
Leibniz Universität Hannover
Institut für theoretische Informatik

Masterarbeit

Group Isomorphism

Daniel Wiebking

Matrikel-Nr.: 2941990

8. November 2016

Erstprüfer: Prof. Dr. Heribert Vollmer
Zweitprüfer: Dr. Arne Meier
Betreuer: M. Sc. Maurice Chandoo

Selbstständigkeitserklärung
Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und ohne
fremde Hilfe verfasst habe und keine anderen Hilfsmittel und Quellen als
angegeben verwendet habe.

Daniel Wiebking

Contents
1 Introduction 1

2 Preliminaries 3

3 Isomorphism of Groups 7
3.1 Reduction from GroupIso to CSeriesIso 7
3.2 Reduction from CSeriesIso to QCSeriesAuto 16
3.3 Reduction from QCSeriesAuto to AutoLift 20
3.4 Reduction from AutoLift to SetStabilizer 24
3.5 SetStabilizer . 33
3.6 Conclusion . 36

4 Isomorphism of Special Groups 38

5 Outlook 39

Lists of Figures, Tables and Algorithms 41

Bibliography 44

1 Introduction

The group isomorphism problem is to decide whether two finite groups, given
as multiplication tables, are isomorphic. This problem is clearly in NP since
such an isomorphism would have polynomial length. The main reason to anal-
yse group isomorphism is that the problem is neither known to be in P, nor
to be NP-complete. However, it is known that the group isomorphism prob-
lem is Karp reducible to the isomorphism problem of graphs. This reduction
can be done by representing the group elements as vertices and describing the
ternary group relation “g1 • g2 = g3” with a suitable graph attached to the
vertices. On the other side, graph isomorphism may be harder since it is not
AC0-reducible to the isomorphism problem of groups [CTW13]. So, the group
isomorphism problem may be strictly easier than the isomorphism problem of
graphs, which itself is not NP-hard, unless the polynomial hierarchy collapses
to the second level [GMW91]. Additionally, we can bound the time complexity
of group isomorphism by a quasi-polynomial term of nlog2(n)+O(1), where n is
the order of the given groups. This was done by the generator enumeration
algorithm, which was published first in [FN14] in 1967. Their idea utilizes the
fact that every group of order n has a generating set whose size is log2(n) at
most, and that this generating set can be found in polynomial time iteratively.
Moreover, an isomorphism is uniquely determined by assigning the function
image of this generating set. This leads to an upper bound of nlog2(n) on the
number of possible isomorphisms, of which we can check each in polynomial
time. The quasi-polynomial bound is an additional hint that the group isomor-
phism problem may not be NP-hard, since otherwise all NP-complete problems
would be solvable in sub-exponential time, which contradicts the exponential
time hypothesis in [IP99]. For a long time it was not known whether the bound
of nlog2(n)+O(1) could be tightened until David J. Rosenbaum invented the bidi-
rectional collision detection in 2013 to obtain a square-root speedup for the
generator enumeration algorithm [Ros13]. This new bound of n 1

2 log2(n)+O(1)

is currently the best for general groups. In addition, bidirectional collision
detection was also applicable to many other isomorphism decision algorithms.

2

One example was Rosenbaum’s previously published algorithm for solvable
groups [Ros14] whose runtime could be improved to n 1

4 log2(n)+o(log2(n)). Rosen-
baum’s key for solvable groups was a reduction to the isomorphism problem
of composition series and a subsequent reduction to the isomorphism problem
of bounded degree graphs. The bounded degree graph isomorphism prob-
lem in turn is polynomial-time reducible to the group theoretic computational
problem set-stabilizer as shown by Luks M. Eugene [Luk82]. To solve the
set-stabilizer problem for certain instances, Eugene developed a divide-and-
conquer mechanism that runs in polynomial time [Luk82].
To extend Rosenbaum’s approach to general groups, Eugene developed a

more direct way to reduce group isomorphism to the set-stabilizer problem
in 2015 [Luk15]. He accomplished this by skipping the reduction to bounded
degree graphs. As a result, Eugene achieves a runtime of n 1

2 log2(n)+O(1) which
does not outperform the improved generator enumeration algorithm. It is
worth noting that Eugene does not currently make use of Rosenbaum’s bidi-
rectional collision detection. He has, however, claimed to apply it in a follow-up
paper, which would result in a new time bound for the isomorphism problem
of general groups. In this thesis we do some preparatory work for applying
bidirectional collision detection to Eugene’s framework. Moreover, we give
detailed proofs of his results.

2 Preliminaries

If the reader is already familiar with group theory, then this chapter may be
skipped.

Definition 2.1 (Group). A group is a set G together with a binary operation
• : G × G → G which satisfies the following conditions, known as the group
axioms. (We write g1g2 instead of •(g1, g2).)

1. (Associativity) (g1g2)g3 = g1(g2g3) for all g1, g2, g3 ∈ G.
2. (Identity element) There is an element e ∈ G such that eg = ge = g for

all g ∈ G.
3. (Inverse element) For all elements g ∈ G there is an element in G,

denoted by g−1, such that gg−1 = g−1g is the identity element.

Definition 2.2 (Order). The order of a group G is the cardinality of its un-
derlying set |G|.

In this thesis we shall always use the letter n to denote the cardinality of our
considered groups. Next, we consider cyclic groups, which are classic examples
of groups.

Definition 2.3 (Cyclic group). A finite group G is cyclic if it is generated by
one single element, in symbols G = 〈g〉 = {g, g2, . . . , gn}.

Example 2.4 The group Zn := {1, 2, . . . , n} together with modular addition
a • b := ((a + b) mod n) is cyclic. In fact, every cyclic group of order n is
isomorphic to Zn.

Finite groups can be denoted as a table.

Definition 2.5 (Cayley table). A Cayley table of a group G with operation
• : G×G→ G is the representation of • by a table.

4

Example 2.6 This is a possible Cayley table of Z4.

Z4 0 3 2 1
0 0 3 2 1
3 3 2 1 0
2 2 1 0 3
1 1 0 3 2

Note that the rows and columns of each Cayley table may be rearranged. This
results in a new Cayley visualization of the same group. Hence, we refer to a
Cayley table as “a”, and not “the” Cayley table.

Definition 2.7 (Symmetric group). The symmetric group on a finite set X , in
symbols Sym(X), is the set of all permutations on X together with composition
as the group operation. The symmetric group Sym({1, 2, . . . , n}) is also denoted
by Sym(n).

Definition 2.8 (Subgroup). A subset S ⊆ G is a subgroup of G, denoted by
S ≤ G, if S together with •|S is a group as well. This implies that S is closed
under its group operation, in symbols •S : S × S → S.

Every group possesses at least one subgroup, as seen in the next definition.

Definition 2.9 (Trivial subgroup). The trivial subgroup of a group G is the
set {e} =: 1 ≤ G.

Definition 2.10 (Coset). The left coset of a subgroup S ≤ G in G with respect
to g ∈ G is the set gS = {gh | h ∈ S}. Analogously, the right coset is defined
as Sg.

In this thesis we do not distinguish between right and left cosets since the
subgroups, for which we consider cosets, will always meet certain criteria which
we shall define next.

Definition 2.11 (Normal subgroup). A subgroup N of a group G is normal,
symbolically N E G, if gN = Ng for all g ∈ G. In such a case, the left and
right cosets of N in G coincide and we simply refer them as cosets.

It is fairly obvious that {e} and the group itself are normal in every group.
Moreover, there are certain groups in which these are the only normal sub-
groups.

Definition 2.12 (Simple group). A group G 6= 1 is simple if the only normal
subgroups it has are 1 and G.

5

Definition 2.13 (Centralizer). The centralizer of a subset S ⊆ G is
CG(S) := {g ∈ G | gs = sg ∀s ∈ S}.

Definition 2.14 (Center). The center of a group G is C(G) := CG(G).

It is easy to show that the centralizer is a subgroup. Moreover, the center is a
normal one. To understand the structure of a given group it is useful to con-
sider its normal subgroups. Furthermore, the relationship of these subgroups
to the group itself may provide us with more information. Next, we define how
this relationship can be expressed.

Definition 2.15 (Factor group). Let N E G. The factor group of G by N , in
symbols G/N , is the set of all cosets of N in G and is equal to {gN | g ∈ G}.
The induced operation of G defines an operation on the cosets in N :

(g1N)(g2N) = g1(Ng2)N = g1(g2N)N = (g1g2)N .

The concept of factor groups can be extended to chains of normal subgroups.

Definition 2.16 (Subnormal series). A subnormal series of a group G is a
subgroup chain where each subgroup is normal in the next one. It is denoted
by 1 = G0 C G1 C . . . C Gm = G.

Definition 2.17 (Composition series). A composition series csG of a group
G is a subnormal series 1 = G0 C G1 C . . . C Gm = G of maximal length. Or
equivalently, a subnormal series, in which each composition factor Gi+1/Gi is
simple.

The finite cyclic groups are very well understood. Next, we consider groups
that can be constructed using them.

Definition 2.18 (Solvable group). A finite group G is solvable if there is a
composition series 1 = G0 C . . . C Gm = G of G, in which every composition
factor Gi+1/Gi is cyclic of prime order.

Definition 2.19 (Solvable radical). The solvable radical of a finite group G,
denoted by Rad(G), is the union of all solvable normal subgroups of G and
therefore the inclusion maximal solvable normal subgroup.

An established way to compare groups uses structure-preserving maps.

Definition 2.20 (Group homomorphism). A group homomorphism from G

to H is a function ϕ : G→ H such that
ϕ(g1g2) = ϕ(g1)ϕ(g2) ∀g1, g2 ∈ G.

6

Definition 2.21 (Group isomorphism). Two groups G and H are isomorphic,
in symbols G ∼= H, if there is a bijective group homomorphism ϕ from G to
H. In this case ϕ is called an (group) isomorphism.

Definition 2.22 (Automorphism group). The automorphism group of a group
G, symbolically written as Aut(G), is the set of isomorphisms from G to itself
together with composition as the group operation.

By definition we have Aut(G) ≤ Sym(G).

Theorem 2.23 (First isomorphism theorem [Rot12]). Let ϕ : G → H be a
group homomorphism. Then G/ kerϕ ∼= imϕ.

We define how to join groups in an intuitive way.

Definition 2.24 (Direct product). The direct product of groups G and H is
the Cartesian product G×H together with the element-wise operation:

(g1, h1) • (g2, h2) := (g1g2, h1h2).

3 Isomorphism of Groups

In this chapter we will consider the following problem.

Problem GroupIso
Input Groups G and H given by their Cayley tables.
Question Is there an isomorphism between G and H?

In order to decide this problem, we will perform multiple Turing reductions
until we reach an elementarily solvable problem.

3.1 Reduction from GroupIso to CSeriesIso

In this section we will reduce the given problem to the isomorphism problem
of composition series.

Definition 3.1 (Subnormal series isomorphism). Two subnormal series sG
and sH are isomorphic, in symbols sG ∼= sH , if there is an isomorphism ϕ from
G to H such that

ϕ(Gi) = Hi ∀ 0 ≤ i ≤ m.

We define a corresponding isomorphism problem for subnormal series of max-
imal length.

Problem CSeriesIso
Input Composition series of groups G and H.
Question Is there an isomorphism between the composition series?

For the reduction to this problem we may proceed as follows. At first, we
enumerate all composition series for the groups G and H respectively. Then,
we check whether these enumerations contain an isomorphic pair. If we find
such a pair, then the groups must be patently isomorphic. On the flipside,
isomorphic groups have isomorphic sets of composition series. Here, two sets
are called isomorphic if there is a bijection between them which maps an
element to an isomorphic one. A problem with this approach is that the
number of composition series is not bounded by a polynomial. For this reason,

8

one could attempt to enumerate suitable subsets of composition series. These
subsets should have the following property.

Definition 3.2 (Collision sets). Two sets A and B of composition series of
G and H respectively are called collision sets if

G ∼= H if and only if ∃csG ∈ A ∃csH ∈ B : csG ∼= csH .

Next, we will define a concept which will prove to be very useful when consid-
ering the isomorphism of sets.

Definition 3.3 (Canonical form). Let ∼ be an equivalence relation on a set
X . A canonical form for the set X with ∼ is a function Can : X → X such
that x ∼ Can(x) and

x ∼ y if and only if Can(x) = Can(y) ∀x, y ∈ X .

With the help of a canonical form we can decide the isomorphism of sets more
effectively, as is illustrated in the next example.

Example 3.4 Group isomorphism is an equivalence relation on the set of all
groups represented by their Cayley tables and two groups are equal if their
tables coincide. Then, Can is a function on the Cayley tables of groups which
preserves the isomorphism class, in symbols G ∼= Can(G), and which is in-
variant under isomorphisms, in symbols

G ∼= H if and only if Can(G) = Can(H).
If we find a canonical form for groups, we can decide the isomorphism of two
groups G and H by evaluating Can for them and by comparing the results
in one step afterwards. So, evaluating a canonical form on groups is at least
as hard as deciding isomorphism. In fact, the canonical form computation
is more useful if we want to decide isomorphism between two sets of groups
{G1, . . . , Gn} and {H1, . . . , Hn}. Only 2n evaluations of the canonical form,
instead of n2 calls of a group isomorphism decision algorithm are needed. The
same premise is advantageous in checking if two collision sets share an isomor-
phic element.

Next, we shall define a canonical version of the isomorphism problem of
composition series. Since there can be different canonical forms for composition
series, we shall now stipulate one form denoted by Can.

Problem Can(CSeries)
Input Composition series of a group G.
Output The function Can evaluated at the composition series.

9

The first approach to get smaller collision sets involves enumeration of com-
position series with a certain property, instead of considering the entire set
of composition series. This strategy works provided the property is invariant
under isomorphisms such as the following one.

Definition 3.5 (Tree property). A composition series 1 = G0 C . . . C Gm

has the tree property if one of the following holds.
1. m = 1, so the composition series is equal to 1 C G1.
2. There is one i ∈ {1, . . . ,m} such that both 1 = G0 C G1 C . . . C Gi and

1 = Gi/Gi C Gi+1/Gi C . . . C Gm/Gi have the tree property, where Gi

is the smallest subgroup which fulfills G0 C Gi C Gm.

In order to enumerate the composition series with the tree property, it is
natural to ask how many such series exist. This question was answered in
[RW15] with the help of László Babai. They showed that the number of all
composition series for a group of order n is confined by n

1
2 log2(n)+O(1) and

enumerated them within the same time bound. However, we are interested
in getting even smaller collision sets. Thus, we abstain from enumerating all
composition series with the tree property. To achieve this, we need the next
definition.

Definition 3.6 (Normal closure). The normal closure of a subset S ⊆ G,
symbolically represented as 〈S〉G, is the intersection of all normal subgroups of
G that contain S and is therefore the inclusion minimal normal subgroup of G
that contains S.

Lemma 3.7. The normal closure is polynomial-time computable.

Proof. This can be shown by iteratively computing the closure under the group
operation and the closure under conjugation in G.

Lemma 3.8. Let n = |G| and 0 ≤ a ≤ b ≤ log2(n). Algorithm 3.1 computes
composition series 1 = G0 C . . . C Gm = G in time 2 1

2 (b−a)(2 log2(n)−b−a)nO(1).

Proof. The idea behind this proof is quite simple. In order to enumerate the
composition series with the tree property, the algorithm recursively computes
the result using the property’s definition. Whether or not the algorithm traces
all series, depends on the values of a and b. The algorithm branches maximally
if the current recursion depth lies between a and b. Otherwise, it branches
minimally. In each recursive call the recursion depth is incremented by one.

10

Algorithm 3.1 Enumerate composition series with the tree property.
1: function EnumCSeries(G0, Gm, a, b)
2: for all gG0 ∈ Gm/G0 do
3: Gi := 〈g,G0〉Gm

4: if G0 C Gi C Gm then
5: a0 := max(min(log2(|Gi/G0|), a− 1), 0)
6: b0 := max(min(log2(|Gi/G0|), b− 1), 0)
7: S0 := EnumCSeries(G0, Gi, a0, b0)
8: a1 := max(min(log2(|Gm/Gi|), a− 1), 0)
9: b1 := max(min(log2(|Gm/Gi|), b− 1), 0)

10: S1 := EnumCSeries(Gi, Gm, a1, b1)

11: S0◦S1 :=
{
G0 C . . . C Gi C . . . C Gm

∣∣∣∣∣ G0 C . . . C Gi ∈ S0
Gi C . . . C Gm ∈ S1

}
12: S := S ∪ (S0 ◦ S1)
13: if a = 0⇔ b = 0 then
14: return S
15: end if
16: end if
17: end for
18: if S 6= ∅ then
19: return S
20: else
21: return S := {G0 C Gm}
22: end if
23: end function

a0, a1

b0, b1

a

b

minimally
branch
maximally
branch

ECS(G0, Gm, a, b)

ECS(G0, Gi, a0, b0) ECS(Gi, Gm, a1, b1)

Figure 3.1: Recursion tree of Algorithm 3.1.

11

Therefore, the algorithm reduces the values of a and b in line 5 - 9 by one as
well. To keep the values in the range 0 ≤ a ≤ b ≤ log2(n), we need to consider
their maximum and minimum respectively. For a better understanding, the
reader is encouraged to see the example of the algorithm’s recursion tree in
Figure 3.1 as well.

Correctness. By induction on the recursion depth, we show that Algorithm 3.1
with input G0 C Gm enumerates subnormal series G0 C G1 C . . . C Gm of
maximal length. For the base case, we note that the algorithm does not have
a recursive call and therefore returns G0 C Gm. We shall provide a proof using
contradiction for the above-mentioned statement. Let us assume that there
is a longer subnormal series G0 C . . . C Gm−1 C Gm. Now, observe that for
g ∈ Gm−1 \G0 the group Gi = 〈g,G0〉Gm is by definition the inclusion minimal
normal subgroup of Gm that contains {g}∪G0 ⊆ Gm−1. This implies Gi E Gm

and Gi ≤ Gm−1 C Gm, which leads to a strict normal subgroup, in symbols
Gi C Gm. Next, we consider the normal subgroup relation G0 E Gi which
holds since G0 E Gm. This is, again, a strict inclusion G0 C Gi for g /∈ G0. In
summary, we get G0 C Gi C Gm and therefore the algorithm reaches line 5,
which contradicts the assertion that the algorithm does not have a recursive
call .
Thus G0 C Gm is of maximal length and the base case is proven. For the

inductive step we assume that the algorithm reaches line 11. By induction
S0 and S1 are sets of subnormal series of maximal length and so is S0 ◦ S1.
This holds since a subnormal series is of maximal length if and only if each
composition factor is simple.

Complexity. Let n0 = |G0|, nm = |Gm| and let T (n0, nm) denote the total run-
time of line 11 and 21 over each recursive call. Let R(n0, nm) denote the total
number of recursive calls, which is confined by T (n0, nm) since each recursive
call reaches line 11 or 21. Moreover, let Tsingle(n0, nm) denote the runtime of
all lines except line 11 and 21 in one single recursive call, which is bounded
by a polynomial p. This bound holds since the algorithm leaves the current
recursive call in line 7 and 10 and therefore the runtime of line 7 and 10 has
no influence on Tsingle(n0, nm). This leads to a total runtime of

T (n0, nm)︸ ︷︷ ︸
line 11 and 21

+R(n0, nm)Tsingle(n0, nm)︸ ︷︷ ︸
other lines

≤ T (n0, nm) + T (n0, nm)p(n0 + nm)

= T (n0, nm)(1 + p(n0 + nm)).

12

Now, it remains to be shown that T (n0, nm) is bounded by the desired term
in Lemma 3.8. To analyze T (n0, nm), we observe that it satisfies the following
recursion.

T (n0, nm, a, b) ≤
r∑

k=1︸︷︷︸
line 2

(
T (n0, njk , a0, b0)︸ ︷︷ ︸

line 7

+T (njk , nm, a1, b1)︸ ︷︷ ︸
line 10

+ T (n0, njk , a0, b0)T (njk , nm, a1, b1)︸ ︷︷ ︸
line 11

)

+1︸︷︷︸
line 21

≤ r · 4T (n0, ni, a0, b0)T (ni, nm, a1, b1)

Here, the number of iterations r of the for-loop depends on the values of a and
b, and ni is the worst case value for |Gi|.

δa=0,b>0 :=

1, if a = 0 and b > 0

0, else

r := (nm/n0)δa=0,b>0

ni := arg max
n∈{nj1 ,...,njr}

T (n0, n, a0, b0)T (n, nm, a1, b1)

By induction on the recursion depth we will show this upper bound.

T (n0, nm, a, b) ≤ S(n0, nm, a, b)

:= 2 1
2 (b−a)(2 log2(nm/n0)−b−a)+4 log2(nm/n0)−4

∈ 2 1
2 (b−a)(2 log2(nm/n0)−b−a)nO(1)

For the base case it holds that the algorithm does not have a recursive call.
Therefore, it reaches line 21, which can be executed in one step.

T (n0, nm, a, b) = 1

≤ 2 1
2 (b−a︸︷︷︸

≥0

)(2 log2(nm/n0)−b−a︸ ︷︷ ︸
≥0

)+4(log2(nm/n0)−1︸ ︷︷ ︸
≥0

)

= S(n0, nm, a, b)

For the inductive step, we assume that we have a recursive call and without

13

loss of generality that b0 ≤ b1. Also, we define l := log2(nm/n0).

T (n0, nm, a, b) ≤r · 4T (n0, ni, a0, b0)T (ni, nm, a1, b1)

≤2δa=0,b>0l+2 induction hypothesis

· 2 1
2 (b0−a0)(2 log2(ni/n0)−b0−a0)+4 log2(ni/n0)−4

· 2 1
2 (b1−a1)(2 log2(nm/ni)−b1−a1)+4 log2(nm/ni)−4

≤2δa=0,b>0l+4l−6 log2(ni/n0)+log2(nm/ni)=l

· 2 1
2 (b0−a0)(2 log2(ni/n0)−b0−a0)

· 2 1
2 (b1−a1)(2l−2 log2(ni/n0)−b1−a1)

≤2δa=0,b>0l+4l−6 b0≤log2(ni/n0)

· 2 1
2 (b0−a0)(2b0−b0−a0)

· 2 1
2 (b1−a1)(2l−2b0−b1−a1)

=2δa=0,b>0l+4l−6

· 2 1
2 b0(b0−2a0−2b1+2a1)+ 1

2a
2
0

· 2 1
2 (b1−a1)(2l−b1−a1)

≤2δa=0,b>0l+4l−6 a0+δa=0,b>1≤b0

· 2 1
2 (a0+δa=0,b>1)(a0+δa=0,b>1−2a0−2b1+2a1)+ 1

2a
2
0

· 2 1
2 (b1−a1)(2l−b1−a1)

=2δa=0,b>0l+4l−6

· 2 1
2 (a0+δa=0,b>1)(δa=0,b>1−a0)+ 1

2a
2
0

· 2 1
2 (b1−a1)(2l−2a0−2δa=0,b>1−b1−a1)

=2δa=0,b>0l+4l−6 a0δa=0,b>1=0

· 2
1
2 δ

2
a=0,b>1

· 2 1
2 (b1−a1)(2l−2a0−2δa=0,b>1−b1−a1)

≤2δa=0,b>0l+4l− 11
2

1
2 δa=0,b>1≤ 1

2

· 2 1
2 (b1−a1)(2l−2a0−2δa=0,b>1−b1−a1)

≤2δa=0,b>0l+4l− 11
2 δb>1≤a0+δa=0,b>1

· 2 1
2 (b1−a1)(2l−2δb>1−b1−a1)

≤2δa=0,b>0l+4l− 9
2 (b1−a1)(δb>0−δb>1)≤1

· 2 1
2 (b1−a1)(2l−2δb>0−b1−a1)

=2δa=0,b>0l+4l− 9
2

· 2 1
2 (b1−a1)(2l−2δb>0−(b1−a1)−2a1)

14

=2δa=0,b>0l+4l− 9
2 −(b1−a1)a1=−(b1−a1)(a−δa>0)

· 2 1
2 (b1−a1)(2l−2δb>0−(b1−a1)−2a+2δa>0)

=2δa=0,b>0l+4l− 9
2 −δb>0+δa>0=−δb>0,a=0

· 2 1
2 (b1−a1)(2l−2δb>0,a=0−(b1−a1)−2a)

≤2δa=0,b>0l+4l− 9
2 b1−a1≤b−a−δa=0,b>0

· 2 1
2 (b−a−δa=0,b>0)(2l−2δb>0,a=0−(b−a−δa=0,b>0)−2a)

=2δa=0,b>0l+4l− 9
2

· 2 1
2 (b−a−δa=0,b>0)(2l−δb>0,a=0−b−a)

=2δa=0,b>0l+4l− 9
2

· 2
1
2 (b−a)(2l−b−a)−δa=0,b>0l+ 1

2 δ
2
a=0,b>0+δa=0,b>0a

=24l− 9
2 δa=0,b>0a=0

· 2
1
2 (b−a)(2l−b−a)+ 1

2 δ
2
a=0,b>0

≤24l− 8
2

1
2 δ

2
a=0,b>0≤

1
2

· 2 1
2 (b−a)(2l−b−a)

=S(n0, nm, a, b)

Using Algorithm 3.1, we are now able to compute collision sets of composi-
tion series for G and H. We follow the idea of [Ros13].

Theorem 3.9 (Bidirectional collision detection). Collision sets A and B are
computable in time α(n) and β(n) respectively. With either

1. α(n) ∈ nO(1) and β(n) ∈ n 1
2 log2(n)+O(1)

or
2. α(n) ∈ n 1

4 log2(n)+O(1) and β(n) ∈ n 1
4 log2(n)+O(1).

Proof. In order to compute the set A, we execute Algorithm 3.1 with input
(1, G, 0, c log2(n)). Similarly, we compute B by calling Algorithm 3.1 with
input (1, H, c log2(n), log2(n)).

Correctness. For a recursion depth lower than c log2(n) the algorithm for
A branches maximally and the algorithm for B branches minimally. This
branching manner switches, when the recursion depth exceeds c log2(n). The
corresponding recursion trees of this proceeding computation are pictured in
Figure 3.3. To prove that A and B are collision sets, we show that the corre-
sponding recursion trees always share a common path for isomorphic groups

15

A common
path

B

Figure 3.2: The first collision argument.

c log2(n)

A common
path

B

Figure 3.3: The second collision argument.

G and H. This can by illustrated as follows. If the algorithm for A traces
only one minimal normal subgroup Gi, then the algorithm for B branches
maximally to keep track of an isomorphic minimal normal subgroup and vice
versa.

Complexity. By Lemma 3.8 the algorithm for A runs in time

α(n)
3.8
∈ 2 1

2 (b−a)(2 log2(n)−b−a)nO(1)

= 2 1
2 (c log2(n))(2 log2(n)−c log2(n))nO(1)

= 2c(1− 1
2 c) log2(n)2

nO(1).

By the same lemma we get a runtime for B of

β(n)
3.8
∈ 2 1

2 (b−a)(2 log2(n)−b−a)nO(1)

= 2 1
2 (1−c) log2(n)(2 log2(n)−1 log2(n)−c log2(n))nO(1)

= 2 1
2 (1−c)2 log2(n)2

nO(1).

For case 1, we set c := 0 which leads to the recursion trees pictured in Fig-
ure 3.2. For 2, we set c := 1− 1√

2 instead.

16

With the help of collision sets, we are now able to reduce the group isomor-
phism problem to the isomorphism problem of composition series.

Theorem 3.10. Let G and H be groups of order n and let A and B be collision
sets that are computable in time α(n) and β(n) respectively. The following
holds.

1. GroupIso is Turing reducible to CSeriesIso in a time complexity of
(α(n) · β(n))nO(1).

2. GroupIso is Turing reducible to Can(CSeries) in a time complexity
of (α(n) + β(n))nO(1).

Proof. For case 1, we compute the collision sets A and B of the groups G and
H respectively. Next, we go through all pairs (a, b) ∈ A × B and check if a
and b are isomorphic. By the definition of collision sets we find an isomorphic
pair if and only if G ∼= H. This leads to an algorithm that runs in time (α(n) ·
β(n))nO(1). For case 2, we start similarly, by computing the collision setsA and
B. For the next step, we evaluate the canonical form Can for each composition
series csG ∈ A and also for each csH ∈ B. Subsequently, we sort the evaluated
sets A and B in lexicographical order in time |A| log2(|A|)+ |B| log2(|B|). This
is still bounded by (α(n) + β(n))nO(1) since we can bound the cardinality by
the runtime and get both |A| ≤ α(n) and |B| ≤ β(n). Moreover, log2(|A|) and
log2(|B|) are bounded by a polynomial due the upper bound on the number
of composition series which is n 1

2 log2(n)+O(1), as shown in [RW15]. For the last
step, we must check if the sorted sets A and B share a common element, which
can be done via merge sort in linear time.

The rest of this thesis will show how to decide the isomorphism of composi-
tion series in polynomial time.

3.2 Reduction from CSeriesIso to QCSeriesAuto

In this section we will reduce the isomorphism problem of composition series to
the computation of all isomorphisms between one subnormal series and itself,
namely the automorphisms. We shall use the strategy described in [Luk15].
For the reduction, we must introduce another concept, more general than
composition series.

Definition 3.11 (Quasi-composition series). A quasi-composition series qcsG
of a group G is a subnormal series 1 = G0 C G1 C . . . C Gm = G, in which

17

each composition factor Gi+1/Gi is simple or a direct product of two simple
groups.

The problem we will reduce to is defined as follows.

Problem QCSeriesAuto
Input Quasi-composition series of the group G.
Output Generators for the automorphism group of the quasi-

composition series.

To decide isomorphism by finding the automorphism group, we use the same
idea as the one used for the well known graph isomorphism problem. Let G
and H be graphs. If we know the automorphism group of the disjoint union
graph Aut(G ·∪H), we can decide isomorphism of G and H by finding an au-
tomorphism in Aut(G ·∪H) which swaps the components G and H. A problem
is that this automorphism group may be exponentially large and therefore just
be given as a generating set S with 〈S〉 = Aut(G ·∪H). However, one can show
that for connected graphs G and H such a swapping automorphism exists in
〈S〉 if and only if one exists in S as well. Fortunately, it is easy to show that
the graph isomorphism problem for general graphs is polynomial-time equiva-
lent to the isomorphism problem of connected ones. A comparable concept of
connectivity in group theory is the direct product decomposition. It is worth
acknowledging the following fact about it.

Theorem 3.12 (Krull–Schmidt for finite groups [Rot12]). Every finite group
G can uniquely be written as a direct product G1 × G2 × . . . × Gk of directly
indecomposable subgroups of G. Here, uniqueness refers to the fact that if there
is another such expression H1×H2× . . .×Hl of G, then there is a reindexing
σ ∈ Sym(l) such that

1. Gi
∼= Hσ(i) for all 1 ≤ i ≤ k = l.

2. G ∼= G1 × . . .×Gj ×Hσ(j+1) × . . .×Hσ(k) for all 0 ≤ j ≤ k = l.

Now, we are ready for the proposed reduction.

Theorem 3.13. CSeriesIso is polynomial-time Turing reducible to QC-
SeriesAuto.

Proof. We present Algorithm 3.2.

Correctness. In the case of graphs, we need the graphs to be connected. For the
group scenario, the function breaks down the groups to directly indecompos-
able ones. This procedure is correct since the Krull–Schmidt theorem implies

18

Algorithm 3.2 Reduction from CSeriesIso to QCSeriesAuto.

1: function CSeriesIso
(

csG := 1 = G0 C . . . C Gm = G,
csH := 1 = H0 C . . . C Hm = H

)
2: if G and H are directly decomposable then
3: Decompose G ∼= G̃× Ĝ and H ∼= H̃ × Ĥ
4: Write cG as 1× 1 C G̃1× 1 C G̃2× Ĝ2 C G̃3× Ĝ3 C . . . C G̃m× Ĝm

5: Write cH as 1×1 C H̃1×1 C H̃2× Ĥ2 C H̃3× Ĥ3 C . . . C H̃m× Ĥm

6: c̃G := 1 C G̃1 E G̃2 E G̃3 E . . . E G̃m

7: c̃H := 1 C H̃1 E H̃2 E H̃3 E . . . E H̃m

8: c̃heck := CSeriesIso(c̃G, c̃H)
9: ĉG := 1 = Ĝ1 E Ĝ2 E Ĝ3 E . . . E Ĝm

10: ĉH := 1 = Ĥ1 E Ĥ2 E Ĥ3 E . . . E Ĥm

11: ĉheck := CSeriesIso(ĉG, ĉH)
12: if c̃heck == ĉheck == accept then
13: return accept
14: else
15: return reject
16: end if
17: else if G and H are directly indecomposable then
18: qcsGm×Hm := 1 = G0 ×H0 C G1 ×H1 C . . . C Gm ×Hm

19: S := QCSeriesAuto(qcsGm×Hm)
20: for all ϕ ∈ S do
21: if ϕ(Gi × 1) = 1×Hi for all 0 ≤ i ≤ m then
22: return accept
23: end if
24: end for
25: return reject
26: end if
27: end function

19

that finite groups G1 × G2 and H1 × H2 are isomorphic if and only if there
exists a σ ∈ Sym(2) such that G1 ∼= Hσ(1) and G2 ∼= Hσ(2). To verify if such
a σ ∈ Sym(2) exists, we need to check only one element of Sym(2) instead of
both, as we will see next. The decomposition of the groups in line 3 induces a
decomposition of their composition series as written in line 4 and 5. Here, we
assume, without loss of generality, that

Ĝ1 = 1, Ĥ1 = 1 and G̃1 6= 1, Ĥ1 6= 1. (3.1)

Through the following observation we may spare two isomorphism tests and it
suffices to consider the isomorphisms in line 8 and 11.

cG ∼= cH ⇔ ∃ϕ : G
ϕ∼= H and ϕ(Gi) = Hi

3.12⇔ ∃ϕ, ψ : G̃
ϕ∼= H̃, Ĝ

ψ∼= Ĥ and ϕ(G̃i) = H̃i, ϕ(Ĝi) = Ĥi for all i

or G̃
ϕ∼= Ĥ, Ĝ

ψ∼= H̃ and ϕ(G̃i) = Ĥi, ϕ(Ĝi) = H̃i for all i
(3.1)⇔ ∃ϕ, ψ : G̃

ϕ∼= H̃, Ĝ
ψ∼= Ĥ and ϕ(G̃i) = H̃i, ϕ(Ĝi) = Ĥi for all i

⇔ c̃G ∼= c̃H and ĉG ∼= ĉH

A technical detail worth mentioning is that the defined composition series in
lines 4 - 8 are of the form 1 E . . . E Fi = Fi+1 E . . . E Fm. In such a case we
merge iteratively and write them as 1 E . . . E Fi E . . . E Fm−1 until we arrive
at the notation for composition series.

Next, we discuss the directly indecomposable case. We continue to follow
the graph scenario and look for a swapping automorphism, that is an automor-
phism ϕ with ϕ(Gi×1) = 1×Hi for all 0 ≤ i ≤ m. It is fairly obvious that the
composition series 1 = G0 C . . . C Gm and 1 = H0 C . . . C Hm are isomorphic
if and only if there is a swapping automorphism ϕ ∈ Aut(qcsGm×Hm) = 〈S〉.
For the correctness of the indecomposable case we claim that 〈S〉 contains a
swapping automorphism if and only if there is a swapping automorphism in S.
For proving the nontrivial direction of the bi-implication, assume that there is
a swapping automorphism ϕ ∈ 〈S〉 which therefore maps G to H, in symbols
ϕ(G× 1) = 1×H. Since S is a generating set there is a ψ ∈ S that does not
map G to G, in symbols ψ(G× 1) 6= G× 1. We claim that ψ ∈ S is the swap-
ping automorphism that we are looking for. Notice, that ψ(G× 1)×ψ(1×H)
is a direct product decomposition of G × H since the subgroups satisfy the

20

following three conditions.

ψ(G× 1) ∩ ψ(1×H) = ψ(G× 1 ∩ 1×H) = ψ(1× 1) = 1× 1

ψ(G× 1)ψ(1×H) = ψ((G× 1)(1×H)) = ψ(G×H) = G×H

ψ(g, 1)ψ(1, h) = ψ(g1, 1h) = ψ(1g, h1) = ψ(1, h)ψ(g, 1)

This leads to

ψ(G× 1)× ψ(1×H) ∼= G×H
∼= G× 1× 1×H.

But we already observed that ψ(G×1) 6= G×1 and both G and H are directly
indecomposable, which implies ψ(G×1) = 1×H. The previous equation then
also holds for subgroups.

ψ(Gi × 1) = ψ((Gi ×Hi) ∩ (G× 1))

= ψ(Gi ×Hi) ∩ ψ(G× 1)

= (Gi ×Hi) ∩ (1×H)

= 1×Hi for all 0 ≤ i ≤ m.

Therefore, ψ ∈ S is a swapping automorphism.

Complexity. Every single recursive call of the function CSeriesIso runs in
polynomial time since line 3 is executed in polynomial time as showed in [KN09]
and in contrast to 〈S〉, the set S is polynomially bounded. The number of
recursive calls is bounded by |G| and therefore the total runtime is also poly-
nomially bounded.

3.3 Reduction from QCSeriesAuto to AutoLift
In this section we describe how to determine the automorphism group of a
quasi-composition series by lifting the automorphisms of a normal subgroup
to the whole group as done in [Luk15].

Definition 3.14 (Almost-solvable). Let X be a set. A group G ≤ Sym(X) is
almost-solvable if |G/Rad(G)| ≤ |X |4.

Remark 3.15 Solvable groups play a big role in computational group theory
because they are a subclass of Γd, for which many group theoretic computa-
tions can be done in polynomial time [LM11]. Since most of these algorithms

21

deal with cosets, they can be generalized to almost-solvable groups by using
the following divide-and-conquer strategy. At first, we break the group into
cosets of the solvable radical, which can be done in polynomial time for per-
mutation groups [Ser03]. By doing this, we reduce the given group theoretic
computational problem to |X |4 sub-problems for solvable groups which can
each be solved in polynomial time as assumed. We then combine the interim
results to get a conclusive solution for the original computational problem.

Lemma 3.16. A subgroup of an almost-solvable group is as well almost-
solvable.

Proof. Let S be a subgroup of an almost-solvable group G. Notice that
Rad(G) ∩ S E S since the radical is by definition normal and therefore both
sRad(G) = Rad(G)s and sS = S = Ss for all s ∈ S. Recall that Rad(S) is
the maximal normal subgroup of S and so

Rad(G) ∩ S ≤ Rad(S). (3.2)

Next, we consider the homomorphism ϕ : S → G/Rad(G) defined by s 7→
sRad(G). This homomorphism is also know as the natural projection. The
kernel of the map is Rad(G)∩S and therefore the First isomorphism theorem
implies

S/(Rad(G) ∩ S) ∼= imϕ. (3.3)

Combining both equations leads to the statement which had to be shown.

|S/Rad(S)|
(3.2)
≤ |S/(Rad(G) ∩ S)|

(3.3)= | imϕ|

≤ |G/Rad(G)|

≤ |X |4

Lemma 3.17. Let S be a simple group or a direct product of simple groups.
The group Aut(S) ≤ Sym(S) can be computed in polynomial time and the
cardinality |Aut(S)| is bounded by |S|4.

Proof. Every simple group can be generated by two elements as shown in
[AG84]. As a consequence S is generated by at most four elements. An au-
tomorphism is completely determined by fixing the image for a generating

22

set, which implies |Aut(S)| ≤ |S|4. This fact also leads to a polynomial-
time algorithm which goes through all possible generating sets and all possible
corresponding images and then checks if this bijection extends to an automor-
phism.

Lemma 3.18. Let S be a simple group or a direct product of simple groups.
The group Aut(S) ≤ Sym(S) is almost-solvable.

Proof. As a consequence of Lemma 3.17 we have
|Aut(S)/Rad(Aut(S))| ≤ |Aut(S)| ≤ |S|4.

Definition 3.19 (Stabilizer subgroup). The stabilizer subgroup of a group
G ≤ Sym(X) for Z ⊆ X is

GZ := {g ∈ G | g(z) ∈ Z ∀z ∈ Z}.

Example 3.20 For a function f : X → Y and a subset Z ⊆ X we define
f(Z) := ∪z∈Zf(z). This means that a function can be evaluated for the
elements of X and subsets of X , as well. Now, we can view Sym(G) as a
subgroup of Sym(G ∪ P(G)) and we define a stabilizer subgroup for both, a
normal subgroup N ⊆ G ∪ P(G) and the set of cosets G/N ⊆ G ∪ P(G).

Sym(G)G/N,N =

ϕ ∈ Sym(G)

∣∣∣∣∣∣ ϕ(h) ∈ N ∀h ∈ N,
ϕ(gN) ∈ G/N ∀g ∈ G

 .
Definition 3.21 (Natural homomorphism). Let N E G. The natural ho-
momorphism Θ : Sym(G)G/N,N → Sym(G/N) × Sym(N) is defined via ϕ 7→
(ϕ|G/N , ϕ|N).

For a normal subgroup N of G we can now define the following computational
problem.

Problem AutoLift
Input Generators for A ≤ Aut(G/N) and B ≤ Aut(N), both

almost-solvable.
Output Generators for almost-solvable group Aut(G)∩Θ−1(A×B).

Now, we are ready to determine the automorphisms of a quasi-composition
series by lifting automorphism groups.

Theorem 3.22. QCSeriesAuto is polynomial-time Turing reducible to Au-
toLift.

23

Algorithm 3.3 Reduction from QCSeriesAuto to AutoLift.
1: function QCSeriesAuto(1 = G0 C . . . C Gm−1 C Gm)
2: if m = 1 then
3: return Aut(Gm)
4: end if
5: A := Aut(Gm/Gm−1)
6: B := QCSeriesAuto(1 = G0 C . . . C Gm−1)
7: return AutoLift(A,B)
8: end function

Proof. We present Algorithm 3.3.

Correctness. By induction on m we show that the algorithm with input
1 = G0 C . . . C Gm returns Aut(Gm)G1,...,Gm−1 which is almost solvable.
For the base case, the algorithm returns Aut(Gm) which is almost solvable
by Lemma 3.18. For the inductive step, the algorithm reaches line 5, in which
A is almost-solvable again by Lemma 3.18. The automorphism group B in
line 6 equals the almost-solvable group Aut(Gm−1)G1,...,Gm−2 by the induction
hypothesis. Finally, the algorithm computes the lift of the almost-solvable
groups A and B and returns the following.

Aut(Gm) ∩ Θ−1(Aut(Gm/Gm−1)× Aut(Gm−1)G1,...,Gm−2)

= Aut(Gm) ∩

ϕ ∈Sym(Gm)Gm/Gm−1,Gm−1

∣∣∣∣∣∣ ϕ|Gm/Gm−1 ∈ Aut(Gm/Gm−1),
ϕ|Gm−1 ∈ Aut(Gm−1)G1,...,Gm−2

=

ϕ ∈Aut(Gm)Gm/Gm−1,Gm−1

∣∣∣∣∣∣ ϕ|Gm/Gm−1 ∈ Aut(Gm/Gm−1),
ϕ|Gm−1 ∈ Aut(Gm−1)G1,...,Gm−2

= { ϕ ∈Aut(Gm)Gm−1 | ϕ|Gm−1 ∈ Aut(Gm−1)G1,...,Gm−2 }

= Aut(Gm)G1,...,Gm−1

The almost-solvability of the returned group is guaranteed by the definition of
the problem AutoLift and will be proven when we give an algorithm for it
in the next section.

Complexity. The automorphism groups in line 3 and 5 can be computed in
polynomial time due to Lemma 3.17. Since the recursion depth is m, the
algorithm’s total runtime is polynomially bounded.

24

3.4 Reduction from AutoLift to SetStabilizer

The goal of this section is the reduction of lifting automorphisms to the com-
putational problem set-stabilizer as done in [Luk15]. As in the last section, we
use the letter N to denote a normal subgroup of a group G.

Definition 3.23. L :=

ϕ ∈ Sym(G)G/N,N

∣∣∣∣∣∣∣∣∣
ϕ(gh) = ϕ(g)ϕ(h),
ϕ(hg) = ϕ(h)ϕ(g)
∀g ∈ G, h ∈ N

.

Bear in mind that the condition stated in the previous definition of L is slightly
weaker than the automorphism condition since h does not need to be in G. By
definition, we have the following.

Aut(G)G/N,N ≤ L

≤ Sym(G)G/N,N
= im Θ−1

Lemma 3.24. Let ϕ ∈ L. Then ϕ(ghg−1) = ϕ(g)ϕ(h)ϕ(g)−1 holds.

Proof.

ϕ(ghg−1) = ϕ(ghg−1)︸ ︷︷ ︸
∈ϕ(N)

ϕ(g)︸ ︷︷ ︸
∈ϕ(G)

ϕ(g)−1

= ϕ(ghg−1g)ϕ(g)−1

= ϕ(gh)ϕ(g)−1

= ϕ(g)ϕ(h)ϕ(g)−1

Lemma 3.25. ker Θ|L ∼= CN(N)× . . .× CN(N)︸ ︷︷ ︸
|G/N |−1 times

. Furthermore, generators for

ker Θ|L can be computed in polynomial time.

Proof. Our first claim is that ϕ ∈ L, together with the following two conditions,
implies k ∈ CN(N).
(i) ϕ(h) = h for all h ∈ N .
(ii) ϕ(g) = gk and for some g ∈ G, k ∈ N .

25

The next equation proves our claim.

kh
(i)= kϕ(h)

= kϕ(g)−1ϕ(g)ϕ(h)ϕ(g)−1ϕ(g)
3.24= kϕ(g)−1ϕ(ghg−1︸ ︷︷ ︸

∈N

)ϕ(g)

(i)= kϕ(g)−1ghg−1ϕ(g)
(ii)= k(gk)−1ghg−1gk

= hk ⇔ k ∈ CN(N) (3.4)

Now, we are ready to prove the lemma.

ker Θ|L =

ϕ ∈ L
∣∣∣∣∣∣ ∀h ∈ N : ϕ(h) = h,

∀g ∈ G : gN = ϕ(gN) = ϕ(g)ϕ(N) = ϕ(g)N

=

ϕ ∈ L
∣∣∣∣∣∣ ∀h ∈ N : ϕ(h) = h,

∀g ∈ G ∃k ∈ N : ϕ(g) = gk

(3.4)=

ϕ ∈ L
∣∣∣∣∣∣ ∀h ∈ N : ϕ(h) = h,

∀g ∈ G ∃k ∈ CN(N) : ϕ(g) = gk

=
〈
ϕgN,k :=

x 7→
xk, if x ∈ gN

x, else

 ∈ L
∣∣∣∣∣∣ k ∈ CN(N), g /∈ N

〉

∼= CN(N)× . . .× CN(N)︸ ︷︷ ︸
|G/N |−1 times

It is easily verifiable that elements in the generating set, denoted by ϕgN,k,
satisfy the condition stated in the definition of L for any k ∈ CN(N). Further-
more, these elements can be computed in polynomial time.

Definition 3.26 (Inner automorphism). The inner automorphism i(g) : N →
N with respect to g ∈ G is defined via h 7→ ghg−1.

We verify that i(g) is in fact an automorphism of N for any g ∈ G.

i(g)(h1h2) = gh1h2g
−1

= gh1g
−1gh2g

−1

= i(g)(h1)i(g)(h2) ∀h1, h2 ∈ N

26

Therefore, the image i(S) = ∪s∈Si(s) is a subgroup of Aut(N) for any S ≤ G.
Furthermore, i : G→ Aut(N) is a group homomorphism as seen next.

i(g1g2)(h) = g1g2h(g1g2)−1

= g1g2hg
−1
2 g−1

1

= i(g1)(g2hg
−1
2)

= i(g1)i(g2)h ∀g1, g2 ∈ G, h ∈ N

The next lemma will lend itself to be very useful for proving the correctness
of our reduction.

Lemma 3.27. Let C := CG(N) and

(~) (α, β) ∈ Aut(G/N)× Aut(N).

The following three assertions are equivalent.

(i) L ∩ Θ−1(α, β) contains at least one element ϕ and can be computed in
polynomial time.

(ii) βi(gN)β−1 = i(α(gN)) ∀g ∈ G.
(iii) i−1(βi(gN)β−1) = α(gN)C ∀g ∈ G.

Moreover, assertion (i) implies:

(iv) α ∈ Aut(G/N)CN/N .

And assertion (iv) implies:

(v) α induces an automorphism α̃ ∈ Aut(G/CN).

Proof. For “(i)⇒ (ii)” we observe the following.

βi(gN)β−1 (i)= ϕi(gN)ϕ−1

= {h 7→ ϕ(g̃ϕ−1(h)g̃−1) | g̃ ∈ gN}
3.24= {h 7→ ϕ(g̃)hϕ(g̃)−1 | g̃ ∈ gN}

= i(ϕ(gN))
(i)= i(α(gN))

27

Next, we prove “(i)⇒ (iv)”.

α(CN/N) (i)= ϕ(CN/N)
(i)= ϕ(C)ϕ(N)/ϕ(N)
(i)= ϕ(C)N/N

= ϕ({g ∈ G | gh = hg ∀h ∈ N})N/N

= {ϕ(g) ∈ G | gh = hg ∀h ∈ N}N/N

= {ϕ(g) ∈ G | ϕ(gh) = ϕ(hg) ∀h ∈ N}N/N
(i)= {ϕ(g) ∈ G | ϕ(g)ϕ(h) = ϕ(h)ϕ(g) ∀h ∈ N}N/N
(i)= {ϕ(g) ∈ G | ϕ(g)h = hϕ(g) ∀h ∈ N}N/N

= CN/N

For “(iv)⇒ (v)” we need to verify that the induced function, defined as follows,
is a well-defined automorphism.

α̃(gCN) := α(gN)C ∀g ∈ G

To show that α̃ is well-defined, we need α̃(gkCN) = α̃(gCN) for all k ∈ CN .

α̃(gkCN) = α(gkN)C
(~)= α(gN)︸ ︷︷ ︸

∈G/N

α(kN)︸ ︷︷ ︸
∈CN/N

C

(iv)= α(gN)C

= α̃(gCN)

Now, we observe that C is normal in G.

gCg−1 = g{k ∈ G | kh = hk ∀h ∈ N }g−1

= {gkg−1 ∈ G | kh = hk ∀h ∈ N }

= {k ∈ G | g−1kgh = hg−1kg ∀h ∈ N }

= {k ∈ G | kghg−1 = ghg−1k ∀h ∈ N }

= {k ∈ G | kh = hk ∀h ∈ gNg−1}

= {k ∈ G | kh = hk ∀h ∈ N }

= C (3.5)

28

The next equation implies that the function α̃ is an automorphism.

α̃(g1CN)α̃(g2CN) = α(g1N)Cα(g2N)C
(3.5)= α(g1N)α(g2N)C
(~)= α(g1g2N)C

= α̃(g1g2CN) ∀g1, g2 ∈ G

To prove “(ii) ⇔ (iii)”, we claim that i is a bijection between G/CN and
i(G/CN). It is worth remarking that the following holds by definition.

i(C) = {id} = {e} (3.6)

Since we already noticed that i is a homomorphism, it suffices to show that
ker i is trivial.

i(gCN) = i(CN)⇔ i(g)i(C)i(N) = i(C)i(N)
(3.6)⇔ i(g)i(N) = i(N)

⇔ i(g) ∈ i(N)

⇔ ∃h ∈ N ∀x ∈ N : gxg−1 = hxh−1

⇔ ∃h ∈ N ∀x ∈ N : h−1gx = xh−1g

⇔ ∃h ∈ N : h−1g ∈ C

⇔ g ∈ CN

⇔ gCN = CN

Since i−1 is a bijection as well, we get the desired equivalence.

βi(gN)β−1 = i(α(gN)) (3.6)⇔ βi(gN)β−1 = i(α(gN)C)

⇔ i−1(βi(gN)β−1) = α(gN)C

Last but not least, we need to prove “(ii) ⇒ (i)”. At first, we fix a represen-
tative g̃ for each coset of N . Then, for each coset g̃N , we

fix ag̃ ∈ α(g̃N) (~)= ag̃N such that i(ag̃)
(ii)= βi(g̃)β−1. (3.7)

29

We define

ϕ(x) :=

β(x), if x ∈ N

ag̃β(g̃−1x), if x ∈ g̃N for a fixed a representative g̃ /∈ N
. (3.8)

We claim that ϕ lies in the set L ∩ Θ−1(α, β) which we want to compute. To
show ϕ ∈ Θ−1(α, β), we notice that

ϕ|G/N(g̃N)(3.8)= ag̃β(g̃−1g̃N)

= ag̃β(N)
(~)= ag̃N

(3.7)= α(g̃N)

and ϕ|N(h) (3.8)= β(h).

To prove the claim, we show ϕ ∈ L. Since G can be decomposed into cosets,
it suffices to check the condition of L for an arbitrary coset g̃N .

ϕ(gh)(3.8)= ag̃β(g̃−1gh)
(~)= ag̃β(g̃−1g)β(h)

(3.8)= ϕ(g)ϕ(h) ∀g ∈ g̃N, h ∈ N (3.9)

30

ϕ(hg) = ϕ(gg−1hg)
(3.9)= ϕ(g)ϕ(g−1hg)
(3.8)= ϕ(g)β(g−1hg)

= ϕ(g)βi(g)−1(h)

= ϕ(g)βi(g̃g̃−1g)−1(h)

= ϕ(g)(i(g̃)i(g̃−1g)β−1)−1(h)

= ϕ(g)(β−1βi(g̃)β−1βi(g̃−1g)β−1)−1(h)
(3.7)= ϕ(g)(β−1i(ag̃)βi(g̃−1g)β−1)−1(h)
(~)= ϕ(g)(β−1i(ag̃)i(β(g̃−1g)))−1(h)

= ϕ(g)(β−1i(ag̃β(g̃−1g)))−1(h)
(3.8)= ϕ(g)(β−1i(ϕ(g)))−1(h)

= ϕ(g)i(ϕ(g))−1β(h)

= ϕ(g)ϕ(g)−1β(h)ϕ(g)

= β(h)ϕ(g)
(3.8)= ϕ(h)ϕ(g) ∀g ∈ g̃N, h ∈ N

Therefore, ϕ ∈ L ∩ Θ−1(α, β). Now, we can calculate the whole set L ∩
Θ−1(α, β) = ϕ ker Θ|L in polynomial time by applying Lemma 3.25.

We will reduce to the following problem.

Problem SetStabilizer
Input Generators for the almost-solvable group G ≤ Sym(X),

Z ⊆ X .
Output Generators for the stabilizer subgroup GZ .

Theorem 3.28. AutoLift is polynomial-time Turing reducible to SetSta-
bilizer.

Proof. We present Algorithm 3.4.

Correctness. Since we are looking for Aut(G) ∩Θ−1(A× B), we only need to
compute the set Aut(G)∩Θ−1(α, β) for all pairs (α, β), for which the set is not
empty. For such a pair Lemma 3.27 implies α ∈ Aut(G/N)CN/N and therefore
the cut down in line 2 is correct. With the same argumentation, we justify the

31

Algorithm 3.4 Reduction from AutoLift to SetStabilizer.
1: function AutoLift(A ≤ Aut(G/N), B ≤ Aut(N))
2: Ã := ACN/N
3: B̃ := {β ∈ B | β−1i(G)β = i(G)}
4: D := {(α, β) ∈ Ã× B̃ | i−1(βi(gN)β−1) = α(gN)C ∀g ∈ G}
5: E := Θ(D)−1 ∩ L
6: return E ∩ Aut(G)
7: end function

cut down of B in line 3, since Lemma 3.27 implies the following.

βi(G)β−1 = βi(
⋃

gN∈G/N
gN)β−1

3.27= i(α(
⋃

gN∈G/N
gN))

= i(
⋃

gN∈G/N
α(gN))

= i(G)

Then again, by Lemma 3.27 we deduce the correctness of the cut down in
line 4. For line 5 we notice that Aut(G) ⊆ L and therefore we preserve every
solution. Finally, we reach line 6 and cut down to Aut(G). Now we are allowed
to return the computed set, since it is already restricted to Θ−1(A × B) due
to line 5.

Complexity. We show that the computations can be done in polynomial time
using SetStabilizer as oracle. Line 2 can be expressed as a set-stabilizer
problem for the almost-solvable group A ≤ Sym(G/N) stabilizing the subset
CN/N . Next, we discuss line 3. In [LM11] Luks and Miyazaki showed that
for H,G ≤ Sym(X) the normalizer NG(H) := {g ∈ G | gHg−1 = H} can
be found in polynomial time if G lies in Γd. This algorithm can be extended
to almost-solvable groups by using the divide-and-conquer strategy described
in Remark 3.15. To compute line 3, we express the group B̃ as a normalizer
NB(i(G)). The almost-solvability of B ensures polynomial time. Remark that
line 3 could also be expressed as a set-stabilizer as in [Luk15] if we would use
an unstated property that B has due to our previous reduction. Next, we show
how to express line 4 as a set-stabilizer problem. We define a group action for
the group B̃ ≤ B, we know to be almost-solvable by Lemma 3.16.

β • gCN := i−1(βi(gN)β−1) ∈ gCN

32

This definition is valid since βi(gN)β−1 ∈ i(G) due to line 3. The group
Ã ≤ A is almost-solvable for the same reason that B̃ is. The cut down in
line 2 together with Lemma 3.27 implies that α ∈ Ã induces an automorphism
α̃ ∈ Aut(G/CN) and therefore the following is a well-defined group action.

α • gCN := α̃(gCN) = α(gN)C ∈ gCN

Moreover, the direct product of two almost-solvable groups is almost-solvable
as well.

|(Ã× B̃)/Rad(Ã× B̃)| = |Ã/Rad(Ã)| · |B̃/Rad(B̃)|

≤ |G/N |4|N |4

= |(G/N)×N |4

Now, line 4 can be expressed as a set-stabilizer problem for the almost-solvable
group Ã× B̃ acting on the set G/CN ×G/CN , stabilizing the diagonal subset
{(gCN, gCN) ∈ G/CN × G/CN}. Next, we show how to compute line 5
in polynomial time. Since Lemma 3.27 shows that L ∩ Θ−1(α, β) 6= ∅ for all
(α, β) ∈ D, we have by the First isomorphism theorem that

(L ∩Θ−1(D))/ ker Θ|L ∼= Θ|L(L ∩Θ−1(D))

= D. (3.10)

Therefore, L∩Θ−1(D) is generated by the generating automorphisms of ker Θ|L
together with the lifts L∩Θ−1(α, β) of the generators (α, β) ∈ D. Both can be
computed in polynomial time due to Lemma 3.25 and Lemma 3.27 respectively.
To express line 6 as a set-stabilizer problem, we require E to be almost-solvable.
The next equation shows that E is almost-solvable if D is.

|E/Rad(E)|(3.10)= |(D × ker Θ|L)/Rad(D × ker Θ|L)|

= |D/Rad(D)| · | ker Θ|L/Rad(ker Θ|L)|
(3.25)= |D/Rad(D)|

But since we know an almost-solvable overgroup Ã × B̃ ≥ D, we can deduce
the almost-solvability of D from Lemma 3.16. Now, we can express the last
line as a set-stabilizer problem for the almost-solvable group E acting on G3,
stabilizing the set {(g1, g2, g3) ∈ G3 | g1g2 = g3}.

33

3.5 SetStabilizer

At first, we generalize stabilizer subgroups to cosets.

Definition 3.29 (Stabilizer coset). Let N E G ≤ Sym(X) and Z,W ⊆ X
such that N(W) =W. The stabilizer coset of gN for Z,W is

gNZ|W := {gh ∈ gN | gh(Z ∩W) = Z ∩ g(W)}.

The stabilizer coset is in fact a generalization.

GZ|X = {eg ∈ eG| eg(Z ∩ X) = Z ∩ e(X)}

= {g ∈ G | g(Z ∩ X) = Z ∩ X }

= {g ∈ G | g(Z) = Z }

= GZ

Theorem 3.30. SetStabilizer is polynomial-time computable.

Proof. To compute GZ|X , we execute Algorithm 3.5 with input (G,Z,X).

Algorithm 3.5 SetStabilizer.
1: function SetStabilizer(gN ∈ G/N, Z ⊆ X , W ⊆ X)
2: if W = {w} then . Base case
3: if |Z ∩ {w, g(w)}| = 1 and w 6= g(w) then
4: gNZ|W := ∅
5: else
6: gNZ|W := gN
7: end if . Intransitive case
8: else if W =W1 ·∪ W2 such that N(Wi) =Wi for i = 1, 2 then
9: gNZ|W1

:= SetStabilizer(gN, Z, W1)
10: gNZ|W := SetStabilizer(gNZ|W1

, Z, W2)
11: else . Transitive case
12: Decompose W =W1 ·∪ . . . ·∪ Wm with a minimal m ≥ 2 such that

N preserves the partition: N({W1, . . . ,Wm}) = {W1, . . . ,Wm}
13: Nstab := {h ∈ N | h(Wi) =Wi ∀i ∈ {1, . . . ,m}}
14: Decompose N = ⋃

1≤j≤|N/Nstab|
gjNstab

15: gNZ|W := ⋃
1≤j≤|N/Nstab|

SetStabilizer(ggjNstab, Z, W)

16: end if
17: return gNZ|W
18: end function

Correctness. By induction on the recursion depth we show that Algorithm 3.5
with input (gN,Z,X) returns gNZ|W . For the base case the algorithm does

34

not have a recursive call and returns the following.

gNZ|W = {gh ∈ gN | gh(Z ∩W) = Z ∩ g(W) }

= {gh ∈ gN | gh(Z ∩ {w}) = Z ∩ {g(w)}}

= {gh ∈ gN | g(Z ∩ {w}) = Z ∩ {g(w)}}

=

∅, if |Z ∩ {w, g(w)}| = 1 and w 6= g(w)

gN, else

For the inductive step we assume a recursive call. We first show the correct-
ness of the intransitive case. Since N acts intransitively we have N(Wi) =
Wi for i = 1, 2 and therefore the following.

gh(Z ∩Wi) ∩ Z ∩ g(Wj) ⊆ gh(Wi) ∩ g(Wj)

⊆ g(Wi) ∩ g(Wj)

⊆ g(Wi ∩Wj)

= ∅ for {i, j} = {1, 2} (3.11)

The next equation ensures the correctness of the intransitive case.

gNZ|W = gNZ|W1 ·∪W2

=

gh ∈ gN
∣∣∣∣∣∣ gh(Z ∩ (W1 ·∪ W2))

= Z ∩ g(W1 ·∪ W2)

=

gh ∈ gN
∣∣∣∣∣∣ gh((Z ∩W1) ·∪ (Z ∩W2))

= Z ∩ (g(W1) ·∪ g(W2))

=

gh ∈ gN
∣∣∣∣∣∣ gh(Z ∩W1) ·∪ gh(Z ∩W2)

= (Z ∩ g(W1)) ·∪ (Z ∩ g(W2))

(3.11)= {gh ∈ gN | gh(Z ∩Wi) = Z ∩ g(Wi) for i = 1, 2 }

= {gh ∈ gNZ|W1
| gh(Z ∩W2) = Z ∩ g(W2) }

= (gNZ|W1
)Z|W2

35

Next, we show the correctness of the transitive case.

gNZ|W = {gh ∈ gN | gh(Z ∩W) = Z ∩ g(W) }

= {gh ∈
⋃

1≤j≤|N/Nstab|
ggjNstab | gh(Z ∩W) = Z ∩ g(W) }

=
⋃

1≤j≤|N/Nstab|
{ggjk ∈ ggjNstab | ggjk(Z ∩W) = Z ∩ ggj(W)}

=
⋃

1≤j≤|N/Nstab|
(ggjNstab)Z|W

Complexity. It suffices to be shown that the set-stabilizer algorithm runs in
polynomial time for solvable groups since the almost-solvable case can re-
duced to the aforementioned case by using the divide-and-conquer strategy
described in Remark 3.15. The reason for the tractability of this case is that
there is a constant c such that the orders of all primitive solvable groups
G ≤ Sym(W) are bounded by |W|c as shown in [BCP82]. Here, a primitive
group G ≤ Sym(W) is one for which a decomposition, such as in line 12 would
be the trivial one, namely W = ·∪w∈W{w}. In fact, the factor group N/Nstab

acting on {W1, . . . ,Wm} is primitive and therefore its order is bounded by
|{W1, . . . ,Wm}|c = mc. Furthermore, one can see that the transitive and in-
transitive case alternate as in Example 3.31. Through such an alternation
the algorithm reduces a problem of size |W| to |N/Nstab| many calls, each of
size |Wi| and therefore the total number of recursive calls R(|W|) satisfies the
following recursion.

R(|W|) = |N/Nstab| ·R(|Wi|)

≤ mc ·R(|W|/m)

By induction, the total number of recursive calls equals R(|W|) ≤ |W|c. More-
over, each recursive call, in particular the computations in line 12 and 13, can
be done in polynomial time as shown in [Luk82].

Example 3.31 We call Algorithm 3.5 with the following input.

gN = Sym(3) = 〈(1 2)(1 2)(1 2),(2 3)(2 3)(2 3)〉

Z = {123,321}

W = {x1x2x3 | {x1, x2, x3} = {1, 2, 3}}

36

123

312

231

213

321

132

Figure 3.4: The group Sym(3) acting on strings.

It is worth remarking that the symmetric group is acting on the set W via
(σ, x1x2x3) 7→ σ(x1)σ(x2)σ(x3) as seen in Figure 3.4. A segment of the cor-
responding recursion tree is pictured in Figure 3.5. Notice that we naturally
extended the intransitive case for W = W1 ·∪ W2 ·∪ W3 as seen in the deepest
level of this recursion tree.

3.6 Conclusion
Corollary 3.32. GroupIso is decidable in a time complexity of n 1

2 log2(n)+O(1).

Proof. First, we compute one composition series with the tree property of G
and enumerate all composition series with the tree property of H. These colli-
sion sets A and B can be computed in time n 1

2 log2(n)+O(1) and nO(1) respectively
as shown in Theorem 3.91. To decide isomorphism of G and H, we test isomor-
phism of the composition series of G and the enumerated composition series
of H. By Theorem 3.101 this takes the desired time of n 1

2 log2(n)+O(1) if we can
decide isomorphism of two composition series in polynomial time. In order to
decide isomorphism of two composition series, we join both and check if there is
a swapping automorphism in the automorphism group of the quasi-composition
series. This Turing reduction is stated in Theorem 3.13. This automorphism
group can, in turn, be calculated by starting with the automorphisms of a
small subgroup and lifting these automorphisms step by step as described in
Theorem 3.22. Next, Theorem 3.28 shows that the deepest tools for lifting
automorphisms can be described as set-stabilizer problems for almost-solvable
groups. Lastly and most importantly, we solve the set-stabilizer problem for
this class of groups in polynomial time by a divide-and-conquer strategy stated
in Theorem 3.30.

37

recursive call

x backtrack with
return value x

123

312

231

213

321

132

gN = Sym(3)
Z = {123,321}

W = W1 ·∪ W2

123

312

231

213

321

132

gN = e〈(1 2 3)(1 2 3)(1 2 3)〉
W = W1 ·∪ W2

• • • • • •

123

312

231

213

321

132

gN = (1 2)〈(1 2 3)(1 2 3)(1 2 3)〉
W = W1 ·∪ W2

123

312

231

gN = (1 2)〈(1 2 3)(1 2 3)(1 2 3)〉
W1 = W11 ·∪ W12 ·∪ W13

(1 2){e}
W11 ·∪ W12 ·∪ W13

(1 2){e}
W11

∅
W12

∅
W13

123

312

231

gN = (1 2)(1 3 2){e}
W1 = W11 ·∪ W12 ·∪ W13

123

gN = (1 3){e}
W11 = W11

312

gN = (1 3){e}
W12 = W12

231

gN = (1 3){e}
W13 = W13

(1 2)(1 2 3){e}
W11 ·∪ W12 ·∪ W13

(2 3){e}
W11

∅
W12

∅
W13

• • •

{e} {e}

{e}

∅ ∅ ∅

∅

{(1 3)} {(1 3)} {(1 3)}

{(1 3)}

∅ ∅ ∅

∅

{(1 3)}

{(1 3)}

{(1 3)}

{e, (1 3)}

Figure 3.5: Recursion tree of Algorithm 3.5.

4 Isomorphism of Special Groups

We give a summary of the complexity results for the isomorphism problem of
restricted groups.

Group class Complexity Reference

Abelian groups. O(n) [Kav07]
Quotients of generalized Heisenberg groups. (log(n) + p)O(1) [LW12]
Groups of genus 2, that are p-groups of ex-
ponent p and exponent p-class 2 and com-
mutator of order dividing p2.

nO(1) [BMW15]

Semisimple groups, that are groups with
abelian sylow towers.

nO(1) [BQ12]

Groups with normal hall subgroup. nO(1) [QST12]
Groups that are tame extensions, that are
groups G where the sylow p-subgroups of
G/Zdp are cyclic, dihedral, semi-dihedral, or
generalized quaternion.

nO(1) [GQ15]

Groups G with central radical and where
G/Rad(G) has O(log(n)/ log(log(n))) min-
imal normal subgroups.

nO(1) [GQ14]

Groups with central radical. n
1

60 log(log(n))+O(1) [GQ14]

Table 4.1: Complexity of the isomorphism problem of restricted groups.

5 Outlook

We give an outlook to expected results. Eugene M. Luks claimed to publish a
follow-up paper to [Luk15], in which he attempts to extend his results of the
polynomial time computability of composition series to a canonical version.
This would allow us to apply the latter parts of Theorems 3.9 and 3.10, which
would result in a new time bound of n 1

4 log2(n)+O(1) for GroupIso due a more
astute collision argument.

List of Figures

3.1 Recursion tree of Algorithm 3.1. 10
3.2 The first collision argument. 15
3.3 The second collision argument. 15
3.4 The group Sym(3) acting on strings. 36
3.5 Recursion tree of Algorithm 3.5. 37

List of Tables

4.1 Complexity of the isomorphism problem of restricted groups. . . 38

List of Algorithms

3.1 Enumerate composition series with the tree property. 10
3.2 Reduction from CSeriesIso to QCSeriesAuto. 18
3.3 Reduction from QCSeriesAuto to AutoLift. 23
3.4 Reduction from AutoLift to SetStabilizer. 31
3.5 SetStabilizer. 33

Bibliography

[AG84] Michael Aschbacher and R Guralnick. Some applications of the first
cohomology group. Journal of Algebra, 90(2):446–460, 1984.

[BCP82] Lázló Babai, Peter J Cameron, and Péter Pál Pálfy. On the orders
of primitive groups with restricted nonabelian composition factors.
Journal of Algebra, 79(1):161–168, 1982.

[BMW15] P. A. Brooksbank, J. Maglione, and J. B. Wilson. A fast isomor-
phism test for groups of genus 2. ArXiv e-prints, August 2015.

[BQ12] László Babai and Youming Qiao. Polynomial-time isomorphism
test for groups with abelian sylow towers. In STACS’12 (29th Sym-
posium on Theoretical Aspects of Computer Science), volume 14,
pages 453–464. LIPIcs, 2012.

[CTW13] Arkadev Chattopadhyay, Jacobo Torán, and FabianWagner. Graph
isomorphism is not AC0-reducible to group isomorphism. ACM
Transactions on Computation Theory (TOCT), 5(4):13, 2013.

[FN14] V Felsch and J Neubüser. On a programme for the determination
of the automorphism group of a finite group. In Computational
Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pages
59–60, 2014.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that
yield nothing but their validity or all languages in NP have zero-
knowledge proof systems. Journal of the ACM (JACM), 38(3):690–
728, 1991.

[GQ14] Joshua A Grochow and Youming Qiao. Algorithms for group iso-
morphism via group extensions and cohomology. In Computational
Complexity (CCC), 2014 IEEE 29th Conference on, pages 110–119.
IEEE, 2014.

43

[GQ15] Joshua A Grochow and Youming Qiao. Polynomial-time iso-
morphism test of groups that are tame extensions. In Interna-
tional Symposium on Algorithms and Computation, pages 578–589.
Springer, 2015.

[IP99] Russell Impagliazzo and Ramamohan Paturi. Complexity of k-SAT.
In Computational Complexity, 1999. Proceedings. Fourteenth An-
nual IEEE Conference on, pages 237–240. IEEE, 1999.

[Kav07] T. Kavitha. Linear time algorithms for abelian group isomorphism
and related problems. Journal of Computer and System Sciences,
73(6):986 – 996, 2007.

[KN09] Neeraj Kayal and Timur Nezhmetdinov. Factoring groups effi-
ciently. In International Colloquium on Automata, Languages, and
Programming, pages 585–596. Springer, 2009.

[LM11] Eugene M Luks and Takunari Miyazaki. Polynomial-time normal-
izers. Discrete Mathematics and Theoretical Computer Science,
13(4):61, 2011.

[Luk82] Eugene M Luks. Isomorphism of graphs of bounded valence can be
tested in polynomial time. Journal of computer and system sciences,
25(1):42–65, 1982.

[Luk15] Eugene M. Luks. Group isomorphism with fixed subnormal chains.
CoRR, abs/1511.00151, 2015.

[LW12] Mark L. Lewis and James B. Wilson. Isomorphism in expanding
families of indistinguishable groups. Groups Complexity Cryptology,
4(1):73–110, 2012.

[QST12] You-Ming Qiao, Jayalal Sarma, and Bang-Sheng Tang. On isomor-
phism testing of groups with normal hall subgroups. Journal of
Computer Science and Technology, 27(4):687–701, 2012.

[Ros13] David J. Rosenbaum. Bidirectional collision detection and faster
deterministic isomorphism testing. CoRR, abs/1304.3935, 2013.

[Ros14] David J. Rosenbaum. Beating the generator-enumeration bound
for solvable-group isomorphism. CoRR, abs/1412.0639, 2014.

44 Bibliography

[Rot12] Joseph Rotman. An introduction to the theory of groups, volume
148. Springer Science & Business Media, 2012.

[RW15] David J Rosenbaum and Fabian Wagner. Beating the generator-
enumeration bound for p-group isomorphism. Theoretical Computer
Science, 593:16–25, 2015.

[Ser03] Ákos Seress. Permutation group algorithms, volume 152. Cambridge
University Press, 2003.

	Introduction
	Preliminaries
	Isomorphism of Groups
	Reduction from GroupIso to CSeriesIso
	Reduction from CSeriesIso to QCSeriesAuto
	Reduction from QCSeriesAuto to AutoLift
	Reduction from AutoLift to SetStabilizer
	SetStabilizer
	Conclusion

	Isomorphism of Special Groups
	Outlook
	Lists of Figures, Tables and Algorithms
	Bibliography

