
Complexity and Expressivity of Propositional Logics with
Team Semantics
ESSLLI 2024 course

Arne Meier1 Jonni Virtema2

1 Leibniz Universität Hannover, Germany
2 University of She�eld, UK

Version of 7th August 2024



Complexity and Expressivity of Propositional Logics with Team Semantics
Arne Meier, Jonni Virtema
8th of August

Lecture 4: Complexity of propositional dependence logic
and beyond

Literature: [Vir17; Han+18]

58



Canonical complete problems: SAT and QBF

SAT [Coo71]

Input: Boolean formula ✓
Question: Is ✓ satisfiable?

Complete for: NP (Thm. 5)

QBF (Stockmeyer and Meyer, 1973)

Input: Quantified Boolean formula
� := Q1p1 . . .Qnpn✓

Question: Is � true?

Complete for: PSPACE

W.l.o.g. ✓ in 3CNF

✓ = (p1 _ p2 _ ¬p3) ^ (¬p2 _ ¬p4 _ p5) ^ . . .

59



Model Checking for Dependence Logic

Theorem 41 ([Loh12, Theorem 4.13])

PL[dep]-MC is NP-complete.

Proof ideas:

Membership: Use nondeterminism for splitjunctions.

Hardness: reduce from 3SAT.

60



Membership in NP

61



Membership in NP

61



NP Lower Bound

62



NP Lower Bound

62



NP Lower Bound

62



Canonical complete problems: DQBF

DQBF (Peterson, Reif, Azhar, 2001)

Input: Dependency Quantified Boolean formula
� := 8p1 . . . 8pm9q1 . . . 9qn✓ and constraints ~c1, . . . ,~cn

Question: Is � true?

Complete for: NEXPTIME

• The constraint ~ci is a tuple of the universally quantified variables of which the
existentially quantified variable qi may depend on.

• A DQBF formula 8p1 . . . 8pm9q1 . . . 9qn✓ with constraints ~c1, . . . ,~cn is true, if the
the following formula with Boolean function quantification

9f1 . . . fn8p1 . . . 8pm✓(f1(~c1)/q1, . . . fn(~cn)/qn)

is true. Note that fi is a Boolean function (Skolem function) which is used to
interpret qi given the values of the variables in ~ci .

• Note how close the above is to dep(~c1, q1) ^ · · · ^ dep(~cn, qn) ^ ✓!

63



Canonical complete problems: DQBF

DQBF (Peterson, Reif, Azhar, 2001)

Input: Dependency Quantified Boolean formula
� := 8p1 . . . 8pm9q1 . . . 9qn✓ and constraints ~c1, . . . ,~cn

Question: Is � true?

Complete for: NEXPTIME

• The constraint ~ci is a tuple of the universally quantified variables of which the
existentially quantified variable qi may depend on.

• A DQBF formula 8p1 . . . 8pm9q1 . . . 9qn✓ with constraints ~c1, . . . ,~cn is true, if the
the following formula with Boolean function quantification

9f1 . . . fn8p1 . . . 8pm✓(f1(~c1)/q1, . . . fn(~cn)/qn)

is true. Note that fi is a Boolean function (Skolem function) which is used to
interpret qi given the values of the variables in ~ci .

• Note how close the above is to dep(~c1, q1) ^ · · · ^ dep(~cn, qn) ^ ✓!

63



Canonical complete problems: DQBF

DQBF (Peterson, Reif, Azhar, 2001)

Input: Dependency Quantified Boolean formula
� := 8p1 . . . 8pm9q1 . . . 9qn✓ and constraints ~c1, . . . ,~cn

Question: Is � true?

Complete for: NEXPTIME

• The constraint ~ci is a tuple of the universally quantified variables of which the
existentially quantified variable qi may depend on.

• A DQBF formula 8p1 . . . 8pm9q1 . . . 9qn✓ with constraints ~c1, . . . ,~cn is true, if the
the following formula with Boolean function quantification

9f1 . . . fn8p1 . . . 8pm✓(f1(~c1)/q1, . . . fn(~cn)/qn)

is true. Note that fi is a Boolean function (Skolem function) which is used to
interpret qi given the values of the variables in ~ci .

• Note how close the above is to dep(~c1, q1) ^ · · · ^ dep(~cn, qn) ^ ✓!
63



The validity problem for PD is in NEXPTIME

If D ✓ PROP, we denote by 2D the set of all assignments s : D ! {0, 1}.

Lemma 42

A PL[dep]-formula ' with proposition symbols in D is valid i↵ 2D |= '.

Proof.

Left-to-right direction is trivial and the converse follows from downward closure.

Lemma 43

The validity problem for PL[dep] is in NEXPTIME.

Proof.

Let ' 2 PL[dep] whose variables are in D. By Lemma 42, ' is valid i↵ 2D |= '. The
size of 2D is 2|D|  2|'|. Therefore 2D can be constructed from ' in exponential time.
By Theorem 41, there exists an NP algorithm (with respect to |2D |+ |'|) for checking
whether 2D |= '. Clearly this algorithm is in NEXPTIME with respect to |'|.

64



The validity problem for PD is in NEXPTIME

If D ✓ PROP, we denote by 2D the set of all assignments s : D ! {0, 1}.

Lemma 42

A PL[dep]-formula ' with proposition symbols in D is valid i↵ 2D |= '.

Proof.

Left-to-right direction is trivial and the converse follows from downward closure.

Lemma 43

The validity problem for PL[dep] is in NEXPTIME.

Proof.

Let ' 2 PL[dep] whose variables are in D. By Lemma 42, ' is valid i↵ 2D |= '. The
size of 2D is 2|D|  2|'|. Therefore 2D can be constructed from ' in exponential time.

By Theorem 41, there exists an NP algorithm (with respect to |2D |+ |'|) for checking
whether 2D |= '. Clearly this algorithm is in NEXPTIME with respect to |'|.

64



The validity problem for PD is in NEXPTIME

If D ✓ PROP, we denote by 2D the set of all assignments s : D ! {0, 1}.

Lemma 42

A PL[dep]-formula ' with proposition symbols in D is valid i↵ 2D |= '.

Proof.

Left-to-right direction is trivial and the converse follows from downward closure.

Lemma 43

The validity problem for PL[dep] is in NEXPTIME.

Proof.

Let ' 2 PL[dep] whose variables are in D. By Lemma 42, ' is valid i↵ 2D |= '. The
size of 2D is 2|D|  2|'|. Therefore 2D can be constructed from ' in exponential time.
By Theorem 41, there exists an NP algorithm (with respect to |2D |+ |'|) for checking
whether 2D |= '. Clearly this algorithm is in NEXPTIME with respect to |'|.

64



The validity problem for PD is NEXPTIME-hard

We will associate each DQBF-formula µ with a corresponding PL[dep]-formula 'µ. Let

µ =
�
8p1 . . . 8pn9q1 . . . 9qk ✓, (~c1, . . . ,~ck)

�

be a DQBF-formula and denote by Dµ the set of propositional variables in µ, i.e.,
Dµ := {p1, . . . , pn, q1, . . . , qk}.

For each tuple of propositional variables ~ci , i  k , we
stipulate that ~ci = (pi1 , . . . , pini ). Thus ni denotes the lenth of ~ci . Define

'µ := ✓ _
_

ik

dep(pi1 , . . . , pini , qi ).

We will show that µ is true if and only if the PL[dep]-formula 'µ is valid. By Lemma
42, it su�ces to show that µ is valid if and only if 2Dµ |= 'µ. Since DQBF is
NEXPTIME-complete and 'µ is polynomial with respect to µ, it follows that the
validity problem for PL[dep] is NEXPTIME-hard.

65



The validity problem for PD is NEXPTIME-hard

We will associate each DQBF-formula µ with a corresponding PL[dep]-formula 'µ. Let

µ =
�
8p1 . . . 8pn9q1 . . . 9qk ✓, (~c1, . . . ,~ck)

�

be a DQBF-formula and denote by Dµ the set of propositional variables in µ, i.e.,
Dµ := {p1, . . . , pn, q1, . . . , qk}. For each tuple of propositional variables ~ci , i  k , we
stipulate that ~ci = (pi1 , . . . , pini ). Thus ni denotes the lenth of ~ci . Define

'µ := ✓ _
_

ik

dep(pi1 , . . . , pini , qi ).

We will show that µ is true if and only if the PL[dep]-formula 'µ is valid.

By Lemma
42, it su�ces to show that µ is valid if and only if 2Dµ |= 'µ. Since DQBF is
NEXPTIME-complete and 'µ is polynomial with respect to µ, it follows that the
validity problem for PL[dep] is NEXPTIME-hard.

65



The validity problem for PD is NEXPTIME-hard

We will associate each DQBF-formula µ with a corresponding PL[dep]-formula 'µ. Let

µ =
�
8p1 . . . 8pn9q1 . . . 9qk ✓, (~c1, . . . ,~ck)

�

be a DQBF-formula and denote by Dµ the set of propositional variables in µ, i.e.,
Dµ := {p1, . . . , pn, q1, . . . , qk}. For each tuple of propositional variables ~ci , i  k , we
stipulate that ~ci = (pi1 , . . . , pini ). Thus ni denotes the lenth of ~ci . Define

'µ := ✓ _
_

ik

dep(pi1 , . . . , pini , qi ).

We will show that µ is true if and only if the PL[dep]-formula 'µ is valid. By Lemma
42, it su�ces to show that µ is valid if and only if 2Dµ |= 'µ.

Since DQBF is
NEXPTIME-complete and 'µ is polynomial with respect to µ, it follows that the
validity problem for PL[dep] is NEXPTIME-hard.

65



The validity problem for PD is NEXPTIME-hard

We will associate each DQBF-formula µ with a corresponding PL[dep]-formula 'µ. Let

µ =
�
8p1 . . . 8pn9q1 . . . 9qk ✓, (~c1, . . . ,~ck)

�

be a DQBF-formula and denote by Dµ the set of propositional variables in µ, i.e.,
Dµ := {p1, . . . , pn, q1, . . . , qk}. For each tuple of propositional variables ~ci , i  k , we
stipulate that ~ci = (pi1 , . . . , pini ). Thus ni denotes the lenth of ~ci . Define

'µ := ✓ _
_

ik

dep(pi1 , . . . , pini , qi ).

We will show that µ is true if and only if the PL[dep]-formula 'µ is valid. By Lemma
42, it su�ces to show that µ is valid if and only if 2Dµ |= 'µ. Since DQBF is
NEXPTIME-complete and 'µ is polynomial with respect to µ, it follows that the
validity problem for PL[dep] is NEXPTIME-hard.

65



A logic to rule them all

The extension of PL with the contradictory negation PL[⇠]

X |= ⇠' () X 6|= '

is very expressive and all connectives studied in team sematics can be defined in it.

The connectives below can be defined in PL[⇠] with polynomial blow up.

X |= '6  , X |= ' or X |=  ,

X |= '⌦  , 8Y ,Z ✓ X : if Y [ Z = X , then Y |= ' or Z |=  ,

X |= '!  , 8Y ✓ X : if Y |= ', then Y |=  ,

X |= max(p1, . . . , pn) , {(s(p1), . . . , s(pn)) | s 2 X} = {0, 1}n.

Also dependence/inclusion/independence atoms can be expressed in PL[⇠] with
polynomial blow up [LV19].

66



A logic to rule them all

The extension of PL with the contradictory negation PL[⇠]

X |= ⇠' () X 6|= '

is very expressive and all connectives studied in team sematics can be defined in it.

The connectives below can be defined in PL[⇠] with polynomial blow up.

X |= '6  , X |= ' or X |=  ,

X |= '⌦  , 8Y ,Z ✓ X : if Y [ Z = X , then Y |= ' or Z |=  ,

X |= '!  , 8Y ✓ X : if Y |= ', then Y |=  ,

X |= max(p1, . . . , pn) , {(s(p1), . . . , s(pn)) | s 2 X} = {0, 1}n.

Also dependence/inclusion/independence atoms can be expressed in PL[⇠] with
polynomial blow up [LV19].

66



Expression Defining PL[⇠]-formula

'⌦  ⇠(⇠' _ ⇠ )

'6  ⇠(⇠' ^ ⇠ )

'!  (⇠'6  )⌦⇠(p _ ¬p)

dep(p) p 6 ¬p

dep(p1, . . . , pn, q)
Vn

i=1 dep(pi ) ! dep(q)

max(p1, . . . , pn) ⇠
Wn

i=1 dep(pi )

67



PTIME Reductions Between Validity and Satisfiability

Note: X |= ⇠(p ^ ¬p) i↵ X is non-empty.

For ' 2 PL[C,⇠], define

'SAT := max(~x) ! ((p _ ¬p) _ (' ^ ⇠(p ^ ¬p))),
'VAL := max(~x) ^ (⇠(p ^ ¬p) ! '),

where ~x lists the variables of '

Theorem 44

• ' is satisfiable i↵ 'SAT is valid.

• ' is valid i↵ 'VAL is satisfiable.

68



PTIME Reductions Between Validity and Satisfiability

Note: X |= ⇠(p ^ ¬p) i↵ X is non-empty.

For ' 2 PL[C,⇠], define

'SAT := max(~x) ! ((p _ ¬p) _ (' ^ ⇠(p ^ ¬p))),
'VAL := max(~x) ^ (⇠(p ^ ¬p) ! '),

where ~x lists the variables of '

Theorem 44

• ' is satisfiable i↵ 'SAT is valid.

• ' is valid i↵ 'VAL is satisfiable.

68



Oracle Turing Machines

The exponential-time hierarchy corresponds to the class of problems that can be
recognized by an exponential-time alternating Turing machine with constantly many
alternations.

In 1983 Orponen characterized the classes ⌃EXP
k and ⇧EXP

k of the exponential time
hierarchy by polynomial-time constant-alternation oracle Turing machines that query
to k oracles.

Orponen’s characterization can be generalised to exponential-time alternating Turing
machines with polynomially many alternations (i.e. the class AEXPTIME(poly)) by
allowing queries to polynomially many oracles.

69



Complexity of PL[⇠]

Theorem 45

SAT(PL[⇠]) is AEXPTIME(poly)-complete.

Proof.

Hardness: By simulating polynomial time alternating oracle Turing machines.
Membership: Guess a possibly exponential-size team T and do APTIME model
checking.

Corollary 46

VAL(PL[⇠]) is AEXPTIME(poly)-complete.

Theorem 47

MC(PL[⇠]) is PSPACE-complete

70



Complexity of PL[⇠]

Theorem 45

SAT(PL[⇠]) is AEXPTIME(poly)-complete.

Proof.

Hardness: By simulating polynomial time alternating oracle Turing machines.
Membership: Guess a possibly exponential-size team T and do APTIME model
checking.

Corollary 46

VAL(PL[⇠]) is AEXPTIME(poly)-complete.

Theorem 47

MC(PL[⇠]) is PSPACE-complete

70



Complexity of PL[⇠]

Theorem 45

SAT(PL[⇠]) is AEXPTIME(poly)-complete.

Proof.

Hardness: By simulating polynomial time alternating oracle Turing machines.
Membership: Guess a possibly exponential-size team T and do APTIME model
checking.

Corollary 46

VAL(PL[⇠]) is AEXPTIME(poly)-complete.

Theorem 47

MC(PL[⇠]) is PSPACE-complete

70



Complexity Results

Logic SAT VAL MC

PL NP 0 coNP 0 NC[1] 1

PL[dep] NP 3 NEXPTIME 4 NP 2

PL[?c] NP7 in coNEXPTIMENP7 NP7

PL[✓] EXP 5 coNP7 in P 6

PL[⇠] AEXPTIME(poly)7 AEXPTIME(poly)7 PSPACE8

0 Cook 1971, Levin 1973, 1 Buss 1987, 2 Ebbing, Lohmann 2012,
3 Lohmann, Vollmer 2013, 4 Virtema 2014, 5 Hella, Kuusisto, Meier, Vollmer 2015,
6 Hella, Kuusisto, Meier and Virtema 2019,
7 Hannula, Kontinen, Virtema, Vollmer 2018, 8 Müller 2014.

71



Conclusion of Lecture 4

• DQBF is a canonical NEXPTIME-complete problem.

• SAT(PL[dep]) and MC(PL[dep]) are NP-complete.

• VAL(PL[dep]) is NEXPTIME-complete.

• SAT(PL[⇠]) and VAL(PL[⇠]) are AEXPTIME(poly)-complete.

• MC(PL[⇠]) are PSPACE-complete.

71



Complexity and Expressivity of Propositional Logics with Team Semantics
Arne Meier, Jonni Virtema
9th of August

Lecture 5: Recent Trends: Hyperproperties

Literature: [Vir+21; Gut+22]

71



Bibliography i

[BRV01] Patrick Blackburn, Maarten de Rijke and Yde Venema. Modal Logic.
Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 2001. doi: 10.1017/CBO9781107050884.

[CES86] E. Clarke, E. Allen Emerson and A. Sistla. ‘Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Specifications’. In:
ACM Transactions on Programming Languages and Systems 8.2 (1986),
pp. 244–263.

[Coo71] Stephen A. Cook. ‘The Complexity of Theorem-Proving Procedures’. In:
Proceedings of the 3rd Annual ACM Symposium on Theory of Computing,
May 3-5, 1971, Shaker Heights, Ohio, USA. Ed. by Michael A. Harrison,
Ranan B. Banerji and Je↵rey D. Ullman. ACM, 1971, pp. 151–158. doi:
10.1145/800157.805047. url:
https://doi.org/10.1145/800157.805047.

104



Bibliography ii

[EFT94] Heinz-Dieter Ebbinghaus, Jörg Flum and Wolfgang Thomas. Mathematical
logic (2. ed.) Undergraduate texts in mathematics. Springer, 1994.

[EJ99] E. Allen Emerson and Charanjit S. Jutla. ‘The Complexity of Tree
Automata and Logics of Programs’. In: SIAM J. Comput. 29.1 (1999),
pp. 132–158.

[ES84] E. Allen Emerson and A. Prasad Sistla. ‘Deciding Full Branching Time
Logic’. In: Inf. Control. 61.3 (1984), pp. 175–201.

[FL79] Michael J. Fischer and Richard E. Ladner. ‘Propositional Dynamic Logic of
Regular Programs’. In: J. Comput. Syst. Sci. 18.2 (1979), pp. 194–211.

[GHR95] Raymond Greenlaw, H. James Hoover and Walter L. Ruzzo. Limits to
Parallel Computation: P-completeness Theory. New York, NY, USA:
Oxford University Press, Inc., 1995. isbn: 0-19-508591-4.

105



Bibliography iii

[Gol77] L. M. Goldschlager. ‘The monotone and planar circuit value problems are
log-space complete for P’. In: SIGACT News 9 (1977), pp. 25–29.

[Gut+22] Jens Oliver Gutsfeld, Arne Meier, Christoph Ohrem and Jonni Virtema.
‘Temporal Team Semantics Revisited’. In: LICS ’22: 37th Annual
ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel,
August 2 - 5, 2022. Ed. by Christel Baier and Dana Fisman. ACM, 2022,
44:1–44:13. doi: 10.1145/3531130.3533360. url:
https://doi.org/10.1145/3531130.3533360.

[Han+18] Miika Hannula, Juha Kontinen, Jonni Virtema and Heribert Vollmer.
‘Complexity of Propositional Logics in Team Semantic’. In: ACM Trans.
Comput. Log. 19.1 (2018), 2:1–2:14.

106



Bibliography iv

[Han19] Miika Hannula. ‘Validity and Entailment in Modal and Propositional
Dependence Logics’. In: Logical Methods in Computer Science Volume 15,
Issue 2 (Apr. 2019). doi: 10.23638/LMCS-15(2:4)2019. url:
https://lmcs.episciences.org/5403.

[Hel+14] Lauri Hella, Kerkko Luosto, Katsuhiko Sano and Jonni Virtema. ‘The
Expressive Power of Modal Dependence Logic’. In: Advances in Modal
Logic. College Publications, 2014, pp. 294–312.

[Hel+19] Lauri Hella, Antti Kuusisto, Arne Meier and Jonni Virtema. ‘Model
checking and validity in propositional and modal inclusion logics’. In: J.
Log. Comput. 29.5 (2019), pp. 605–630.

[Hel+20] Lauri Hella, Antti Kuusisto, Arne Meier and Heribert Vollmer.
‘Satisfiability of Modal Inclusion Logic: Lax and Strict Semantics’. In:
ACM Trans. Comput. Log. 21.1 (2020), 7:1–7:18.

107



Bibliography v

[HS15] Lauri Hella and Johanna Stumpf. ‘The expressive power of modal logic
with inclusion atoms’. In: GandALF. Vol. 193. EPTCS. 2015, pp. 129–143.

[KV85] Gabriel M. Kuper and Moshe Y. Vardi. ‘On the Expressive Power of the
Logical Data Model (Preliminary Report)’. In: SIGMOD Conference. ACM
Press, 1985, pp. 180–187.

[Lev73] Leonid A. Levin. ‘Universal sequential search problems’. In: Problemy
Peredachi Informatsii 9.3 (1973).

[Loh12] Peter Lohmann. ‘Computational Aspects of Dependence Logic’.
PhD thesis. Leibniz Universität Hannover, 2012. arXiv: 1206.4564. url:
http://arxiv.org/abs/1206.4564.

[LV19] Martin Lück and Miikka Vilander. ‘On the Succinctness of Atoms of
Dependency’. In: Log. Methods Comput. Sci. 15.3 (2019).

108



Bibliography vi

[Pap07] Christos H. Papadimitriou. Computational complexity. Academic Internet
Publ., 2007.

[Pra80] V. R. Pratt. ‘A near-optimal method for reasoning about action’. In:
Journal of Computer and System Sciences 20.2 (1980), pp. 231–254.

[SC85] A. Prasad Sistla and Edmund M. Clarke. ‘The Complexity of Propositional
Linear Temporal Logics’. In: J. ACM 32.3 (1985), pp. 733–749.

[Sch02] P. Schnoebelen. ‘The Complexity of Temporal Logic Model Checking’. In:
Advances in Modal Logic. Vol. 4. 2002, pp. 393–436.

[Sip97] Michael Sipser. Introduction to the theory of computation. PWS
Publishing Company, 1997.

[Var09] Moshe Y. Vardi. ‘From Philosophical to Industrial Logics’. In: ICLA.
Vol. 5378. Lecture Notes in Computer Science. Springer, 2009, pp. 89–115.

109



Bibliography vii

[Vir+21] Jonni Virtema, Jana Hofmann, Bernd Finkbeiner, Juha Kontinen and
Fan Yang. ‘Linear-Time Temporal Logic with Team Semantics: Expressivity
and Complexity’. In: FSTTCS. Vol. 213. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021, 52:1–52:17.

[Vir17] Jonni Virtema. ‘Complexity of validity for propositional dependence logics’.
In: Inf. Comput. 253 (2017), pp. 224–236.

[YV17] Fan Yang and Jouko Väänänen. ‘Propositional team logics’. In: Ann. Pure
Appl. Log. 168.7 (2017), pp. 1406–1441. doi:
10.1016/J.APAL.2017.01.007. url:
https://doi.org/10.1016/j.apal.2017.01.007.

110


