
Lecture Notes, Summer Term 2012

Advanced Logics

Dr. Arne Meier

Version of March 19, 2020

Institut für Theoretische Informatik
Leibniz Universität Hanover

Contents

1. Post’s Lattice 3
1.1. Properties of Boolean Functions . 3
1.2. Succinctness . 8
1.3. Propositional Logic and Satisifability . 10
1.4. Expressivity of Propositional Logic . 11

2. Modal Logic 13
2.1. Frames . 13
2.2. Enforcing the Size of a Model . 14
2.3. Model Checking and Ladner’s Algorithm 16
2.4. Generalized Satisfiability of Modal Logic 20

3. Variants of Modal Logic 28
3.1. Hybrid Logic . 28
3.2. Temporal Logic . 31
3.3. Nonmonotonic Logics . 35

4. Descriptive Complexity Theory 40
4.1. Fagin’s Theorem . 41
4.2. Least Fixed Points . 46

A. Foundations 49
A.1. Complexity Theory . 49
A.2. First-Order Logic . 50
A.3. Circuit Complexity . 53
A.4. Quantified Boolean Formulae . 53

2

1. Post’s Lattice

. . . after all it is not ideas but the execution of
ideas that constitute a mark of greatness.

(Emil Post in a Letter to Kurt Gödel, 30.10.1938)
In this chapter we will repeat some of the fundamental definitions which are the basis

for the modal logics we will investigate later in Chapter 2. The complexity of a decision
problem settled in (an extension of) propositional logic may depend on several aspects.
One possibility is that the difficulty to solve such a problem sticks to the available Boolean
functions. Thus, the aim to study this hardness in full detail implies working with infinite
many different restrictions on the problem where each such problem is defined via the
allowed Boolean connectives. For taming this unrestricted size of sets Emil Post defined
1941 a lattice of all Boolean functions. Of course this lattice still has infinite size but the
structure allows to circumvent this evil part. In this lecture we will drift through the
landscape of modal logics and visit several prominent and to practical applications of the
computer scientist very relevant extensions of this logic. There we will understand how
intractability of a recent problem will interact with not only Boolean concepts within
this logic but also with concepts and operators which are significant for this logic.

In the first section we will start with the universal algebra around Post’s lattice and
use this concept to define the upcoming logics.

1.1. Properties of Boolean Functions

A Boolean function f is a mapping from {0, 1}n to {0, 1}, for n ∈ N. Denote with Bn the
set of all n-ary Boolean functions.

• f is c-reproducing if f(c, . . . , c) = c.

• f is monotone if a1 6 b1, . . . ,an 6 bn implies f(a1, . . . ,an) 6 f(b1, . . . ,bn).

• f is c-separating if there exists an i ∈ {1, . . . ,n} such that f(a1, . . . ,an) = c implies
ai = c.

• f is c-separating of degree n if all A ⊆ f−1(c) with |A| = n are c-separating; we
say A ⊆ {0, 1}n is c-separating if there exists an 1 6 i 6 n such that for all
(b1, . . . ,bn) ∈ A it holds that bi = c.

• f is self-dual if f ≡ dual(f), where dual(f)(x1, . . . , xn) = ¬f(¬x1, . . . ,¬xn).

• f is linear (or affine) if f(x1, . . . , xn) ≡ c0 ⊕ c1x1 ⊕ · · · ⊕ cnxn for some ci ∈ {⊥,>}
and x∧ y is written as xy.

3

For the special case n = 0, there are two 0-ary functions, namely, 0 and 1 (other used
symbols for these functions are ⊥ and >). The 1-ary functions are identity id(x) and
negation ¬x or x̄. Some prominent 2-ary functions are and x∧y, or x∨y, implies x→ y,
exclusive-or x⊕ y, nand x|y, equivalent x↔ y.

For projection functions proji,n with 1 6 i 6 n ∈ N it holds that proji,n(x1, . . . , xn) =def

xi, informally, the function is a projection from n elements to one of its elements 1 6 i 6 n.
For n > m ∈ N,

Tnm =def

∨
S⊆{1,...,n},

|S|=m

∧
i∈S
xi

defines a threshold function requiring m bits out of n set to >.

Definition (Compositions). Let B be a set of Boolean functions. The closure under
arbitrary composition of B, written 〈B〉, is defined as follows: f ∈ 〈B〉 iff f ∈ B or
there are g ∈ 〈B〉 and X1, . . . ,Xn which are variables or functions from 〈B〉, such that
f ≡ g(X1, . . . ,Xn) holds.

Definition (Clone). A set of Boolean functions B is a clone if it contains all projection
functions and is closed under arbitrary composition. The smallest clone is denoted with
[B].

If B = {f1, . . . , fn} is a set of Boolean function then we will always write [f1, . . . , fn]
and omit the curly braces inside of [·].

Example. Let f ∈ B2 such that f(x,y) =def x ∧ ȳ holds. Is the function x ∧ y in [f]?
Thus it suffices to find a composition of f’s expressing x ∧ y, which can be done via
f(x, f(x,y)).

Definition (Base). Let B be a set of Boolean functions. Every set B0 ⊆ B with [B0] = B
is called a base of B.

Definition. The following clones are called basic clones:

• BF is the class of all Boolean functions,
• for a ∈ {0, 1}, Ra contains all a-reproducing functions,
• M contains all monotone functions,
• D contains all self-dual functions,
• L contains all linear functions,
• for a ∈ {0, 1}, Sa contains all a-separating functions,

and for k ∈ N, Ska contains all a-separating functions of level k,
• E contains all conjunction functions (plus both constants),
• V contains all disjunction functions (plus both constants),
• I2 (resp., I) contains all projections (and all constants),
• N2 (resp., N) contains all projections and all negations of projections (and all

constants).

4

Definition. Let A and B be clones and let A u B (resp. A t B) be the largest (smallest)
clone that is contained in (resp. contains) both A and B.

Theorem 1.1.
If A and B are clones, then A ∩ B = A u B holds.

Proof. A ∩ B ⊆ [A ∩ B] is true by definition. As A ∩ B ⊆ A holds therefore we have
[A ∩ B] ⊆ [A] = A. Conclusively it holds that [A ∩ B] = A ∩ B, hence A ∩ B is again a
clone. Since A u B is the largest clone that is contained in both A and B, it holds that
A∩B ⊆ AuB. From the definition we obtain AuB ⊆ A∩B which lets us conclude that
A∩B = AuB. Similarly it holds [A∪B] = AtB. It can be easily verified that u and t
are both associative and commutative. Furthermore it holds that A u (A t B) = A and
A t (A u B) = A, hence the Boolean clones form a lattice. �

Figure 1.1 shows all Boolean clones arranged in a lattice and all clones with their bases
are shown in Table 1.1.

Corollary 1.2.
Any non-basic clone in Post’s lattice can be obtained by intersection of two basic clones.

Definition (Functional (in)completeness). Let B be a finite set of Boolean functions
and f be a Boolean function.

• The function f is representable by B iff f ≡ ϕ for some formula ϕ constructed of
functions in B.

• B is functional complete iff ∧,∨, and ¬ are representable by B.

• B is functional maximal incomplete if and only if for any Boolean function f the
following holds: if f is not representable in B then B ∪ {f} is functional complete.

Remark. Post’s classes are those classes B in the lattice such that B (BF and for
every B ′ with B (B ′ ⊆ BF we obtain [B ′] = BF. Hence the clones B are the maximal
incomplete sets.

Example. Consider the Boolean function nand x|y. Obviously this function is neither 0-
nor 1-reproducing wherefore it is neither contained in R1 nor in R0. Further the function
is not monotone, as (0, 0) 6 (1, 1) but 0|0 66 1|1. Furthermore the function is not self-dual
since 0|1 6= ¬(1|0). Finally, the function is not linear: suppose the opposite which yields
x|y ≡ c0 ⊕ c1x ⊕ c2y. From 0|0 = 1 we have c0 = 1, by 1|0 = 1 we obtain c1 = 0, but
0|1 = 1 yields c2 = 0, too. This is a contradiction to nand not being constant. Thus x|y
is not contained in one of the maximal clones which lets us conclude that [x|y] = BF.
Note that each Boolean function can be represented by x|y.

Example. Suppose f is an n-ary monotonic Boolean function. Is f also in L? Observe
that L 6⊆ M, and M∩L = I. Since I = [I2∪ {>,⊥}], f is in L if and only if it is a projection
or constant function.

5

BF

R1 R0

R2

M

M1 M0

M2 S21

S31

S1

S212

S312

S12

S211

S311

S11

S210

S310

S10

S20

S30

S0

S202

S302

S02

S201

S301

S01

S200

S300

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

Figure 1.1.: Post’s lattice. Post’s classes and BF are marked with a thick border.

6

Class Definition Base
BF All Boolean functions {x∧ y,¬x}
R0 {f | f is ⊥-reproducing} {x∧ y, x⊕ y}
R1 {f | f is >-reproducing} {x∨ y, x↔ y}
R2 R0 ∩ R1 {x∨ y, x∧ (y↔ z)}
M {f | f is monotone} {x∨ y, x∧ y,⊥,>}
M0 M ∩ R0 {x∨ y, x∧ y,⊥}
M1 M ∩ R1 {x∨ y, x∧ y,>}
M2 M ∩ R2 {x∨ y, x∧ y}
S0 {f | f is ⊥-separating} {x→ y}
S1 {f | f is >-separating} {x9y}
Sn0 {f | f is ⊥-separating of degree n}

{
x→ y, Tn+12

}
Sn1 {f | f is >-separating of degree n}

{
x9y, Tn+1n

}
S00 S0 ∩ R2 ∩M {x∨ (y∧ z)}
Sn00 Sn0 ∩ R2 ∩M

{
x∨ (y∧ z), T32

}
if n = 2,{

Tn+12

}
if n > 3

S01 S0 ∩M {x∨ (y∧ z),>}
Sn01 Sn0 ∩M

{
Tn+12 ,>

}
S02 S0 ∩ R2 {x∨ (y9z)}
Sn02 Sn0 ∩ R2

{
x∨ (y9z), Tn+12

}
S10 S1 ∩ R2 ∩M {x∧ (y∨ z)}
Sn10 Sn1 ∩ R2 ∩M

{
x∧ (y∨ z), T32

}
if n = 2,{

Tn+1n

}
if n > 3

S11 S1 ∩M {x∧ (y∨ z),⊥}
Sn11 Sn1 ∩M

{
Tn+1n ,⊥

}
S12 S1 ∩ R2 {x∧ (y→ z)}
Sn12 Sn1 ∩ R2

{
x∧ (y→ z), Tn+1n

}
D {f | f is self-dual} {maj {x,y, z}}
D1 D ∩ R2 {maj {x,y, z}}
D2 D ∩M {maj {x,y, z}}
L {f | f is linear} {x⊕ y,>}
L0 L ∩ R0 {x⊕ y}
L1 L ∩ R1 {x↔ y}
L2 L ∩ R2 {x⊕ y⊕ z}
L3 L ∩ D {x⊕ y⊕ z⊕>}
V {f | f is a disjunction or constant} {x∨ y,⊥,>}
V0 M0 ∩ V {x∨ y,⊥}
V1 M1 ∩ V {x∨ y,>}
V2 M2 ∩ V {x∨ y}
E {f | f is a conjunction or constant} {x∧ y,⊥,>}
E0 M0 ∩ E {x∧ y,⊥}
E1 M1 ∩ E {x∧ y,>}
E2 M2 ∩ E {x∧ y}
N {f | f depends on at most one variable} {¬x,⊥,>}
N2 L3 ∩ N {¬x}
I {f | f is a projection or a constant} {id,⊥,>}
I0 R0 ∩ I {id,⊥}
I1 R1 ∩ I {id,>}
I2 R2 ∩ I {id}

Table 1.1.: List of all Boolean clones with their bases

7

1.2. Succinctness

From a complexity theoretic aspect the main benefit of Post’s lattice is the possibility to
carry over lower bounds (hardness results) and upper bounds (membership results) with
respect to some fragment parameterized by a clone. In the world of circuits this result is
very strong, i.e., without any restrictions.

Theorem 1.3.
Let Γ(B) be a decision problem defined over circuits and only uses Boolean gates from B.
Then Γ(B) 6cd Γ(B

′) for all B ⊆ [B ′] holds.

In order to prove this theorem the simple idea is simply to substitute the gates in B with
the ones in B ′.

Unfortunately in the propositional world of formulas this theorem does not even hold
for 6p

m-reductions which is explained in the following example.

Example. Let B = {⊕} and B ′ = {∧,¬}. Then it holds that B ⊆ [B ′]. Now consider
the formula family (ϕn)n∈N such that ϕn =def x1 ⊕ · · · ⊕ xn. Now it holds that x⊕ y ≡
¬(¬(x∧ ȳ)∧¬(x̄∧y)). The size of ϕn over B ′ using this equivalence leads to an formula
which size is exponential in n. Thus such canonical reduction does not need to fulfill the
polynomial time computable property of the reduction.

However, by a specific precondition the result can be pulled to hold in the propositional
world. In this context the term of short representations has to be considered. The main
idea is to consider the representation of formulas which do not exponentially enlarge
formulas when substituting them with the new function happens.

Definition (Short representations). If B is a set of Boolean functions, then an n-ary
Boolean function f ∈ Bn has a short representation in B if and only if there is a B-formula
ϕ (which uses only connectives from B) with f ≡ ϕ and each variable of f occurs at most
once in the body of ϕ. Also we say B efficiently implements f. Similarly if B ′ is a set of
Boolean functions, we say that B ′ efficiently implements B iff for all functions f ∈ B the
set B ′ efficiently implements f.

Hence, we immediately can deduce that the investigated representation of the exclusive-
or function in the previous example is not a short representation because both arguments
of the function occur twice in the substitution.

Corollary 1.4.
Let B be a finite set of Boolean functions and Γ(B) be a decision problem over Boolean
formulas using functions in B. Let B ′ be a set of Boolean functions such that B ′ efficiently
implements B. Then Γ(B) 6p

m Γ(B ′) for B ⊆ [B ′].

The following result shows that in several important clones the short representation of
the function in their respective base is given. This lemma will be used later on in several
proofs.

8

Lemma 1.5 (Short representations, [Lewis, 1979, Schnoor, 2010, Thomas, 2010]).
Let B be a finite set of Boolean functions.

(1.) If [B] = BF, then B efficiently implements {∨,∧,¬}.

(2.) If N ⊆ [B], then B efficiently implements ¬ via some formula f. If [B] ⊆ L, then f
can be chosen in such a way that the variable x occurs in f as the last symbol.

(3.) If [B] = L, then B efficiently implements ⊕.

(4.) If L2 ⊆ [B] ⊆ L, then B efficiently implements x⊕ y⊕ z.

(5.) If [B] ∈ {V, M} ([B] ∈ {E, M}, resp.), then B efficiently implements ∨ (resp. ∧).

Proof. (1.)+(2.) First we show that ¬ is efficiently implemented. Since [B] = BF is
functional complete there exist B-formulas >B,⊥B,φ¬

B which are equivalent to >,⊥, and
¬x. W.l.o.g. assume that >B and ⊥B do not contain occurrences of x.

If φ¬
B contains only one occurrence of x then φ¬

B is the required formula representing
¬. Otherwise φ¬

B has n > 2 occurrences of x. Any easy induction now proves that
substituting either the first or the second occurrence of x in φ¬

B leads to the desired
formula representing ¬. The cases ∧ and ∨ are left as an exercise.

(3.) Since L ⊆ [B] there is a B-formula f(x,y) such that f represents x ⊕ y. Since
[B] ⊇ L, we know f#(x1, . . . , xn) represents a function of the form c⊕ xi1 ⊕ · · · ⊕ xik for
some c ∈ {0, 1} and i1, . . . , ik ∈ {1, . . . ,n}. Obviously we can replace all but two of the
variables by 0 and end up with a formula for ⊕ having exactly one occurrence of each
variable.

(4.) Let L2 ⊆ [B] and let g(x,y, z) ∈ [B]. As g is affine the value of g does not change if
we replace two occurrences of any variable with a fresh variable t. Assume x occurs an even
number of n-times in g. Thus there is a function g ′ such that g ′(y, z, t) ≡ y⊕z 6≡ g(x,y, z)
leading to a contradiction when [B] = L2 63 y⊕ z. Similarly one can argue for y and z.
Hence x,y, and z occur an odd number of times. If we now replace all but one occurrence
of each x,y, and z with t, we get a function g ′(x,y, z, t) ≡ x ⊕ y ⊕ z and all variables
occur exactly once.

(5.) We will prove the statement for ∨. The case for ∧ follows from the duality
principle. Again, assume that n > m > 2 denotes n occurrences of x and m of y in
ϕ(x,y) ≡ x ∨ y and ϕ(x,y) is minimal w.r.t. the occurrences of its variables. Order
the variables and define ϕ#(x1, . . . , xn,y1, . . . ,ym). Since > ∈ [B] we can construct a
B-formula which is equivalent to

ϕ ′(x,y) =def ϕ#(x1/1, x2/x, . . . , xn/x,y1/y, . . . ,ym/y).

As ϕ was chosen minimal the formula ϕ ′(x,y) does not represent x∨ y. Since [B] ⊆ M
the function represented by ϕ# is monotone whence ϕ ′(x/α,y/β) > α ∨ β holds for
α,β ∈ {0, 1}. Thus it holds that

ϕ ′(x/0,y/1) = ϕ ′(x/1,y/0) = ϕ ′(x/1,y/1) = 1.

9

Now assume that ϕ ′(x/0,y/0) = 0 holds. This implies that ϕ ′ represents ∨ which is
a contradiction to ϕ’s minimality. Hence ϕ ′(x/0,y/0) = 1 must hold which leads to
ϕ ′(x/α,y/β) = 1 for all α,β. In particular we get

ϕ ′(x/0,y/0) = ϕ#(x1/1, x2/0, . . . , xn/0,y1/0, . . . ,ym/0) = 1,

and since ϕ# is of course monotone, we have

ϕ#(x1/1, x2/α2, . . . , xn/αn,y1/β1, . . . ,ym/βm) = 1 (?)

for all α2, . . . ,βm ∈ {0, 1}. Since ⊥ ∈ [B] we can construct the formula

ϕ ′′(x,y) =def ϕ(x1/x, x2/0, x3/x, . . . , xn/x,y1/y, . . . ,ym/y).

Now observe that the following holds:

ϕ ′′(x/1,y/0)
(?)
= ϕ#(x1/1, x2/0, x3/1, . . . , xn/1,y1/0, . . . ,ym/0) = 1

ϕ ′′(x/1,y/1) > ϕ ′′(x/1,y/0) = 1 (ϕ ′′ is monotone)

ϕ ′′(x/0,y/1) = ϕ(x/0,y/1) = 1 (choice of ϕ)

ϕ ′′(x/0,y/0) = ϕ(x/0,y/0) = 0 (choice of ϕ).

Hence ϕ ′′ represents ∨, and ϕ ′′ has one variable less than ϕ which contradicts the
minimality of ϕ. Thus ϕ contains only two variable occurrences. �

1.3. Propositional Logic and Satisifability

Atomic formulas are the constant functions >,⊥, and every atomic proposition (or
variable) p ∈ PROP where PROP is the set of all atomic propositions. If B be a finite
set of Boolean functions, then the set of all propositional formulas restricted to B, in
symbols PL(B), is defined inductively via ϕ ::= p | f(ϕ, . . . ,ϕ), for p ∈ PROP and for all
f ∈ B. For the case B = {∧,¬} it holds that PL(B) consists of the full set of propositional
formulas, denoted by only PL, as [B] = BF. Further slightly abusing the notation we also
write PL(B) to denote the set of all propositional formulas ϕ defined over functions from
B if B is a clone. For a given formula ϕ ∈ PL let denote Vars(ϕ) denote the set of the
variables in ϕ.

An assignment θ is a function θ : {x1, . . . , xn} → {>,⊥} for n ∈ N. Now define the
extended assignment function θ̂ : PL→ {>,⊥} as follows in the usual inductive way:

θ̂(p) =def θ(p), θ̂(>) =def >, θ̂(⊥) =def ⊥
θ̂(f(ϕ1, . . . ,ϕn)) =def f(θ̂(ϕ1), . . . , θ̂(ϕn)),

where p ∈ PROP, f ∈ Bn, and ϕi ∈ PL for 1 6 i 6 n ∈ N. Let B be a set of Boolean
functions. We say a formula ϕ ∈ PL(B) is satisfiable if and only if there exists an
assignment θ such that θ̂(ϕ) = >; the corresponding problem will be denoted by SAT(B),
similarly if B is a clone.

10

Theorem 1.6 (Lewis’ Dichotomy Theorem, 1979).
Let B be a set of Boolean functions. If 9 ∈ [B], then SAT(B) is NP-complete. For any
other case SAT(B) ∈ P is true.

Proof. Due to Cook’s famous theorem from 1971 the full fragment SAT(BF) is NP-
complete in combination with Lemma 1.5. At first observe that [9] = S1 ⊃ E2 = [x∧ y]
and also [S1 ∪ {>}] = BF (cf. Figure 1.1), thus B∪ {>} efficiently implements {∧,∨,¬} for
[B] ⊇ S1 by Lemma 1.5. By Corollary 1.4 we can conclude that SAT(B∪ {>}) is NP-hard.
Finally we need to prove that SAT(B ∪ {>}) 6p

m SAT(B). Substitute every occurrence of
the constant function > in ϕ with a fresh variable t and let denote this change by ϕ|>/t.
Then it holds that ϕ|[>/t] ∧ t is satisfiable iff ϕ is satisfiable.

Now we turn towards the polynomial time cases which must correspond to the remaining
clones, that is, with R1, M, D, and L we have four cases to differentiate. For R1 every
formula is 1-reproducing, thus satisfiable. Every monotone formula ϕ is satisfiable iff the
assignment which maps every variable to true satisfies ϕ. Every D-formula is self-dual,
thus either the all 1’s assignment satisfies ϕ or the all 0’s assignment. Finally consider
the case L. Since {⊕,>} is a basis for L we consider only formulas over these functions.
Algorithm 1.1 on page 11 solves this case in polynomial runtime. �

Algorithm 1.1: Procedure deciding SAT(B) for [B] ⊆ L in polynomial time.

Input :ϕ ∈ PL(B) with [B] ⊆ L
1 rename the variables in ϕ to x1, . . . , xn;
2 rename the variables xi to xi,j if it is the jth occurrence of xi for 1 6 i 6 n and some
1 6 j ∈ N;

3 ϕ is then equal to

ϕ ′ ≡ t1 ⊕ t2 ⊕ · · · ⊕ t` ⊕ x1,1 ⊕ . . .⊕ x1,m1
⊕ · · · ⊕ xn,1 ⊕ · · · ⊕ xn,mn

,

where `,m,mν ∈ N for 1 6 mν 6 m, and ` is the number of >’s in ϕ;
4 compute S := {ti | 1 6 i 6 `} ∪ {xi,j | 1 6 i 6 n, 1 6 j 6 mi};
5 if ` ≡2 1 then delete t2, . . . , t` from S else delete t1, t2, . . . , t` from S;
6 for i = 1, . . . ,n do
7 if mi ≡2 1 then delete xi,2, . . . , xi,mi

from S else delete xi,1, xi,2, . . . , xi,mi
from S;

8 if S 6= ∅ then return true else return false;

1.4. Expressivity of Propositional Logic

With respect to the end of this lecture where we turn towards Descriptive Complexity,
we want to mention what one can express with propositional logic at all. Consider the
graph coloring problem

Problem (Colorability)
Input: A graph G = (V,E), where V is the set of vertices and E is the set of edges; a

natural number k of colors.

11

Question: Can all nodes v ∈ V be colored with one of the k colors such that for every
edge (u, v) ∈ E the color of u is different from the color of v?

Of course it must be possible to encode such a problem into propositional logic as we
know from the lecture Komplexität von Algorithmen (Complexity of Algorithms) that
graph coloring is NP-complete.

Sketch of Construction. We use |V | ·k propositions pij where 1 6 i 6 |V | and 1 6 j 6 k
denoting that ”Node i has color j”. Further we have to say that

• Each node has (at least) one color:
∧|V |
i=1

∨k
j=1 pij

• Each node has no more than one color:
∧|V |
i=1

∧k
j=1

(
pij → ∧

` 6=j ¬pi`

)
• Nodes connected in G have different colors:

∧
(u,v)∈E

∧k
j=1(pf(u)j → ¬pf(v)j), where

f(u) is equal to the number of vertex u ∈ V.

Thus the formula ϕG,k which is a conjunction of the three items above is satisfiable iff G
is colorable with k colors.

Observation. If we are able to state the reduction from Colorability to SAT(B) sketched
above with a set of Boolean functions B such that S1 6⊆ [B] holds, then P = NP by
Theorem 1.6. More formally, given an instance (G,k) of the Colorability problem, if there
exists a 6p

m-reduction computed by f s.t. f(G,k) = φ and φ ≡ ϕG,k s.t. φ ∈ SAT(B) for
S1 6⊆ [B], then P = NP.

12

2. Modal Logic

It really is a nice theory. The only defect I think it
has is probably common to all philosophical
theories. It’s wrong.

(Saul Kripke, Naming and Necessity (1980, p. 64))

Modal logics origin can be dated back to until Aristoteles, or more recently, to Leibniz
who worked with the expressibility of ”possibly” and ”necessarily” in logic. Due to a
lack of these expressions in propositional logic an extension is motivated. This extension
yields the ♦ and � operator. Given a set B of Boolean functions the modal logic ML(B)
is defined via the following grammar

ϕ ::= ψ | �ϕ | ♦ϕ | f(ϕ, . . . ,ϕ),

where ψ ∈ PL(B) and f ∈ B; it holds that ♦ϕ =def ¬�¬ϕ. For the semantical point of
view we first have to deal with an appropriate assignment model which extends the usual
assignments of variables in order to cope with the introduction of the two new operators.

2.1. Frames

Definition. A frame F is a tuple F = (W, R), where W is a set of worlds and R =
{R1, . . . ,Rn} is a finite set of transition relations such that Ri ⊆W×W holds for 1 6 i 6 n.
If |R| = 1 holds then we also write (W,R).

Usually unless otherwise mentioned we will stick to a single modality in this lecture. Now
we are able adjust the definition of assignments to the modal world.

Definition. Let PROP be the set of atomic propositions. A model is a tuple M = (F,V)
such that F = (W, R) is a frame and V : PROP→ P(W) is a valuation function.

Informally speaking, the function V labels propositions to states, or says in which points
of the frame a proposition holds. The frame F can be seen as a transition system. The
corresponding semantics of modal logic formulas are defined as follows.

Definition. Let M = (F,V) be a model over the frame F = (W, R). Then the satisfaction
relation |= is defined inductively as follows:

M,w |= > always holds,
M,w |= ⊥ never holds,
M,w |= p iff p ∈ PROP ∧w ∈ V(p),
M,w |= �Rϕ iff ∀v ∈ R(w) : M, v |= ϕ,
M,w |= f(ϕ1, . . . ,ϕn) iff f(JM,w |= ϕ1K, . . . , JM,w |= ϕnK) = >,

13

Name Conditions First-order description

K – –
D serial (total) ∀v ∈W∃w ∈W : vRw
T reflexive ∀w ∈W : wRw
K4 transitive ∀u, v,w ∈W : (uRv∧ vRw)→ uRw

S4 reflexive, transitive T and K4
S5 reflexive, transitive, Euclidean S4 and ∀u, v,w ∈W : (uRw∧ vRw)→ uRv

Table 2.1.: Frame classes. The last two columns refer to a frame (W,R)

where ϕ ∈ ML, f ∈ Bn, R ∈ R and JM,w |= ϕiK = > iff M,w |= ϕi holds for 1 6 i 6 n.

Notation: Sometimes in literature �R is written [R], or resp., ♦R is written as 〈R〉.
Given a set of Boolean formulas B, we say a modal logic formula ϕ ∈ ML(B) is satisfiable

w.r.t. the frame class C if and only if there exists a model M = (F,V) with F = (W, R)
such that F ∈ C holds and there exists some w ∈W with M,w |= ϕ (sometimes we also
write M |= ϕ without mentioning the world explicitly). We denote this problem with
C-ML-SATi(B) where i ∈ N denotes the number of modalities. Usually, whenever C = K,
we just write ML-SATi(B), and if also [B] = BF holds we write ML-SATi. Whenever we
want to speak only about the case i = 1 we just omit the upper index and just write
ML-SAT which will be our focus for this lecture.

Often one wants to consider only a specific set of frames, e.g., only total frames
modeling a system which never terminates. Table 2.1 shows some important properties
of frames and their first order description.

2.2. Enforcing the Size of a Model

In this section we want to investigate what sizes of models can be enforced by a given
modal formula.

Theorem 2.1.
There exists a family of modal formulas (ϕn)n∈N ∈ ML-SAT with |ϕn| ∈ O(n2) such that
for any model M with M |= ϕn it holds that |M| > 2n.

Proof. In the following we will express a binary tree with a modal formula. There the
bits will correspond to the propositions p1, . . . ,pn whose all possible combinations will
occur in the leafs of the tree. The formula ϕn will use two shortcuts:

branch(pi) =def ♦pi ∧ ♦¬pi
store(pi) =def (pi → �pi)∧ (¬pi → �¬pi).

Now we can define the formula ϕn as follows:

ϕn =def branch(p1)∧

n−1∧
i=1

�i

branch(pi+1)∧

i∧
j=1

store(pj)

 ,

14

where �iϕ =def

i many︷ ︸︸ ︷
� · · ·�ϕ. For the correctness, any model M such that M |= ϕn holds

contains a complete binary tree of depth n which consists of 2n leafs. For each variables
subset of S ⊆ {p1, . . . ,pn} there is a leaf world ` ∈M such that ` ∈ V(p) for every p ∈ S.�

An R-path π in a given frame F = (W, R) for R ∈ R is a sequence of states π =
w1, . . . ,wn such that for every 1 6 i 6 n ∈ N there is an R ∈ R s.t. wiRwi+1. Further
we say π is infinite if |π| =∞ (note: this can be the case for finite F). Furthermore we
say that π is exponentially deep w.r.t. k ∈ N iff π is an R-path, 2k < n, and wi 6= wj for
all 1 6 i 6= j 6 2k hold.

Let E and A denote existential/universal global modalities where their semantics is
defined w.r.t. some model M = (F,V) as follows

M |= Eϕ iff ∃w ∈ F : M,w |= ϕ,
M |= Aϕ iff ∀w ∈ F : M,w |= ϕ.

We write ML-SATE,A to denote that global modalities are allowed. Using this operator
allows us to construct formulas which require exponentially deep models.

Theorem 2.2.
There exists a family of modal formulas (ψn)n∈N ∈ ML-SATA with |ψn| ∈ O(n2) such
that for any model M with M |= ψn it holds that |M| > 2n and contains exponentially
deep paths w.r.t. n.

Proof. Similarly as before we will use the idea of a binary counter which, this time,
counts up on a path in the model and takes all values from 0 to 2n − 1 in consecutive
states. Note that the defined formulas have length only in O(n2). At first we will define
two formulas

ψinit =def ¬p1 ∧ · · ·∧ ¬pn,

ψincrease =def

n∧
i=1

((
¬pi ∧

∧
j<i

pj

)→ (
�(pi ∧

∧
j<i

¬pj)∧
∧
j>i

store(pj)
))

,

where empty conjunctions are set to true. Now set

ψn =def ψinit ∧ A(♦>∧ψincrease).

In order to prove correctness we have to show that for every model M = ((W,R),V) it
holds that there are w0, . . . ,w2n−1 ∈ W and wiRwi+1 for i < 2n − 1 holds. For w0 it
holds that for any proposition pi we have w0 /∈ V(pi) by ψinit. Then every world must
be total by ♦> in the A subformula. ψincrease requires the behavior of a counter. Let
~x ∈ {0, 1}n be a short description of which propositions hold in world x. Then consider
a world w ∈ W such that the ith bit of ~w is false and all bits j < i are set to true.
Then in the successor world v of w bit i is true and all bits j < i are set to false; and
the remaining bits k > i are maintained. Hence ~w + 1 = ~v encodes the next larger bit
vector. This observation holds until there is no such bit i which is equal to 0 wherefore
all bits hold. Hence there are 2n many such situations and all are connected wherefore
the theorem applies. �

15

2,φ

d 1,ψ,5 d 1,ψ,4

2,4,φ 2,4,φ 2,ψ,3

d
1,2,ψ

d
1,2,ψ

v,d
3,4,5,φ

d
1,2,ψ

d
1,2,ψ

v,d
3,4,5,φ

d
1,2,ψ

φ = ♦

5︷ ︸︸ ︷
�(

4︷ ︸︸ ︷
♦(d⊕ψ︸ ︷︷ ︸

3

))

ψ = �(

2︷ ︸︸ ︷
♦(d⊕ v︸ ︷︷ ︸

1

))

Figure 2.1.: An example of a run of Algorithm 2.1. Note that the formulas in the example
use the function ⊕ which here is not expressed with ∧,¬ due to convenience.
Propositions in the model are d, v.

2.3. Model Checking and Ladner’s Algorithm

Model checking deals with the question whether a given model satisfies a given formula.
From a computer scientific aspect this is the question if a given computer program
(the model) satisfies its specification (the formula). As we will see later this problem,
the verification of the correctness of a given model w.r.t. a formula, in general, is not
necessarily easier than the satisfiability problem itself. At first before we turn towards
Ladner’s tableaux algorithm we will visit the model checking algorithm for modal formulas.
Formally the model checking problem for modal logic is defined as:

Problem (ML-MC)
Input: A model M = ((W, R),V), w0 ∈W, a formula ϕ ∈ ML.

Question: Does M,w0 |= ϕ hold?

For modal logic the problem can be efficiently solved in polynomial time.

Theorem 2.3.
ML-MC ∈ P.

Proof. The idea is that start to label subformulas of the given formula ϕ to worlds
where they hold. We do this beginning at the smallest such subformulas until we reach
the largest one which is ϕ itself. Then we only have to check if ϕ is labelled in the given
world w0.

Algorithm 2.1 runs in time O(|M|2 · |ϕ|). The algorithm always halts because the outer
while loop eventually is not satisfied. The correctness follows from an induction on the
formula size and the corresponding labels. Figure 2.1 shows how Algorithm 2.1 works for
an example. �

Now we turn towards the modal satisfiability problem. The following theorem is proven
through a tableaux algorithm which was stated explicitly by Ladner in 1977. Ladner’s
algorithm and the correctness proof inherently grounds on Kripke’s considerations and
proofs [Kripke, 1963].

16

Algorithm 2.1: Procedure deciding ML-MC in polynomial time.

Input : Model M = ((W,R),V),w0 ∈W, ϕ ∈ ML
1 initially set the labeling function ` : W → SF(ϕ) to `(w) = ∅ for all w ∈W;
2 forall the ψ ∈ SF(ϕ) ordered w.r.t. |ψ| do
3 case ψ = x ∈ PROP
4 forall the w ∈W s.t. x ∈ V(w) do `(w)← `(w) ∪ {ψ} ;

5 case ψ = α∨ β
6 forall the w ∈W s.t. α ∈ `(w) or β ∈ `(w) do `(w)← `(w) ∪ {ψ} ;

7 case ψ = α∧ β
8 forall the w ∈W s.t. α ∈ `(w) and β ∈ `(w) do `(w)← `(w) ∪ {ψ} ;

9 case ψ = ¬α
10 forall the w ∈W s.t. α /∈ `(w) do `(w)← `(w) ∪ {ψ} ;

11 case ψ = ♦α
12 forall the w ∈W s.t. α ∈ `(w) do
13 forall the w ′ ∈W with w ′Rw do `(w ′)← `(w ′) ∪ {ψ} ;

14 case ψ = �α
15 forall the w ∈W do
16 if ∀w ′ ∈W with wRw ′: α ∈ `(w ′) then `(w)← `(w) ∪ {ψ} ;

17 return true iff ϕ ∈ `(w0)

Theorem 2.4 ([Kripke, 1963, Ladner, 1977]).
ML-SAT ∈ PSPACE.

Proof. The return value of the procedure World(T,F,T ′,F ′) in Algorithm 2.2 is true iff
there exists a model M = ((W,R),V) and a world w ∈W such that

M,w |=
∧
φ∈T

φ∧
∧
φ∈F

¬φ∧
∧
φ∈T ′

�φ∧
∧
φ∈F ′

♦¬φ.

Informally, the procedure returns true iff there is a world in which all T-formulas are
true, all F-formulas are false, in each world accessible from w all T ′-formulas are true,
and for each F ′-formulas φ there is a successor world from w falsifying φ.

Claim. A given modal formula ϕ ∈ ML is in ML-SAT iff World({φ}, ∅, ∅, ∅) ≡ >.

Proof of Claim. Follows by an induction on the formula length. a

Claim. World requires polynomial space.

Proof of Claim. The algorithm is implemented on a Turing machine by simulating a
stack. Each subformula on the stack is represented by one of four different pointer types
(one for each set). Let n denote the number of subformulas of ϕ. Further the storage at
each level of the recursion is O(n · logn). In the following we will show that the procedure
World has a recursion depth of O(n). For a finite set S of formulas define |S| =

∑
φ∈S |φ|.

17

We prove by induction on n = |T|+ |F|+ |T ′|+ |F ′| that World(T,F,T ′,F ′) has recursion
depth 6 2n+ 1. Denote the first recursive call of World(T,F,T ′,F ′) with (T1,F1,T

′
1,F
′
1)

and let the claim hold for all i < n. If T ∪ F 6⊆ PROP then |T1|+ |F1|+ |T ′1|+ |F ′1| < n as
in every case of (3-9) one subformula is removed. If T ∪ F ⊆ PROP then line (11) or (12)
is executed (possibly without removing a subformula), but can lead only to a recursive
call where F ′ is empty. Thus every two steps of recursion reduces |T|+ |F|+ |T ′|+ |F ′| by
at least 1. Therefore the procedure has a recursion depth 6 2|ϕ|+ 1. a

Algorithm 2.2: Procedure World, conjunction over the empty set is defined to
be >
World(T,F,T ′,F ′):
1 if T ∪ F 6⊆ PROP then
2 choose ψ ∈ (T ∪ F)\PROP;
3 if ψ = ¬χ and ψ ∈ T then return World(T\{ψ},F ∪ {χ},T ′,F ′);
4 if ψ = ¬χ and ψ ∈ F then return World(T ∪ {χ},F\{ψ},T ′,F ′);
5 if ψ = χ1 ∧ χ2 and ψ ∈ T then return World((T ∪ {χ1,χ2})\{ψ},F,T ′,F ′);
6 if ψ = χ1 ∧ χ2 and ψ ∈ F then
7 return World(T, (F ∪ {χ1})\{ψ},T

′,F ′)∨ World(T, (F ∪ {χ2})\{ψ},T
′,F ′);

8 if ψ = �χ and ψ ∈ T then return World(T\{ψ},F,T ′ ∪ {χ},F ′);
9 if ψ = �χ and ψ ∈ F then return World(T,F\{ψ},T ′,F ′ ∪ {χ});

10 if T ∪ F ⊆ PROP then
11 if T ∩ F 6= ∅ then return ⊥;
12 if T ∩ F = ∅ then return

∧
ψ∈F ′World(T ′, {ψ}, ∅, ∅);

The following proof requires the notion of quantified Boolean formulas which are
defined inductively as follows. It holds that the constants >,⊥ ∈ QBF. If x is a
variable, then x ∈ QBF. If φ,ψ ∈ QBF then φ ∧ ψ,φ ∨ ψ, ∃xφ,∀xφ ∈ QBF, where
∃xφ = φ(x/>)∨ φ(x/⊥) and ∀xφ = φ(x/>)∧ φ(x/⊥). Given a formula ϕ ∈ QBF we
say ϕ is closed if all variables in ϕ are quantified. Then we define QBF-VAL as the set of
all closed formulas ϕ ∈ QBF such that ϕ ≡ > and ϕ is of the form ϕ = Q1p1 · · ·Qnpnψ
and ψ is a quantifier-free propositional 3CNF formula.

Theorem 2.5.
ML-SAT is PSPACE-hard.

Proof. We will state a reduction to show that QBF-VAL 6p
m ML-SAT holds. In the

following we use the macros defined in the proof of Theorem 2.1. Let φ = Q1p1 . . .Qnpnψ
be a QBF over variables p1, . . . ,pn. Further assume that ψ is quantifier-free and in
3CNF with m clauses. At first to express a binary tree we will use the formula ϕn from
Theorem 2.1. Here each leaf corresponds to a possible assignment in {0, 1}n encoded via
the propositions pi. Secondly we need to bind the fulfilled clauses to one of its matching
literals:

φclause :=

n∧
i=1

�i

 n∧
j=1

(pj → ∧
C∈C(j)

C)∧ (¬pj → ∧
C∈C ′(j)

C)

 ,

18

where C(j) =def

{
C | pj is in clause C

}
and C ′(j) =def

{
C | ¬pj is in clause C

}
.

Now we need to make sure that the clause propositions are labelled iff a matching
literal is labelled:

φmatch :=

n∧
i=1

�i

 m∧
j=1

Cj → (`j1 ∨ `j2 ∨ `j3)

 ,

where `ji corresponds to the ith literal in the jth clause.
Lastly we can state the complete reduction f : QBF→ ML defined as

Q1p1 . . .Qnpnψ ∈ QBF-VAL iff ϕn ∧ φclause ∧ φmatch ∧ ∆1 . . .∆n

m∧
i=1

Ci ∈ ML-SAT,

where ∆i = � if Qi = ∀ and ∆i = ♦ if Qi = ∃ holds for 1 6 i 6 n.
Let φ := Q1p1 · · ·Qnpnψ be the given QBF and f(φ) the constructed modal formula

from above.
φ ∈ QBF-VAL ⇒ f(φ) ∈ ML-SAT. Now let Θ be one of the sets of assignments

according to Q1 · · ·Qn which all satisfy ψ. We describe how to construct a satisfying
model M for f(φ). M will include the binary assignment tree of depth n such that
in each leaf there exists a corresponding labeling of propositions pi depending on the
assignment. For each leaf if p holds then label all clause propositions C to this leaf where
p is in clause C. In particular, this means that for every leaf which corresponds to a
θ ∈ Θ the propositions C1, . . . ,Cm are added to the leaf. For each non-leaf world label
the corresponding clauses to the world. Now this model satisfies

• ϕn as it is a correct encoded assignment tree,

• φclause because whenever a proposition p holds in a world w we added the respecting
clause proposition to the world,

• φmatch because only if a proposition p holds in a world w then the corresponding
clause propositions were added,

• ∆1 · · ·∆n
∧m
i=1Ci because the leafs corresponding to Θ are those which are defined

by the ∆i.

φ /∈ QBF-VAL⇒ f(φ) /∈ ML-SAT. Further assume for contradiction that M (wrongly)
satisfies f(φ). Hence M must include a complete binary assignment tree and the root
of the tree must satisfy f(φ). Let L be the set of leafs in this tree corresponding to the
∆i. Now for each ` ∈ L it must hold M, ` |=

∧m
i=1Ci. Hence ` ∈ V(C1) ∩ · · · ∩ V(Cm) for

every ` ∈ L. Thus for every ` ∈ L and every clause at least one of its literals must be
satisfied in `. Consequently we can deduce that for each assignment corresponding to a
leaf it satisfies ψ. But therefore Q1p1 · · ·Qnpnψ is equal to > which is a contradiction.�

Corollary 2.6.
ML-SAT is PSPACE-complete.

Hence under the assumption that P 6= PSPACE is true, the question for satisfiability of
modal formulas is much more difficult than model checking them.

19

2.4. Generalized Satisfiability of Modal Logic

In this section we aim to prove a result for satisfiability in modal logic which is similar
to Theorem 1.6. Therefore we will use Post’s lattice as tool in order to determine the
influence of Boolean functions on the complexity of the problem ML-SAT. The following
theorem states the result and the proofs for all cases are split up into several subresults.

Theorem 2.7 ([Hemaspaandra et al., 2010]).
Let B be a finite set of Boolean functions. Then the following hold:

(1.) If [B] ⊆ R1, D, V, or L, then ML-SAT(B) ∈ P.

(2.) If E0 ⊆ [B] ⊆ E, then ML-SAT(B) is coNP-complete.

(3.) If S11 ⊆ [B] then ML-SAT(B) is PSPACE-complete.

(4.) Otherwise, S1 ⊆ [B] and ML-SAT(B) is PSPACE-complete.

All completeness results are with respect to 6p
m reductions.

Proof. The theorem is proven by several upcoming results. The results are visualized in
Figure 2.4.

(1.) The first two cases are proven in Lemma 2.15. Case V is shown in Lemma 2.16.
The affine cases are covered in Lemma 2.17.

(2.) Proven by Lemma 2.14 and Corollary 2.13.

(3.) Proven by Corollary 2.11 in combination with Lemma 2.9.

(4.) The lower bound is proven by Lemma 2.8. The upper bound for BF follows from a
straightforward modification of the hard coded Boolean cases in Algorithm 2.2. �

Intractable cases

Lemma 2.8.
If B is a finite set of Boolean functions s.t. S1 ⊆ [B] then ML-SAT({∧,¬}) 6p

m ML-SAT(B).

Proof. Let φ ∈ ML(∧,¬). We show:

ML-SAT(∧,¬) 6p
m ML-SAT(B ∪ {>}) 6p

m ML-SAT(B).

From Figure 1.1 it follows that [B ∪ {>}] = BF. By Lemma 1.5 we have short represen-
tations for ∧ and ¬. Every occurrence of > in φ is replaced with a fresh variable t. Now

add the conjunct ∧
∧md(φ)
i=0 �it, where md(φ) denotes the modal depth of φ (nesting

depth of modalities � and ♦). Insert paranthesis in such a way we get a tree of ∧’s of
logarithmic depth and express the ∧’s with their (possibly large) representation, which
exists since [B] ⊇ S1 ⊃ E2 = [∧] with the result only increasing polynomially in size (due
to the logarithmic nesting depth). �

20

Lemma 2.9.
If B is a finite set of Boolean functions s.t. S11 ⊆ [B] then ML-SAT({∧,∨,⊥}) 6p

m

ML-SAT(B).

Proof. Observe that [S11∪{>}] = M. Analogously to Lemma 2.8 as M ⊆ [B∪{>}] ⊆ BF.�

The following theorem deals with a restricted version of modal logic which was studied
by Edith Hemaspaandra in 2005.

Theorem 2.10 (Poor Man’s Satisfiability; Thm. 6.7 in [Hemaspaandra, 2005]).
Satisfiability for modal formulas without literals and only the constant false is PSPACE-
complete.

Proof. In 1995 Halpern has proven that the restriction of modal satisfiability with one
propositional variable is PSPACE-complete [Halpern, 1995] and we will reduce further on
to zero propositions.

Assume given φ consists of one proposition p, and operators in {¬,∧,�}. Proof idea:
Supposing φ is satisfiable implies that in each satisfying model M = ((W,R),V) every
path has length 6 md(φ). Now we extend the model in such a way that this assignment
is encoded into the frame. Define M ′ = ((W ′,R ′),V ′) as follows:

W ′ =W ∪ {w1,w2, . . . ,wmd(φ)+1},

R ′ = R ∪ {(wi,wi+1) | 1 6 i 6 md(φ)} ∪ {(w,w1) | w ∈W ∧M,w |= p},

V ′ = ∅, as we do not have any propositions this function is irrelevant.

Hence in M ′ all information of M is still contained plus there exists a maximal path of
length md(φ) + 1 from a world w ∈W in M ′ iff M,w |= p. We will simulate p by the
formula ♦md(φ)+1�⊥ (note that R does not need to be total).

Supposing M,w |= �ψ holds for an arbitrary �ψ ∈ SF(φ) yields the requirement
that we do not force ψ to be true on the new world w1. Hence we will enforce that
ψ holds in all successor world that do not have a maximal path of length md(φ). Let
f(φ) = fmd(φ)(φ), and fk(φ) be defined inductively as

fk(p) = ♦
k+1�⊥,

fk(¬ψ) = ¬fk(ψ),

fk(ψ∧ χ) = fk(ψ)∧ fk(χ),

fk(�ψ) = �(♦
k�⊥∨ fk(ψ)).

Now it holds that for all w ∈W, all formulas ψ consisting of the only proposition p s.t.
md(ψ) 6 md(φ), M,w |= ψ if and only if M ′,w |= fmd(φ)(ψ). If φ is satisfiable then
f(φ) is satisfiable.

Now the opposite case. Suppose that f(φ) is satisfiable. Let M ′ = ((W ′,R ′),V ′) be an
acyclic model and w0 ∈W ′ s.t. M ′,w0 |= f(φ) holds. Define M = ((W,R),V) as follows:

W = (W ′\{w ∈W ′ | M ′,w |= ♦md(φ)�⊥}) ∪ {w0},

R = R ′ ∩ (W ×W),

V(p) = {w ∈W | M ′,w |= ♦md(φ)+1�⊥}.

21

Again it holds that for all w ∈ W, all formulas ψ with the only proposition p s.t.
md(ψ) 6 md(φ), M,w |= ψ iff M ′,w |= fmd(φ)(ψ). As f is clearly computable in
polynomial time this proves the theorem. �

Corollary 2.11.
ML-SAT({∧,∨,⊥}) is PSPACE-hard with respect to 6p

m.

Proof. Theorem 2.10 talks about formulas with the operators ∧,∨,¬,�,♦,⊥. Now
translate the produced formula f(φ) into NNF, then substitute constant > by fresh
variable and proceed as in Lemma 2.8. �

Theorem 2.12 (Poor Man’s Conjunctive Satisfiability, [Donini et al., 1992]).
Unsatisfiability for modal formulas with only conjunction and constant ⊥ is NP-hard.

Proof. We will state a reduction from the NP-complete problem

Problem (All-Pos-One-In-Three-3SAT)
Input: A formula φ =

∧m
i=1

∨3
j=1 `i,j and `i,j ∈ {x1, . . . , xn}.

Question: Does there exist a traversal, i.e., an assignment θ : {x1, . . . , xn}→ {0, 1} s.t. for
each 1 6 i 6 m there is only one 1 6 j 6 3 s.t. θ̂(`i,j) = 1?

The idea is to associate with every φ a modal formula f(φ) such that φ has a traversal if
and only if f(φ) is not satisfiable. Then the reduction f(φ) is defined as follows

f(φ) = (X1)
2>∧ · · ·∧ (Xn)

2>∧�m⊥

Xi = ∆
1
i · · ·∆mi , ∆

j
i =

{
♦ , if xi ∈ Cj
� , otherwise

for 1 6 i 6 n

The correctness proof for the reduction is omitted (for details see [Donini et al., 1992,
pp. 315]). �

Here we take a look at an example for the reduction instead.

Example. (1.) Let φ = (x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x4 ∨ x5). The modal
formula f(φ) looks as follows

♦��♦��>∧�♦♦�♦♦>∧ ♦♦�♦♦�>∧�♦♦�♦♦>∧ ♦�♦♦�♦>∧�6⊥.

Obviously φ has a traversal θ(x1) = θ(x2) = 1 and θ(x3) = θ(x4) = θ(x5) = 0.
The only possible way to satisfy such a formula is to encode a ”dead end” into the
structure in order to satisfy eventually the last conjunct. The first two conjuncts
together make this impossible to build such kind of structures, wherefore f(φ) is not
satisfiable.

22

Figure 2.2.: Satisfying model for example (2) for Theorem 2.12.

(2.) Let φ = (x1 ∨ x2 ∨ x4)∧ (x2 ∨ x4 ∨ x5)∧ (x1 ∨ x3 ∨ x5)∧ (x2 ∨ x3 ∨ x4). Observe
that there exist no traversal for φ. The resulting formula f(φ) is

♦�♦�♦�♦�>∧ ♦♦�♦♦♦�♦>∧
��♦♦��♦♦>∧ ♦♦�♦♦♦�♦>∧
�♦♦��♦♦�>∧�8⊥,

and it is satisfied in the model depicted in Figure 2.2.

Corollary 2.13.
Let B be a finite set of Boolean function s.t. E0 ⊆ [B]. Then ML-SAT(B) is coNP-hard
w.r.t. 6p

m.

Proof. We reduce from the complement of ML-SAT({∧,⊥}) which is by Theorem 2.12
NP-hard via

ϕ /∈ ML-SAT({∧,⊥}) iff ϕ ′ /∈ ML-SAT(

=E︷ ︸︸ ︷
{∧,⊥} ∪ {>})

iff ϕ ′|[>/t] ∧

md(ϕ)∧
i=0

�it /∈ ML-SAT(B).

Here ϕ ′ uses short representations of ∧ by Lemma 1.5 as we have a basis over E.
The large conjunction of the formula �it is treated in the same way as in the proof of
Lemma 2.8. �

Lemma 2.14.
Let B be a finite set of Boolean function s.t. [B] ⊆ E. Then ML-SAT(B) is in coNP.

Proof. We show the upper bound just for {∧,>,⊥}. A generalization to E is possible
[Hemaspaandra et al., 2010, Lemma 3.12] but uses an approach involving modal circuits.

A given formula φ of this type can be assumed to be of the form

φ = ψ∧
∧
i∈I
�φ�i ∧

∧
j∈J
♦φ♦j ,

23

Algorithm 2.3: Algorithm deciding ML-SAT(E).

1 check(φ ∈ ML(E)):

2 restructure φ to be of the form ψ∧
∧
i∈I�φ

�
i ∧

∧
j∈J ♦φ

♦
j

3 check if the all true assignment satisfies ψ
4 if θ |= ψ then
5 for j ∈ J do

6 if not check
(∧

i∈Iφ
�
i ∧ φ♦j

)
then return false

7 return true

where I, J are finite sets of indices, φ�i ,φ♦j ∈ ML(B) for i ∈ I, j ∈ J and ψ ∈ PL(B).

Then φ ∈ ML-SAT(B) iff ψ ∈ SAT(B) and for all j ∈ J it holds that
∧
i∈Iφ

�
i ∧ φ♦j ∈

ML-SAT(B). This immediately leads to a recursive coNP-algorithm:
Step one can be done in linear time. Step two is due to monotonicity and in step 3 we

do a universal nondeterministic branching. �

Tractable cases

Lemma 2.15.
Let B be a finite set of Boolean functions s.t. [B] ⊆ R1 or [B] ⊆ D hold. Then every
formula in ML(B) is satisfiable.

Proof. Every function in R1 is >-reproducing and therefore it holds that for every
φ ∈ ML(B) is satisfied via M = (({w}, {(w,w)}), {(p, {w}) | p ∈ PROP}).

For every function in f ∈ D it holds that f is self-dual implying that either the all >-
or the all ⊥-assignment satisfies f. Hence a model similar to M can be constructed. �

Lemma 2.16.
Let B be a finite set of Boolean functions s.t. [B] ⊆ V holds. Then ML-SAT(B) is in P.

Proof. A modal circuit is a usual circuit extended by gates for � and ♦. Translate given
ϕ ∈ ML(B) into a modal circuit C. By Theorem 1.3 we can translate C into a circuit C ′

over {∨,>,⊥} without exponential blowups. This circuit C ′ can be seen as a directed
graph. A gate which is a variable, a �, or the constant > is reachable from the output
gate of C ′ if and only if ϕ is satisfiable. This property can be decided in polynomial time
by plain graph search. �

Lemma 2.17.
Let B be a finite set of Boolean functions s.t. [B] ⊆ L holds. Then ML-SAT(B) is in P.

Proof. We present a polynomial time algorithm which uses the syntactic structure of
these formulas by means of modal circuit representation to decide their satisfiability.
Observe that φ⊕ φ ≡ ⊥ holds for any formula φ. Utilizing this property the algorithm
determines the equivalence of two modal circuits, since φ(B) is satisfiable iff φ is not
equivalent to ⊥. Theorem 1.3 again allows us to focus only on {♦,⊥,>,⊕} as �φ ≡

24

♦(φ⊕>)⊕> holds. Further for a set Φ of circuits we write
⊕
Φ to denote

⊕
φ∈Φφ,

and define
⊕
∅ = ⊥. The algorithm accepts its input φ1,φ2 iff φ1 ≡ φ2 iff φ1 ⊕φ2 ≡ ⊥.

The parameter tuple for the first algorithmic call is then (φ,⊥).

(1.) Write φ1 ⊕ φ2 as
⊕
Φ where φ is a set of sub-circuits of φ1 ⊕ φ2 s.t. for every

φ ∈ Φ it holds that φ 6= α⊕ β.

(2.) For every ♦ψ ∈ Φ s.t. ψ ≡ ⊥, remove ♦ψ from Φ.

(3.) For every distinct pair (♦ψ1,♦ψ2) ∈ Φ s.t. ψ1 ≡ ψ2 remove ♦ψ1,♦ψ2 from Φ.

(4.) Accept iff Φ is propositional and
⊕
Φ is not satisfiable.

Cases (2.)-(4.) can clearly be done in polynomial time. The correctness proof for case
(1.) is omitted and can be found in [Hemaspaandra et al., 2010, Thm. 3.19]. �

Example. Consider the formula from Figure 2.1. After substituting �φ with ♦(φ ⊕
>)⊕> we get

♦

(
♦

(
♦

((
d⊕ ♦

(
♦(d⊕ v)⊕>

))
⊕>

)
⊕>

)
⊕>

)
.

Now we start with the procedure call

equivCheck

(
♦

(
♦

(
♦

((
d⊕ ♦

(
♦(d⊕ v)⊕>

))
⊕>

)
⊕>

)
⊕>

)
,⊥

)
.

This leads to the computation depicted in Figure 2.3. The next example shows a
very simple unsatisfiable formula. equivCheck(♦(⊥),⊥) leads in line 2 to the call
equivCheck(⊥,⊥) which accepts, then ♦⊥ is removed. The set Φ contains only ⊥
which is not satisfiable; so accept is returned.

25

rec. call/line result

0/1 Φ =

{
♦

(
♦

(
♦

((
d⊕ ♦

(
♦(d⊕ v)⊕>

))
⊕>

)
⊕>

)
⊕>

)
,⊥

}

0/2 equivCheck

(
♦

(
♦

((
d⊕ ♦

(
♦(d⊕ v)⊕>

))
⊕>

)
⊕>

)
⊕>,⊥

)

1/1 Φ =

{
♦

(
♦

((
d⊕ ♦

(
♦(d⊕ v)⊕>

))
⊕>

)
⊕>

)
,>,⊥

}
1/2 equivCheck

(
♦

((
d⊕ ♦

(
♦(d⊕ v)⊕>

))
⊕>

)
⊕>,⊥

)
2/1 Φ =

{
♦

((
d⊕ ♦

(
♦(d⊕ v)⊕>

))
⊕>

)
,>,⊥

}
2/2 equivCheck

((
d⊕ ♦

(
♦(d⊕ v)⊕>

))
⊕>,⊥

)
3/1 Φ =

{
d,♦

(
♦(d⊕ v)⊕>

)
,>,⊥

}
3/2 equivCheck (♦(d⊕ v)⊕>,⊥)
4/1 Φ = {♦(d⊕ v),>,⊥}
4/2 equivCheck (d⊕ v,⊥)
5/1 Φ = {d, v,⊥}
5/4

⊕
Φ is propositional and satisfiable → return reject to 4/2

4/2 becomes return value reject → skip then-part; remove nothing
4/4

⊕
Φ is not propositional → return reject to 3/2

3/2 becomes return value reject → skip then-part; remove nothing
3/4

⊕
Φ is not propositional → return reject to 2/2

2/2 becomes return value reject → skip then-part; remove nothing
2/4

⊕
Φ is not propositional → return reject to 1/2

1/2 becomes return value reject → skip then-part; remove nothing
1/4

⊕
Φ is not propositional → return reject to 0/2

0/2 becomes return value reject → skip then-part; remove nothing
0/4

⊕
Φ is not propositional → return reject and halt.

Figure 2.3.: The row ”rec. call/line” denotes in which recursion depth we are and what
line of the respective recursive call is executed.

26

BF

Theorem 2.4

R1

Lemma 2.15

R0

R2

M

M1 M0

M2 S21

S31

S1
Lemma 2.8 and

Theorem 2.5

S212

S312

S12

S211

S311

S11
Corollary 2.11

and Lemma 2.9

S210

S310

S10

S20

S30

S0

S202

S302

S02

S201

S301

S01

S200

S300

S00

D

Lemma 2.15

D1

D2

E Lemma 2.14

E1 E0 Theorem 2.12

E2

VLemma 2.16

V0V1

V2

L

Lemma 2.17

L0L1 L3

L2

N

N2

I

I0I1

I2

PSPACE-complete

coNP-complete

∈ P

Figure 2.4.: Complexity classification of ML-SAT(B) w.r.t. Post’s lattice denoting the
corresponding result.

27

3. Variants of Modal Logic

Philosophy, including logic, is not primarily about
language, but about the real world.

(Artur Norman Prior)

After the systematic study on the influence of Boolean operators to modal satisfiability
we now turn towards several different variants of modal logic and their most prominent
decision problems. Usually this is, of course, the satisfiability problem, but for some
variants, e.g., default logic, it will be different. The section about nonmonotonic logics
though investigates a different kind of deducibility which varies from common sense
reasoning how we know it.

Again Post’s lattice will be the recurrent theme through this chapter, but this time we
will take the focus on interesting fragments that are of special interest due to either their
complexity degree or the occurring uncommon concepts.

3.1. Hybrid Logic

Hybrid logics are a very prominent extension of modal logic. They introduce not only
the ability to speak about single points of time (nominals) but also to name such points
(binder operator ↓) and refer back to them (@ operator). We will see how powerful these
extensions are and how they interact in a way to be able to express undecidable problems
within the satisfiability problem of this logic. In the following we will introduce the syntax
and semantics of this modal variant which follows the notion of [Areces et al., 2000].

Let NOM be a countable set of nominals, SVAR be a countable set of variables and
ATOM = PROP ∪ NOM ∪ SVAR. We will stick with the common practice to denote
atomic propositions by p,q, . . ., nominals by i, j, . . ., and variables by x,y, We define
the language of hybrid (modal) logic HL(B) for a finite set of Boolean functions as the
set of well-formed formulas of the form

ϕ ::= a | f(ϕ, . . . ,ϕ) | ♦ϕ | �ϕ |↓ x.ϕ | @tϕ

where a ∈ ATOM, f ∈ B is a Boolean function, x ∈ SVAR and t ∈ NOM ∪ SVAR.
The formulas of HL are interpreted on (hybrid) models M = ((W,R),V), consisting of a

set of states W, a transition relation R : W×W, and a labeling function V : PROP∪NOM→
P(W) that maps PROP and NOM to subsets of W such that |V(i)| = 1 for all i ∈ NOM.
In order to evaluate ↓-formulas, an assignment g : SVAR → W is necessary. Given an
assignment g, a state variable x and a state w, an x-variant gxw of g is defined by
gxw(x) = w and gxw(x

′) = g(x ′) for all x 6= x ′. For any a ∈ ATOM, let [V,g](a) = {g(a)}
if a ∈ SVAR and [V,g](a) = V(a), otherwise.

28

Definition (Semantics of Hybrid Logic). Let M = ((W,R),V) be a hybrid model,
f ∈ B for a finite set of Boolean functions B, and g be an assignment on K. Further let
ϕi ∈ HL(B) for 1 6 i 6 n.

M,g,w |= a iff w ∈ [V,g](a), a ∈ ATOM,
M,g,w |= f(ϕ1, . . . ,ϕn) iff f(JM,g,w, |= ϕ1K, . . . , JM,g,w |= ϕnK) = >
M,g,w |= ♦ϕ iff M,g,w ′ |= ϕ for some w ′ ∈W with wRw ′,
M,g,w |= �ϕ iff M,g,w ′ |= ϕ for all w ′ ∈W with wRw ′,
M,g,w |= @tϕ iff M,g,w ′ |= ϕ for w ′ ∈W such that w ′ ∈ [V,g](t),
M,g,w |=↓ x.ϕ iff M,gxw,w |= ϕ.

A hybrid formula ϕ is said to be satisfiable if there exists a Kripke structure K =
((W,R),V), a w ∈W and an assignment g : SVAR→W such that K,g,w |= ϕ. We say
φ is F-satisfiable for some frame class F if there exists a satisfying Kripke structure of
the frame class F.

The at operator @t shifts evaluation to the state named by t ∈ NOM ∪ SVAR. The
downarrow binder ↓ x. binds the state variable x to the current state. The symbols @x,↓ x. are called hybrid operators.

In order to consider fragments of hybrid logics, we define subsets of the language HL
as follows. Let B be a finite set of Boolean functions and let O be a set of hybrid and
modal operators. We define HL(O,B) to denote the set of well-formed hybrid formulas
using the operators in O and the Boolean connectives in B only.

We define the satisfiability problems for the fragments of HL over frame classes defined
above as:

Problem (F-HL-SAT(O,B))
Input: an HL(O,B)-formula ϕ.

Question: is ϕ F-satisfiable?

How to Tile an Infinite Plane.

Proving undecidability usually involves stating a reduction from such a problem, e.g.,
the halting problem. In 1966 Robert Berger has proven that the TILING problem is
coRE-complete [Berger, 1966]. This problem was firstly introduced by Berger’s doctoral
advisor Hao Wang [Wang, 1961].

This Domino-like game uses quadratic tokens consisting of at most four different colors.
Now these tokens need to be arranged in a way such that the colors of adjacent tokens
are the same and tile an infinite plane.

Problem (TILING)
Input: a finite set of Wang tiles T = {t1, . . . , tn} over the colors C = {c1, . . . , cm}.

Question: can T tile an infinite plane?

Theorem 3.1.
D-HL-SAT({♦, ↓, @},B) is undecidable (coRE-hard) for S1 ⊆ [B].

29

Figure 3.1.: Four Wang tiles and an extract of a tessellation with them. If one substitutes
the two occurrences of the tile from the upper left in the bottommost line
with the tile from the upper right, then one can tile an infinite plane.

Proof. First note that S1 ⊆ [B] implies [B ∪ {>}] = BF. As > ≡↓ x.x holds, we may
hence assume that the connectives ∧,∨ and ¬ are available.

We give a 6p
m-reduction from the undecidable TILING problem. The formula ϕ :=

ϕs ∧ ϕsucc ∧ ϕdistinct ∧ ϕtiling we will construct, is a conjunction over the following
subformulas. The subformula ϕs states that any satisfying model embeds a state s and a
set of states P (which will correspond to the plane) such that s is connected to each node
in P and s is unreachable from P:

ϕs := s∧ ♦(p00)∧ @s�¬♦s∧��(↓ x.@s♦x).

The next formula ϕsucc forces every node in P labelled with pij to have two different
successor nodes labelled with pi+1j and pij+1:

ϕsucc := �
∧

06i,j62

(↓ x.pij → (
♦
(
pij+1∧ ↓ y.@x�(pij+1 → y)

)
∧

♦
(
pi+1j∧ ↓ y ′.@x�(pi+1j → y ′)

)
∧

�
(
pi+1j ∨ pij+1

)))
,

where i and j are counters modulo 3, i. e., i+1 = 0 and j+1 = 0 for i, j = 2. The formula
ϕdistinct ensures that every path from pij to pi+1j+1 is unambiguous:

ϕdistinct := � ↓ x.
(∨
06i,j62

(
pij ∧ ♦

(
pi+1j ∧ ♦

(↓ y.pi+1j+1 ∧ @x♦(pij+1 ∧ ♦y)
))))

∧

� ↓ x.(∧
06i,j62

(
pij → (

♦
(
pi+1j∧ ↓ y.@s�(pij ∧ ♦y)→ x

)
∧

♦
(
pij+1∧ ↓ y.@s�(pij ∧ ♦y)→ x

))))
.

30

Finally we need to encode the tiling property into the grid. Consider sets of propositions
Cd = {cd | c ∈ C}, d ∈ {t, r, b, l} ({t, r, b, l} abbreviate top, right, bottom, left). We
indentify each tile t ∈ T with its four colors and their resp. positions (ctt, c

r
t, c

b
t , c

l
t) ∈

Ct × Cr × Cb × Cl. Hence, cdt is a placeholder for color c ∈ C in position d ∈ {t, r, b, l}
on tile t ∈ T and cd ∈ Cd is a placeholder for color c ∈ C in position d ∈ {t, r, b, l}. We
define ϕtiling as

ϕtiling := �

(∨
06i,j62

(
pij ∧

∧
c∈C

((
cr → ♦(pij+1 ∧ cl))∧ (cb → ♦(pi+1j ∧ ct))))

)
∧

�

(∧
t∈T

(
t→ ctt ∧ c

r
t ∧ c

b
t ∧ c

l
t ∧

∧
t ′∈T\{t}

¬t ′
)
∧

∧
c∈C,

d∈{t,r,b,l}

(
cd → ∧

c ′∈C\{c}

¬c ′d
))

∧

�
∨
t∈T
t

If there is a valid tiling of an infinite plane then this tiling can be transferred into a
satisfying model for ϕ which does satisfy each of the subformulas from above, and if
there exists a satisfying model for ϕ then this states in which order the tiles are arranged
implying a valid tiling.

Thus it holds that 〈t1, . . . , tn〉 ∈ TILING if and only if there is an infinite model
M = ((W,R),V) and aw ∈W and an assignment g : SVAR→W such that M,g,w |= ϕ.�

3.2. Temporal Logic

Enriching modal logic with concepts to interact more densely with computer programs
leads to the field of temporal logics which have been introduced by A. N. Prior in
1957 who has been called ”the founding father of temporal logic” by the Danish Centre
for Philosophy and Science Studies. From 1971 to 1986 significant effort by Pnueli,
Emerson, Halpern, and Clarke resulted in the definition of the linear time logic LTL
and the computation tree logics CTL? and CTL. These logics have been invented to
be of great benefit in the process of software engineering for verifying non-terminating
programs. Describing specifications through formulae results in an evaluation of the
written programs which are modeled by the Kripke structures as explained above. In the
course of time, temporal logics emerged as being useful with major relevance for practical
experience. In this context the model checking problem and the satisfiability problem of
these logics are of great interest.

For a finite set of Boolean function, the syntax of the full branching time logic CTL?(B)
is inductively defined as follows

ϕ ::= p | ψ | f(ϕ, . . . ,ϕ) | Aϕ | Eϕ | Xϕ | Fϕ | Gϕ | ϕUϕ,

where p ∈ PROP,ψ ∈ PL(B), f ∈ B. A, E are called path operators, and X, F, G, U are
called temporal operators. For a path formula (state formula) φ ∈ CTL? in holds that φ
starts with a temporal (path) operator.

31

Xφ:
φ

Fφ:
φ

Gφ:
φ φ φ φ φ φ

φUψ:
φ φ φ ψ

Figure 3.2.: Semantics of temporal operators.

The computation tree logic CTL is the restriction of CTL? to formulae where directly
before each temporal operator there is a path operator and after each path operator
there is a temporal operator. In general, temporal logic is defined as a unimodal logic
wherefore corresponding models consist of only one transition function. Furthermore
for any model M = ((W,R),V) in the temporal world it must hold that for any w ∈W
there exists a w ′ ∈W with wRw ′.

Definition (Semantics of Temporal Logic). Let ϕi,χi ∈ CTL? for state formulae
ϕi, path formulae χi, 1 6 i 6 n. Further let M = ((W,R),V) be a model and x be an
infinite path x = (x1, x2, . . .) with xiRxi+1 and xi, s ∈W for i ∈ N.

M, s |= > always holds,
M, s |= ⊥ never holds,
M, s |= p iff p ∈ PROP and p ∈ l(s),
M, s |= f(ϕ1, . . . ,ϕn) iff f(JM, s |= ϕ1K, . . . , JM, s |= ϕnK) is true,
M, s |= Aχ1 iff for all paths x = (s, x2, x3, . . .) it holds that M, x |= χ1,
M, s |= Eχ1 iff there exists a path x = (s, x2, x3, . . .) such that M, x |= χ1 holds,
M, x |= ϕ1 iff M, x1 |= ϕ1,
M, x |= f(χ1, . . . ,χn) iff f(JM, x |= χ1K, . . . , JM, x |= χnK) is true,
M, x |= Xχ1 iff M, x2 |= χ1,
M, x |= Fχ1 iff there exists an i > 1 such that M, xi |= χ1 holds,
M, x |= Gχ1 iff for all i > 1 it holds that M, xi |= χ1,
M, x |= [χ1Uχ2] iff M, xk |= χ2 for some k ∈ N, and

M, xi |= χ1 for all 1 6 i < k,

where the expression JM, s |= φK is equal to > if M, s |= φ holds and equal to ⊥ otherwise.

In Figure 3.2 each temporal operator is shown in an example. Let B be a finite set of
Boolean functions and T be a set of temporal and/or path operators. Then for a formula
φ ∈ CTL?(T ,B) it holds that φ ∈ CTL?(B) and φ contains only operators in T . The
formula φ is satisfiable iff there exists a model M = ((W,R),V) such that M,w |= φ

for some w ∈ W. Then we say that φ ∈ CTL?-SAT(T ,B) holds. For the logic CTL
we proceed similarly, then however the set T contains only pairs of path and temporal
operators.

32

Corollary 3.2.
Let B be a finite set of Boolean functions. Then CTL-SAT({AX, EX},B) ≡log

m KD-ML-SAT(B)
holds.

Logarithmic Time

Intuitively for decision problems one usually needs to read the input completely in order
to determine its membership behavior. Of course, above the complexity class P this is
possible, but if we move below P maintaining this property may be challenging. At first
one needs to separate input and working tapes into two different types of tapes. After
this one can think about more restrictions, e.g., what happens for languages where we do
not need to necessarily read the complete input?

With respect to this a logarithmic time hierarchy can be established. We will define
the complexity class NLOGTIME as the set of languages decided by a nondeterministic
Turing machine M with a special index tape for giving ‘random access’ to the input
word x, where everytime M enters the query state q? for accessing bit i it is charged 1
time unit for this query and this query may only used once w.l.o.g. at the end of the
computation—analogously coNLOGTIME is defined as the complement of languages in
NLOGTIME.

Another way to define the access to the input tape of a logtime machine is a block
read/write approach: In this model, M can write two addresses i 6 j on the index tape,
and it then receives the string consisting of bit i to bit j of the input, at cost log |x|+(j−i).

Now as we are located very deep inside the class P (and also inside a very small circuit
complexity class AC0) we need to refine the current definition of reductions to a sufficient
concept.

Definition ([Regan and Vollmer, 1997]). Let A and B languages, and f be a many-
one reduction from A to B s.t. |f(x)| is polynomial in |x|.

(1.) A reduces to B via a deterministic logtime reduction if there is a DTM M that
computes f in the following way: On input x and auxiliary input |x| and j, M
outputs |f(x)| and the j-th bit of f(x). If additionally M only makes one query to
the input, then the reduction is a Ruzzo reduction.

(2.) A reduces to B via a DLT reduction if there is a deterministic logtime TM M

that works in block read/write mode and on input x and auxiliary input |x|, i, j with
j− i = O(log |x|), outputs bits i to j of f(x) together with |f(x)|.

(3.) A reduces to B via a deterministic logtime projection, A 6dlt
proj B, if A reduces to

B via a reduction function f which is both a Ruzzo and a DLT reduction.

Theorem 3.3 ([Schnoor, 2010]).
The language L = {0, 1}∗1{0, 1}∗ is NLOGTIME-complete under 6dlt

proj.

Proof. Of course L ∈ NLOGTIME holds because we can simply guess the position of the
1. Hence let L1 ∈ NLOGTIME be some language over an alphabet Σ, and let M be a

33

TM which accepts L1 in logarithmic time with the restriction that at most one bit of
the input string is read. For L1 there exists a function g : N× Σ→ {0, 1} which can be
computed in linear deterministic time which has the property g(i, c) = 1 iff the machine
M accepts if it nondeterministically chooses to read the i-th bit of the input, and this
bit is the character c (since the length of i is logarithmic in |x|).

Now we state a reduction f from L1 to L as follows: For x ∈ {0, 1}∗, the length of f(x)
is the same as the length of x, and the i-th position of f(x) is g(i, xi) where x = x1 · · · xn.

Now f is a many-one reduction from L1 to L. For this, note that x is a word from L1
if and only if there is some number i s.t. if M reads the i-th bit of x, it accepts. By
definition, this is equivalent to g(i, xi) = 1 for some i, and by definition of f, this is
equivalent to f(x) ∈ L. As the computation of f captures the idea of a local replacement
one can easily see that f is a 6dlt

proj-reduction. �

Theorem 3.4.
Let B be a set of Boolean functions and {AU, EU} ∩ T = ∅ be a set of operators. If

V0 ⊆ [B] ⊆ V or E0 ⊆ [B] ⊆ E, then CTL-SAT(T ,B) is TC0-complete w.r.t. 6cd.

Proof. Exercise �

The fragments of our interest will be shown to be complete for the introduced classes
from above. Before we can turn towards the result we need to define some special kind of
problem type which is called promise problem. Here the promise is made that the given
formulas are syntactically correctly encoded and only use the allowed operators. This
type of problems is usually denoted with a P in the subscript. One usually considers
these kind of problems when checking the syntax is the barrier of the complexity of the
problem.

Theorem 3.5.
Let B be a set of Boolean functions and {AU, EU} ∩ T = ∅ be a set of operators. Then

(1.) CTL-SATP(T ,B) is NLOGTIME-complete w.r.t. 6dlt
proj if V0 ⊆ [B] ⊆ V holds, and

(2.) CTL-SATP(T ,B) is coNLOGTIME-complete w.r.t. 6dlt
proj if E1 ⊆ [B] ⊆ E holds.

Proof. At first we will prove the result for (1.) and then an analogous argumentation
will justify the result for (2.). For the membership in NLOGTIME we substitute all
propositions in a given formula φ with > (monotonicity). This substitution is a straight
forward 6dlt

proj-reduction. Now we only need to guess a position in φ and verify that it
contains the symbol > (for (2.) we only need to verify that no ⊥ is present).

To prove hardness we will state a 6dlt
proj-reduction from the language {0, 1}∗1{0, 1}∗

which clearly is NLOGTIME-complete. For any base satisfiying [B] ⊆ V Lemma 1.5 implies
the existence of a function f ∈ [B] such that f(x,y) ≡ x∨ y and x and y occur only once
in f. Let f ′ denote f rewritten using {∨,⊥,>} and assume for a contradiction that f
contains the symbol >. Then we can write f ′ as f ′(x,y) ≡ g1(>∨ g2(x,y)) ≡ g1(>) for
g1,g2 ∈ [{∨,⊥,>}]. As f is not degenerated (i.e., a constant function) and g1 ∈ [B] ⊆ M,

34

we now obtain that g1(>) = > and hence f(x,y) ≡ >. A contradiction to the assumption
of f containing >; thus f ∈ V0. Let f ≡ fBxfMyfE. Since functions in [B] are commutative,
we can achieve by swapping arguments, that fE is empty. Now let c1c2 . . . cn be a string
of the form {0, 1}∗ and let c ′i = > iff ci = 1 and ci = ⊥ otherwise. Then

c1c2 . . . cn 7→ fBc ′1f
MfBc2f

M · · · fBc ′n−1fMc ′n,

is the desired 6dlt
proj-reduction: the mapping can obviously be calculated by a logtime

projection and fBc ′1f
MfBc2f

M · · · fBc ′n−1fMc ′n holds iff at least one ci is >. Similarly
hardness for (2.) is established using a reduction from the coNLOGTIME-hard language
0∗. �

3.3. Nonmonotonic Logics

Usual reasoning consists of building implication chains through the deductive closure of
|=. If one believes in φ and φ |= ψ then one believes in ψ as well. Thus knowing more
implies a monotone growth of wisdom, i.e., if I know more then I can deduce more.

However human reasoning is not monotone: getting more information may allows
one deducing fewer consequences. Especially when formal specifications are to be
verified against real-world situations, one has to overcome the qualification problem that
denotes the impossibility of listing all conditions required to decide compliance with
the specification. To overcome this problem, McCarthy proposed the introduction of
“common-sense” into formal logic [McCarthy, 1980]. Among the formalisms developed
since then, Reiter’s default logic is one of the best known and most successful formalisms
for modeling common-sense reasoning.

Default logic extends propositional logic by patterns for default assumptions. These
are of the form “in the absence of contrary information, assume . . .”. Reiter argued
that his logic is an adequate formalization of human reasoning under the closed world
assumption. In fact, default logic is used in various areas of artificial intelligence and
computational logic, and is known to embed other nonmonotonic formalisms such as
extended logic programs [Gelfond and Lifschitz, 1991].

Definition (Default Logic). Let B be a finite set of Boolean functions, and let α,β,γ ∈
PL(B). A B-default rule is an expression d = α:β

γ , where α is the prerequisite, β is the
justification, and γ is the consequent of d. A B-default theory is a pair (W,D) where
W ⊆ PL(B) and D is a finite set of B-default rules.

Now consider a B-default theory as the knowledge and deduction base of an agent. This
agent can use the usual |= relation to obtain new information entailed by his knowledge.
Now this set of formulas generally is denoted with Th(W). The question arises if this
obtainable knowledge is consistent or not. Here we need to define a suitable term which
is the extension of a default theory.

Definition (Extension). Let B be a finite set of Boolean functions, (W,D) be a B-
default theory and E ⊆ PL(B) be a set of B-formulas.

35

(1.) Let E0 := W and Ei+1 := Th(Ei) ∪
{
γ
∣∣∣ α:βγ ∈ D,α ∈ Ei ∧ ¬β /∈ E

}
. Then E is a

stable extension of (W,D) if and only if E =
⋃
i∈N Ei.

(2.) Let G :=
{
α:β
γ ∈ D | α ∈ E∧ ¬β /∈ E}. If E is a stable extension of (W,D) then

E = Th
(
W ∪

{
γ
∣∣∣ α:βγ ∈ G}). In this case, G is called the set of generating

defaults of E.

In the vein of satisfiability we now are able define decision problems which are settled
around the availability of extensions.

Problem (EXT(B))
Input: A B-default theory (W,D).

Question: Does (W,D) has a stable extension?

Problem (CRED(B))
Input: A B-default theory (W,D), and a formula ϕ ∈ PL(B).

Question: Does there exist a stable extension E of (W,D) such that E |= ϕ holds?

Problem (SKEP(B))
Input: A B-default theory (W,D), and a formula ϕ ∈ PL(B).

Question: Does for every stable extension E of (W,D) hold that E |= ϕ is true?

Example ([Thomas, 2010]). The default theory (∅,D) with D = {>:x
¬x } has no stable

extension. On the other hand, (∅,D) with D = {>:¬x
¬x , >:xx } has exactly two stable exten-

sions, namely E ′ = Th(x) and E ′′ = Th(¬x), corresponding to applications of respectively
the first or second default in D.

Next, consider (W,D) with W = {x},D = {x
:¬y
z }. Then (W,D) has a unique stable

extension which contains z. However, if W is extended by the proposition y, then the
unique stable extension of (W ∪ {y},D) does no longer contain z; the newly added fact y
makes the justification of x:¬y

z inconsistent with its stable extensions.

Example (Playing Football with Default Logic). Let W = {football, rain, cold ∧

rain → snow} and D =
{

football:¬snow
takesPlace

}
. Then ¬snow is consistent with W. Hence

we can infer takesPlace. But if we consider (W∪ {cold},D) then snow gets consistent with
W, wherefore we cannot infer takesPlace. This shows the non-monotonicity of default
logic.

Thus thinking about stable extensions implies answering implication questions of
formulas. For the next theorem we investigate this implication problem for PL(L)
formulas and show how this question is connected to solving equations over the field Z2.

Problem (IMP(B))
Input: A finite set Γ ⊆ PL(B) and φ ∈ PL(B).

Question: Does Γ |= φ hold?

36

Lemma 3.6 ([Thomas, 2010]).
Let B be a finite set of Boolean functions such that [B] ⊆ L. Then the problem IMP(B)
in ⊕LOGSPACE.

Proof. Let [B] ⊆ L hold for finite B, Γ ⊆ PL(B) be a finite set of formulas over the
variables {x1, . . . , xn}, and φ ∈ PL(B) a formula. Now it holds that Γ |= φ if and only
if Γ ∪ {φ ⊕ t, t} is inconsistent, where t is a fresh variable. Let Γ ′ denote Γ ∪ {φ ⊕ t, t}
rewritten s.t. for all ψ ∈ Γ ′,

ψ = c0 ⊕ c1x1 ⊕ · · · ⊕ cnxn,

where ci ∈ {>,⊥} for 1 6 i 6 n and cixi is a shorthand for ci ∧ xi. Γ ′ is logspace
constructible since c0 = > iff ψ(⊥, . . . ,⊥) = >, for 1 6 i 6 n, ci = > iff

ψ(⊥, . . . ,⊥) 6≡ ψ(⊥, . . . ,⊥︸ ︷︷ ︸
i−1

,>,⊥, . . . ,⊥),

and affine formulas can be evaluated in logarithmic space [Schnoor, 2010]. Γ ′ can now
be transformed into a system of linear equations S via

c0 ⊕ c1x1 ⊕ · · · ⊕ cnxn 7→ c0 + c1x1 + · · ·+ cnxn = 1 (mod 2).

Clearly, the resulting system of linear equations has a solution if and only if Γ ′ is consistent.
The equations are furthermore defined over the field Z2, hence existence of a solution
can be decided in ⊕LOGSPACE as shown in [Buntrock et al., 1992]. �

Theorem 3.7.
Let 〈W,D〉 be a default theory.

• If W is consistent, then every stable extension of 〈W,D〉 is consistent.

• If W is inconsistent, then 〈W,D〉 has a stable extension.

Proof. Without a proof here. �

Theorem 3.8.
Let B be a finite set of Boolean functions such that N ⊆ [B] ⊆ L. Then EXT(B) is
NP-complete.

Proof. Let B be a finite set of Boolean functions and (W,D) be a B-default theory.
First we show the upper bound for the case [B] ⊆ L. The following algorithm decides
EXT(B):

The algorithm clearly terminates and runs in nondeterministic polynomial time. The
correctness follows from the definition of extensions through the stage wise construction in
combination with the previous lemma which shows that line 6 can be done in polynomial
time, as ⊕LOGSPACE ⊆ P.

37

Algorithm 3.1: Procedure deciding EXT(L) in nondeterministic polynomial time.

Input: B-default theory (W,D)
1 guess a set G ⊆ D;

2 G ′ :=W ∪ {γ | α:β
γ
∈ G}, G0 :=W, i := 0;;

3 while i = 0 or Gi 6= Gi+1 do

4 forall the α:β
γ
∈ D do

5 if Gi |= α and G ′ 6|= ¬β then Gi+1 := Gi ∪ {γ} ;

6 i := i+ 1;

7 return true iff G ′ = Gi

To show NP-hardness of EXT(B) for N ⊆ [B], we will 6cd-reduce 3SAT to EXT(B).
Let ϕ =

∧n
i=1(`i1∨`i2∨`i3) and `ij be literals over propositions {x1, . . . , xm} for 1 6 i 6 n,

1 6 j 6 3. We transform ϕ to the B-default theory 〈W,Dϕ〉, where W := ∅ and

Dϕ :=

{
> : xi
xi

 1 6 i 6 m} ∪{> : ¬xi
¬xi

 1 6 i 6 m}∪{
∼ `iπ(1) :∼ `iπ(2)

`iπ(3)

 1 6 i 6 n,π is a permutation of {1, 2, 3}

}
.

To prove the correctness of the reduction, first assume ϕ to be satisfiable. For each
satisfying assignment σ : {x1, . . . , xm}→ {0, 1} for ϕ, we claim that

E := Th({xi | σ(xi) = >} ∪ {¬xi | σ(xi) = ⊥})

is a stable extension of 〈W,Dϕ〉. We will verify this claim with the help of the first
part of the stage wise construction of extensions. Starting with E0 = ∅, we already get
E1 = E by the default rules >:xixi

and >:¬xi
¬xi

in Dϕ. As σ is a satisfying assignment for ϕ,
each consequent of a default rule in Dϕ is already in E. Hence E2 = E1 and therefore
E =

⋃
i∈N Ei is a stable extension of 〈W,Dϕ〉.

Conversely, assume that E is a stable extension of 〈W,Dϕ〉. Because of the default
rules >:xixi

and >:¬xi
¬xi

, we either get xi ∈ E or ¬xi ∈ E for all i = 1, . . . ,m. The rules of

the type ∼`i1:∼`i2
`i3

ensure that E contains at least one literal from each clause `i1 ∨ `i2 ∨ `i3
in ϕ. As E is deductively closed, E contains ϕ. By Theorem 3.7, the extension E is
consistent, and therefore ϕ is satisfiable.

Hence, EXT(B) is NP-complete for every finite set B such that N ⊆ [B] ⊆ L. �

38

Logic Clone Complexity

propositional; SAT(B) S1 ⊆ [B] NP-complete
otherwise in P

IMP(B) [B] ⊆ L in ⊕LOGSPACE

modal; K-ML-SAT�,♦(B) [B] ⊆ R1, D, V, L in P
E0 ⊆ [B] ⊆ E coNP-complete

S11 ⊆ [B] ⊆ M PSPACE-complete
S1 ⊆ [B] PSPACE-complete

temporal; CTL(ALL,B) BF EXP-complete

CTL-SAT(T ,B) for T ∩ {AU, EU} = ∅ V0 ⊆ [B] ⊆ V TC0-complete

CTL-SAT(T ,B) for T ∩ {AU, EU} = ∅ E0 ⊆ [B] ⊆ E TC0-complete
CTL-SATP(T ,B) for T ∩ {AU, EU} = ∅ V0 ⊆ [B] ⊆ V NLOGTIME-complete
CTL-SATP(T ,B) for T ∩ {AU, EU} = ∅ E0 ⊆ [B] ⊆ E coNLOGTIME-complete

hybrid; KD-HL-SAT({♦, ↓, @},B) S1 ⊆ [B] coRE-hard

default; EXT(B) N ⊆ [B] ⊆ L NP-complete

Table 3.1.: Overview of complexity of decision problems in investigated logics.

39

4. Descriptive Complexity Theory

To be is to be the value of a bound variable.

(Willard Van Orman Quine)

The field of descriptive complexity aims to characterize complexity classes C by a
corresponding class of logic formulas F such that formulas from F must be able to express
languages from C. Herewith a connection between these two areas of research comes up
and introduces a third way of classifying problems beyond time and space complexity.

In this chapter we will follow Neil Immerman and the 7th chapter of his book Descriptive
Complexity [Immermann, 1998].

The main result of the upcoming section is a characterization of the complexity class
NP by existential second-order logic. Second-order logic consists of first-order logic plus
new relational variables over which we may quantify. For example, the formula (∀Ar)φ
means that for all choices of an r-ary relation A, φ holds. With SO we denote the set of
all second-order expressible Boolean formulas (or queries). Observe that any second-order
formula can be transformed into an equivalent formula with all second-order quantifiers in
front—we know this already from the prenex normal form for first order formulas. Further
denote with SO(∃) the restriction of SO to only existential second-order quantifiers, and
respectively, SO(∀) the restriction of SO to only universal second-order quantifiers.

With respect to Section 1.4 we can see that it is possible to state a second-order
formula Φ which expresses 3-colorability of graphs, where E2 denotes the edge transition
relation of a given graph.

Φ := (∃R1)(∃Y1)(∃B1)(∀x)
[(
R(x)∨ Y(x)∨ B(x)

)
∧ (∀y)

(
E(x,y)→

¬
(
R(x)∧ R(y)

)
∧ ¬

(
Y(x)∧ Y(y)

)
∧ ¬

(
B(x)∧ B(y)

))]
Any graph G = (V ,E) satisfies Φ iff G is 3-colorable. Usually one writes G |= Φ to denote
this fact.

In the following section we will proof connections between the predicate calculus and
complexity classes. Therefore we will consider only interpretations I : STRUC[τ]→ {0, 1}
which map structures over some vocabulary τ to {0, 1} and hence only Boolean queries.
This restriction is necessary as for a complexity class its languages are decision problems.
Thus, for instance, an existential second-order formula ψ then corresponds to a language
Lψ in some complexity class C (we will see that, in fact, C = NP holds). Then, the
structures A for which A |= ψ holds are the corresponding members of the language ψ.
Summarizing, languages in the world of the predicate calculus are formulas and satisfying
structures (or models) are members (or words) of these languages.

40

4.1. Fagin’s Theorem

Now we aim to connect second order logic (restricted to only existential relational
quantifiers) with the complexity class NP. However this prove is not so easy. It will
require some kind of similar technique as we know from Cook’s Theorem showing the
SAT is NP-complete. Though we want this proof to be as simple as possible. One first
step into this direction will requires us to prove that first-order logic is a subset of the
complexity class LOGSPACE.

Theorem 4.1.
The set of first-order Boolean queries is contained in the set of Boolean queries computable
in deterministic logarithmic space: FO ⊆ LOGSPACE.

Proof. Let τ = (Ra11 , . . . ,Rarr , c1, . . . , cs) be a vocabulary, and let φ ∈ FO(τ) be a first-
order Boolean query, Iφ : STRUC[τ]→ {0, 1}, such that φ ≡ (∃x1)(∀x2) . . . (Qkxk)α(x1, . . . , xk),
where α is quantifier-free. Now we need to construct a DTM M running in logarithmic
space such that for all A ∈ STRUC[τ], A |= φ iff M accepts input bin(A).

We will construct M inductively on k. If k = 0, then φ = α is a quantifier-free
sentence. Hence α is a fixed, finite Boolean combination of atomic formulae, which are
either p1 6 p2, or BIT(p1,p2) and pi ∈ {c1, . . . , cs, 0, 1, max}. Once M knows whether
A satisfies each of these atomic subformulae, then M can determine if A |= α holds by
performing the fixed, finite Boolean combinations using state transitions.

By counting up to dlogne M can copy the pi’s that it needs onto its worktape. For
the predicates M just needs to look at the corresponding bit position of the input string
bin(A).

For example, assuming that the relation Ri is `-ary, to calculate Ri(a1, . . . ,a`), M
first needs to copy the corresponding values in the universe for the ai’s on its worktape.
Denote these values with ãi ∈ {0, . . . ,n − 1}, where n = ||A||. Next M moves its head
to location na1 + na2 + · · ·+ nai−1 + 1 which is the beginning of the array encoding Ri.
Finally, it moves its read head n`−1 · ã1 + n`−2 · ã2 + · · · + n · ã`−1 + ã` spaces to the
right. The bit now being read is ”1” iff A |= Ri(a1, . . . ,a`).

It is easy to see that one can check this in logarithmic space and completes the
construction of M in the base case.

Inductively, assume that all first-order queries with k − 1 quantifiers are logspace
computable. Let

ψ(x1) = (∀x2) · · · (Qkxk)α(x1, . . . , xk).

LetM0 be the logspace DTM that computes the query ψ(c). Note that c is a new constant
symbol substituted for the free variable x1. To compute the query φ ≡ (∃x1)(ψ(x1))
we build the following logspace machine that cycles through all possible values of x1,
substitutes each of these for c, and runs M0. IF any of these lead M0 to accept, then we
accept, else we reject. Note that the extra space needed is just logn bits to store the
possible values of x1. Simulating a universal quantifier is similar. �

Observe that this result does not imply QBF-VAL ∈ LOGSPACE, as in QBF-VAL
the size of the problem is the size of the formula and elements are just Boolean values,

41

whereas in FO the size of the problem is the size of the structure, whereas the formula is
fixed.

Corollary 4.2.
Let C be a complexity class which is closed under logspace many-one reduction 6log

m .
Then C is also closed under first-order reductions 6fo.

The following result is the first step of our main goal.

Lemma 4.3.
The second-order existentially definable Boolean queries are all computable in NP. In
symbols, SO(∃) ⊆ NP.

Proof. Given a second-order existential sentence Φ ≡ (∃Rr11) · · · (∃R
rk
k)ψ. Let τ be the

vocabulary of Φ. Our task is to build an NTM N running in polynomial time such that
for all A ∈ STRUC[τ] it holds that

(A |= Φ) if and only if N accepts the input bin(A). (4.1)

Let A be an input structure to N and let n = ||A|| be the cardinality of A. What N does
is to nondeterministically write down a binary string of length nr1 representing R1, and so
on and so forth until it has written nrk for Rk. After this polynomially number of steps,
we have an expanded structure A ′ = (A,R1,R2, . . . ,Rk) yielding an FO structure. N
should accept iff A ′ |= ψ. By the previous theorem we can test if A ′ |= ψ in logspace, so
certainly in NP. Notice that N accepts A iff there is some choice of relations R1 through
Rk such that (A,R1, . . . ,Rk) |= ψ. Thus (4.1) holds. �

Theorem 4.4 (Fagin’s Theorem).
NP is equal to the set of existential, second-order Boolean queries, NP = SO(∃). Further-
more, this equality remains true when the first-order part of the second-order formulas is
restricted to be universal only.

Proof. Let N = (Q,Σ,Θ, δ,q0,�, {qf}) be a nondeterministic Turing machine that uses
time nk − 1 for inputs x with n = |x|. Without loss of generality we may assume N that
never visits cells left of the input and always has two nondeterministic selection options.
Now we write a second-order sentence

Φ = (∃C2k0 · · · ∃C2kg ∃∆k∃pre1∃suc1)φsuc ∧ φpre ∧ φcomp,

that says, ”There exists an accepting computation C,∆ of N.” Later we will directly
see what g is. More precisely, the first-order sentence φ will have the property that
(A,C,∆) |= φ iff C,∆ is an accepting computation of N on input A, where C encodes
the traversed configurations and ∆ denotes the used transitions in each step.

We describe how to code N’s computation. C consists of a matrix C(t, s) of n2k tape
cells with space s and time t varying between 0 and nk − 1. The computation of N can
be viewed in Figure 4.1. We use k-tuples of variables t = t1, . . . , tk and s = s1, . . . , sk
each ranging over the universe of A, i.e., from 0 to n− 1, to code these values.

42

Space
0 1 p n− 1 n nk − 1 ∆

Time 0 (q0,w0) w1 · · · wn−1 � · · · � δ0
1 w0 (q1,w1) · · · wn−1 � · · · � δ1

..
.

..
.

..
.

..
.

..
.

..
.

..
.

t a−1a0a1 δt
t+ 1 b δt+1

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

nk − 1 (qf, 1) � · · · · · · �

Figure 4.1.: NP computation on input w0 . . .wn−1.

A configuration of N of length nk can be described as words over Γ = (Q × Θ) ∪ Θ,
where the string

a0a1 . . .ai−1(q,ai)ai+1 . . .ank−1

means that the tape content of N on the investigated step is a0 . . .ank−1, the head is on
position i and the recent state is q.

For each t, s pair, C(t, s) codes the tape symbol σ that appears in cell s at time t if
N’s head is not on this cell. If the head is present, then C(t, s) codes the pair (q,σ)
consisting of N’s state q at time t and tape symbol σ. Let Γ = {γ0, . . . ,γg} be a listing of
the possible contents of a computation cell. We will let Ci be a 2k-ary relation variable
for 0 6 i 6 g. The intuitive meaning of Ci(t, s) is that computation cells s at time t
contain symbol γi.

If we want to speak about the ordering of elements t, t ′ we will use two functions pre
and suc which are quantified and talk about the predecessor and the successor of an
element. The formulas φpre and φsuc define these functions correctly (exercise).

At each step, the NTM will make one of at most two possible choices. We encode these
choices in k-ary relation ∆. Intuitively, ∆(t) is true if step suc(t) of the computation makes
choice ”1”; otherwise it makes choice ”0”. Note that these choices can be determined
from C, but the formula is simplified when we explicitly quantify ∆.

It is now fairly straightforward to write the first-order sentence φ(C,∆) saying that
C,∆ codes a valid accepting computation of N. The sentence φcomp uses a formula
φ := φinit ∧ φconsistent ∧ φtransition ∧ φaccept, where φinit asserts that row 0 of the
computation correctly codes input bin(A), φconsistent says that it is never the case that
Ci(t, s) and Cj(t, s) both hold for i 6= j, φtransition encodes the correctness of transition
windows, and φaccept says that the last row of the computation includes the accept state
qf. We may assume that when N accepts it clears its tape and moves all the way to
the left and enters this unique accept state qf. We can write sentence φaccept explicitly.
Let γ` for ` ∈ {0, . . . ,g} be the member of Γ corresponding to the pair (qf, 1) of state qf,
looking at the symbol 1. Then φaccept = C`(max, 0).

43

Assume that γ0,γ1,γ2 are 0, 1,� respectively. The sentence φinit must define the
first row of the tableau for bin(A). Let τ = (Rr11 , . . . ,Rr`` , fa11 , . . . , farr , c1, . . . , cp) be the
vocabulary. For ease of encoding we use a = max{r1, . . . , r`,a1, . . . ,ap}. Further we may
assume that a 6 k holds (otherwise we can just increase k in advance). Now given a
τ-structure A we need to introduce a formula which correctly associates the corresponding
parts of C0,C1,C2 for time step 0̄ to the binary representation of A. We choose an
na-block encoding form as follows

bin(A) :=

|A|︷ ︸︸ ︷
1n0n

a−n bin(RA1) · · ·bin(RA`)

bin(fA1) · · ·bin(fAr)

bin(cA1) · · ·bin(cAp) ∈ {0, 1}(`+p+1)·n
a

.

If n > `+ p+ r then the positions 0, . . . , (`+ p+ 1) · na − 1 of bin(A) are encoded by
those k-tuples from s̄ = s1, . . . , sk ∈ {0, . . . ,n− 1}k such that s1 = · · · sk−a−2 = 0, sk−a−1
is used to reference the respective relation/constant number, and sk−a, . . . , sk are used
to reference the membership of a tuple in the relation (each relation has arity a and
the universe has size n thus the membership of each tuple over {0, . . . ,n − 1}a can be
encoded by a string {0, 1}n

a
). This leads to the following FO-formula:

φinit := ∀s1 · · · ∀sk(C0(0̄, s̄)↔ ψ0(s̄))∧

(C1(0̄, s̄)↔ ψ1(s̄))∧

(C2(0̄, s̄)↔ ¬(C0(s̄)∨ C1(s̄))

where ψ0(s̄)/ψ1(s̄) are two FO-formulas which define that a 0/1 is at position s̄ in bin(A).
These two formulas are then defined as follows:

ψ1(s̄) :=

k−a−2∧
i=1

si = 0∧

(∧̀
i=1

(sk−a−1 = suci(0))∧ Ri(sk−a, . . . , sk)︸ ︷︷ ︸
?

∨

r+∧̀
i=`+1

(sk−a−1 = suci(0))∧ fi(sk−a, . . . , sk−1) = sk︸ ︷︷ ︸
♥

∨

`+r+p∧
i=`+r+1

(sk−a−1 = suci(0))∧

k−1∧
j=k−a

sj = 0∧ sk = ci︸ ︷︷ ︸
♣

∨

k−1∧
i=k−a−1

si = 0

)

44

ψ0(s̄) :=[“s̄ encodes a number between n and na − n”]∨∧̀
i=1

(sk−a−1 = suci(0)∧ ¬?)∨

`+p∧
i=1+`

(sk−a−1 = suci(0)∧ ¬♥)∨

`+p+r∧
i=1+`+p

(sk−a−1 = suci(0)∧ ¬♣).

If n < `+ p then there are only constantly many inputs, hence structures, accepted by
M. In that case we can directly encode these into the FO-formula. This is expressed in
the final formula later.

The following sentence φtransition asserts that the contents of tape cell (suc(t), s) follows
from the contents of cells (t, pre(s)), (t, s), and (t, suc(s)) via the move ∆(t) of N. Hence
we can describe this connection via two finite 4-ary relations ∆0,∆1 which includes all

allowed tuples

[
a b c

d

]
∈ ∆0 (resp. ∈ ∆1). As in every step two nondeterministic

choices are available ∆0 corresponds to one of them and ∆1 corresponds to the other.
In the following we encode the transition relation. Observe that the head-movement is

irrelevant for the window construction as it is directly expressed via the corresponding
symbols in Γ .

φtransition := (∀t.t 6= max)(∀s.0 < s < max)∧
a,b,c,d∈Γ ,

(a,b,c,d)∈∆1

(
∆(t̄)∧ Ca(t, pre(s̄))∧ Cb(t, s)∧ Cc(t, suc(s̄))∧ ∆(t)→ Cd(suc(t̄), s)

)
∧

∧
a,b,c,d∈Γ ,

(a,b,c,d)∈∆0

(
¬∆(t̄)∧ Ca(t, pre(s̄))∧ Cb(t, s)∧ Cc(t, suc(s̄))∧ ∆(t)→ Cd(suc(t̄), s)

)
.

Further we need the same formula with ∆0 instead of ∆1 and ¬∆(t) instead of ∆(t) for
the other nondeterministic choice. Similarly one can construct formulae which encode
the transition behavior at the borders of the computation matrix.

Finally the formula which states consistent Cis:

φconsistent := ∀ts
∧

16i6g

Ci(t, s)→∧
16j6=i6g

¬Cj(t, s)

∧ ∀ts
∨

16i6g

Ci(t, s)

The full formula then incorporates the differentiation with respect to the size of the
universe. If the universe is small, i.e., max < `+ p+ 1 then |A| 6 (1+ `+ p) · `a is true.
Thus there are only constantly many different such structures. After knowing M we can
check for all such structures which are accepted by M and directly encode those into the

45

formula. Let denote with S the set of these small structures. If the size of the universe is
not bound by `+ p+ r then we use the formula φ instead.

φcomp :=(max > suc`+p+r(0)→ φ)∧(`+p+r−1∧
i=1

max = suci(0)→
∨

M accepts
bin(A ′)∈S
||A ′||=i

∧̀
j=1

k=arity(Rj)

∧
(a1,...,ak)∈RA

′
j

Rj(suca1(0), . . . , sucak(0))

r∧
j=1

k=arity(fj)

∧
fA
′

j (a1,...,ak−1)=ak

fj(suca1(0), . . . , sucak−1(0)) = sucak(0)

p∧
j=1

∧
cA
′

j =a

cj = suca(0)

)
.

Corollary 4.5.
coNP = SO(∀).

The main idea is to simulate the alternations of the polynomial time hierarchy with
alternations of existentially and universally quantified relations leading to the following
theorem.

Theorem 4.6 ([Stockmeyer, 1976]).
PH = SO.

4.2. Least Fixed Points

Consider you want to extend the power of first-order logic without immediately reaching
second-order logic. One such way are relations that are not first-order expressible but
can be defined inductively. For instance, the transitive closure is such a type of relations
we consider. Let τ be a vocabulary for graphs containing the edge transition E2 as a
binary relation. Then the reflexive, transitive closure E∗ of E can be defined with the
help of a binary relation variable R as follows (note that the following formula is just
describing one step of the closure):

φ(R, x,y) ≡ x = y∨ ∃z(E(x, z)∧ R(z,y)).

For any structure A we now have induced by φ a mapping from binary relations on the
universe of A to binary relations on the universe of A:

φA(R) = {(a,b) | A |= φ(R,a,b)}.

46

Such mappings induced by a formula ψ are called monotone if for all R,S it holds that

R ⊆ S implies ψA(R) ⊆ ψA(S).

As R appears only positively in φ this mapping φA is monotone. Denote with (φA)r an
r-times iteration of φA. Now it holds that

(φA)(∅) = {(a,b) ∈ |A|2 | distance(a,b) 6 0},

(φA)2(∅) = {(a,b) ∈ |A|2 | distance(a,b) 6 1},

and in general,

(φA)r(∅) = {(a,b) ∈ |A|2 | distance(a,b) 6 r− 1},

Hence (φA)||A|| = E∗ which is equal to the least fixed point of φA.

Theorem 4.7 (Finite Version of the Knaster-Tarski Theorem).
Let R be a new relation symbol of arity k, and let φ(R, x1, . . . , xk) be a monotone first-

order formula. Then for any finite structure A, the least fixed point of φA exists. It is
equal to (φA)r(∅) where r is minimal so that (φA)r(∅) = (φA)r+1(∅) holds. Furthermore,
we have r 6 ||A||k.

Proof. Consider the sequence

∅ ⊆ (φA)(∅) ⊆ (φA)2(∅) ⊆ (φA)3(∅) ⊆ · · · .

This is true as φA is monotone. If (φA)i+1(∅) strictly contains (φA)i(∅) then it must
contain at least one new k-tuple from |A|. Since there are at most ||A||k such k-tuples, for
some r 6 ||A||k, we have (φA)r(∅) = (φA)r+1(∅), that is, (φA)r(∅) is a fixed point of φA.

Now let S be any other fixed point of φA. We show by induction that (φA)i(∅) ⊆ S
for all i. For the base case we have (φA)0(∅) = ∅ ⊆ S. Now suppose that (φA)i(∅) ⊆ S
holds. Since φA is monotone, it holds tha

(φA)i+1(∅) = φA((φA)i(∅)) ⊆ φA(S) = S.

Thus, (φA)r(∅) ⊆ S and (φA)r(∅) is the least fixed point of ϕA as claimed. �

If we now write (LFPRkx1...xkϕ) denoting this least fixed point, then this new type of
operator formalizes the definition of new relations by induction for positive occurrences
of R in φ. The subscript denotes which relation and which domain variables we are
referring to with the fixed point.

Hence the reachability problem in directed graphs GAP now can be expressed as via
the notion of the fixed point operator: LFPRxyφ(s, t).

Definition. Define FO(LFP) as the extension of first-order logic with the least fixed
point operator LFP. If φ(Rk, x1, . . . , xk) is an Rk-positive formula in FO(LFP), then
(LFPRkx1...xkφ) may be used as a new k-ary relation symbol denoting the least fixed point
of φ.

47

Lemma 4.8.
FO(LFP) is closed under first-order reductions 6fo.

Proof. Exercise. �

Theorem 4.9.
Over finite, ordered structures, FO(LFP) = P.

Proof. ”⊆”: Let A be an input structure, let n = ||A||, and let (LFPRx1...xkφ) be a
fixed-point formula. By Theorem 4.7, we know that this fixed point evaluated on A is
(φA)n

k
(∅). This amounts to evaluating the first-order query φ at most nk times. We

have seen in Theorem 4.1 that first-order queries may be evaluated in LOGSPACE, thus
easily in P.

”⊇”: Since FO(LFP) includes query ALTGAP (on ordered graphs), which is complete
for P via first-order reductions, and FO(LFP) is closed under first-order reduction due
to Lemma 4.8, FO(LFP) includes all polynomial-time queries. �

Corollary 4.10.
P = NP if and only if over finite, ordered structures FO(LFP) = SO.

48

A. Foundations

Mathematical reasoning may be regarded rather
schematically as the exercise of a combination of
two facilities, which we may call intuition and
ingenuity.

(Alan Turing)

A.1. Complexity Theory

Here some notions relevant to this lecture are repeated. For a deeper introduction into
this area we suggest either the lecture notes to the lecture Komplexitätstheorie or the
two very good books [Arora and Barak, 2009, Papadimitriou, 1994].

class name characterization

LOGSPACE SPACE(logn)

P TIME(nO(1))

NP NTIME(nO(1))

coNP
{
A | A ∈ NP

}
PSPACE SPACE(nO(1))

Table A.1.: Important complexity classes.

Definition (Reduction Functions). Let C be a complexity class, let A ⊆ Σ∗,B ⊆ ∆∗
be languages over the alphabet Σ, resp., ∆. We say A is polynomially many-one reducible
to B (logspace many-one reducible to B), A 6p

m B (A 6log
m B, iff there exists a function

f : Σ∗ → ∆∗ which can be computed in P (in LOGSPACE) such that for all x ∈ Σ∗ it holds
that x ∈ A⇔ f(x) ∈ B.

An oracle Turing machine is a usual Turing machine which has access to an oracle B.
During the computation M may write a string on its oracle tape. If M enters a state
q? and w is on the oracle tape, then M moves to state q+ if w ∈ B and to q− if w /∈ B.
Then M is charged one time unit and the oracle tape is emptied. If A is accepted by
TM M with oracle B, then we write A = L(M,B). Now define

PB := {L(M,B) |M is a polynomial time running DTM with oracle B},

NPB := {L(M,B) |M is a polynomial time running NTM with oracle B}.

49

If C is a class of sets, then define

PC :=
⋃
B∈C

PB and NPC :=
⋃
B∈C

NPB.

Definition (Polynomial time hierarchy). Define

∆P
0 = ΣP

0 = ΠP
0 := P and for k > 0:

∆P
k+1 := PΣ

P
k ,

ΣP
k+1 := NPΣ

P
k ,

ΠP
k+1 := {A | A ∈ ΣP

k+1}.

Further let PH :=
⋃
k>0

(
∆P
k ∪ ΣP

k ∪ ΠP
k

)
.

A.2. First-Order Logic

Here we follow, again, [Immermann, 1998].
As usual a vocabulary τ = (Ra11 , . . . ,Rarr , c1, . . . , cs, f

r1
1 , . . . , frtt) is a tuple of relation

symbols, constant symbols, and function symbols. Ri is a relation symbol of arity ai, and
fj is a function symbol of arity rj.

A structure with vocabulary τ is a tuple A = (|A|,RA1 , . . . ,RAr , cA1 , . . . , cAs , fA1 , . . . , fAt)
whose universe is the nonempty set |A|. For each relation symbol Ri, A has a relation
RAi of arity ai defined on |A|, i.e., RAi ⊆ |A|ai . Similarly we proceed with the functional
symbols: fAi is a total function from |A|ri to |A|.

We define STRUC[τ] as the set of finite structures of vocabulary τ.
The binary predicate BIT(i, j) is true if the jth bit in the binary representation of i is

1.

Definition (Interpretation). φ first-order formula, A ∈ STRUC[τ] structure. A map-
ping i : V → |A| is an interpretation, where V is the set of free variables of φ. It holds
i(v) = iA for all other variables.

Definition (Semantics). A ∈ STRUC[τ] structure, i interpretation. Then

(A, i) |= t1 = t2 ⇔ i(t1) = i(t2),

(A, i) |= Rj(t1, . . . , taj)⇔ 〈i(t1), . . . , i(taj)〉 ∈ R
A
j ,

(A, i) |= ¬φ⇔ it is not the case (A, i) |= φ,

(A, i) |= φ∧ψ⇔ (A, i) |= φ and (A, i) |= ψ,

(A, i) |= (∃x)φ⇔ there is an a ∈ |A| such that (A, iax) |= φ,

where iax(y) =

{
i(y) , if y 6= x,
a , if y = x

50

Definition ((Boolean) queries). A query is any mapping I : STRUC[σ]→ STRUC[τ]
for two vocabularies σ, τ which is polynomially bounded, i.e, ||I(A)|| 6 p(||A||) for some
polynomial p. Let M be a Turing machine. A Boolean query is a map Ib : STRUC[σ]→
{0, 1}. Ib may be thought of as a subset of STRUC[σ], hence those for which bin(I(A)) is
true. If also M accepts bin(A) iff Ib(A) = 1, then we say that M computes Ib.

Definition (First-Order Queries). Let σ, τ be vocabularies where τ = (Ra11 , . . . ,Rarr , c1, . . . , cs)
and let k ∈ N. A first-order query

I : STRUC[σ]→ STRUC[τ]

is given by an r + s + 1-tuple of formulae φ0,φ1, . . . ,φr,ψ1, . . . ,ψs from FO(σ). For
each structure A ∈ STRUC[σ] these formulae describe a structure I(A) ∈ STRUC[τ]:

I(A) = (|I(A)|,R
I(A)
1 , . . . ,R

I(A)
r , c

I(A)
1 , . . . , c

I(A)
s),

|I(A)| = {(b1, . . . ,bk) | A |= φ0(b
1, . . . ,bk)},

R
I(A)
i = {((b11, . . . ,bk1), . . . , (b1ai , . . . ,bkai)) ∈ |I(A)ai |

∣∣ A |= φi(b
1
1, . . . ,bk1 , . . . ,b1ai , . . . ,bkai)},

c
I(A)
j = the unique (b1, . . . ,bk) ∈ |I(A)| such that A |= ψj(b

1, . . . ,bk).

Further let a = max{ai | 1 6 i 6 r}, the free variables of φi be x11, . . . , xk1 , . . . , x1ai , . . . , xkai ,

and the free variables of φ0 and all ψj are x11, . . . , xk1.
If the ψj’s have the property that for all A ∈ STRUC[σ]:

|{(b1, . . . ,bk) ∈ |A|k | (A,b1/x
1
1, . . . ,bk/x

k
1) |= φ0 ∧ψj}| = 1

then we write I = λx11...xka
(φ0, . . . ,ψs) and say I is a k-ary first-order query from STRUC[σ]

to STRUC[τ].
Let FO be the set of first-order Boolean queries, i.e., defined by a first-order sentence

or a k-ary first-order query, k ∈ N.

Definition (First-order reductions). Let A ⊆ STRUC[σ],B ⊆ STRUC[τ] be Boolean
queries. Let I : STRUC[σ] → STRUC[τ] be a first-order query such that for all A ∈
STRUC[σ] it holds that A ∈ A⇔ I(A) ∈ B. Then I is a FO-many-one reduction from A

to B, A 6fo B.

Example.
∀x∀y(¬E(x, x)∧ (E(x,y)→ E(y, x)))

describes undirected, loop-free graphs.

∀x∃yz(y 6= z∧ E(x,y)∧ E(x, z)∧ ∀w(E(x,w)→ (w = y∨w = z)))

describes graphs whose vertices always have exactly two edges.

Observation: Every FO-sentence (formulas without free variables) ϕ over vocabulary τ
defines a Boolean first-order query Iϕ on STRUC[τ] where

Iϕ(A) = 1 iff A |= ϕ.

51

Example. Consider the 6p
m-reduction from 3SAT to CLIQUE as follows. Given a

formula ϕ = (L1,1 ∨ L1,2 ∨ L1,3) ∧ · · · ∧ (Ln,1 ∨ Ln,2 ∨ Ln,3), one can assume that the
number of clauses is equal to the number of variables, i.e., the variables are {x1, . . . , xn}.
Then we map to a graph G = (V,E), where

V = {Li,j | 1 6 i 6, 1 6 j 6 3}, and

E = {(Li,j,Li ′,j ′) | i 6= i ′,Li,j and Li ′,j ′ are not contrary},

k = n.

For instance ϕ = (x1∨ x2∨ x̄3)∧ (x̄1∨ x̄2∨ x̄2)∧ (x̄1∨ x2∨ x3) will lead to the following
graph:

x1 x2 x2

x1
x2

x3

x3
x2

x1

In the next step we need to formulate the first-order formulas to achieve an 6fo-reduction
from 3SAT to CLIQUE. Assume the universe of A = ϕ consists of sets of clauses and
variables. Hence a structure Aϕ = 〈A,P,N〉, where P(c, v) is a relation stating variable
v appears positively in clause c and similarly for N(c, v) negatively seems reasonable.
Thus in our case n = ||A|varphi||| = max{Vars(ϕ), Clauses(ϕ)}. Now turn towards the

reduction function I. The universe of I(A) is consisting of triples x = 〈x1, x2, x3〉, where
x1 encodes the corresponding clause, x2 the corresponding variable number, and x3 = 1
means positively and x3 = 2 means negatively.

φ0 := x
3 6 2

encodes this approach. The edge relation E is expressed via

φ ′(x,y) := x1 6= y1 ∧ (x2 = y2 → x3 = y3)

where being undirected is achieved via

φ(x,y) := φ ′(x,y)∨ φ ′(y, x).

Now the constant k is missing. Here observe that we only need to agree on a good
encoding. Usually the elements of the universe are ordered from 0, . . . ,n − 1 implying
a base n encoding leading to (010)n as n in decimal system. However we describe our

52

elements shifted one to the right with 1, . . . ,n implying that symbol 1 encodes the 0 and
so on. Hence,

ψ(x) := x1x2x3 = 121.

Wrapping up the 6fo-reduction we desired is λx1x2x3y1y2y3〈φ0,φ,ψ〉.

A.3. Circuit Complexity

Let AC0 be the family of polynomial-sized circuits of constant depth using ∧ and ∨ gates
of unbounded fan-in.

Definition (Constant depth reductions). A language A is constant-depth reducible
to B, written A 6cd B, if there is a logtime-uniform AC0-circuit family with oracle gates
for B that decides membership in A.

Here, logtime-uniform means there is a deterministic TM that can check the structure of
the circuit familiy C in time O(logn) where n is the size of C.

A.4. Quantified Boolean Formulae

Definition (Quantified Boolean formulae (qbf)). 0, 1, x (propositional variable) are
qbf

• F qbf ⇒ ¬F qbf

• F1, F2 qbf ⇒ (F1 ∧ F2) and (F1 ∨ F2) qbf

• F qbf, x variable ⇒ ∃x F and ∀x F qbf

Quantifier ∃ and ∀ quantify over truth values! They allow a very succinct representation
of formulae

∃x F ≡ F(0)∨ F(1), ∀x F ≡ F(0)∧ F(1)

F is said to be closed, if all variables in F are quantified.

QBF-VAL =def {F | F is closed qbf and F ≡ 1}
QBF-3VAL =def {F | F is closed qbf in 3CNF and F ≡ 1}

Theorem A.1.
QBF-VAL and QBF-3VAL are complete for PSPACE under 6p

m.

53

Bibliography

[Areces et al., 2000] Areces, C., Blackburn, P., and Marx, M. (2000). The computational
complexity of hybrid temporal logics. Logic Journal of the IGPL, 8:653–679.

[Arora and Barak, 2009] Arora, S. and Barak, B. (2009). Computational complexity: A
modern approach. Cambridge University Press.

[Berger, 1966] Berger, R. (1966). The undecidability of the domino problem. Memoirs
of the American Mathematical Society, 66.

[Buntrock et al., 1992] Buntrock, G., Damm, C., Hertrampf, U., and Meinel, C. (1992).
Structure and importance of logspace-mod classes. Mathematical Systems Theory,
25(3):223–237.

[Donini et al., 1992] Donini, F., Lenzerini, M., Nardi, D., and Hollunder, B. (1992). The
complexity of existential quantification in concept languages. Artificial Intelligence.

[Gelfond and Lifschitz, 1991] Gelfond, M. and Lifschitz, V. (1991). Classical negation in
logic programs and disjunctive databases. New Generation Comput., 9(3/4):365–386.

[Halpern, 1995] Halpern, J. (1995). The effect of bounding the number of primitive
propositions and the depth of nesting on the complexity of modal logic. Artificial
Intelligence, 75(2):361–372.

[Hemaspaandra, 2005] Hemaspaandra, E. (2005). The Complexity of Poor Man’s Logic.
arXiv.org, cs.LO/9911014v2.

[Hemaspaandra et al., 2010] Hemaspaandra, E., Schnoor, H., and Schnoor, I. (2010).
Generalized modal satisfiability. Journal of Computer and System Sciences, 76(7):561–
578.

[Immermann, 1998] Immermann, N. (1998). Descriptive Complexity. Springer.

[Kripke, 1963] Kripke, S. (1963). Semantical analysis of modal logic i normal modal
propositional calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathe-
matik, 9:67–96.

[Ladner, 1977] Ladner, R. E. (1977). The Computational Complexity of Provability in
Systems of Modal Propositional Logic. pages 1–14.

[Lewis, 1979] Lewis, H. (1979). Satisfiability problems for propositional calculi. Theory
of Computing Systems.

54

[McCarthy, 1980] McCarthy, J. (1980). Circumscription – a form of non-monotonic
reasoning. 13:27–39.

[Papadimitriou, 1994] Papadimitriou, C. M. (1994). Computational complexity. Addison-
Wesley.

[Regan and Vollmer, 1997] Regan, K. and Vollmer, H. (1997). Gap-languages and log-
time complexity classes. Theoretical Computer Science, 188:101–116.

[Schnoor, 2010] Schnoor, H. (2010). The Complexity of Model Checking for Boolean
Formulas. International Journal of Foundations of Computer Science, 21(03):289.

[Stockmeyer, 1976] Stockmeyer, L. (1976). The polynomial-time hierarchy. Theoretical
Computer Science.

[Thomas, 2010] Thomas, M. (2010). On the complexity of fragments of nonmonotonic
logics. PhD thesis, Cuvillier.

[Wang, 1961] Wang, H. (1961). Proving theorems by recognition–II. The Bell System
Technical Journal, 40:1–41.

55

	Post's Lattice
	Properties of Boolean Functions
	Succinctness
	Propositional Logic and Satisifability
	Expressivity of Propositional Logic

	Modal Logic
	Frames
	Enforcing the Size of a Model
	Model Checking and Ladner's Algorithm
	Generalized Satisfiability of Modal Logic

	Variants of Modal Logic
	Hybrid Logic
	Temporal Logic
	Nonmonotonic Logics

	Descriptive Complexity Theory
	Fagin's Theorem
	Least Fixed Points

	Foundations
	Complexity Theory
	First-Order Logic
	Circuit Complexity
	Quantified Boolean Formulae

