
Efficient Algorithms
Summer term 2013

Institut für Theoretische Informatik
Leibniz Universität Hannover

Solution to exercise sheet 4
23.04.2013

Exercise 1: Given a directed graph G = (V, E) with V = {1, 2, . . . , n}, we define the
transitive closure of G as the graph G∗ = (V, E∗), where

E∗ = {(i, j) ∈ V × V | there is a path from i to j in G} .

Usually Boolean values require less storage than words on current computers. Now
construct an efficient algorithm to compute the transitive closure of a digraph which
space requirement is less than the Floyd-Warshall algorithm.

Solution: The following algorithm uses only Boolean values rather than integer values,
its space requirement is less than the Floyd-Warshall algorithm’s by a factor correspond-
ing to the size of a word of computer storage.
Define tk(i, j) to be 1 if there exists a path in G from i to j with all intermediate vertices
in {1, . . . , k} and 0 otherwise. We construct the transitive closure G = (V, E∗) by putting
edge (i, j) into E∗ iff tn(i, j) = 1:

t0(i, j) =
{

0 , if i 6= j and (i, j) /∈ E,

1 , if i = j or (i, j) ∈ E,

tk(i, j) = tk−1(i, j) ∨
(
tk−1(i, k) ∧ tk−1(k, j)

)
, if k ≥ 1.

Algorithm 1: Transitive-Closure(G = (V, E))
1 n ← ||V ||;
2 for i ← 1 to n do
3 for j ← 1 to n do
4 if i = j or (i, j) ∈ E then t0(i, j) ← 1;
5 else t0(i, j) ← 0;

6 for k ← 1 to n do
7 for i ← 1 to n do
8 for j ← 1 to n do
9 tk(i, j) ← tk−1(i, j) ∨

(
tk−1(i, k) ∧ tk−1(k, j)

)
;

�

Exercise 2: Consider the following flow network with a given flow.

s

a

c

b

d

t

2/4

4/6

4/9

1/8 3/4

2/3

5/7

1/7

1/2

1. What is the flow across the cut ({s, c, d}, {a, b, t})? What is the capacity of this
cut?

2. Show the execution of Ford-Fulkerson on the flow network.

Solution:

1. c({s, c, d}, {a, b, t}) = 4 + 4 + 7 + 2 = 20, and
f({s, c, d}, {a, b, t}) = 2 + 3 + (−1) + 1 + 1 = 6

2. Execution of FF (left the current flow network with the flow, right the residual
network):

s

a

c

b

d

t

0/4

0/6

0/9

0/8 0/4

0/3

0/7

0/7

0/2

s

a

c

b

d

t

4

6

9

8 4

3

7

7

2

Consider the augmenting path p1 = s, a, b, t.

s

a

c

b

d

t

4/4

0/6

4/9

0/8 0/4

0/3

4/7

0/7

0/2

s

a

c

b

d

t

4

6

4

5
8 4

3

3

4
7

2

Augmenting path p2 = s, c, d, b, t.

s

a

c

b

d

t

4/4

3/6

4/9

0/8 0/4

3/3

7/7

3/7

0/2

s

a

c

b

d

t

4

3

3

4

5
8 4

3

7

4 3

2

Augmenting path p3 = s, c, a, b, d, t.

s

a

c

b

d

t

4/4

5/6

6/9

0/8 2/4

3/3

7/7

1/7

2/2

s

a

c

b

d

t

4

1

5

3

6
8 2

3

7

6 1

2

Now there does not exist any other augmenting path and the algorithm terminates.
�

