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Canonical complete problems: SAT and QBF

SAT [Coo71]

Input: Boolean formula ✓
Question: Is ✓ satisfiable?

Complete for: NP (Thm. 5)

QBF (Stockmeyer and Meyer, 1973)

Input: Quantified Boolean formula
� := Q1p1 . . .Qnpn✓

Question: Is � true?

Complete for: PSPACE

W.l.o.g. ✓ in 3CNF

✓ = (p1 _ p2 _ ¬p3) ^ (¬p2 _ ¬p4 _ p5) ^ . . .
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Model Checking for Dependence Logic

Theorem 41 ([Loh12, Theorem 4.13])

PL[dep]-MC is NP-complete.

Proof ideas:

Membership: Use nondeterminism for splitjunctions.

Hardness: reduce from 3SAT.
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Membership in NP
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Membership in NP

61



NP Lower Bound
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NP Lower Bound
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NP Lower Bound
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Canonical complete problems: DQBF

DQBF (Peterson, Reif, Azhar, 2001)

Input: Dependency Quantified Boolean formula
� := 8p1 . . . 8pm9q1 . . . 9qn✓ and constraints ~c1, . . . ,~cn

Question: Is � true?

Complete for: NEXPTIME

• The constraint ~ci is a tuple of the universally quantified variables of which the
existentially quantified variable qi may depend on.

• A DQBF formula 8p1 . . . 8pm9q1 . . . 9qn✓ with constraints ~c1, . . . ,~cn is true, if the
the following formula with Boolean function quantification

9f1 . . . fn8p1 . . . 8pm✓(f1(~c1)/q1, . . . fn(~cn)/qn)

is true. Note that fi is a Boolean function (Skolem function) which is used to
interpret qi given the values of the variables in ~ci .

• Note how close the above is to dep(~c1, q1) ^ · · · ^ dep(~cn, qn) ^ ✓!
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The validity problem for PD is in NEXPTIME

If D ✓ PROP, we denote by 2D the set of all assignments s : D ! {0, 1}.

Lemma 42

A PL[dep]-formula ' with proposition symbols in D is valid i↵ 2D |= '.

Proof.

Left-to-right direction is trivial and the converse follows from downward closure.

Lemma 43

The validity problem for PL[dep] is in NEXPTIME.

Proof.

Let ' 2 PL[dep] whose variables are in D. By Lemma 42, ' is valid i↵ 2D |= '. The
size of 2D is 2|D|  2|'|. Therefore 2D can be constructed from ' in exponential time.
By Theorem 41, there exists an NP algorithm (with respect to |2D |+ |'|) for checking
whether 2D |= '. Clearly this algorithm is in NEXPTIME with respect to |'|.
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The validity problem for PD is NEXPTIME-hard

We will associate each DQBF-formula µ with a corresponding PL[dep]-formula 'µ. Let

µ =
�
8p1 . . . 8pn9q1 . . . 9qk ✓, (~c1, . . . ,~ck)

�

be a DQBF-formula and denote by Dµ the set of propositional variables in µ, i.e.,
Dµ := {p1, . . . , pn, q1, . . . , qk}.

For each tuple of propositional variables ~ci , i  k , we
stipulate that ~ci = (pi1 , . . . , pini ). Thus ni denotes the lenth of ~ci . Define

'µ := ✓ _
_

ik

dep(pi1 , . . . , pini , qi ).

We will show that µ is true if and only if the PL[dep]-formula 'µ is valid. By Lemma
42, it su�ces to show that µ is valid if and only if 2Dµ |= 'µ. Since DQBF is
NEXPTIME-complete and 'µ is polynomial with respect to µ, it follows that the
validity problem for PL[dep] is NEXPTIME-hard.
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A logic to rule them all

The extension of PL with the contradictory negation PL[⇠]

X |= ⇠' () X 6|= '

is very expressive and all connectives studied in team sematics can be defined in it.

The connectives below can be defined in PL[⇠] with polynomial blow up.

X |= '6  , X |= ' or X |=  ,

X |= '⌦  , 8Y ,Z ✓ X : if Y [ Z = X , then Y |= ' or Z |=  ,

X |= '!  , 8Y ✓ X : if Y |= ', then Y |=  ,

X |= max(p1, . . . , pn) , {(s(p1), . . . , s(pn)) | s 2 X} = {0, 1}n.

Also dependence/inclusion/independence atoms can be expressed in PL[⇠] with
polynomial blow up [LV19].
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Expression Defining PL[⇠]-formula

'⌦  ⇠(⇠' _ ⇠ )

'6  ⇠(⇠' ^ ⇠ )

'!  (⇠'6  )⌦⇠(p _ ¬p)

dep(p) p 6 ¬p

dep(p1, . . . , pn, q)
Vn

i=1 dep(pi ) ! dep(q)

max(p1, . . . , pn) ⇠
Wn

i=1 dep(pi )
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PTIME Reductions Between Validity and Satisfiability

Note: X |= ⇠(p ^ ¬p) i↵ X is non-empty.

For ' 2 PL[C,⇠], define

'SAT := max(~x) ! ((p _ ¬p) _ (' ^ ⇠(p ^ ¬p))),
'VAL := max(~x) ^ (⇠(p ^ ¬p) ! '),

where ~x lists the variables of '

Theorem 44

• ' is satisfiable i↵ 'SAT is valid.

• ' is valid i↵ 'VAL is satisfiable.
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Oracle Turing Machines

The exponential-time hierarchy corresponds to the class of problems that can be
recognized by an exponential-time alternating Turing machine with constantly many
alternations.

In 1983 Orponen characterized the classes ⌃EXP
k and ⇧EXP

k of the exponential time
hierarchy by polynomial-time constant-alternation oracle Turing machines that query
to k oracles.

Orponen’s characterization can be generalised to exponential-time alternating Turing
machines with polynomially many alternations (i.e. the class AEXPTIME(poly)) by
allowing queries to polynomially many oracles.
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Complexity of PL[⇠]

Theorem 45

SAT(PL[⇠]) is AEXPTIME(poly)-complete.

Proof.

Hardness: By simulating polynomial time alternating oracle Turing machines.
Membership: Guess a possibly exponential-size team T and do APTIME model
checking.

Corollary 46

VAL(PL[⇠]) is AEXPTIME(poly)-complete.

Theorem 47

MC(PL[⇠]) is PSPACE-complete
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Complexity Results

Logic SAT VAL MC

PL NP 0 coNP 0 NC[1] 1

PL[dep] NP 3 NEXPTIME 4 NP 2

PL[?c] NP7 in coNEXPTIMENP7 NP7

PL[✓] EXP 5 coNP7 in P 6

PL[⇠] AEXPTIME(poly)7 AEXPTIME(poly)7 PSPACE8

0 Cook 1971, Levin 1973, 1 Buss 1987, 2 Ebbing, Lohmann 2012,
3 Lohmann, Vollmer 2013, 4 Virtema 2014, 5 Hella, Kuusisto, Meier, Vollmer 2015,
6 Hella, Kuusisto, Meier and Virtema 2019,
7 Hannula, Kontinen, Virtema, Vollmer 2018, 8 Müller 2014.
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Conclusion of Lecture 4

• DQBF is a canonical NEXPTIME-complete problem.

• SAT(PL[dep]) and MC(PL[dep]) are NP-complete.

• VAL(PL[dep]) is NEXPTIME-complete.

• SAT(PL[⇠]) and VAL(PL[⇠]) are AEXPTIME(poly)-complete.

• MC(PL[⇠]) are PSPACE-complete.
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