
Lecture Notes, Summer Term 2015

Efficient Algorithms

Dr. Arne Meier

Version of October 15, 2019

Institut für Theoretische Informatik
Leibniz Universität Hanover

Contents

1 Graph Algorithms 5
1.1 Foundations . 5
1.2 Directed Graphs . 9
1.3 Shortest Paths . 10

1.3.1 Weighted Graphs: Jarńık’s algorithm 11
1.3.2 Application: Timetable Algorithms 13

1.4 Negative-weight edges . 15
1.4.1 The Bellman-Ford-Algorithm . 16
1.4.2 Computation of all Shortest Paths 20

1.5 Flow networks . 20
1.6 Matchings in Bipartite Graphs . 26
1.7 Maximum Matchings in Arbitrary Graphs 29
1.8 Maximum Weighted Matchings . 32
1.9 Coloring Planar Graphs . 37

1.9.1 Foundations . 37
1.9.2 Euler’s polyhedron formula . 38
1.9.3 Colorings of Maps . 40
1.9.4 List Coloring . 42

2 Parallel Algorithms 45
2.1 Amdahl’s Law . 45

2.1.1 Sieve of Eratosthenes . 46
2.1.2 A Better Approach . 47

2.2 Important concepts of parallel computers 48
2.3 Theorem of Brent . 51
2.4 Fundamental techniques of parallel algorithms 53

2.4.1 The method of balanced binary trees 54
2.4.2 A parallel algorithm to compute all prefix sums 55
2.4.3 The technique of pointer jumping 58
2.4.4 Computing prefix sums through pointer jumping 60

2.5 Decomposition techniques in parallel algorithms 61
2.5.1 A simple merge algorithm . 61
2.5.2 A simple sort algorithm . 63
2.5.3 An optimal merge algorithm . 63

2.6 Parallel algorithms for graphs . 67
2.6.1 Connected components . 67
2.6.2 Connected components in dense graphs 68

2

2.6.3 Minimal spanning trees (MST) . 72

3

Acknowledgement
The first part of these lecture notes are build
from Olaf Beyersdorffs notes for his lecture Ef-
fiziente Algorithmen. This part has also been
influenced by the two books [Cormen et al., 2001,
Ottmann and Widmayer, 2012]. The second half of
this lecture is about parallel algorithms and bases on
the lecture Parallele Algorithmen which was previ-
ously given by Rainer Parchmann who kindly gave
the permission to use his lecture notes. Thank you
both for this.

Thanks for improvements and corrections go
out to: David Bormann, Daniel Busse, Maurice
Chandoo, Martin Hasselmann, Sergey Kartamyshev,
Jan Kassel, Martin Lück, Nils Mangelsen, Markus
Rokicki, Nicolas Tempelmeier.

4

1 Graph Algorithms

1.1 Foundations

An undirected graph is a pair G = (V, E) with set of vertices V = {1, . . . , n} and set of
edges E ⊆

(
V
2

)
=
{
{u, v} | u, v ∈ V, u 6= v

}
.

In the following we will always use n for the number of vertices and m for the number
of edges in a given graph. Now let u ∈ V. Then we define the

• neighborhood of u as NG(u) =def

{
v | {u, v} ∈ E

}
,

• degree of u as degG(u) =def ||NG(u)||, where for a given set A its cardinality (size)
is defined by ||A||, whereas for the length of a string x we write |x|,

• minimum degree of G as δ(G) =def min
v∈V

degG(v), and

• maximum degree of G as ∆(G) =def max
v∈V

degG(v).

• A graph G ′ = (V ′, E ′) is a subgraph of G = (V, E) if V ′ ⊆ V and E ′ ⊆ E ∩
(
V ′

2

)
. If

E ′ = E ∩
(
V ′

2

)
then G ′ is the V ′-induced graph.

When we speak about graph coloring we will use the following terms.

Definition. Let G = (V, E) be an undirected graph.

• A coloring is a mapping f : V → N such that f(u) 6= f(v) for all {u, v} ∈ E.

• G is k-colorable if there exists a coloring f : V → {1, . . . , k}.

• The chromatic number of G is χ(G) = min{k | G is k-colorable}.

Definition (Complete Graphs). • We refer to the complete graph with n nodes,
i.e., ||V || = n and E =

(
V
2

)
, as Kn and to the empty graph (V, ∅) over n vertices as

En.

• A set U ⊆ V is independent or stable if there are no edges between nodes in U,
i.e., E ∩

(
U
2

)
= ∅. U ⊆ V is a Clique if any vertex in U is connected to every other

vertex in U, i.e.,
(
U
2

)
⊆ E.

• The Clique-number of a graph G is ω(G) = max{||U|| | U ⊆ V is a Clique}.
Note: it holds that χ(G) ≥ ω(G).

5

K1 : K2 :

K3 : K4 :

K5 : K6 : K7 : K8 :

K9 : K10 : K11 : K12 :

Figure 1.1: The first twelve complete graphs.

Definition (Bipartite Graphs). • A graph G = (V, E) is bipartite if the set of
vertices can be divided into two distinct parts V1] V2 = V such that for every
u, v ∈ Vi (i = 1, 2) we have {u, v} /∈ E. Therefore one also writes (V1, V2, E) for
such a graph.

• The complete bipartite Graph (V1, V2, E) on |V1| = x, |V2| = y nodes is referred to
as Kx,y. A graph is bipartite iff χ(G) = 2.

K1,1 : K1,2 :
K2,2 :

K2,3 :
K3,3 :

Figure 1.2: Examples for complete bipartite graphs.

Definition (Paths). • The path of length n is denoted with Pn and defined by the
number of edges. A path is a sequence of vertices π = v0, . . . , v` with {vi, vi+1} ∈ E
for i = 0, . . . , ` − 1. If for all 1 ≤ i 6= j ≤ ` it holds that vi 6= vj, then π is
simple. The length |π| of the path is `. For ` = 0 the path is trivial. We refer
to v0, . . . , v` also as v0-v`-path. For the i-th element of π we write π(i) and if
π(i) = u, π(i + 1) = v then we say (u, v) ∈ π holds. We say that v1, . . . , v`−1 are
the inner vertices.

P0 : P1 : P2 : P3 :

Figure 1.3: Examples for paths.

6

Definition (Cycles and Forests). Let G = (V, E) be an undirected graph, and u, v, vi ∈
V.

• A cycle is a u-v-path of length ≥ 3 with u = v.

• The circle of length n is denoted with Cn and is a cycle v0, . . . , vn−1, v0 of length
n ≥ 3 such that Cn is a simple path. The number of circles in a graph G is denoted
with ν(G).

C3 : C4 : C5 : C6 :

Figure 1.4: Examples for circles.

• G is called cycle-free (or acyclic or forest) if there exists no circle in G.

• A connected forest is a tree. A node u with deg(u) ≥ 2 is an inner node and with
deg(u) ≤ 1 is a leaf.

Observation 1.
Every forest is bipartite.

Definition (Connected Components and Index). Let G = (V, E) be an undirected
graph and G ′ = (V ′, E ′) be a subgraph of G. If for every pair u, v ∈ V ′ there exists a
u-v-path then G ′ is a connected component. If furthermore there exists no w ∈ V \ V ′

such that there exists a w ′ ∈ V ′ and an w-w ′-path in G, then G ′ is called maximal. The
number of all maximal connected components is κ(G).

The index of G is defined as τ(G) = |E|− |V |+ κ(G).
An edge e of a graph G is a bridge if κ(G) < κ(G− e).

Observation 2.
Let e be an edge of graph G. Then the following claims are equivalent.

1. e is a bridge.

2. e is not part of any circle in G.

3. It holds κ(G) + 1 = κ(G− e).

Theorem 1.1.
If G is a graph and e an edge in G, then κ(G) ≤ κ(G− e) ≤ κ(G) + 1.

Proof. The first inequivalence is clear and therefore we prove only the second one.
Let e = (u, v) and assume that G − e consists of the components G1, G2, . . . , Gp with

7

p ≥ κ(G)+2. For convenience denote with Vi the respective set of vertices in a component.
If u, v ∈ Vi for some 1 ≤ i ≤ p, we get the contradiction

κ(G) = κ((G− e) + e) = p > κ(G) .

In the remaining case u ∈ Vi and v ∈ Vj for i 6= j we get the contradiction

κ(G) = κ((G− e) + e) = p− 1 > κ(G) .

Theorem 1.2.
A graph G = (V, E) is a forest if and only if every edge e ∈ E is a bridge.

Proof. ⇒: Let G = (V, E) be a forest and e ∈ E be an arbitrary bridge. As G is acyclic,
e is not part of any circle and by Observation 2 e is a bridge.⇐: If every edge is a bridge, it follows that G is acyclic and therefore a forest. �

Theorem 1.3.
Let G = (V, E) be a graph and e ∈ E. Then κ(G) = κ(G− e) iff e is contained in a cycle
of G.

Proof. ⇐: Let e = (u, v). If there is a cycle C in G with e ∈ C, then is C−e a u-v-path.
Hence all paths using the edge e can then use the path C− e. Thus κ(G) = κ(G− e).⇒: Now let κ(G) = κ(G− e). Hence the vertices u, v in G − e are still in the same
component wherefore we have a u-v-path π in G− e. But then the path π, e is a cycle in
G. �

Theorem 1.4.
For every graph G it holds that τ(G) ≥ 0.

Proof. We prove this by induction on the number of edges in G. If |E| = 0 then G is a
graph without edges, hence τ(G) = 0. Now let |E| > 0 and e be an arbitrary edge in G.
By hypothesis and Theorem 1.1 we get

0 ≤ τ(G− e) = |E|− 1− |V |+ κ(G− e)

≤ |E|− 1− |V |+ κ(G) + 1 = τ(G) .

�

Theorem 1.5.
A graph G is a forest if and only if τ(G) = 0.

Proof. ⇒: Let G = (V, E) be a forest. Hence by Theorem 1.2 every edge is a bridge.
Observation 2 implies for the graph without edges G0 = (V, ∅)

κ(G0) = |V | = κ(G) + |E|,

8

where τ(G) = |E|− |V |+ κ(G) = 0 follows.⇐: Let τ(G) = 0. Now assume G contains a circle. If edge e is part of the circle, we
get by Theorem 1.3 the following for the graph G ′ = (V ′, E ′) = G− e:

τ(G− e) = |E ′|− |V ′|+ κ
(
G ′
)

= |E|− 1− |V |+ κ(G)

= τ(G) − 1 = −1.

But this a contradiction to Theorem 1.4. Hence G does not contain a circle, wherefore G
is a forest. �

Definition (Equivalence Classes). A graph G = (V, E) is connected if for every pair
{u, v} ∈

(
V
2

)
there exists a u-v-path. The relation

Z =

{
(u, v) ∈

(
V

2

) ∣∣∣∣ there exists a u-v-path in G = (V, E)

}
is an equivalence relation1 and defines the maximal connected components in G, i.e., G/Z
is the set of all maximal connected components and index(Z) = κ(G).

Exercise 1.
Prove Observation 1.

Exercise 2.
Prove Observation 2.

Exercise 3.
Let G = (V, E) be an undirected connected graph and π1, π2 two longest simple paths in
G. Prove that π1 ∩ π2 6= ∅, where π1 ∩ π2 := {(u, v) ∈ E | (u, v) ∈ π1 and (u, v) ∈ π2} .

1.2 Directed Graphs

A directed graph (or digraph) is a pair G = (V, E) where V is the set of vertices and
E ⊆ V × V. An edge (u, u) ∈ E is a loop.

Definition (Set of Predecessors and Successors). Let G = (V, E) be a digraph.

• The set of successors of u ∈ V is N+ (u) = {v ∈ V | (u, v) ∈ E}.
1 A relation ∼ ⊆M×M on a set M is an equivalence relation, if the following holds:

1. ∼ is reflexive, i.e., for all x ∈M it holds that x ∼ x,

2. ∼ is symmetric, i.e. it holds that x ∼ y⇒ y ∼ x for all x, y ∈M,

3. ∼ is transitive, i.e. it holds that x ∼ y and y ∼ z⇒ x ∼ z for all x, y, z ∈M.

[x]∼ = {y ∈M} x ∼ y is the equivalence class of x ∈M. M/∼ is the set of all equivalence classes of ∼.
The index of ∼ is the cardinality of M/∼.

9

• The set of predecessors of u ∈ V is N− (u) = {t ∈ V | (t, u) ∈ E}.

• The set of neighbors of u ∈ V is N(u) = N+ (u) ∪N− (u).

• The out-degree of u ∈ V is deg− (u) = ||N+ (u) ||.

• The in-degree of u ∈ V is deg+ (u) = ||N− (u) ||.

Similarly the terms of directed paths, cycles, and circles are defined.

Definition (Connectedness). A digraph is weakly connected if for all pairs {u, v} ∈(
V
2

)
there is a directed u-v- or v-u-path. If both paths are always existent then g is

strongly connected.

1.3 Shortest Paths

An important problem is the search for shortest paths in graphs. First, we just bother
about the most simple case where the length of the path is measured in the number
of visited edges. This is achieved via the breadth-first search (BFS) which is shown in
Algorithm 1.1.

Algorithm 1.1: Breadth-first search BFS(G, s)

Input : Graph G = (V, E), vertex s ∈ V.
1 Init route[v] with − for every v ∈ V;
2 queue Q ← ∅;
3 Q.enqueue(s);
4 mark[s]← true;
5 route[s]← 0;
6 while Q is not empty do
7 w ← Q.dequeue();
8 forall the edges e = (w, v) ∈ E do
9 if not mark[v] then

10 mark[v]← true;
11 Q.enqueue(v);
12 route[v]← route[w]+1;

Theorem 1.6.
Let G = (V, E) be a (di)graph. Then route[v] is equal to the distance of a shortest s-v
path for all v ∈ V.

Proof. We will prove this by induction on the length ` of a shortest path from s to v.
Let ` = 0 then s = v and route[v] = 0. For induction step, let v be a node with distance
`+ 1 to s. Then there is a node u ∈ N− (v) with distance ` to s. By induction hypothesis
route gets a s-u-path of length `. When u is dequeued all its successors are added to Q.
Therefore v is visited from u or from a previously added node z in Q. As Q is a queue

10

Data structure Requirements

Adjacency list TIME(|V |+ |E|), SPACE(|V |+ |E|)
Adjacency matrix TIME(|V |2), SPACE(|V |2)

Table 1.1: Complexity of BFS.

route gets from s to z no longer path as from s to u. In both cases route gets a s-v-path
of length `+ 1. �

Observation 3.
If we use a stack instead of a queue, then the algorithm would turn into a depth-first
search.

Observation 4.
If a predecessor array pred[·] is defined as pred[v] = u if (u, v) is the last visited edge
on a shortest path from s to v, then the route[·] array induces a predecessor subgraph
Groute[·] = (Vroute[·], Eroute[·]), where Vroute[·] is the set of vertices with not ”−” predecessors,
plus the source s:

Vroute[·] := {v ∈ V | route[v] 6= −} ∪ {s}.

Then the edges set is defined as

Eroute[·] :=
{
(pred[v], v) | v ∈ Vroute[·] − {s}

}
.

1.3.1 Weighted Graphs: Jarńık’s algorithm

A weighted graphs consists of an additional weighting function defined on the reals.
The following algorithm goes back to the Czech mathematician Vojtěch Jarńık in the

1930s and independently by Robert C. Prim in 1957. It was rediscovered by Edsger
Dijkstra in 1959 and therefore is often called DJP algorithm.

Theorem 1.7.
Let G = (V, E,w) a digraph and let s ∈ V. Then DJP(G, s) computes for all from s

reachable nodes t ∈ V a shortest s-t-path. This path can be tracked via route.

Proof. At first we show that all vertices reachable from s are positively marked in done[·].
Let T the by route[·] induced breadth-first-search-tree after the repeat-loop. Then, all
vertices in T are positively marked in done[·]. Additionally, for every vertex u ∈ T all
direct successors of u are added to T (at the latest if u is chosen in line 6). Hence, T
consists of the vertices reachable from s.

Next, we will show that from route[·] we get for every t ∈ T a shortest s-t-path. We will
prove by induction on the number k of chosen vertices prior to t the claim cost[t] ≤ d(s, t),
where

d(u, v) := min

{{
`−1∑
i=1

w(vi, vi+1)

∣∣∣∣∣ v1 = u, . . . , v` = v is a u-v-path.

}
∪ {∞}

}
.

11

Algorithm 1.2: DJP algorithm

Input : A directed weighted graph G = (V, E,w) and s ∈ V.
1 Init cost[v] with ∞, done[v] with false, and route[v] with − for every v ∈ V;
2 Init data structure P with (v,∞) for every v ∈ V;
3 cost[s] ← 0;
4 P.update(s, 0);
5 repeat
6 u ← P.extractMin(), done[u] = true;
7 forall the v ∈ N+ (u) and not done[v] do
8 if cost[u] +w(u, v) < cost[v] then
9 cost[v] ← cost[u] +w(u, v);

10 route[v] ← u;
11 P.update(v, cost[v]);

12 until P.empty();

Induction basis k = 0 is s = t and cost[t] = cost[s] = 0 X.
For induction step, let s = v0, . . . , v` = t a shortest s-t-path in G and let vi be the node

with maximum index on this path which is chosen prior to t. By induction hypothesis it
holds

d(s, vi) ≥ cost[vi]. (1.1)

Further we have

cost[vi+1] ≤ cost[vi] +w(vi, vi+1). (1.2)

If t = vi+1, then it holds cost[t] ≤ cost[vi+1] of course. If t 6= vi+1, then t is chosen prior
to vi+1 and we get

cost[t] ≤ cost[vi+1]. (1.3)

Finally v0, . . . , v` is a shortest s-t-path wherefore

d(s, vi) +w(vi, vi+1) = d(s, vi+1) (1.4)

holds. Together we get

cost[t]
(1.3)

≤ cost[vi+1]
(1.2)

≤ cost[vi] +w(vi, vi+1)
(1.1)

≤ d(s, vi) +w(vi, vi+1)

(1.4)
= d(s, vi+1) ≤ d(s, t).

�

Observation 5.
Denote with I(·), E(·), U(·) the time required for the operation Init, extractMin(), update(),
then the overall runtime of the DJP algorithm is

O(I(n) +U(n) + n · E(n) +m ·U(n)),

12

Data structure extract-min insert/update init

Array O(n) O(1) O(1)
Binary Heap O(logn) O(logn) O(1)
Fibonacci Heap O(logn) (amortized) O(1) O(1)

Table 1.2: Overview operation time cost for different data structures.

where n = ||V ||, and m = ||E||.
Hence we get the following for different data structures

Array : O(||V ||2),

Binary Heap : O(||V || · log ||V ||+ ||E|| · log ||V ||),

Fibonacci Heap : O(||V || · log ||V ||+ ||E||).

Using an array is asymptotically optimal for dense graphs with O(||V ||2) edges. If we have
thinner graphs, then we get a better runtime by using binary or Fibonacci heaps. An open
question is wether there exists an algorithm with runtime O(||V ||+ ||E||).

Observation 6.
Similarly to Observation 4, now we get a shortest-path tree containing shortest paths
from the source s to every vertex that is reachable from s. Let G = (V, E,w) a weighted
digraph containing no negative-weight cycles reachable from s (so that shortest paths are
well defined). A shortest-path tree rooted at s is a directed subgraph G ′ = (V ′, E ′), where
V ′ ⊆ V and E ′ ⊆ E, s.t.

1. V ′ is the set of vertices reachable from s in G,

2. G ′ forms a rooted tree with root s, and

3. for all v ∈ V ′, the unique simple path from s to v in G ′ is a shortest path from s to
v in G.

1.3.2 Application: Timetable Algorithms

A timetable is a graph with vertices (stations, bus stops, ...) and edges (train-/bus-
connections) with departure and arrival times. Hence edges are quadruples e = (s, t, d, a)
with

• start vertex s and target vertex t,

• departure time d in station s, and

• arrival time a in station t.

A change between two connections e1 = (s1, t1, d1, a1) and e2 = (s2, t2, d2, a2) is possible
if t1 = s2 and a1 ≤ d2. A connection between stations s and t is a sequence of edges
(e1, . . . , en), where

13

• s is the start vertex of e1,

• t is the target vertex of en, and

• the change from ei to ei+1 is possible for i = 1, . . . , n− 1.

An addition operation is defined on the set of time labels T . Often T consists of integers
between 0 and 1439 and represents the number of minutes since midnight.

The earliest arrival problem EAP consists of triples (s, t, d) with

• start vertex s,

• target vertex t, and

• an earliest departure time d.

The task is to compute a connection between s and t, such that s does not earlier depart
than d and arrives as soon as possible at t. EAP has a realistic and a simplified version.
The realistic one considers a change time at each station. The simplified one assumes a
change time of 0. In the following we will consider the simplified version of EAP.

Another problem is the minimum number of transfers problem MNTP. For this problem
the instance consists of a departure station s and a arrival station t. The task is to
compute a connection with as few as possible changes.

Time-Expanded Model

Our DJP algorithm is not immediately applicable for timetables because edges are
only available within a specific time interval. One of the most used approaches is the
transformation of the timetable into a graph through the time-expanded model.

The time-expanded model follows the following procedure. For every edge e = (s, t, d, a)
get a copy of the start vertex s labeled with departure time d, and get a copy of the
target vertex t labeled with arrival time a. The edge e is an edge between these two
copies.

For every station s of the original timetable all copies of s are ordered w.r.t. their time
labels. If v1, . . . , vk are the copies of s in ascending order, then we introduce waiting
edges (vi, vi+1) for i = 1, . . . , k− 1. Figure 1.5 shows a transformation of a timetable into
the time-expanded model.

EAP in Time-Expanded Model

In the time-expanded model every vertex is of the form (v, t) where v is a vertex in the
original network and t is a time label. To solve EAP with the DJP-algorithm we allocate
the weight

wEAP

(
(v1, t1), (v2, t2)

)
= t2 − t1

to every edge in the time-expanded model. The weighting function on edges corresponds
to the difference between arrival and departure time of the respecting connection. An

14

1

2 3

4 5

9− 10 10− 12

10− 13

12− 1411− 13

13− 16

15− 17

1 2 3 4 5

09:00

10:00 10:00

11:00

12:00 12:00

13:00

15:00

13:00

14:00

16:00

17:00

Figure 1.5: A timetable and the transformation into the time-expanded model. The
dashed lines show a solution of the EAP-request (1,5,9:30).

EAP instance (s, t, d) can be solved if we search the node s ′ = (s, t ′) with minimal time
value t ′ ≥ d in the time-expanded model and then call the DJP-algorithm with initial
node s ′. The shortest path to a copy of the node t with smallest possible time label leads
to a solution of the EAP instance (s, t, d).

MNTP in Time-Expanded Model

If we want to use MNTP in the time-expanded model with the DJP-algorithm we consider
the weighting

wMNTP

(
(v1, t1), (v2, t2)

)
=

{
1 , if v1 6= v2,
0 , otherwise.

We solve the MNTP instance (s, t) through using the DJP-algorithm in the time-expanded
model with the earliest copy of s. A shortest path to an arbitrary copy of t leads to a
solution of the MNTP instance.

1.4 Negative-weight edges

Sometimes one has to work with negative edges weightings (e.g., if a specific connection
has some benefits compared to others). In such situations one usually searches a shortest
simple path, where vertices may not occur twice. The computational complexity of the
problem basically relies on the fact if directed cycles of negative length are allowed (see

15

1 2

-1-3

Figure 1.6: A negative cycle.

Figure 1.6). If such cycles are allowed then the problem becomes NP-hard. Otherwise
there exist efficient algorithms which will be examined in the following.

The Ford-algorithm is very similar to the DJP-algorithm but can visit a vertex more
than once. Therefore the algorithm revisits an edge e = (u, v) such that the current
distance value cost[v] gets smaller due to the inequivalence cost[u] +w(u, v) < cost[v].
Such a step is called relaxation (or relaxing) of e.

1.4.1 The Bellman-Ford-Algorithm

The Bellman-Ford-algorithm gets all shortest paths from a given initial vertex s in a
weighted digraph G = (V, E,w) without negative cycles. The running time is O(|V | · |E|)
wherefore for dense graphs we get a running time of O(|V |3).

Algorithm 1.3: Bellman-Ford-algorithm

Input : A non-empty connected weighted graph G = (V, E,w) and s ∈ V.
1 Init cost[v] with ∞, and route[v] with − for every v ∈ V;
2 cost[s] ← 0;
3 for i = 1 to |V |− 1 do
4 forall the (u, v) ∈ E do
5 if cost[u] +w(u, v) < cost[v] then // relaxation
6 cost[v] ← cost[u] +w(u, v);
7 route[v] ← u;

8 forall the (u, v) ∈ E do
9 if cost[u] +w(u, v) < cost[v] then

10 return There exists a negative cycle.

Exercise 4.
Prove the upper-bound property:
Let G = (V, E,w) be a weighted digraph and s ∈ V be a vertex. Then cost[v] ≥ d(s, v) for
all v ∈ V and this invariant is maintained over any sequence of relaxation steps on the
edges of G. Moreover, once cost[v] achieves its lower bound d(s, v), it never changes.

Exercise 5.
Prove the convergence property:
Let G = (V, E,w) be a weighted digraph and let (u, v) ∈ E. Then, immediately after
relaxing edge (u, v) in the if block we have cost[v] ≤ cost[u] +w(u, v).

16

Exercise 6.
Prove the path-relaxation property:
If π = (v0, v1, . . . , vk) is a shortest path form s = v0 to vk, and the edges of p are relaxed
in the order (v0, v1), (v1, v2), . . . , (vk−1, vk), then cost[vk] = d(s, vk). This property holds
regardless of any other relaxation steps that occur, even if they are intermixed with
relaxations of the edges of π.

Exercise 7.
Prove the no-path property:
Suppose that in a weighted, digraph G = (V, E,w), no path connects a source s ∈ V to
a given vertex v ∈ V. Then we have cost[v] = d(s, v) =∞ after initialization, and this
equality is maintained as an invariant over any sequence of relaxation steps on the edges
of G.

Exercise 8.
Prove the cost-array correctness:
Let G = (V, E,w) be a weighted digraph and s ∈ V, and assume that G contains no
negative cycles reachable from s. Then, after |V |− 1 iterations of the for loop it holds
cost[v] = d(s, v) for all vertices v that are reachable from s.

Lemma 1.8.
Let G = (V, E,w) be a weighted digraph, s ∈ V, and assume that G contains no negative-
weight cycles reachable from s. Then, after the initialization, the predecessor subgraph
Groute[·] forms a rooted tree with root s, and any sequence of relaxation steps on edges of
G maintains this property as an invariant.

Proof. We start with only s ∈ Vroute[·] and the claim is trivially true. Now consider a
predecessor subgraph Groute[·] arising after a sequence of relaxation steps. First we prove
that Groute[·] is acyclic. Assume for the sake of contradiction that some relaxation step
creates a cycle in the graph Groute[·]. Let this cycle be c = (v0, v1, . . . , vk), where vk = v0.
Then route[vi] = vi−1 for 1 ≤ i ≤ k, and w.l.o.g., assume that it was the relaxation of
edge (vk−1, vk) that created the cycle in Groute[·].

We claim that all vertices on c are reachable from s. This holds, because each vertex
on c has a not − predecessor, and so each vertex on c was assigned a finite shortest-path
estimate when it was assigned its not − route[·] value. By the upper-bound property,
each vertex on cycle c has a finite shortest-path weight, which implies that it is reachable
from s.

We examine the shortest-path estimates on c just prior to the relaxation of (vk−1, vk)
and show that c is a negative-weight cycle leading to a contradiction. Just before the
call, we have route[vi] = vi−1 for 1 ≤ i ≤ k− 1. Hence the last update to cost[vi] was by
the assignment

cost[vi] ← cost[vi−1] +w(vi−i, vi).

If cost[vi−1] changed since then, it decreased. Therefore just before the relaxation call,
we have

cost[vi] ≥ cost[vi−1] +w(wi−1, vi) , 1 ≤ i ≤ k− 1. (1.5)

17

Because route[vk] is changed by the call, immediately beforehand we also have the strict
inequality

cost[vk] > cost[vk−1] +w(vk−1, vk).

Summing these two inequalities, we obtain the sum of the shortest-path estimates around
cycle c:

k∑
i=1

cost[vi] >

k∑
i=1

(
cost[vi−1] +w(vi−1, vi)

)
=

k∑
i=1

cost[vi−1] +
k∑
i=1

w(vi−1, vi).

But
k∑
i=1

cost[vi] =
k∑
i=1

cost[vi−1],

since each vertex in c appears exactly once in each summation. This equality implies

0 >

k∑
i=1

w(vi−1, vi).

Thus, the sum of weights around the cycle c is negative, which provides the contradiction.

Now we have proven that Groute[·] is an acyclic digraph. To show that it forms a tree
rooted at s, it suffices to prove that for each vertex v ∈ Vroute[·] there is a unique path
from s to v in Groute[·].

First we show that a path from s exists for each vertex in Vroute[·]. The vertices in
Vroute[·] are those without − values in route[·] plus s. This can be proven by induction
on path lengths from s to all vertices in Vroute[·].

To complete the claim proof, we need to show that for any vertex v ∈ Vroute[·] there
is at most one path from s to v in Groute[·]. Suppose otherwise. That is, suppose that
there are two simple paths from s to some vertex v : π1, which can be decomposed
into s, ..., u, ..., x, z, ..., v and π2, which can be decomposed into s, ..., u, ...y, z, ..., v, where
x 6= y (see Figure 1.7). But then, route[z] = x and route[z] = y implying the contradiction
that x = y. We conclude that there exists a unique simple path in Groute[·] from s to v,
and hence Groute[·] forms a rooted tree with root s.

Exercise 9.
Prove the predecessor-subgraph property:
Let G = (V, E,w) be a weighted digraph, s ∈ V, and assume G contains no negative-weight
cycles reachable from s. After the initialization of the algorithm execute any sequence of
relaxation steps producing cost[v] = d(s, v) for all v ∈ V. Then, the predecessor subgraph
Groute[·] is as shortest-paths tree rooted at s.

Theorem 1.9.
The BF-algorithm is correct.

18

s u

x

y

z v

Figure 1.7: Showing uniqueness for paths in Groute[·].

Proof. Suppose that G contains no negative-weight cycles that are reachable from s. We
first prove the claim that at termination, cost[v] = d(s, v) for all v ∈ V . If v is reachable
from s, then Exercise 8 proves this claim. If v is not reachable from s, then the claim
follows from the no-path property. Thus, the claim is proven. The predecessor-subgraph
property, along with the claim, implies that Groute[·] is a shortest-path tree. Now use the
claim to show BF(G, s) does not return ”There exists a negative cycle.”. At termination,
we have for all edges (u, v) ∈ E,

cost[v] = d(s, v)

≤ d(s, u) +w(u, v) (by triangle inequality)

= cost[u] +w(u, v),

and so none of the if blocks is fulfilled. Conversely, suppose that G contains a negative-
weight cycle reachable from s; let this cycle be c = (v0, v1, . . . , vk) with v0 = vk. Then

k∑
i=1

w(vi−1, vi) < 0. (1.6)

Assume for contradiction that the algorithm does not return ”There exists a negative
cycle.”. Thus cost[vi] ≤ cost[vi−1] +w(vi−1, vi) for 1 ≤ i ≤ k. Summing the inequalities
around c gives us

k∑
i=1

cost[vi] ≤
k∑
i=1

(
cost[vi−1] +w(vi−1, vi)

)
=

k∑
i=1

cost[vi−1] +
k∑
i=1

w(vi−1, vi).

Since v0 = vk each vertex in c appears exactly once in each summation of
∑k
i=1 cost[vi]

and
∑k
i=1 cost[vi−1], and so

k∑
i=1

cost[vi] =
k∑
i=1

cost[vi−1].

19

Moreover, as for each vertex v ∈ V there is a path from s to v iff the algorithm terminates
with cost[v] <∞, cost[vi] is finite for 1 ≤ i ≤ k. Thus,

0 ≤
k∑
i=1

w(vi−1, vi),

which contradicts Equation (1.6). Hence the algorithm returns ”There exists a negative
cycle.” iff it contains a negative-weight cycle. �

A slight variant of the BF-algorithm is the Bellman-Ford-Moore-algorithm, which
improves in most cases the runtime. It uses the following idea: in every iteration step
only the vertices are considered which have changed in the previous step. Precondition is
a weighted digraph G = (V, E,w) with given s ∈ V and no negative cycles.

For acyclic graphs the runtime can be improved to O(||V || + ||E||) by choosing the
successor in topological sorting.

1.4.2 Computation of all Shortest Paths

Sometimes one does not need to get just the shortest paths starting in a specific vertex
s, but one wants the shortest paths between every pair of two vertices. Of course
one can use the previous algorithms n-times, but a more simple way is to use the
Floyd-Warshall-algorithm.

Let G = ({1, . . . , n}, E,w) be a weighted digraph without negative cycles. In particular,
for every loop (i, i) ∈ E it holds w(i, i) ≥ 0. Let dk(i, j) the length of the shortest,
nontrivial path from i to j whose inner vertices are all in the set {1, . . . , k}. Then

d0(i, j) =

{
w(i, j) , if (i, j) ∈ E,∞ , otherwise.

If we are interested in only nontrivial paths, then set d0(i, i) =∞ for all i ∈ V . If trivial
paths are under consideration then set d0(i, i) = 0. It holds that

dk(i, j) = min
{
dk−1(i, j), dk−1(i, k) + dk−1(k, j)

}
.

The runs in time of Algorithm 1.4 is O(|V |3) and in space of O(|V |2). G does contain a
negative cycle if there is an i such that dk(i, i) < 0.

1.5 Flow networks

Definition. A network N = (V, E, s, t, c) consists of a digraph G = (V, E) with a source
s ∈ V (i.e., N− (s) = 0) and a sink t ∈ V (i.e., N+ (t) = 0) as well as a capacity function
c : V × V → N. Every edge (u, v) ∈ E must have a positive capacity c(u, v) > 0 and all
non-edges (u, v) /∈ E do have capacity c(u, v) = 0.

Definition. A flow of a network N is a function f : V × V → Z with

20

i

j

k

Figure 1.8: Case distinction for computation of dk(v, v).

Algorithm 1.4: Floyd-Warshall-Algorithm

Input : weighted digraph G = ({1, . . . , n}, E,w).
1 forall the u ∈ V do
2 forall the v ∈ V do
3 if (u, v) ∈ E then d0(u, v) ← w(u, v);
4 else d0(u, v) ← ∞;

5 for k = 1 to n do
6 forall the i = 1 to n do
7 forall the j = 1 to n do
8 dk(i, j) ← min

{
dk−1(i, j), dk−1(i, k) + dk−1(k, j)

}

21

s

a

c d

b

t

11/16

8/13

0/10
1/4

12/12

11/14

4/9

15/20

7/7

4/4

Figure 1.9: An example network. x/y denotes a flow of x and a capacity of y.

s

a

c d

b

t

5

11

5

8

11
3

12

3

11

5

4

5

15

7

4

Figure 1.10: The residual network of Figure 1.9.

• f(u, v) ≤ c(u, v) (capacity constraints)

• f(u, v) = −f(v, u) (skew symmetry)

• For all u ∈ V \ {s, t} :
∑
v∈V f(u, v) = 0 (flow conservation); the net flow to a node

is zero, except for the source which produces flow and the sink which consumes flow.

The size of f is |f| :=
∑
v∈V f(s, v) =

∑
v∈V f(v, t).

Goal: We want to compute flows of maximum size.

Definition. Let N = (V, E, s, t, c) be a network and f be a flow of N. The corresponding
residual network is Nf = (V, Ef, s, t, cf) where

cf = c(u, v) − f(u, v),

and
Ef = {(u, v) ∈ V × V | cf(u, v) > 0} .

22

s

a

c d

b

t

11/16

12/13

0/10
1/4

12/12

11/14

0/9

19/20

7/7

4/4

Figure 1.11: The network of Figure 1.9 extended by the augmenting path.

Definition. Let Nf = (V, Ef, s, t, cf) be a residual network. Then every s-t-path π in
(V, Ef) is an augmenting path for Nf. The capacity of π ∈ Nf is

cf(π) = min{cf(u, v) | (u, v) ∈ π}.

The flow of π in Nf is defined as

fπ(u, v) =

cf(π) , if (u, v) ∈ π,
−cf(π) , if (v, u) ∈ π,
0 , otherwise.

Hence π = (u0, . . . , uk) is an augmenting path in Nf if and only if

• u0 = s,

• uk = t,

• u0, . . . , uk are pairwise different, and

• cf(ui, ui+1) > 0 for i = 0, . . . , k− 1.

Ford-Fulkerson-Algorithm

The Ford-Fulkerson-Algorithm is used to find maximum flows and depicted in Algo-
rithm 1.5.

Algorithm 1.5: Ford-Fulkerson-Algorithm

Input : Flow network N = (V, E, s, t, c)
1 forall the (u, v) ∈ V × V do f(u, v) ← 0 ;
2 while there exists an augmenting path π for Nf do f ← f+ fπ ;

Now we need to prove correctness of the algorithm, that is, showing that the algorithm
computes a maximum flow. Additionally we need to estimate the overall runtime.

23

s

a

c d

b

t

5

11

1

12

11
3

12

9

3

11

1

19

7

4

Figure 1.12: The residual network of Figure 1.11. No other augmenting path available.

Definition. Let N = (V, E, s, t, c) be a network and S, T ⊆ V with S∪̇T = V. We say
(S, T) is a cut through N, if s ∈ S and t ∈ T . The capacity of a cut (S, T) is

c(S, T) =
∑

u∈S,v∈T
c(u, v),

and if f is a flow of N, we say to

f(S, T) =
∑

u∈S,v∈T
f(u, v)

the flow through the cut (S, T).

Lemma 1.10.
For every cut (S, T) and every flow f it holds |f| = f(S, T) ≤ c(S, T).

Proof. We prove |f| = f(S, T) by induction on k = ||S||.
Induction start. k = 1, hence S = {s} and T = V \ {s}. Then we have

|f| =
∑

v∈V\{s}

f(s, v) =
∑

u∈S,v∈T
f(u, v) = f(S, T).

For the induction step k− 1→ k let (S, T) be a cut with |S| = k > 1 and let w ∈ S \ {s}.
Consider the cut (S ′, T ′) with S ′ = S \ {w}, T ′ = T ∪ {w}. Then it holds:

f(S, T) =
∑

u∈S,v∈T
f(u, v) =

∑
u∈S ′,v∈T

f(u, v) +
∑
v∈T

f(w, v)

f(S ′, T ′) =
∑

u∈S ′,v∈T ′
f(u, v) =

∑
u∈S ′,v∈T

f(u, v) +
∑
u∈S ′

f(u,w)

24

Due to f(w,w) = 0 we have ∑
u∈S ′

f(u,w) =
∑
u∈S

f(u,w)

and therewith

f(S, T) − f(S ′, T ′) =
∑
v∈T

f(w, v) −
∑
u∈S ′

f(u,w)

=
∑
u∈V\S

f(w,u) −
∑
u∈S

f(u,w) =
∑
v∈V

f(w, v) = 0

By induction hypothesis we get |f| = f(S ′, T ′) = f(S, T).
The inequivalence f(S, T) ≤ c(S, T) follows by

f(S, T) =
∑

v∈S,u∈T
f(v, u) ≤

∑
v∈S,u∈T

c(v, u) = c(S, T).

�

Theorem 1.11 (Min-Cut-Max-Flow-Theorem).
Let f be a flow for a network N = (V, E, s, t, c). Then the following claims are equivalent

(i) |f| is maximal.

(ii) In Nf exists no augmenting path.

(iii) There is a cut (S, T) with c(S, T) = |f|.

Proof. (i) −→ (ii): is clear as the existence of an augmenting path leads to an increase
of f.

(ii) −→ (iii): Consider the cut (S, T) with

S = {u ∈ V | u is from s reachable in the residual network Nf}.

As in Nf we have no augmenting path then s ∈ S, t ∈ T and cf(u, v) = 0 holds for all
u ∈ S, v ∈ T . Due to cf(u, v) = c(u, v) − f(u, v) it follows that

|f|
Lem. 1.10

= f(S, T) =
∑

u∈S,v∈T
f(u, v) =

∑
u∈S,v∈T

c(u, v) = c(S, T).

(iii) −→ (i): In the case c(S, T) = |f| it follows for every flow f ′

|f ′|
Lem. 1.10

= f ′(S, T)
Lem. 1.10
≤ c(S, T) = |f|.

�

25

s t

2m

2m

1

2m

2m

Figure 1.13: Example leading to exponential runtime for unmodified Ford-Fulkerson.

Runtime estimation

• The computation of the augmenting path π in breadth-first-search costs time
O(||V ||+ ||E||).

• The computation of the residual network requires time O(||V ||) through updates
along the edges in π for the next residual network.

• Let c0 =
∑
v∈V c(s, v) be the capacity of the cut S = {s}. Then the Ford-Fulkerson-

algorithm runs through the while-loop at most c0-times.

• By this we get a complete runtime of O(c0 · (||V ||+ ||E||)).

• The size of the input is O(||V ||2 · log(c0)), hence in the worst case we get an
exponential runtime. This can be the case as well for badly chosen augmenting
paths2.

This exponential runtime can be avoided through the following strategies:

1. Consider only augmenting paths with suitable chosen minimum capacity. This
leads to polynomial runtime in ||V ||, ||E|| and log c0.

2. Edmonds-Karp-strategy : Always choose the shortest augmenting path in the residual
network. Leads to a runtime of O(||V || · ||E||2) (independently from the capacity
function!).

3. Algorithm of Dinic: The difference to Edmonds-Karp is that not only a single
s-t-path is augmented, instead larger s-t-flows are considered composed of several
shortest s-t-paths. Runtime: O(||V ||2 · ||E||).

1.6 Matchings in Bipartite Graphs

Definition. Let G = (V, E) be an undirected graph.

• A set of edges M ⊆ E is said to be a matching, if for all e, e ′ ∈M it holds

e 6= e ′ implies e ∩ e ′ = ∅.

We then say M is a matching of G.

2The crucial point is that an augmenting path must not be a shortest path. An example is shown in
Figure 1.13. Here one may use 2m paths which always use the middle edge with capacity 1.

26

• A vertex is matched (or saturated), if it is contained in a matching.

• The matching number of G is µ (G) := max { ||M|| | M is a matching in G}, i.e.,
the size of a maximum matching in G. If M is a matching of G and ||M|| = µ (G),
then we say M is maximum matching.

• A matching is (inclusion) maximal, if it is not contained in a larger matching.

Figure 1.14: Maximal matchings denoted with thick edges. Maximum matchings with
dashed edges. Hence maximal matchings not need to be perfect.

• For a set of vertices U ⊆ V and an set of edges F ⊆ E denote with

UF := {u ∈ U | ∃v ∈ V and {u, v} ∈ F}

the set of vertices which are covered by F in U. A matching M is said to be perfect
if VM = V.

Theorem 1.12.
If G is a bipartite graph, then the task to compute a maximum matching can be done in
polynomial time.

Proof. We will reduce the problem of searching for maximum matchings to the following
flow problem. Let G = (U,V, E) be a bipartite graph. Consider the network N(G) =
(V ′, E ′, s, t, c) where

V ′ = U ∪ V ∪ {s, t} with fresh vertices s, t,

E ′ = {(s, u) | u ∈ U} ∪ {(u, v) | u ∈ U, v ∈ V, {u, v} ∈ E} ∪ {(v, t) | v ∈ V} , and

c(e) = 1 for all e ∈ E ′.

Then we can assign to every flow f in N(G) a matching Mf = { {u, v} ∈ E | f(u, v) = 1}.
Vice versa for every matching M we get a flow

fM(v, v ′) =

1 , if (v, v ′) ∈ EM,
−1 , if (v ′, v) ∈ EM, and

0 , otherwise ,

where

EM = {(s, u) | u ∈ UM} ∪ {(u, v) | u ∈ U, v ∈ V, {u, v} ∈M} ∪ {(v, t) | v ∈ VM} .

Hence, the maximum flow in the residual network N(G) computed by Ford-Fulkerson
gets a maximum matching in G.

The runtime of this algorithm is polynomial because the size of f is bounded by ||U||

and therefore the while-loop in Ford-Fulkerson is used at most ||U|| times. �

27

s t

U V

each capacity of 1

Figure 1.15: If we add source and sink we can use a maximum flow to find a maximum
matching.

Let G = (V, E) be a graph and A ⊆ V be a set of vertices. Define the set of neighbors
of A as

Γ(A) := {v ∈ V | ∃u ∈ A such that v ∈ NG(u)}

The following theorem proves a characterization of the existence of matchings in bipartite
graphs, where all vertices in partition U find a matching partner.

Theorem 1.13 (Hall’s marriage theorem, 1935).
For a bipartite graph G = (U,V, E) it holds that µ (G) = ||U|| if and only if for all subsets
A ⊆ U it holds ||Γ(A)|| ≥ ||A||.

Proof. ”⇒”: clear, because every subset A ⊆ U needs at least ||A|| matching partners
in Γ(A).

”⇐”: We will prove:

µ (G) ≥ ||U||− max
A⊆U

{||A||− ||Γ(A)||, 0}.

Here it suffices to show that there exists an A ⊆ U with ||A||− ||Γ(A)|| ≥ ||U||− µ (G).
The maximum flow f in the network N(G) has the size |f| = µ (G). From the Min-Cut-

Max-Flow-Theorem (Theorem 1.11) the existence of a cut S follows which has capacity
µ (G). We choose A = S ∩U. Then it holds that

µ (G) = c(S)
(?)

≥ ||U \ S||+ ||Γ(S ∩U)|| = ||U||− ||A||+ ||Γ(A)||. (1.7)

The estimation (?) holds because every vertex u ∈ U \ S adds the edge (s, u) to the
capacity c(S) and as every vertex v ∈ Γ(S ∩U) adds an edge e to c(S):

1st case: v ∈ S =⇒ e = (v, t)

2nd case: v /∈ S =⇒ e = (u, v) for an u ∈ S ∩U.

From Equation (1.7) we get by shifting

||A||− ||Γ(A)|| ≥ ||U||− µ (G) ,

whereby the claim follows. �

28

1.7 Maximum Matchings in Arbitrary Graphs

Definition. Let G = (V, E) be a graph and M ⊆ E a matching in G.

• Every edge e ∈M is bound.

• Every edge e ∈ E \M is free.

• Every vertex incident to a bounded edge is bound, other vertices are free.

• A path in G whose edges are alternating between bound and free, is an alternating
path w.r.t. M.

• An alternating path with two free vertices on both ending edges is augmenting w.r.t.
M.

Theorem 1.14.
Let G = (V, E) be a graph and M ⊆ E be a matching in G. Then G w.r.t. M has an
augmenting path if and only if M is not a maximum matching.

Proof. ”⇒”: clear, as augmenting paths can enlarge the matching through swapping
the edges along the augmenting path.

”⇐”: Let Mmax be a maximum matching, but M is not a maximum matching. Let
k = ||Mmax||− ||M|| > 0 and

Msym =M∆Mmax = (M \Mmax) ∪ (Mmax \M).

Every vertex in V incidences at most with two vertices in Msym. The subgraph (V,Msym)
contains no cycles of odd length, as edges of M and Mmax must alternate. Therefore
(V,Msym) contains only cycles of even length or paths of arbitrary length. Each such
cycle or path is an alternating path w.r.t. M, because the edges are alternating between
free and bound (w.r.t. M). Due to k = ||Mmax||− ||M|| and as Msym contains all edges
from Mmax ∪M except the common edges, Msym contains exactly k edges more from
Mmax than from M.

Every cycle in (V,Mmax) contains equivalent many edges from M as from Mmax. Hence
on paths (without cycles) there are even k edges more from Mmax than from M. Hence
there must be at least k paths which start and end from an edge in Mmax and alternate
on the edges in Mmax and M.

As Mmax is a matching, all these paths are disjunct w.r.t. to the vertices and as well
augmenting w.r.t. M, because both ending vertices are free w.r.t. M. �

The last theorem delivers the main idea for an algorithm to compute maximum
matchings:

Though the most important question is: how can augmenting paths be found? We will
discuss two strategies which will not immediately lead to the desired success.

29

1 M ← ∅;
2 while there is an augmenting path π do
3 M ← M∆π;

Idea 1: Breadth-first-search. This strategy can be used for bipartite graphs. We will
illustrate this technique on the example graph from Figure 1.16 which leads with the
corresponding breadth-first-search-tree to the augmenting path y3, x2, y4, x4, y5, x6.
Generally this cannot be done in this way as shown in Figure 1.17.

Idea 2: Vertices will be visited twice. This does not work as well, because one can
find in the graph of Figure 1.17 (a) the path 1, 2, 3, 6, 4, 3, 2, 7 which is not an
augmenting path. The main problem seems to be the presence of blossoms, as
shown in Figure 1.18.

(a) x1

x2

x3

x4

x5

x6

y1

y2

y3

y4

y5

y6

(b) y3 free vertex

x2 bound vertex

y4 bound vertex

x4 bound vertexx5

y5 bound vertexy6

x6 free vertex

Figure 1.16: (a) Bipartite graph with matching (thick edges). (b) Breadth-first-search-tree
to find augmenting paths.

(a)

1

2

7

3

6

4 5

1

2

3

6 4

?

Figure 1.17: (a) Graph with matching (thick edges). (b) Augmenting path search does
not work with breadth-first-search. Problem is that vertex 4 has already
been visited.

Formally we define blossoms as follows.

30

(a)

v
v ′′

v ′

s

t

(b)

v

v ′′

s

t

Figure 1.18: (a) A blossom (with additional vertices s, t). (b) Shrunken blossom from
(a).

b
π

b
π

Figure 1.19: Case 2 of the proof of the Shrinking Blossom Theorem. Left the path π in
G ′, right the path with an expanded blossom.

Definition. Let M be a matching in a graph G = (V, E). Let π w.r.t. M be an alternating
path from a free vertex v to a vertex v ′ such that (i) there exists a vertex v ′′ which is on
π at even distance to v, and (ii) v ′ is connected to v ′′ by a free edge (cf. Figure 1.18).
Then we say blossom to a path consisting of the subpath of even length from v ′′ to v ′

together with the edge (v ′, v ′′), and stem to the subpath from v to v ′′.

If we find a blossom w.r.t. to a matching M in G, then we can transform G into G ′ by
shrinking the blossom: the blossom will become a single vertex (cf. Figure 1.18 (b)). It is
important to retain the alternating paths as shown in the example.

The following theorem will show that shrinking blossoms retains augmenting path
existence.

Theorem 1.15 (Shrinking Blossom Theorem).
Let G = (V, E) be a graph and M ⊆ E be a matching in G. If G ′ results from shrinking a
blossom in G, then G contains an augmenting path w.r.t. M if and only if G ′ contains
an augmenting path w.r.t. M.

Proof. ”⇐”: Let π be an augmenting path in G ′ and b be the vertex resulting from
the shrunken blossom.

Case 1: b is not used in π. Then π is an augmenting path in G.

Case 2: π uses b and the expanded blossom in G has exactly one vertex with π in
common. Then π is an augmenting path in G (see Figure 1.19).

31

(b)

b
π π

Figure 1.20: Case 3 of the proof of the Shrinking Blossom Theorem. Left the path π in
G ′, right the path with an expanded blossom.

Case 3: π uses b and the expanded blossom in G has more than one vertex with π in
common. Then the expansion of π is of one of the two paths through the blossom
b in an augmenting path in G (see Figure 1.20).

”⇒”: This direction is harder to prove. We will show this constructively with the
algorithm of Edmonds which finds augmenting paths (Algorithm 1.6). The algorithm
explores the graph by shrinking blossoms whenever they are encountered. During the
procedure the algorithm constructs a forest which consists of trees of alternating paths
rooted at the free vertices. Therefore we replace undirected edges by the two corresponding
directed ones.

In the algorithm we will use the following strategy and notion:

• Construct a forest of trees with alternating paths, starting with a free vertex.

• If blossoms are found, then shrink them.

• Every vertex has three possible states: unreached, even, or odd.

• For every vertex v we save its predecessor pred(v) in the recently constructed tree.

• For every bound vertex v let partner(v) be the matching partner of v. �

Now Edmonds-Algorithm provides us with a technique to find augmenting paths and
thereby we can compute maximum matchings in arbitrary graphs. The correctness follows
from the previous theorem. The runtime of the algorithm is O(||V || · ||E||), if one uses
a specific data structure to maintain disjunct subsets which is used for blossoms and
subtrees. However there exists an improved algorithm by Micali and Vaziran with a
runtime of O(

√
||V || · ||E||).

1.8 Maximum Weighted Matchings

Now we will consider undirected graphs G = (V, E) with a weighting function w : E→ Z.
The task is to find a matching M with maximum weight

w(M) =
∑
e∈M

w(e).

32

Algorithm 1.6: Edmonds-Algorithm for the computation of augmenting paths.

Input : Graph G = (V, E) with a matching M
Output : an augmenting path in (G,M) or ∅ if none exists

1 forall the v ∈ V such that v is free do state(v) ← even;
2 forall the v ∈ V such that v is bound do state(v) ← unreached;
3 forall the v ∈ V do pred(v) ← nil;
4 i ← 0 blossom id;
5 B ← ∅ is the set of constructed blossoms plus their neighborhood during the algorithm;
6 while there is an unmarked edge (v,w) with state(v) is even do
7 mark (v,w);
8 if state(w) = odd then // Case 1: cycle of even length found
9 do nothing;

10 else if state(w) = unreached then // Case 2: extend path
11 state(w) ← odd;
12 state(partner(w)) ← even;
13 pred(w) ← v;
14 pred(partner(w)) ← w;

15 else if state(w) = even then
16 if v and w are in the same tree w.r.t. pred(·) then // Case 3: shrink the blossom
17 u ← nearest common ancestor of v and w in the tree;
18 B ← {v | v is a descendant of u and ancestor of v or w};
19 add blossom G|B with its neighborhood to B and mark it with i;
20 replace G|B by bi in G and connect neighborhood of B to bi (if

(v,w1), . . . , (v,wk) ∈ E and all wi ∈ B then (v, b) is matched if one (v,wi) is
matched);

21 pred(bi) ← pred(u), pred(x) ← bi for each vertex x ∈ B;
22 pred(u) ← bi, for each u with pred(u) = x for some x ∈ B;
23 state(bi) ← even, i ← i+ 1;

24 else // Case 4: augmenting path found
25 π is the path from the root of the tree containing v to the root of the tree

containing w while π contains blossoms do
26 let (u, bj, v) be the subpath in π, where j is maximum;
27 let B be the corresponding jth blossom in B;
28 π ′ ← u,w1, . . . , wn, v path of even length through B and replace bj by π ′

in π;

29 return π;

30 return ∅;

33

1

e

2

o

3

e

4

o

7

e

6

u

5

e

10

o

8

u

9

e

Predecessor tree

1

2

3

4

5

10

9

Blossoms with Neighborhood

(v,w) =
(9, 5)
u = 5
B = {5, 10, 9}

1

e

2

o

3

e

4

o

7

e

6

u

b0

e

8

u

Predecessor tree

1

2

3

4

b0

5 10 9

Blossoms with Neighborhood

b0 :

5 10

9

6

8

4

Blossom b0
contracted

1

e

2

o

3

e

4

o

7

e

6

o

b0

e

8

e

Predecessor tree

1

2

3

4

b0

5 10 9 6 8

Blossoms with Neighborhood

b0 :

5 10

9

6

8

4

(v,w) =
(8, b0)
u = b0
B = {6, 8, b0}

1

e

2

o

3

e

4

o

7

e

b1

e

Predecessor tree

1

2

3

4

b0

5 10 9

b1

8 6

Blossoms with Neighborhood

b0 :

5 10

9

6

8

4

b1 :

b0

4

6

8

7

Blossom b1 contracted, (v,w) = (7, b1),
both are in different trees, initial path:
7, b1, 4, 3, 2, 1,
lift b1: 7, 6, 8, b0, 4, 3, 2, 1
lift b0: 7, 6, 8, 9, 10, 5, 4, 3, 2, 1 and output it

Figure 1.21: Example of Edmonds-Algorithm

34

1

e

2

u

3

u

4

o

5

e

6
e

7
o

8

e

Predecessor tree

8

7

6

4

5

Blossoms

(v,w) =
(5, 6)
u = 6
B = {5, 4, 6}

1

e

2

e

3

o

b0

e

7
o

8

e

Predecessor tree

8

7

b0

6 4 5 3

2

Blossoms

b0:

3 4

5

6 7Blossom b0
contracted,(v,w) =
(2, 1) not in the
same tree, path:
1, 2, 3, b0, 7, 8

lift b0:
1, 2, 3, 4, 5, 6, 7, 8

Figure 1.22: Another example of Edmonds-Algorithm

Note that we do not compute a maximum weighted perfect matching. The matching we
are looking for not need to be of maximum size.

We will compute maximum weighted matchings through the search of augmenting
paths, however, we will need to consider cycles, because they can increase the weight.

Let π be an alternating path or cycle w.r.t. the matching M. Then we set the weight
of π as the sum weight of the free edges minus the sum weight of the bound edges:

w(π) =
∑

e∈π,e/∈M

w(e) −
∑

e∈π∩M
w(e).

Algorithm 1.7 then computes maximum weighted matchings. The correctness will
follow from the next two theorems.

Theorem 1.16.
Let M be a matching with maximum weight w.r.t. to all matchings with ||M|| edges, and
let π be an augmenting path with maximum weight w.r.t. M. Then M∆π is a matching
with maximum weight w.r.t. all matchings with ||M||+ 1 edges.

Proof. Let Mmax be a matching with maximum weight under all matchings with ||M||+1
edges. Consider the symmetric difference Msym =M∆Mmax.

Claim. Every path or cycle π in (V,Msym) of even length has weight 0 w.r.t. M.

Proof (of claim). M andMmax are both matchings with maximum weight. If w(π) > 0
w.r.t. M, then M could be augmented. If w(π) < 0, then Mmax could be augmented.�

35

Algorithm 1.7: Algorithm to compute maximum weighted matchings.

1 M ← ∅, w ← 0, w ′ ← 0;
2 while w ′ ≤ w do
3 w ′ ← w;
4 M ′ ← M;
5 Compute augmenting path π with the help of Edmond’s algorithm of maximum weight

w(π);
6 M ← M∆π;
7 w ← w(M);

8 return M ′;

As ||Mmax||− ||M|| = 1 we know that Msym has exactly one edge more from Mmax than
from M.

Claim (Path pairs). There exists a path π∗ of odd length in (V,Msym) which has
exactly one edge more from Mmax than from M. Except for this path π∗ the paths of odd
length in (V,Msym) can be combined to pairs in such a way that for every pair equally
many edges from M and Mmax are used and the weight of this pair w.r.t. M is 0.

Proof (of claim). As an augmenting path adds exactly one edge to M there is exactly
one edge more from Mmax than from M present in Msym. �

The path π∗ can be used for augmentation of M, i.e., we set M ′ =M∆π∗. Then M ′ is a
matching with ||M||+ 1 edges and the same weight as Mmax. �

For the correctness of the algorithm we will need to make sure that the termination
criterion of the repeat-loop is correct. The following theorem will do this.

Theorem 1.17.
Let M be a matching of maximum weight among matchings of size ||M||, let π be an
augmenting path for M of maximum weight, and let M ′ be the matching formed by
augmenting M using π. Then M ′ is of maximum weight among matchings of size
||M||+ 1.

Proof. Let Mmax be a matching of maximum weight among matchings of size ||M||+ 1.
Consider the symmetric difference M∆Mmax. Define the weight of a path of cycle in
M∆Mmax with respect to M. Any cycle or even-length path in M∆Mmax must have
weight zero; a cycle or path of positive or negative weight contradicts the choice of M
or Mmax, respectively. M∆Mmax contains exactly one more edge from Mmax than from
M. Thus we can pair all but one of the odd-length paths so that each pair has an equal
number of edges in M and in Mmax. Each pair of paths must have total weight zero; a
positive or negative weight pair agains contradicts the choice of M or Mmax. Augmenting
M using the remaining path gives a matching of size ||M||+ 1 and of the same weight as
Mmax. �

36

a b c d

e

f

1 3 1

1

1

i M M ′ w w ′

0 ∅ ∅ 0 0

1 bc ∅ 3 0

2 bc/ef bc 4 3

3 ab/cd/ef bc/ef 3 4

1.9 Coloring Planar Graphs

In this part we are going to talk about coloring of plane graphs. Historically, it goes back
until the mid of the 18th century. There it was firstly mentioned by Francis Guthrie who
postulated the four color conjecture, i.e., any map can be colored with four colors such
that adjacent regions sharing a common border do not receive the same color. In 1879
Alfred Kempe published a paper where he claimed to prove this 4 color conjecture by
Guthrie and for a decade the problem was considered solved.

In 1890 though, Percy John Heawood showed that Kempe’s proof was flawed. However
Headwood was able to prove the five color theorem. In the following century a vast
amount of work was built around the four color conjecture. Finally in 1976 it was proven
by Kenneth Appel and Wolfang Haken. Remarkably, they used several old ideas from
Heawood and Kempe and ignored the current developments. Further this proof is also
very prominent for being the first major computer-aided proof.

We will now introducing the necessary notion for plane graphs and colorings. Then we
will prove Euler’s polyhedron formula and visit the five color theorem. Finally we will
consider the interesting generalization list-coloring and prove a list-coloring result for
five colors.

1.9.1 Foundations

Definition. A graph is planar if it can be embedded in the plane such that two different
edges do not meet in a point other their common end. Such graphs are also called plane
graphs.

Examples of planar graphs are K4 and K2,3:

K4 :
K2,3 :

37

c

d g b

f
e a

Figure 1.23: A planar graph G = (V, E, R) together with its frontier set R ={
{a, f, e}, {f, d, g}, {b, g, c}, {a, b, c, d, e}

}
.

Examples of non-planar graphs are K5 and K3,3 whose non-planarity will be proven later.
We will see, that these two graphs are the ”typical” non-planar graphs (Theorem of
Kuratowski).

The edges of a planar graph divide the plane into regions from which one is unbounded.
We will stick to the following notion.

Definition. Let G = (V, E) be a graph. Then

• r(G) = r denotes the number of regions of G,

• m(G) = m is the number of edges, and

• n(G) = n is the number of vertices.

The frontier of a region is the set of edges which meet that region. For a region r we
denote with d(r) the number of edges at the frontier of r, where included edges count
twice.

d(�) = 5

d(�) = 3

Apparently it holds that ∑
r is a region

d(r) = 2 ·m(G).

A planar graph is denoted by the triple G = (V, E, R) where R consists of the frontiers of
all regions.

1.9.2 Euler’s polyhedron formula

Theorem 1.18 (Euler’s polyhedron formula, 1750).
Let G be a planar, connected and non-empty graph. Then it holds that n(G) −m(G) +
r(G) = 2.

38

Proof. We prove the result by induction on m(G) the number of edges.
Ind. beg. m = 0. As G is connected: n = 1 and r = 1. Hence n−m+ r = 1−0+1 = 2.
X

Ind. step. m→ m+ 1. Let G be a planar, connected graph with m+ 1 edges.

Case 1. G is a tree. Choose leaf v. Let u be the parent of v. Remove v and the edge
{v, u} in G. The resulting graph G ′ has m edges and is connected and planar. By
IH we have n(G ′) −m(G ′) + r(G ′) = 2. Further it holds that n(G ′) + 1 = n(G),
m(G ′) + 1 = m(G), and r(G) = r(G ′) = 1. Together

n(G) −m(G) + r(G) = n(G ′) + 1−m(G ′) − 1+ r(G ′) = 2. X

Case 2. G is not a tree. Then G must consist of a cycle. Choose an edge {u, v} on this
cycle. G ′ results from G by removing {u, v}. Then it holds m(G ′) = m(G) − 1, G ′

is planar and connected. Further we know that n(G ′) = n(G) and r(G ′) = r(G)−1.
From IH we have n(G ′) −m(G ′) + r(G ′) = 2 and therefore also

n(G) −m(G) + r(G) = n(G ′) −m(G ′) − 1+ r(G ′) + 1

= n(G ′) −m(G ′) + r(G ′) = 2. X�

Corollary 1.19.
Let G = (V, E) be a planar graph with n ≥ 3 vertices. Then it holds that m ≤ 3n− 6.

Proof. W.l.o.g. let G be connected. As n ≥ 3 every region of G is surrounded by a least
3 edges, i.e., d(r) ≥ 3 for every region r. Then it holds that

2 ·m =
∑
r

d(r) ≥ 3 · r⇔ r ≤ 2 ·m
3
.

With the help of the polyhedron formula we get

m = n+ r− 2 ≤ n+
2 ·m
3

− 2⇔ 1

3
m ≤ n− 2,

and finally m ≤ 3 · n− 6. �

Corollary 1.20.
K5 is not planar.

Proof. We know that n(K5) = 5 and m(K5) = 10. As 10 6≤ 3 · 5− 6 = 9 it follows that
K5 is not planar. �

Corollary 1.21.
K3,3 is not planar.

39

Proof. Assume that K3,3 is planar. Then it must obey the polyhedron formula. Hence
we get from n(K3,3) = 6 and m(K3,3) = 9 that the number of regions must be 9+ 2− 6 =
5 = r(K3,3) =: r.

Lets count the number of edges around any region. Start at some vertex v ∈ U. Now
we want to walk along the edges to reach v. This must be possible because we assumed
K3,3 to be planar. It cannot be one edge because we do not have loops. And it cannot be
two edges because this would imply multi-edges. Also it cannot be three edges, because
after two edges we turn back to U as we are bipartite. So no region can be surrounded
by three edges.

The minimum number of edges required is four. If there are at least four edges per
region then the number of times an edge is counted as the border of a region is at least
4 · r.

Any edge can only sit between two regions. Hence each edge can only count twice as a
region frontier, so there are at least 4r

2 = 2r edges.
We know that r = 5 which means we need at least 2·5 = 10 edges. Howeverm(K3,3) = 9

which leads to the contradiction. �

Definition. An edge contraction is an operation which removes an edge from a graph
while simultaneously merging the two vertices it used to connect. A graph G is a minor
of a graph H if G is isomorphic to a subgraph from H constructed by edge contractions.

Definition. The subdivision of some edge e = {u, v} yields a graph containing one new
vertex w with an edge set replacing e by the two new edges {u,w} and {w, v}.

A subdivision of a graph G (or sometimes expansion) is a graph resulting from the
subdivision of edges in G.

A graph H is called a topological minor of a graph G if a subdivision of H is isomorphic
to a subgraph of G.

Theorem 1.22 (Wagner’s Conjecture, Theorem of Robertson & Seymour).
Given an infinite countable list G1, G2, . . . of finite graphs, then there always exist two
indices i < j such that Gi is a minor of Gj.

Theorem 1.23 (Kuratowski 1930; Wagner 1937).
The following assertions are equivalent for graphs G:

1. G is planar.

2. G contains neither K5 nor K3,3 as a minor.

3. G contains neither K5 nor K3,3 as a topological minor.

1.9.3 Colorings of Maps

In this section we will turn towards the five color theorem which will be easier to prove
than the four color theorem. At first we need to prove this lemma.

40

Figure 1.24: Counterexample of Heawood.

Lemma 1.24.
Let G be a planar graph. Then in G there is a vertex with degree ≤ 5.

Proof. For the number of vertices n ≤ 6 this claim is obviously true. Let n > 6 and
assume δ(G) ≥ 6. Then it holds

m =
1

2

∑
u∈V

degu ≥ 1
2

∑
u∈V

6 = 3n

contradicting Corollary 1.19. �

The gap in Kempes 4-color-proof in 1879 is settled in the previous lemma. He believed
the validity of the lemma also for degree ≤ 4, i.e., he believed that every planar graph
has a vertex of degree ≤ 4. However Lemma 1.24 cannot be improved to this as shown by
the counterexample of Heawood shown in Figure 1.24. A function f : V → N is a coloring
function. A graph G = (V, E) is c-colorable iff there exists a coloring function f such
that for every edge (u, v) ∈ E it holds that f(u) 6= f(v) and there are at most c different
values of f(v) for all v ∈ V.

Still Kempe’s argumentation leads together with Lemma 1.24 to the following theorem.

Theorem 1.25 (5-Color-Theorem).
Any planar graph is 5-colorable.

Proof. Induction on n(G).
Induction beginning. n ≤ 5 clear. X
Induction step. n → n + 1: Let G be a planar graph with n + 1 vertices. From

Lemma 1.24 G has a vertex v with deg v ≤ 5. Let G ′ be the graph resulting from G by
removing v. By IH G ′ is 5-colorable.

41

Case 1: deg v < 5. Then one color remains for v because the neighbors of v only need
≤ 4 colors. Hence v gets this color and G is therefore 5-colorable.

Case 2: deg v = 5. Let u1, . . . , u5 the neighbors of v. We need to distinguish again two
cases:

(a) u1, . . . , u5 are colored in G ′ with at most 4 colors. Then v can get the free
color.

(b) u1, . . . , u5 all need different colors. W.l.o.g. assume that ui is colored with
color i (in the coloring of G ′). Let Gi,j be the subgraph of G which is induced
by all vertices with colors i and j. We need to differ again two cases:

(i) In G1,3 exists no path from u1 to u3. Then the colors 1 and 3 in the CC
of u1 in G1,3 can be switched. By this we color u1 with 3 and v can be
colored with color 1.

(ii) In G1,3 exists a path from u1 to u3. Then there cannot be a path from
u2 to u4 in G2,4 due to planarity. As in the previous case we can switch
the colors 2 and 4 in the CC of u2 in G2,4. By this u2 gets color 4 and v
is colored with 2.

�

1.9.4 List Coloring

In this section we will follow Diestel’s book about graph theory [Diestel, 2005]. Here we
will consider a recent generalization of colorings. Suppose we are given a graph G = (V, E)
and for each vertex of G we have a list of its allowed colors at this particular vertex.
When can we color G so that each vertex receives only a color from its list?

Definition. Let (Sv)v∈V be a family of sets. We call a vertex coloring c of G with
c(v) ∈ Sv for all v ∈ V a coloring from the list Sv. The graph G is called k-list-colorable
or k-choosable if for every family (Sv)v∈V with |Sv| = k for all v there is a vertex coloring
of G from the lists Sv. The least integer k for which G is k-choosable is the list-chromatic
number or the choice number ch(G) of G.

Principally, showing that a given graph is k-choosable is more difficult than proving it
to be k-colorable: the latter is just a special case of the former where all lists are equal
to {1, . . . , k}. Hence

ch(G) ≥ χ(G)

is true for all graphs G.
A first intuition between the correlation of list-coloring and usual coloring could be

that every graph which is k-colorable is as well k-choosable. However this intuition is
wrong as can be seen by the following example (thank you to Fabian and Martin for the
example!).

42

Example. The graph K3,3 is 2-colorable, as it is bipartite. Though it is not 2-choosable
as the following counter-example visualizes:

1,2

2,3

1,3

1,2

1,3

2,3

If the first left is 1, then the first right is 2 and second right is 3. Hence no color is
available for the second left. If the first left is 2, then the first right is 1 and the last right
is 3. Hence no color is available for the third left.

Definition. Let G = (V, E). A plane graph G is called maximally plane, or just maximal
if we cannot add a new edge to form a plane graph G ′) G with V(G ′) = V(G).

We say G is a plane triangulation if every region in G is bounded by a triangle.
An edge which joins two vertices of a cycle but is not itself an edge of the cycle is a

chord of that cycle.

Lemma 1.26.
A plane graph of at least 3 vertices is maximally plane iff it is a plane triangulation.

Proof. Not proven. �

Theorem 1.27 (Thomassen 1994).
Every planar graph is 5-choosable.

Proof. We will prove the following proposition for all plane graphs G = (V, E) with at
least 3 vertices:

Proposition. Suppose that every inner region of G is bounded by a triangle and its outer
region by a cycle C = v1, . . . , vk, v1. Suppose further that v1 has already been colored with
the color 1, and v2 with color 2. Finally assume that with every other vertex of C a list
of at least 3 colors is associated, and with every vertex of G \ C a list of at least 5 colors.
Then the coloring of v1 and v2 can be extended to a coloring of G from the given lists.

First we need to verify that the proposition implies the theorem. Let any planar graph
be given, together with a list of 5 colors for each vertex. At first add edges to this graph
until we have a maximal planar graph G. Now by Lemma 1.26 G is a plane triangulation.
Let v1v2v3v1 be the boundary of its outer region. Now we will color v1 and v2 differently
from their lists and extend this color with the help of the proposition to a list-coloring of
G.

Proof (of proposition). We will prove the result by induction on ||V ||. If ||V || = 3 then
G = C and the assertion is trivial.

Induction step. Now let ||V || ≥ 4.

43

v2 = w

v1

v

G1

G2

v2

v1
vk

vk−1

C ′

u1

π

u2u3

Figure 1.25: Induction step of the proof of Theorem 1.27 with a chord (left) and without
a chord (right).

C has a chord: Then this chord vw lies on two unique cycles C1, C2 ⊆ C + vw with
v1v2 ∈ C1 and v1v2 /∈ C2. For i = 1, 2 let Gi denote the subgraph of G induced by
the vertices lying on Ci or in its inner region. Apply IH to G1 and then (v and w
have new colors now) to G2. This will yield the desired coloring of G.

C has no chord: Let v1, u1, u2, . . . , um, vk−1 be the neighbors of vk in their natural cyclic
order around vk. By definition of C all the ui’s lie in the inner region of C. As the
inner regions of C are bounded by triangles, π := v1, u1, u2, . . . , um, vk−1 is a path
in G and C ′ := π ∪ (C \ vk) is a cycle.

Now we just choose two different colors j, ` 6= 1 from vk’s list and delete these colors
from the lists of each vertex ui. Then every list of a vertex on C ′ has at least 3
colors so by IH we may color C ′ and its interior G \ vk. At least one of the two
colors j, ` is not used for vk−1 and we may assign that color to vk. �

�

44

2 Parallel Algorithms

Until this point we have investigated solely sequential algorithms. Criteria to compare
them are required space and time. Also it might be possible to compare simplicity
of implementation. Now we want to turn towards parallel algorithms. For this type
of algorithms we can introduce other parameters which allow us to compare them
more deeply. That are, number of processors, size of local storage, net topology, and
communication concepts.

Let P be an arbitrary problem, and n be the size of the input. The (optimal) sequential
time complexity of P let denote us by T∗(n), i.e., there is a sequential algorithm solving
an instance of P for input size n in T∗(n) time units and one can show that no sequential
algorithm solves P faster than T∗(n).

Let A be a parallel algorithm which solves P in time Tp(n) on a parallel computer with
p ∈ Î processors. Then the speedup of A is defined as

sp(n) =
T∗(n)

Tp(n)
.

Theorem 2.1.
The speedup of a parallel algorithm cannot be larger than the number of processors, i.e.,
the p-times time of a parallel algorithm can never be less than the time of the serial
algorithm:

sp(n) ≤ p T∗(n) ≤ p · Tp(n).

Proof. If we simulate the computations of the p processors step wisely on a one processor
machine, then we get a new sequential algorithm running in p · Tp(n) steps. Clearly this
cannot be faster than T∗(n) as T∗(n) is already the optimal runtime. �

We are interested in algorithms whose speedup is approximately p, hence a linear
speedup:

sp(n) =
T∗(n)

Tp(n)
= p =⇒ T∗(n) = p · Tp(n).

Another measure of performance is efficiency :

Ep(n) =
T∗(n)

p · Tp(n)
=
1

p
· sp(n) ≤ 1.

2.1 Amdahl’s Law

Let 0 ≤ f ≤ 1 be the fraction of operations in an algorithm which has to be done
sequentially. If one uses a parallel computer with p ∈ Î processors, then the maximum

45

speedup is

sp(n) ≤ T∗(n)

f · T∗(n) + (1−f)·T∗(n)
p

=
1

f+ 1−f
p

≤ 1
f
,

e.g., for 1% of sequential operations the speedup for a computer with p = 10 processors
≤ 9,17 and for p = 100 processors we get a speedup of ≤ 50,25.

p

sp

real
ideal

1
f

Observe that this approach does not consider processor caches which may allow to store
the complete problem instance in it if enough processors are used. This would result into
a super-linear speedup. However the maximum speedup bound is still valid.

2.1.1 Sieve of Eratosthenes

This is a usual approach in finding all prime numbers ≤ n. The algorithm terminates if the
chosen number is >

√
n and does not consider synchronization problems or inefficiencies

(e.g., two processors work on the same non-prime).
If we scale on the time required to mark a field in the array, and if there are k prime

numbers π1, . . . , πk ≤
√
n, then a single processor spends⌊

n− π1
π1

⌋
+

⌊
n− π2
π2

⌋
+ · · ·+

⌊
n− πk
πk

⌋
=

⌊
n− 2

2

⌋
+

⌊
n− 3

3

⌋
+ · · ·+

⌊
n− πk
πk

⌋
time units.

If n = 1000 we get

primes πi 2 3 5 7 11 13 17 19 23 29 31⌊
1000−πi
πi

⌋
499 332 199 141 89 75 57 51 42 33 31

Hence the sum corresponding to the time required using only a single processor is 1549
time units. If we consider the case for 2 processors we get:

46

P1 2 7 17 23 29

P2 3 5 11 13 19 31

As speedup we get 1549
777 ≈ 2. For three processors we get an improvement of

P1 2 31

P2 3 11 19 23

P3 5 7 13 17 29

Thus a speedup of 1549
530 ≈ 2,92. For more than three processors the speedup stays at

1549
499 ≈ 3,1.

2.1.2 A Better Approach

In the following we will not use a shared memory. However, now we communicate through

messages from processor to processor. Every processor will be responsible for ≤
⌈
n
p

⌉
numbers. If p <

√
n then all primes ≤

√
n are in the field controlled by processor P1.

P1 will send the next prime number π to P2 up to Pp. Every processor then deletes the
multiples from his array. Therefore we will consider the time to mark a number µ and
the communication time λ.

communication channel

P1 current prime

2 · · · n
p

P2 current prime

n
p+1 · · · 2n

p

· · ·

Pp current prime

n− n
p + 1 ··· n

There are k primes ≤
√
n denoted by π1, . . . , πk. Thus every processor requires at

most
⌈
n
p

⌉
2

+

⌈
n
p

⌉
3

+ · · ·+

⌈
n
p

⌉
πk

 · µ

47

to mark the primes and k(p− 1)λ time units for sending messages.

Example. λ = 100µs, n = 106, there are k = 168 primes ≤
√
106 = 1000 and πk = 997.

p

sp

real

ideal

1 3 5 7 9 11

1

3

5

7

9

max
5,975

2.2 Important concepts of parallel computers

Parallel Random Access Machine (PRAM)

These machines have the following properties:

1. Every processor is a usual random access machine (RAM) with local memory for
local data and the program.

2. The instructions correspond to the ones of a usual RAM.

3. The processors are connected through a shared memory. The data which is stored
in shared memory is called global data.

4. Every processor is identified by its processor number 0 ≤ p < n. These identifiers
as well as the total number of processors is known by every processor.

A PRAM runs synchronously, i.e., all processors run under the control of a global clock
frequency.

Example. Consider the following code:

1 if p ≤ n
2

then part i;
2 else part ii;
3 locvar := 0;

All processors run in parallel the if-condition. The first half will run part i and the
second half will run part ii (in parallel!). Then all processors will set their local variable
locvar in parallel to 0.

48

In order to clearly negotiate the read and write rights for the shared memory there
exist three common versions of PRAMs:

EREW-PRAM (exclusive read, exclusive write). Neither parallel read, nor parallel write
on the same memory cell is allowed.

CREW-PRAM (concurrent read, exclusive write). All processors may parallel read a
memory cell, however parallel write on the same memory cell is not allowed.

CRCW-PRAM (concurrent read, concurrent write). All processors may parallel read a
memory cell. For possible writing conflicts there exist three other rules:

• common CRCW-PRAM: All processors that write to the same memory cell
have to write the same (standard interpretation).

• priority CRCW-PRAM: A set distinct priority for the processors decides which
processor is allowed to write.

• arbitrary CRCW-PRAM: Randomly one of the processors is allowed to write.

Example. An array of length m = 2k is stored in the shared memory of an EREW-
PRAM. The task is to compute the sum S = A[0] + · · ·+A[m− 1] with n = m

2 processors.
Idea: m = 23 = 8, n = 4:

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

A[0] A[1] A[2] A[3]

A[0] A[1]

A[0]

Algorithm 2.1: sum 〈EREW-PRAM〉.
1 global A : array[0, ...,m− 1] of real; S : integer; m : integer;
2 local n, p : integer;
3 for h = 1 to log(2n) do
4 if p < 2n

2h
then A[p] := A[2p] +A[2p+ 1] ;

5 if p = 0 then S := A[0] ;

Observations:

• As m is a global integer and the model is an EREW-PRAM we cannot use a for
loop from h = 0 to logm− 1.

49

• ’A[p] := A[2p]+A[2p+1]‘ is interpreted as a sequence of read and write operations.

• S := A[0] must only be done by a single processor.

• If we do not want to overwrite the array A we can use a blank array.

The runtime of the algorithm is O(logm).

Example. Multiplication of two matrices A,B with m = 2r for some r ∈ N on a
CREW-PRAM with m3 = n processors. The product matrix C is then defined by

cij =

m−1∑
k=0

aikbkj.

Idea: identify a processor with the triple (i, j, k) for 0 ≤ i, j, k < m.

Algorithm 2.2: matmul 〈CREW-PRAM〉
1 global m : integer;
2 global A,B,C : array[0, ...,m− 1][0, ...,m− 1] of real;
3 global D : array[0, ...,m− 1][0, ...,m− 1][0, ...,m− 1] of real;
4 local i, j, k : integer, n, p : integer, 0 ≤ p < n;
5 Compute (i, j, k) from p and m;
6 D[i, j, k] := A[i, k] · B[k, j];
7 for h = 1 to logm do
8 if k < m

2h
then D[i, j, k] := D[i, j, 2k] +D[i, j, 2k+ 1];

9 if k = 0 then C[i, j] := D[i, j, 0] ;

Observations:

• In line 6 m processors read in parallel A[i, j]. Therefore a CREW-PRAM is required.

• The if-condition in line 9 ensures that only one processors writes into C[i, j].

• The runtime is O(logm).

Definition. Let A,B ∈ {C, E}, then ARBW(p(n), t(n)) is the set of all problems which
can be solved by a ARBW-PRAM with p(n) processors in O(t(n)) parallel steps.

Example. Computing the sum of elements of an array is in EREW(n, logn). Matrix
multiplication is in CREW(m3, logm).

Theorem 2.2.
EREW(p(n), t(n)) ⊆ CREW(p(n), t(n)) ⊆ CRCW(p(n), t(n)) ⊆ SEQ(p(n)·t(n)), where
SEQ(f(n)) is the set of all problems solvable by a usual RAM in O(f(n)) steps.

Remark. One can show that the first two inclusions are strict.

50

Definition. Let Tp(n) the time which an algorithm for problems of input size n requires
on a parallel computer with p(n) processors. Then we say to the product C(n) =
Tp(n) · p(n) the costs of the algorithm. A parallel algorithm A is said to be cost optimal
(or only optimal) if A’s cost C(n) = Θ(T∗(n)) where T∗(n) is the time in which an
optimal sequential algorithm on a RAM needs.

Example. For Algorithm 2.1 it holds

C(n) =
n

2
·Θ(logn) = Θ(n · logn),

whence the algorithm is not optimal.

Definition. The work W(n) which a parallel algorithm for a problem input of size n
requires is the sum of the runtimes of each processor used in the algorithm.

Example. For Algorithm 2.1 we get

W(n) = Θ
(n
2
+
n

4
+ · · ·+ 1

)
= Θ(n).

2.3 Theorem of Brent

Theorem 2.3.
The cost C(n) of a parallel algorithm are always bounded by the serial complexity:

T∗(n) ≤ C(n).

Proof. From Theorem 2.1 we have

sp(n) =
T∗(n)

Tp(n)
≤ p

hence we have T∗(n) ≤ p · Tp(n) = C(n). �

Theorem 2.4.
The costs C(n) of a parallel algorithm are at least in the order of the work: W(n) ≤ C(n).

Proof. Let Wi(n) the number of (parallel) steps which are executed in step i of the

algorithm, i.e., W(n) =
∑Tp(n)
i=1 Wi(n). In a single step the number of operations are

bounded by the number of processors: Wi(n) ≤ p. Hence

W(n) =

Tp(n)∑
i=1

Wi(n) ≤
Tp(n)∑
i=1

p = p · Tp(n) = C(n).

�

51

Theorem 2.5 (Brent).
A parallel algorithm with p processors running in time Tp(n) and having a work of W(n)
can be executed on p ′ < p processors in time

Tp ′(n) ≤ Tp(n) +
⌊
W(n)

p ′

⌋
.

Proof. In step i of the algorithm p processors do Wi(n) operations. With p ′ processors
we need for these Wi(n) operations at most

tip ′(n) ≤
⌈
Wi(n)

p ′

⌉
steps. In order to execute the complete workload W(n) =

∑Tp(n)
i=1 Wi(n) we need to track

all steps of the p-processors PRAM:

Tp ′(n) =

Tp(n)∑
i=1

tip ′(n) ≤
Tp(n)∑
i=1

⌈
Wi(n)

p ′

⌉
≤
Tp(n)∑
i=1

⌊
Wi(n)

p ′

⌋
+ 1

≤

 1
p ′
·
Tp(n)∑
i=1

Wi(n)

+ Tp(n) =

⌊
W(n)

p ′

⌋
+ Tp(n).

�

Definition. A computation graph is a directed acyclic graph (dag), where the vertices
correspond to the input-, output-values, and the operations. The edges encode the depen-
dencies between the operations and operands.

The depth of a vertex is the maximum distance to an input vertex. The depth of the
computation graph is the maximum depth of all vertices. The size of the computation
graph is the number of operations.

Note that loops are unfurled unless the number of runs is unpredictable. In that case
the algorithm cannot be described by computation graphs.

Example (Application of Brent’s theorem to computation graphs). Multiplication
of two 2× 2 matrices.

52

a1 a2 a3 a4 b1 b2 b3 b4

× a1b1 × a2b3 × a3b1 × a4b3 × a3b2 × a4b4 × a1b2 × a2b4

+ + + +

Depth is 2, size is 12. With 3 processors 5 steps are required.

Theorem 2.6 (Brent’s theorem for computation graphs).
Every computation graph with depth t and size w with constant in-degree for every vertex
can be solved by an n-processor CREW in O(wn + t) steps.

Proof. The input values are in the global memory of the PRAM. For every operator
and every output vertex a storage in the global memory is used. One processor of the
PRAM can compute the value of an operator vertex in O(1). Reading of the operands in
O(1), operation and saving O(1). �

Theorem 2.7 (Eckstein).
An EREW-PRAM with p processors can simulate a priority-CRCW-PRAM with a runtime
blowup of O(log p).

Proof. In order to simulate the concurrent read of the CRCW one designated processor
reads the cell and distributes the information tree-like–every processor transfers the
information to two others processors. In that way all processors can be notified in log p
steps.

For the concurrent write the tree is processed bottom-up from the leaf level. Every
processor communicates with his neighbors about the value which has to be written.
After log p steps the final value is determined. �

2.4 Fundamental techniques of parallel algorithms

In the following subsection we will visit several important techniques used by parallel
algorithms. Our underlying theoretical model will be the parallel random access machine
PRAM defined in the previous section.

53

2.4.1 The method of balanced binary trees

The underlying principle is the construction of the tree by its input and requires possibly
an extension of the input to a power of two. Then one runs bottom-up from the leafs to
the root.

Example. Given an array A[0, . . . , n− 1] of elements, n = 2k. Associative operation ×
on the elements. Task: compute×n−1i=0 A[i] :

×

×

×

:.

A[0] A[1]

:.

×

:. :.

×

×

:. :.

×

:. :.

A[n− 2]A[n− 1]

After logn steps the root is reached. During the computation at most n
2 processors

are simultaneously busy. If × = + then we showed that it is in EREW(n, logn) (see
Algorithm 2.1). The algorithm is not optimal as

C(n) =
n

2
logn = Θ(n logn),

and the naive sequential algorithm runs in Θ(n) steps.
Another technique leads to a more efficient algorithm. We divide the array into N

(number of processors) segments S[i] of length ≤ dlogne, where N =
⌈

n
logn

⌉
. This division

can be done in O(1) steps if all processors know n. Otherwise in O(logN) steps.
Then processor Pi (0 ≤ i < N) computes×j∈S[i] a[j] in O(logn) steps. Afterwards the

result will be determined by the technique of the balanced tree. Hence Θ
(

log
(

n
logn

))
steps with

Θ

(
log

(
n

logn

))
= Θ(logn− log logn) = Θ(logn).

Thus the problem is in EREW(n
logn , logn). This algorithm is optimal as

C(n) = Θ

(
n

logn
· logn

)
= Θ(n).

54

2.4.2 A parallel algorithm to compute all prefix sums

Assume n is a power of two. Given an array A[0, . . . , n− 1] and an associative operation
× on the elements of A. We search for the field S[0, . . . , n− 1] with

S[j] =
j

×
i=0

A[i]

for 0 ≤ j < n. The sequential algorithm solves the problem in Θ(n) steps.
Possible application: given an array with upper and lower case letters. The task is to

return the array without the lower case letters and no gaps in between.

A a T b C D f g h S B r · · ·

1 0 1 0 1 1 0 0 0 1 1 0 · · ·

1 1 2 2 3 4 4 4 4 5 6 6 · · ·

A T C D S B · · ·

Idea: Use balanced tree to compute the partial sums bottom up and then compute
the prefix sums top down.

Algorithm 2.3: prefixsum 〈CREW〉
1 global A : array[0, . . . , n− 1] (input, n power of two),

S : array[0, . . . , n− 1] (prefix sums),
Y, Z : array[0, . . . , n− 1] (auxiliary arrays);

2 local p, n : integer (0 ≤ p < n);
3 if n = 1 and p = 0 then S[0] := A[0] and terminate ;
4 if p < n

2
then Y[p] := A[2 · p]×A[2 · p+ 1] ;

5 Compute recursively the prefix sum of Y[0, . . . , n
2
− 1] and store the result in Z[0, . . . , n

2
− 1];

6 if p < n then
7 if p = 0 then S[0] := A[0] ;

8 else if p ≡2 0 then S[p] := Z[p−2
2

]×A[p] ;

9 else S[p] := Z[p−1
2

] ;

Notation: 〈i, j〉A abbreviates×jr=iA[r]. Obviously it holds that 〈i, i〉A = A[i] and
〈i, k〉A = 〈i, j〉A × 〈j+ 1, k〉A for j ∈ [i, k− 1]

Claim. Algorithm 2.3 computes correctly the prefix sum.

Proof. Induction on k with n = 2k.
Induction beginning. k = 0 hence n = 1. X

55

a0 a1 a2 a3 a4 a5 a6 a7

y0 y1 y2 y3

z0 z1 z2 z3

S0 S1 S2 S3 S4 S5 S6 S7

recursive
computation

Figure 2.1: Computation of prefix sums as in Algorithm 2.3. ai, yi, zi, Si denote the
arrays in the algorithm.

Induction step. The algorithm works correctly for n = 2k. Consider n = 2k+1, k > 0.
At first we compute

Y[i] = A[2i]×A[2i+ 1] = 〈2i, 2i+ 1〉A for 0 ≤ i ≤ n
2
.

The recursive call gets by IH:

Z[j] =
j

×
i=0

Y[i] = 〈0, j〉Y = 〈0, 2j+ 1〉A.

Further it is S[0] = A[0] and for odd i it holds

S[i] = Z

[
i− 1

2

]
= 〈0, i〉A.

For even i we get

S[i] = Z

[
i− 2

2

]
×A[i] = 〈0, i− 1〉A × 〈i, i〉A = 〈0, i〉A X

�

The runtime of the algorithm is Θ(logn) wherefore the problem is in CREW(n, logn).

Note that it is possible to computed the prefix sum on a EREW-PRAM in O(logn)
steps.

An alternative non-recursive implementation gets to Algorithm 2.4.
The invariant for Algorithm 2.4 says:

• If i ≤ 2j − 1 then A[i] = 〈0, i〉A (A[i] is the prefix sum from 0 to j), and

• if i > 2j − 1 then A[i] = 〈i− 2j + 1, i〉A (A[i] is the sum of elements i− 2j + 1 to i,
hence the prefixsum up to i where the elements 0 to i− 2j are missing).

56

Algorithm 2.4: prefixsumB 〈EREW〉
1 global A : array[0, . . . , n− 1] ; // n is not required to be a power of 2

2 local p, n, j : integer;
3 for j := 0 to dlogne− 1 do
4 ? ? ? Invariant ? ? ?

5 if 2j ≤ p < n then A[p] := A[p]×A[p− 2j] ;

If j = 0 then A[i] = 〈i, i〉A for i ≥ 1 and for j = 1 we get A[i] = 〈i− 1, i〉A if i ≥ 3.

array A

j = 0

j = 1

j = 2

7 5 1 2 4 6 5 3

7 12 6 3 6 10 11 8

7 12 13 15 12 13 17 18

7 12 13 15 19 25 30 33

Claim. The invariant is correct.

Proof. IB. Let j = 0 then A[i] = 〈i, i〉A for i ≥ 0. X
IS. j→ j+ 1. Let p ≥ 2j. Then (in parallel) we compute A[p] = A[p]×A[p− 2j]. If

p ≤ 2j+1 − 1, then

A[p] = 〈p− 2j + 1, p〉A︸ ︷︷ ︸
IH.

×〈0, p− 2j〉A︸ ︷︷ ︸
IH.

= 〈0, p〉A X

If p > 2j+1 − 1 then

A[p] = 〈p− 2j + 1, p〉A︸ ︷︷ ︸
IH.

×〈(p− 2j) − 2j + 1, p− 2j〉A︸ ︷︷ ︸
IH.

= 〈p− 2j+1 + 1, p〉A X

�

Observation 7.
Algorithm 2.4 requires Θ(logn) steps and (n − 20) + (n − 21) + · · · + (n − 2blognc) =
Θ(n · logn− n) = Θ(n · logn) operations.

57

2.4.3 The technique of pointer jumping

In order to demonstrate the technique of pointer jumping we will introduce a new problem
first.

In parallel algorithms, the list ranking problem involves determining the
position, or rank, of each item in a linked list. That is, the last item in the list
should be assigned the number 1, the second-to-last item in the list should
be assigned the number 2, etc. Although it is straightforward to solve this
problem efficiently on a sequential computer, by traversing the list in order, it
is more complicated to solve in parallel. As [Anderson and Miller, 1990] write,
the problem was viewed as important in the parallel algorithms community
both for its many applications and because solving it led to many important
ideas that could be applied in parallel algorithms more generally.

—http://en.wikipedia.org/wiki/List_ranking

More formally:

Problem List Ranking

Given: a list stored in the memory of a PRAM.

Task: compute the distance of every element of the list to the end of the list, i.e., for
every element i we need to compute the value

d[i] :=

{
0 , if i is the last element of the list,

d[succ[i]] + 1 , otherwise

where succ[i] is the successor of i in the list.

Possible implementation of the lists:

succ

0 1 n− 1

i · · ·
· · ·

one array for list elements

one array for linking

index of successor vertex in array = processor id

Note that the d[i]-values can be then set in Θ(n).

Observation 8.
The algorithm works destructively on the list. If this not desired one must create a copy
of the list in O(1) time.

The implicitly assumed synchronization enforces that all processors run synchronously
after the while loop. But also the resetting of the succ-pointers must be done syn-
chronously, i.e., read operations must be finished before write operations.

58

http://en.wikipedia.org/wiki/List_ranking

5

P3

4

P4

3

P5

2

P1

1

P0

0

P2

1

P3

1

P4

1

P5

1

P1

1

P0

0

P2

2 2 2 2 1 0

4 4 3 2 1 0

5 4 3 2 1 0

Figure 2.2: Example pointer jumping.

Claim. The algorithm works correct.

Proof. Consider the invariant: if one sums the d-values of all vertices of one sublist
starting with p then one gets the distance p to the end of the original list. In every loop
one part of the list is released but also added its distance. Hence the invariant stays
valid. �

The initialization requires O(1) steps, one loop requires O(1) steps. As in every
loop every list is split into two (almost) equal sized lists after pointer jumping and the
procedure ends at lists of length of 1 the loop requires O(dlogne) steps.

Algorithm 2.5: listranking 〈EREW〉.
1 global d, succ : array of integer;
2 local p,N : integer (0 ≤ p < N);
3 if succ[p] = nil then d[p] := 0 ;
4 else d[p] := 1 ;
5 ? ? ? Invariant ? ? ?
6 while succ[p] 6= nil do
7 d[p] := d[p] + d[succ[p]];
8 succ[p] := succ[succ[p]] (pointer jumping);

59

Hence the algorithm runs in EREW(n, logn) and is not optimal. But with the usual
knack N = n

logn one can define an optimal algorithm.

2.4.4 Computing prefix sums through pointer jumping

Given an array A of length n with elements on which an associative operation × is
defined. Compute S[j] =×ji=0A[i] = 〈0, j〉A.

Algorithm 2.6: prefixsumpointer 〈EREW〉
1 global A, S : array[0, . . . , n− 1], succ : array[0, . . . , n− 1] of integer;
2 local p, n : integer;
// Construction of the list

3 if p = n− 1 then succ[p] = nil ;
4 else succ[p] = p+ 1;
5 S[p] := A[p];
// Compute prefix-sum with pointer jumping

6 while succ[p] 6= nil do
7 S[succ[p]] := S[p]× S[succ[p]];
8 succ[p] := succ[succ[p]];

Claim. Algorithm 2.6 works correct.

Proof. At the beginning of the while-loop the following invariant is true: The cpu with
id p which is assigned to the kth element 0 ≤ k < n has assigned to the S-array the value
〈max{0, k− 2t + 1}, k〉 after t steps in the loop. The succ-array pointers to the k+ 2tth
element in the list if k+ 2t < n otherwise nil.

IB. t = 0 then 〈max{0, k}, k〉 = 〈k, k〉 end succ pointers to the k+ 1st element unless
k = n− 1.

IS. t→ t+ 1. Let p be assigned the kth list element. If succ[p] 6= nil then k+ 2t < n
(acc. to IH). At first the S-value of the k+ 2tth vertex is computed. This value is

〈max{0, k− 2t + 1}, k〉 × 〈max{0, (k+ 2t) − 2t + 1}, k+ 2t〉
= 〈max{0, k− 2t + 1}, k+ 2t〉
= 〈max{0, (k+ 2t) − 2t+1 + 1}, k+ 2t〉

The succ-array is set to the list element which succeeds the k+ 2tth vertex. This is the
(k+ 2t) + 2t = k+ 2t+1st vertex or nil.

For t ≥ dlogne the value in the S-array of the kth list element is 〈max{0, k−2t+1}, k〉 =
〈0, k〉 and in the succ-array is nil. �

The runtime is Θ(logn).

60

2.5 Decomposition techniques in parallel algorithms

We want to divide a problem into independent subproblems of approximately similar size
(decomposition phase), then we want to solve the subproblems in parallel and construct
a complete solution from the solutions of the subproblems (merge phase).

Therefore we will investigate sorting algorithms on PRAMs. Let Σ be a non-empty set
of elements obeying an ordering ≤. Now we search for efficient algorithms which sort an
arbitrary set S of n elements from Σ w.r.t. ≤. Sequentially the best sorting algorithms
run in O(n · logn) steps (Heapsort, Mergesort).

Algorithm 2.7: mergesort 〈SEQ〉.
Input : Sequence S

1 S1, S2, R1, R2 : sequences;
2 divide S into two sequence S1 and S2;
3 R1 := mergesort(S1);
4 R2 := mergesort(S2);
5 return merge(R1, R2);

2.5.1 A simple merge algorithm

Definition. Let X = (x1, . . . , xn) be a tuple of elements from Σ, and let z ∈ Σ. Now
define the rank of z in X as

rank (z, X) := |{xi | xi < z}|.

Let Y = (y1, . . . , ys) be a tuple of elements from Σ. Then define

rank (Y, X) := (z1, . . . , zs),

where zi = rank (yi, X) for 1 ≤ i ≤ s.

Example. Let Σ = Z, X = (26, 45,−12, 8,−3, 14), and Y = (−16, 11, 22). Then we get
rank (Y, X) = (0, 3, 4).

Now take A and B as two given tuples and assume that A and B are disjunct, i.e., no
element occurs more than once. AB is then the tuple which is constructed by attaching B
at A. If x is in AB then rank (x,AB) is the index of x in the sorted sequence (index from
0). As rank (x,AB) = rank (x,A) + rank (x, B) holds, one can solve the merge-problem
of two sorted sequences if one knows rank (A,B) and rank (B,A).

If A is sorted and is bi ∈ B then rank (bi, A) can be determined by binary search
in O(log |A|) steps. Hence two disjunct sorted sequences A and B can be merged on a
CREW-PRAM with |A|+ |B| processors in O(log |A|+ log |B|) steps.

61

Algorithm 2.8: merge 〈CREW〉.
1 global A : array[0, . . . , n− 1] (n = 2k; the first sorted sequence is in A[0, . . . , n

2
− 1], the

second sorted sequence is in A[n
2
, . . . , n− 1], the merge result is then in A afterwards);

2 local p,N : integer (N = n),
high, low, i : integer, x : element;

3 if p ≥ N
2

then // processor p works on the left sequence

4 high := N
2
− 1;

5 low := 0;

6 else // processor p works on the right sequence

7 high := N− 1;

8 low := N
2

;

9 x := A[p]; // determine rank of x
10 repeat
11 ? ? ? low ≤ high and A[low − 1] < x < A[high + 1], extend A on left/right by ±∞ ? ? ?

12 i :=
⌊
high+low
2

⌋
;

13 if x < A[i] then high := i− 1 ;
14 else low := i+ 1 ;

15 until low > high;

16 A[p+ low − N
2
] := x; // it holds x < A[low]

Observation 9.
If p < N

2 then the final value of low is between N
2 and N, i.e.,

rank
(
A[p], A

[n
2
, . . . , n− 1

])
= low−

N

2
and rank

(
A[p], A

[
0, . . . ,

n

2
− 1
])

= p.

Hence the rank of A[p] can be computed in the sorted array to p + low − n
2 . If p ≥ N

2 ,

then the final value of low is between 0 and N
2 , hence it holds

rank
(
A[p], A

[
0, . . . ,

n

2
− 1
])

= low and rank
(
A[p], A

[n
2
, . . . , n− 1

])
= p−

n

2
.

The cost of the algorithm are Θ(n · logn) whence the algorithm is not optimal.

Example. N = 8 and the given array is

Index 0 1 2 3 4 5 6 7

Element 4 8 9 12 2 3 7 10

The situation for processor 0 is x = 4 and

high 7 7 5

low 4 6 6
,

hence low = 6, position of 4 in the sorted array is p+ low− n
2 = 0+ 6− 4 = 2.

The situation for processor 6 is x = 7 and

high 3 0 0

low 0 0 1
,

hence low = 1, position of 7 in the sorted array is p+ low− n
2 = 6+ 1− 4 = 3.

62

2.5.2 A simple sort algorithm

We will use the known technique of the balanced binary tree.

◦ merge operation Level 0: 1 merge

Level 1: 2 merges

Level 2: 4 merges

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

◦ ◦ ◦ ◦

◦ ◦

◦

The merging is computed level wise from bottom to top. In level 0 ≤ i < logn we
execute 2i merge operations on the length 2logn−i−1 = n

2i+1
in parallel. Therefore we need

2i ·
(
n
2i+1
· 2
)
= n processors. The number of parallel steps is O((logn)2):

#merges level list length steps
1 0 n

2 log
(
n
2

)
2 1 n

4 log
(
n
4

)
:
.

:
.

:
.

:
.

n
2 logn− 1 n

n = 1 log
(
n
n

)
Hence the number of parallel steps are:

≈ (logn− 1) + (logn− 2) + · · ·+ (logn− logn)

= logn · logn−
logn(logn+ 1)

2
= O

(
(logn)2

)
.

The sort problem is hence in CREW
(
n, (logn)2

)
, however not optimal.

2.5.3 An optimal merge algorithm

Let A and B the sequences that have to be merged. The idea is to divide both sequences
into blocks of approximately equal length which can be independently merged.

63

B · · ·

logn

A · · ·

B · · ·

B0 B1 Bµ−1

b1 · · ·bk bk+1 · · ·b2k bµk−k···bµk

A · · ·

A0 A1 Aµ−1

a1···aσ(1)aσ(1)+1 · · ·aσ(2) aσ(µ−1)+1 · · ·aσ(µ)

Algorithm 2.9: partition 〈CREW〉
Input : Given two arrays A = [a1, . . . , an] and B = [b1, . . . , bm], with n,m > 1 sorted

ascending order. W.l.o.g. let logm = k and µ =
⌈
m

logm

⌉
an integer.

Output : µ pairs (Ai, Bi) of subsequences with the following properties:

1. |Bi| = logm = k, 0 ≤ i < µ,

2. A = A0A1 . . . Aµ−1 and B = B0B1 . . . Bµ−1,

3. Every x ∈ Ai is larger than every y ∈ Bi−1 and vice versa.

Therefore let σ(µ) = n and σ(i) = rank (bk·i, A), 0 < i < µ. The σ(i)’s can be
determined in parallel with binary search in O(logn) steps by µ processors.

Example. A = [4, 6, 7, 10, 12, 15, 18, 20], and B = [3, 9, 16, 21]. Then m = 4, k = 2 = µ.
B0 = [3, 9], A0 = [4, 6, 7],
B1 = [16, 21], A1 = [10, 12, 15, 18, 20],
(A0, B0) and (A1, B1) can be independently from each other merged and define C0, resp.,

C1. It holds
merge (A,B) = C0C1.

Lemma 2.8.
Let m ≥ 3. Algorithm 2.9 runs in O(logn) steps and requires O(n+m) operations on a
CREW-PRAM.

Proof. The runtime of O(logn) is clear and follows from the binary tree. For the second
claim observe that from (1+ n

m)m < mn follows (n+m)m < mm+n through multiplication

64

bym inside. Now we apply the logarithm to that and getm·log(m+n) < (m+n)·log(m).
From monotonicity of logarithm we know m · log(n) < m · log(m+ n) hence together we
have

m log(n) < m · log(m+ n) < (m+ n) · log(m)

⇔ m log(n)

log(m)
<
m · log(m+ n)

log(m)
< (m+ n),

and thus

O(µ logn) = O

(
m

logm
logn

)
= O(n+m).

Observation 10.
Let Ci be the sequence that is defined by merging Ai and Bi. Then we have merge (A,B) =
C0 . . . Cµ−1.

How do we merge two sequences of equal length, i.e., n = m? At first we run
Algorithm 2.9 in a runtime of O(logn). If |Ai| ≤ logn, then we use the sequential merge
algorithm in O(logn) time. Otherwise we divide Ai in blocks of length logn and use
Algorithm 2.9 on Ai and Bi separately. This is possible for the Ai’s with µ processors in
time O(log logn). Then, again, we use the sequential merge algorithm in O(logn) steps.

Hence two sequences of length n can be merge on a CREW-PRAM with n
logn processors

in O(logn) steps, i.e.,

merge ∈ CREW
(

n

logn
, logn

)
,

which is optimal. A transfer of these results on the previous section shows that merge-sort

∈ CREW
(

n
logn , (logn)2

)
.

Example. In the following we will go through a complete example for the optimal merge
algorithm. The to be sorted list is

[5, 3, 4, 35, 1, 42, 19, 13, 50, 2, 25, 33, 47, 89, 16, 7]

The relevant values are n = 16, logn = 4, n/ logn = 4. At first the list is divided into 4
parts (one for each processor)

0 : [5, 3, 4, 35]

1 : [1, 42, 19, 13]

2 : [50, 2, 25, 33]

3 : [47, 89, 16, 7]

Then each cpu sorts sequentially in O(logn · log(logn)) steps these lists:

0 : [3, 4, 5, 35]

1 : [1, 13, 19, 42]

2 : [2, 25, 33, 50]

3 : [7, 16, 47, 89]

65

Now we start to merge. Run partition on the pairs in parallel:

1. Partition input: A = [3, 4, 5, 35] and B = [1, 13, 19, 42]

2. Partition input: A = [2, 25, 33, 50] and B = [7, 16, 47, 89]

In parallel these partition calls happen:

1. m = n = 4, logm = 2, µ = 2 and

B0 = [1, 13], B1 = [19, 42], A0 = [3, 4, 5], A1 = [35]

2. m = n = 4, logm = 2, µ = 2 and

B0 = [7, 16], B1 = [47, 89], A0 = [2], A1 = [25, 33, 50]

The overall parallel runtime is O(log(log(n))).
As for all respective Ai their length is ≤ logn we just use the sequential merge algorithm

for all pairs running in O(logn) parallel time:

1. merge(A,B) = C0C1 = [1, 3, 4, 5, 13][19, 35, 42]

2. merge(A,B) = C0C1 = [2, 7, 16][25, 33, 47, 50, 89]

Now we have to do the last partition call with

A = [1, 3, 4, 5, 13, 19, 35, 42] and B = [2, 7, 16, 25, 33, 47, 50, 89].

The values are m = n = 8, logm = 3, dµe = d8/3e = 3. The subarrays are

B0 = [2, 7, 16], B1 = [25, 33, 47], B2 = [50, 89]

A0 = [1, 3, 4, 5, 13], A1 = [19, 35, 42], A2 = []

Parallel runtime to get them is O(logn).
However, the length of A0 is too long, hence to merge A0 and B0, A0 is split up by

partition into blocks of length 3 = logn and then sequentially merged with B0 in time
O(log logn). The others are sequentially merged in O(logn). The result is

merge(A, B) = C0C1C2 = [1, 2, 3, 4, 7, 13, 16][19, 25, 33, 35, 42, 47][50, 89]
Overall we have a parallel runtime of: O(logn·log(logn))+O(log(log(n)))+O(logn)+

O(logn) = O((logn)2) many steps with 4 = n/ logn processors.

66

2.6 Parallel algorithms for graphs

2.6.1 Connected components

From the definition on page 7 we are familiar with connected components. From exercise
sheet 2 we know that the algorithm determining the connected components of a given
graph utilizes the breadth-first-search technique and therefore runs in O(n+m), resp.,
O(n2) steps where n is the number of vertices and m is the number of edges.

Definition (Sparse and dense graphs). A given graph G = (V, E) is dense if the
number of edges m is close to the number of n2, i.e., m ∼ n2.
G is said to be sparse if the number of edges m is much smaller than n2, i.e., m� n2.

Definition (Pseudo-tree). A pseudo-tree is a directed graph G = (V, E) such that the
following holds:

• The out-degree of every vertex is 1.

• The corresponding undirected graph (any directed edge is considered to be undirected)
is connected.

Lemma 2.9.
A pseudo-tree has exactly one cycle.

Proof. Induction on ||V || = n. If n = 1 the claim is clear. X
Now let n > 1. Search for a vertex with in-degree 0. If there is no such vertex, then

we have found a cycle. Otherwise remove this vertex and apply induction hypothesis.
If we found more than one cycle, then an edge of a cycle must connect to another cycle.

Hence the out-degree would be larger than 1 which is a contradiction to the definition of
pseudo-trees. �

Definition. A pseudo-tree with root r is a pseudo-tree plus there is an edge (r, r). A
root star is a pseudo-tree with root r plus every path from a vertex v 6= r to r has length
1.

Theorem 2.10.
Every function f : V → V defines a pseudo-forest (V, F) with F = {(v, f(v)) | v ∈ V}.

Proof. Induction on ||V || = n. If n = 1 then f(v) = v. X
Induction step. n→ n+ 1. Let V ′ = {f(v) | v ∈ V} and ||V || = n+ 1 > 1. We need to

distinguish two cases:

Case 1: If ||V ′|| < ||V || then choose a v ′ ∈ V \ V ′. By IH f|V\{v ′} defines a pseudo-forest.
If we then add v ′ and the edge (v ′, f(v ′)) again we get a pseudo-forest.

Case 2: If ||V || = ||V ′||, then f is a permutation and the pseudo-forest consists of one or
more (distinct) cycles. �

67

root

ro
o
t

st
ar

Figure 2.3: Examples of pseudo-trees (with root) and a root star.

2.6.2 Connected components in dense graphs

Theorem 2.11.
Let A be the adjacency matrix of the undirected graph G = (V, E) with V = {1, . . . , n}.
Further define the function µ : V → V as

µ(u) :=

{
u , if A[v, u] = 0 for all v ∈ V
min{v | A[v, u] = 1} , otherwise

which generates a pseudo-forest (V, E ′) where the vertices of the pseudo-trees T1, . . . , Ts
fix a partition of V into V1, . . . , Vs. Then it holds that

1. All vertices in Vi are part of a connected component in G.

2. The cycle in Ti has length ≤ 2 and contains the smallest vertex in Vi.

Proof. We will prove both cases with induction on ||Vi|| = ni.

1. ni = 1 then v is an isolated vertex. X

Induction step. ni > 1 and let u, v ∈ Vi and u 6= v. Then (u, µ(u)) and (v, µ(v))
are contained in the pseudo-tree Ti. Every edge in Ti corresponds to an edge in G.

2. If ni = 1 then the cycle has length 1. X

Induction step. If ni > 1 and let r be the smallest vertex in Vi. Let µ(r) = u.
Hence {r, u} ∈ E and therefore µ(u) = r (as r is minimal). Thus there exists a cycle
around (r, u), (u, r) of length 2. We claim that this is the only cycle in Ti. Assume
the opposite, i.e., there is another cycle C in Ti. On this cycle C there is some
minimal vertex r ′ ≥ r.
If r ′ = r then the out-degree of r is > 1. Hence r ′ > r holds. However, as C
is in Ti C must be connected then with u getting either a contradiction for the
out-degree of u or for the out-degree of one vertex v 6= r ′ in C. �

68

1

2 3

4 5

6

7

8

9

10

1

2

4

3

5

6

7

8

9

10

Figure 2.4: Example for µ-function.

In the following we want to compute the connected components of a given undirected
graph by using a recursive technique of the previous theorem. Thereby we want to merge
the vertex set Vi to a super node and want to repeat the technique recursively on the
reduced graph until all super nodes are isolated. Every super node then corresponds to
one CC in G. The representative of a super node is the smallest vertex in it. As the
explicit construction of new adjacency matrices is too expensive we define a new function
C as follows:

∀u, v ∈ V : C[u] = C[v]⇐⇒ u and v are in the same super node.

The function C will be iteratively improved and defines after at most dlogne iterations
super nodes which are isolated vertices because in every iteration non-isolated vertices
will be merged with at least one other one. Hence the set of vertices will be halved in
every iteration step.

Algorithm 2.10 uses n2 processors on a CREW-PRAM. In step 1 the elements of
M are determined in parallel (therefore we need n2 processors!) and entered into an
auxiliary array D[i, j] (which is not specified in the pseudo code and represents the set M).
Afterwards in O(logn) steps the computation of the minimum (technique of balanced
binary tree). Analogously step 2. Step 3 runs in O(1) steps. Step 4 runs in O(logn)
steps. Hence we get compCC ∈ CREW(n2, (logn)2). However this is not optimal as in
the sequential case we need O(n2) steps.

Using less processors improves the cost. If we are interested in using less than n2

processors, e.g., only n many then step 1 will require linear time instead of constant. By
this we get an overall cost of the algorithm of n · log(n) · n = n2 · logn which is better
than n2 · log(n)2 but has a worse runtime of log(n) · n compared to log(n).

Example. Consider the graph from Figure 2.4. After the initialization we get

vertex v 1 2 3 4 5 6 7 8 9 10

C-array: 1 2 3 4 5 6 7 8 9 10

69

In the following we depict each step of the loop in the algorithm. Iteration 1:

vertex v 1 2 3 4 5 6 7 8 9 10

Step 1 T -array: 2 1 5 1 3 3 5 9 8 10

Step 2 T -array: 2 1 5 1 3 3 5 9 8 10

Step 3 C-array: 1 1 3 1 3 3 5 8 8 10

Step 4 C-array: 1 1 3 1 3 3 3 8 8 10

T -array

1

2 3

4 5

6

7

8

9

10

C-array

1

2 3

4 5

6

7

8

9

10

Iteration 2:

vertex v 1 2 3 4 5 6 7 8 9 10

Step 1 T -array: 1 1 3 3 1 3 3 8 8 10

Step 2 T -array: 3 1 1 1 3 3 3 8 8 10

Step 3 C-array: 1 1 1 1 3 3 3 8 8 10

Step 4 C-array: 1 1 1 1 1 1 1 8 8 10

T -array

1

2 3

4 5

6

7

8

9

10

C-array

1

2 3

4 5

6

7

8

9

10

Iteration 3:

vertex v 1 2 3 4 5 6 7 8 9 10

Step 1 T -array: 1 1 1 1 1 1 1 8 8 10

Step 2 T -array: 1 1 1 1 1 1 1 8 8 10

Step 3 C-array: 1 1 1 1 1 1 1 8 8 10

Step 4 C-array: 1 1 1 1 1 1 1 8 8 10

70

Algorithm 2.10: compCC 〈CREW〉
1 global A : array[1, . . . , n][1, . . . , n] of integer, C, T : array[1, . . . , n] of integer;
2 local n, p : integer, M : set;
3 C[p] ← p; // every vertex is its own representative

4 for count ← 1 to dlogne do
5 ? ? ? Step 1 ? ? ?

// M is set of the super node representatives connected with vertex p
6 M ← {C[j] | A[p, j] = 1 and C[j] 6= C[p]};
7 if M = ∅ then T [p] ← C[p] // Determine µ-function ;
8 else T [p] ← min(M) // T [p] could be a representative candidate ;

9 ? ? ? Step 2 ? ? ?
10 M ← {T [j] | C[j] = p and T [j] 6= p};

// Check for all vertices of super node p if in step 1 connections

have been determined. If so create the connection to the smallest

representative (out degree = 1!)
11 if M = ∅ then T [p] ← C[p] ;
12 else T [p] ← min(M) ;

13 ? ? ? Step 3 ? ? ?
14 if C[p] = p then C[p] ← T [p] // transfer representative to root ;
15 if C[C[p]] = p then C[p] ← min(C[p], p) // break the loops ;

16 ? ? ? Step 4 ? ? ?
17 for count’ ← 1 to dlogne do C[p] ← C[C[p]] // distribute repres. number ;

C[p] C[j]

p j

super node contains ver-
tex i, representative is
C[i] p = C[j]

j1

j2

j3

R1
R2

Figure 2.5: Schema of step 1 (left) and step 2 (right) in Algorithm 2.10

71

2.6.3 Minimal spanning trees (MST)

Let G = (V, E) be an undirected, connected graph and w : E→ N a weighting function.
A spanning tree of G is a subgraph T = (V, E ′) with E ′ ⊆ E which is a tree. The weight
of T , defined by w(T) =

∑
e∈E ′ w(e), is the sum of edge weigths of E ′. An MST is a

spanning tree with minimum weight.
Without loss of generality we always assume that all edge weights are different. E.g.,

this can be realized by assigning the weight (w(e).k) where k ∈ N is a serial number. By
this the weighting function becomes w : E→ Q+.

Lemma 2.12.
Let G = (V, E) be a connected, undirected graph with weighting function w which assigns
different weights to each edge. Then there is exactly one minimum spanning tree.

Proof. Let T1 6= T2 be minimum spanning trees with w(T1) = w(T2). Let (u, v) be an
edge of minimum weight which is in exactly one of both trees T1 and T2. W.l.o.g. let
(u, v) ∈ T1 and (u, v) /∈ T2.

T1 :

v

u

v1
v ′

vi

T2 :

v

u

v1

v2

v3

vk−1

X

Then there exists in T2 a path (u, v1, v2, . . . , vk−1, vk = v) which connects u with v and
v1 6= v.

1. If w(u, v) < w(u, v1) then replace in T2 the edge (u, v1) by (u, v). Then we get a
spanning tree T ′2 with w(T ′2) < w(T2) which is a contradiction.

2. If w(u, v) > w(u, v1) then the edge (u, v1) is in T1 due to minimality of w(u, v).
Consider the first edge (vi, vi+1) on the path from u to v in T2 whose weight is
larger than w(u, v). This edge must exists because otherwise there would be a
cycle in T1. Replace this edge with (u, v) in T2 and get a contradiction again.

T1 :

v

u

v1
v ′

vi

T2 :

v

u

v1

v2

vi

vi+1

X

�

72

Lemma 2.13.
Let G = (V, E) be an undirected, connected graph with weighting function w. For every
u ∈ V let µ(u) = v if w(u, v) = min{w(u, v ′) | (u, v ′) ∈ E} holds. Then it holds that

1. (u, µ(u)) is an edge in the MST of G.

2. Every pseudo-tree in the µ-defined pseudo-forest has a cycle of length ≤ 2.

Proof. 1. Let T be a MST of G and let (u, µ(u)) /∈ T . Let π = (u, v1, . . . , vk = µ(u))
be the path which connects u with µ(u) in T . Replace edge (u, v1) by (u, µ(u)) we
get a spanning tree with weight < w(T).

2. If a pseudo-tree T ′ contains a cycle of length > 2 then in the corresponding
undirected graph T1 there exists a cycle. As all edges of T1 are edges in the MST
(due to 1.), we get a contradiction. �

Example. Consider the following graph:

1

2

8

9

3

7

4

6

5

10

11 14

1213 6

4

8 7

92

5

31

Then we get
u 1 2 3 4 5 6 7 8 9

µ(u) 2 1 9 3 4 7 8 7 3
.

Lemma 2.14.
Let V =

⊎r
i=1 Vi be a partition of V into r non-empty sets V1, . . . , Vr. Let ei be the edge

of minimum weight which connects a vertex u ∈ Vi with a vertex v ∈ V \ Vi. Then ei is
in the MST of G = (V, E).

Proof. Let ei = (u, v) and T be the MST of G. For contradiction assume ei is not an edge
in T . There exists a path π = (u = v0, v1, . . . , vs = v) in T which connects u with v. Let t
be the index with vt−1 ∈ Vi and vt ∈ V \ Vi. It holds that w(vt−1, vt) > w(ei) = w(u, v).
If we remove (vt−1, vt) from T and add (u, v) instead, then we get a spanning tree of
weight < w(T). �

Sollins algorithm starts with a pseudo-forest F0 in which every pseudo-tree is a single
vertex. Then it successively builds trees through subsets of V until a single tree is
constructed containing all vertices.

73

In every iteration an edge of minimum weight is added to each tree in the forest. This
requires O(log |V |) steps. The algorithm uses a weighting matrix W such that

W[i, j] =

{
w(i, j), if (i, j) ∈ E∞, otherwise

and further we assume that V = {1, . . . , n}.

Algorithm 2.11: Sollins algorithm to compute a minimum spanning tree. 〈CREW〉
1 global A : array[1, . . . , n][1, . . . , n] of integer, W : array[1, . . . , n][1, . . . , n] of integer;
2 global C, T : array[1, . . . , n] of integer;
3 local n, p : integer;
4 C[p] ← p; // every vertex is its own representative

5 for count ← 1 to dlogne do
6 ? ? ? Step 1 ? ? ?
7 M ← {C[j] | A[p, j] = 1 and C[j] 6= C[p]};
8 if M = ∅ then T [p] ← C[p] ;
9 else T [p] ← min(M) ;

// M set of weights of all edges from super node C[p] to other super

nodes. T [p] specifies the vertex j outside of super node C[p] to which

an edge of minimum weight exists.

10 ? ? ? Step 2 ? ? ?
// Determine µ-function.

11 M ← {(j, T [j]) | C[j] = p and C[T [j]] 6= p};
12 if M = ∅ or min(M) =∞ then T [p] ← C[p] ;
13 else
14 Compute j such that W[j, T [j]] is minimal with respect to M;
15 T [p] ← C[T [j]];
16 mark edge (j, T [j]); // Edge (j, T [j]) is part of the MST

// For every super node the edge to other super nodes will be added to

M. The edge with minimum weight in M then determines which super

nodes are merged. This edge is part of the MST.

17 ? ? ? Step 3 ? ? ?
18 if C[p] = p then C[p] ← T [p] // transfer representative to root ;
19 if C[C[p]] = p then C[p] ← min(C[p], p) // break the loops ;

20 ? ? ? Step 4 ? ? ?
21 for count’ ← 1 to dlogne do C[p] ← C[C[p]] // distribute repres. number ;

As we can see Algorithm 2.11 is a slight modification of Algorithm 2.10.

74

Bibliography

[Anderson and Miller, 1990] Anderson, R. J. and Miller, G. L. (1990). A simple random-
ized parallel algorithm for list-ranking. Information Processing Letters, 33(5):269 –
273.

[Cormen et al., 2001] Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2001). Intro-
duction to Algorithms. MIT Press, second edition.

[Diestel, 2005] Diestel, R. (2005). Graph theory. Springer Verlag.

[Ottmann and Widmayer, 2012] Ottmann, T. and Widmayer, P. (2012). Algorithmen
und Datenstrukturen. Springer DE.

75

	Graph Algorithms
	Foundations
	Directed Graphs
	Shortest Paths
	Weighted Graphs: Jarník's algorithm
	Application: Timetable Algorithms

	Negative-weight edges
	The Bellman-Ford-Algorithm
	Computation of all Shortest Paths

	Flow networks
	Matchings in Bipartite Graphs
	Maximum Matchings in Arbitrary Graphs
	Maximum Weighted Matchings
	Coloring Planar Graphs
	Foundations
	Euler's polyhedron formula
	Colorings of Maps
	List Coloring

	Parallel Algorithms
	Amdahl's Law
	Sieve of Eratosthenes
	A Better Approach

	Important concepts of parallel computers
	Theorem of Brent
	Fundamental techniques of parallel algorithms
	The method of balanced binary trees
	A parallel algorithm to compute all prefix sums
	The technique of pointer jumping
	Computing prefix sums through pointer jumping

	Decomposition techniques in parallel algorithms
	A simple merge algorithm
	A simple sort algorithm
	An optimal merge algorithm

	Parallel algorithms for graphs
	Connected components
	Connected components in dense graphs
	Minimal spanning trees (MST)

