Introduction to Circuit Complexity: Errata & Addenda (July 12, 2005)

▶ page 5 line 15 are on) \rightsquigarrow are on) for $1 \le i \le n$	16.5.00
▶ page 6 line -4	16.5.00
$3 \rightsquigarrow 4$	
► page 9 line 5 $\alpha(v_1) < \dots < \alpha(v_k) \rightsquigarrow \alpha((v_1, v)) < \dots < \alpha((v_k, v))$	28.4.00
▶ page 12 line 17 $s, d: \mathbb{N} \to \mathbb{N} \rightsquigarrow s, d: \mathbb{N} \to \mathbb{N}, \ s(n) \ge n$	22.5.00
▶page 15 line –20	29.5.00
${\mathcal B}_0 \rightsquigarrow {\mathcal B}_1$	
▶ page 22 line 6 MAJ \rightsquigarrow MULT	22.1.03
	22.1.02
▶ page 22 Eq. (1.2) The lower index of the sum should be $k = 0$.	22.1.03
▶page 32 line 3	18.5.00
$\mathcal{B}_0 \rightsquigarrow \mathcal{B}_1$	
▶page 32 line 8	18.5.00
$\ell^{(k)} = 1 \rightsquigarrow \ell^{(k)} \le 2$	
▶page 32 line 15	6.7.04
$UnbSIZE-DEPTH(n^2, 1) \rightsquigarrow UnbSIZE-DEPTH(n, 1)$	
▶page 32 Exercise 1.8	22.1.03
a circuit \rightarrow a circuit whose underlying graph is connected	
▶page 32 line –3	
$f \in \text{FSIZE-DEPTH}(s^{O(1)}, d) \iff \text{there are } s' \in s^{O(1)} \text{ and } d' \in O(d) \text{ such that all bit function computed in size } s' \text{ and depth } d'.$	ons f_i^n can be
▶page 33 line 2	20.6.00
$f \in \text{FSIZE-DEPTH}\left(s(n^{O(1)}) \cdot n^{O(1)}, d(n^{O(1)}) + \log n\right)$	
▶page 33 line 4	20.6.00
$f \in \text{FUnbSIZE-DEPTH}\left(s(n^{O(1)}) \cdot n^{O(1)}, d(n^{O(1)})\right)$	
▶page 35 Lemma 2.2 and Observation 2.3	15.10.01
$SIZE(1) \cap DEPTH(1) \rightsquigarrow UnbSIZE(1) \cap UnbDEPTH(1)$	
▶page 44 line -8	12.7.05
$\langle x, f(x) angle \leadsto \langle x, f(1^{ x }) angle$	
▶page 45 line 6	20.6.00
$\operatorname{root} k \rightsquigarrow \operatorname{root} v$	
▶page 52 line –12	20.6.00

Lemma 1.31 \rightsquigarrow Theorem 1.31

▶page 55 line -8____ $_{14.1.02}$ $f(|x|) \longrightarrow O(f(|x|))$ ▶page 67 line –13___ $_{20.6.00}$ processors $P_1, \ldots, P_{p(n)} \quad \rightsquigarrow \quad \text{processors } P_1, \ldots, P_{p(n)} \text{ (where } n \text{ is the input length, as defined on the next}$ page) ▶page 73 line 2_ _20.6.00 if $C_f = 1$ then begin \rightsquigarrow while $C_f = 1$ do begin Additionally, something about synchronization should be mentioned here. It has to be ensured that all processors enter the while loop at the same time and need the same time to complete one execution of the loop. This can be achieved by inserting a necessary number of dummy statements (e.g., $R_0 \leftarrow R_0$) in the different cases of the **if**-statements. ▶page 77 line –14____ $_{20.6.00}$ $CRCW-PRAM \quad \rightsquigarrow \quad CRCW-PRAM$ with multiplication and division as unit-time operations ▶page 82 line -1____ $_{12.7.05}$ $\beta(\alpha(x_1, x_2), x_2)) \longrightarrow \beta(\alpha(x_1, x_2), x_1)$ ▶page 90 line –5____ $_22.1.03$ Add after first sentence: "By the above, we assume that every D_n is layered." ▶page 91 line 13____ $_22.1.03$ $t_g \quad \leadsto \quad t$ ▶page 101 line 18____ $_{22.1.03}$ words $x \in \{0,1\}^n$ we have $q_n(x) = 1$ \rightarrow words $x = x_1 \dots x_n \in \{0,1\}^n$ we have $q_n(x_1,\dots,x_n) = 1$ ▶page 101 line 21___ _22.1.03 Delete "and k". ▶page 101 line 21_____ Replace second sentence by: "Pick $n_1 > n_0$ such that $2^{n_1+r} (1 - (n_1 + r)^{-k}) \ge \frac{9}{10} 2^{n_1}$ and $(\log(n_1 + r))^c \le \frac{9}{10} 2^{n_1}$ $\sqrt{n_1}$." ▶page 101 line 24 and 25_____ $_{22.1.03}$ Replace both lines by the following: $F_0(x_1,\ldots,x_n) = q_{n+r}(x_1,\ldots,x_n,\underbrace{0,\ldots,0}_{r})$ $F_i(x_1, \dots, x_n) = q_{n+r}(x_1, \dots, x_n, \underbrace{1, \dots, 1}_{r-i}, \underbrace{0, \dots, 0}_i) \text{ for } 1 \le i < r.$ ▶page 119 line -7____ 9.8.99 $\sum_{i=m}^{k} d(\log n_m)^j \quad \rightsquigarrow \quad \sum_{m=1}^{k} d(\log n_m)^j$ ▶page 126 line 8____ $_{14.1.02}$ ATIME-ALT $(\log n, 1) \longrightarrow \text{ATIME-ALT}(\log n, O(1))$ ▶page 133 line 2____ $_{22.1.03}$ $\{0,1\}$ -programs $\rightarrow \{0,1\}$ -programs of polynomial size

▶ page 138 line –7 $\left\{ \left(\boldsymbol{w} \in \{0,1\} \times \mathcal{P}(V) \right)^+ \mid \boldsymbol{w} \models_I \phi \right\} \rightsquigarrow \left\{ \left. \boldsymbol{w} \in \left(\{0,1\} \times \mathcal{P}(V)\right)^+ \mid \boldsymbol{w} \models_I \phi \right. \right\}$	26.5.99
▶ page 140 line 18 $a \in i \rightsquigarrow a \in \{0, 1\}$	22.8.03
▶ page 140 line 25 results in a for \rightarrow results in a circuit for	22.8.03
▶ page 143 line 11 $L \le (L')^2 \rightsquigarrow \ell(L) \le (L')^2$	6.7.04
▶ page 144 line -18 step number $i \rightarrow $ step number t	6.7.04
▶ page 145 line 9 the position in \rightsquigarrow the symbol in	6.7.04
▶ page 156 lines $12-24$ Replace every occurrence of g_n by g_m .	25.7.00
▶ page 158 line -11 closure of $X \rightsquigarrow closure of S$	12.7.05
▶page 163 line 8 AC[6] \rightsquigarrow AC ⁰ [6]	_11.10.99
▶page 164 after line 2 It was shown recently in A. Dawar, K. Doests, S. Lindell, and S. Weinstein. Elementary properties of the finite rank	
Mathematical Logic Quarterly, 44:349-353, 1998 that FO[<, bit] = FO[bit]. This means that the <-predicate may be omitted in the statement of 4.72, Theorem 4.73, and Corollary 4.77.	
▶page 167 Exercise 4.25 This is just the statement of Corollary 4.54.	14.3.02
▶page 179 lines 4ff Replace first two sentences by: "Such a program computes a function $f_P \colon \mathcal{R}^n \to \mathcal{R}$ as follows: $(x_1, \ldots, x_n) \in \mathcal{R}^n$."	22.1.03 Let $x =$
▶ page 179 lines 23 $f: \{0,1\}^n \to \{0,1\} \rightsquigarrow f: \mathcal{R}^n \to \mathcal{R}$	22.1.03
▶ page 183 Remark 5.21 The definition of accepting subcircuit of C on input x is maybe a bit misleading. To be more expl should claim that: H contains the output gate of C ; for every \land gate v in H all <i>input wires</i> of v a for every \lor gate v in H exactly one <i>input wire</i> of v is in H ; only wires and gates thus introduced b H; and all gates in H evaluate to 1 on input x .	are in H ;
▶ page 191 line 17 Σ-programs \rightsquigarrow Σ-programs of polynomial size	22.1.03
▶ page 192 line 8 $v_i \rightsquigarrow v_0$	5.7.99

▶page 192 lines 11 and 1322.1.0
matrix programs \rightarrow matrix programs of polynomial size
▶page 197 line 1122.1.0
Add: "Note that, according to Definition 5.31, the definition of M_s above actually gives two matrices, on for each value of x_k .
▶page 206 Theorem 5.4628.9.0
See the remark on Question 3, p. 209 below.
▶page 207 Fig. 5.619.4.0
See the remarks on Question 1, p. 209 below.
▶page 209 Question 119.4.0
As a partial answer to this question, non-uniformly $\#NC^1 \subseteq FAC^1$ (and hence, Gap-NC ¹ $\subseteq FAC^1$, leadin to an additional arc in Fig. 5.6 on p. 207) is known. The result follows from Theorem 5.39 (p. 198f) an the inclusion SIZE-DEPTH($n^{O(1)}$, log $n \log \log n$) $\subseteq AC^1$ (Theorem 4.3 in [CSV84]). The proof of the latter inclusion is as follows: Divide the fan-in 2 circuit of depth $\log n \log \log n$ into $\log n$ levels of depth $\log \log n$ each. For every level, the nodes on the output of the level depend on at most $\log n$ nodes at the input of the level. Thus the value of each such node at the output of the level can be expressed as a polynomial siz DNF of the input nodes (see Exercise 1.1, p. 32). The question of how much this construction can be made uniform depends on the complexity of the require operation of division.
(See next remark.)
▶page 209 Question 128.9.0
The summer of 2001 brought a complete clarification of the complexity of the operation of division. First it was shown in
A. Chiu, G. Davida, and B. Litow. Division in logspace-uniform NC^1 . Theoretical Informatics and Applications, 2001, to appear
that division can be computed in logspace and even in U_L -NC ¹ . This is already a major improvement t the result by Beame, Cook, and Hoover (see Exercise 1.19 and [BCH86] in the book), placing division i U_P -NC ¹ (actually, U_P -TC ⁰). But it was even surpassed a little bit later by
W. Hesse. Division is in uniform TC ⁰ . In <i>Proceedings 28th International Colloqium on Automata, Languages and Programming</i> , Lecture Notes in Computer Science 2076, p. 104–114, Springer-Verlag, Berlin, 2001,
showing that division is in U_D -TC ⁰ .
An immediate consequence already of the result by Chiu et al. is an improvement to the preceding remar on Question 1, p. 209, that I added on 19.4.00: We now know Gap-NC ¹ \subseteq FL.
▶page 209 Question 328.9.0
Hesse's result, that division is in U_D -TC ⁰ (see remark on Question 1, p. 209, above), implies that TC ⁰ = $C_{=}AC^0 = CAC^0$ (Theorem 5.46) holds even in the dlogtime-setting. This issue is discussed in
Eric Allender. The division breakthroughs. The Computational Complexity Column, ed. by Lance Fornow. <i>EATCS Bulletin</i> , 74, 2001.
▶page 213 line –1116.4.9
$TC^1 \rightsquigarrow FTC^1$
▶page 235 line –110.6.9
class yields \rightarrow class with "F" yields
▶page 239 line 422.1.0
Α

 $a \cdot (b+c) \quad \rightsquigarrow \quad a \times (b+c)$

For helpful comments, leading to some of the above corrections, I am grateful to Eric Allender (Rutgers, New Brunswick) Ramon Bejar (Lleida), Koen Claessen (Chalmers, Gothenburg), Matthias Galota (Würzburg), Jan Johannsen (München), Michal Koucky (Rutgers, New Brunswick), Sebastian Maneth (Leiden), Pascal Michel (Paris), Holger Petersen (Stuttgart), Bernhard Schwarz (Würzburg), and Joachim Selke (Hannover).