all i. For π = w0, w1, . . . , let πi := wiwi+1 . . . ,
π[i] := wi.

In the following, we define semantics for CTL⋆ which encompasses the semantics for
the syntactic restrictions CTL and LTL. Here the first four rows define semantics for
state formulae while the rest define semantics for path formulae.

Formal Semantics of Temporal Logics

Definition 55. Let M = (W,R, V ) be a model, w ∈W , π be a path in (W,R).

M, w |= p iff w ∈ V (p),

M, w |= ¬φ iff M, w ̸|= φ,

M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ,

M, w |= Eφ iff there is a path π with π[0] = w we have that M, π |= φ,

M, π |= p iff π[0] ∈ V (p),

M, π |= ¬φ iff M, π ̸|= φ,

M, π |= φ ∧ ψ iff M, π |= φ and M, π |= ψ,

M, π |= Xφ iff M, π1 |= φ,

M, π |= φUψ iff there is a k ≥ 0 s.t. M, π[k] |= ψ and

for all i ≤ k we have that M, π[i] |= φ.

Remaning Operators by Short Cuts
There exist further operators which can be defined by the operators we have already
defined:

Aφ := ¬E¬φ
Fφ := [⊤Uφ]

Gφ := ¬F¬φ
[φWψ] := ¬[¬φU¬ψ]

Two Important Problems and their Complexities Satisfiability:

Given: a formula φ

Question: Is φ satisfiable?

Model Checking:

Given: a formula φ and a model M

Question: Is there a w ∈ M that satisfies φ?
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SAT MC

CTL⋆ EEXP1 PSPACE2

LTL PSPACE3 PSPACE4

CTL EXP5 P6

Examples for Interesting Properties in Temporal Logics
Mutal exclusion, i.e., no two processes can be in their critical section at the same time:

AG(¬p1 ∨ ¬p2)
Starvation freeness, i.e., there is always a call to process p:

AFp

Progress, i.e., some property r which implies a future call of process p:

AG(r → AFp)

Logics for verification and specification of concurrent systems
Basic setting:

• System (e.g., piece of software or hardware) ⇝ Kripke structure depicting the
behaviour of the system

• A single run of the system ⇝ a trace generated by the Kripke structure

• A property of the system (e.g., every request is eventually granted) ⇝ a formula
of some formal language expressing the property.

Model checking:

• Check whether a given system satisfies a given specification.

SAT solving:

• Check whether a given specification (or collection of) can be realised.

Traceproperties and hyperproperties
Opening your office computer after holidays:

s(hut)

l(oading)
l(oading)

c(onnecting)

r(eady)

s l r r
· · ·

s l c r r
· · ·

s l c l c r
· · ·

...
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Traceproperties hold in a system if each trace (in isolation) has the property:

• The computer will be eventually ready (or will be loading forever).

Hyperproperties are properties of sets of traces:

• The computer will be ready in bounded time.

Logics for traceproperties

• Linear-time temporal logic (LTL) is one of the most prominent logics for the
specification and verification of reactive and concurrent systems.

• Model checking tools like SPIN and NuSMV automatically verify whether a given
computer system is correct with respect to its LTL specification.

• One reason for the success of LTL over first-order logic is that LTL is a purely
modal logic and thus has many desirable properties.

– LTL is decidable (PSPACE-complete model checking and satisfiability).

– FO2(≤) and FO3(≤) SAT are NEXPTIME-complete and non-elementary.

• Caveat: LTL can specify only traceproperties.

Recipe for logics for hyperproperties
A logic for traceproperties ⇝ add trace quantifiers

In LTL the satisfying object is a trace: T |= φ iff ∀t ∈ T : t |= φ

φ ::= p | ¬φ | (φ ∨ φ) | Xφ | φUφ

In HyperLTL the satisfying object is a set of traces and a trace assignment: Π |=T φ

φ ::= ∃πφ | ∀πφ | ψ
ψ ::= pπ | ¬ψ | (ψ ∨ ψ) | Xψ | ψUψ

HyperQPTL extends HyperLTL by (uniform) quantification of propositions: ∃pφ, ∀pφ

Hyperlogics via quantifier extensions

• LTL, QPTL, CTL, etc. vs. HyperLTL, HyperQPTL, HyperCTL, etc. are
prominent logics for traceproperties vs. hyperproperties of systems

– Traceproperty: Each request is eventually granted (properties of traces)

– Hyperproperty: Non-inference (values of public outputs do not leak inform-
ation about confidential bits), (properties of sets of traces)

• HyperLogics are of high complexity or undecidable. Not well suited for properties
involving unbounded number of traces.
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Properties of quantification based hyperproperties

• Quantification based logics for hyperproperties: HyperLTL, HyperCTL, etc.

• Retain some desirable properties of LTL, but are not purely modal logics

– Model checking for ∃∗HyperLTL and HyperLTL are PSPACE and non-
elementary.

– HyperLTL satisfiability is highly undecidable.

– HyperLTL formulae express properties expressible using fixed finite number
of traces.

• Bounded termination is not definable in HyperLTL (but is in HyperQPTL)

s(hut)

l(oading)
l(oading)

c(onnecting)

r(eady)

s l r r
· · ·

s l c r r
· · ·

s l c l c r
· · ·

...

• Team semantics is a candidate for a purely modal logic without the above caveat.

Hyperlogic via team semantics

• Temporal logics with team semantics express hyperproperties.

• Purely modal logic & well suited for properties of unbounded number of traces.

• Expressivity

– TeamLTL and HyperLogics are othogonal in expressivity.

– Well behaved fragments of TeamLTL can be translated to HyperLogics with
some form of set quantification.

– Upper bound of expressivity is often monadic second-order logic with equi-
level predicate.

• Complexity:

– Where is the undecidability frontier of TeamLTL extensions?

– A large EXPTIME fragment: left-flat and downward closed logics

– Already TeamLTL with inclusion atoms and Boolean disjunctions is unde-
cidable
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LTL, HyperLTL, and TeamLTL
In LTL the satisfying object is a trace: T |= φ iff ∀t ∈ T : t |= φ

φ ::= p | ¬φ | (φ ∨ φ) | Xφ | φUφ
In HyperLTL the satisfying object is a set of traces and a trace assignment: Π |=T φ

φ ::= ∃πφ | ∀πφ | ψ
ψ ::= pπ | ¬ψ | (ψ ∨ ψ) | Xψ | ψUψ

In TeamLTL the satisfying object is a set of traces. We use team semantics: (T, i) |= φ

φ ::= p | ¬p | (φ ∨ φ) | (φ ∧ φ) | Xφ | φU | φWφ

+ new atomic statements (dependence and inclusion atoms: dep(p⃗, q), p⃗ ⊆ q⃗) +
additional connectives (Boolean disjunction, contradictory negation, etc.)

Extensions are a well-defined way to delineate expressivity and complexity

Semantics of TeamLTL
Temporal team semantics is universal and synchronous

(T, i) |= p iff ∀t ∈ T : t[i](p) = 1 (T, i) |= ¬p iff ∀t ∈ T : t[i](p) = 0

(T, i) |= Fφ iff (T, j) |= φ for some j ≥ i (T, i) |= Gφ iff (T, j) |= φ for all j ≥ i

Example: HyperQLTL
There is a timepoint (common for all traces) where a is false in each trace. Not
expressible in HyperLTL, but is in HyperQPTL.

∃p ∀π G(p→ XG¬p) ∧ F(p ∧ ¬aπ)

· · ·
· · ·
· · ·
· · ·

a a

a a

a a

Example: TeamLTL
There is a timepoint (common for all traces) where a is false in each trace. Not
expressible in HyperLTL, but is in HyperQPTL.

∃p ∀π G(p→ XG¬p) ∧ F(p ∧ ¬aπ)
Expressible in synchronous TeamLTL: F¬a

· · ·
· · ·
· · ·
· · ·

a a

a a

a a
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Examples: Disjunction in TeamLTL
A trace-set T satisfies φ ∨ ψ if it decomposed to sets Tφ and Tψ satisfying φ and ψ.

(T, i) |= φ ∨ ψ iff (T1, i) |= φ and (T2, i) |= ψ, for some T1 ∪ T2 = T

(T, i) |= φ ∧ ψ iff (T, i) |= φ and (T, i) |= ψ

Examples: Dependence atom in TeamLTL
Dependence atom dep(p1, . . . , pm, q) states that p1, . . . , pm functionally determine q:

(T, i) |= dep(p1, . . . , pm, q) iff ∀t, t′ ∈ T
( ∧

1≤j≤m

t[i](pj) = t′[i](pj)
)
⇒ (t[i](q) = t′[i](q))
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Temporal team semantics

Definition 56. Temporal team is (T, i), where T a set of traces and i ∈ N.

(T, i) |= p iff ∀t ∈ T : t[0](p) = 1

(T, i) |= ¬p iff ∀t ∈ T : t[0](p) = 0

(T, i) |= ϕ ∧ ψ iff (T, i) |= ϕ and (T, i) |= ψ

(T, i) |= ϕ ∨ ψ iff (T1, i) |= ϕ and (T2, i) |= ψ, for some T1, T2 s.t. T1 ∪ T2 = T

(T, i) |= Xφ iff (T, i+ 1) |= φ

(T, i) |= ϕUψ iff ∃k ≥ i s.t. (T, k) |= ψ and ∀m : i ≤ m < k ⇒ (T,m) |= ϕ

(T, i) |= ϕWψ iff ∀k ≥ i : (T, k) |= ϕ or ∃m s.t. i ≤ m ≤ k and (T,m) |= ψ

As usual Fφ := (⊤Uφ) and Gφ := (φW⊥). TeamLTL(6,⊆) is the extension with the
atoms and extra connectives in the brackets.

Generalised atoms and complete logics
Let B be a set of n-ary Boolean relations. We define the property [φ1, . . . , φn]B for an
n-tuple (φ1, . . . , φn) of LTL-formulae:

(T, i) |= [φ1, . . . , φn]B iff {(Jϕ1K(t,i), . . . , JϕnK(t,i)) | t ∈ T} ∈ B.

Theorem 57. TeamLTL(6,NE,
1

A) can express all [φ1, . . . , φn]B. TeamLTL(6,
1

A) can
express all [φ1, . . . , φn]B, for downward closed B.

• (T, i) |= NE iff T ̸= ∅.

• (T, i) |=
1

Aφ iff ({t}, i) |= φ, for all t ∈ T .

Complexity results

Logic Model Checking Result

TeamLTL without ∨ in PSPACE
k-coherent TeamLTL(∼) in EXPSPACE

left-flat TeamLTL(6,
1

A) in EXPSPACE
TeamLTL(⊆,6) Σ0

1-hard
TeamLTL(⊆,6,A) Σ1

1-hard
TeamLTL(∼) complete for third-order arithmetic

• k-coherence: (T, i) |= φ iff (S, i) |= φ for all S ⊆ T s.t. |S| ≤ k

• left-flatness: Restrict U and W syntactically to (
1

AφUψ) and (
1

AφWψ)

• ∼ is contradictory negation and TeamLTL(∼) subsumes all the other logics
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Source of Undecidability

Definition 58. A non-deterministic 3-counter machine M consists of a list I of n
instructions that manipulate three counters Cl, Cm and Cr. All instructions are of the
following forms:

• C+
a goto {j1, j2}, C−

a goto {j1, j2}, if Ca = 0 goto j1else goto j2,

where a ∈ {l,m, r}, 0 ≤ j1, j2 < n.

• configuration: tuple (i, j, k, l), where 0 ≤ i < n is the next instruction to be
executed, and j, k, l ∈ N are the current values of the counters Cl, Cm and Cr.

• computation: infinite sequence of consecutive configurations starting from the
initial configuration (0, 0, 0, 0).

• computation b-recurring if the instruction labelled b occurs infinitely often in it.

• computation is lossy if the counter values can non-deterministically decrease

Undecidability results

Theorem 59 (Alur & Henzinger 1994, Schnoebelen 2010). Deciding whether a given
non-deterministic 3-counter machine has a (lossy) b-recurring computation for a given
b is (Σ0

1-complete) Σ1
1-complete.

Theorem 60 ([Vir+21]). Model checking for TeamLTL(6,⊆) is Σ1
0-hard. Model

checking for TeamLTL(6,⊆,A) is Σ1
1-hard.

Proof Idea:

• reduce existence of b-recurring computation of given 3-counter machine M and
instruction label b to model checking problem of TeamLTL(6,⊆,A)

• TeamLTL(6,⊆) suffices to enforce lossy computation

• (T [i,∞], 0) encodes the value of counters of the ith configuration the value of Ca
is the cardinality of the set {t ∈ T [i,∞] | t[0](ca) = 1}

Model checking for TeamLTL(⊆,6) is Σ0
1-hard.

Proof. Given a set I of instructions of a 3-counter machine M , and an instruction label
b, we construct a TeamLTL(⊆,6)-formula φI,b and a Kripke structure KI such that(

Traces(KI), 0
)
|= φI,b iff M has a b-recurring lossy computation. (5.1)

The Σ0
1-hardness then follows since the construction is computable.
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Idea of the encoding
Put n := |I|. A set T of traces using propositions {cl, cm, cr, d, 0, . . . , n− 1} encodes
the sequence (c⃗j)j∈N of configurations, if for each j ∈ N and c⃗j = (i, vl, vm, vr)

• t[j] ∩ {0, . . . , n− 1} = {i}, for all t ∈ T ,

• |{t[j,∞] | cs ∈ t[j], t ∈ T}| = vs, for each s ∈ {l,m, r}.

Hence, we use T [j,∞] to encode the configuration c⃗j ; the propositions 0, . . . , n− 1 are
used to encode the next instruction, and cl, cm, cr, d are used to encode the values of
the counters. The proposition d is a dummy proposition used to separate traces with
identical postfixes with respect to cl, cm, and cr.

Construction of the Kripke structure
The Kripke structure KI = (W,R, η, w0) over the set of propositions {cl, cm, cr, d, 0, . . . , n−
1} is defined such that every possible sequence of configurations of M starting from
(0, 0, 0, 0) can be encoded by some team (T, 0), where T ⊆ Traces(KI).

Construction of the formula
The connective ∨L is a shorthand for the condition:

(T, i) |= ϕ ∨L ψ iff ∃T1, T2 s.t. T1 ̸= ∅, T1 ∪ T2 = T, (T1, i) |= ϕ and (T2, i) |= ψ.

The disjunction ∨L can be defined using ⊆, ∨ (see e.g., [Hel+19, Lemma 3.4]).

The formula
θb−rec := GFb

describes the b-recurrence condition of the computation.

The formula ϕI,b enforces that the configurations encoded by T [i,∞], i ∈ N, encode an
accepting computation of the counter machine; ∨L guesses the computation.

ϕI,b := (θcomp ∧ θb−rec) ∨L ⊤.

The formula θcomp states that the encoded computation is legal.

Claim 61. The claim (5.1) on page 49 holds.

Proof. First, define

singleton := G
∧

a∈PROP

(a6 ¬a), cs-decrease := cs ∨ (¬cs ∧ X¬cs), for s ∈ {l,m, r}.

The intuitive idea behind the above formulae are as follows: A team satisfying the
formula singleton contains at most a single trace with respect to the propositions in
PROP. If a team (T, i) satisfies cs-decrease, then the number of traces in T [i+ 1,∞]
satisfying cs is less or equal to the number of traces in T [i,∞] satisfying cs. In our
encoding of counters this would mean that the value of the counter c in the configuration
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c⃗i+1 is less or equal to its value in the configuration c⃗i. Thus cs-decrease will be handy
below for encoding lossy computation.

Next, for each instruction label i, we define a formula θi describing the result of the
execution of the instruction:

• For the instruction i : C+
l goto {j, j′}, define

θi := X(j6j′)∧
(
(singleton∧¬cl∧Xcl)∨cl-decrease

)
∧cr-decrease∧ cm-decrease .

• For the instruction i : C−
l goto {j, j′}, define

θi := X(j 6 j′) ∧
(
(cl ∧ X¬cl) ∨L cl-decrease

)
∧ cr-decrease∧ cm-decrease .

• For the instrunctions i : C+
s goto {j, j′} and i : C−

s goto {j, j′} with s ∈ {m, r},
the formulae θi are defined analogously with the indices l, m, and r permuted.

• For the instruction i : if Cs = 0 goto j, else goto j′, define

θi :=
(
X(¬cs ∧ j)6 (⊤ ⊆ cs ∧Xj′)

)
∧ cl-decrease∧ cm-decrease∧ cr-decrease .

Finally, define θcomp := G 6i<n (i ∧ θi). We next describe the intuition of the above
formulae. The left-most conjunct of θi for i : C+

l goto {j, j′} expresses that after
executing the instruction i, the label of the next instruction is either j or j′. The
third and the fourth conjunct express that the values of counters Cr and Cm will not
increase, but might decrease. The second conjunct expresses that the value of the
counter Cl might increase by one, stay the same, or decrease. The meaning of θi for
i : C−

l goto {j, j′} is similar. Finally, the formula θi for i : if Cs = 0 goto j, else goto j′

expresses that, in the lossy execution of i, a) the values of the counters Cl, Cm, and Cr
might decrease, but cannot increase, b) the next instruction is either j or j′, c) if the
next instruction is j then the value of the counter Cs, after the lossy execution, is 0,
and d) if the next instruction is j′ then the value of the counter Cs, before the lossy
execution, was not 0.

Next, we define the Kripke structure KI = (W,R, η, w0) over the set of propositions
{cl, cm, cr, d, 0, . . . , n− 1}. The structure is defined such that every possible sequence
of configurations of M starting from (0, 0, 0, 0) can be encoded by some team (T, 0),
where T ⊆ Traces(KI). Define W := {(i, j, k, t, l) | 0 ≤ i < n and j, k, t, l ∈ {0, 1}},
w0 := (0, 0, 0, 0, 0), R := W ×W , and η as the valuation such that η

(
(i, j, k, t, l)

)
∩

{0, . . . , n− 1} = i,

• cl ∈ η
(
(i, j, k, t, l)

)
if j = 1,

• cm ∈ η
(
(i, j, k, t, l)

)
if k = 1,

• cr ∈ η
(
(i, j, k, t, l)

)
if t = 1,

• and d ∈ η
(
(i, j, k, t, l)

)
if l = 1.

Assume first that M has a b-recurring lossy computation and let (c⃗j)j∈N be the
related sequence of configurations of M . Let T ⊆ Traces(KI) be a set of traces that
encodes (c⃗j)j∈N in the way described above, and such that, for every j ∈ N,

• if c⃗j = (i, vl, vm, vr) and the instruction labelled i is of the form i : C+
s goto {j, j′},

then there is at most one t ∈ T [j,∞] such that cs ̸∈ t[0] but cs ∈ t[1],
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• if i is not of the form i : C+
s goto {j, j′}, then there is no t ∈ T [j,∞] such that

cs ̸∈ t[0] but cs ∈ t[1].

The aforementioned condition makes sure that the traces in T that encode the
incrementation of counter values do not change erratically. Clearly, such a T al-
ways exists, given that (c⃗j)j∈N encodes a lossy computation. Furthermore, since T
encodes (c⃗j)j∈N and the related b-recurrent lossy computation follows the instruc-
tions in I, we have that (T, 0) |= θcomp ∧ θb−rec. Finally, as ∅ ≠ T ⊆ Traces(KI),(
Traces(KI), 0

)
|= (θcomp ∧ θb−rec) ∨L ⊤ follows.

Assume then that
(
Traces(KI), 0

)
|= ϕI,b. Hence there exists some nonempty subset

T of Traces(KI) such that (T, 0) |= θcomp ∧ θb−rec. It is now easy to construct a
sequence (c⃗j)j∈N of configurations that encode a b-recurrent lossy computation for M ;
for each j ∈ N, define c⃗j = (i, vl, vm, vr) such that

⋃
T [j] ∩ {0, . . . , n− 1} = {i}, and

|{t[j,∞] | cs ∈ t[j], t ∈ T}| = vs, for each s ∈ {l,m, r}.

Conclusion of Lecture 5

• Introduction into Temporal Logics

• Hyperproperties and Temporal Team Semantics

• Undecidability of model checking of TeamLTL(6,⊆)
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