
Efficient Algorithms
Summer term 2013

Institut für Theoretische Informatik
Leibniz Universität Hannover

Solution to exercise sheet 5
30.04.2013

Exercise 1: Six reporters Arne (A), Barbara (B), Christine (C), Daniela (D), Elvis (E)
and Frank (F), are to be assigned to six news stories Politics (1), Crime (2), Financial (3),
Foreign (4), Local (5) and Sport (6). The table shows possible allocations of reporters
to news stories. For example, Christine can be assigned to any one of stories 1, 2 or 4.

Matchings Examples

Question 1

Six reporters Asif (A), Becky (B), Chris (C), David (D), Emma (E) and Fred (F), are to 
be assigned to six news stories Business (1), Crime (2), Financial (3), Foreign(4), Local 

(5) and Sport (6). The table shows possible allocations of reporters to news stories. For 
example, Chris can be assigned to any one of stories 1, 2 or 4.

1 2 3 4 5 6

A ✓

B ✓ ✓

C ✓ ✓ ✓

D ✓

E ✓ ✓ ✓

F ✓

(a) Show these possible allocations on a bipartite graph.

A possble matching is: A to 5, C to 1, E to 6, F to 4.

(b) Show this information, in a distinctive way, on a diagram.

(c) Use an appropriate algorithm to find a maximal matching. You should list any alternating paths you 
have used.

(d) Explain why it is not possible to find a complete matching.

Question 2

The bipartite graph on the right shows the possible allocation of people A, B, C, 
D, E and F to tasks 1, 2, 3, 4, 5 and 6. An initial matching is obtained by 
matching the following pairs

A to 3, B to 4, C to 1, F to 5.

(a) Show this matching in a distinctive way on a diagram.

(b) Use an appropriate algorithm to find a maximal matching. You should state 
any alternating paths you have used.

1. Show these possible allocations on a bipartite graph.

2. Use Ford-Fulkerson to compute a maximum matching.

3. Is there a perfect matching? Explain your answer.

Solution:

1.
A

B

C

D

E

F

1
2
3
4
5
6

2. A = 5, B = 1, C = 2, E = 6, F = 4.

3. Looking at the bipartite graph, there is only one possible pair for each of A and D,
both of which can only be paired to 5. Since 5 cannot be paired with two different
vertices, a complete matching is not possible, since one of A and D will always
remain unpaired.
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Exercise 2: Can the following figure be tiled by dominoes (a domino being 2 adjacent
squares)? Give a tiling or a short proof that no tiling exists.
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Exercises

Exercise 1-2. An edge cover of a graph G = (V, E) is a subset of R of E such that every
vertex of V is incident to at least one edge in R. Let G be a bipartite graph with no isolated
vertex. Show that the cardinality of the minimum edge cover R∗ of G is equal to |V | minus
the cardinality of the maximum matching M∗ of G. Give an efficient algorithm for finding
the minimum edge cover of G. Is this true also for non-bipartite graphs?

Exercise 1-3. Show that in any graph G = (V, E) (not necessarily bipartite), the size of
any maximal matching M (i.e. a matching M in which one cannot add an edge while keeping
it a matching) is at least half the size of a maximum matching M∗.

Exercise 1-4. Can the following figure be tiled by dominoes (a domino being 2 adjacent
squares)? Give a tiling or a short proof that no tiling exists.

Exercise 1-5. Consider a bipartite graph G = (V, E) with bipartition (A, B): V = A∪B.
Assume that, for some vertex sets A1 ⊆ A and B1 ⊆ B, there exists a matching MA covering
all vertices in A1 and a matching MB covering all vertices in B1. Prove that there always
exists a matching covering all vertices in A1 ∪ B1.

Exercise 1-6. Consider the following 2-person game on a (not necessarily bipartite) graph
G = (V, E). Players 1 and 2 alternate and each selects a (yet unchosen) edge e of the graph
so that e together with the previously selected edges form a simple path. The first player
unable to select such an edge loses. Show that if G has a perfect matching then player 1 has
a winning strategy.

1.1.1 Hall’s Theorem

Hall’s theorem gives a necessary and sufficient condition for a bipartite graph to have a
matching which saturates (or matches) all vertices of A (i.e. a matching of size |A|).

Solution: Consider the bipartite graph G with a vertex for each square and two squares
are adjacent if they share an edge. This graph is bipartite since the squares can be
colored black and white in a checkerboard pattern. Any perfect tiling gives a perfect
matching by simply selecting the edges corresponding to the dominoes selected and vice
versa.
We claim that the configuration shown below is a maximum one and so no perfect tiling
exists. We will prove that the matching M corresponding to the shown configuration is
maximum by showing that there is no augmenting path as in the lecture. (Alternatively
we could use Hall’s theorem.)
Let A be the set of black squares and B the set of white squares. Orient the edges of G
according to M , i.e., all the edges in M are oriented from B to A, and the edges not in
M are oriented from A to B as in the oriented version.
Let v be the only exposed vertex of A and w be the only exposed vertex of B, and
consider L to be the set of vertices reachable from v (the enclosed area in the oriented
version). Since w is not in L we obtain that no augmenting path exists.
We can also deduce the fact that no perfect matching exists from Hall’s theorem by
observing that the 11 black vertices in L (the enclosed region on the right) have only 10
(white) neighbors.Solutions to some of the exercises April 2013 2

(b)

Figure 0.1: Maximum configuration of dominoes.

Figure 0.2: Oriented graph.

v

w

Figure 0.3: Set of reachable vertices from v.

1-5 Let G = (V, E) = (A [ B, E), subsets A1 ⇢ A, B1 ⇢ B and matchings MA, MB that
cover A1 and B1, respectively. We construct a matching M that covers A1 [ B1.

Clearly, the edge set M = MA[MB covers A1[B1, but it is not necessarily a matching.
We show how to delete edges from M to make it into a matching. We know MA4MB

is a union of disjoint cycles and alternating paths. The vertices with some incident
edge from both MA \ MB and from MB \ MA are the only ones where M fails to be a
matching. We show how to delete some edges from MA4MB, so M is still a matching
and no vertices are uncovered. We do so in each component of MA4MB.

• Cycle: Since G is bipartite, the cycle has even length. Therefore, we can delete
every other edge and the desired properties hold.

• Path of odd number of edges: We can delete every other edge starting from
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(b)

Figure 0.1: Maximum configuration of dominoes.

Figure 0.2: Oriented graph.
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Figure 0.3: Set of reachable vertices from v.

1-5 Let G = (V, E) = (A [ B, E), subsets A1 ⇢ A, B1 ⇢ B and matchings MA, MB that
cover A1 and B1, respectively. We construct a matching M that covers A1 [ B1.

Clearly, the edge set M = MA[MB covers A1[B1, but it is not necessarily a matching.
We show how to delete edges from M to make it into a matching. We know MA4MB

is a union of disjoint cycles and alternating paths. The vertices with some incident
edge from both MA \ MB and from MB \ MA are the only ones where M fails to be a
matching. We show how to delete some edges from MA4MB, so M is still a matching
and no vertices are uncovered. We do so in each component of MA4MB.

• Cycle: Since G is bipartite, the cycle has even length. Therefore, we can delete
every other edge and the desired properties hold.

• Path of odd number of edges: We can delete every other edge starting from
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Exercise 3: Consider a bipartite graph G = (V, E) with bipartition (A, B) : V = A∪B.
Assume that, for some vertex sets A1 ⊆ A and B1 ⊆ B, there exists a matching MA

covering all vertices in A1 and a matching MB covering all vertices in B1. Prove that
there always exists a matching covering all vertices in A1 ∪B1.
Solution: Let G = (V, E) = (A∪B, E), subsets A1 ⊂ A, B1 ⊂ B and matchings MA, MB

that cover A1 and B1, respectively. We construct a matching M that covers A1 ∪B1.
Clearly, the edge set M = MA∪MB covers A1∪B1, but it is not necessarily a matching.
We show how to delete edges from M to make it into a matching. We know MA∆MB

is a union of disjoint cycles and alternating paths. The vertices with some incident
edge from both MA \MB and from MB \MA are the only ones where M fails to be a
matching. We show how to delete some edges from MA∆MB, so M is still a matching
and no vertices are uncovered. We do so in each component of MA∆MB.

Cycle: Since G is bipartite, the cycle has even length. Therefore, we can delete every
other edge and the desired properties hold.

Path of odd number of edges: We can delete every other edge starting from the
edge that is adjacent to the last edge of the path. The desired properties hold.
Note that this is possible only because the path has odd number of edges.

Path of even number of edges: In this case, we can delete every other edge but one
endpoint will be covered and the other uncovered. We need to prove that both
endpoints cannot be in A1 ∪B1. Thus, we delete every other edge so the endpoint
that is not in A1 ∪B1 is uncovered.
We do so by contradiction: assume both endpoints are in A1∪B1. As the path has
an even number of edges, and G is bipartite, then both endpoints must belong to
the same bipartition set (A or B). W.l.o.g. say they both belong to A, and thus also
belong to A1. Note that each vertex in A1 has exactly one incident edge from MA;
thus the path we are analyzing (that is a connected component of MA∆MB) must
contain these two edges. However, this path is of even length, and is alternating,
so the end-edges cannot be from the same matching MA (⇒⇐). This shows that
our initial assumption is wrong, i.e., it must happen that both endpoints do not
belong to A1 ∪B1, as desired.
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