
Complexity and Expressivity of Propositional Logics with
Team Semantics
ESSLLI 2024 course

Arne Meier1 Jonni Virtema2

1 Leibniz Universität Hannover, Germany
2 University of Sheffield, UK

Version of 6th August 2024



Complexity and Expressivity of Propositional Logics with Team Semantics
Arne Meier, Jonni Virtema
7th of August

Lecture 3: Inclusion Logic

Literature: [Hel+19; Hel+20]
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Inclusion

Inspired by „inclusion dependencies“ from database theory.

T |= p1 · · · pk ⊆ q1 · · · qk iff ∀ u ∈ T ∃ v ∈ T : u(p̄) = v(q̄)

Lemma 32
PL[⊆] is union closed.
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Validity in Team Semantics

A formula ϕ is valid if T |= ϕ for all teams T such that the propositions in ϕ are in the
domain of T.

Problem: VAL(L) – the validity problem for logic L
Input: a L-formula ϕ
Question: Is ϕ valid?
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Validity in Inclusion Logic is Hard

Theorem 33
VAL(PL[⊆]) is coNP-complete.
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Foundations: Monotone circuit value problem

A monotone circuit is a finite directed, acyclic graph in which each node is either:
• an input gate labelled with a Boolean variable xi,
• a disjunction gate with indegree 2,
• a conjunction gate with indegree 2.

There is exactly one node with outdegree 0, called the output gate.

Problem: MCVP — monotone circuit value problem
Input: a monotone circuit C and an input b1, . . . , bn ∈ {0, 1}
Question: is the output of the circuit 1

Proposition 34 ([Gol77])
MCVP is P-complete w.r.t. ≤log

m -reductions.
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Model-Checking for Inclusion Logic

Theorem 35 ([Hel+19, Thm. 3.5])
PL[⊆]-MC is P-complete.

Ideas:
Lower bound: reduce from MCVP
Upper bound: use a labelling algorithm to compute a maximum satisfying team
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P-hardness: Idea of the reduction from MCVP to PL[⊆]-MC

• gate gi ! assignment si
• proposition pi for each gate gi (where g0 is the output gate), p⊥ and p⊤
• special propositions pk=i∨j for disjunction gates

• si ∈ T if gi has value 1

si(p) :=

⎧
⎪⎨

⎪⎩

1 if p = pi or p = p⊤,
1 if p = pk=i∨j or p = pk=j∨i for some j, k ≤ m,

0 otherwise.

• s⊥(p) = 1 iff p = p⊥ or p = p⊤ (no other si maps p⊥ to 1)
• create a formula ϕC that quantifies truth value of each gate and ensures correct

propagation
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More details: P-hardness of PL[⊆]-MC.

After skipping some technicalities we arrive at

T |= p⊤ ⊆ p0 iff s0 ∈ T
T |= pi ⊆ pj iff si ∈ T implies sj ∈ T

T |= pk ⊆ pk=i∨j iff sk ∈ T implies that si ∈ T or sj ∈ T

Recall: gates that are in the team T have a value 1.
Express gate properties:

ψout=1 := p⊤ ⊆ p0,

ψ∧ :=
∧

{pi ⊆ pj | (gj, gi) ∈ E and α(gi) = ∧},

ψ∨ :=
∧

{pk ⊆ pk=i∨j | i < j, (gi, gk) ∈ E, (gj, gk) ∈ E, and α(gk) = ∨}

47



More details: P-hardness of PL[⊆]-MC.

After skipping some technicalities we arrive at

T |= p⊤ ⊆ p0 iff s0 ∈ T
T |= pi ⊆ pj iff si ∈ T implies sj ∈ T

T |= pk ⊆ pk=i∨j iff sk ∈ T implies that si ∈ T or sj ∈ T

Recall: gates that are in the team T have a value 1.
Express gate properties:

ψout=1 := p⊤ ⊆ p0,

ψ∧ :=
∧

{pi ⊆ pj | (gj, gi) ∈ E and α(gi) = ∧},

ψ∨ :=
∧

{pk ⊆ pk=i∨j | i < j, (gi, gk) ∈ E, (gj, gk) ∈ E, and α(gk) = ∨}

47



Encoding MCVP: the final puzzle pieces

More truth about the team:

T :=
{

si | α(gi) ∈ {∧,∨}
}
∪
{

si | α(gi) ∈ {xi | bi = 1}
}
∪ {s⊥}

Now we claim that

T |= ¬p⊥ ∨ (ψout=1 ∧ ψ∧ ∧ ψ∨) iff output of the circuit is 1.

Crux 1: split requires guessing a team Y for the right disjunct that encodes the
valuation of the circuit.
Crux 2: ¬p⊥ and s⊥ ensure that Y is nonempty and deal with the propagation of the
value 0 by the subformulae of the form pi ⊆ pj.
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Computing a Maximum Satisfying Team

By maxsub(T,ϕ), we denote the maximum subteam T′ of T such that T′ |= ϕ, i.e., for
all T′ ! T′′ ⊆ T, we have T′′ ̸|= ϕ.
Union closure of PL[⊆] ensures that this always exists.

Lemma 36 (for a proof, see [Hel+19, Lemma 5.1])
If ϕ is a proposition symbol, its negation, or an inclusion atom, then maxsub(T,ϕ) can
be computed in polynomial time with respect to |T|+ |ϕ|.

Interesting case: inclusion atoms (edges between assignments when agree on some
variables; successively delete vertices with out-degree 0).
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P-algorithm for PL[⊆]-MC

Important properties:
• Each team T has a unique maximal subteam satisfying a given formula ϕ.
• For literals maxsub(T,ϕ) is computable in polynomial time (Lemma 36).

Idea of the algorithm checking whether T |= ϕ:
1. Build the syntactic tree of ϕ and label each of its nodes with T.
2. Bottom up part of the algorithm:

2.1 For literals ϕ labelled by Y, replace Y by maxsub(Y,ϕ).
2.2 For other nodes; update their label depending on their connective, their previous

label and their child nodes new labels.
3. Top down part of the algorithm:

3.1 Starting from root, update labels depending on the connective, previous label and
the parent nodes new label.

4. Go to 2.
The labelling algorithm is decreasing and each round takes only polynomial time.
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Membership in P: more formally

approach: use a labelling function fi of occurrences of subformulae of input ϕ and start
with f0(ψ) = T for every sub-occurrence ψ

bottum-up part (odd i):
• for literals ψ: fi(ψ) := maxsub(fi−1(ψ),ψ)

• fi(ψ ∧ θ) := fi(ψ) ∩ fi(θ)
• fi(ψ ∨ θ) := fi(ψ) ∪ fi(θ)

top-down part (even i > 0):
• If ψ = θ ∧ γ, let fi(θ) := fi(γ) := fi(θ ∧ γ).
• If ψ = θ ∨ γ, let fi(θ) := fi−1(θ) ∩ fi(θ ∨ γ) and fi(γ) := fi−1(γ) ∩ fi(θ ∨ γ).

Claim: f∞(ϕ) = T iff T |= ϕ
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Satisfiability for Inclusion Logic

Theorem 37 ([Hel+20, Cor. 3.6])
PL[⊆]-SAT is EXP-complete.

Short ideas:
Upper bound: equivalence preserving translation to SAT in PDL with global and

converse modalities
Lower bound: reduce from succinct Path-Systems variant

(our focus)
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Persistent subsets

Definition 38
Let A = (A, S) be a structure with A = {1, . . . , n} and S ⊆ A3. A subset P of A is
S-persistent if it satisfies the condition
(∗) if i ∈ P, then there are j, k ∈ P such that (i, j, k) ∈ S.

Problem: PER
Input: structures A = (A, S) with A = {1, . . . , n} and S ⊆ A3

Question: exists some S-persistent set P ⊆ A such that n ∈ P

Theorem 39 (closely related to PathSystems [GHR95, p. 171])
PER is P-complete.
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A succinct variant of PER

• represent structures A = (A, S) by Boolean circuits C with inputs of length 3ℓ
• A = (A, S) C! (AC, SC) with AC = {1, . . . , 2ℓ}
• for all i, j, k ∈ A, let (i, j, k) ∈ SC if and only if C accepts the input tuple

(a1, . . . , aℓ, b1, . . . , bℓ, c1, . . . , cℓ) ∈ {0, 1}3ℓ,

where i = bin(a1 . . . aℓ), j = bin(b1 . . . bℓ) and k = bin(c1 . . . cℓ).

Problem: S-PER
Input: Boolean circuits C with inputs of length 3ℓ
Question: exists some SC-persistent set P ⊆ AC such that 2ℓ ∈ P

Theorem 40 ([Hel+19, Lem. 3.4])
S-PER is EXP-hard with respect to ≤p

m-reductions.
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EXP-hardness of PL[⊆]: prerequisites

To show: S-PER ≤p
m PL[⊆]-SAT.

Notation: T(p1, . . . , pn) := {(s(p1), . . . , s(pn)) ∈ {0, 1}n | s ∈ T}

Note that the semantics of inclusion atoms can now be expressed as

M,T |= p1 · · · pn ⊆ q1 · · · qn ⇐⇒ T(p1, . . . , pn) ⊆ T(q1, . . . , qn).
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Encoding S-PER into PL[⊆]

C is a Boolean circuit with 3ℓ input gates ordered g1, . . . , gm such that g1, . . . , g3ℓ are
the input gates and gm is the output gate.

• fix propositions pi for each gate gi
• define for each gate a PL[⊆] formula θi:

θi =

⎧
⎪⎨

⎪⎩

pi ↔ ¬pj if gi is a NOT gate with input gj
pi ↔ (pj ∧ pk) if gi is an AND gate with inputs gj and gk
pi ↔ (pj ∨ pk) if gi is an OR gate with inputs gj and gk

Note: ↔ is usual shorthand for flat formulas

Then: ψC :=
(∧

3ℓ+1≤i≤m θi
)
∧ pm. (truth values of pi match acc. computation of C)
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Encoding persistency into the formula

Input gate propositions: p1, . . . , pℓ, pℓ+1, . . . , p2ℓ︸ ︷︷ ︸
=:q1,...,qℓ

, p2ℓ+1, . . . , p3ℓ︸ ︷︷ ︸
=:r1,...,rℓ

The final formula:

ϕC := ψC ∧ q1 · · · qℓ ⊆ p1 · · · pℓ ∧ r1 · · · rℓ ⊆ p1 · · · pℓ ∧ pm · · · pm ⊆ p1 · · · pℓ

Claim: C is a positive instance of S-PER if and only if ϕC is satisfiable.
We will prove only ⇒. For the other direction, we define the SC-persistent set as

{bin(a1 . . . aℓ) | (a1, . . . , aℓ) ∈ T(p1, . . . , pℓ)}.
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“⇒” of the claim
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“⇒” of the claim
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Conclusion of Lecture 3

• PL[⊆]-MC is P-complete.
• PL[⊆]-SAT is EXP-complete.
• PL[⊆]-VAL is coNP-complete.
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