Complexity and Expressivity of Propositional Logics with Team Semantics
Arne Meier, Jonni Virtema
9th of August

Lecture 5: Recent Trends: Hyperproperties

Literature: [Vir+21; Gut+22]

Temporal Logic

e, 6
fod 1?“313(Vw’zk 31’

Wl

Dates back to Arthur Norman Prior (1914-1969)
New modalities neXt, Until, Future, Global

and quantifiers: All paths, Exists a path

‘From Philosophical to Industrial Logics’ [Var09]

Arthur N. Prior
(1914-1969)

72

Temporal Logic: Semantics by Example

Lo prowh vl
¢
Xe: ¥
o —0—0—0 0
Fo: v

I
|
|
|
|

oUp: \ P ¢ ¢ ¥

78

Temporal Logic: Semantics by Example

s ks & P‘”K st S»u\Ublu, is

Xp: . bre.

f

2 v E[greenUblue]

Gp: ¥ ¥ ¥ ' ® ®

Se S¢Sy - 2,560,935,

o e bae

78

Temporal Logic: Semantics by Example

EF(blue A AXgreen)

oUyp: ¢ ¥ ¢ ¥

78

Temporal Logic: Semantics by Example

EGblue
oUyp: ¢ ¥ ¢ ¥

78

Temporal Logic: Semantics by Example

EF(blue A AXgreen)
Fo: ¥ E[greenUblue]

EGblue
oUyp: ¢ ¥ ¢ ¥

78

A Temporal Lanscape of Logics
Faull Mc@.xa (7"4—& L’XTQ

CTLx

CTL*: Syntax
=T [x|eAp|-p|Xe|pUp | Egp,
where x € PROP.

A Temporal Lanscape of Logics

CTLx

LTL: Formulae Ep with

=T |x|oAp|p|Xe | pUgp,

where x € PROP.

74

A Temporal Lanscape of Logics

Cormpile. N~ Thee 4%54

CTLx

CTL: Syntax
=T |x|eAp|-p|EXp|E[pUy] | AFp,
where x € PROP. CTL'f"
et (ealt 4

State and Path Formulae

Regarding the formulae of CTL*, we follow the terminology of Emerson and
Sistla [ES84].

S1: Any atomic proposition is a state formula.
S2: If ¢, ¢ are state formula, then so are ¢ A1), and —).
S3: If ¢ is a path formula, then Ev is a state formula.

75

State and Path Formulae

Regarding the formulae of CTL*, we follow the terminology of Emerson and

Sistla [ES84].
S1:
S
S3:
P1:
P2:
P3:

Any atomic proposition is a state formula.

If v, ¢ are state formula, then so are ¢ A7), and —).
If ¢ is a path formula, then Et) is a state formula.
Any state formula is a path formula.

If 1, ¢ are path formulae, then so are p A 1), —1).

If 1, ¢ are path formulae, then so are Xy, [pUv)].

Intuitively, (S1), (P1), (P2), and (P3) form LTL.

75

Kripke Frames and Paths

Definition 48

A F is a tuple F = (W, R), where W is a set of and R is its
,i.e., RC W x W and R is total (every state has < 1 successor).

“e w”{""z, (,Jz(\)r]3

@8/_“ o
\ / Ro Loy lor, up)
Oﬁg (U,’w,,)([US ‘U3)
%)

76

Kripke Frames and Paths

Definition 48

A F is a tuple F = (W, R), where W is a set of and R is its
,i.e., RC W x W and R is total (every state has < 1 successor).

Definition 49

Let PROP be an countably infinite set of symbols. A is a tuple M = (F, V),
where F = (W, R) is a frame and V: PROP — B(W) is a function.

Definition 50

A T = wp, W1, ... in a frame (W, R) is an infinite sequence of states such that
(wj,wit1) € Rforall i. Form =+ wa,..., let 7 = wjwji1..., ©[i] == w;.

76

Formal Semantics of Temporal Logics

Definition 51
Let M = (W,R,V) be a model, w € W, 7 be a path in (W, R).

M, w E piff we V(p), G"’"
M, w = - iff M, w = o, sike.
M,wEpAYiff Myw = @ and M, w = 9, (1,{“.4&

M, w |= Eg iff there is a path 7 with 7[0] = w we have that M, 7 = ¢,

7

Formal Semantics of Temporal Logics

Definition 51
Let M = (W,R,V) be a model, w € W, 7 be a path in (W, R).

M,w = piff w e V(p),
M, w = - iff M, w = o,
M,wEpAYiff Myw = @ and M, w = 9,
M, w = Ep iff there is a path 7 with 7[0] = w we have that M, 7 |= ¢,
M, 7 = piff ©[0] € V(p),

M,w b ~p iff M, o, b ph
M, A iff M, d M, ;

TE@ wg T = ¢ an TEY {’ywlmz

M, = X iff M,m1 E p,

M, 7 = U iff there is a k > 0 s.t. M, m[k] =1 and
for all i < k we have that M, 7[i] E .

7

Remaning Operators by Short Cuts

There exist further operators which can be defined by the operators we have already

defined:
Ap = -E-gp
Fo = [TUy]
GgO = ﬁF—\(p

[pWe] = =[~pU=¢]

78

Two Important Problems and their Complexities

(CTL*-SAT)) CTL
Given: CTL*-formula ¢. (5 Me & v

2l
Question: Is satisfiable\?/ &(« st \y"wp -

Complexity: EEXP-complete [KV85; EJ99] L€

Io(d)
Time(2*)

CTL* EEXP
LTL
CTL

79

Two Important Problems and their Complexities

Satisfiability (LTL-SAT) CTILF
Given: LTL-formula ¢.
Question: Is ¢ satisfiable?
Complexity: PSPACE-complete [SC85]

SAT MC
CTL* EEXP
LTL PSPACE

CTL

79

Two Important Problems and their Complexities

Satisfiability (CTL-SAT) CTIF
Given: CTL-formula .
Question: Is ¢ satisfiable?
Complexity: EXP-complete [FL79; Pra80]

SAT MC
CTL* EEXP
LTL PSPACE

CTL EXP

79

Two Important Problems and their Complexities

(CTL*-MC) CTILF
Given: CTL*-formula ¢, model M.
Question: Is there a w € M that satisfies ©?
Complexity: PSPACE-complete [CES86]

CTL* EEXP PSPACE
LTL PSPACE
CTL EXP

79

Two Important Problems and their Complexities

Model Checking (LTL-MC) CTL
Given: LTL-formula ¢, model M.
Question: Is there a w € M that satisfies ?
Complexity: PSPACE-complete [CES86]

SAT MC

CTL* EEXP PSPACE
LTL PSPACE PSPACE
CTL EXP

Two Important Problems and their Complexities

Model Checking (CTL-MC) CTIF
Given: CTL-formula ¢, model M.
Question: Is there a w € M that satisfies ?
Complexity: P-complete [CES86; Sch02]

SAT MC

CTL* EEXP PSPACE
LTL PSPACE PSPACE
CTL EXP P

Examples for Interesting Properties in Temporal Logics

Mutal exclusion, i.e., no two processes can be in their critical section at the same time:

Sl prpshy ~~> A
£

80

Examples for Interesting Properties in Temporal Logics

Mutal exclusion, i.e., no two processes can be in their critical section at the same time:
AG(=p1 V —p2)

Starvation freeness, i.e., there is always a call to process p:

80

Examples for Interesting Properties in Temporal Logics

Mutal exclusion, i.e., no two processes can be in their critical section at the same time:
AG(=p1 V —p2)
Starvation freeness, i.e., there is always a call to process p:
AFp

Progress, i.e., some property r which implies a future call of process p:

80

Examples for Interesting Properties in Temporal Logics

Mutal exclusion, i.e., no two processes can be in their critical section at the same time:
AG(=p1 V —p2)
Starvation freeness, i.e., there is always a call to process p:

AFp

Progress, i.e., some property r which implies a future call of process p:

AG(r — AFp)

Uyl oo et

80

Logics for verification and specification of concurrent systems

Basic setting:

e System (e.g., piece of software or hardware)
~ Kripke structure depicting the behaviour of the system

e A single run of the system
~> a trace generated by the Kripke structure

e A property of the system (e.g., every request is eventually granted)
~> a formula of some formal language expressing the property.

81

Logics for verification and specification of concurrent systems

Basic setting:

e System (e.g., piece of software or hardware)

~ Kripke structure depicting the behaviour of the system
e A single run of the system

~> a trace generated by the Kripke structure

e A property of the system (e.g., every request is eventually granted)
~> a formula of some formal language expressing the property.

Model checking:

e Check whether a given system satisfies a given specification.
SAT solving:

e Check whether a given specification (or collection of) can be realised.

81

Traceproperties and hyperproperties

Opening your office computer after holidays: LTL
oot /([~ ReAn e
t r(eady
n <
_ s | r /d :Qg/(/y/
Is LEnnk w B (
|(oading) | ¢]

nm 5TEPS (oading)

c(onnecting) O
3 | c I c

0—6—6»—4\.{41 —-)
2 s(hut)

(K

Traceproperties hold in a system if each trace (in isolation) has the property:
e The computer will be eventually ready (or will be loading forever).

Hyperproperties are properties of sets of traces: ? Z) [1 e Y/ %

e The computer will be ready Tn bounded time.

O-0=~0-+

82

Logics for traceproperties

e Linear-time temporal logic (LTL) is one of the most prominent logics for the
specification and verification of reactive and concurrent systems.

e Model checking tools like SPIN and NuSMV automatically verify whether a given
computer system is correct with respect to its LTL specification.

e One reason for the success of LTL over first-order logic is that LTL is a purely
modal logic and thus has many desirable properties.

o LTL is decidable (PSPACE-complete model checking and satisfiability).
o FO?(<) and FO*(<) SAT are NEXPTIME-complete and non-elementary.

e Caveat: LTL can specify only traceproperties.

83

Recipe for logics for hyperproperties

7_’ s a T"A(/C’A ASS(G*”Z}X’
A logic for traceproperties ~» add trace quantifiers ns VA,R ~T
In LTL the satisfying object is a trace: T =@ iff Vi€ T it =

pi=p|-p|(eVe)| Xe|pUp

In HyperLTL the satisfying object is a set of traces and a trace assignment: Il =1 ¢

p = 3mp [Ve | ¢
Y 'wzw (V)| Xy | YUY

HyperQPTL extends HyperLTL by (uniform) quantification of propositions:éElp@”pr)

84

Hyperlogics via quantifier extensions

e LTL, QPTL, CTL, etc. vs. HyperLTL, HyperQPTL, HyperCTL, etc.
are prominent logics for traceproperties vs. hyperproperties of systems

o Traceproperty: Each request is eventually granted (properties of traces)
o Hyperproperty: Non-inference (values of public outputs do not leak information
about confidential bits), (properties of sets of traces)

e HyperlLogics are of high complexity or undecidable.
Not well suited for properties involving unbounded number of traces.

85

Properties of quantification based hyperproperties

e Quantification based logics for hyperproperties: HyperLTL, HyperCTL, etc.
e Retain some desirable properties of LTL, but are not purely modal logics
o Model checking for 3*HyperLTL and HyperLTL are PSPACE and non-elementary.
o HyperLTL satisfiability is highly undecidable.
o HyperLTL formulae express properties expressible using fixed finite number of traces.

86

Properties of quantification based hyperproperties

e Quantification based logics for hyperproperties: HyperLTL, HyperCTL, etc.
e Retain some desirable properties of LTL, but are not purely modal logics
o Model checking for 3*HyperLTL and HyperLTL are PSPACE and non-elementary.
o HyperLTL satisfiability is highly undecidable. % -~ h,,,%
o HyperLTL formulae express properties expressible using fixed f|n|te number of traces.

e Bounded termination is not definable in HyperLTL (but is in HyperQPTL)

r(eady)
s I r r
O o0
. |(oading) I r r
I(oading) c(onnecting) O y O -
= | ¢ | ¢ r

s(hut)

86

Hyperlogic via team semantics

e Temporal logics with team semantics express hyperproperties.

e Purely modal logic & well suited for properties of unbounded number of traces.

87

Hyperlogic via team semantics

e Temporal logics with team semantics express hyperproperties.

e Purely modal logic & well suited for properties of unbounded number of traces.
e Expressivity
o TeamLTL and HyperlLogics are othogonal in expressivity.

o Well behaved fragments of TeamLTL can be translated to HyperLogics with some
form of set quantification.

o Upper bound of expressivity is often monadic second-order logic with equi-level
predicate.

87

Hyperlogic via team semantics

Temporal logics with team semantics express hyperproperties.

Purely modal logic & well suited for properties of unbounded number of traces.
Expressivity

o TeamLTL and HyperlLogics are othogonal in expressivity.

o Well behaved fragments of TeamLTL can be translated to HyperLogics with some
form of set quantification.

o Upper bound of expressivity is often monadic second-order logic with equi-level
predicate.

Complexity:
o Where is the undecidability frontier of TeamLTL extensions?
o A large EXPTIME fragment: left-flat and downward closed logics
o Already TeamLTL with inclusion atoms and Boolean disjunctions is undecidable

87

LTL, HyperLTL, and

In LTL the satisfying object is a trace: T =@ iff Vi€ T it =

pr=pl-op|(pVe)| Xe|pUp

In HyperLTL the satisfying object is a set of traces and a trace assignment: Il =1 ¢

@ o= 3dmp [V [¢
Yi=pr | [(P VY) | X [YUY

In TeamLTL the satisfying object is a set of traces. We use team semantics: (T,/) E ¢

pu=plapl(eVe)l(eAe)| XeleU|pWe
+ new atomic statements (dependence and inclusion atoms: dep(p, q), p C §)
+ additional connectives (Boolean disjunction, contradictory negation, etc.)

Extensions are a well-defined way to delineate expressivity and complexity
88

Semantics of TeamLTL

Temporal team semantics is universal and synchronous

(T,i)Epiff Vte T : tli](p) =1 (T,i))E=—-p iff Vte T : t[i](p) =0

89

Semantics of TeamLTL

Temporal team semantics is universal and synchronous

(T,i)Epiff Vte T : tli](p) =1 (T,i))E=—-p iff Vte T : t[i](p) =0

(T,i) EFyp iff (T,j)E ¢ forsomej>i (T,i)E Gy iff (T,j)Epforallj>i

89

Example: HyperQLTL

There is a timepoint (common for all traces) where a is false in each trace.
Not expressible in HyperLTL, but is in HyperQPTL.

IpVr G(p — XG—p) AF(p A —ar)

L—0
@—0O

O00®
O0O®O
O®®O
O®O®

PF—O
o—O
4

90

Example: TeamLTL

There is a timepoint (common for all traces) where a is false in each trace.
Not expressible in HyperLTL, but is in HyperQPTL.

IpVr G(p — XG—p) A F(p A —ar)

Expressible in synchronous TeamLTL:E7
PE = anes
Ot-@—@—0—

O—@—@—O1—0
O—0O—0O—070
=

91

Examples: Disjunction in TeamLTL

A trace-set T satisfies ¢ V 9 if it decomposed to sets T, and T, satisfying ¢ and .

(T, EeVY iff (T1,i) Evand (T, i) E 1, forsome iU T, =T
(T,)Eeny iff (T,i)Epand (T,i)=¢

HyperLTL: TeamLTL:
Vv’ F((ax A arr) V (br A bgr)) (Fa)V(Fb)
@-O-O-0-E-O-O-0O— -~ O-O-@0-O-O0-O0-0O-0O—
@--O-O-O-0-0O~0O— ..@.....
0B 0e®O0. 20006000
O-O-O-O~~-CO-0-0

92

Examples: Dependence atom in TeamLTL

Dependence atom dep(ps, .. ., pm, q) states that py, ..., pm functionally determine q:

(T,7) b dep(pr,- ., pm, @) ifF Ve, € T A tlil(ey) = 1)) = (t11)(q) = [(0))

1<j<m

(G dep(il,0)) V (G dep(i2,0))

Nondeterministic dependence: “o either depends on i1 or on i2”

(19~O~(~9-O

O
O
O

“whenever the traces agree on i1, they agree on 0”

?

V

?

Q @ . “whenever the traces agree on i2, they agree on 0”

?

93

Temporal team semantics

Definition 52

Temporal team is (T, i), where T a set of traces and i € N.

(T,i)E=p iff Vte T:t[0](p)=1

(T,i)) E=-p iff YVt € T:t[0](p)=0

(T,YEoAY iff (T,i)Ed¢and (T,i)E¢

(T,NEoVvyY iff (T1,i)E ¢ and (Ta,i) =, forsome Ty, Tost. iUT, =T
(T,i) = Xe iff (T,i+1)Ee

(T,)EoUy iff Fk>ist. (T,k)EvandVm:i<m<k=(T,m)E ¢
(T, E Wy iff Yk>i:(T,k)Edordmst. i<m<kand (T,m)Ev¢

94

Generalised atoms and complete logics

Let B be a set of n-ary Boolean relations. We define the property [¢1, ..., @a]s for an
n-tuple (p1,...,p,) of LTL-formulae:

(T,i) = lp1,-- - enle iff {([P1le,iys - - -5 [Pnl(eiy) | t € T} € B.

95

Generalised atoms and complete logics

Let B be a set of n-ary Boolean relations. We define the property [¢1, ..., @a]s for an
n-tuple (p1,...,p,) of LTL-formulae:

(T,1) Ele1, - enle iff {([o1l(ei),- -5 [Pnleiy) |t € T} € B.

Theorem 53
1
TeamLTL(®@,NE, A) can express all [¢1,...,¢nB-
1
TeamLTL(®, A) can express all [¢1,...,pn|B, for downward closed B.

o (T,i) ENEff T #£0.
o (T.i)EApiff ({t},i) =, forall te T.

95

Complexity results

Logic Model Checking Result

TeamLTL without V in PSPACE
k-coherent TeamLTL(~) in EXPSPACE

left-flat TeamLTL(@,A) in EXPSPACE

TeamLTL(C, @) ¥ %-hard
TeamLTL(C, @, A) ¥ 1-hard
TeamLTL(~) complete for third-order arithmetic

e k-coherence: (T,i) = iff (S,i) =@ forall S C T s.t. |S| <k

o left-flatness: Restrict U and W syntactically to (A@Uw) and (A@Wd))
e ~ is contradictory negation and TeamLTL(~) subsumes all the other logics

96

Source of Undecidability

Definition 54
A non-deterministic 3-counter machine M consists of a list / of n instructions that
manipulate three counters C;, C,, and C,. All instructions are of the following forms:

e C) goto {j1,/2}, C, goto {Jj1,/2}, if C, =0 goto jelse goto jp,
where a € {I,m,r}, 0 < ji,jo < n.

97

Source of Undecidability

Definition 54

A non-deterministic 3-counter machine M consists of a list / of n instructions that
manipulate three counters C;, C,, and C,. All instructions are of the following forms:

e C) goto {j1,/2}, C, goto {Jj1,/2}, if C, =0 goto jelse goto jp,
where a € {I,m,r}, 0 < ji,jo < n.

e configuration: tuple (/,J, k, /), where 0 < j < n is the next instruction to be
executed, and j, k,/ € N are the current values of the counters C;, C;, and C,.

e computation: infinite sequence of consecutive configurations starting from the
initial configuration (0,0,0,0).
e computation b-recurring if the instruction labelled b occurs infinitely often in it.

e computation is lossy if the counter values can non-deterministically decrease

97

Undecidability results

Theorem 55 (Alur & Henzinger 1994, Schnoebelen 2010)

Deciding whether a given non-deterministic 3-counter machine has a (lossy)
b-recurring computation for a given b is (¥-complete) ¥1-complete.

98

Undecidability results

Theorem 55 (Alur & Henzinger 1994, Schnoebelen 2010)

Deciding whether a given non-deterministic 3-counter machine has a (lossy)
b-recurring computation for a given b is (¥-complete) ¥1-complete.

Theorem 56 ([Vir+21])

Model checking for TeamLTL(®, C) is £3-hard.
Model checking for TeamLTL(®, C,A) is ¥1-hard.

Proof Idea:
e reduce existence of b-recurring computation of given 3-counter machine M and
instruction label b to model checking problem of TeamLTL(®, C,A)
e TeamLTL(®, C) suffices to enforce lossy computation
e (T[i,o0],0) encodes the value of counters of the ith configuration

the value of C, is the cardinality of the set {t € T[i,o0] | t[0](cs) = 1}
98

Model checking for TeamLTL(C, @) is £9-hard.

Proof.
Given a set | of instructions of a 3-counter machine M, and an instruction label b, we
construct a TeamLTL(C, @)-formula ¢; , and a Kripke structure £/ such that

(Traces(®),0) = ¢ iff M has a b-recurring lossy computation. (1)

The Z(l)—hardness then follows since the construction is computable. O

99

Idea of the encoding

Put n:=|l|. A set T of traces using propositions {¢;, ¢m, ¢;,d,0,...,n— 1} encodes
the sequence (&;)jen of configurations, if for each j € N and ¢ = (i, v}, vin, v)

o t[j]n{0,...,n—1} ={i}, forall te T,

o [{t[j,o0] | cs € t[j],t € T}| = vs, for each s € {/,m,r}.
Hence, we use T[j, o0] to encode the configuration cj; the propositions 0,...,n—1 are
used to encode the next instruction, and ¢/, ¢, ¢, d are used to encode the values of
the counters. The proposition d is a dummy proposition used to separate traces with
identical postfixes with respect to ¢;, ¢y, and c,.

Construction of the Kripke structure

The Kripke structure & = (W, R, 1, wp) over the set of propositions

{¢i, €m, Cr,d,0,...,n— 1} is defined such that every possible sequence of
configurations of M starting from (0,0, 0,0) can be encoded by some team (T,0),
where T C Traces(f).

101

Construction of the formula

The connective V1, is a shorthand for the condition:
(T, i) ‘: gb\/Ll/J iff 371, To s.t. Ty 75 @, TLUT, = T7(T1,i) ‘: gb and (Tz,i)): w

The disjunction Vp, can be defined using C, V (see e.g., [Hel+19, Lemma 3.4]).

102

Construction of the formula

The connective V1, is a shorthand for the condition:
(T, i) ‘: gb\/Ll/J iff 371, To s.t. Ty 75 @, TLUT, = T7(T1,i) ‘: gb and (Tz,i)): w

The disjunction Vp, can be defined using C, V (see e.g., [Hel+19, Lemma 3.4]).

The formula
Op_roc = GFb

describes the b-recurrence condition of the computation.

102

Construction of the formula

The connective V1, is a shorthand for the condition:
(T, i) ‘: gb\/Ll/J iff 371, To s.t. Ty 75 @, TLUT, = T7(T1,i) ‘: gb and (Tz,i)): w

The disjunction Vp, can be defined using C, V (see e.g., [Hel+19, Lemma 3.4]).

The formula
Op_roc = GFb

describes the b-recurrence condition of the computation.

The formula ¢; 5, enforces that the configurations encoded by T[i,oc], i € N, encode
an accepting computation of the counter machine; Vi, guesses the computation.

Qsl,b = (ecomp A eb—rec) V1, .

The formula Ocomp states that the encoded computation is legal.

102

Expressing legality of computation

Define

singleton == G /\ (a @ —a), cs-decrease = ¢s V (—cs A X—cs), for s € {I, m,r}.
acPROP

Expressing legality of computation

Define

singleton == G /\ (a @ —a), cs-decrease = ¢s V (—cs A X—cs), for s € {I, m,r}.
acPROP

For the instruction i: C;" goto {j,;'}, define

0; =X({ @))A ((singleton A=ep A Xep) V q—decrease) A c,-decrease A c,-decrease .

Expressing legality of computation

Define

singleton == G /\ (a @ —a), cs-decrease = ¢s V (—cs A X—cs), for s € {I, m,r}.
acPROP

For the instruction i: C;" goto {j,;'}, define
0; =X({ @))A ((singleton A=ep A Xep) V q—decrease) A c,-decrease A c,-decrease .
For the instruction /: if C; = 0 goto j, else goto j/, define

0i = (X(—cs AJj) @ (T C cs AXj')) A ci-decrease A c-decrease A c,-decrease .

Expressing legality of computation

Define

singleton == G /\ (a @ —a), cs-decrease = ¢s V (—cs A X—cs), for s € {I, m,r}.
acPROP

For the instruction i: C;" goto {j,;'}, define
0; =X({ @))A ((singleton A=ep A Xep) V q—decrease) A c,-decrease A c,-decrease .
For the instruction /: if C; = 0 goto j, else goto j/, define

0i = (X(—cs AJj) @ (T C cs AXj')) A ci-decrease A c-decrease A c,-decrease .

Finally, define fcomp = G D n(i A 6)).

Conclusion of Lecture 5

e Introduction into Temporal Logics
e Hyperproperties and Temporal Team Semantics
e Undecidability of model checking of TeamLTL(©@, Q)

Bibliography i

[BRVO1]

[CES86]

[CooT1]

Patrick Blackburn, Maarten de Rijke and Yde Venema. Modal Logic.
Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 2001. po1: 10.1017/CB09781107050884.

E. Clarke, E. Allen Emerson and A. Sistla. ‘Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Specifications’. In:
ACM Transactions on Programming Languages and Systems 8.2 (1986),
pp. 244-263.

Stephen A. Cook. ‘The Complexity of Theorem-Proving Procedures’. In:
Proceedings of the 3rd Annual ACM Symposium on Theory of Computing,
May 3-5, 1971, Shaker Heights, Ohio, USA. Ed. by Michael A. Harrison,
Ranan B. Banerji and Jeffrey D. Ullman. ACM, 1971, pp. 151-158. DOTI:
10.1145/800157.805047. URL:
https://doi.org/10.1145/800157.805047.

104

Bibliography ii

[EFT94] Heinz-Dieter Ebbinghaus, Jorg Flum and Wolfgang Thomas. Mathematical
logic (2. ed.) Undergraduate texts in mathematics. Springer, 1994.

[EJ99] E. Allen Emerson and Charanjit S. Jutla. “The Complexity of Tree
Automata and Logics of Programs’. In: SIAM J. Comput. 29.1 (1999),
pp. 132-158.

[ES84] E. Allen Emerson and A. Prasad Sistla. ‘Deciding Full Branching Time
Logic'. In: Inf. Control. 61.3 (1984), pp. 175-201.

[FL79] Michael J. Fischer and Richard E. Ladner. ‘Propositional Dynamic Logic of
Regular Programs'. In: J. Comput. Syst. Sci. 18.2 (1979), pp. 194-211.

[GHR95] Raymond Greenlaw, H. James Hoover and Walter L. Ruzzo. Limits to
Parallel Computation: P-completeness Theory. New York, NY, USA:
Oxford University Press, Inc., 1995. 1sBN: 0-19-508591-4.

Bibliography iii

[Gol77] L. M. Goldschlager. ‘The monotone and planar circuit value problems are
log-space complete for P'. In: SIGACT News 9 (1977), pp. 25-29.

[Gut+22] Jens Oliver Gutsfeld, Arne Meier, Christoph Ohrem and Jonni Virtema.
‘Temporal Team Semantics Revisited'. In: LICS '22: 37th Annual
ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel,
August 2 - 5, 2022. Ed. by Christel Baier and Dana Fisman. ACM, 2022,
44:1-44:13. por: 10.1145/3531130.3533360. URL:
https://doi.org/10.1145/3531130.3533360.

[Han+18] Miika Hannula, Juha Kontinen, Jonni Virtema and Heribert Vollmer.
‘Complexity of Propositional Logics in Team Semantic’. In: ACM Trans.
Comput. Log. 19.1 (2018), 2:1-2:14.

Bibliography iv

[Han19] Miika Hannula. ‘Validity and Entailment in Modal and Propositional
Dependence Logics'. In: Logical Methods in Computer Science Volume 15,
Issue 2 (Apr. 2019). DOTI: 10.23638/LMCS-15(2:4)2019. URL:
https://lmcs.episciences.org/5403.

[Hel+14] Lauri Hella, Kerkko Luosto, Katsuhiko Sano and Jonni Virtema. ‘The
Expressive Power of Modal Dependence Logic'. In: Advances in Modal
Logic. College Publications, 2014, pp. 294-312.

[Hel4+19] Lauri Hella, Antti Kuusisto, Arne Meier and Jonni Virtema. ‘Model
checking and validity in propositional and modal inclusion logics'. In: J.
Log. Comput. 29.5 (2019), pp. 605-630.

[Hel4+20] Lauri Hella, Antti Kuusisto, Arne Meier and Heribert Vollmer.
‘Satisfiability of Modal Inclusion Logic: Lax and Strict Semantics’. In:
ACM Trans. Comput. Log. 21.1 (2020), 7:1-7:18.

Bibliography v

[HS15] Lauri Hella and Johanna Stumpf. ‘The expressive power of modal logic
with inclusion atoms’. In: GandALF. Vol. 193. EPTCS. 2015, pp. 129-143.

[KV85] Gabriel M. Kuper and Moshe Y. Vardi. ‘On the Expressive Power of the
Logical Data Model (Preliminary Report)'. In: SIGMOD Conference. ACM
Press, 1985, pp. 180-187.

[Lev73] Leonid A. Levin. ‘Universal sequential search problems’. In: Problemy
Peredachi Informatsii 9.3 (1973).

[Loh12] Peter Lohmann. ‘Computational Aspects of Dependence Logic'.
PhD thesis. Leibniz Universitat Hannover, 2012. arXiv: 1206.4564. URL:
http://arxiv.org/abs/1206.4564.

[LV19] Martin Liick and Miikka Vilander. ‘On the Succinctness of Atoms of
Dependency’. In: Log. Methods Comput. Sci. 15.3 (2019).

Bibliography vi

[Pap07] Christos H. Papadimitriou. Computational complexity. Academic Internet
Publ., 2007.

[Pra80] V. R. Pratt. ‘A near-optimal method for reasoning about action’. In:
Journal of Computer and System Sciences 20.2 (1980), pp. 231-254.

[SC85] A. Prasad Sistla and Edmund M. Clarke. ‘The Complexity of Propositional
Linear Temporal Logics'. In: J. ACM 32.3 (1985), pp. 733-749.

[Sch02] P. Schnoebelen. ‘The Complexity of Temporal Logic Model Checking'. In:
Advances in Modal Logic. Vol. 4. 2002, pp. 393-436.

[Sip97] Michael Sipser. Introduction to the theory of computation. PWS
Publishing Company, 1997.

[Var09] Moshe Y. Vardi. ‘From Philosophical to Industrial Logics'. In: ICLA.
Vol. 5378. Lecture Notes in Computer Science. Springer, 2009, pp. 89-115.

Bibliography vii

[Vir+21] Jonni Virtema, Jana Hofmann, Bernd Finkbeiner, Juha Kontinen and
Fan Yang. ‘Linear-Time Temporal Logic with Team Semantics: Expressivity
and Complexity’. In: FSTTCS. Vol. 213. LIPlcs. Schloss Dagstuhl -
Leibniz-Zentrum fir Informatik, 2021, 52:1-52:17.

[Virl7] Jonni Virtema. ‘Complexity of validity for propositional dependence logics'.
In: Inf. Comput. 253 (2017), pp. 224-236.

[YV17] Fan Yang and Jouko Vaananen. ‘Propositional team logics'. In: Ann. Pure
Appl. Log. 168.7 (2017), pp. 1406-1441. DOT:
10.1016/J.APAL.2017.01.007. URL:
https://doi.org/10.1016/j.apal.2017.01.007.

110

