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Exercise 1: Consider the following modification of the DJP algorithm to work with
negative weights: Determine the smallest weight c ∈ Z in the weighted graph G =
(V,E,w), i.e., the edge e s.t. w(e) = c. Then for all edges f ∈ E set w′(f) := w(f)− c.
Then G′ = (V,E,w′) has no negative weights.
Does the DJP algorithm work correctly on this type of graph? Prove your claim.
Solution: Now we claim that DJP does not work correctly on G′ because this modifi-
cation does not maintain the shortest path property, i.e., if π was a shortest path in G
from s to t, then π is a shortest s-t-path in G′. The following counter-example proves
this.
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In the left graph a, b, d is the shortest path from a to d. In the right graph a, d is
shorter. �

Exercise 2: Prove the upper-bound property:
Let G = (V,E,w) be a weighted digraph and s ∈ V be a vertex. Then cost[v] ≥ d(s, v)
for all v ∈ V and this invariant is maintained over any sequence of relaxation steps on
the edges of G. Moreover, once cost[v] achieves its lower bound d(s, v), it never changes.
So prove the invariant ‘cost[v] ≥ d(s, v) for all v ∈ V ’ by induction over the number of
relaxation steps.
Solution: For the basis, cost[v] ≥ d(s, v) is certainly true after initialization, since
cost[s] = 0 ≥ d(s, s) (note that d(s, s) = −∞ if s in on a negative-weight cycle and 0
otherwise) and cost[v] =∞ implies cost[v] ≥ d(s, v) for all v ∈ V − {s}.
For inductive step, consider the relaxation of an edge (u, v). By the inductive hypothesis,
cost[x] ≥ d(s, x) for all x ∈ V prior to the relaxation. The only cost[·] value that may
change is cost[v]. If it changes, we have

cost[v] = cost[u] + w(u, v)
≥ d(s, u) + w(u, v) (IH)
≥ d(s, v) (triangle property)



and so the invariant is maintained.
To see that the value of cost[v] never changes once cost[v] = d(s, v), note that hav-
ing achieved its lower bound, cost[v] cannot decrease because we have just shown that
cost[v] ≥ d(s, v), and it cannot increase because relaxation steps do not increase cost[·]
values. �

Exercise 3: Prove the convergence property:
Let G = (V,E,w) be a weighted digraph and let (u, v) ∈ E. Then, immediately after
relaxing edge (u, v) in the if block we have cost[v] ≤ cost[u] + w(u, v).

Solution: If, just prior to relaxing edge (u, v), we have cost[v] > cost[u] + w(u, v), then
cost[v] = cost[u] + w(u, v) afterward. If, instead, cost[v] ≤ cost[u] + w(u, v) just before
the relaxation, then neither cost[u] nor cost[v] changes, and so cost[v] ≤ cost[u]+w(u, v)
afterward. �

Exercise 4: Prove the path-relaxation property:
If π = (v0, v1, . . . , vk) is a shortest path form s = v0 to vk, and the edges of p are relaxed
in the order (v0, v1), (v1, v2), . . . , (vk−1, vk), then cost[vk] = d(s, vk). This property holds
regardless of any other relaxation steps that occur, even if they are intermixed with
relaxations of the edges of π.

Show by induction that after the ith edge of π is relaxed, we have cost[vi] = d(s, vi).

Solution: For the basis, i = 0, and before any edge of π have been relaxed, we have form
the initialization that cost[v0] = cost[s] = 0 = d(s, s). By the upper-bound property, the
value of cost[s] never changes after initialization.
For the inductive step, we assume that cost[vi−1] = d(s, vi−1), and we examine the
relaxation of edge (vi−1, vi). By the convergence property, after this relaxation, we have
cost[vi] = d(s, vi), and this equality is maintained at all times thereafter. �

Exercise 5: Prove the no-path property:
Suppose that in a weighted, digraph G = (V,E,w), no path connects a source s ∈ V to
a given vertex v ∈ V . Then we have cost[v] = d(s, v) = ∞ after initialization, and this
equality is maintained as an invariant over any sequence of relaxation steps on the edges
of G.

Solution: By the upper-bound property, we always have ∞ = d(s, v) ≤ cost[v], and
thus cost[v] =∞ = d(s, v). �

Exercise 6: Prove the cost-array correctness:
Let G = (V,E,w) be a weighted digraph and s ∈ V , and assume that G contains no
negative cycles reachable from s. Then, after |V | − 1 iterations of the for loop it holds
cost[v] = d(s, v) for all vertices v that are reachable from s.

Solution: We prove the claim by appealing to the path-relaxation property. Consider
any vertex v that is reachable from s, and let π = (v0, v1, . . . , vk) where v0 = s and
vk = v, be any acyclic shortest path from s to v. Path π has at most |V | − 1 edges,



and so k ≤ |V | − 1. Each of the |V | − 1 iterations of the for loop relaxes all E edges.
Among the edges relaxed in the ith iteration, for i = 1, 2, . . . , k, is (vi−1, vi). By the
path-relaxation property, therefore, cost[v] = cost[vk] = d(s, vk) = d(s, v). �

Exercise 7: Prove the predecessor-subgraph property:
Let G = (V,E,w) be a weighted digraph, s ∈ V , and assume G contains no negative-
weight cycles reachable from s. After the initialization of the algorithm execute any
sequence of relaxation steps producing cost[v] = d(s, v) for all v ∈ V . Then, the prede-
cessor subgraph Groute[·] is as shortest-paths tree rooted at s.

Solution: We must check the three properties of Observation 6 for shortest-paths trees.
For the first property, show that Vroute[·] is the set of vertices reachable from s. By
definition, a shortest-path weight d(s, v) is finite iff v is reachable from s, hence the
vertices that are reachable from s are exactly those with finite cost[·] values. But a
vertex v ∈ V − {s} has been assigned a finite value for cost[v] iff route[v] 6= −. Hence,
the vertices in Vroute[·] are exactly the reachable ones. Property two follows directly from
Lemma 1.8.
It remains to prove the last property of shortest-paths trees: for each vertex v ∈ Vroute[·]
the unique simple path π = v0, ..., vk with s = v0 and v = vk in Groute[·] is a shortest path
from s to v in G. For 1 ≤ i ≤ k we have both cost[vi] = d(s, vi) and cost[vi] ≥ cost[vi−1]+
w(vi−1, vi) from which we conclude w(vi−1, vi) ≤ d(s, vi) − d(s, vi−1). Summing the
weights along π yields

w(π) =
k∑

i=1
w(vi−1, vi)

≤
k∑

i=1

(
d(s, vi)− d(s, vi−1)

)
= d(s, vk)− d(s, v0) (sum telescopes)
= d(s, vk) (d(s, v0) = d(s, s) = 0).

Thus, w(π) ≤ d(s, vk). Since d(s, vk) is a lower bound on the weight of any path from s
to vk, we conclude that w(π) = d(s, vk), hence π is a shortest path from s to vk = v. �


