
Complexity and Expressivity of Propositional Logics with Team Semantics
Arne Meier, Jonni Virtema
9th of August

Lecture 5: Recent Trends: Hyperproperties

Literature: [Vir+21; Gut+22]

71

Temporal Logic

• Dates back to Arthur Norman Prior (1914–1969)

• New modalities neXt,Until,Future,Global

• and quantifiers: All paths,Exists a path

• ‘From Philosophical to Industrial Logics’ [Var09]

Arthur N. Prior
(1914–1969)

© Courtesy of Martin Prior, Prior in 1953, Cranmer Square, Christchurch,
New Zealand, personal authorisation

72

Temporal Logic: Semantics by Example

X': '

F': '

G': ' ' ' ' ' '

'U : ' ' '

s1 s2

s3

s4 s5

E[greenUblue]

EF(blue ^ AXgreen)

EGblue

73

Temporal Logic: Semantics by Example

X': '

F': '

G': ' ' ' ' ' '

'U : ' ' '

s1 s2

s3

s4 s5

E[greenUblue]

EF(blue ^ AXgreen)

EGblue

73

Temporal Logic: Semantics by Example

X': '

F': '

G': ' ' ' ' ' '

'U : ' ' '

s1 s2

s3

s4 s5

E[greenUblue]

EF(blue ^ AXgreen)

EGblue

73

Temporal Logic: Semantics by Example

X': '

F': '

G': ' ' ' ' ' '

'U : ' ' '

s1 s2

s3

s4 s5

E[greenUblue]

EF(blue ^ AXgreen)

EGblue

73

Temporal Logic: Semantics by Example

X': '

F': '

G': ' ' ' ' ' '

'U : ' ' '

s1 s2

s3

s4 s5

E[greenUblue]

EF(blue ^ AXgreen)

EGblue

73

A Temporal Lanscape of Logics

CTL
?

CTL
?: Syntax

' ::= > | x | ' ^ ' | ¬' | X' | 'U' | E',

where x 2 PROP.

74

A Temporal Lanscape of Logics

CTL
?

LTL

LTL: Formulae E' with

' ::= > | x | ' ^ ' | ¬' | X' | 'U',

where x 2 PROP.

74

A Temporal Lanscape of Logics

CTL
?

LTL CTL

CTL: Syntax
' ::= > | x | ' ^ ' | ¬' | EX' | E['U'] | AF',

where x 2 PROP.

74

State and Path Formulae

Regarding the formulae of CTL?, we follow the terminology of Emerson and
Sistla [ES84].

S1: Any atomic proposition is a state formula.

S2: If ,' are state formula, then so are ' ^ , and ¬ .
S3: If is a path formula, then E is a state formula.

P1: Any state formula is a path formula.

P2: If ,' are path formulae, then so are ' ^ , ¬ .
P3: If ,' are path formulae, then so are X', ['U].

Intuitively, (S1), (P1), (P2), and (P3) form LTL.

75

State and Path Formulae

Regarding the formulae of CTL?, we follow the terminology of Emerson and
Sistla [ES84].

S1: Any atomic proposition is a state formula.

S2: If ,' are state formula, then so are ' ^ , and ¬ .
S3: If is a path formula, then E is a state formula.

P1: Any state formula is a path formula.

P2: If ,' are path formulae, then so are ' ^ , ¬ .
P3: If ,' are path formulae, then so are X', ['U].

Intuitively, (S1), (P1), (P2), and (P3) form LTL.

75

Kripke Frames and Paths

Definition 48

A frame F is a tuple F = (W ,R), where W is a set of worlds and R is its transition
relation, i.e., R ✓ W ⇥W and R is total (every state has  1 successor).

Definition 49

Let PROP be an countably infinite set of symbols. A model is a tuple M = (F ,V),
where F = (W ,R) is a frame and V : PROP ! P(W) is a labeling function.

Definition 50

A path ⇡ = w0,w1, . . . in a frame (W ,R) is an infinite sequence of states such that
(wi ,wi+1) 2 R for all i . For ⇡ = w0,w1, . . . , let ⇡i := wiwi+1 . . . , ⇡[i] := wi .

76

Kripke Frames and Paths

Definition 48

A frame F is a tuple F = (W ,R), where W is a set of worlds and R is its transition
relation, i.e., R ✓ W ⇥W and R is total (every state has  1 successor).

Definition 49

Let PROP be an countably infinite set of symbols. A model is a tuple M = (F ,V),
where F = (W ,R) is a frame and V : PROP ! P(W) is a labeling function.

Definition 50

A path ⇡ = w0,w1, . . . in a frame (W ,R) is an infinite sequence of states such that
(wi ,wi+1) 2 R for all i . For ⇡ = w0,w1, . . . , let ⇡i := wiwi+1 . . . , ⇡[i] := wi .

76

Formal Semantics of Temporal Logics

Definition 51

Let M = (W ,R ,V) be a model, w 2 W , ⇡ be a path in (W ,R).

M,w |= p i↵ w 2 V (p),

M,w |= ¬' i↵ M,w 6|= ',

M,w |= ' ^ i↵ M,w |= ' and M,w |= ,

M,w |= E' i↵ there is a path ⇡ with ⇡[0] = w we have that M,⇡ |= ',

M,⇡ |= p i↵ ⇡[0] 2 V (p),

M,⇡ |= ¬' i↵ M,⇡ 6|= ',

M,⇡ |= ' ^ i↵ M,⇡ |= ' and M,⇡ |= ,

M,⇡ |= X' i↵ M,⇡1 |= ',

M,⇡ |= 'U i↵ there is a k � 0 s.t. M,⇡[k] |= and

for all i  k we have that M,⇡[i] |= '.

77

Formal Semantics of Temporal Logics

Definition 51

Let M = (W ,R ,V) be a model, w 2 W , ⇡ be a path in (W ,R).

M,w |= p i↵ w 2 V (p),

M,w |= ¬' i↵ M,w 6|= ',

M,w |= ' ^ i↵ M,w |= ' and M,w |= ,

M,w |= E' i↵ there is a path ⇡ with ⇡[0] = w we have that M,⇡ |= ',

M,⇡ |= p i↵ ⇡[0] 2 V (p),

M,⇡ |= ¬' i↵ M,⇡ 6|= ',

M,⇡ |= ' ^ i↵ M,⇡ |= ' and M,⇡ |= ,

M,⇡ |= X' i↵ M,⇡1 |= ',

M,⇡ |= 'U i↵ there is a k � 0 s.t. M,⇡[k] |= and

for all i  k we have that M,⇡[i] |= '.
77

Remaning Operators by Short Cuts

There exist further operators which can be defined by the operators we have already
defined:

A' := ¬E¬'
F' := [>U']

G' := ¬F¬'
['W] := ¬[¬'U¬]

78

Two Important Problems and their Complexities

Satisfiability (CTL?-SAT)

Given: CTL
?-formula '.

Question: Is ' satisfiable?

Complexity: EEXP-complete [KV85; EJ99]

CTL
?

SAT MC

CTL
? EEXP

PSPACE

LTL

PSPACE PSPACE

CTL

EXP P

79

Two Important Problems and their Complexities

Satisfiability (LTL-SAT)

Given: LTL-formula '.

Question: Is ' satisfiable?

Complexity: PSPACE-complete [SC85]

CTL
?

LTL

SAT MC

CTL
? EEXP

PSPACE

LTL PSPACE

PSPACE

CTL

EXP P

79

Two Important Problems and their Complexities

Satisfiability (CTL-SAT)

Given: CTL-formula '.

Question: Is ' satisfiable?

Complexity: EXP-complete [FL79; Pra80]

CTL
?

LTL CTL

SAT MC

CTL
? EEXP

PSPACE

LTL PSPACE

PSPACE

CTL EXP

P

79

Two Important Problems and their Complexities

Model Checking (CTL?-MC)

Given: CTL
?-formula ', model M.

Question: Is there a w 2 M that satisfies '?

Complexity: PSPACE-complete [CES86]

CTL
?

SAT MC

CTL
? EEXP PSPACE

LTL PSPACE

PSPACE

CTL EXP

P

79

Two Important Problems and their Complexities

Model Checking (LTL-MC)

Given: LTL-formula ', model M.

Question: Is there a w 2 M that satisfies '?

Complexity: PSPACE-complete [CES86]

CTL
?

LTL

SAT MC

CTL
? EEXP PSPACE

LTL PSPACE PSPACE
CTL EXP

P

79

Two Important Problems and their Complexities

Model Checking (CTL-MC)

Given: CTL-formula ', model M.

Question: Is there a w 2 M that satisfies '?

Complexity: P-complete [CES86; Sch02]

CTL
?

LTL CTL

SAT MC

CTL
? EEXP PSPACE

LTL PSPACE PSPACE
CTL EXP P

79

Examples for Interesting Properties in Temporal Logics

Mutal exclusion, i.e., no two processes can be in their critical section at the same time:

AG(¬p1 _ ¬p2)

Starvation freeness, i.e., there is always a call to process p:

AFp

Progress, i.e., some property r which implies a future call of process p:

AG(r ! AFp)

80

Examples for Interesting Properties in Temporal Logics

Mutal exclusion, i.e., no two processes can be in their critical section at the same time:

AG(¬p1 _ ¬p2)

Starvation freeness, i.e., there is always a call to process p:

AFp

Progress, i.e., some property r which implies a future call of process p:

AG(r ! AFp)

80

Examples for Interesting Properties in Temporal Logics

Mutal exclusion, i.e., no two processes can be in their critical section at the same time:

AG(¬p1 _ ¬p2)

Starvation freeness, i.e., there is always a call to process p:

AFp

Progress, i.e., some property r which implies a future call of process p:

AG(r ! AFp)

80

Examples for Interesting Properties in Temporal Logics

Mutal exclusion, i.e., no two processes can be in their critical section at the same time:

AG(¬p1 _ ¬p2)

Starvation freeness, i.e., there is always a call to process p:

AFp

Progress, i.e., some property r which implies a future call of process p:

AG(r ! AFp)

80

Logics for verification and specification of concurrent systems

Basic setting:

• System (e.g., piece of software or hardware)
 Kripke structure depicting the behaviour of the system

• A single run of the system
 a trace generated by the Kripke structure

• A property of the system (e.g., every request is eventually granted)
 a formula of some formal language expressing the property.

Model checking:

• Check whether a given system satisfies a given specification.

SAT solving:

• Check whether a given specification (or collection of) can be realised.

81

Logics for verification and specification of concurrent systems

Basic setting:

• System (e.g., piece of software or hardware)
 Kripke structure depicting the behaviour of the system

• A single run of the system
 a trace generated by the Kripke structure

• A property of the system (e.g., every request is eventually granted)
 a formula of some formal language expressing the property.

Model checking:

• Check whether a given system satisfies a given specification.

SAT solving:

• Check whether a given specification (or collection of) can be realised.

81

Traceproperties and hyperproperties

Opening your o�ce computer after holidays:

s(hut)

l(oading)
l(oading)
c(onnecting)

r(eady)

s l r r
· · ·

s l c r r
· · ·

s l c l c r
· · ·

...

Traceproperties hold in a system if each trace (in isolation) has the property:
• The computer will be eventually ready (or will be loading forever).

Hyperproperties are properties of sets of traces:
• The computer will be ready in bounded time.

82

Logics for traceproperties

• Linear-time temporal logic (LTL) is one of the most prominent logics for the
specification and verification of reactive and concurrent systems.

• Model checking tools like SPIN and NuSMV automatically verify whether a given
computer system is correct with respect to its LTL specification.

• One reason for the success of LTL over first-order logic is that LTL is a purely
modal logic and thus has many desirable properties.

� LTL is decidable (PSPACE-complete model checking and satisfiability).
� FO

2() and FO
3() SAT are NEXPTIME-complete and non-elementary.

• Caveat: LTL can specify only traceproperties.

83

Recipe for logics for hyperproperties

A logic for traceproperties add trace quantifiers

In LTL the satisfying object is a trace: T |= ' i↵ 8t 2 T : t |= '

' ::= p | ¬' | (' _ ') | X' | 'U'

In HyperLTL the satisfying object is a set of traces and a trace assignment: ⇧ |=T '

' ::= 9⇡' | 8⇡' |
 ::= p⇡ | ¬ | (_) | X | U

HyperQPTL extends HyperLTL by (uniform) quantification of propositions: 9p', 8p'

84

Hyperlogics via quantifier extensions

• LTL, QPTL, CTL, etc. vs. HyperLTL, HyperQPTL, HyperCTL, etc.
are prominent logics for traceproperties vs. hyperproperties of systems

� Traceproperty: Each request is eventually granted (properties of traces)
� Hyperproperty: Non-inference (values of public outputs do not leak information

about confidential bits), (properties of sets of traces)

• HyperLogics are of high complexity or undecidable.
Not well suited for properties involving unbounded number of traces.

85

Properties of quantification based hyperproperties

• Quantification based logics for hyperproperties: HyperLTL, HyperCTL, etc.
• Retain some desirable properties of LTL, but are not purely modal logics

� Model checking for 9⇤HyperLTL and HyperLTL are PSPACE and non-elementary.
� HyperLTL satisfiability is highly undecidable.
� HyperLTL formulae express properties expressible using fixed finite number of traces.

• Bounded termination is not definable in HyperLTL (but is in HyperQPTL)

• Team semantics is a candidate for a purely modal logic without the above caveat.

86

Properties of quantification based hyperproperties

• Quantification based logics for hyperproperties: HyperLTL, HyperCTL, etc.
• Retain some desirable properties of LTL, but are not purely modal logics

� Model checking for 9⇤HyperLTL and HyperLTL are PSPACE and non-elementary.
� HyperLTL satisfiability is highly undecidable.
� HyperLTL formulae express properties expressible using fixed finite number of traces.

• Bounded termination is not definable in HyperLTL (but is in HyperQPTL)

s(hut)

l(oading)
l(oading)
c(onnecting)

r(eady)

s l r r
· · ·

s l c r r
· · ·

s l c l c r
· · ·

...

• Team semantics is a candidate for a purely modal logic without the above caveat.
86

Hyperlogic via team semantics

• Temporal logics with team semantics express hyperproperties.

• Purely modal logic & well suited for properties of unbounded number of traces.

• Expressivity
� TeamLTL and HyperLogics are othogonal in expressivity.
� Well behaved fragments of TeamLTL can be translated to HyperLogics with some

form of set quantification.
� Upper bound of expressivity is often monadic second-order logic with equi-level

predicate.

• Complexity:
� Where is the undecidability frontier of TeamLTL extensions?
� A large EXPTIME fragment: left-flat and downward closed logics
� Already TeamLTL with inclusion atoms and Boolean disjunctions is undecidable

87

Hyperlogic via team semantics

• Temporal logics with team semantics express hyperproperties.

• Purely modal logic & well suited for properties of unbounded number of traces.

• Expressivity
� TeamLTL and HyperLogics are othogonal in expressivity.
� Well behaved fragments of TeamLTL can be translated to HyperLogics with some

form of set quantification.
� Upper bound of expressivity is often monadic second-order logic with equi-level

predicate.

• Complexity:
� Where is the undecidability frontier of TeamLTL extensions?
� A large EXPTIME fragment: left-flat and downward closed logics
� Already TeamLTL with inclusion atoms and Boolean disjunctions is undecidable

87

Hyperlogic via team semantics

• Temporal logics with team semantics express hyperproperties.

• Purely modal logic & well suited for properties of unbounded number of traces.

• Expressivity
� TeamLTL and HyperLogics are othogonal in expressivity.
� Well behaved fragments of TeamLTL can be translated to HyperLogics with some

form of set quantification.
� Upper bound of expressivity is often monadic second-order logic with equi-level

predicate.

• Complexity:
� Where is the undecidability frontier of TeamLTL extensions?
� A large EXPTIME fragment: left-flat and downward closed logics
� Already TeamLTL with inclusion atoms and Boolean disjunctions is undecidable

87

LTL, HyperLTL, and TeamLTL

In LTL the satisfying object is a trace: T |= ' i↵ 8t 2 T : t |= '

' ::= p | ¬' | (' _ ') | X' | 'U'

In HyperLTL the satisfying object is a set of traces and a trace assignment: ⇧ |=T '

' ::= 9⇡' | 8⇡' |
 ::= p⇡ | ¬ | (_) | X | U

In TeamLTL the satisfying object is a set of traces. We use team semantics: (T , i) |= '

' ::= p | ¬p | (' _ ') | (' ^ ') | X' | 'U | 'W'

+ new atomic statements (dependence and inclusion atoms: dep(~p, q), ~p ✓ ~q)
+ additional connectives (Boolean disjunction, contradictory negation, etc.)

Extensions are a well-defined way to delineate expressivity and complexity
88

Semantics of TeamLTL

Temporal team semantics is universal and synchronous

(T , i) |= p i↵ 8t 2 T : t[i](p) = 1 (T , i) |= ¬p i↵ 8t 2 T : t[i](p) = 0

(T , i) |= F' i↵ (T , j) |= ' for some j � i (T , i) |= G' i↵ (T , j) |= ' for all j � i

89

Semantics of TeamLTL

Temporal team semantics is universal and synchronous

(T , i) |= p i↵ 8t 2 T : t[i](p) = 1 (T , i) |= ¬p i↵ 8t 2 T : t[i](p) = 0

(T , i) |= F' i↵ (T , j) |= ' for some j � i (T , i) |= G' i↵ (T , j) |= ' for all j � i

89

Example: HyperQLTL

There is a timepoint (common for all traces) where a is false in each trace.
Not expressible in HyperLTL, but is in HyperQPTL.

9p 8⇡ G(p ! XG¬p) ^ F(p ^ ¬a⇡)

· · ·
· · ·
· · ·
· · ·

a a
a a

a a

90

Example: TeamLTL

There is a timepoint (common for all traces) where a is false in each trace.
Not expressible in HyperLTL, but is in HyperQPTL.

9p 8⇡ G(p ! XG¬p) ^ F(p ^ ¬a⇡)

Expressible in synchronous TeamLTL: F¬a

· · ·
· · ·
· · ·
· · ·

a a
a a

a a

91

Examples: Disjunction in TeamLTL

A trace-set T satisfies ' _ if it decomposed to sets T' and T satisfying ' and .

(T , i) |= ' _ i↵ (T1, i) |= ' and (T2, i) |= , for some T1 [T2 = T

(T , i) |= ' ^ i↵ (T , i) |= ' and (T , i) |=

92

Examples: Dependence atom in TeamLTL

Dependence atom dep(p1, . . . , pm, q) states that p1, . . . , pm functionally determine q:

(T , i) |= dep(p1, . . . , pm, q) i↵ 8t, t 0 2 T
⇣ ^

1jm

t[i](pj) = t 0[i](pj)
⌘
) (t[i](q) = t 0[i](q))

93

Temporal team semantics

Definition 52

Temporal team is (T , i), where T a set of traces and i 2 N.

(T , i) |= p i↵ 8t 2 T : t[0](p) = 1

(T , i) |= ¬p i↵ 8t 2 T : t[0](p) = 0

(T , i) |= � ^ i↵ (T , i) |= � and (T , i) |=

(T , i) |= � _ i↵ (T1, i) |= � and (T2, i) |= , for some T1,T2 s.t. T1 [T2 = T

(T , i) |= X' i↵ (T , i + 1) |= '

(T , i) |= �U i↵ 9k � i s.t. (T , k) |= and 8m : i  m < k) (T ,m) |= �

(T , i) |= �W i↵ 8k � i : (T , k) |= � or 9m s.t. i  m  k and (T ,m) |=

94

Generalised atoms and complete logics

Let B be a set of n-ary Boolean relations. We define the property ['1, . . . ,'n]B for an
n-tuple ('1, . . . ,'n) of LTL-formulae:

(T , i) |= ['1, . . . ,'n]B i↵ {(J�1K(t,i), . . . , J�nK(t,i)) | t 2 T} 2 B .

Theorem 53

TeamLTL(6,NE,
1

A) can express all ['1, . . . ,'n]B .

TeamLTL(6,
1

A) can express all ['1, . . . ,'n]B , for downward closed B .

• (T , i) |= NE i↵ T 6= ;.

• (T , i) |=
1

A' i↵ ({t}, i) |= ', for all t 2 T .

95

Generalised atoms and complete logics

Let B be a set of n-ary Boolean relations. We define the property ['1, . . . ,'n]B for an
n-tuple ('1, . . . ,'n) of LTL-formulae:

(T , i) |= ['1, . . . ,'n]B i↵ {(J�1K(t,i), . . . , J�nK(t,i)) | t 2 T} 2 B .

Theorem 53

TeamLTL(6,NE,
1

A) can express all ['1, . . . ,'n]B .

TeamLTL(6,
1

A) can express all ['1, . . . ,'n]B , for downward closed B .

• (T , i) |= NE i↵ T 6= ;.

• (T , i) |=
1

A' i↵ ({t}, i) |= ', for all t 2 T .

95

Complexity results

Logic Model Checking Result

TeamLTL without _ in PSPACE
k-coherent TeamLTL(⇠) in EXPSPACE

left-flat TeamLTL(6,
1

A) in EXPSPACE
TeamLTL(✓,6) ⌃0

1-hard
TeamLTL(✓,6,A) ⌃1

1-hard
TeamLTL(⇠) complete for third-order arithmetic

• k-coherence: (T , i) |= ' i↵ (S , i) |= ' for all S ✓ T s.t. |S |  k

• left-flatness: Restrict U and W syntactically to (
1

A'U) and (
1

A'W)

• ⇠ is contradictory negation and TeamLTL(⇠) subsumes all the other logics

96

Source of Undecidability

Definition 54

A non-deterministic 3-counter machine M consists of a list I of n instructions that
manipulate three counters Cl , Cm and Cr . All instructions are of the following forms:

• C+
a goto {j1, j2}, C�

a goto {j1, j2}, if Ca = 0 goto j1else goto j2,

where a 2 {l ,m, r}, 0  j1, j2 < n.

• configuration: tuple (i , j , k , l), where 0  i < n is the next instruction to be
executed, and j , k , l 2 N are the current values of the counters Cl , Cm and Cr .

• computation: infinite sequence of consecutive configurations starting from the
initial configuration (0, 0, 0, 0).

• computation b-recurring if the instruction labelled b occurs infinitely often in it.

• computation is lossy if the counter values can non-deterministically decrease

97

Source of Undecidability

Definition 54

A non-deterministic 3-counter machine M consists of a list I of n instructions that
manipulate three counters Cl , Cm and Cr . All instructions are of the following forms:

• C+
a goto {j1, j2}, C�

a goto {j1, j2}, if Ca = 0 goto j1else goto j2,

where a 2 {l ,m, r}, 0  j1, j2 < n.

• configuration: tuple (i , j , k , l), where 0  i < n is the next instruction to be
executed, and j , k , l 2 N are the current values of the counters Cl , Cm and Cr .

• computation: infinite sequence of consecutive configurations starting from the
initial configuration (0, 0, 0, 0).

• computation b-recurring if the instruction labelled b occurs infinitely often in it.

• computation is lossy if the counter values can non-deterministically decrease

97

Undecidability results

Theorem 55 (Alur & Henzinger 1994, Schnoebelen 2010)

Deciding whether a given non-deterministic 3-counter machine has a (lossy)
b-recurring computation for a given b is (⌃0

1-complete) ⌃1
1-complete.

Theorem 56 ([Vir+21])

Model checking for TeamLTL(6,✓) is ⌃1
0-hard.

Model checking for TeamLTL(6,✓,A) is ⌃1
1-hard.

Proof Idea:

• reduce existence of b-recurring computation of given 3-counter machine M and
instruction label b to model checking problem of TeamLTL(6,✓,A)

• TeamLTL(6,✓) su�ces to enforce lossy computation
• (T [i ,1], 0) encodes the value of counters of the ith configuration
the value of Ca is the cardinality of the set {t 2 T [i ,1] | t[0](ca) = 1}

98

Undecidability results

Theorem 55 (Alur & Henzinger 1994, Schnoebelen 2010)

Deciding whether a given non-deterministic 3-counter machine has a (lossy)
b-recurring computation for a given b is (⌃0

1-complete) ⌃1
1-complete.

Theorem 56 ([Vir+21])

Model checking for TeamLTL(6,✓) is ⌃1
0-hard.

Model checking for TeamLTL(6,✓,A) is ⌃1
1-hard.

Proof Idea:

• reduce existence of b-recurring computation of given 3-counter machine M and
instruction label b to model checking problem of TeamLTL(6,✓,A)

• TeamLTL(6,✓) su�ces to enforce lossy computation
• (T [i ,1], 0) encodes the value of counters of the ith configuration
the value of Ca is the cardinality of the set {t 2 T [i ,1] | t[0](ca) = 1}

98

Model checking for TeamLTL(✓,6) is ⌃0
1-hard.

Proof.

Given a set I of instructions of a 3-counter machine M, and an instruction label b, we
construct a TeamLTL(✓,6)-formula 'I ,b and a Kripke structure KI such that

�
Traces(KI), 0

�
|= 'I ,b i↵ M has a b-recurring lossy computation. (1)

The ⌃0
1-hardness then follows since the construction is computable.

99

Idea of the encoding

Put n := |I |. A set T of traces using propositions {cl , cm, cr , d , 0, . . . , n � 1} encodes
the sequence (~cj)j2N of configurations, if for each j 2 N and ~cj = (i , vl , vm, vr)

• t[j] \ {0, . . . , n � 1} = {i}, for all t 2 T ,

• |{t[j ,1] | cs 2 t[j], t 2 T}| = vs , for each s 2 {l ,m, r}.
Hence, we use T [j ,1] to encode the configuration ~cj ; the propositions 0, . . . , n� 1 are
used to encode the next instruction, and cl , cm, cr , d are used to encode the values of
the counters. The proposition d is a dummy proposition used to separate traces with
identical postfixes with respect to cl , cm, and cr .

100

Construction of the Kripke structure

The Kripke structure KI = (W ,R , ⌘,w0) over the set of propositions
{cl , cm, cr , d , 0, . . . , n � 1} is defined such that every possible sequence of
configurations of M starting from (0, 0, 0, 0) can be encoded by some team (T , 0),
where T ✓ Traces(KI).

101

Construction of the formula

The connective _L is a shorthand for the condition:

(T , i) |= � _L i↵ 9T1,T2 s.t. T1 6= ;, T1 [T2 = T , (T1, i) |= � and (T2, i) |= .

The disjunction _L can be defined using ✓, _ (see e.g., [Hel+19, Lemma 3.4]).

The formula
✓b�rec := GFb

describes the b-recurrence condition of the computation.

The formula �I ,b enforces that the configurations encoded by T [i ,1], i 2 N, encode
an accepting computation of the counter machine; _L guesses the computation.

�I ,b := (✓comp ^ ✓b�rec) _L >.

The formula ✓comp states that the encoded computation is legal.

102

Construction of the formula

The connective _L is a shorthand for the condition:

(T , i) |= � _L i↵ 9T1,T2 s.t. T1 6= ;, T1 [T2 = T , (T1, i) |= � and (T2, i) |= .

The disjunction _L can be defined using ✓, _ (see e.g., [Hel+19, Lemma 3.4]).

The formula
✓b�rec := GFb

describes the b-recurrence condition of the computation.

The formula �I ,b enforces that the configurations encoded by T [i ,1], i 2 N, encode
an accepting computation of the counter machine; _L guesses the computation.

�I ,b := (✓comp ^ ✓b�rec) _L >.

The formula ✓comp states that the encoded computation is legal.

102

Construction of the formula

The connective _L is a shorthand for the condition:

(T , i) |= � _L i↵ 9T1,T2 s.t. T1 6= ;, T1 [T2 = T , (T1, i) |= � and (T2, i) |= .

The disjunction _L can be defined using ✓, _ (see e.g., [Hel+19, Lemma 3.4]).

The formula
✓b�rec := GFb

describes the b-recurrence condition of the computation.

The formula �I ,b enforces that the configurations encoded by T [i ,1], i 2 N, encode
an accepting computation of the counter machine; _L guesses the computation.

�I ,b := (✓comp ^ ✓b�rec) _L >.

The formula ✓comp states that the encoded computation is legal.

102

Expressing legality of computation

Define

singleton := G
^

a2PROP

(a 6 ¬a), cs-decrease := cs _ (¬cs ^ X¬cs), for s 2 {l ,m, r}.

For the instruction i : C+
l goto {j , j 0}, define

✓i := X(j 6 j 0) ^
�
(singleton^¬cl ^ Xcl) _ cl-decrease

�
^ cr-decrease^ cm-decrease .

For the instruction i : if Cs = 0 goto j , else goto j 0, define

✓i :=
�
X(¬cs ^ j) 6 (> ✓ cs ^ Xj 0)

�
^ cl-decrease^ cm-decrease^ cr-decrease .

Finally, define ✓comp := G6i<n(i ^ ✓i).

103

Expressing legality of computation

Define

singleton := G
^

a2PROP

(a 6 ¬a), cs-decrease := cs _ (¬cs ^ X¬cs), for s 2 {l ,m, r}.

For the instruction i : C+
l goto {j , j 0}, define

✓i := X(j 6 j 0) ^
�
(singleton^¬cl ^ Xcl) _ cl-decrease

�
^ cr-decrease^ cm-decrease .

For the instruction i : if Cs = 0 goto j , else goto j 0, define

✓i :=
�
X(¬cs ^ j) 6 (> ✓ cs ^ Xj 0)

�
^ cl-decrease^ cm-decrease^ cr-decrease .

Finally, define ✓comp := G6i<n(i ^ ✓i).

103

Expressing legality of computation

Define

singleton := G
^

a2PROP

(a 6 ¬a), cs-decrease := cs _ (¬cs ^ X¬cs), for s 2 {l ,m, r}.

For the instruction i : C+
l goto {j , j 0}, define

✓i := X(j 6 j 0) ^
�
(singleton^¬cl ^ Xcl) _ cl-decrease

�
^ cr-decrease^ cm-decrease .

For the instruction i : if Cs = 0 goto j , else goto j 0, define

✓i :=
�
X(¬cs ^ j) 6 (> ✓ cs ^ Xj 0)

�
^ cl-decrease^ cm-decrease^ cr-decrease .

Finally, define ✓comp := G6i<n(i ^ ✓i).

103

Expressing legality of computation

Define

singleton := G
^

a2PROP

(a 6 ¬a), cs-decrease := cs _ (¬cs ^ X¬cs), for s 2 {l ,m, r}.

For the instruction i : C+
l goto {j , j 0}, define

✓i := X(j 6 j 0) ^
�
(singleton^¬cl ^ Xcl) _ cl-decrease

�
^ cr-decrease^ cm-decrease .

For the instruction i : if Cs = 0 goto j , else goto j 0, define

✓i :=
�
X(¬cs ^ j) 6 (> ✓ cs ^ Xj 0)

�
^ cl-decrease^ cm-decrease^ cr-decrease .

Finally, define ✓comp := G6i<n(i ^ ✓i).

103

Conclusion of Lecture 5

• Introduction into Temporal Logics

• Hyperproperties and Temporal Team Semantics

• Undecidability of model checking of TeamLTL(6,✓)

103

Bibliography i

[BRV01] Patrick Blackburn, Maarten de Rijke and Yde Venema. Modal Logic.
Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 2001. doi: 10.1017/CBO9781107050884.

[CES86] E. Clarke, E. Allen Emerson and A. Sistla. ‘Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Specifications’. In:
ACM Transactions on Programming Languages and Systems 8.2 (1986),
pp. 244–263.

[Coo71] Stephen A. Cook. ‘The Complexity of Theorem-Proving Procedures’. In:
Proceedings of the 3rd Annual ACM Symposium on Theory of Computing,
May 3-5, 1971, Shaker Heights, Ohio, USA. Ed. by Michael A. Harrison,
Ranan B. Banerji and Je↵rey D. Ullman. ACM, 1971, pp. 151–158. doi:
10.1145/800157.805047. url:
https://doi.org/10.1145/800157.805047.

104

Bibliography ii

[EFT94] Heinz-Dieter Ebbinghaus, Jörg Flum and Wolfgang Thomas. Mathematical
logic (2. ed.) Undergraduate texts in mathematics. Springer, 1994.

[EJ99] E. Allen Emerson and Charanjit S. Jutla. ‘The Complexity of Tree
Automata and Logics of Programs’. In: SIAM J. Comput. 29.1 (1999),
pp. 132–158.

[ES84] E. Allen Emerson and A. Prasad Sistla. ‘Deciding Full Branching Time
Logic’. In: Inf. Control. 61.3 (1984), pp. 175–201.

[FL79] Michael J. Fischer and Richard E. Ladner. ‘Propositional Dynamic Logic of
Regular Programs’. In: J. Comput. Syst. Sci. 18.2 (1979), pp. 194–211.

[GHR95] Raymond Greenlaw, H. James Hoover and Walter L. Ruzzo. Limits to
Parallel Computation: P-completeness Theory. New York, NY, USA:
Oxford University Press, Inc., 1995. isbn: 0-19-508591-4.

105

Bibliography iii

[Gol77] L. M. Goldschlager. ‘The monotone and planar circuit value problems are
log-space complete for P’. In: SIGACT News 9 (1977), pp. 25–29.

[Gut+22] Jens Oliver Gutsfeld, Arne Meier, Christoph Ohrem and Jonni Virtema.
‘Temporal Team Semantics Revisited’. In: LICS ’22: 37th Annual
ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel,
August 2 - 5, 2022. Ed. by Christel Baier and Dana Fisman. ACM, 2022,
44:1–44:13. doi: 10.1145/3531130.3533360. url:
https://doi.org/10.1145/3531130.3533360.

[Han+18] Miika Hannula, Juha Kontinen, Jonni Virtema and Heribert Vollmer.
‘Complexity of Propositional Logics in Team Semantic’. In: ACM Trans.
Comput. Log. 19.1 (2018), 2:1–2:14.

106

Bibliography iv

[Han19] Miika Hannula. ‘Validity and Entailment in Modal and Propositional
Dependence Logics’. In: Logical Methods in Computer Science Volume 15,
Issue 2 (Apr. 2019). doi: 10.23638/LMCS-15(2:4)2019. url:
https://lmcs.episciences.org/5403.

[Hel+14] Lauri Hella, Kerkko Luosto, Katsuhiko Sano and Jonni Virtema. ‘The
Expressive Power of Modal Dependence Logic’. In: Advances in Modal
Logic. College Publications, 2014, pp. 294–312.

[Hel+19] Lauri Hella, Antti Kuusisto, Arne Meier and Jonni Virtema. ‘Model
checking and validity in propositional and modal inclusion logics’. In: J.
Log. Comput. 29.5 (2019), pp. 605–630.

[Hel+20] Lauri Hella, Antti Kuusisto, Arne Meier and Heribert Vollmer.
‘Satisfiability of Modal Inclusion Logic: Lax and Strict Semantics’. In:
ACM Trans. Comput. Log. 21.1 (2020), 7:1–7:18.

107

Bibliography v

[HS15] Lauri Hella and Johanna Stumpf. ‘The expressive power of modal logic
with inclusion atoms’. In: GandALF. Vol. 193. EPTCS. 2015, pp. 129–143.

[KV85] Gabriel M. Kuper and Moshe Y. Vardi. ‘On the Expressive Power of the
Logical Data Model (Preliminary Report)’. In: SIGMOD Conference. ACM
Press, 1985, pp. 180–187.

[Lev73] Leonid A. Levin. ‘Universal sequential search problems’. In: Problemy
Peredachi Informatsii 9.3 (1973).

[Loh12] Peter Lohmann. ‘Computational Aspects of Dependence Logic’.
PhD thesis. Leibniz Universität Hannover, 2012. arXiv: 1206.4564. url:
http://arxiv.org/abs/1206.4564.

[LV19] Martin Lück and Miikka Vilander. ‘On the Succinctness of Atoms of
Dependency’. In: Log. Methods Comput. Sci. 15.3 (2019).

108

Bibliography vi

[Pap07] Christos H. Papadimitriou. Computational complexity. Academic Internet
Publ., 2007.

[Pra80] V. R. Pratt. ‘A near-optimal method for reasoning about action’. In:
Journal of Computer and System Sciences 20.2 (1980), pp. 231–254.

[SC85] A. Prasad Sistla and Edmund M. Clarke. ‘The Complexity of Propositional
Linear Temporal Logics’. In: J. ACM 32.3 (1985), pp. 733–749.

[Sch02] P. Schnoebelen. ‘The Complexity of Temporal Logic Model Checking’. In:
Advances in Modal Logic. Vol. 4. 2002, pp. 393–436.

[Sip97] Michael Sipser. Introduction to the theory of computation. PWS
Publishing Company, 1997.

[Var09] Moshe Y. Vardi. ‘From Philosophical to Industrial Logics’. In: ICLA.
Vol. 5378. Lecture Notes in Computer Science. Springer, 2009, pp. 89–115.

109

Bibliography vii

[Vir+21] Jonni Virtema, Jana Hofmann, Bernd Finkbeiner, Juha Kontinen and
Fan Yang. ‘Linear-Time Temporal Logic with Team Semantics: Expressivity
and Complexity’. In: FSTTCS. Vol. 213. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021, 52:1–52:17.

[Vir17] Jonni Virtema. ‘Complexity of validity for propositional dependence logics’.
In: Inf. Comput. 253 (2017), pp. 224–236.

[YV17] Fan Yang and Jouko Väänänen. ‘Propositional team logics’. In: Ann. Pure
Appl. Log. 168.7 (2017), pp. 1406–1441. doi:
10.1016/J.APAL.2017.01.007. url:
https://doi.org/10.1016/j.apal.2017.01.007.

110

