
Complexity and Expressivity of Propositional Logics with
Team Semantics
ESSLLI 2024 course

Arne Meier1 Jonni Virtema2

1 Leibniz Universität Hannover, Germany
2 University of Sheffield, UK

Version of 6th August 2024

Complexity and Expressivity of Propositional Logics with Team Semantics
Arne Meier, Jonni Virtema
7th of August

Lecture 3: Inclusion Logic

Literature: [Hel+19; Hel+20]

40

Inclusion

Inspired by „inclusion dependencies“ from database theory.

T |= p1 · · · pk ⊆ q1 · · · qk iff ∀ u ∈ T ∃ v ∈ T : u(p̄) = v(q̄)

Lemma 32
PL[⊆] is union closed.

41

Validity in Team Semantics

A formula ϕ is valid if T |= ϕ for all teams T such that the propositions in ϕ are in the
domain of T.

Problem: VAL(L) – the validity problem for logic L
Input: a L-formula ϕ
Question: Is ϕ valid?

42

Validity in Inclusion Logic is Hard

Theorem 33
VAL(PL[⊆]) is coNP-complete.

43

Foundations: Monotone circuit value problem

A monotone circuit is a finite directed, acyclic graph in which each node is either:
• an input gate labelled with a Boolean variable xi,
• a disjunction gate with indegree 2,
• a conjunction gate with indegree 2.

There is exactly one node with outdegree 0, called the output gate.

Problem: MCVP — monotone circuit value problem
Input: a monotone circuit C and an input b1, . . . , bn ∈ {0, 1}
Question: is the output of the circuit 1

Proposition 34 ([Gol77])
MCVP is P-complete w.r.t. ≤log

m -reductions.

44

Foundations: Monotone circuit value problem

A monotone circuit is a finite directed, acyclic graph in which each node is either:
• an input gate labelled with a Boolean variable xi,
• a disjunction gate with indegree 2,
• a conjunction gate with indegree 2.

There is exactly one node with outdegree 0, called the output gate.

Problem: MCVP — monotone circuit value problem
Input: a monotone circuit C and an input b1, . . . , bn ∈ {0, 1}
Question: is the output of the circuit 1

Proposition 34 ([Gol77])
MCVP is P-complete w.r.t. ≤log

m -reductions.

44

Model-Checking for Inclusion Logic

Theorem 35 ([Hel+19, Thm. 3.5])
PL[⊆]-MC is P-complete.

Ideas:
Lower bound: reduce from MCVP
Upper bound: use a labelling algorithm to compute a maximum satisfying team

45

Model-Checking for Inclusion Logic

Theorem 35 ([Hel+19, Thm. 3.5])
PL[⊆]-MC is P-complete.

Ideas:
Lower bound: reduce from MCVP
Upper bound: use a labelling algorithm to compute a maximum satisfying team

45

P-hardness: Idea of the reduction from MCVP to PL[⊆]-MC

• gate gi ! assignment si
• proposition pi for each gate gi (where g0 is the output gate), p⊥ and p⊤
• special propositions pk=i∨j for disjunction gates

• si ∈ T if gi has value 1

si(p) :=

⎧
⎪⎨

⎪⎩

1 if p = pi or p = p⊤,
1 if p = pk=i∨j or p = pk=j∨i for some j, k ≤ m,

0 otherwise.

• s⊥(p) = 1 iff p = p⊥ or p = p⊤ (no other si maps p⊥ to 1)
• create a formula ϕC that quantifies truth value of each gate and ensures correct

propagation

46

P-hardness: Idea of the reduction from MCVP to PL[⊆]-MC

• gate gi ! assignment si
• proposition pi for each gate gi (where g0 is the output gate), p⊥ and p⊤
• special propositions pk=i∨j for disjunction gates
• si ∈ T if gi has value 1

si(p) :=

⎧
⎪⎨

⎪⎩

1 if p = pi or p = p⊤,
1 if p = pk=i∨j or p = pk=j∨i for some j, k ≤ m,

0 otherwise.

• s⊥(p) = 1 iff p = p⊥ or p = p⊤ (no other si maps p⊥ to 1)
• create a formula ϕC that quantifies truth value of each gate and ensures correct

propagation

46

P-hardness: Idea of the reduction from MCVP to PL[⊆]-MC

• gate gi ! assignment si
• proposition pi for each gate gi (where g0 is the output gate), p⊥ and p⊤
• special propositions pk=i∨j for disjunction gates
• si ∈ T if gi has value 1

si(p) :=

⎧
⎪⎨

⎪⎩

1 if p = pi or p = p⊤,
1 if p = pk=i∨j or p = pk=j∨i for some j, k ≤ m,

0 otherwise.

• s⊥(p) = 1 iff p = p⊥ or p = p⊤ (no other si maps p⊥ to 1)
• create a formula ϕC that quantifies truth value of each gate and ensures correct

propagation

46

More details: P-hardness of PL[⊆]-MC.

After skipping some technicalities we arrive at

T |= p⊤ ⊆ p0 iff s0 ∈ T
T |= pi ⊆ pj iff si ∈ T implies sj ∈ T

T |= pk ⊆ pk=i∨j iff sk ∈ T implies that si ∈ T or sj ∈ T

Recall: gates that are in the team T have a value 1.
Express gate properties:

ψout=1 := p⊤ ⊆ p0,

ψ∧ :=
∧

{pi ⊆ pj | (gj, gi) ∈ E and α(gi) = ∧},

ψ∨ :=
∧

{pk ⊆ pk=i∨j | i < j, (gi, gk) ∈ E, (gj, gk) ∈ E, and α(gk) = ∨}

47

More details: P-hardness of PL[⊆]-MC.

After skipping some technicalities we arrive at

T |= p⊤ ⊆ p0 iff s0 ∈ T
T |= pi ⊆ pj iff si ∈ T implies sj ∈ T

T |= pk ⊆ pk=i∨j iff sk ∈ T implies that si ∈ T or sj ∈ T

Recall: gates that are in the team T have a value 1.
Express gate properties:

ψout=1 := p⊤ ⊆ p0,

ψ∧ :=
∧

{pi ⊆ pj | (gj, gi) ∈ E and α(gi) = ∧},

ψ∨ :=
∧

{pk ⊆ pk=i∨j | i < j, (gi, gk) ∈ E, (gj, gk) ∈ E, and α(gk) = ∨}

47

Encoding MCVP: the final puzzle pieces

More truth about the team:

T :=
{

si | α(gi) ∈ {∧,∨}
}
∪
{

si | α(gi) ∈ {xi | bi = 1}
}
∪ {s⊥}

Now we claim that

T |= ¬p⊥ ∨ (ψout=1 ∧ ψ∧ ∧ ψ∨) iff output of the circuit is 1.

Crux 1: split requires guessing a team Y for the right disjunct that encodes the
valuation of the circuit.
Crux 2: ¬p⊥ and s⊥ ensure that Y is nonempty and deal with the propagation of the
value 0 by the subformulae of the form pi ⊆ pj.

48

Encoding MCVP: the final puzzle pieces

More truth about the team:

T :=
{

si | α(gi) ∈ {∧,∨}
}
∪
{

si | α(gi) ∈ {xi | bi = 1}
}
∪ {s⊥}

Now we claim that

T |= ¬p⊥ ∨ (ψout=1 ∧ ψ∧ ∧ ψ∨) iff output of the circuit is 1.

Crux 1: split requires guessing a team Y for the right disjunct that encodes the
valuation of the circuit.
Crux 2: ¬p⊥ and s⊥ ensure that Y is nonempty and deal with the propagation of the
value 0 by the subformulae of the form pi ⊆ pj.

48

Encoding MCVP: the final puzzle pieces

More truth about the team:

T :=
{

si | α(gi) ∈ {∧,∨}
}
∪
{

si | α(gi) ∈ {xi | bi = 1}
}
∪ {s⊥}

Now we claim that

T |= ¬p⊥ ∨ (ψout=1 ∧ ψ∧ ∧ ψ∨) iff output of the circuit is 1.

Crux 1: split requires guessing a team Y for the right disjunct that encodes the
valuation of the circuit.

Crux 2: ¬p⊥ and s⊥ ensure that Y is nonempty and deal with the propagation of the
value 0 by the subformulae of the form pi ⊆ pj.

48

Encoding MCVP: the final puzzle pieces

More truth about the team:

T :=
{

si | α(gi) ∈ {∧,∨}
}
∪
{

si | α(gi) ∈ {xi | bi = 1}
}
∪ {s⊥}

Now we claim that

T |= ¬p⊥ ∨ (ψout=1 ∧ ψ∧ ∧ ψ∨) iff output of the circuit is 1.

Crux 1: split requires guessing a team Y for the right disjunct that encodes the
valuation of the circuit.
Crux 2: ¬p⊥ and s⊥ ensure that Y is nonempty and deal with the propagation of the
value 0 by the subformulae of the form pi ⊆ pj.

48

Computing a Maximum Satisfying Team

By maxsub(T,ϕ), we denote the maximum subteam T′ of T such that T′ |= ϕ, i.e., for
all T′ ! T′′ ⊆ T, we have T′′ ̸|= ϕ.
Union closure of PL[⊆] ensures that this always exists.

Lemma 36 (for a proof, see [Hel+19, Lemma 5.1])
If ϕ is a proposition symbol, its negation, or an inclusion atom, then maxsub(T,ϕ) can
be computed in polynomial time with respect to |T|+ |ϕ|.

Interesting case: inclusion atoms (edges between assignments when agree on some
variables; successively delete vertices with out-degree 0).

49

Computing a Maximum Satisfying Team

By maxsub(T,ϕ), we denote the maximum subteam T′ of T such that T′ |= ϕ, i.e., for
all T′ ! T′′ ⊆ T, we have T′′ ̸|= ϕ.
Union closure of PL[⊆] ensures that this always exists.

Lemma 36 (for a proof, see [Hel+19, Lemma 5.1])
If ϕ is a proposition symbol, its negation, or an inclusion atom, then maxsub(T,ϕ) can
be computed in polynomial time with respect to |T|+ |ϕ|.

Interesting case: inclusion atoms (edges between assignments when agree on some
variables; successively delete vertices with out-degree 0).

49

P-algorithm for PL[⊆]-MC

Important properties:
• Each team T has a unique maximal subteam satisfying a given formula ϕ.
• For literals maxsub(T,ϕ) is computable in polynomial time (Lemma 36).

Idea of the algorithm checking whether T |= ϕ:
1. Build the syntactic tree of ϕ and label each of its nodes with T.
2. Bottom up part of the algorithm:

2.1 For literals ϕ labelled by Y, replace Y by maxsub(Y,ϕ).
2.2 For other nodes; update their label depending on their connective, their previous

label and their child nodes new labels.
3. Top down part of the algorithm:

3.1 Starting from root, update labels depending on the connective, previous label and
the parent nodes new label.

4. Go to 2.
The labelling algorithm is decreasing and each round takes only polynomial time.

50

P-algorithm for PL[⊆]-MC

Important properties:
• Each team T has a unique maximal subteam satisfying a given formula ϕ.
• For literals maxsub(T,ϕ) is computable in polynomial time (Lemma 36).

Idea of the algorithm checking whether T |= ϕ:
1. Build the syntactic tree of ϕ and label each of its nodes with T.
2. Bottom up part of the algorithm:

2.1 For literals ϕ labelled by Y, replace Y by maxsub(Y,ϕ).
2.2 For other nodes; update their label depending on their connective, their previous

label and their child nodes new labels.
3. Top down part of the algorithm:

3.1 Starting from root, update labels depending on the connective, previous label and
the parent nodes new label.

4. Go to 2.

The labelling algorithm is decreasing and each round takes only polynomial time.

50

P-algorithm for PL[⊆]-MC

Important properties:
• Each team T has a unique maximal subteam satisfying a given formula ϕ.
• For literals maxsub(T,ϕ) is computable in polynomial time (Lemma 36).

Idea of the algorithm checking whether T |= ϕ:
1. Build the syntactic tree of ϕ and label each of its nodes with T.
2. Bottom up part of the algorithm:

2.1 For literals ϕ labelled by Y, replace Y by maxsub(Y,ϕ).
2.2 For other nodes; update their label depending on their connective, their previous

label and their child nodes new labels.
3. Top down part of the algorithm:

3.1 Starting from root, update labels depending on the connective, previous label and
the parent nodes new label.

4. Go to 2.
The labelling algorithm is decreasing and each round takes only polynomial time.

50

Membership in P: more formally

approach: use a labelling function fi of occurrences of subformulae of input ϕ and start
with f0(ψ) = T for every sub-occurrence ψ

bottum-up part (odd i):
• for literals ψ: fi(ψ) := maxsub(fi−1(ψ),ψ)

• fi(ψ ∧ θ) := fi(ψ) ∩ fi(θ)
• fi(ψ ∨ θ) := fi(ψ) ∪ fi(θ)

top-down part (even i > 0):
• If ψ = θ ∧ γ, let fi(θ) := fi(γ) := fi(θ ∧ γ).
• If ψ = θ ∨ γ, let fi(θ) := fi−1(θ) ∩ fi(θ ∨ γ) and fi(γ) := fi−1(γ) ∩ fi(θ ∨ γ).

Claim: f∞(ϕ) = T iff T |= ϕ

51

Membership in P: more formally

approach: use a labelling function fi of occurrences of subformulae of input ϕ and start
with f0(ψ) = T for every sub-occurrence ψ
bottum-up part (odd i):

• for literals ψ: fi(ψ) := maxsub(fi−1(ψ),ψ)

• fi(ψ ∧ θ) := fi(ψ) ∩ fi(θ)
• fi(ψ ∨ θ) := fi(ψ) ∪ fi(θ)

top-down part (even i > 0):
• If ψ = θ ∧ γ, let fi(θ) := fi(γ) := fi(θ ∧ γ).
• If ψ = θ ∨ γ, let fi(θ) := fi−1(θ) ∩ fi(θ ∨ γ) and fi(γ) := fi−1(γ) ∩ fi(θ ∨ γ).

Claim: f∞(ϕ) = T iff T |= ϕ

51

Membership in P: more formally

approach: use a labelling function fi of occurrences of subformulae of input ϕ and start
with f0(ψ) = T for every sub-occurrence ψ
bottum-up part (odd i):

• for literals ψ: fi(ψ) := maxsub(fi−1(ψ),ψ)

• fi(ψ ∧ θ) := fi(ψ) ∩ fi(θ)
• fi(ψ ∨ θ) := fi(ψ) ∪ fi(θ)

top-down part (even i > 0):
• If ψ = θ ∧ γ, let fi(θ) := fi(γ) := fi(θ ∧ γ).
• If ψ = θ ∨ γ, let fi(θ) := fi−1(θ) ∩ fi(θ ∨ γ) and fi(γ) := fi−1(γ) ∩ fi(θ ∨ γ).

Claim: f∞(ϕ) = T iff T |= ϕ

51

Membership in P: more formally

approach: use a labelling function fi of occurrences of subformulae of input ϕ and start
with f0(ψ) = T for every sub-occurrence ψ
bottum-up part (odd i):

• for literals ψ: fi(ψ) := maxsub(fi−1(ψ),ψ)

• fi(ψ ∧ θ) := fi(ψ) ∩ fi(θ)
• fi(ψ ∨ θ) := fi(ψ) ∪ fi(θ)

top-down part (even i > 0):
• If ψ = θ ∧ γ, let fi(θ) := fi(γ) := fi(θ ∧ γ).
• If ψ = θ ∨ γ, let fi(θ) := fi−1(θ) ∩ fi(θ ∨ γ) and fi(γ) := fi−1(γ) ∩ fi(θ ∨ γ).

Claim: f∞(ϕ) = T iff T |= ϕ

51

Satisfiability for Inclusion Logic

Theorem 37 ([Hel+20, Cor. 3.6])
PL[⊆]-SAT is EXP-complete.

Short ideas:
Upper bound: equivalence preserving translation to SAT in PDL with global and

converse modalities
Lower bound: reduce from succinct Path-Systems variant

(our focus)

52

Satisfiability for Inclusion Logic

Theorem 37 ([Hel+20, Cor. 3.6])
PL[⊆]-SAT is EXP-complete.

Short ideas:
Upper bound: equivalence preserving translation to SAT in PDL with global and

converse modalities
Lower bound: reduce from succinct Path-Systems variant (our focus)

52

Persistent subsets

Definition 38
Let A = (A, S) be a structure with A = {1, . . . , n} and S ⊆ A3. A subset P of A is
S-persistent if it satisfies the condition
(∗) if i ∈ P, then there are j, k ∈ P such that (i, j, k) ∈ S.

Problem: PER
Input: structures A = (A, S) with A = {1, . . . , n} and S ⊆ A3

Question: exists some S-persistent set P ⊆ A such that n ∈ P

Theorem 39 (closely related to PathSystems [GHR95, p. 171])
PER is P-complete.

53

A succinct variant of PER

• represent structures A = (A, S) by Boolean circuits C with inputs of length 3ℓ
• A = (A, S) C! (AC, SC) with AC = {1, . . . , 2ℓ}
• for all i, j, k ∈ A, let (i, j, k) ∈ SC if and only if C accepts the input tuple

(a1, . . . , aℓ, b1, . . . , bℓ, c1, . . . , cℓ) ∈ {0, 1}3ℓ,

where i = bin(a1 . . . aℓ), j = bin(b1 . . . bℓ) and k = bin(c1 . . . cℓ).

Problem: S-PER
Input: Boolean circuits C with inputs of length 3ℓ
Question: exists some SC-persistent set P ⊆ AC such that 2ℓ ∈ P

Theorem 40 ([Hel+19, Lem. 3.4])
S-PER is EXP-hard with respect to ≤p

m-reductions.
54

EXP-hardness of PL[⊆]: prerequisites

To show: S-PER ≤p
m PL[⊆]-SAT.

Notation: T(p1, . . . , pn) := {(s(p1), . . . , s(pn)) ∈ {0, 1}n | s ∈ T}

Note that the semantics of inclusion atoms can now be expressed as

M,T |= p1 · · · pn ⊆ q1 · · · qn ⇐⇒ T(p1, . . . , pn) ⊆ T(q1, . . . , qn).

55

EXP-hardness of PL[⊆]: prerequisites

To show: S-PER ≤p
m PL[⊆]-SAT.

Notation: T(p1, . . . , pn) := {(s(p1), . . . , s(pn)) ∈ {0, 1}n | s ∈ T}
Note that the semantics of inclusion atoms can now be expressed as

M,T |= p1 · · · pn ⊆ q1 · · · qn ⇐⇒ T(p1, . . . , pn) ⊆ T(q1, . . . , qn).

55

Encoding S-PER into PL[⊆]

C is a Boolean circuit with 3ℓ input gates ordered g1, . . . , gm such that g1, . . . , g3ℓ are
the input gates and gm is the output gate.

• fix propositions pi for each gate gi
• define for each gate a PL[⊆] formula θi:

θi =

⎧
⎪⎨

⎪⎩

pi ↔ ¬pj if gi is a NOT gate with input gj
pi ↔ (pj ∧ pk) if gi is an AND gate with inputs gj and gk
pi ↔ (pj ∨ pk) if gi is an OR gate with inputs gj and gk

Note: ↔ is usual shorthand for flat formulas

Then: ψC :=
(∧

3ℓ+1≤i≤m θi
)
∧ pm. (truth values of pi match acc. computation of C)

56

Encoding S-PER into PL[⊆]

C is a Boolean circuit with 3ℓ input gates ordered g1, . . . , gm such that g1, . . . , g3ℓ are
the input gates and gm is the output gate.

• fix propositions pi for each gate gi
• define for each gate a PL[⊆] formula θi:

θi =

⎧
⎪⎨

⎪⎩

pi ↔ ¬pj if gi is a NOT gate with input gj
pi ↔ (pj ∧ pk) if gi is an AND gate with inputs gj and gk
pi ↔ (pj ∨ pk) if gi is an OR gate with inputs gj and gk

Note: ↔ is usual shorthand for flat formulas
Then: ψC :=

(∧
3ℓ+1≤i≤m θi

)
∧ pm. (truth values of pi match acc. computation of C)

56

Encoding persistency into the formula

Input gate propositions: p1, . . . , pℓ, pℓ+1, . . . , p2ℓ︸ ︷︷ ︸
=:q1,...,qℓ

, p2ℓ+1, . . . , p3ℓ︸ ︷︷ ︸
=:r1,...,rℓ

The final formula:

ϕC := ψC ∧ q1 · · · qℓ ⊆ p1 · · · pℓ ∧ r1 · · · rℓ ⊆ p1 · · · pℓ ∧ pm · · · pm ⊆ p1 · · · pℓ

Claim: C is a positive instance of S-PER if and only if ϕC is satisfiable.
We will prove only ⇒. For the other direction, we define the SC-persistent set as

{bin(a1 . . . aℓ) | (a1, . . . , aℓ) ∈ T(p1, . . . , pℓ)}.

57

Encoding persistency into the formula

Input gate propositions: p1, . . . , pℓ, pℓ+1, . . . , p2ℓ︸ ︷︷ ︸
=:q1,...,qℓ

, p2ℓ+1, . . . , p3ℓ︸ ︷︷ ︸
=:r1,...,rℓ

The final formula:

ϕC := ψC ∧ q1 · · · qℓ ⊆ p1 · · · pℓ ∧ r1 · · · rℓ ⊆ p1 · · · pℓ ∧ pm · · · pm ⊆ p1 · · · pℓ

Claim: C is a positive instance of S-PER if and only if ϕC is satisfiable.

We will prove only ⇒. For the other direction, we define the SC-persistent set as

{bin(a1 . . . aℓ) | (a1, . . . , aℓ) ∈ T(p1, . . . , pℓ)}.

57

Encoding persistency into the formula

Input gate propositions: p1, . . . , pℓ, pℓ+1, . . . , p2ℓ︸ ︷︷ ︸
=:q1,...,qℓ

, p2ℓ+1, . . . , p3ℓ︸ ︷︷ ︸
=:r1,...,rℓ

The final formula:

ϕC := ψC ∧ q1 · · · qℓ ⊆ p1 · · · pℓ ∧ r1 · · · rℓ ⊆ p1 · · · pℓ ∧ pm · · · pm ⊆ p1 · · · pℓ

Claim: C is a positive instance of S-PER if and only if ϕC is satisfiable.
We will prove only ⇒. For the other direction, we define the SC-persistent set as

{bin(a1 . . . aℓ) | (a1, . . . , aℓ) ∈ T(p1, . . . , pℓ)}.

57

“⇒” of the claim

58

“⇒” of the claim

58

Conclusion of Lecture 3

• PL[⊆]-MC is P-complete.
• PL[⊆]-SAT is EXP-complete.
• PL[⊆]-VAL is coNP-complete.

58

Complexity and Expressivity of Propositional Logics with Team Semantics
Arne Meier, Jonni Virtema
8th of August

Lecture 4: Complexity of propositional dependence logic
and beyond

Literature: [Vir17; Han+18]

58

Bibliography i

[BRV01] Patrick Blackburn, Maarten de Rijke and Yde Venema. Modal Logic.
Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 2001. doi: 10.1017/CBO9781107050884.

[CES86] E. Clarke, E. Allen Emerson and A. Sistla. ‘Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Specifications’. In:
ACM Transactions on Programming Languages and Systems 8.2 (1986),
pp. 244–263.

[Coo71] Stephen A. Cook. ‘The Complexity of Theorem-Proving Procedures’. In:
Proceedings of the 3rd Annual ACM Symposium on Theory of Computing,
May 3-5, 1971, Shaker Heights, Ohio, USA. Ed. by Michael A. Harrison,
Ranan B. Banerji and Jeffrey D. Ullman. ACM, 1971, pp. 151–158. doi:
10.1145/800157.805047. url:
https://doi.org/10.1145/800157.805047.

100

Bibliography ii

[EFT94] Heinz-Dieter Ebbinghaus, Jörg Flum and Wolfgang Thomas. Mathematical
logic (2. ed.) Undergraduate texts in mathematics. Springer, 1994.

[EJ99] E. Allen Emerson and Charanjit S. Jutla. ‘The Complexity of Tree
Automata and Logics of Programs’. In: SIAM J. Comput. 29.1 (1999),
pp. 132–158.

[ES84] E. Allen Emerson and A. Prasad Sistla. ‘Deciding Full Branching Time
Logic’. In: Inf. Control. 61.3 (1984), pp. 175–201.

[FL79] Michael J. Fischer and Richard E. Ladner. ‘Propositional Dynamic Logic of
Regular Programs’. In: J. Comput. Syst. Sci. 18.2 (1979), pp. 194–211.

[GHR95] Raymond Greenlaw, H. James Hoover and Walter L. Ruzzo. Limits to
Parallel Computation: P-completeness Theory. New York, NY, USA:
Oxford University Press, Inc., 1995. isbn: 0-19-508591-4.

101

Bibliography iii

[Gol77] L. M. Goldschlager. ‘The monotone and planar circuit value problems are
log-space complete for P’. In: SIGACT News 9 (1977), pp. 25–29.

[Gut+22] Jens Oliver Gutsfeld, Arne Meier, Christoph Ohrem and Jonni Virtema.
‘Temporal Team Semantics Revisited’. In: LICS ’22: 37th Annual
ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel,
August 2 - 5, 2022. Ed. by Christel Baier and Dana Fisman. ACM, 2022,
44:1–44:13. doi: 10.1145/3531130.3533360. url:
https://doi.org/10.1145/3531130.3533360.

[Han+18] Miika Hannula, Juha Kontinen, Jonni Virtema and Heribert Vollmer.
‘Complexity of Propositional Logics in Team Semantic’. In: ACM Trans.
Comput. Log. 19.1 (2018), 2:1–2:14.

102

Bibliography iv

[Han19] Miika Hannula. ‘Validity and Entailment in Modal and Propositional
Dependence Logics’. In: Logical Methods in Computer Science Volume 15,
Issue 2 (Apr. 2019). doi: 10.23638/LMCS-15(2:4)2019. url:
https://lmcs.episciences.org/5403.

[Hel+14] Lauri Hella, Kerkko Luosto, Katsuhiko Sano and Jonni Virtema. ‘The
Expressive Power of Modal Dependence Logic’. In: Advances in Modal
Logic. College Publications, 2014, pp. 294–312.

[Hel+19] Lauri Hella, Antti Kuusisto, Arne Meier and Jonni Virtema. ‘Model
checking and validity in propositional and modal inclusion logics’. In: J.
Log. Comput. 29.5 (2019), pp. 605–630.

[Hel+20] Lauri Hella, Antti Kuusisto, Arne Meier and Heribert Vollmer.
‘Satisfiability of Modal Inclusion Logic: Lax and Strict Semantics’. In: ACM
Trans. Comput. Log. 21.1 (2020), 7:1–7:18.

103

Bibliography v

[HS15] Lauri Hella and Johanna Stumpf. ‘The expressive power of modal logic
with inclusion atoms’. In: GandALF. Vol. 193. EPTCS. 2015, pp. 129–143.

[KV85] Gabriel M. Kuper and Moshe Y. Vardi. ‘On the Expressive Power of the
Logical Data Model (Preliminary Report)’. In: SIGMOD Conference. ACM
Press, 1985, pp. 180–187.

[Lev73] Leonid A. Levin. ‘Universal sequential search problems’. In: Problemy
Peredachi Informatsii 9.3 (1973).

[Loh12] Peter Lohmann. ‘Computational Aspects of Dependence Logic’.
PhD thesis. Leibniz Universität Hannover, 2012. arXiv: 1206.4564. url:
http://arxiv.org/abs/1206.4564.

[LV19] Martin Lück and Miikka Vilander. ‘On the Succinctness of Atoms of
Dependency’. In: Log. Methods Comput. Sci. 15.3 (2019).

104

Bibliography vi

[Pap07] Christos H. Papadimitriou. Computational complexity. Academic Internet
Publ., 2007.

[Pra80] V. R. Pratt. ‘A near-optimal method for reasoning about action’. In:
Journal of Computer and System Sciences 20.2 (1980), pp. 231–254.

[SC85] A. Prasad Sistla and Edmund M. Clarke. ‘The Complexity of Propositional
Linear Temporal Logics’. In: J. ACM 32.3 (1985), pp. 733–749.

[Sch02] P. Schnoebelen. ‘The Complexity of Temporal Logic Model Checking’. In:
Advances in Modal Logic. Vol. 4. 2002, pp. 393–436.

[Sip97] Michael Sipser. Introduction to the theory of computation. PWS
Publishing Company, 1997.

[Var09] Moshe Y. Vardi. ‘From Philosophical to Industrial Logics’. In: ICLA.
Vol. 5378. Lecture Notes in Computer Science. Springer, 2009, pp. 89–115.

105

Bibliography vii

[Vir+21] Jonni Virtema, Jana Hofmann, Bernd Finkbeiner, Juha Kontinen and
Fan Yang. ‘Linear-Time Temporal Logic with Team Semantics: Expressivity
and Complexity’. In: FSTTCS. Vol. 213. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021, 52:1–52:17.

[Vir17] Jonni Virtema. ‘Complexity of validity for propositional dependence logics’.
In: Inf. Comput. 253 (2017), pp. 224–236.

[YV17] Fan Yang and Jouko Väänänen. ‘Propositional team logics’. In: Ann. Pure
Appl. Log. 168.7 (2017), pp. 1406–1441. doi:
10.1016/J.APAL.2017.01.007. url:
https://doi.org/10.1016/j.apal.2017.01.007.

106

