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Temporal Logic

• Dates back to Arthur Norman Prior (1914–1969)

• New modalities neXt,Until,Future,Global

• and quantifiers: All paths,Exists a path

• ‘From Philosophical to Industrial Logics’ [Var09]

Arthur N. Prior
(1914–1969)

© Courtesy of Martin Prior, Prior in 1953, Cranmer Square, Christchurch,
New Zealand, personal authorisation
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Temporal Logic: Semantics by Example

X': '

F': '

G': ' ' ' ' ' '

'U : ' ' '  

s1 s2

s3

s4 s5

E[greenUblue]

EF(blue ^ AXgreen)

EGblue
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A Temporal Lanscape of Logics

CTL
?

CTL
?: Syntax

' ::= > | x | ' ^ ' | ¬' | X' | 'U' | E',

where x 2 PROP.
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A Temporal Lanscape of Logics

CTL
?

LTL CTL

CTL: Syntax
' ::= > | x | ' ^ ' | ¬' | EX' | E['U'] | AF',

where x 2 PROP.
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State and Path Formulae

Regarding the formulae of CTL?, we follow the terminology of Emerson and
Sistla [ES84].

S1: Any atomic proposition is a state formula.

S2: If  ,' are state formula, then so are ' ^  , and ¬ .
S3: If  is a path formula, then E is a state formula.

P1: Any state formula is a path formula.

P2: If  ,' are path formulae, then so are ' ^  , ¬ .
P3: If  ,' are path formulae, then so are X', ['U ].

Intuitively, (S1), (P1), (P2), and (P3) form LTL.
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Kripke Frames and Paths

Definition 48

A frame F is a tuple F = (W ,R), where W is a set of worlds and R is its transition
relation, i.e., R ✓ W ⇥W and R is total (every state has  1 successor).

Definition 49

Let PROP be an countably infinite set of symbols. A model is a tuple M = (F ,V ),
where F = (W ,R) is a frame and V : PROP ! P(W ) is a labeling function.

Definition 50

A path ⇡ = w0,w1, . . . in a frame (W ,R) is an infinite sequence of states such that
(wi ,wi+1) 2 R for all i . For ⇡ = w0,w1, . . . , let ⇡i := wiwi+1 . . . , ⇡[i ] := wi .

76



Kripke Frames and Paths

Definition 48

A frame F is a tuple F = (W ,R), where W is a set of worlds and R is its transition
relation, i.e., R ✓ W ⇥W and R is total (every state has  1 successor).

Definition 49

Let PROP be an countably infinite set of symbols. A model is a tuple M = (F ,V ),
where F = (W ,R) is a frame and V : PROP ! P(W ) is a labeling function.

Definition 50

A path ⇡ = w0,w1, . . . in a frame (W ,R) is an infinite sequence of states such that
(wi ,wi+1) 2 R for all i . For ⇡ = w0,w1, . . . , let ⇡i := wiwi+1 . . . , ⇡[i ] := wi .

76



Formal Semantics of Temporal Logics

Definition 51

Let M = (W ,R ,V ) be a model, w 2 W , ⇡ be a path in (W ,R).

M,w |= p i↵ w 2 V (p),

M,w |= ¬' i↵ M,w 6|= ',

M,w |= ' ^  i↵ M,w |= ' and M,w |=  ,

M,w |= E' i↵ there is a path ⇡ with ⇡[0] = w we have that M,⇡ |= ',

M,⇡ |= p i↵ ⇡[0] 2 V (p),

M,⇡ |= ¬' i↵ M,⇡ 6|= ',

M,⇡ |= ' ^  i↵ M,⇡ |= ' and M,⇡ |=  ,

M,⇡ |= X' i↵ M,⇡1 |= ',

M,⇡ |= 'U i↵ there is a k � 0 s.t. M,⇡[k] |=  and

for all i  k we have that M,⇡[i ] |= '.
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Remaning Operators by Short Cuts

There exist further operators which can be defined by the operators we have already
defined:

A' := ¬E¬'
F' := [>U']

G' := ¬F¬'
['W ] := ¬[¬'U¬ ]
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Two Important Problems and their Complexities

Satisfiability (CTL?-SAT)

Given: CTL
?-formula '.

Question: Is ' satisfiable?

Complexity: EEXP-complete [KV85; EJ99]

CTL
?

SAT MC

CTL
? EEXP

PSPACE

LTL

PSPACE PSPACE

CTL

EXP P
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Two Important Problems and their Complexities

Model Checking (CTL?-MC)

Given: CTL
?-formula ', model M.

Question: Is there a w 2 M that satisfies '?

Complexity: PSPACE-complete [CES86]
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Two Important Problems and their Complexities

Model Checking (CTL-MC)

Given: CTL-formula ', model M.

Question: Is there a w 2 M that satisfies '?

Complexity: P-complete [CES86; Sch02]

CTL
?

LTL CTL

SAT MC

CTL
? EEXP PSPACE

LTL PSPACE PSPACE
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Examples for Interesting Properties in Temporal Logics

Mutal exclusion, i.e., no two processes can be in their critical section at the same time:

AG(¬p1 _ ¬p2)

Starvation freeness, i.e., there is always a call to process p:

AFp

Progress, i.e., some property r which implies a future call of process p:

AG(r ! AFp)
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Logics for verification and specification of concurrent systems

Basic setting:

• System (e.g., piece of software or hardware)
 Kripke structure depicting the behaviour of the system

• A single run of the system
 a trace generated by the Kripke structure

• A property of the system (e.g., every request is eventually granted)
 a formula of some formal language expressing the property.

Model checking:

• Check whether a given system satisfies a given specification.

SAT solving:

• Check whether a given specification (or collection of) can be realised.
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Traceproperties and hyperproperties

Opening your o�ce computer after holidays:

s(hut)

l(oading)
l(oading)
c(onnecting)

r(eady)

s l r r
· · ·

s l c r r
· · ·

s l c l c r
· · ·

...

Traceproperties hold in a system if each trace (in isolation) has the property:
• The computer will be eventually ready (or will be loading forever).

Hyperproperties are properties of sets of traces:
• The computer will be ready in bounded time.
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Logics for traceproperties

• Linear-time temporal logic (LTL) is one of the most prominent logics for the
specification and verification of reactive and concurrent systems.

• Model checking tools like SPIN and NuSMV automatically verify whether a given
computer system is correct with respect to its LTL specification.

• One reason for the success of LTL over first-order logic is that LTL is a purely
modal logic and thus has many desirable properties.

� LTL is decidable (PSPACE-complete model checking and satisfiability).
� FO

2() and FO
3() SAT are NEXPTIME-complete and non-elementary.

• Caveat: LTL can specify only traceproperties.
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Recipe for logics for hyperproperties

A logic for traceproperties  add trace quantifiers

In LTL the satisfying object is a trace: T |= ' i↵ 8t 2 T : t |= '

' ::= p | ¬' | (' _ ') | X' | 'U'

In HyperLTL the satisfying object is a set of traces and a trace assignment: ⇧ |=T '

' ::= 9⇡' | 8⇡' |  
 ::= p⇡ | ¬ | ( _  ) | X |  U 

HyperQPTL extends HyperLTL by (uniform) quantification of propositions: 9p', 8p'
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Hyperlogics via quantifier extensions

• LTL, QPTL, CTL, etc. vs. HyperLTL, HyperQPTL, HyperCTL, etc.
are prominent logics for traceproperties vs. hyperproperties of systems

� Traceproperty: Each request is eventually granted (properties of traces)
� Hyperproperty: Non-inference (values of public outputs do not leak information

about confidential bits), (properties of sets of traces)

• HyperLogics are of high complexity or undecidable.
Not well suited for properties involving unbounded number of traces.
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Properties of quantification based hyperproperties

• Quantification based logics for hyperproperties: HyperLTL, HyperCTL, etc.
• Retain some desirable properties of LTL, but are not purely modal logics

� Model checking for 9⇤HyperLTL and HyperLTL are PSPACE and non-elementary.
� HyperLTL satisfiability is highly undecidable.
� HyperLTL formulae express properties expressible using fixed finite number of traces.

• Bounded termination is not definable in HyperLTL (but is in HyperQPTL)

• Team semantics is a candidate for a purely modal logic without the above caveat.
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Hyperlogic via team semantics

• Temporal logics with team semantics express hyperproperties.

• Purely modal logic & well suited for properties of unbounded number of traces.

• Expressivity
� TeamLTL and HyperLogics are othogonal in expressivity.
� Well behaved fragments of TeamLTL can be translated to HyperLogics with some

form of set quantification.
� Upper bound of expressivity is often monadic second-order logic with equi-level

predicate.

• Complexity:
� Where is the undecidability frontier of TeamLTL extensions?
� A large EXPTIME fragment: left-flat and downward closed logics
� Already TeamLTL with inclusion atoms and Boolean disjunctions is undecidable
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LTL, HyperLTL, and TeamLTL

In LTL the satisfying object is a trace: T |= ' i↵ 8t 2 T : t |= '

' ::= p | ¬' | (' _ ') | X' | 'U'

In HyperLTL the satisfying object is a set of traces and a trace assignment: ⇧ |=T '

' ::= 9⇡' | 8⇡' |  
 ::= p⇡ | ¬ | ( _  ) | X |  U 

In TeamLTL the satisfying object is a set of traces. We use team semantics: (T , i) |= '

' ::= p | ¬p | (' _ ') | (' ^ ') | X' | 'U | 'W'

+ new atomic statements (dependence and inclusion atoms: dep(~p, q), ~p ✓ ~q)
+ additional connectives (Boolean disjunction, contradictory negation, etc.)

Extensions are a well-defined way to delineate expressivity and complexity
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Semantics of TeamLTL

Temporal team semantics is universal and synchronous

(T , i) |= p i↵ 8t 2 T : t[i ](p) = 1 (T , i) |= ¬p i↵ 8t 2 T : t[i ](p) = 0

(T , i) |= F' i↵ (T , j) |= ' for some j � i (T , i) |= G' i↵ (T , j) |= ' for all j � i
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Example: HyperQLTL

There is a timepoint (common for all traces) where a is false in each trace.
Not expressible in HyperLTL, but is in HyperQPTL.

9p 8⇡ G(p ! XG¬p) ^ F(p ^ ¬a⇡)

· · ·
· · ·
· · ·
· · ·

a a
a a

a a
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Example: TeamLTL

There is a timepoint (common for all traces) where a is false in each trace.
Not expressible in HyperLTL, but is in HyperQPTL.

9p 8⇡ G(p ! XG¬p) ^ F(p ^ ¬a⇡)

Expressible in synchronous TeamLTL: F¬a

· · ·
· · ·
· · ·
· · ·

a a
a a

a a
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Examples: Disjunction in TeamLTL

A trace-set T satisfies ' _  if it decomposed to sets T' and T satisfying ' and  .

(T , i) |= ' _  i↵ (T1, i) |= ' and (T2, i) |=  , for some T1 [ T2 = T

(T , i) |= ' ^  i↵ (T , i) |= ' and (T , i) |=  
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Examples: Dependence atom in TeamLTL

Dependence atom dep(p1, . . . , pm, q) states that p1, . . . , pm functionally determine q:

(T , i) |= dep(p1, . . . , pm, q) i↵ 8t, t 0 2 T
⇣ ^

1jm

t[i ](pj) = t 0[i ](pj)
⌘
) (t[i ](q) = t 0[i ](q))
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Temporal team semantics

Definition 52

Temporal team is (T , i), where T a set of traces and i 2 N.

(T , i) |= p i↵ 8t 2 T : t[0](p) = 1

(T , i) |= ¬p i↵ 8t 2 T : t[0](p) = 0

(T , i) |= � ^  i↵ (T , i) |= � and (T , i) |=  

(T , i) |= � _  i↵ (T1, i) |= � and (T2, i) |=  , for some T1,T2 s.t. T1 [ T2 = T

(T , i) |= X' i↵ (T , i + 1) |= '

(T , i) |= �U i↵ 9k � i s.t. (T , k) |=  and 8m : i  m < k ) (T ,m) |= �

(T , i) |= �W i↵ 8k � i : (T , k) |= � or 9m s.t. i  m  k and (T ,m) |=  
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Generalised atoms and complete logics

Let B be a set of n-ary Boolean relations. We define the property ['1, . . . ,'n]B for an
n-tuple ('1, . . . ,'n) of LTL-formulae:

(T , i) |= ['1, . . . ,'n]B i↵ {(J�1K(t,i), . . . , J�nK(t,i)) | t 2 T} 2 B .

Theorem 53

TeamLTL(6,NE,
1

A) can express all ['1, . . . ,'n]B .

TeamLTL(6,
1

A) can express all ['1, . . . ,'n]B , for downward closed B .

• (T , i) |= NE i↵ T 6= ;.

• (T , i) |=
1

A' i↵ ({t}, i) |= ', for all t 2 T .
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Complexity results

Logic Model Checking Result

TeamLTL without _ in PSPACE
k-coherent TeamLTL(⇠) in EXPSPACE

left-flat TeamLTL(6,
1

A) in EXPSPACE
TeamLTL(✓,6) ⌃0

1-hard
TeamLTL(✓,6,A) ⌃1

1-hard
TeamLTL(⇠) complete for third-order arithmetic

• k-coherence: (T , i) |= ' i↵ (S , i) |= ' for all S ✓ T s.t. |S |  k

• left-flatness: Restrict U and W syntactically to (
1

A'U ) and (
1

A'W )

• ⇠ is contradictory negation and TeamLTL(⇠) subsumes all the other logics
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Source of Undecidability

Definition 54

A non-deterministic 3-counter machine M consists of a list I of n instructions that
manipulate three counters Cl , Cm and Cr . All instructions are of the following forms:

• C+
a goto {j1, j2}, C�

a goto {j1, j2}, if Ca = 0 goto j1else goto j2,

where a 2 {l ,m, r}, 0  j1, j2 < n.

• configuration: tuple (i , j , k , l), where 0  i < n is the next instruction to be
executed, and j , k , l 2 N are the current values of the counters Cl , Cm and Cr .

• computation: infinite sequence of consecutive configurations starting from the
initial configuration (0, 0, 0, 0).

• computation b-recurring if the instruction labelled b occurs infinitely often in it.

• computation is lossy if the counter values can non-deterministically decrease
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Undecidability results

Theorem 55 (Alur & Henzinger 1994, Schnoebelen 2010)

Deciding whether a given non-deterministic 3-counter machine has a (lossy)
b-recurring computation for a given b is (⌃0

1-complete) ⌃1
1-complete.

Theorem 56 ([Vir+21])

Model checking for TeamLTL(6,✓) is ⌃1
0-hard.

Model checking for TeamLTL(6,✓,A) is ⌃1
1-hard.

Proof Idea:

• reduce existence of b-recurring computation of given 3-counter machine M and
instruction label b to model checking problem of TeamLTL(6,✓,A)

• TeamLTL(6,✓) su�ces to enforce lossy computation
• (T [i ,1], 0) encodes the value of counters of the ith configuration
the value of Ca is the cardinality of the set {t 2 T [i ,1] | t[0](ca) = 1}
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Model checking for TeamLTL(✓,6) is ⌃0
1-hard.

Proof.

Given a set I of instructions of a 3-counter machine M, and an instruction label b, we
construct a TeamLTL(✓,6)-formula 'I ,b and a Kripke structure KI such that

�
Traces(KI ), 0

�
|= 'I ,b i↵ M has a b-recurring lossy computation. (1)

The ⌃0
1-hardness then follows since the construction is computable.
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Idea of the encoding

Put n := |I |. A set T of traces using propositions {cl , cm, cr , d , 0, . . . , n � 1} encodes
the sequence (~cj)j2N of configurations, if for each j 2 N and ~cj = (i , vl , vm, vr )

• t[j ] \ {0, . . . , n � 1} = {i}, for all t 2 T ,

• |{t[j ,1] | cs 2 t[j ], t 2 T}| = vs , for each s 2 {l ,m, r}.
Hence, we use T [j ,1] to encode the configuration ~cj ; the propositions 0, . . . , n� 1 are
used to encode the next instruction, and cl , cm, cr , d are used to encode the values of
the counters. The proposition d is a dummy proposition used to separate traces with
identical postfixes with respect to cl , cm, and cr .
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Construction of the Kripke structure

The Kripke structure KI = (W ,R , ⌘,w0) over the set of propositions
{cl , cm, cr , d , 0, . . . , n � 1} is defined such that every possible sequence of
configurations of M starting from (0, 0, 0, 0) can be encoded by some team (T , 0),
where T ✓ Traces(KI ).
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Construction of the formula

The connective _L is a shorthand for the condition:

(T , i) |= � _L  i↵ 9T1,T2 s.t. T1 6= ;, T1 [ T2 = T , (T1, i) |= � and (T2, i) |=  .

The disjunction _L can be defined using ✓, _ (see e.g., [Hel+19, Lemma 3.4]).

The formula
✓b�rec := GFb

describes the b-recurrence condition of the computation.

The formula �I ,b enforces that the configurations encoded by T [i ,1], i 2 N, encode
an accepting computation of the counter machine; _L guesses the computation.

�I ,b := (✓comp ^ ✓b�rec) _L >.

The formula ✓comp states that the encoded computation is legal.
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Expressing legality of computation

Define

singleton := G
^

a2PROP

(a 6 ¬a), cs-decrease := cs _ (¬cs ^ X¬cs), for s 2 {l ,m, r}.

For the instruction i : C+
l goto {j , j 0}, define

✓i := X(j 6 j 0) ^
�
(singleton^¬cl ^ Xcl) _ cl-decrease

�
^ cr-decrease^ cm-decrease .

For the instruction i : if Cs = 0 goto j , else goto j 0, define

✓i :=
�
X(¬cs ^ j) 6 (> ✓ cs ^ Xj 0)

�
^ cl-decrease^ cm-decrease^ cr-decrease .

Finally, define ✓comp := G6i<n(i ^ ✓i ).
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Conclusion of Lecture 5

• Introduction into Temporal Logics

• Hyperproperties and Temporal Team Semantics

• Undecidability of model checking of TeamLTL(6,✓)
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