Complexity and Expressivity of Propositional Logics with Team Semantics Arne Meier, Jonni Virtema 9th of August

Lecture 5: Recent Trends: Hyperproperties

Literature: [Vir+21; Gut+22]

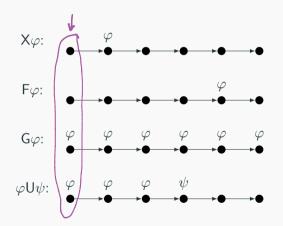
Temporal Logic

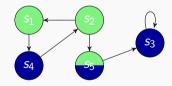
Model logik Ily, Qy Ho'sh Zw WRW

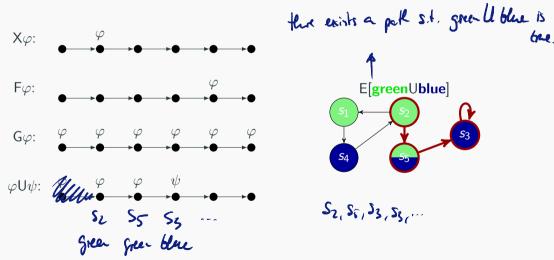
- Dates back to Arthur Norman Prior (1914–1969)
- New modalities neXt, Until, Future, Global
- and quantifiers: All paths, Exists a path
- 'From Philosophical to Industrial Logics' [Var09]

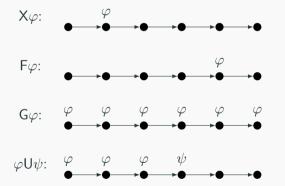
Arthur N. Prior (1914–1969)

the present would

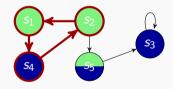


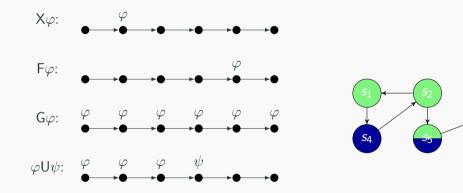






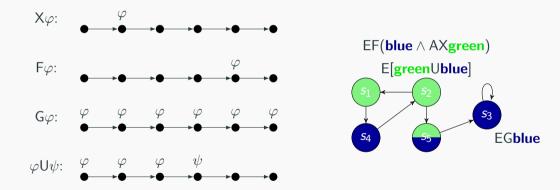
 $\mathsf{EF}(\mathsf{blue} \land \mathsf{AXgreen})$



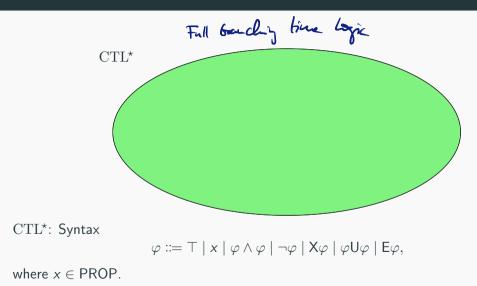


S3

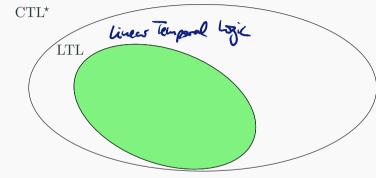
EG**blue**



A Temporal Lanscape of Logics



A Temporal Lanscape of Logics

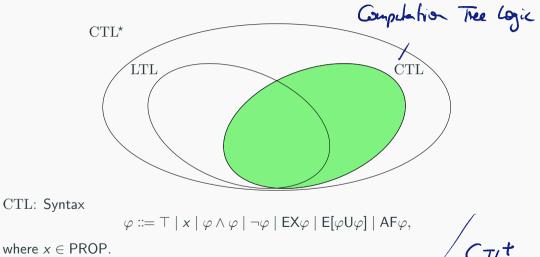


LTL: Formulae $E\varphi$ with

$$\varphi ::= \top \mid x \mid \varphi \land \varphi \mid \neg \varphi \mid \mathsf{X}\varphi \mid \varphi \mathsf{U}\varphi,$$

where $x \in \mathsf{PROP}$.

A Temporal Lanscape of Logics



CTL⁺ BCTC [BCTL⁺ 74 Regarding the formulae of CTL^* , we follow the terminology of Emerson and Sistla [ES84].

- **S1:** Any atomic proposition is a state formula.
- **S2:** If ψ, φ are state formula, then so are $\varphi \wedge \psi$, and $\neg \psi$.
- **S3:** If ψ is a path formula, then $E\psi$ is a state formula.

Regarding the formulae of CTL^* , we follow the terminology of Emerson and Sistla [ES84].

S1: Any atomic proposition is a state formula.

S2: If ψ, φ are state formula, then so are $\varphi \wedge \psi$, and $\neg \psi$.

S3: If ψ is a path formula, then $E\psi$ is a state formula.

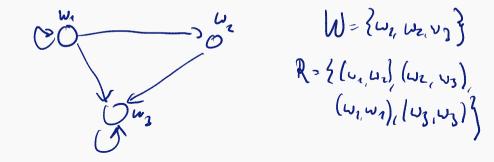
P1: Any state formula is a path formula.

P2: If ψ, φ are path formulae, then so are $\varphi \wedge \psi$, $\neg \psi$.

P3: If ψ, φ are path formulae, then so are X φ , $[\varphi U \psi]$. Intuitively, (S1), (P1), (P2), and (P3) form LTL.

Definition 48

A frame \mathcal{F} is a tuple $\mathcal{F} = (W, R)$, where W is a set of worlds and R is its transition relation, i.e., $R \subseteq W \times W$ and R is total (every state has ≤ 1 successor).



Definition 48

A frame \mathcal{F} is a tuple $\mathcal{F} = (W, R)$, where W is a set of worlds and R is its transition relation, i.e., $R \subseteq W \times W$ and R is total (every state has ≤ 1 successor).

Definition 49

Let PROP be an countably infinite set of symbols. A model is a tuple $\mathcal{M} = (\mathcal{F}, V)$, where $\mathcal{F} = (W, \mathbf{R})$ is a frame and $V \colon \mathsf{PROP} \to \mathfrak{P}(W)$ is a labeling function.

Definition 50

A path $\pi = w_0, w_1, \ldots$ in a frame (W, R) is an infinite sequence of states such that $(w_i, w_{i+1}) \in R$ for all *i*. For $\pi = \cdots = w_1, \ldots$, let $\pi_i := w_i w_{i+1} \ldots, \pi[i] := w_i$.

Formal Semantics of Temporal Logics

Definition 51

Let $\mathcal{M} = (W, R, V)$ be a model, $w \in W$, π be a path in (W, R).

$$\begin{array}{c} \mathcal{M}, w \models p \text{ iff } w \in V(p), \\ \mathcal{M}, w \models \neg \varphi \text{ iff } \mathcal{M}, w \not\models \varphi, \\ \mathcal{M}, w \models \varphi \land \psi \text{ iff } \mathcal{M}, w \models \varphi \text{ and } \mathcal{M}, w \models \psi, \\ \mathcal{M}, w \models \mathsf{E}\varphi \text{ iff there is a path } \pi \text{ with } \pi[0] = w \text{ we have that } \mathcal{M}, \pi \models \varphi, \end{array} \right\}$$

1

Formal Semantics of Temporal Logics

Definition 51

Let $\mathcal{M} = (W, R, V)$ be a model, $w \in W$, π be a path in (W, R).

$$\mathcal{M}, w \models p \text{ iff } w \in V(p),$$

$$\mathcal{M}, w \models \neg \varphi \text{ iff } \mathcal{M}, w \not\models \varphi,$$

$$\mathcal{M}, w \models \varphi \land \psi \text{ iff } \mathcal{M}, w \models \varphi \text{ and } \mathcal{M}, w \models \psi,$$

$$\mathcal{M}, w \models E\varphi \text{ iff there is a path } \pi \text{ with } \pi[0] = w \text{ we have that } \mathcal{M}, \pi \models \varphi,$$

$$\mathcal{M}, \pi \models p \text{ iff } \pi[0] \in V(p),$$

$$\mathcal{M}, \pi \models \neg \varphi \text{ iff } \mathcal{M}, \pi \not\models \varphi,$$

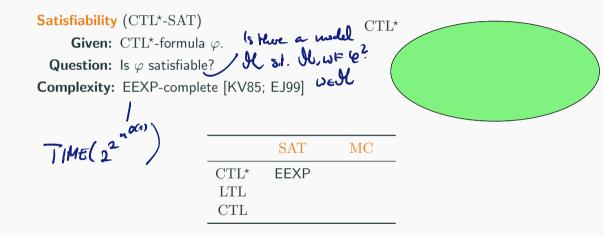
$$\mathcal{M}, \pi \models \varphi \land \psi \text{ iff } \mathcal{M}, \pi \models \varphi \text{ and } \mathcal{M}, \pi \models \psi,$$

$$\mathcal{M}, \pi \models \varphi \forall \psi \text{ iff } \mathcal{M}, \pi_1 \models \varphi,$$

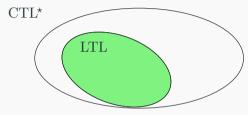
$$\mathcal{M}, \pi \models \varphi \cup \psi \text{ iff there is a } k \ge 0 \text{ s.t. } \mathcal{M}, \pi[i] \models \psi.$$

There exist further operators which can be defined by the operators we have already defined:

$$\begin{aligned} \mathsf{A}\varphi &\coloneqq \neg \mathsf{E}\neg\varphi\\ \mathsf{F}\varphi &\coloneqq [\top \mathsf{U}\varphi]\\ \mathsf{G}\varphi &\coloneqq \neg \mathsf{F}\neg\varphi\\ \hline \varphi \mathsf{W}\psi] &\coloneqq \neg [\neg\varphi \mathsf{U}\neg\psi\end{aligned}$$

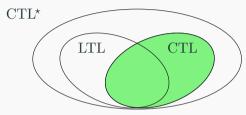


Satisfiability (LTL-SAT) Given: LTL-formula φ . Question: ls φ satisfiable? Complexity: PSPACE-complete [SC85]



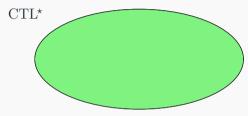
	SAT	\mathbf{MC}
$\begin{array}{c} \mathrm{CTL}^{\star} \\ \mathrm{LTL} \\ \mathrm{CTL} \end{array}$	EEXP PSPACE	

Satisfiability (CTL-SAT)
Given: CTL-formula φ.
Question: Is φ satisfiable?
Complexity: EXP-complete [FL79; Pra80]



	SAT	\mathbf{MC}
CTL^{\star}	EEXP	
LTL	PSPACE	
CTL	EXP	

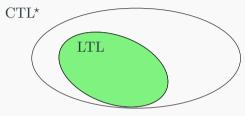
Model Checking (CTL*-MC) Given: CTL*-formula φ , model \mathcal{M} . Question: Is there a $w \in \mathcal{M}$ that satisfies φ ? Complexity: PSPACE-complete [CES86]



	SAT	\mathbf{MC}
CTL^{\star}	EEXP	PSPACE
LTL	PSPACE	
CTL	EXP	

Model Checking (LTL-MC)

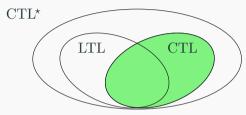
Given: LTL-formula φ , model \mathcal{M} . **Question:** Is there a $w \in \mathcal{M}$ that satisfies φ ? **Complexity:** PSPACE-complete [CES86]



	SAT	\mathbf{MC}
CTL^{\star}	EEXP	PSPACE
LTL	PSPACE	PSPACE
CTL	EXP	

Model Checking (CTL-MC)

Given: CTL-formula φ , model \mathcal{M} . **Question:** Is there a $w \in \mathcal{M}$ that satisfies φ ? **Complexity:** P-complete [CES86; Sch02]



	SAT	\mathbf{MC}
CTL^{\star}	EEXP	PSPACE
LTL	PSPACE	PSPACE
CTL	EXP	Р

 $AG(\neg p_1 \lor \neg p_2)$

Starvation freeness, i.e., there is always a call to process *p*:

 $AG(\neg p_1 \lor \neg p_2)$

Starvation freeness, i.e., there is always a call to process *p*:

AFp

Progress, i.e., some property r which implies a future call of process p:

 $AG(\neg p_1 \lor \neg p_2)$

Starvation freeness, i.e., there is always a call to process *p*:

AFp

Progress, i.e., some property r which implies a future call of process p:

$$AG(r \rightarrow AFp)$$

Basic setting:

- A single run of the system
 - \rightsquigarrow a trace generated by the Kripke structure
- A property of the system (e.g., every request is eventually granted) ~ a formula of some formal language expressing the property.

Basic setting:

- System (e.g., piece of software or hardware)

 Kripke structure depicting the behaviour of the system
- A single **run** of the system
 - \rightsquigarrow a trace generated by the Kripke structure
- A property of the system (e.g., every request is eventually granted) ~ a formula of some formal language expressing the property.

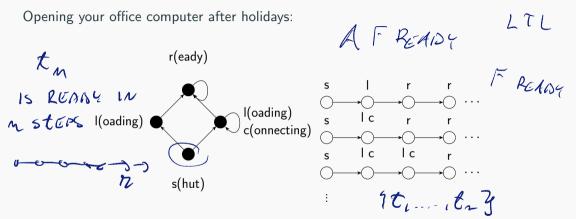
Model checking:

• Check whether a given system satisfies a given specification.

SAT solving:

• Check whether a given specification (or collection of) can be realised.

Traceproperties and hyperproperties



Traceproperties hold in a system if each trace (in isolation) has the property:

• The computer will be eventually ready (or will be loading forever).

Hyperproperties are properties of sets of traces:

• The computer will be ready in bounded time.

4 C. Lieny

- Linear-time temporal logic (LTL) is one of the most prominent logics for the specification and verification of reactive and concurrent systems.
- Model checking tools like SPIN and NuSMV automatically verify whether a given computer system is correct with respect to its LTL specification.
- One reason for the success of LTL over first-order logic is that LTL is a purely modal logic and thus has many desirable properties.
 - LTL is decidable (PSPACE-complete model checking and satisfiability).
 - $FO^2(\leq)$ and $FO^3(\leq)$ SAT are NEXPTIME-complete and non-elementary.
- Caveat: LTL can specify only traceproperties.

A logic for traceproperties \rightsquigarrow add trace quantifiers \square 's VAR \rightarrow \square

In LTL the satisfying object is a trace: $T \models \varphi$ iff $\forall t \in T : t \models \varphi$

 $\varphi ::= p \mid \neg \varphi \mid (\varphi \lor \varphi) \mid X\varphi \mid \varphi U\varphi$

In HyperLTL the satisfying object is a set of traces and a trace assignment: $\Pi \models_{\mathcal{T}} \varphi$

$$\varphi ::= \exists \pi \varphi \mid \forall \pi \varphi \mid \psi$$
$$\psi ::= \overbrace{p_{\pi}} \mid \neg \psi \mid (\psi \lor \psi) \mid X \psi \mid \psi U \psi$$

HyperQPTL extends HyperLTL by (uniform) quantification of propositions: $\exists p\varphi (\forall p\varphi)$

TI is a TRACE ASSIGNMENT

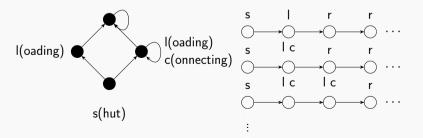
- LTL, QPTL, CTL, etc. vs. HyperLTL, HyperQPTL, HyperCTL, etc. are prominent logics for traceproperties vs. hyperproperties of systems
 - Traceproperty: Each request is eventually granted (properties of traces)
 - Hyperproperty: Non-inference (values of public outputs do not leak information about confidential bits), (properties of sets of traces)
- HyperLogics are of high complexity or undecidable.
 Not well suited for properties involving unbounded number of traces.

Properties of quantification based hyperproperties

- Quantification based logics for hyperproperties: HyperLTL, HyperCTL, etc.
- Retain some desirable properties of LTL, but are not purely modal logics
 - $\circ~$ Model checking for $\exists^*HyperLTL$ and HyperLTL are PSPACE and non-elementary.
 - HyperLTL satisfiability is highly undecidable.
 - HyperLTL formulae express properties expressible using fixed finite number of traces.

Properties of quantification based hyperproperties

- Quantification based logics for hyperproperties: HyperLTL, HyperCTL, etc.
- Retain some desirable properties of LTL, but are not purely modal logics
 - Model checking for \exists *HyperLTL and HyperLTL are PSPACE and non-elementary. 3! - harl
 - HyperLTL satisfiability is highly undecidable.
 - HyperLTL formulae express properties expressible using fixed finite number of traces.
- Bounded termination is not definable in HyperLTL (but is in HyperQPTL)



- Temporal logics with team semantics express hyperproperties.
- Purely modal logic & well suited for properties of unbounded number of traces.

- Temporal logics with team semantics express hyperproperties.
- Purely modal logic & well suited for properties of unbounded number of traces.
- Expressivity
 - $\circ~$ TeamLTL and HyperLogics are othogonal in expressivity.
 - Well behaved fragments of TeamLTL can be translated to HyperLogics with some form of set quantification.
 - Upper bound of expressivity is often monadic second-order logic with equi-level predicate.

- Temporal logics with team semantics express hyperproperties.
- Purely modal logic & well suited for properties of unbounded number of traces.
- Expressivity
 - $\circ~$ TeamLTL and HyperLogics are othogonal in expressivity.
 - $\circ~$ Well behaved fragments of TeamLTL can be translated to HyperLogics with some form of set quantification.
 - Upper bound of expressivity is often monadic second-order logic with equi-level predicate.
- Complexity:
 - $\circ~$ Where is the undecidability frontier of TeamLTL extensions?
 - $\circ\,$ A large EXPTIME fragment: left-flat and downward closed logics
 - Already TeamLTL with inclusion atoms and Boolean disjunctions is undecidable

LTL, HyperLTL, and TeamLTL

In LTL the satisfying object is a trace: $T \models \varphi$ iff $\forall t \in T : t \models \varphi$

 $\varphi ::= p \mid \neg \varphi \mid (\varphi \lor \varphi) \mid X\varphi \mid \varphi U\varphi$

In HyperLTL the satisfying object is a set of traces and a trace assignment: $\Pi\models_{\mathcal{T}}\varphi$

$$\begin{split} \varphi &::= \exists \pi \varphi \mid \forall \pi \varphi \mid \psi \\ \psi &::= p_{\pi} \mid \neg \psi \mid (\psi \lor \psi) \mid X \psi \mid \psi U \psi \end{split}$$

In TeamLTL the satisfying object is a set of traces. We use team semantics: $(T, i) \models \varphi$

$$\varphi ::= p \mid \neg p \mid (\varphi \lor \varphi) \mid (\varphi \land \varphi) \mid X\varphi \mid \varphi U \mid \varphi W\varphi$$

+ new atomic statements (dependence and inclusion atoms: $dep(\vec{p}, q), \vec{p} \subseteq \vec{q}$) + additional connectives (Boolean disjunction, contradictory negation, etc.) Extensions are a well-defined way to delineate expressivity and complexity Temporal team semantics is universal and synchronous

 $(T,i) \models p \text{ iff } \forall t \in T : t[i](p) = 1$ $(T,i) \models \neg p \text{ iff } \forall t \in T : t[i](p) = 0$

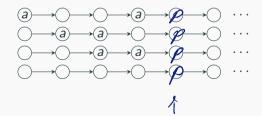
Temporal team semantics is universal and synchronous

 $(T,i) \models p \text{ iff } \forall t \in T : t[i](p) = 1$ $(T,i) \models \neg p \text{ iff } \forall t \in T : t[i](p) = 0$

 $(T,i) \models F\varphi$ iff $(T,j) \models \varphi$ for some $j \ge i$ $(T,i) \models G\varphi$ iff $(T,j) \models \varphi$ for all $j \ge i$

There is a timepoint (common for all traces) where *a* is false in each trace. Not expressible in HyperLTL, but is in HyperQPTL.

$$\exists p \, orall \pi \, \mathsf{G}(p o \mathsf{X}\mathsf{G}
eg p) \wedge \mathsf{F}(p \wedge
eg a_\pi)$$



There is a timepoint (common for all traces) where *a* is false in each trace. Not expressible in HyperLTL, but is in HyperQPTL.

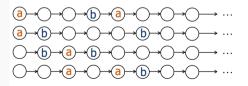
 $\exists p \,\forall \pi \,\mathsf{G}(p \rightarrow \mathsf{X}\mathsf{G}\neg p) \wedge \mathsf{F}(p \wedge \neg a_{\pi})$ Expressible in synchronous TeamLTL: $F \neg a/$. . . a a TEZ

A trace-set T satisfies $\varphi \lor \psi$ if it decomposed to sets T_{φ} and T_{ψ} satisfying φ and ψ .

$$(T,i) \models \varphi \lor \psi$$
 iff $(T_1,i) \models \varphi$ and $(T_2,i) \models \psi$, for some $T_1 \cup T_2 = T$
 $(T,i) \models \varphi \land \psi$ iff $(T,i) \models \varphi$ and $(T,i) \models \psi$

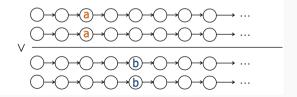
HyperLTL:

 $\forall \pi. \forall \pi'. F((a_{\pi} \wedge a_{\pi'}) \vee (b_{\pi} \wedge b_{\pi'}))$



TeamLTL:

 $(F a) \lor (F b)$



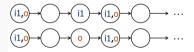
Examples: Dependence atom in TeamLTL

Dependence atom dep (p_1, \ldots, p_m, q) states that p_1, \ldots, p_m functionally determine q:

$$(T,i) \models \operatorname{dep}(p_1,\ldots,p_m,q) \text{ iff } \forall t,t' \in T\Big(\bigwedge_{1 \leq j \leq m} t[i](p_j) = t'[i](p_j)\Big) \Rightarrow (t[i](q) = t'[i](q))$$

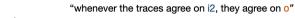
 $(\mathbf{G} \ dep(i1, \mathbf{o})) \lor (\mathbf{G} \ dep(i2, \mathbf{o}))$

Nondeterministic dependence: "o either depends on i1 or on i2"



"whenever the traces agree on i1, they agree on o"

V



Definition 52

```
Temporal team is (T, i), where T a set of traces and i \in \mathbb{N}.
```

```
\begin{array}{lll} (T,i) \models p & \text{iff} & \forall t \in T : t[0](p) = 1 \\ (T,i) \models \neg p & \text{iff} & \forall t \in T : t[0](p) = 0 \\ (T,i) \models \phi \land \psi & \text{iff} & (T,i) \models \phi \text{ and } (T,i) \models \psi \\ (T,i) \models \phi \lor \psi & \text{iff} & (T_1,i) \models \phi \text{ and } (T_2,i) \models \psi, \text{ for some } T_1, T_2 \text{ s.t. } T_1 \cup T_2 = T \\ (T,i) \models X\varphi & \text{iff} & (T,i+1) \models \varphi \\ (T,i) \models \phi \cup \psi & \text{iff} & \exists k \ge i \text{ s.t. } (T,k) \models \psi \text{ and } \forall m : i \le m < k \Rightarrow (T,m) \models \phi \\ (T,i) \models \phi W\psi & \text{iff} & \forall k \ge i : (T,k) \models \phi \text{ or } \exists m \text{ s.t. } i \le m \le k \text{ and } (T,m) \models \psi \end{array}
```

Let *B* be a set of *n*-ary Boolean relations. We define the property $[\varphi_1, \ldots, \varphi_n]_B$ for an *n*-tuple $(\varphi_1, \ldots, \varphi_n)$ of LTL-formulae:

 $(T,i) \models [\varphi_1,\ldots,\varphi_n]_B$ iff $\{(\llbracket \phi_1 \rrbracket_{(t,i)},\ldots,\llbracket \phi_n \rrbracket_{(t,i)}) \mid t \in T\} \in B.$

Let *B* be a set of *n*-ary Boolean relations. We define the property $[\varphi_1, \ldots, \varphi_n]_B$ for an *n*-tuple $(\varphi_1, \ldots, \varphi_n)$ of LTL-formulae:

 $(T,i) \models [\varphi_1,\ldots,\varphi_n]_B$ iff $\{(\llbracket \phi_1 \rrbracket_{(t,i)},\ldots,\llbracket \phi_n \rrbracket_{(t,i)}) \mid t \in T\} \in B.$

Theorem 53

TeamLTL(\otimes , NE, $\stackrel{1}{A}$) can express all $[\varphi_1, \ldots, \varphi_n]_B$. TeamLTL($\otimes, \stackrel{1}{A}$) can express all $[\varphi_1, \ldots, \varphi_n]_B$, for downward closed B.

• $(T, i) \models \text{NE iff } T \neq \emptyset.$

•
$$(T, i) \models \dot{A}\varphi$$
 iff $(\{t\}, i) \models \varphi$, for all $t \in T$.

Logic	Model Checking Result
TeamLTL without \lor	in PSPACE
<i>k</i> -coherent TeamLTL(\sim)	in EXPSPACE
left-flat TeamLTL(⊘,Å)	in EXPSPACE
$\operatorname{TeamLTL}(\subseteq, \oslash)$	Σ_1^0 -hard
$\operatorname{TeamLTL}(\subseteq, \oslash, A)$	Σ_1^1 -hard
$\mathrm{TeamLTL}(\sim)$	complete for third-order arithmetic

- *k*-coherence: $(T, i) \models \varphi$ iff $(S, i) \models \varphi$ for all $S \subseteq T$ s.t. $|S| \le k$
- left-flatness: Restrict U and W syntactically to $(\dot{A}\varphi U\psi)$ and $(\dot{A}\varphi W\psi)$
- \sim is contradictory negation and ${\rm TeamLTL}(\sim)$ subsumes all the other logics

Definition 54

A non-deterministic 3-counter machine M consists of a list I of n instructions that manipulate three counters C_I , C_m and C_r . All instructions are of the following forms: • C_a^+ goto $\{j_1, j_2\}$, C_a^- goto $\{j_1, j_2\}$, if $C_a = 0$ goto j_1 else goto j_2 ,

where $a \in \{l, m, r\}$, $0 \le j_1, j_2 < n$.

Definition 54

A non-deterministic 3-counter machine M consists of a list I of n instructions that manipulate three counters C_I , C_m and C_r . All instructions are of the following forms: • C_a^+ goto $\{j_1, j_2\}$, C_a^- goto $\{j_1, j_2\}$, if $C_a = 0$ goto j_1 else goto j_2 , where $a \in \{I, m, r\}$, $0 \le j_1, j_2 \le n$.

- configuration: tuple (i, j, k, l), where $0 \le i < n$ is the next instruction to be executed, and $j, k, l \in \mathbb{N}$ are the current values of the counters C_l , C_m and C_r .
- computation: infinite sequence of consecutive configurations starting from the initial configuration (0,0,0,0).
- computation *b*-recurring if the instruction labelled *b* occurs infinitely often in it.
- computation is lossy if the counter values can non-deterministically decrease

Theorem 55 (Alur & Henzinger 1994, Schnoebelen 2010)

Deciding whether a given non-deterministic 3-counter machine has a (lossy) b-recurring computation for a given b is (Σ_1^0 -complete) Σ_1^1 -complete.

Theorem 55 (Alur & Henzinger 1994, Schnoebelen 2010)

Deciding whether a given non-deterministic 3-counter machine has a (lossy) b-recurring computation for a given b is (Σ_1^0 -complete) Σ_1^1 -complete.

Theorem 56 ([Vir+21])

Model checking for $\text{TeamLTL}(\emptyset, \subseteq)$ is Σ_0^1 -hard. Model checking for $\text{TeamLTL}(\emptyset, \subseteq, A)$ is Σ_1^1 -hard.

Proof Idea:

- reduce existence of b-recurring computation of given 3-counter machine M and instruction label b to model checking problem of TeamLTL(∅, ⊆, A)
- $\mathrm{TeamLTL}(\oslash,\subseteq)$ suffices to enforce lossy computation
- (*T*[*i*,∞],0) encodes the value of counters of the *i*th configuration the value of *C_a* is the cardinality of the set {*t* ∈ *T*[*i*,∞] | *t*[0](*c_a*) = 1}

Proof.

Given a set I of instructions of a 3-counter machine M, and an instruction label b, we construct a $\text{TeamLTL}(\subseteq, \oslash)$ -formula $\varphi_{I,b}$ and a Kripke structure \mathfrak{K}_I such that

 $(\operatorname{Traces}(\mathfrak{K}_I), 0) \models \varphi_{I,b}$ iff *M* has a *b*-recurring lossy computation. (1)

The Σ_1^0 -hardness then follows since the construction is computable.

Put n := |I|. A set T of traces using propositions $\{c_l, c_m, c_r, d, 0, \dots, n-1\}$ encodes the sequence $(\vec{c}_j)_{j \in \mathbb{N}}$ of configurations, if for each $j \in \mathbb{N}$ and $\vec{c}_j = (i, v_l, v_m, v_r)$

•
$$t[j] \cap \{0, \dots, n-1\} = \{i\}$$
, for all $t \in T$,

•
$$|\{t[j,\infty] \mid c_s \in t[j], t \in T\}| = v_s$$
, for each $s \in \{I, m, r\}$.

Hence, we use $T[j, \infty]$ to encode the configuration \vec{c}_j ; the propositions $0, \ldots, n-1$ are used to encode the next instruction, and c_l, c_m, c_r, d are used to encode the values of the counters. The proposition d is a dummy proposition used to separate traces with identical postfixes with respect to c_l, c_m , and c_r .

The Kripke structure $\Re_l = (W, R, \eta, w_0)$ over the set of propositions $\{c_l, c_m, c_r, d, 0, \ldots, n-1\}$ is defined such that every possible sequence of configurations of M starting from (0, 0, 0, 0) can be encoded by some team (T, 0), where $T \subseteq \text{Traces}(\Re_l)$.

The connective $\vee_{\rm L}$ is a shorthand for the condition:

$$(T,i) \models \phi \lor_{\mathrm{L}} \psi \text{ iff } \exists T_1, T_2 \text{ s.t. } T_1 \neq \emptyset, \ T_1 \cup T_2 = T, (T_1,i) \models \phi \text{ and } (T_2,i) \models \psi.$$

The disjunction \vee_L can be defined using \subseteq , \vee (see e.g., [Hel+19, Lemma 3.4]).

The connective $\vee_{\rm L}$ is a shorthand for the condition:

$$(T,i) \models \phi \lor_{\mathrm{L}} \psi \text{ iff } \exists T_1, T_2 \text{ s.t. } T_1 \neq \emptyset, \ T_1 \cup T_2 = T, (T_1,i) \models \phi \text{ and } (T_2,i) \models \psi.$$

The disjunction \vee_L can be defined using \subseteq , \vee (see e.g., [Hel+19, Lemma 3.4]). The formula

$$\theta_{b-\mathrm{rec}} \coloneqq \mathsf{GF}b$$

describes the *b*-recurrence condition of the computation.

The connective $\vee_{\rm L}$ is a shorthand for the condition:

 $(T,i) \models \phi \lor_{\mathrm{L}} \psi \text{ iff } \exists T_1, T_2 \text{ s.t. } T_1 \neq \emptyset, \ T_1 \cup T_2 = T, (T_1,i) \models \phi \text{ and } (T_2,i) \models \psi.$

The disjunction \vee_L can be defined using \subseteq , \vee (see e.g., [Hel+19, Lemma 3.4]). The formula

$$\theta_{b-\mathrm{rec}} \coloneqq \mathsf{GF}b$$

describes the *b*-recurrence condition of the computation.

The formula $\phi_{I,b}$ enforces that the configurations encoded by $T[i,\infty]$, $i \in \mathbb{N}$, encode an accepting computation of the counter machine; \forall_{L} guesses the computation.

$$\phi_{I,b} \coloneqq (\theta_{\rm comp} \land \theta_{b-\rm rec}) \lor_{\rm L} \top.$$

The formula $\theta_{\rm comp}$ states that the encoded computation is legal.

singleton := G
$$\bigwedge_{a \in \text{PROP}} (a \otimes \neg a), \quad c_s$$
-decrease := $c_s \vee (\neg c_s \wedge X \neg c_s), \text{ for } s \in \{I, m, r\}.$

$$\mathsf{singleton} \coloneqq \mathsf{G} \bigwedge_{a \in \mathrm{PROP}} (a \otimes \neg a), \qquad \mathsf{c_s}\mathsf{-decrease} \coloneqq c_s \vee (\neg c_s \wedge \mathsf{X} \neg c_s), \ \mathsf{for} \ s \in \{I, m, r\}.$$

For the instruction $i: C_l^+$ goto $\{j, j'\}$, define

 $\theta_i \coloneqq \mathsf{X}(j \otimes j') \land \big((\mathsf{singleton} \land \neg c_l \land \mathsf{X}c_l) \lor \mathsf{c}_l \text{-decrease} \big) \land \mathsf{c}_r \text{-decrease} \land \mathsf{c}_m \text{-decrease} \,.$

singleton := G
$$\bigwedge_{a \in \text{PROP}} (a \otimes \neg a), \quad c_s$$
-decrease := $c_s \vee (\neg c_s \wedge X \neg c_s), \text{ for } s \in \{I, m, r\}.$

For the instruction $i: C_l^+$ goto $\{j, j'\}$, define

 $\theta_i \coloneqq \mathsf{X}(j \otimes j') \land \big((\mathsf{singleton} \land \neg c_l \land \mathsf{X}c_l) \lor \mathsf{c}_l \text{-decrease} \big) \land \mathsf{c}_r \text{-decrease} \land \mathsf{c}_m \text{-decrease} \,.$

For the instruction *i*: if $C_s = 0$ goto *j*, else goto *j'*, define

 $\theta_i \coloneqq \left(\mathsf{X}(\neg c_s \land j) \oslash (\top \subseteq c_s \land \mathsf{X}j')\right) \land \mathsf{c}_{\mathsf{I}}\text{-}\mathsf{decrease} \land \mathsf{c}_{\mathsf{m}}\text{-}\mathsf{decrease} \land \mathsf{c}_{\mathsf{r}}\text{-}\mathsf{decrease} \,.$

singleton := G
$$\bigwedge_{a \in \text{PROP}} (a \otimes \neg a), \quad c_s$$
-decrease := $c_s \vee (\neg c_s \wedge X \neg c_s), \text{ for } s \in \{I, m, r\}.$

For the instruction $i: C_l^+$ goto $\{j, j'\}$, define

 $\theta_i := \mathsf{X}(j \otimes j') \land \big((\mathsf{singleton} \land \neg c_l \land \mathsf{X}c_l) \lor \mathsf{c}_l \text{-decrease} \big) \land \mathsf{c}_r \text{-decrease} \land \mathsf{c}_m \text{-decrease} \,.$

For the instruction *i*: if $C_s = 0$ goto *j*, else goto *j'*, define

 $\theta_i \coloneqq \left(\mathsf{X}(\neg \mathit{c_s} \land j) \oslash (\top \subseteq \mathit{c_s} \land \mathsf{X}j')\right) \land \mathsf{c_l}\text{-decrease} \land \mathsf{c_m}\text{-decrease} \land \mathsf{c_r}\text{-decrease} \,.$

Finally, define $\theta_{\text{comp}} := \mathsf{G} \bigotimes_{i < n} (i \land \theta_i).$

Conclusion of Lecture 5

- Introduction into Temporal Logics
- Hyperproperties and Temporal Team Semantics
- Undecidability of model checking of $TeamLTL(\emptyset, \subseteq)$

Bibliography i

- [BRV01] Patrick Blackburn, Maarten de Rijke and Yde Venema. Modal Logic. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2001. DOI: 10.1017/CB09781107050884.
- [CES86] E. Clarke, E. Allen Emerson and A. Sistla. 'Automatic Verification of Finite-State Concurrent Systems Using Temporal Logic Specifications'. In: ACM Transactions on Programming Languages and Systems 8.2 (1986), pp. 244–263.
- [Coo71] Stephen A. Cook. 'The Complexity of Theorem-Proving Procedures'. In: Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio, USA. Ed. by Michael A. Harrison, Ranan B. Banerji and Jeffrey D. Ullman. ACM, 1971, pp. 151–158. DOI: 10.1145/800157.805047. URL: https://doi.org/10.1145/800157.805047.

Bibliography ii

- [EFT94] Heinz-Dieter Ebbinghaus, Jörg Flum and Wolfgang Thomas. *Mathematical logic (2. ed.)* Undergraduate texts in mathematics. Springer, 1994.
- [EJ99] E. Allen Emerson and Charanjit S. Jutla. 'The Complexity of Tree Automata and Logics of Programs'. In: SIAM J. Comput. 29.1 (1999), pp. 132–158.
- [ES84] E. Allen Emerson and A. Prasad Sistla. 'Deciding Full Branching Time Logic'. In: *Inf. Control.* 61.3 (1984), pp. 175–201.
- [FL79] Michael J. Fischer and Richard E. Ladner. 'Propositional Dynamic Logic of Regular Programs'. In: J. Comput. Syst. Sci. 18.2 (1979), pp. 194–211.
- [GHR95] Raymond Greenlaw, H. James Hoover and Walter L. Ruzzo. Limits to Parallel Computation: P-completeness Theory. New York, NY, USA: Oxford University Press, Inc., 1995. ISBN: 0-19-508591-4.

[Gol77] L. M. Goldschlager. 'The monotone and planar circuit value problems are log-space complete for P'. In: *SIGACT News* 9 (1977), pp. 25–29.

- [Gut+22] Jens Oliver Gutsfeld, Arne Meier, Christoph Ohrem and Jonni Virtema.
 'Temporal Team Semantics Revisited'. In: LICS '22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022. Ed. by Christel Baier and Dana Fisman. ACM, 2022, 44:1-44:13. DOI: 10.1145/3531130.3533360. URL: https://doi.org/10.1145/3531130.3533360.
- [Han+18] Miika Hannula, Juha Kontinen, Jonni Virtema and Heribert Vollmer.
 'Complexity of Propositional Logics in Team Semantic'. In: ACM Trans. Comput. Log. 19.1 (2018), 2:1–2:14.

Bibliography iv

- [Han19] Miika Hannula. 'Validity and Entailment in Modal and Propositional Dependence Logics'. In: Logical Methods in Computer Science Volume 15, Issue 2 (Apr. 2019). DOI: 10.23638/LMCS-15(2:4)2019. URL: https://lmcs.episciences.org/5403.
- [Hel+14] Lauri Hella, Kerkko Luosto, Katsuhiko Sano and Jonni Virtema. 'The Expressive Power of Modal Dependence Logic'. In: Advances in Modal Logic. College Publications, 2014, pp. 294–312.
- [Hel+19] Lauri Hella, Antti Kuusisto, Arne Meier and Jonni Virtema. 'Model checking and validity in propositional and modal inclusion logics'. In: J. Log. Comput. 29.5 (2019), pp. 605–630.
- [Hel+20] Lauri Hella, Antti Kuusisto, Arne Meier and Heribert Vollmer.
 'Satisfiability of Modal Inclusion Logic: Lax and Strict Semantics'. In: ACM Trans. Comput. Log. 21.1 (2020), 7:1–7:18.

Bibliography v

- [HS15] Lauri Hella and Johanna Stumpf. 'The expressive power of modal logic with inclusion atoms'. In: *GandALF*. Vol. 193. EPTCS. 2015, pp. 129–143.
- [KV85] Gabriel M. Kuper and Moshe Y. Vardi. 'On the Expressive Power of the Logical Data Model (Preliminary Report)'. In: SIGMOD Conference. ACM Press, 1985, pp. 180–187.
- [Lev73] Leonid A. Levin. 'Universal sequential search problems'. In: *Problemy Peredachi Informatsii* 9.3 (1973).
- [Loh12] Peter Lohmann. 'Computational Aspects of Dependence Logic'. PhD thesis. Leibniz Universität Hannover, 2012. arXiv: 1206.4564. URL: http://arxiv.org/abs/1206.4564.
- [LV19] Martin Lück and Miikka Vilander. 'On the Succinctness of Atoms of Dependency'. In: *Log. Methods Comput. Sci.* 15.3 (2019).

Bibliography vi

- [Pap07] Christos H. Papadimitriou. *Computational complexity*. Academic Internet Publ., 2007.
- [Pra80] V. R. Pratt. 'A near-optimal method for reasoning about action'. In: Journal of Computer and System Sciences 20.2 (1980), pp. 231–254.
- [SC85] A. Prasad Sistla and Edmund M. Clarke. 'The Complexity of Propositional Linear Temporal Logics'. In: *J. ACM* 32.3 (1985), pp. 733–749.
- [Sch02] P. Schnoebelen. 'The Complexity of Temporal Logic Model Checking'. In: Advances in Modal Logic. Vol. 4. 2002, pp. 393–436.
- [Sip97] Michael Sipser. *Introduction to the theory of computation*. PWS Publishing Company, 1997.
- [Var09] Moshe Y. Vardi. 'From Philosophical to Industrial Logics'. In: ICLA.
 Vol. 5378. Lecture Notes in Computer Science. Springer, 2009, pp. 89–115.

- [Vir+21] Jonni Virtema, Jana Hofmann, Bernd Finkbeiner, Juha Kontinen and Fan Yang. 'Linear-Time Temporal Logic with Team Semantics: Expressivity and Complexity'. In: FSTTCS. Vol. 213. LIPIcs. Schloss Dagstuhl -Leibniz-Zentrum für Informatik, 2021, 52:1–52:17.
- [Vir17] Jonni Virtema. 'Complexity of validity for propositional dependence logics'. In: *Inf. Comput.* 253 (2017), pp. 224–236.
- [YV17] Fan Yang and Jouko Väänänen. 'Propositional team logics'. In: Ann. Pure Appl. Log. 168.7 (2017), pp. 1406–1441. DOI: 10.1016/J.APAL.2017.01.007. URL: https://doi.org/10.1016/j.apal.2017.01.007.