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Canonical complete problems: SAT and QBF

SAT [Coo71] QBF (Stockmeyer and Meyer, 1973)
Input: Boolean formula 6  Input: Quantified Boolean formula
Question: Is 0 satisfiable? ¢ = @Qip1... Qupnb
Question: Is ¢ true?
Complete for: NP (Thm. 5) Complete for: PSPACE

W.l.o.g. 8 in 3CNF

0= (p1Vp2V-op3)A(=p2V -paVps)A...
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Model Checking for Dependence Logic

Theorem 41 ([Loh12, Theorem 4.13])
PL[dep]-MC is NP-complete.

Membership: Use nondeterminism for splitjunctions.
Hardness: reduce from 3SAT.
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Membership in NP
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Membership in NP
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NP Lower Bound
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NP Lower Bound
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Canonical complete problems: DQBF

DQBF (Peterson, Reif, Azhar, 2001)

Input: Dependency Quantified Boolean formula
¢ :=Vp1...Vpm3q1...3dgnl and constraints c1,...,Cy
Question: Is ¢ true?

Complete for: NEXPTIME

e The constraint ¢; is a tuple of the universally quantified variables of which the
existentially quantified variable g; may depend on.
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Canonical complete problems: DQBF

DQBF (Peterson, Reif, Azhar, 2001)

Input: Dependency Quantified Boolean formula
¢ :=Vp1...Vpm3q1...3dgnl and constraints c1,...,Cy
Question: Is ¢ true?

Complete for: NEXPTIME

e The constraint ¢; is a tuple of the universally quantified variables of which the
existentially quantified variable g; may depend on.

e A DQBF formula Vp; ...Vpm3qgr ... 3gn0 with constraints 1, ..., C, is true, if the
the following formula with Boolean function quantification

E|f1 coo anpl oo .mee(fl(El)/ql, 500 f,,(E,,)/q,,)

is true. Note that f; is a Boolean function (Skolem function) which is used to
interpret g; given the values of the variables in c;.
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Canonical complete problems: DQBF

DQBF (Peterson, Reif, Azhar, 2001)

Input: Dependency Quantified Boolean formula
¢ :=Vp1...Vpm3q1...3dgnl and constraints c1,...,Cy
Question: Is ¢ true?

Complete for: NEXPTIME

e The constraint ¢; is a tuple of the universally quantified variables of which the
existentially quantified variable g; may depend on.

e A DQBF formula Vp; ...Vpm3qgr ... 3gn0 with constraints 1, ..., C, is true, if the
the following formula with Boolean function quantification

E|f1 000 anpl 0o .mee(fl(El)/ql, 000 f,,(E,,)/q,,)
TE——

is true. Note that f; is a Boolean function (Skolem function) which is used to
interpret g; given the values of the variables in c;.

e Note how close the above is to dep(ci, g1) A -+ A dep(Cn, gn) A 6!
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The validity problem for PD is in NEXPTIME

If D C PROP, we denote by 2P the set of all assignments s: D — {0, 1}.

Lemma 42

A PL[dep]-formula o with proposition symbols in D is valid iff 2P = ¢.

Proof.

Left-to-right direction is trivial and the converse follows from downward closure. ]
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The validity problem for PD is in NEXPTIME

If D C PROP, we denote by 2P the set of all assignments s: D — {0, 1}.
Lemma 42

A PL[dep]-formula o with proposition symbols in D is valid iff 2P = ¢.

Proof.

Left-to-right direction is trivial and the converse follows from downward closure. ]

Lemma 43
The validity problem for PL[dep] is in NEXPTIME.

Proof.

Let ¢ € PL[dep] whose variables are in D. By Lemma 42, ¢ is valid iff 20 |= ¢. The
size of 2P is 2|0l < 2I¢I. Therefore 2P can be constructed from ¢ in exponential time.
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The validity problem for PD is in NEXPTIME

If D C PROP, we denote by 2P the set of all assignments s: D — {0, 1}.

Lemma 42
A PL[dep]-formula o with proposition symbols in D is valid iff 2P = ¢.

Proof.

Left-to-right direction is trivial and the converse follows from downward closure. ]

Lemma 43
The validity problem for PL[dep] is in NEXPTIME.

Proof.

Let ¢ € PL[dep] whose variables are in D. By Lemma 42, ¢ is valid iff 20 |= ¢. The

size of 2P is 2|0l < 2I¢I. Therefore 2P can be constructed from ¢ in exponential time.
By Theorem 41, there exists an NP algorithm (with respect to [2°| 4 |¢|) for checking
whether 2P |= . Clearly this algorithm is in NEXPTIME with respect to |¢|. O

64



The validity problem for PD is NEXPTIME-hard

We will associate each DQBF-formula p with a corresponding PL[dep]-formula ¢,,. Let

p=(Yp1...¥pp3qr ... 3k 0, (1, .., E))

be a DQBF-formula and denote by D,, the set of propositional variables in y, i.e.,
D,u = {p17'-'apn7q17"'7qk}-
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The validity problem for PD is NEXPTIME-hard

We will associate each DQBF-formula p with a corresponding PL[dep]-formula ¢,,. Let

p=(Yp1...¥pp3qr ... 3k 0, (1, .., E))

be a DQBF-formula and denote by D,, the set of propositional variables in y, i.e.,

D, :={p1,.-.,Pn q1,...,qk}. For each tuple of propositional variables ¢;, i < k, we
stipulate that ¢; = (pj,, - - - ,p,-ni). Thus n; denotes the lenth of ¢;. Define
ou =0V \/ dep(py, - ., piy,, qi). MC- g. }
i<k REANE A

We will show that 4 is true if and only if the PL[dep]-formula ¢, is valid.
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The validity problem for PD is NEXPTIME-hard

We will associate each DQBF-formula p with a corresponding PL[dep]-formula ¢,,. Let
p=(Yp1...¥pp3qr ... 3k 0, (1, .., E))

be a DQBF-formula and denote by D,, the set of propositional variables in y, i.e.,
D, :={p1,.-.,Pn q1,...,qk}. For each tuple of propositional variables ¢;, i < k, we
stipulate that ¢; = (pj,, - - - ,p,n . Thus n; denotes the lenth of ¢ fc Define

®, =(8 N deplCi 5 )V\/ dl’f( €.

A% Pu=0V eppm---,p,n,q,
i<k

We will show that 4 is true if and only if the PL[dep]-formula ¢, is valid. By Lemma
42, it suffices to show that y is valid if and only if 2P+ = ¢,,.
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The validity problem for PD is NEXPTIME-hard

We will associate each DQBF-formula p with a corresponding PL[dep]-formula ¢,,. Let
p=(Yp1...¥pp3qr ... 3k 0, (1, .., E))

be a DQBF-formula and denote by D,, the set of propositional variables in y, i.e.,
D, :={p1,.-.,Pn q1,...,qk}. For each tuple of propositional variables ¢;, i < k, we
stipulate that ¢; = (pj,, - - - ,p,-ni). Thus n; denotes the lenth of ¢;. Define

o =0V \/ dep(piy; - - - 2 Pin; 9i)-
=k

We will show that 4 is true if and only if the PL[dep]-formula ¢, is valid. By Lemma
42, it suffices to show that s is valid if and only if 20+ |= @u- Since DQBF is
NEXPTIME-complete and ¢,, is polynomial with respect to p, it follows that the
validity problem for PL[dep] is NEXPTIME-hard.
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A logic to rule them all

The extension of PL with the contradictory negation PL[~]

XEr~p <= XEop

is very expressive and all connectives studied in team sematics can be defined in it.
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A logic to rule them all

The extension of PL with the contradictory negation PL[~]

XE~p &= X "’(’Lq’v "’q'>

is very expressive and all connectives studied in team sematics can be defined in it.

The connectives below can be defined in PL[~] with polynomial blow up.

XEp@y
XEe®y
XEp—=1

X = max(py, ..., p,,—)

=
=
=
-~

XEpor X,
VY, ZCX: if YUZ=X,then Y Epor Z 1,
VY CX:if Y =, then Y |1,

{(s(p1)s- - s(pa)) | 5 € X} = {0,1}".

Also dependence/inclusion/independence atoms can be expressed in PL[~] with
polynomial blow up [LV19].
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Expression Defining PL[~]-formula

QY ~(~p V ~1)
QY ~(~p A ~1)
=Y (~p@Y)®~(pV—p)
dep(p) p©-p

dep(p1,---,pn,q) Ai—;dep(p;) — dep(q)

max(pi, - .-, Pn) ~ /i1 dep(p;)




PTIME Reductions Between Validity and Satisfiability

‘@,r g VAL
Note: X = ~(p A —p) iff X is non-empty. _

M TE }\,&J(T

For ¢ € PL[C, ~], define 9 Sy
psar =|max(2) = ((pV =p) V (g A ~(p A —PY)), 1 " Y T
pvaL = max(X) /\W)a w
where X lists the variables of ¢ ({) L s 2 " Y
‘? L T ¢
VA’L SF//IQZ >
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PTIME Reductions Between Validity and Satisfiability

Note: X = ~(p A —p) iff X is non-empty.

—_—

For ¢ € PL[C, ~], define Aey (-f’ 49
Jz ANAN

Gmy=max(x) = (0 VSB)Y (o A ~(p A -p))),

@vaL = max(X) A (~(p A =p) = ¢),

where X lists the variables of ¢
Theorem 44

e o is satisfiable iff pgaT is valid.
e o is valid iff oyar, is satisfiable.
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Oracle Turing Machines

The exponential-time hierarchy corresponds to the class of problems that can be
recognized by an exponential-time alternating Turing machine with constantly many
alternations.

In 1983 Orponen characterized the cIasse{ ZEXE’ and I'IEXP of the exponential time

hierarchy by polynomial-time constant-altérration oracle Turing machines that query
to k oracles.

Orponen’s characterization can be generalised to exponential-time alternating Turing
machines with polynomially many alternations (i.e. the class AEXPTIME(poly)) by
allowing queries to polynomially many oracles.
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Complexity of PL[~]

Theorem 45
SAT(PL[~]) is AEXPTIME(poly)-complete.

Proof.

Hardness: By simulating polynomial time alternating oracle Turing machines.

Membership: Guess a possibly exponential-size team T and do APTIME model
checking. n
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Complexity of PL[~]

Theorem 45
SAT(PL[~]) is AEXPTIME(poly)-complete.

Proof.

Hardness: By simulating polynomial time alternating oracle Turing machines.
Membership: Guess a possibly exponential-size team T and do APTIME model
checking. ]

Corollary 46
VAL(PL[~]) is AEXPTIME(poly)-complete.
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Complexity of PL[~]

Theorem 45
SAT(PL[~]) is AEXPTIME(poly)-complete.

Proof.

Hardness: By simulating polynomial time alternating oracle Turing machines.
Membership: Guess a possibly exponential-size team T and do APTIME model
checking. ]

Corollary 46
VAL(PL[~]) is AEXPTIME(poly)-complete.

Theorem 47
MC(PL[~]) is PSPACE-complete
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Complexity Results

Logic SAT VAL MC
PL NP O coNP© NC[1]
PL[dep] NP3 NP2
PL[L.] NP7 lin coNEXPTIMENP NP7
'__/—f\
PL[C] EXP5 coNP’ in Po

PL[~] AEXPTIME(poly)” AEXPTIME(poly)” PSPACE®

0 Cook 1971, Levin 1973, 1 Buss 1987, 2 Ebbing, Lohmann 2012,

3 Lohmann, Vollmer 2013, 4 Virtema 2_0l4, 5 Hella, Kuusisto, Meier, Vollmer 2015,
6 Hella, Kuusisto, Meier and Virtema 2019, -
7 Hannula, Kontinen, Virtema, Vollmer 2018, 8 Miiller 2014.

—_— e —

71



Conclusion of Lecture 4

DQBF is a canonical NEXPTIME-complete problem.
SAT(PL[dep]) and MC(PL[dep]) are NP-complete.
VAL(PL[dep]) is NEXPTIME-complete.

SAT(PL[~]) and VAL(PL[~]) are AEXPTIME(poly)-complete.
MC(PL[~]) are PSPACE-complete.
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Lecture 5: Recent Trends: Hyperproperties

Literature: [Vir+21; Gut+22]
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