
Leibniz Universität Hannover
Fakultät für Elektrotechnik und Informatik
Institut für Theoretische Informatik

Formalization of Type Theory
in Agda

Bachelorarbeit

im Studiengang Informatik

von

Maxim Urschumzew

Hannover, 13. August 2018

Contents
1 Introduction 4

2 Formalization in Agda 8
2.1 About Agda . 8
2.2 Introduction to Agda . 8

3 Basic constructs 21
3.1 Finite type . 21
3.2 Finite lists . 22
3.3 Error handling . 23

4 Category theory 25
4.1 What is a category? . 25
4.2 Universal properties . 27
4.3 Cartesian closed categories . 33
4.4 Finite products . 34

5 Simply typed 𝜆-calculus 36
5.1 Parametrization . 36
5.2 Types . 36
5.3 Terms . 37
5.4 The typechecker . 39
5.5 Typing proofs . 41
5.6 Weakening . 42
5.7 Substitution . 43
5.8 Single substitution . 45
5.9 Reduction . 46
5.10 Normal form . 47
5.11 Example: Church numerals . 49

6 Interpretation 52
6.1 Parametrization . 52
6.2 Definition . 52
6.3 Properties . 54
6.4 Soundness . 57

7 Discussion and further work 59

3

1 Introduction

Type theory was first introduced by Russell in 1903 [13] as part of Russell and White-
head’s efforts of writing the Principia Mathematica, where its role was to serve as a
safe, but still powerful basis for formalizing mathematics - escaping the paradoxes of
set theory, such as, “Does the set of all sets, which do not contain themselves, contain
itself?” (Russell’s paradox). [9]

It is closely related to intuitionistic (constructive) mathematics, a branch of mathe-
matics where proofs are meant to be constructive. Here, a proof of the existence of some
object must give us a way to explicitly construct such an object. In practice, this means
that axioms which allow us to circumvent explicit constructions, like the principle of ex-
cluded middle, are rejected. In the early 1930s, Brouwer, Heyting and Kolmogorov gave
a computational interpretation of intuitionistic logic. The discovered principle is known
as “Propositions as Types” or “Curry-Howard Isomorphism”, the idea is to interpret a
proposition as a type, and a proof of it as an algorithm, stated in the lambda calculus,
having this type.

Considering the computational aspect as being crucial, Bishop developed analysis in
a constructive setting (1967). Inspired by this, different type theories were developed
to provide a system in which Bishop’s mathematics could be formalized. These type
theories form the basis of modern proof assistants, including Agda (Intuitionistic Type
Theory, [15]) and Coq (Calculus of Inductive Constructions, [10]). [9]

In 1945, Eilenberg and MacLane introduced category theory, first as a tool for applying
algebraic methods to a topological problem. Over time, it developed into a language
which could be used to describe the objects of many different branches of mathematics
and faciliated the discovery of connections between them. Starting in the 1960s, Lawvere
and others explored the idea of applying category theory to the basis of math itself: logic
and set theory. This endeavour resulted in the definition of a topos, a special kind of
category, which has an internal logic rich enough to serve as a generalized foundational
framework. [14]

Furthermore, a direct connection to type theory became apparent, where categories
can be seen as providing the semantics for type theories. Thus summarizing, the rela-
tionships between mathematics, type theory and category theory can be stated as follows
[25]:

4

mathematics

type theory
(syntax)

category
(semantics)

can be formalized in a can be internalized in a

can be
interpreted in a

As part of research by Awodey, Warren and Voevodsky around 2006, Homotopy Type
Theory (HoTT) was developed. In homotopy theory (without -Type-), topological spaces
are studied with respect to what paths can be constructed. This includes an infinite hi-
erarchy of paths: between points, between paths between points, between paths between
paths between points, and so on. Thus HoTT, being a type theory which has an inter-
pretation in Kan simplicial sets (a category studied in homotopy theory), mirrors these
features and offers new ways for doing mathematics in it [27]:

1. A proof of equality 𝑎 = 𝑏 is interpreted as a path between 𝑎 and 𝑏. In homotopical
fashion, such a proof is thus no longer unique: there may be different paths between
𝑎 and 𝑏. And since such paths may be compared again and again, an infinite path
structure emerges.

2. HoTT contains a new axiom: the univalence axiom. It says that isomorphic struc-
tures may be treated as being equal:

(𝐴 ≃ 𝐵) ≃ (𝐴 = 𝐵)
Such a statement is not consistent with set theory, but it can be assumed in HoTT,
allowing us to treat isomorphic structures more intuitively.

Nevertheless, the univalence axiom is only an axiom in HoTT, i.e., it has no computa-
tional meaning - code which uses it cannot be executed. This lead to the development of
Cubical Type Theory (CTT), which, by modelling equality explicitly by paths, succeeded
in giving computational meaning to the univalence axiom [8].

While the development is still in progress (for example, CTT currently has no inter-
pretation in as general a class of categories as HoTT has [24]), the state of research can
be visualized as follows [25]:

homotopical mathematics

HoTT / CTT higher categories

can be formalized in can be internalized in

can be
interpreted in

5

The goal of this thesis is the exploration of the relationship between type theory and
category theory, albeit on a much smaller scale: Our topic is the simply typed lambda
calculus and its interpretation into a cartesian closed category (CCC):

(Propositional Logic)

ST. 𝜆-Calc CCCcan be
interpreted in a

In order to present this connection, we formalize it in Cubical Type Theory, as imple-
mented in the Agda proof assistant. This allows us to take advantage of a computing
functional extensionality (a corrollary of univalence, does not compute in other type the-
ories). Because of this, some practical aspects of formalizing mathematics in a (cubical)
type theory are also touched upon in this thesis.

Motivation

My motivation comes from the praxis of software development. Sometimes, when pro-
gramming, I would like to have a tool which could provide a higher level view on code:
To see the whole structure of a program at once, to see which components exist and
how they interact. Especially, this would make it easier to explore and navigate large
codebases.

But it should be more than a mere visualization of the code. It should be an interactive
representation equivalent to it, such that it would become possible to program on a higher
level - graphically managing the connections between lower level components. Also it
should be possible to zoom in and out arbitrarily, enabling the programmer to work on
different abstraction levels.

I would like to work towards this vision, and the deep connection between program-
ming (type theory) and category theory seems to be a promising tool. Particularly,
because category theory makes extensive use of visualizations (in the form of diagrams),
while also being a natural framework for repeated abstractions.

Furthermore, realizing this vision would involve writing an interpreter, and in order
to eliminate errors, it should be written in a language with a strong typing system.

Therefore, I take this thesis as an opportunity to combine both aspects: By formalizing
in Agda, I can implement an interpreter and formally verify its correctness, and then
continue by exploring the connection between programming and category theory.

6

Structure
The following chapters are structured as follows: In chapter 2, Agda and its syntax
are introduced as an example of working in a type theory. In chapter 3, some types
which occur frequently are presented. In chapter 4, category theory is introduced and
is developed far enough for the definition of a cartesian closed category. In chapter
5, the simply typed lambda calculus is introduced. This involves the definition of a
typechecker, context weakening and substitution, as well as proofs about their behaviour.
Furthermore, 𝛽-reduction is defined, and normalization of well typed terms is proven.
Finally, in chapter 6, the interpretation of well typed terms in a CCC is given and proven
to be sound with respect to 𝛽-reduction.

7

2 Formalization in Agda

2.1 About Agda
Agda is a dependently typed, functional programming language with a syntax similar
to Haskell. It is being actively developed, with recent features including support for
Cubical Type Theory, and a new, light-weight syntax for implicit arguments.

This thesis was written using Literal Agda source files, which combine LATEX-markup
and Agda code. While many parts of the code remain hidden in this final document,
everything is still checked and formally verified to be correct by the Agda typechecker.

Some of the newer features are not yet available in the official Agda binaries. Instead,
we use a self-compiled build of Agda from the master branch of its git repository [5]. The
hash of the commit with which the code was tested is fe6337817cd295f1b7a928b4865f1.

During development, some code from standard libraries was used. These are the agda-
prelude [4] and the demo library for CTT [2]. Additionally, a standalone implementation
of Cubical Type Theory by Anders Mörtberg [16] and the accompanying proofs provided
a reference for how basic properties of types could be proven in CTT. Most prominently,
a proof of the Hedberg-Lemma, being indirectly used in many places, was taken from
there.

2.2 Introduction to Agda
We now start with a general treatment of types, then switch over to the language of
Agda for the introduction of concepts usually found in dependent type theories.

As a general reference, see Geuvers [12]. More in-depth information about Agda may
be found in its online documentation [3].

Types and terms
The basic building blocks of a type theory are types and terms. A type is defined by
specifying how terms of this type can be constructed. We write

𝑡 ∶ 𝑇
if the term 𝑡 has type 𝑇 . There are two perspectives on how a type can be interpreted.

The first perspective on types is to view them as being similar to sets, and accordingly,
terms of a type are called it’s elements or inhabitants. But there are some differences to
be aware of:

8

1. Sets are defined by the elements they contain, while types, by how inhabitants can
be constructed. This means that we cannot simply reason about the entirety of
terms “in” a type, for example by counting them.

2. Since terms are defined together with their type, they have no independent exis-
tence. It follows that a term can never be an element of multiple different types.
Because of this, the question of whether 𝑡 ∶ 𝑇 holds is decidable (while 𝑡 ∈ 𝑇 in
general is not), and a statement of this kind can be checked by the typechecker.

The second perspective stems from the fact that propositions are also encodable in
types. From this point of view, constructing an element 𝑝 ∶ 𝑃 is like constructing a
verifiable proof 𝑝 of the proposition 𝑃 .

Universes
In dependent type theories, types themselves have a type. Such a “type of types” is
called a universe and being written as 𝒰. Because of having 𝒰 ∶ 𝒰 would lead to
inconsistencies, there is usually a hierarchy of universes, denoted by universe levels ℓ,
such that 𝒰ℓ ∶ 𝒰ℓ+1.
Remark. In Agda, 𝒰 is a function which takes a level parameter. Because of this, we
write 𝒰 ℓ instead of 𝒰ℓ. Still, for simplicity, we define the name of the first universe to
be 𝒰0.

The types we usually work with do not contain other types inside of them, which
means that they are small enough to live inside 𝒰0. Only categories are, for maximum
generality, defined in a universe polymorphic way.

Defining simple types in Agda
In Agda, a type can be defined using the 𝖽𝖺𝗍𝖺 keyword. It expects a name and a universe
in which this type should live. In the following 𝗐𝗁𝖾𝗋𝖾-block, the constructors of this type
need to be listed.

Example 2.1. A type with two constructors, remniscent of a set with two elements, can
be defined as follows. The type is called 𝖡𝗈𝗈𝗅, it lives in 𝒰0 and has two constructors:
𝗍𝗋𝗎𝖾 and 𝖿𝖺𝗅𝗌𝖾.

𝖽𝖺𝗍𝖺 𝖡𝗈𝗈𝗅 ∶ 𝒰𝟢 𝗐𝗁𝖾𝗋𝖾
𝗍𝗋𝗎𝖾 ∶ 𝖡𝗈𝗈𝗅
𝖿𝖺𝗅𝗌𝖾 ∶ 𝖡𝗈𝗈𝗅

Continuing this way, we define a type with only one constructor, as well as a type without
constructors at all.

9

Example 2.2.

i) The type ⊤ is called top. It has a single constructor 𝗍𝗍.
𝖽𝖺𝗍𝖺 ⊤ ∶ 𝒰𝟢 𝗐𝗁𝖾𝗋𝖾

𝗍𝗍 ∶ ⊤

ii) The type ⊥ is called bottom. It has no constructors.

𝖽𝖺𝗍𝖺 ⊥ ∶ 𝒰𝟢 𝗐𝗁𝖾𝗋𝖾

Following the interpretation of types as sets, these correspond, respectively, to the sin-
gleton set {∗} and the empty set ∅. If, instead, we view types as propositions, then ⊤
can be seen as truthhood, i.e., a trivially true proposition, whose proof can always be
given by 𝗍𝗍. The bottom type ⊥ then is falsehood, for which no proof can be given.

Statements
Having defined types and terms, they can now be used in statements. Statements simply
assign a name to some term, but usually the type of this term has to be explictly given
as well. Depending on the context they are used in, they may serve as simple renamings,
definitions, or theorems and their proofs.

Example 2.3. We define 𝟚 to be an alternative name for 𝖡𝗈𝗈𝗅.
𝟚 ∶ 𝒰𝟢
𝟚 ..≡ 𝖡𝗈𝗈𝗅

We define 𝖾𝗅𝟣 as an alternative name for 𝗍𝗋𝗎𝖾.

𝖾𝗅𝟣 ∶ 𝟚
𝖾𝗅𝟣 ..≡ 𝗍𝗋𝗎𝖾

Here, the types 𝟚 and 𝖡𝗈𝗈𝗅 are definitionaly equal: the typechecker does not differentiate
between these expressions. Speaking on a meta-theoretic level about Agda, we say
𝟚 ≡ 𝖡𝗈𝗈𝗅. This definitional equality is not the same as the (path-) equality, written
𝑎 = 𝑏, which will be introduced later.

Functions
Given two types 𝐴 and 𝐵, the type of functions between them is written as 𝐴 → 𝐵. A
function term can be either constructed by a lambda expression, or directly as part of a
statement.

Example 2.4. The identity function for 𝖡𝗈𝗈𝗅 can be defined in the following, defini-
tionally equal ways.

𝗂𝖽𝖡𝟣 ∶ 𝖡𝗈𝗈𝗅 → 𝖡𝗈𝗈𝗅
𝗂𝖽𝖡𝟣

..≡ 𝜆 𝑏 → 𝑏

10

𝗂𝖽𝖡𝟤 ∶ 𝖡𝗈𝗈𝗅 → 𝖡𝗈𝗈𝗅
𝗂𝖽𝖡𝟤 𝑏 ..≡ 𝑏

A function is applied to arguments by writing them after each other.

𝗍𝗋𝗎𝖾𝟤 ∶ 𝖡𝗈𝗈𝗅
𝗍𝗋𝗎𝖾𝟤

..≡ 𝗂𝖽𝖡𝟣 𝗍𝗋𝗎𝖾

Remark. Function application always takes precedence over other operations (except the
evaluation of parentheses).
A function can be defined by pattern matching on the constructors of the argument
type.
Example 2.5. Boolean negation is defined by pattern matching:

𝗇𝖾𝗀𝖺𝗍𝖾 ∶ 𝖡𝗈𝗈𝗅 → 𝖡𝗈𝗈𝗅
𝗇𝖾𝗀𝖺𝗍𝖾 𝗍𝗋𝗎𝖾 ..≡ 𝖿𝖺𝗅𝗌𝖾
𝗇𝖾𝗀𝖺𝗍𝖾 𝖿𝖺𝗅𝗌𝖾 ..≡ 𝗍𝗋𝗎𝖾

Functions with multiple arguments are usually defined as higher order functions, that
is, as functions which return functions.
Example 2.6. The boolean conjunction is a function of type 𝖡𝗈𝗈𝗅 → (𝖡𝗈𝗈𝗅 → 𝖡𝗈𝗈𝗅).
That is, a function taking a boolean and returning a function which takes another
boolean, and returns the result. The function arrow associates to the right, consequently,
the parentheses can be omitted.

𝖺𝗇𝖽 ∶ 𝖡𝗈𝗈𝗅 → 𝖡𝗈𝗈𝗅 → 𝖡𝗈𝗈𝗅
𝖺𝗇𝖽 𝗍𝗋𝗎𝖾 𝗍𝗋𝗎𝖾 ..≡ 𝗍𝗋𝗎𝖾
𝖺𝗇𝖽 𝗍𝗋𝗎𝖾 𝖿𝖺𝗅𝗌𝖾 ..≡ 𝖿𝖺𝗅𝗌𝖾
𝖺𝗇𝖽 𝖿𝖺𝗅𝗌𝖾 𝗍𝗋𝗎𝖾 ..≡ 𝖿𝖺𝗅𝗌𝖾
𝖺𝗇𝖽 𝖿𝖺𝗅𝗌𝖾 𝖿𝖺𝗅𝗌𝖾 ..≡ 𝖿𝖺𝗅𝗌𝖾

Remark. Names can be turned into infix operators by writing an underscore where
arguments are supposed to be placed, for example we define:

∧ ∶ 𝖡𝗈𝗈𝗅 → 𝖡𝗈𝗈𝗅 → 𝖡𝗈𝗈𝗅
𝑎 ∧ 𝑏 ..≡ 𝖺𝗇𝖽 𝑎 𝑏

Furthermore, names can contain every possible mix of characters: different tokens are
only distinguished by the whitespace between them. Accordingly, 𝑎∧𝑏 is a name, while
𝑎 ∧ 𝑏 is the application of the function ∧ to the terms 𝑎 and 𝑏. We often choose names
such as 𝑎=𝑏 or 𝑖<𝑛 for terms which prove such statements.

The logical interpretation of a function 𝑃 → 𝑄 is that of an implication: Being able
to construct such a function means that a proof of 𝑃 can be turned into a proof of 𝑄. A
proposition 𝑃 is false if 𝑃 → ⊥ can be proven, since this means that a proof of 𝑃 would
give us a proof of ⊥, of which we know that it cannot exist.

11

Data types with arguments

When defining a type, constructors may take arguments. This effectively turns them
into functions, and the syntax is the same.

Example 2.7. The type ℕ of natural numbers is defined as an inductive data type
with two constructors: A natural number is either zero, or it is the successor of another
natural number.

𝖽𝖺𝗍𝖺 ℕ ∶ 𝒰𝟢 𝗐𝗁𝖾𝗋𝖾
𝗓𝖾𝗋𝗈 ∶ ℕ
𝗌𝗎𝖼 ∶ ℕ → ℕ

The meaning of inductive here is that a constructor recursively takes arguments of the
type which it constructs.

Constructors are applied exactly like functions:

Example 2.8. The number 4 can be encoded as follows:

𝖿𝗈𝗎𝗋 ∶ ℕ
𝖿𝗈𝗎𝗋 ..≡ 𝗌𝗎𝖼 (𝗌𝗎𝖼 (𝗌𝗎𝖼 (𝗌𝗎𝖼 𝗓𝖾𝗋𝗈)))

Pattern matching on constructors allows us to bring their arguments into scope by giving
them a name.

Example 2.9. The operation of addition on ℕ can be defined by recursion.

+ℕ ∶ ℕ → ℕ → ℕ
𝗓𝖾𝗋𝗈 +ℕ 𝑏 ..≡ 𝑏
(𝗌𝗎𝖼 𝑎) +ℕ 𝑏 ..≡ 𝗌𝗎𝖼 (𝑎 +ℕ 𝑏)

Remark. By default, Agda allows only total functions. In order to enforce this, it has
a termination checker which verifies that at least one argument of a recursive function
call gets smaller in every iteration. Here, this is the case for the first argument, since 𝑎
is smaller than 𝗌𝗎𝖼 𝑎.

Functions with type parameters

Functions can take type parameters.

Example 2.10. The identity function can be defined for all types by letting it take a
type parameter.

𝗂𝖽𝖿𝟣 ∶ (𝐴 ∶ 𝒰𝟢) → 𝐴 → 𝐴
𝗂𝖽𝖿𝟣 𝐴 𝑎 ..≡ 𝑎

12

Example 2.11. This function can be made universe polymorphic by requiring an addi-
tional level parameter. Here we pattern match with underscores, indicating that these
arguments are not used in the function body.

𝗂𝖽𝖿𝟤 ∶ (ℓ ∶ 𝖴𝖫𝖾𝗏𝖾𝗅) → (𝐴 ∶ 𝒰 ℓ) → 𝐴 → 𝐴
𝗂𝖽𝖿𝟤 _ _ 𝑎 ..≡ 𝑎

Remark. Agda provides a way to make arguments implicit by enclosing them with curly
braces. Then, when calling such a function, these arguments do not have to be given,
instead, Agda tries to infer their values from the context.

𝗂𝖽𝖿 ∶ {ℓ ∶ 𝖴𝖫𝖾𝗏𝖾𝗅} → {𝐴 ∶ 𝒰 ℓ} → 𝐴 → 𝐴
𝗂𝖽𝖿 𝑎 ..≡ 𝑎

Sometimes it is still necessary to give such arguments, or to pattern match against them.
In both cases this can be done by using curly braces.

Global implicits
Agda has a new syntax which allows us to declare global implicit variables. They define
variable names which can be used in function definitions as if they were implicit variables.
This feature currently does not work with data types, where implicit arguments still have
to be named individually.

Example 2.12. In order to declare ℓ and ℓ′ as always being universe levels, we write:

𝗏𝖺𝗋𝗂𝖺𝖻𝗅𝖾
{ℓ ℓ′} ∶ 𝖴𝖫𝖾𝗏𝖾𝗅

Data types with type parameters
Data types can take level and type parameters as well. These are stated directly after
the name.

Example 2.13. Using this, we can define the product and the sum type.

(i) For two types 𝐴 and 𝐵, we define the product 𝐴 × 𝐵 as the type which can be
constructed by providing an element of 𝐴 and an element of 𝐵. Because 𝐴 and 𝐵
can live in different universes 𝒰ℓ and 𝒰ℓ′ , the resulting type has to live in the one
which is larger, namely 𝒰𝗅𝗆𝖺𝗑 ℓ ℓ′ .

𝖽𝖺𝗍𝖺 _×_ {ℓ ℓ′} (𝐴 ∶ 𝒰 ℓ) (𝐵 ∶ 𝒰 ℓ′) ∶ 𝒰 (𝗅𝗆𝖺𝗑 ℓ ℓ′) 𝗐𝗁𝖾𝗋𝖾
_, _ ∶ 𝐴 → 𝐵 → 𝐴 × 𝐵

(ii) For two types 𝐴 and 𝐵, we define the sum 𝐴 + 𝐵 as the type which can be
constructed by either providing an element of 𝐴, or an element of 𝐵. The same
note about universe levels applies.

13

𝖽𝖺𝗍𝖺 _+_ {ℓ ℓ′} (𝐴 ∶ 𝒰 ℓ) (𝐵 ∶ 𝒰 ℓ′) ∶ 𝒰 (𝗅𝗆𝖺𝗑 ℓ ℓ′) 𝗐𝗁𝖾𝗋𝖾
𝗅𝖾𝖿𝗍 ∶ 𝐴 → 𝐴 + 𝐵
𝗋𝗂𝗀𝗁𝗍 ∶ 𝐵 → 𝐴 + 𝐵

The corresponding notions in set theory are the cartesian product and the disjoint
union of sets.

Viewed as an operation on propositions 𝑃 and 𝑄, the logical interpretation of 𝑃 × 𝑄
is 𝑃 ∧𝑄, and of 𝑃 + 𝑄 it is 𝑃 ∨𝑄. That said, the behaviour of 𝑃 + 𝑄 is slightly different
from it’s logical counterpart. An element 𝑝 ∶ 𝑃 + 𝑄 contains additional information
about which proposition out of these two was proven [27].

Record types
Data types with only a single constructor are effectively tuples, containing (multiple)
values. They can be defined more conveniently using record syntax. It differs from the
data syntax in that the values, called fields, are given explicit names. These names define
projection functions which can be used to access the respective values.
Example 2.14. The product type can be defined as a record. As before, the constructor
is called _, _ and has the type 𝐴 → 𝐵 → 𝐴 × 𝐵. Additionally, the projection functions
𝖿𝗌𝗍 ∶ 𝖠 × 𝖡 → 𝖠 and 𝗌𝗇𝖽 ∶ 𝖠 × 𝖡 → 𝖡 are defined.

𝗋𝖾𝖼𝗈𝗋𝖽 _×_ {ℓ ℓ′} (𝐴 ∶ 𝒰 ℓ) (𝐵 ∶ 𝒰 ℓ′) ∶ 𝒰 (𝗅𝗆𝖺𝗑 ℓ ℓ′) 𝗐𝗁𝖾𝗋𝖾
𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍𝗈𝗋 _, _
𝖿𝗂𝖾𝗅𝖽

𝖿𝗌𝗍 ∶ 𝐴
𝗌𝗇𝖽 ∶ 𝐵

Terms of a record type can be constructed using a dedicated copattern syntax. For
this, the value of every field has to specified, in a way similar to pattern matching.
Example 2.15. The pair of natural numbers (0, 1) can be defined as follows.

𝗉𝖺𝗂𝗋 ∶ ℕ × ℕ
𝖿𝗌𝗍 𝗉𝖺𝗂𝗋 ..≡ 𝗓𝖾𝗋𝗈
𝗌𝗇𝖽 𝗉𝖺𝗂𝗋 ..≡ 𝗌𝗎𝖼 𝗓𝖾𝗋𝗈

Dependent types
A dependent type is a function which returns a type. It is also called a type family [18].

Example 2.16. 𝖳𝟣 is a type family, depending on an argument of type 𝖡𝗈𝗈𝗅.
𝖳𝟣 ∶ 𝖡𝗈𝗈𝗅 → 𝒰𝟢
𝖳𝟣 𝗍𝗋𝗎𝖾 ..≡ ⊤
𝖳𝟣 𝖿𝖺𝗅𝗌𝖾 ..≡ ℕ

14

Using type families, we can define functions whose resulting type depends on the
arguments given.

Example 2.17. 𝖿𝟣 is a dependent function which takes a boolean argument and returns
a term of ⊤ if the argument was true, and a natural number if it was false.

𝖿𝟣 ∶ (𝑎 ∶ 𝖡𝗈𝗈𝗅) → 𝖳𝟣 𝑎
𝖿𝟣 𝗍𝗋𝗎𝖾 ..≡ 𝗍𝗍
𝖿𝟣 𝖿𝖺𝗅𝗌𝖾 ..≡ 𝖿𝗈𝗎𝗋

Remark. The level and type polymorphic functions introduced before also represent
special cases of dependent functions.

Dependent product
This operation of creating a function type out of a type family can be extracted into a
new type: the dependent product.

Example 2.18. Given a type family 𝐵 of type 𝐴 → 𝒰ℓ′ , the dependent product is
the type of functions which for every 𝑎 ∶ 𝐴 return a term of type 𝐵𝑎. The universe levels
refer to the global implicits defined before.

Π ∶ {𝐴 ∶ 𝒰 ℓ} → (𝐵 ∶ 𝐴 → 𝒰 ℓ′) → 𝒰 (𝗅𝗆𝖺𝗑 ℓ ℓ′)
Π {𝐴 ..≡ 𝐴} 𝐵 ..≡ (𝑎 ∶ 𝐴) → 𝐵 𝑎

Usually, this type is written as follows:

∏
𝑎∶𝐴

𝐵 𝑎

The logical interpretation of the dependent product is that of the universal quantifier.
A function of type ∏𝑥∶𝑋 𝑃 𝑥 has to give a proof of 𝑃 𝑥 for every possible 𝑥 ∶ 𝑋.
This means that dependent products express the notion of universal quantification,
∀(𝑥 ∈ 𝑋). 𝑃 (𝑥).

In Agda, we can write Π 𝐵 or Π (𝜆 𝑎 → 𝐵 𝑎) or Π (𝜆 (𝑎 ∶ 𝐴) → 𝐵 𝑎), but usually we
skip the product sign, and write it as the dependent function type (𝑎 ∶ 𝐴) → 𝐵 𝑎. Agda
also allows an optional ∀ sign: 𝑓2 ∶ ∀(𝑎 ∶ 𝐴) → 𝐵 𝑎.

Dependent sum
The dependent sum is defined as a pair. Accordingly, we re-use the terminology from
above.

15

Example 2.19. The dependent sum of a type family 𝐵 ∶ 𝐴 → 𝒰ℓ′ is defined as a
pair, where the type of the second element depends on the value of the first.

𝗋𝖾𝖼𝗈𝗋𝖽 Σ {ℓ ℓ′} {𝐴 ∶ 𝒰 ℓ} (𝐵 ∶ 𝐴 → 𝒰 ℓ′) ∶ 𝒰 (𝗅𝗆𝖺𝗑 ℓ ℓ′) 𝗐𝗁𝖾𝗋𝖾
𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍𝗈𝗋 _, _
𝖿𝗂𝖾𝗅𝖽

𝖿𝗌𝗍 ∶ 𝐴
𝗌𝗇𝖽 ∶ 𝐵 𝖿𝗌𝗍

This type is usually written as follows:

∑
𝑎∶𝐴

𝐵 𝑎

In order to be able to construct a term of type ∑𝑥∶𝑋 𝑃 𝑥, we have to find some 𝑥 ∶ 𝑋, for
which 𝑃 𝑥 is provable. Dually to the dependent product type, the logical interpretation
of the dependent sum type is that of the existential quantifier ∃(𝑥 ∈ 𝑋). 𝑃 (𝑥).

In Agda, we write this type as Σ 𝐵 or Σ (𝜆 𝑎 → 𝐵 𝑎) or Σ (𝜆(𝑎 ∶ 𝐴) → 𝐵 𝑎).

Equality
In dependent type theories, types can capture the notion of equality of elements. It is
expressible by the following type family:

= ∶ ∀{ℓ} → {𝐴 ∶ 𝒰ℓ} → 𝐴 → 𝐴 → 𝒰ℓ

For a type 𝐴 ∶ 𝒰ℓ and elements 𝑎 𝑏 ∶ 𝐴, equality is therefore proven by constructing an
element of 𝑎 = 𝑏.

Depending on the specific type theory in use, the implementation of this type family
varies. In Cubical Type Theory it is modeled by paths, as described in Cohen et al. [8].
Here, we only show the most basic principles of CTT, focusing more on the practical
aspects of writing equality proofs.

On a topological space 𝑋, a path 𝑝 is defined as a continuous function 𝑝 ∶ [0, 1] → 𝑋.
Analoguously, in CTT, there is a type 𝖨 with formal elements 𝗂𝟢 and 𝗂𝟣. Equalities on a
type 𝐴 are treated similar to functions 𝖨 → 𝐴.

For example, by reflexivity, the equality 𝑎 = 𝑎 must always hold. This is formalized
by a constant path.

Example 2.20. The constant path is called 𝗋𝖾𝖿𝗅. Paths are using the same syntax as
functions.

𝗋𝖾𝖿𝗅 ∶ ∀{ℓ} → {𝐴 ∶ 𝒰 ℓ} → {𝑎 ∶ 𝐴} → 𝑎 = 𝑎
𝗋𝖾𝖿𝗅 {ℓ} {𝐴} {𝑎} ..≡ 𝜆 𝐢 → 𝑎

Remark. Even though paths use the same syntax as functions, their behaviour is not the
same. For example, we cannot pattern match on 𝐢 and write different implementations
for 𝗂𝟢 and 𝗂𝟣.

16

But there are operations on 𝖨 which can be used to construct new paths. For example,
we can write ~ 𝐢. In the topological space analogy, this corresponds to 1 − 𝐢, but here,
its effective meaning is that of invertion, mapping 𝗂𝟢 to 𝗂𝟣 and vice versa. Using this, we
can express the symmetry of equality.

Example 2.21. The operation of inverting a path is called 𝗌𝗒𝗆.

𝗌𝗒𝗆 ∶ ∀{ℓ} → {𝐴 ∶ 𝒰 ℓ} → {𝑎 𝑏 ∶ 𝐴} → 𝑎 = 𝑏 → 𝑏 = 𝑎
𝗌𝗒𝗆 𝑝 𝐢 ..≡ 𝑝 (~ 𝐢)

Using further cubical primitives, the composition of paths, corresponding to transitivity
can be formalized:

Example 2.22. The operation of composing paths is called 𝗍𝗋𝖺𝗇𝗌. It has the following
type:

𝗍𝗋𝖺𝗇𝗌 ∶ ∀{ℓ} → {𝐴 ∶ 𝒰 ℓ} → {𝑎 𝑏 𝑐 ∶ 𝐴} → 𝑎 = 𝑏 → 𝑏 = 𝑐 → 𝑎 = 𝑐

Notation. The composition of two paths 𝑝 ∶ 𝑎 = 𝑏 and 𝑞 ∶ 𝑏 = 𝑐 is usually denoted by
𝑝 ∙ 𝑞. For this we write:

∙ ..≡ 𝗍𝗋𝖺𝗇𝗌
Another common way to modify an equality is to map a function over it.

Example 2.23. If 𝑎 = 𝑏, then it is valid to apply a function 𝑓 to both sides. This
operation is called 𝖼𝗈𝗇𝗀.

𝖼𝗈𝗇𝗀 ∶ ∀{ℓ ℓ′} → {𝐴 ∶ 𝒰 ℓ} → {𝐵 ∶ 𝒰 ℓ′} → {𝑎 𝑏 ∶ 𝐴}
→ (𝑓 ∶ 𝐴 → 𝐵)
→ 𝑎 = 𝑏 → 𝑓 𝑎 = 𝑓 𝑏

𝖼𝗈𝗇𝗀 𝑓 𝑝 𝐢 ..≡ 𝑓 (𝑝 𝐢)

All of the operations introduced so far (𝗋𝖾𝖿𝗅, 𝗌𝗒𝗆, 𝗍𝗋𝖺𝗇𝗌 and 𝖼𝗈𝗇𝗀) can be expressed
in many dependent type theories, regardless of the specific implementation of equality.
Thus, when using these, proofs can be written in an implementation independent way.
Nevertheless, sometimes it is very useful to drop down to the explicit path notation, for
example, when mapping a binary function over two paths simultaneously.

The next operation, functional extensionality, cannot be proven in standard ITT or
HoTT. There, it can only be assumed as an axiom, i.e., as a function without implemen-
tation. In CTT, the proof is straightforward:

17

Example 2.24. Functional extensionality means that the equality of two functions 𝑓
and 𝑔 can be derived from the fact that they return the same result for every input.

𝖿𝗎𝗇𝖤𝗑𝗍 ∶ ∀{ℓ ℓ′} → {𝐴 ∶ 𝒰 ℓ} → {𝐵 ∶ 𝒰 ℓ′}
→ {𝑓 𝑔 ∶ 𝐴 → 𝐵}
→ (∀(𝑎 ∶ 𝐴) → 𝑓 𝑎 = 𝑔 𝑎)
→ 𝑓 = 𝑔

𝖿𝗎𝗇𝖤𝗑𝗍 𝑝 𝐢 𝑎 ..≡ 𝑝 𝑎 𝐢

Proofs
Now we can state theorems and proof them. For example, the associativity of the
addition of natural numbers.

Example 2.25. Associativity is proven by the following function:

𝖺𝗌𝗌𝗈𝖼 ∶ (𝑎 𝑏 𝑐 ∶ ℕ) → (𝑎 +ℕ 𝑏) +ℕ 𝑐 = 𝑎 +ℕ (𝑏 +ℕ 𝑐)
𝖺𝗌𝗌𝗈𝖼 𝗓𝖾𝗋𝗈 𝑏 𝑐 ..≡ 𝗋𝖾𝖿𝗅
𝖺𝗌𝗌𝗈𝖼 (𝗌𝗎𝖼 𝑎′) 𝑏 𝑐 ..≡ 𝖼𝗈𝗇𝗀 𝗌𝗎𝖼 (𝖺𝗌𝗌𝗈𝖼 𝑎′ 𝑏 𝑐)

The proof can be explained as follows (we write + instead of ℕ+).
We consider the cases 𝑎 ≡ 0 and 𝑎 ≡ (𝗌𝗎𝖼 𝑎′) separately:

• For 𝑎 ≡ 0, the goal reduces to (0 + 𝑏) + 𝑐 = 0 + (𝑏 + 𝑐).
By the definition of _+ℕ_, 0 + 𝑏 is simply 𝑏.
Analoguously, 0 + (𝑏 + 𝑐) reduces to 𝑏 + 𝑐.
Therefore, the goal is 𝑏 + 𝑐 = 𝑏 + 𝑐.
We conclude with 𝗋𝖾𝖿𝗅.

• For 𝑎 ≡ 𝗌𝗎𝖼 𝑎′, the goal is ((𝗌𝗎𝖼 𝑎′) + 𝑏) + 𝑐 = (𝗌𝗎𝖼 𝑎′) + (𝑏 + 𝑐).
After evaluating the definition of +ℕ two times on the left side and one time on
the right side, the goal reduces to:

𝗌𝗎𝖼 ((𝑎′ + 𝑏) + 𝑐) = 𝗌𝗎𝖼 (𝑎′ + (𝑏 + 𝑐))

By calling 𝖺𝗌𝗌𝗈𝖼 𝑎′ 𝑏 𝑐, we get a proof of:

(𝑎′ + 𝑏) + 𝑐 = 𝑎′ + (𝑏 + 𝑐)

We use 𝖼𝗈𝗇𝗀 𝗌𝗎𝖼 in order to apply 𝗌𝗎𝖼 to both sides. This finishes the proof.

Longer proofs
For a slightly more complex example, we introduce the definition of the ordering relation
< on ℕ. For 𝑛 𝑚 ∶ ℕ, a proof of 𝑛 < 𝑚 is given by the following type:

∑
𝑘∶ℕ

(𝑚 = 𝗌𝗎𝖼 𝑘 + 𝑛)

18

Definition 2.26. In Agda, the ordering relation _<_ on ℕ is defined by the following
record.

𝗋𝖾𝖼𝗈𝗋𝖽 _<_ (𝑛 𝑚 ∶ ℕ) ∶ 𝒰𝟢 𝗐𝗁𝖾𝗋𝖾
𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍𝗈𝗋 𝖽𝗂𝖿𝖿
𝖿𝗂𝖾𝗅𝖽

𝖽𝗂𝖿𝖿–𝗄 ∶ ℕ
𝖽𝗂𝖿𝖿–𝗉 ∶ 𝑚 = 𝗌𝗎𝖼 𝖽𝗂𝖿𝖿–𝗄 +ℕ 𝑛

▹
Remark. Later, we will need use some of its properties, including the fact that the
ordering still holds after taking the successor or predecessor of both sides.

𝗌𝗎𝖼–𝗆𝗈𝗇𝗈𝗍𝗈𝗇𝖾 ∶ {𝑘 𝑙 ∶ ℕ} → 𝑘 < 𝑙 → 𝗌𝗎𝖼 𝑘 < 𝗌𝗎𝖼 𝑙
𝗉𝗋𝖾𝖽–𝗆𝗈𝗇𝗈𝗍𝗈𝗇𝖾 ∶ {𝑘 𝑙 ∶ ℕ} → 𝗌𝗎𝖼 𝑘 < 𝗌𝗎𝖼 𝑙 → 𝑘 < 𝑙

Another property is antireflexivity, which can be proven using an operation called sub-
stitution.

𝗅𝖾𝗌𝗌–𝖺𝗇𝗍𝗂𝗋𝖾𝖿𝗅 ∶ {𝑛 ∶ ℕ} → 𝑛 < 𝑛 → ⊥

For an example of a longer proof, we now show the antisymmetry of _<_.

Example 2.27. The ordering relation _<_ is antisymmetric.

𝗅𝖾𝗌𝗌–𝖺𝗇𝗍𝗂𝗌𝗒𝗆 ∶ {𝑛 𝑚 ∶ ℕ} → 𝑛 < 𝑚 → 𝑚 < 𝑛 → ⊥
𝗅𝖾𝗌𝗌–𝖺𝗇𝗍𝗂𝗌𝗒𝗆 {𝑛} {𝑚} (𝖽𝗂𝖿𝖿 𝑘 𝑘𝑝) (𝖽𝗂𝖿𝖿 𝑙 𝑙𝑝) ..≡

𝗅𝖾𝗍
𝑝𝑟𝑜𝑜𝑓 ∶ 𝑛 = 𝗌𝗎𝖼 (𝗌𝗎𝖼 (𝑙 +ℕ 𝑘) +ℕ 𝑛)
𝑝𝑟𝑜𝑜𝑓 ..≡ 𝑛 ≡⟨ 𝑙𝑝 ⟩

𝗌𝗎𝖼 (𝑙 +ℕ 𝑚) ≡⟨ 𝖼𝗈𝗇𝗀 (𝜆 𝜉 → 𝗌𝗎𝖼 (𝑙 +ℕ 𝜉)) 𝑘𝑝 ⟩
𝗌𝗎𝖼 (𝑙 +ℕ (𝗌𝗎𝖼 (𝑘 +ℕ 𝑛))) ≡⟨ 𝖼𝗈𝗇𝗀 𝗌𝗎𝖼 (𝖺𝖽𝖽–𝗌𝗎𝖼–𝗋 𝑙 (𝑘 +ℕ 𝑛)) ⟩
𝗌𝗎𝖼 (𝗌𝗎𝖼 (𝑙 +ℕ (𝑘 +ℕ 𝑛))) ≡⟨ 𝖼𝗈𝗇𝗀 (𝗌𝗎𝖼 ∘ 𝗌𝗎𝖼) (𝗌𝗒𝗆 (𝖺𝗌𝗌𝗈𝖼 𝑙 𝑘 𝑛)) ⟩
𝗌𝗎𝖼 (𝗌𝗎𝖼 ((𝑙 +ℕ 𝑘) +ℕ 𝑛)) ∎

𝑛<𝑛 ∶ 𝑛 < 𝑛
𝑛<𝑛 ..≡ 𝖽𝗂𝖿𝖿 (𝗌𝗎𝖼 (𝑙 +ℕ 𝑘)) 𝑝𝑟𝑜𝑜𝑓

𝗂𝗇 𝗅𝖾𝗌𝗌–𝖺𝗇𝗍𝗂𝗋𝖾𝖿𝗅 𝑛<𝑛
This proof uses a 𝗅𝖾𝗍 … 𝗂𝗇 clause to introduce two local bindings called 𝗉𝗋𝗈𝗈𝖿 and 𝗇<𝗇.
Then 𝗅𝖾𝗌𝗌−𝖺𝗇𝗍𝗂𝗋𝖾𝖿𝗅 is called to get a proof of ⊥.

In the definition of 𝗉𝗋𝗈𝗈𝖿, the operators _≡⟨_⟩ and ∎ provide a readable syntax for
chaining paths together. The terms on the left side represent the intermediate steps of
the derivation, just like it would be written manually. Internally, they are are discarded
after typechecking, and the paths on the right side are composed using _∙_.

19

As seen here, even small proofs get rather long very fast. Therefore, we will hide them
most of the time, explaining the idea behind statements instead.

Contradictions
Using functions like 𝗅𝖾𝗌𝗌−𝖺𝗇𝗍𝗂𝗌𝗒𝗆, we can, if given correct arguments, show that they
lead to a contradiction. From such a contradiction, anything can be derived [27].

In Agda, when there are no valid constructors for an argument, empty parentheses
can be used instead of a name. Then no function body has to be written.

⊥–𝖾𝗅𝗂𝗆 ∶ {𝐴 ∶ 𝒰 ℓ} → ⊥ → 𝐴
⊥–𝖾𝗅𝗂𝗆 ()

Comparing elements
Generally, for two elements 𝑎 and 𝑏 of a type 𝐴, the question of whether they are equal
is not decidable. But sometimes it is necessary to require such a property, for example
when defining the typechecker.

In order to formalize this, we first define the concept of decidability.

Definition 2.28. A type, viewed as a proposition, is called decidable if either a proof
or a refutation can be given.

𝖽𝖺𝗍𝖺 𝗂𝗌𝖣𝖾𝖼 {ℓ} (𝐴 ∶ 𝒰 ℓ) ∶ 𝒰 ℓ 𝗐𝗁𝖾𝗋𝖾
𝗒𝖾𝗌 ∶ 𝐴 → 𝗂𝗌𝖣𝖾𝖼 𝐴
𝗇𝗈 ∶ (𝐴 → ⊥) → 𝗂𝗌𝖣𝖾𝖼 𝐴

▹
Now we can define what it means for a type to have comparable elements:

Definition 2.29. A type is called discrete if for every pair of elements, equality is
decidable.

𝗂𝗌𝖣𝗂𝗌𝖼𝗋𝖾𝗍𝖾 ∶ (𝐴 ∶ 𝒰 ℓ) → 𝒰 ℓ
𝗂𝗌𝖣𝗂𝗌𝖼𝗋𝖾𝗍𝖾 𝐴 ..≡ (𝑥 𝑦 ∶ 𝐴) → 𝗂𝗌𝖣𝖾𝖼 (𝑥 = 𝑦)

▹

20

3 Basic constructs

In this chapter we define some objects which will serve as basic building blocks later on.

3.1 Finite type
We often need a finite set of indices. For a given size 𝑛, such a type can be modelled by
the sum of natural numbers 𝑖 smaller than 𝑛, that is:

∑
𝑖∶ℕ

𝑖 < 𝑛

In Agda, in order to improve type inference and error messages, we explicitly define this
type as a record, instead of reusing Σ.

Definition 3.1. Given a natural number 𝑛, we define a type 𝖥𝗂𝗇 𝑛, which has exactly
𝑛 elements, as the type containing natural numbers smaller than 𝑛. Sometimes we refer
to the elements as indices.

𝗋𝖾𝖼𝗈𝗋𝖽 𝖥𝗂𝗇 (𝑛 ∶ ℕ) ∶ 𝒰𝟢 𝗐𝗁𝖾𝗋𝖾
𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍𝗈𝗋 _⌈_
𝖿𝗂𝖾𝗅𝖽
∘ ∶ ℕ
∘𝗅𝖾𝗌𝗌 ∶ ∘ < 𝑛

▹
Elements of 𝖥𝗂𝗇 𝑛 can be constructed by giving a natural number and a proof that it
is smaller than 𝑛. For construction and pattern matching, the infix constructor _⌈_ is
used.

Example 3.2. Common indices are:

(i) In every finite type with at least one element, there is an element 𝖿𝗓𝖾𝗋𝗈.

𝖿𝗓𝖾𝗋𝗈 ∶ ∀{𝑛} → 𝖥𝗂𝗇 (𝗌𝗎𝖼 𝑛)
𝖿𝗓𝖾𝗋𝗈 ..≡ 𝗓𝖾𝗋𝗈 ⌈ 𝟢<𝗌𝗎𝖼

(ii) Given an index, we can construct its successor. It lives in the next greater finite
type.

𝖿𝗌𝗎𝖼 ∶ ∀{𝑛} → 𝖥𝗂𝗇 𝑛 → 𝖥𝗂𝗇 (𝗌𝗎𝖼 𝑛)
𝖿𝗌𝗎𝖼 (𝑘 ⌈ 𝑘<𝑛) ..≡ (𝗌𝗎𝖼 𝑘) ⌈ (𝗌𝗎𝖼–𝗆𝗈𝗇𝗈𝗍𝗈𝗇𝖾 𝑘<𝑛)

21

(iii) Combining these functions, the element 𝖿𝗈𝗇𝖾 of finite types with at least two ele-
ments is defined as follows.

𝖿𝗈𝗇𝖾 ∶ ∀{𝑛} → 𝖥𝗂𝗇 (𝗌𝗎𝖼 (𝗌𝗎𝖼 𝑛))
𝖿𝗈𝗇𝖾 ..≡ 𝖿𝗌𝗎𝖼 𝖿𝗓𝖾𝗋𝗈

3.2 Finite lists
Definition 3.3. Given a type 𝐴, a finite list over 𝐴 of length 𝑛 is a function
𝖥𝗂𝗇 𝑛 → 𝐴, mapping indices to elements.

𝖥𝖫𝗂𝗌𝗍 ∶ 𝒰 ℓ → ℕ → 𝒰 ℓ
𝖥𝖫𝗂𝗌𝗍 𝐴 𝑛 ..≡ 𝖥𝗂𝗇 𝑛 → 𝐴

▹
Remark. To construct a list Γ means to construct a function which, given an index 𝑖,
returns the 𝑖-th element of this list. We access it by writing Γ 𝑖.

Example 3.4. We look at some examples for constructing lists.

(i) Empty list over 𝐴. We are given an index of type 𝖥𝗂𝗇 0 and have to return the
element at this position. But being given such an index means we are given a
natural number 𝑘 ∶ ℕ and a proof that 𝑘 < 0. This is a contradiction, so we can
conclude by applying ⊥−𝖾𝗅𝗂𝗆.

[] ∶ 𝖥𝖫𝗂𝗌𝗍 𝐴 𝟢
[] (𝑘 ⌈ 𝑘<0) ..≡ ⊥–𝖾𝗅𝗂𝗆 (𝗅𝖾𝗌𝗌𝖹𝖾𝗋𝗈–⊥ 𝑘<0)

(ii) Prepending 𝑥 to Γ. The resulting list has 𝑥 at index 0 (first case) and Γ 𝑖 at index
𝑖 + 1 (second case). In order to have an index of type 𝖥𝗂𝗇 𝑛 which is accepted by Γ,
we turn the proof of 𝗌𝗎𝖼 𝑖 < 𝗌𝗎𝖼𝑛 into a proof of 𝑖 < 𝑛 by applying 𝗉𝗋𝖾𝖽−𝗆𝗈𝗇𝗈𝗍𝗈𝗇𝖾.

_, , _ ∶ 𝐴 → 𝖥𝖫𝗂𝗌𝗍 𝐴 𝑛 → 𝖥𝖫𝗂𝗌𝗍 𝐴 (𝗌𝗎𝖼 𝑛)
(𝑥 , , 𝛤) (𝗓𝖾𝗋𝗈 ⌈ _) ..≡ 𝑥
(𝑥 , , 𝛤) (𝗌𝗎𝖼 𝑖 ⌈ 𝑠𝑖<𝑠𝑛) ..≡ 𝛤 (𝑖 ⌈ 𝗉𝗋𝖾𝖽–𝗆𝗈𝗇𝗈𝗍𝗈𝗇𝖾 𝑠𝑖<𝑠𝑛)

(iii) Inserting 𝑥 at index 𝑗. In order to compute the element at position 𝑖, we compare
the natural number part of both indices. If 𝑖 is smaller than 𝑗, which means that
we are trying to access an element before the insertion point, we simply return
the 𝑖-th element of the original list. If we are exactly at the point of insertion, we
return the new element 𝑥. Else, if we are already past the point of insertion, we
first decrement our given index by 1 (𝖿𝗉𝗋𝖾𝖽), in order to access the correct element
in the original list.

22

𝗂𝗇𝗌𝖾𝗋𝗍𝖫 ∶ (𝛤 ∶ 𝖥𝖫𝗂𝗌𝗍 𝐴 𝑛) → 𝖥𝗂𝗇 (𝗌𝗎𝖼 𝑛) → 𝐴 → 𝖥𝖫𝗂𝗌𝗍 𝐴 (𝗌𝗎𝖼 𝑛)
𝗂𝗇𝗌𝖾𝗋𝗍𝖫 𝛤 𝑗 𝑥 𝑖 𝗐𝗂𝗍𝗁 𝖼𝗈𝗆𝗉𝖺𝗋𝖾 (∘ 𝑖) (∘ 𝑗)
... | 𝗅𝖾𝗌𝗌 𝑖<𝑗 ..≡ 𝛤 (𝖿𝗌𝗆𝖺𝗅𝗅𝖾𝗋 𝑖 𝑗 𝑖<𝑗)
... | 𝖾𝗊𝗎𝖺𝗅 𝑖=𝑗 ..≡ 𝑥
... | 𝗀𝗋𝖾𝖺𝗍𝖾𝗋 𝑖>𝑗 ..≡ 𝛤 (𝖿𝗉𝗋𝖾𝖽 𝑖 (𝗆𝗄𝖭𝗈𝗍𝖹𝖾𝗋𝗈 𝑖>𝑗))

Notation. We denote the insertion of an element 𝑥 at position 𝑗 into a list Γ by:

↓ ∶ 𝖥𝗂𝗇 (𝗌𝗎𝖼 𝑛) → 𝐴 → 𝖥𝖫𝗂𝗌𝗍 𝐴 𝑛 → 𝖥𝖫𝗂𝗌𝗍 𝐴 (𝗌𝗎𝖼 𝑛)
(𝑗 ↓ 𝑥) 𝛤 ..≡ 𝗂𝗇𝗌𝖾𝗋𝗍𝖫 𝛤 𝑗 𝑥

Remark. Lists may be defined in different ways. In addition to the definition shown
above, we could also define a list inductively with two constructors:

• [] (the empty list)
• 𝑥, , Γ (an element 𝑥 ∶ 𝐴 prepended to some list Γ ∶ 𝐿𝑖𝑠𝑡 𝐴)

Depending on which definition is chosen, different list operations become easier to imple-
ment. With the former definition, accessing the 𝑖-th element of a List Γ for some index
𝑖 ∶ 𝖥𝗂𝗇 𝑛 is simply Γ 𝑖. The latter definition makes prepending elements and writing
functions which recurse on the head 𝑥 and tail Γ easier.

Since we often need to access and insert elements in the middle of the list, we choose
the former definition. But this comes with a cost; prepending an element to a list and
then taking the tail is not definitionally equal to the original list:

Γ ≢ 𝗍𝖺𝗂𝗅 (𝑥 , , Γ)
Instead, we often have to explicitly use the following equality:

𝗍𝖺𝗂𝗅= ∶ (𝑥 ∶ 𝐴) → (𝛤 ∶ 𝖥𝖫𝗂𝗌𝗍 𝐴 𝑛) → 𝛤 = 𝗍𝖺𝗂𝗅 (𝑥 , , 𝛤)

3.3 Error handling
In functional programming languages, the sum type is useful for handling errors and
exceptions. This functionality is implemented as part of a monad interface [28], but for
the sake of brevity we specialize the following definitions to our use case.

For a type 𝐸𝑟𝑟 containing error information, the function type 𝐴 → 𝐸𝑟𝑟+𝐵 models a
function which, given an element of 𝐴, either fails with an error of type 𝐸𝑟𝑟, or succeeds
with an element of 𝐵.

Given such a result, we can feed it into another possibly failing function by inspecting
whether it is a success or a failure:

>>= ∶ ∀{ℓ} → {𝐴 𝐵 𝐸𝑟𝑟 ∶ 𝒰 ℓ}
→ (𝐸𝑟𝑟 + 𝐴) → (𝐴 → 𝐸𝑟𝑟 + 𝐵) → 𝐸𝑟𝑟 + 𝐵

>>= (𝗅𝖾𝖿𝗍 𝑒) 𝑓 ..≡ 𝗅𝖾𝖿𝗍 𝑒
>>= (𝗋𝗂𝗀𝗁𝗍 𝑎) 𝑓 ..≡ 𝑓 𝑎

23

We can also ignore the value of a successful result and only propagate errors:

>> ∶ ∀{ℓ} → {𝐴 𝐵 𝐸𝑟𝑟 ∶ 𝒰 ℓ}
→ (𝐸𝑟𝑟 + 𝐴) → (𝐸𝑟𝑟 + 𝐵) → (𝐸𝑟𝑟 + 𝐵)

>> (𝗅𝖾𝖿𝗍 𝑒) 𝑏 ..≡ 𝗅𝖾𝖿𝗍 𝑒
>> (𝗋𝗂𝗀𝗁𝗍 _) 𝑏 ..≡ 𝑏

Furthermore, given two such functions, they can be chained together:

>=> ∶ ∀{ℓ} → {𝐴 𝐵 𝐶 𝐸𝑟𝑟 ∶ 𝒰 ℓ}
→ (𝐴 → 𝐸𝑟𝑟 + 𝐵) → (𝐵 → 𝐸𝑟𝑟 + 𝐶) → (𝐴 → 𝐸𝑟𝑟 + 𝐶)

>=> 𝑓 𝑔 𝑎 ..≡ 𝑓 𝑎 >>= 𝑔

Our use-case of these potentially failing functions is the implementation of the type-
checker. But having implemented it, we will also need to prove properties about its
behaviour. In order to be able to do this, we introduce a type called 𝖥𝖨𝖱 (“function
is right”). An element of 𝖥𝖨𝖱 𝑎 𝑓 proofs that the function 𝑓 succeeds when given the
argument 𝑎.

Definition 3.5. The type 𝖥𝖨𝖱 is implemented by the following record:

𝗋𝖾𝖼𝗈𝗋𝖽 𝖥𝖨𝖱 {𝐴 𝐵 𝑋 ∶ 𝒰𝟢} (𝑎 ∶ 𝐴) (𝑓 ∶ 𝐴 → 𝑋 + 𝐵) ∶ 𝒰𝟢 𝗐𝗁𝖾𝗋𝖾
𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍𝗈𝗋 _, 𝖿𝗂𝗋, _
𝖿𝗂𝖾𝗅𝖽

𝖿𝗂𝗋 ∶ 𝐵
𝖿𝗂𝗋𝖯𝗋𝗈𝗈𝖿 ∶ 𝑓 𝑎 = 𝗋𝗂𝗀𝗁𝗍 𝖿𝗂𝗋

▹
It is useful in the following way: We can define a function 𝖽𝗈𝗌𝗉𝗅𝗂𝗍♦, which, given a

proof that the composition 𝑓 >=> 𝑔 succeeds, returns seperate proofs for 𝖥𝖨𝖱 𝑎 𝑓 and
𝖥𝖨𝖱 𝑏 𝑔. Similarly, we define a function 𝖾𝗏𝖺𝗅♦ for joining both proofs back together.

24

4 Category theory

4.1 What is a category?
When studying different mathematical objects, a common pattern on what such theories
are made of emerges: A mathematical structure is being accompanied by a notion of
morphisms.

Examples may be found in different fields: in Algebra, where groups, rings, fields are
studied, each structure comes with the definition of an appropriate, structure preserving
homomorphism. In Linear Algebra, the morphisms between vector spaces are called
linear maps. In Topology, topological spaces have continuous functions as morphisms
between them, and in Analysis, there are smooth functions between smooth manifolds.

These morphisms, even though very different in their detailed definitions, have some-
thing in common: they all behave like functions - in so far that they have the following
properties:

1. Composition: Morphisms with matching domain and codomain may be composed.

2. Identity: There is a morphism which behaves like the identity function.

In category theory, we study the case of having objects of a certain kind and morphisms
behaving like functions between them. In order to do this, we consider all those objects
and morphisms between them as a single structure, and call such a structure a category.

This means that, for example, there is the category Grp of groups and group homo-
morphisms. Similarly there are the categories 𝐑𝐢𝐧𝐠, 𝐅𝐥𝐝, Top and Diff [17]. And, as
the archetypal category, there is Set, the category of sets and functions between them.

For introductory texts on category theory, see e.g. Awodey [6] or Smith [26]. The
definitions in this chapter are based on the definitions found there.

Definition 4.1. A category is given by:

1. A type of objects 𝖮𝖻𝗃, and for every two objects 𝐴 𝐵 ∶ 𝖮𝖻𝗃, a type of morphisms
𝖧𝗈𝗆 𝐴 𝐵.

2. An identity morphism 𝗂𝖽, and a composition operation _⋄_.

3. Proofs that the identity morphism is a left and right identity (unit) and that
composition is associative.

25

We formalize this as a record:

𝗋𝖾𝖼𝗈𝗋𝖽 𝖢𝖺𝗍𝖾𝗀𝗈𝗋𝗒 (ℓ ℓ′ ∶ 𝖴𝖫𝖾𝗏𝖾𝗅) ∶ 𝒰 (𝗅𝗌𝗎𝖼𝖼 (𝗅𝗆𝖺𝗑 ℓ ℓ′)) 𝗐𝗁𝖾𝗋𝖾
𝖿𝗂𝖾𝗅𝖽

𝖮𝖻𝗃 ∶ 𝒰 ℓ
𝖧𝗈𝗆 ∶ 𝖮𝖻𝗃 → 𝖮𝖻𝗃 → 𝒰 ℓ′

𝗂𝖽 ∶ ∀{𝐴} → 𝖧𝗈𝗆 𝐴 𝐴
⋄ ∶ ∀{𝐴 𝐵 𝐶} → 𝖧𝗈𝗆 𝐴 𝐵 → 𝖧𝗈𝗆 𝐵 𝐶 → 𝖧𝗈𝗆 𝐴 𝐶

𝗎𝗇𝗂𝗍–𝗅 ∶ ∀{𝐴 𝐵} → (𝑓 ∶ 𝖧𝗈𝗆 𝐴 𝐵) → 𝗂𝖽 ⋄ 𝑓 = 𝑓
𝗎𝗇𝗂𝗍–𝗋 ∶ ∀{𝐴 𝐵} → (𝑓 ∶ 𝖧𝗈𝗆 𝐴 𝐵) → 𝑓 ⋄ 𝗂𝖽 = 𝑓
𝖺𝗌𝖼 ∶ ∀{𝐴 𝐵 𝐶 𝐷}

→ (𝑓 ∶ 𝖧𝗈𝗆 𝐴 𝐵) → (𝑔 ∶ 𝖧𝗈𝗆 𝐵 𝐶) → (ℎ ∶ 𝖧𝗈𝗆 𝐶 𝐷)
→ (𝑓 ⋄ 𝑔) ⋄ ℎ = 𝑓 ⋄ (𝑔 ⋄ ℎ)

▹
Remark. Usually, the composition operation is defined to compose backwards, like func-
tion composition does. In order to be more consistent with diagrams, we choose forward
composition and denote it by _⋄_, instead of _∘_.
Notation. The morphisms between objects are also called arrows. We write this type as
follows.

⇁ ∶ 𝖮𝖻𝗃 → 𝖮𝖻𝗃 → 𝒰 ℓ′

𝐴 ⇁ 𝐵 ..≡ 𝖧𝗈𝗆 𝐴 𝐵

Example 4.2. For every universe level ℓ, the types and functions between them form a
category.

𝗈𝗉𝖾𝗇 𝖢𝖺𝗍𝖾𝗀𝗈𝗋𝗒
𝐓𝐲𝐩𝐞 ∶ ∀ ℓ → 𝖢𝖺𝗍𝖾𝗀𝗈𝗋𝗒 (𝗅𝗌𝗎𝖼 ℓ) ℓ
𝖮𝖻𝗃 (𝐓𝐲𝐩𝐞 ℓ) ..≡ 𝒰 ℓ
𝖧𝗈𝗆 (𝐓𝐲𝐩𝐞 ℓ) ..≡ 𝜆 𝐴 𝐵 → (𝐴 → 𝐵)
𝗂𝖽 (𝐓𝐲𝐩𝐞 ℓ) ..≡ 𝗂𝖽𝖿
(_⋄_) (𝐓𝐲𝐩𝐞 ℓ) ..≡ 𝜆 𝑓 𝑔 → 𝑔 ∘ 𝑓
𝗎𝗇𝗂𝗍–𝗅 (𝐓𝐲𝐩𝐞 ℓ) ..≡ 𝜆 _ → 𝗋𝖾𝖿𝗅
𝗎𝗇𝗂𝗍–𝗋 (𝐓𝐲𝐩𝐞 ℓ) ..≡ 𝜆 _ → 𝗋𝖾𝖿𝗅
𝖺𝗌𝖼 (𝐓𝐲𝐩𝐞 ℓ) ..≡ 𝜆 _ _ _ → 𝗋𝖾𝖿𝗅

Remark (Diagrams). Often it is helpful to visualize configurations of arrows by drawing
diagrams:

𝐴 𝐵

𝐶 𝐷

𝑓

ℎ 𝑔
𝑖

26

Such a diagram is said to commute, if, whereever possible, different paths from one
object to another are equal. In this case, 𝑓 ⋄ 𝑔 = ℎ ⋄ 𝑖 must hold.

4.2 Universal properties
In a category, the objects do not possess any internal structure. Still, different objects
may be characterized by considering what arrows go into or come out of them.

By requiring the existence of certain unique arrows, the universal properties of different
kinds of objects are formulated.

For example, the universal property of being a product object captures exactly the
usual notions of products (e.g. products of groups or products of vector spaces).

We will consider three kinds of objects: terminal objects, products and exponentials.

Terminal object
Definition 4.3. An object 𝑋 is terminal if, for every object 𝐴, there is a unique
arrow 𝐴 ⇁ 𝑋.

𝗂𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗅 ∶ 𝖮𝖻𝗃 → 𝒰 (𝗅𝗆𝖺𝗑 𝑖 𝑗)
𝗂𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗅 𝑋 ..≡ ∀ 𝐴 → Σ (𝜆 (ℎ ∶ 𝐴 ⇁ 𝑋) → Π (𝜆 (𝑘 ∶ 𝐴 ⇁ 𝑋) → ℎ = 𝑘))

▹
Remark. In this definition we implicitly work inside some category 𝒞. The “𝑂𝑏𝑗” and
the arrow “⇁” refer to objects and arrows of this category. Still, when using the above
function, the category has to be explicitly given as an argument.

Definition 4.4. A category 𝒞 has a terminal object if there exists an object which
is terminal. This object is called 𝟏. The unique arrow is called !, and the proof of
uniqueness is called !–𝗎𝗉𝗋𝗈𝗉.

𝗋𝖾𝖼𝗈𝗋𝖽 𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗅 {𝑖 𝑗} (𝒞 ∶ 𝖢𝖺𝗍𝖾𝗀𝗈𝗋𝗒 𝑖 𝑗) ∶ 𝒰 (𝗅𝗌𝗎𝖼 (𝗅𝗆𝖺𝗑 𝑖 𝑗)) 𝗐𝗁𝖾𝗋𝖾
𝗈𝗉𝖾𝗇 𝖢𝖺𝗍𝖾𝗀𝗈𝗋𝗒 𝒞
𝖿𝗂𝖾𝗅𝖽

𝟏 ∶ 𝖮𝖻𝗃
𝟏𝗂𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗅 ∶ 𝗂𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗅 𝒞 𝟏

! ∶ {𝑋 ∶ 𝖮𝖻𝗃} → 𝑋 ⇁ 𝟏
! {𝑋} ..≡ 𝖿𝗌𝗍 (𝟏𝗂𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗅 𝑋)

!–𝗎𝗉𝗋𝗈𝗉 ∶ ∀{𝑋} → {𝑓 ∶ 𝑋 ⇁ 𝟏} → ! = 𝑓
!–𝗎𝗉𝗋𝗈𝗉 {𝑋} {𝑓} ..≡ 𝗌𝗇𝖽 (𝟏𝗂𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗅 𝑋) 𝑓

▹

Example 4.5. The category 𝐓𝐲𝐩𝐞ℓ has a terminal object. It is ⊤, lifted to the level
ℓ by 𝖫𝗂𝖿𝗍. The unique function to ⊤ is the one which ignores its argument and simply

27

returns 𝗍𝗍.
𝖳𝗒𝗉𝖾–𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗅 ∶ 𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗅 (𝐓𝐲𝐩𝐞 ℓ)
𝟏 (𝖳𝗒𝗉𝖾–𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗅) ..≡ 𝖫𝗂𝖿𝗍 ⊤
𝟏𝗂𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗅 (𝖳𝗒𝗉𝖾–𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗅) ..≡ 𝜆 𝐴 → !𝟢 , !𝟢–𝗎𝗉𝗋𝗈𝗉

𝗐𝗁𝖾𝗋𝖾
!𝟢 ∶ {𝐴 ∶ 𝖮𝖻𝗃} → (𝐴 ⇁ 𝖫𝗂𝖿𝗍 ⊤)
!𝟢 ..≡ 𝜆 _ → (𝗅𝗂𝖿𝗍 𝗍𝗍)

𝖼𝗋𝖾𝖺𝗍𝖾𝖮𝖻𝗃𝖾𝖼𝗍𝖯𝖺𝗍𝗁𝗌 ∶ {𝐴 ∶ 𝖮𝖻𝗃} → (𝑔 ∶ 𝐴 → 𝖫𝗂𝖿𝗍 ⊤) → (𝑎 ∶ 𝐴) → 𝑔 𝑎 = !𝟢 𝑎
𝖼𝗋𝖾𝖺𝗍𝖾𝖮𝖻𝗃𝖾𝖼𝗍𝖯𝖺𝗍𝗁𝗌 𝑔 𝑎 𝗐𝗂𝗍𝗁 (𝑔 𝑎)
... | (𝗅𝗂𝖿𝗍 𝗍𝗍) ..≡ 𝗋𝖾𝖿𝗅

!𝟢–𝗎𝗉𝗋𝗈𝗉 ∶ {𝐴 ∶ 𝖮𝖻𝗃} → (𝑔 ∶ 𝐴 → 𝖫𝗂𝖿𝗍 ⊤) → 𝑔 = !𝟢
!𝟢–𝗎𝗉𝗋𝗈𝗉 𝑔 ..≡ 𝖿𝗎𝗇𝖤𝗑𝗍 (𝖼𝗋𝖾𝖺𝗍𝖾𝖮𝖻𝗃𝖾𝖼𝗍𝖯𝖺𝗍𝗁𝗌 𝑔)

Products

In order to define the product of two objects 𝑋 and 𝑌 in a category 𝒞, we consider,
without explicitly constructing it, another category, where the objects are wedges to
𝑋 and 𝑌 and the morphisms between them are arrows which make a certain diagram
commute.

Definition 4.6. A wedge to 𝑋 and 𝑌 is an object 𝗐𝖮𝖻𝗃 together with a pair of arrows
to 𝑋 and 𝑌 .

𝑋
𝗐𝖮𝖻𝗃

𝑌

𝑤𝜋1

𝑤𝜋2

𝗋𝖾𝖼𝗈𝗋𝖽 𝖶𝖾𝖽𝗀𝖾 (𝑋 𝑌 ∶ 𝖮𝖻𝗃) ∶ 𝒰 (𝗅𝗆𝖺𝗑 𝑖 𝑗) 𝗐𝗁𝖾𝗋𝖾
𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍𝗈𝗋 𝗐𝖾𝖽𝗀𝖾
𝖿𝗂𝖾𝗅𝖽

𝗐𝖮𝖻𝗃 ∶ 𝖮𝖻𝗃
𝗐𝜋𝟣 ∶ 𝗐𝖮𝖻𝗃 ⇁ 𝑋
𝗐𝜋𝟤 ∶ 𝗐𝖮𝖻𝗃 ⇁ 𝑌

▹

Definition 4.7. Given two wedges to 𝑋 and 𝑌 , a morphism of wedges between
them is a morphism 𝑓 between their objects such that the following diagram commutes.

28

𝑋

𝑃 𝑄

𝑌

𝑝1

𝑝2

𝑓

𝑞1

𝑞2

𝖶𝖾𝖽𝗀𝖾𝖬𝗈𝗋𝗉𝗁 ∶ {𝑋 𝑌 ∶ 𝖮𝖻𝗃} → 𝖶𝖾𝖽𝗀𝖾 𝑋 𝑌 → 𝖶𝖾𝖽𝗀𝖾 𝑋 𝑌 → 𝒰 (𝑗)
𝖶𝖾𝖽𝗀𝖾𝖬𝗈𝗋𝗉𝗁 (𝗐𝖾𝖽𝗀𝖾 𝑃 𝑝1 𝑝2) (𝗐𝖾𝖽𝗀𝖾 𝑄 𝑞1 𝑞2)

..≡ Σ (𝜆 (𝑓 ∶ 𝑃 ⇁ 𝑄) → (𝑓 ⋄ 𝑞1 = 𝑝1) |×| (𝑓 ⋄ 𝑞2 = 𝑝2))
▹

Remark. Here, we renamed the product type _ × _ to _|×|_, in order to use this name
for the product object.

Definition 4.8. A wedge 𝑍 is called the product of X with Y if it is terminal in
the category of wedges to 𝑋 and 𝑌 .

That is, if for every wedge 𝐴 there is a unique morphism ℎ ∶ 𝐴 ⇁ 𝑍.

𝗂𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍 ∶ {𝑋 𝑌 ∶ 𝖮𝖻𝗃} → 𝖶𝖾𝖽𝗀𝖾 𝑋 𝑌 → 𝒰 (𝗅𝗆𝖺𝗑 𝑖 𝑗)
𝗂𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍 {𝑋} {𝑌 } 𝑍 ..≡ ∀ 𝐴 → Σ (𝜆 (ℎ ∶ 𝖶𝖾𝖽𝗀𝖾𝖬𝗈𝗋𝗉𝗁 𝐴 𝑍)

→ Π (𝜆 (𝑘 ∶ 𝖶𝖾𝖽𝗀𝖾𝖬𝗈𝗋𝗉𝗁 𝐴 𝑍)
→ 𝖿𝗌𝗍 ℎ = 𝖿𝗌𝗍 𝑘))

▹

Definition 4.9. A category 𝒞 has all products if there is a binary operation _ × _
on objects, together with projection functions 𝜋1 and 𝜋2, such that for every pair of
objects 𝑋 and 𝑌 the wedge defined by (𝑋 × 𝑌 , 𝜋1, 𝜋2) is a product.

𝗋𝖾𝖼𝗈𝗋𝖽 𝗁𝖺𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝗌 {ℓ ℓ′} (𝒞 ∶ 𝖢𝖺𝗍𝖾𝗀𝗈𝗋𝗒 ℓ ℓ′) ∶ 𝒰 (𝗅𝗌𝗎𝖼 (𝗅𝗆𝖺𝗑 ℓ ℓ′)) 𝗐𝗁𝖾𝗋𝖾
𝗈𝗉𝖾𝗇 𝖢𝖺𝗍𝖾𝗀𝗈𝗋𝗒 𝒞

𝗂𝗇𝖿𝗂𝗑𝗋 𝟣𝟢𝟢 _×_
𝖿𝗂𝖾𝗅𝖽

× ∶ 𝖮𝖻𝗃 → 𝖮𝖻𝗃 → 𝖮𝖻𝗃
𝜋𝟣 ∶ ∀{𝐴 𝐵} → 𝐴 × 𝐵 ⇁ 𝐴
𝜋𝟤 ∶ ∀{𝐴 𝐵} → 𝐴 × 𝐵 ⇁ 𝐵
×𝗂𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍 ∶ ∀{𝐴 𝐵} → 𝗂𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍 𝒞 (𝗐𝖾𝖽𝗀𝖾 (𝐴 × 𝐵) 𝜋𝟣 𝜋𝟤)

For two arrows 𝑓 ∶ 𝐴 ⇁ 𝐵 and 𝑔 ∶ 𝐴 ⇁ 𝐶, we denote the unique arrow into 𝐴 × 𝐵 by
⟨𝑓, 𝑔⟩.

⟨_, _⟩ ∶ {𝐴 𝐵 𝐶 ∶ 𝖮𝖻𝗃} → (𝐴 ⇁ 𝐵) → (𝐴 ⇁ 𝐶) → (𝐴 ⇁ 𝐵 × 𝐶)
⟨_, _⟩ {𝐴 ..≡ 𝐴} 𝑓 𝑔 ..≡ 𝖿𝗌𝗍 (𝖿𝗌𝗍 (×𝗂𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍 (𝗐𝖾𝖽𝗀𝖾 𝐴 𝑓 𝑔)))

The proof of its property of being a product is called ⟨, ⟩–𝗉𝗋𝗈𝗉.

29

⟨, ⟩–𝗉𝗋𝗈𝗉 ∶ ∀{𝐴 𝐵 𝐶 ∶ 𝖮𝖻𝗃} → (𝑓 ∶ 𝐴 ⇁ 𝐵) → (𝑔 ∶ 𝐴 ⇁ 𝐶)
→ (⟨ 𝑓 , 𝑔 ⟩ ⋄ 𝜋𝟣 = 𝑓) |×| (⟨ 𝑓 , 𝑔 ⟩ ⋄ 𝜋𝟤 = 𝑔)

⟨, ⟩–𝗉𝗋𝗈𝗉 {𝐴} 𝑓 𝑔 ..≡ 𝗌𝗇𝖽 (𝖿𝗌𝗍 (×𝗂𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍 (𝗐𝖾𝖽𝗀𝖾 𝐴 𝑓 𝑔)))
And the proof of uniqueness is called ⟨, ⟩−𝗎𝗉𝗋𝗈𝗉.

⟨, ⟩–𝗎𝗉𝗋𝗈𝗉 ∶ ∀{𝐴 𝐵 𝐶 ∶ 𝖮𝖻𝗃}
→ {𝑓 ∶ 𝐴 ⇁ 𝐵} → {𝑔 ∶ 𝐴 ⇁ 𝐶} → (ℎ ∶ 𝐴 ⇁ 𝐵 × 𝐶)
→ (ℎ ⋄ 𝜋𝟣 = 𝑓) |×| (ℎ ⋄ 𝜋𝟤 = 𝑔)
→ ⟨ 𝑓 , 𝑔 ⟩ = ℎ

⟨, ⟩–𝗎𝗉𝗋𝗈𝗉 {𝐴} {𝑓 ..≡ 𝑓} {𝑔} ℎ ℎ𝑝𝑟𝑜𝑝
..≡ 𝗌𝗇𝖽 (×𝗂𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍 (𝗐𝖾𝖽𝗀𝖾 𝐴 𝑓 𝑔)) (ℎ , ℎ𝑝𝑟𝑜𝑝)

▹

Definition 4.10. For morphisms 𝑓 ∶ 𝐴 ⇁ 𝐶 and 𝑔 ∶ 𝐵 ⇁ 𝐷 we define the morphism
between the products 𝐴 × 𝐵 and 𝐶 × 𝐷 by:

×× ∶ ∀{𝐴 𝐵 𝐶 𝐷} → (𝐴 ⇁ 𝐶) → (𝐵 ⇁ 𝐷) → (𝐴 × 𝐵 ⇁ 𝐶 × 𝐷)
×× 𝑓 𝑔 ..≡ ⟨ 𝜋𝟣 ⋄ 𝑓 , 𝜋𝟤 ⋄ 𝑔 ⟩

▹

Example 4.11. The category 𝐓𝐲𝐩𝐞ℓ has products. They are given by the product type
|×| together with the projections 𝖿𝗌𝗍 and 𝗌𝗇𝖽.

𝖳𝗒𝗉𝖾–𝗁𝖺𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝗌 ∶ 𝗁𝖺𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝗌 (𝐓𝐲𝐩𝐞 ℓ)
× (𝖳𝗒𝗉𝖾–𝗁𝖺𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝗌) ..≡ _|×|_
𝜋𝟣 (𝖳𝗒𝗉𝖾–𝗁𝖺𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝗌) ..≡ 𝖿𝗌𝗍
𝜋𝟤 (𝖳𝗒𝗉𝖾–𝗁𝖺𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝗌) ..≡ 𝗌𝗇𝖽
×𝗂𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍 (𝖳𝗒𝗉𝖾–𝗁𝖺𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝗌) {𝑋} {𝑌 } (𝗐𝖾𝖽𝗀𝖾 𝐴 𝑎1 𝑎2) ..≡

𝗅𝖾𝗍
ℎ ∶ 𝐴 → 𝑋 |×| 𝑌
ℎ 𝑎 ..≡ 𝑎1 𝑎 , 𝑎2 𝑎

𝐻 ∶ 𝖶𝖾𝖽𝗀𝖾𝖬𝗈𝗋𝗉𝗁 (𝐓𝐲𝐩𝐞 ℓ) (𝗐𝖾𝖽𝗀𝖾 𝐴 𝑎1 𝑎2) (𝗐𝖾𝖽𝗀𝖾 (𝑋 |×| 𝑌) 𝖿𝗌𝗍 𝗌𝗇𝖽)
𝐻 ..≡ ℎ , (𝗋𝖾𝖿𝗅 , 𝗋𝖾𝖿𝗅)

𝑝𝑟𝑜𝑜𝑓 ∶ ∀ 𝐾 → 𝖿𝗌𝗍 𝐻 = 𝖿𝗌𝗍 𝐾
𝑝𝑟𝑜𝑜𝑓 𝐾 𝐢 𝑎 ..≡ (𝖿𝗌𝗍 (𝗌𝗇𝖽 𝐾) (~ 𝐢) 𝑎 , 𝗌𝗇𝖽 (𝗌𝗇𝖽 𝐾) (~ 𝐢) 𝑎)

𝗂𝗇 𝐻 , 𝑝𝑟𝑜𝑜𝑓

Exponentials

In the category 𝐓𝐲𝐩𝐞ℓ we have the special case that the type of morphisms between two
objects 𝑋 𝑌 ∶ 𝒰ℓ is itself a type 𝑋 → 𝑌 ∶ 𝒰ℓ, and thus an object of 𝐓𝐲𝐩𝐞ℓ. The same

30

happens in Set, where the functions from 𝑋 to 𝑌 form a set, sometimes being denoted
by 𝑌 𝑋.

Unlike product objects, such exponential objects are not as widespread. For example,
in Grp, the group homomorphisms between two groups do not necessarily form a group
themselves.

In order to define the property of an object being like morphisms from 𝑋 to 𝑌 , we
consider the category of evaluation structures between 𝑋 and 𝑌 . (Again, without an
explicit construction.)

Definition 4.12. An evaluation structure between 𝑋 and 𝑌 is an object 𝖾𝖮𝖻𝗃
together with an evaluation map 𝖾𝖤𝗏 for it.

𝗋𝖾𝖼𝗈𝗋𝖽 𝖤𝗏𝖺𝗅 (𝑋 𝑌 ∶ 𝖮𝖻𝗃) ∶ 𝒰 (𝗅𝗆𝖺𝗑 ℓ ℓ′) 𝗐𝗁𝖾𝗋𝖾
𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍𝗈𝗋 𝖾𝗏𝖺𝗅
𝖿𝗂𝖾𝗅𝖽

𝖾𝖮𝖻𝗃 ∶ 𝖮𝖻𝗃
𝖾𝖤𝗏 ∶ 𝖾𝖮𝖻𝗃 × 𝑋 ⇁ 𝑌

▹

Definition 4.13. A morphism of evaluation structures between 𝑋 and 𝑌 is
given by a morphism 𝑓 between their objects which makes the following diagram com-
mute.

𝐴 × 𝑋

𝑌

𝐵 × 𝑋

𝑎

𝑓××𝗂𝖽

𝑏

𝖤𝗏𝖺𝗅𝖬𝗈𝗋𝗉𝗁𝗂𝗌𝗆 ∶ {𝑋 𝑌 ∶ 𝖮𝖻𝗃} → 𝖤𝗏𝖺𝗅 𝑋 𝑌 → 𝖤𝗏𝖺𝗅 𝑋 𝑌 → 𝒰 ℓ′

𝖤𝗏𝖺𝗅𝖬𝗈𝗋𝗉𝗁𝗂𝗌𝗆 (𝖾𝗏𝖺𝗅 𝐴 𝑎) (𝖾𝗏𝖺𝗅 𝐵 𝑏) ..≡ Σ (𝜆 (𝑓 ∶ 𝐴 ⇁ 𝐵) → (𝑓 ×× 𝗂𝖽) ⋄ 𝑏 = 𝑎)
▹

Definition 4.14. An evaluation structure 𝑍 between 𝑋 and 𝑌 is called the exponen-
tial object of 𝑌 with 𝑋 if it is terminal in the category of evaluation structures.

That is, if for every evaluation structure 𝐴 there exists a unique morphism from 𝐴 to
𝑍.

𝗂𝗌𝖤𝗑𝗉 ∶ {𝑋 𝑌 ∶ 𝖮𝖻𝗃} → 𝖤𝗏𝖺𝗅 𝑋 𝑌 → 𝒰 (𝗅𝗆𝖺𝗑 ℓ ℓ′)
𝗂𝗌𝖤𝗑𝗉 𝑍 ..≡ ∀ 𝐴 → Σ (𝜆 (ℎ ∶ 𝖤𝗏𝖺𝗅𝖬𝗈𝗋𝗉𝗁𝗂𝗌𝗆 𝐴 𝑍)

→ Π (𝜆 (𝑘 ∶ 𝖤𝗏𝖺𝗅𝖬𝗈𝗋𝗉𝗁𝗂𝗌𝗆 𝐴 𝑍)
→ 𝖿𝗌𝗍 ℎ = 𝖿𝗌𝗍 𝑘))

▹

31

Definition 4.15. A category 𝒞 has exponentials if there is a binary operation on
objects _ _̂, and for every pair of objects 𝑋 and 𝑌 , an evaluation map for 𝑌 ̂𝑋, such
that the resulting evaluation structure is the exponential object of 𝑌 with 𝑋.

𝗋𝖾𝖼𝗈𝗋𝖽 𝗁𝖺𝗌𝖤𝗑𝗉𝗈𝗇𝖾𝗇𝗍𝗂𝖺𝗅𝗌 {ℓ ℓ′} (𝒞 ∶ 𝖢𝖺𝗍𝖾𝗀𝗈𝗋𝗒 ℓ ℓ′) (𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 ∶ 𝗁𝖺𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝗌 𝒞)
∶ 𝒰 (𝗅𝗌𝗎𝖼 (𝗅𝗆𝖺𝗑 ℓ ℓ′)) 𝗐𝗁𝖾𝗋𝖾

𝗈𝗉𝖾𝗇 𝖢𝖺𝗍𝖾𝗀𝗈𝗋𝗒 𝒞
𝗈𝗉𝖾𝗇 𝗁𝖺𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝗌 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝖿𝗂𝖾𝗅𝖽
_ _̂ ∶ 𝖮𝖻𝗃 → 𝖮𝖻𝗃 → 𝖮𝖻𝗃
𝖾𝗏 ∶ ∀{𝑋 𝑌 } → 𝑋 ̂ 𝑌 × 𝑌 ⇁ 𝑋
�̂�𝗌𝖤𝗑𝗉 ∶ ∀{𝑋 𝑌 } → 𝗂𝗌𝖤𝗑𝗉 𝒞 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (𝖾𝗏𝖺𝗅 (𝑋 ̂ 𝑌) 𝖾𝗏)

For an arrow 𝑓 ∶ 𝐴 × 𝑌 ⇁ 𝑋, the operation of getting the unique arrow 𝐴 ⇁ 𝑋 ̂ 𝑌 is
called currying.

𝖼𝗎𝗋𝗋𝗒 ∶ {𝐴 𝑋 𝑌 ∶ 𝖮𝖻𝗃} → (𝐴 × 𝑌 ⇁ 𝑋) → (𝐴 ⇁ 𝑋 ̂ 𝑌)
𝖼𝗎𝗋𝗋𝗒 {𝐴} 𝑓 ..≡ 𝖿𝗌𝗍 (𝖿𝗌𝗍 (�̂�𝗌𝖤𝗑𝗉 (𝖾𝗏𝖺𝗅 𝐴 𝑓)))

The proofs of being a morphism of evaluation structures and of uniqueness are called
𝖼𝗎𝗋𝗋𝗒–𝗉𝗋𝗈𝗉 and 𝖼𝗎𝗋𝗋𝗒–𝗎𝗉𝗋𝗈𝗉 respectively.

𝖼𝗎𝗋𝗋𝗒–𝗉𝗋𝗈𝗉 ∶ {𝐴 𝑋 𝑌 ∶ 𝖮𝖻𝗃}
→ (𝑓 ∶ 𝐴 × 𝑌 ⇁ 𝑋)
→ (𝖼𝗎𝗋𝗋𝗒 𝑓 ×× 𝗂𝖽) ⋄ 𝖾𝗏 = 𝑓

𝖼𝗎𝗋𝗋𝗒–𝗉𝗋𝗈𝗉 {𝐴} 𝑓 ..≡ 𝗌𝗇𝖽 (𝖿𝗌𝗍 (�̂�𝗌𝖤𝗑𝗉 (𝖾𝗏𝖺𝗅 𝐴 𝑓)))

𝖼𝗎𝗋𝗋𝗒–𝗎𝗉𝗋𝗈𝗉 ∶ {𝐴 𝑋 𝑌 ∶ 𝖮𝖻𝗃}
→ {𝑓 ∶ 𝐴 × 𝑌 ⇁ 𝑋} → (𝑔 ∶ 𝐴 ⇁ 𝑋 ̂ 𝑌)
→ (𝑔 ×× 𝗂𝖽) ⋄ 𝖾𝗏 = 𝑓
→ 𝖼𝗎𝗋𝗋𝗒 𝑓 = 𝑔

𝖼𝗎𝗋𝗋𝗒–𝗎𝗉𝗋𝗈𝗉 {𝐴} {𝑋} {𝑌 } {𝑓} 𝑔 𝑝 ..≡ 𝗌𝗇𝖽 (�̂�𝗌𝖤𝗑𝗉 (𝖾𝗏𝖺𝗅 𝐴 𝑓)) (𝑔 , 𝑝)
▹

Example 4.16. The category 𝐓𝐲𝐩𝐞ℓ has exponential objects. For two types 𝐵 and 𝐴,
they are given by the function type 𝐴 → 𝐵.

We first define the evaluation function 𝖾𝗏𝟢, which applies an argument to a function.

𝖾𝗏𝟢 ∶ {𝐴 𝐵 ∶ 𝒰 ℓ} → ((𝐴 → 𝐵) × 𝐴) → 𝐵
𝖾𝗏𝟢 (𝑓 , 𝑥) ..≡ 𝑓 𝑥

Now we can prove that, indeed, all exponential objects exist. Currying is done by wait-
ing for two arguments, and then combining them into a tuple. The 𝖼𝗎𝗋𝗋𝗒–𝗉𝗋𝗈𝗉 is trivially
true. Uniqueness follows from the property of morphisms of evaluation structures.

32

𝖳𝗒𝗉𝖾–𝗁𝖺𝗌𝖤𝗑𝗉𝗈𝗇𝖾𝗇𝗍𝗂𝖺𝗅𝗌 ∶ 𝗁𝖺𝗌𝖤𝗑𝗉𝗈𝗇𝖾𝗇𝗍𝗂𝖺𝗅𝗌 (𝐓𝐲𝐩𝐞 ℓ) (𝖳𝗒𝗉𝖾–𝗁𝖺𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝗌)
_ _̂ 𝖳𝗒𝗉𝖾–𝗁𝖺𝗌𝖤𝗑𝗉𝗈𝗇𝖾𝗇𝗍𝗂𝖺𝗅𝗌 ..≡ 𝜆 𝐵 𝐴 → (𝐴 → 𝐵)
𝖾𝗏 𝖳𝗒𝗉𝖾–𝗁𝖺𝗌𝖤𝗑𝗉𝗈𝗇𝖾𝗇𝗍𝗂𝖺𝗅𝗌 ..≡ 𝖾𝗏𝟢
�̂�𝗌𝖤𝗑𝗉 𝖳𝗒𝗉𝖾–𝗁𝖺𝗌𝖤𝗑𝗉𝗈𝗇𝖾𝗇𝗍𝗂𝖺𝗅𝗌

..≡ 𝜆 {(𝖾𝗏𝖺𝗅 𝐴 𝑓) → ((𝖼𝗎𝗋𝗋𝗒𝟢 𝑓 , 𝖼𝗎𝗋𝗋𝗒–𝗉𝗋𝗈𝗉𝟢 𝑓) , 𝖼𝗎𝗋𝗋𝗒–𝗎𝗉𝗋𝗈𝗉𝟢)}
𝗐𝗁𝖾𝗋𝖾

𝖼𝗎𝗋𝗋𝗒𝟢 ∶ ∀{𝐴 𝐵 𝐶} → (𝐴 × 𝐵 → 𝐶) → 𝐴 → (𝐵 → 𝐶)
𝖼𝗎𝗋𝗋𝗒𝟢 𝑓 ..≡ 𝜆 𝑎 𝑏 → 𝑓 (𝑎 , 𝑏)

𝖼𝗎𝗋𝗋𝗒–𝗉𝗋𝗈𝗉𝟢 ∶ ∀{𝐴 𝐵 𝐶} → (𝑓 ∶ 𝐴 × 𝐵 → 𝐶) → (𝖼𝗎𝗋𝗋𝗒𝟢 𝑓 ×× 𝗂𝖽) ⋄ 𝖾𝗏𝟢 = 𝑓
𝖼𝗎𝗋𝗋𝗒–𝗉𝗋𝗈𝗉𝟢 𝑓 ..≡ 𝗋𝖾𝖿𝗅

𝖼𝗎𝗋𝗋𝗒–𝗎𝗉𝗋𝗈𝗉𝟢 ∶ ∀{𝐴 𝐵 𝐶} → {𝑓 ∶ 𝐴 × 𝐵 → 𝐶}
→ (𝑘 ∶ 𝖤𝗏𝖺𝗅𝖬𝗈𝗋𝗉𝗁𝗂𝗌𝗆 (𝐓𝐲𝐩𝐞 ℓ) (𝖳𝗒𝗉𝖾–𝗁𝖺𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝗌)

(𝖾𝗏𝖺𝗅 𝐴 𝑓) (𝖾𝗏𝖺𝗅 (𝐵 → 𝐶) 𝖾𝗏𝟢))
→ (𝖼𝗎𝗋𝗋𝗒𝟢 𝑓 = 𝖿𝗌𝗍 𝑘)

𝖼𝗎𝗋𝗋𝗒–𝗎𝗉𝗋𝗈𝗉𝟢 {𝑓 ..≡ 𝑓} 𝑘 𝐢 𝑎 𝑏 ..≡ 𝗌𝗇𝖽 𝑘 (~ 𝐢) (𝑎 , 𝑏)

4.3 Cartesian closed categories

We have now explored exactly the kinds of objects which will be of further interest to
us when we are going to provide a model for the lambda calculus.

There is a special term for referring to such categories:

Definition 4.17. A category 𝒞 is called cartesian closed (short: it is a CCC) if it
has a terminal object, all products and all exponentials.

𝗋𝖾𝖼𝗈𝗋𝖽 𝗂𝗌𝖢𝖢𝖢 {𝑖 𝑗 ∶ 𝖴𝖫𝖾𝗏𝖾𝗅} (𝒞 ∶ 𝖢𝖺𝗍𝖾𝗀𝗈𝗋𝗒 𝑖 𝑗) ∶ 𝒰 (𝗅𝗌𝗎𝖼𝖼 (𝗅𝗆𝖺𝗑 𝑖 𝑗)) 𝗐𝗁𝖾𝗋𝖾
𝖿𝗂𝖾𝗅𝖽

𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗅 ∶ 𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗅 𝒞
𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝗌 ∶ 𝗁𝖺𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝗌 𝒞
𝖤𝗑𝗉𝗈𝗇𝖾𝗇𝗍𝗂𝖺𝗅𝗌 ∶ 𝗁𝖺𝗌𝖤𝗑𝗉𝗈𝗇𝖾𝗇𝗍𝗂𝖺𝗅𝗌 𝒞 𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝗌

▹

Combining the previous examples, we can show:

Example 4.18. The category 𝐓𝐲𝐩𝐞ℓ is cartesian closed.

𝖳𝗒𝗉𝖾–𝗂𝗌𝖢𝖢𝖢 ∶ 𝗂𝗌𝖢𝖢𝖢 (𝐓𝐲𝐩𝐞 ℓ)
𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗅 𝖳𝗒𝗉𝖾–𝗂𝗌𝖢𝖢𝖢 ..≡ 𝖳𝗒𝗉𝖾–𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗅
𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝗌 𝖳𝗒𝗉𝖾–𝗂𝗌𝖢𝖢𝖢 ..≡ 𝖳𝗒𝗉𝖾–𝗁𝖺𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝗌
𝖤𝗑𝗉𝗈𝗇𝖾𝗇𝗍𝗂𝖺𝗅𝗌 𝖳𝗒𝗉𝖾–𝗂𝗌𝖢𝖢𝖢 ..≡ 𝖳𝗒𝗉𝖾–𝗁𝖺𝗌𝖤𝗑𝗉𝗈𝗇𝖾𝗇𝗍𝗂𝖺𝗅𝗌

33

4.4 Finite products
Using our previously introduced concepts, we define a similar, very helpful object, the
finite product. As the name implies, it may be constructed by repeatedly taking the
(binary) product. But in order for this to be well-defined, the case of taking the product
of zero objects also needs to be considered.

Definition 4.19. In a CCC, the finite product of objects is defined as a function
which given a finite list of objects 𝐴, calculates their product ⨅ 𝐴 by recursion on the
size of the list. The product of an empty list is the terminal object 𝟏.

⨅ ∶ ∀{𝑛} → (𝖥𝗂𝗇 𝑛 → 𝖮𝖻𝗃) → 𝖮𝖻𝗃
⨅ {𝗓𝖾𝗋𝗈} 𝐴 ..≡ 𝟏
⨅ {𝗌𝗎𝖼 𝑛} 𝐴 ..≡ ⨅ (𝜆 𝑖 → 𝐴 (𝖿𝗌𝗎𝖼 𝑖)) × 𝐴 𝖿𝗓𝖾𝗋𝗈

▹
Similarly, by recursion on the size of the list, and by invoking the corresponding func-

tions for binary products, we define finite projections and finite products of morphisms.

Definition 4.20. For a finite list of objects 𝐴, the projection function of finite
products 𝜋𝑖, which projects the 𝑖-th element of the finite product ⨅ 𝐴, is defined as:

𝜋𝗂 ∶ ∀{𝑛} → {𝐴 ∶ 𝖥𝗂𝗇 𝑛 → 𝖮𝖻𝗃} → (𝑖 ∶ 𝖥𝗂𝗇 𝑛) → ⨅ 𝐴 ⇁ 𝐴 𝑖
𝜋𝗂 {𝗓𝖾𝗋𝗈} {𝐴} (𝖿𝗂𝗇 𝑖 (𝖽𝗂𝖿𝖿 𝑘 𝑝)) ..≡ ⊥–𝖾𝗅𝗂𝗆 (𝗓𝖭𝗈𝗍𝖲 𝑝)
𝜋𝗂 {𝗌𝗎𝖼 𝑛} {𝐴} (𝖿𝗂𝗇 𝗓𝖾𝗋𝗈 𝑝) ..≡ 𝜋𝟤 ⋄ 𝖮=⟦ 𝖼𝗈𝗇𝗀 𝐴 (𝖿𝗂𝗇𝖤𝗊𝗎𝖺𝗅 𝗓𝖾𝗋𝗈) ⟧
𝜋𝗂 {𝗌𝗎𝖼 𝑛} {𝐴} (𝖿𝗂𝗇 (𝗌𝗎𝖼 𝑖) 𝑝) ..≡ 𝜋𝟣 ⋄ 𝜋𝗂 (𝖿𝗂𝗇 𝑖 (𝗉𝗋𝖾𝖽–𝗆𝗈𝗇𝗈𝗍𝗈𝗇𝖾 𝑝))

⋄ 𝖮=⟦ 𝖼𝗈𝗇𝗀 𝐴 (𝖿𝗂𝗇𝖤𝗊𝗎𝖺𝗅 (𝗌𝗎𝖼 𝑖)) ⟧
▹

Remark. Here, 𝗓𝖭𝗈𝗍𝖲 is a function which constructs a contradiction from a proof of
𝗓𝖾𝗋𝗈 = 𝗌𝗎𝖼 𝑛. The operator 𝖮=⟦ _ ⟧ takes an equality of objects 𝐴 = 𝐵 as argument and
returns an arrow 𝐴 ⇁ 𝐵. The function 𝖿𝗂𝗇𝖤𝗊𝗎𝖺𝗅 takes a natural number as input and
returns a proof of equality for finite indices represented by this number.

Definition 4.21. For an object 𝐴, a finite list of objects 𝐵, and a finite list of mor-
phisms 𝐹𝑖 ∶ 𝐴 ⇁ 𝐵𝑖, the finite product of morphisms ⟪𝐹⟫ of type 𝐴 ⇁ ⨅ 𝐵 is
defined by:

⟪_⟫ ∶ ∀{𝑛} → {𝐴 ∶ 𝖮𝖻𝗃} → {𝐵 ∶ 𝖥𝗂𝗇 𝑛 → 𝖮𝖻𝗃}
→ (𝐹 ∶ (𝑖 ∶ 𝖥𝗂𝗇 𝑛) → 𝐴 ⇁ 𝐵 𝑖)
→ 𝐴 ⇁ ⨅ 𝐵

⟪_⟫ {𝗓𝖾𝗋𝗈} 𝐹 ..≡ !
⟪_⟫ {𝗌𝗎𝖼 𝑛} 𝐹 ..≡ ⟨ ⟪ (𝜆 𝑖 → 𝐹 (𝖿𝗌𝗎𝖼 𝑖)) ⟫ , 𝐹 𝖿𝗓𝖾𝗋𝗈 ⟩

▹

34

Definition 4.22. For a finite list of functions 𝐹𝑖 ∶ 𝐴𝑖 ⇁ 𝐵𝑖, the morphism between
finite products ⨉ 𝐹 of type ⨅ 𝐴 ⇁ ⨅ 𝐵 is defined by:

⨉ ∶ ∀{𝑛} → {𝐴 𝐵 ∶ 𝖥𝗂𝗇 𝑛 → 𝖮𝖻𝗃} → (𝐹 ∶ ∀ 𝑖 → 𝐴 𝑖 ⇁ 𝐵 𝑖)
→ ⨅ 𝐴 ⇁ ⨅ 𝐵

⨉ 𝐹 ..≡ ⟪ (𝜆 𝑖 → 𝜋𝗂 𝑖 ⋄ 𝐹 𝑖) ⟫
▹

35

5 Simply typed 𝜆-calculus

When we restrict the type theory of Agda to only function types, together with lambda
abstraction and application, we get the simply typed 𝜆-calculus (𝜆→). It is also called
simple type theory (STT) and was first published by Church in 1940 [7].

The formalization in this chapter is based on the definitions found in Geuvers [12] and
Pitts [20].

5.1 Parametrization
In Agda, we could define custom data types and their terms inside the type theory. This
is not possible in 𝜆→, where the basic types and terms have to be chosen beforehand.
Since this choice is arbitrary and does not affect the underlying theory, we parametrize
𝜆→ over every possible choice.

Definition 5.1. The simply typed 𝜆-calculus is parametrized by:

• A type 𝖦𝗇𝖽, whose elements will be the ground types. Since types have to be
comparable, 𝖦𝗇𝖽 has to be discrete.

• A type 𝖢𝗈𝗇𝗌𝗍, whose elements will be the constant terms.
• A function 𝖼𝗍𝗒𝗉𝖾 mapping a constant to its type.

This parametrization is formalized by the following record:

𝗋𝖾𝖼𝗈𝗋𝖽 𝖫𝖺𝗆𝖻𝖽𝖺𝖯𝖺𝗋𝖺𝗆 (ℓ ℓ′ ∶ 𝖴𝖫𝖾𝗏𝖾𝗅) ∶ 𝒰 (𝗅𝗌𝗎𝖼 (𝗅𝗆𝖺𝗑 ℓ ℓ′)) 𝗐𝗁𝖾𝗋𝖾
𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍𝗈𝗋 𝗅𝖺𝗆𝖻𝖽𝖺𝖯𝖺𝗋𝖺𝗆
𝖿𝗂𝖾𝗅𝖽

𝖦𝗇𝖽 ∶ 𝒰𝟢
𝖦𝗇𝖽–𝗂𝗌𝖣𝗂𝗌𝖼 ∶ 𝗂𝗌𝖣𝗂𝗌𝖼𝗋𝖾𝗍𝖾 𝖦𝗇𝖽
𝖢𝗈𝗇𝗌𝗍 ∶ 𝒰𝟢
𝖼𝗍𝗒𝗉𝖾 ∶ 𝖢𝗈𝗇𝗌𝗍 → 𝖦𝗇𝖽

▹
The following sections all assume that such a parametrization has been given.

5.2 Types
The types of 𝜆→ can be either constructed by taking ground types or by forming a
function type between two other types.

36

Definition 5.2. A type of 𝜆 → is either an element of 𝖦𝗇𝖽 (𝜄), or a pair of types
(_⇒_).

𝖽𝖺𝗍𝖺 𝖳𝗒 ∶ 𝒰𝟢 𝗐𝗁𝖾𝗋𝖾
𝜄 ∶ 𝖦𝗇𝖽 → 𝖳𝗒
⇒ ∶ 𝖳𝗒 → 𝖳𝗒 → 𝖳𝗒

▹

The typing of terms depends on what context they appear in. In order to describe a
context, it is sufficient to state what variables are in scope and what their types are. Here
we give the definition of a context. Its meaning will be explained in the next section.

Definition 5.3. A context is given by a finite list of types:

𝖢𝗍𝗑 ∶ ℕ → 𝒰𝟢
𝖢𝗍𝗑 𝑛 ..≡ 𝖥𝗂𝗇 𝑛 → 𝖳𝗒

▹

5.3 Terms

Just like types, terms are defined as an inductive data type. Consequently, 𝜆→ programs
can be constructed directly in Agda by constructing an element of this type.

Definition 5.4. The terms of 𝜆→ are defined as follows:

𝖽𝖺𝗍𝖺 𝖳𝖾𝗋𝗆 ∶ 𝒰𝟢 𝗐𝗁𝖾𝗋𝖾
𝖼𝖼𝗈𝗇𝗌𝗍 ∶ 𝖢𝗈𝗇𝗌𝗍 → 𝖳𝖾𝗋𝗆
𝖵 ∶ ℕ → 𝖳𝖾𝗋𝗆
Λ ∶ 𝖳𝗒 → 𝖳𝖾𝗋𝗆 → 𝖳𝖾𝗋𝗆
𝖺𝗉𝗉 ∶ 𝖳𝖾𝗋𝗆 → 𝖳𝖾𝗋𝗆 → 𝖳𝖾𝗋𝗆

▹

Notation. The relation of a term 𝑡 being well-typed and having the type 𝜏 in the context
Γ is written as:

Γ ⊢ 𝑡 ∶∶ 𝜏

In order to distinguish this typing relation from Agda’s own types, we use a double colon
instead of a single one.

We now discuss the different constructors of terms together with their typing rules.

Constants

The constant terms and their types depend on the parametrization of 𝜆→. A constant
term can be constructed with an element of 𝖢𝗈𝗇𝗌𝗍, its type is determined by 𝖼𝗍𝗒𝗉𝖾. As
such, the type does not depend at all on the context in which the term appears. We

37

write, for a context Γ ∶ 𝖢𝗍𝗑 𝑛:

Γ ⊢ 𝖼𝖼𝗈𝗇𝗌𝗍 𝑐 ∶∶ 𝜄 (𝖼𝗍𝗒𝗉𝖾 𝑐)

Remark. This presents a derivation rule, describing how the typing relation _ ⊢ _ ∶∶ _
should behave. From the hypothesis (above the line), the conclusion (below the line)
can be derived. For simplicity, we do not include the conditition of elements having a
certain type when it can be inferred from their usage. For example, here, 𝑐 should be of
type 𝖢𝗈𝗇𝗌𝗍.

Variables

Variables are not represented by names, but by natural numbers, so called de Brujin
indices. These are not arbitrary, but depend on the location where the variable was
introduced. This way, we skip the notion of 𝛼-equivalence of terms, which else would be
needed in order to group terms that use different variable names but are otherwise equal
into equivalence classes. Using de Brujin indices, such an equivalence class collapses to
a unique representation.

A context is a list of variables currently in scope, represented by their type. A variable
term can be constructed with 𝖵 ∶ ℕ → 𝖳𝖾𝗋𝗆, by specifying the index in the context which
we want to access.

A variable term can contain any natural number, but it is only well-typed if there
actually is such a variable in the context. We write, for a context Γ ∶ 𝖢𝗍𝗑 𝑛:

𝑖 < 𝑛
Γ ⊢ 𝖵 𝑖 ∶∶ Γ𝑖

Abstraction

Lambda abstraction introduces a new variable into the context, which then can be used
by the term inside. Outside of the lambda, this corresponds to a function taking such
an argument.

Our version of 𝜆 → is “Church-style”. This means that, when creating a lambda
abstraction, the type of the newly introduced variable has to be explicitly stated, as
opposed to “Curry-style”, where it can be inferred by the typechecker instead. But
this would mean additional complexity in the typechecker, which we choose to avoid,
accepting the cost of slightly more verbose programs.

So, in order to construct such a lambda-abstraction-term, the constructor Λ ∶ 𝖳𝗒 →
𝖳𝖾𝗋𝗆 → 𝖳𝖾𝗋𝗆 has to be given the type of the new variable and the term for the function
body. Here we use an uppercase Λ, because the lowercase version is already taken by
Agda’s own lambda abstraction.

38

For a context Γ ∶ 𝖢𝗍𝗑 𝑛, the typing rule is given by:
(𝜎, , Γ) ⊢ 𝑡 ∶∶ 𝜏

Γ ⊢ Λ𝜎 𝑡 ∶∶ (𝜎 ⇒ 𝜏)
Remark. The new variable is inserted at the beginning of the context. This means that
the indices of all previously existing variables get incremented. As a result, the index by
which a variable has to be accessed depends on the location where it is accessed from.

Application
The constructor for function application is 𝖺𝗉𝗉 ∶ 𝖳𝖾𝗋𝗆 → 𝖳𝖾𝗋𝗆 → 𝖳𝖾𝗋𝗆. It has to be
given the term of the function and the term of the argument. Such an application is
well-typed if the type of the argument matches the domain type of the function.

For a context Γ ∶ 𝖢𝗍𝗑 𝑛, the typing rule is given by:
Γ ⊢ 𝑡 ∶∶ (𝜎 ⇒ 𝜏) Γ ⊢ 𝑠 ∶∶ 𝜎

Γ ⊢ 𝖺𝗉𝗉 𝑡 𝑠 ∶∶ 𝜏

5.4 The typechecker
Based on the typing rules formulated above, we present a typechecking algorithm for
𝜆→. It utilizes the sum type for error handling, as described in section 3.3.

For this, we need to define a type which is going to contain the error information, i.e.,
why a term was incorrectly typed.

Definition 5.5. The following type errors may occur:

𝖽𝖺𝗍𝖺 𝖳𝗒𝗉𝖾𝖤𝗋𝗋𝗈𝗋 ∶ 𝒰𝟢 𝗐𝗁𝖾𝗋𝖾
𝖤𝗋𝗋𝖳𝗒𝗉𝖾𝖬𝗂𝗌𝗆𝖺𝗍𝖼𝗁 ∶ 𝖳𝗒 → 𝖳𝗒 → 𝖳𝗒𝗉𝖾𝖤𝗋𝗋𝗈𝗋
𝖤𝗋𝗋𝖭𝗈𝖲𝗎𝖼𝗁𝖵𝖺𝗋𝗂𝖺𝖻𝗅𝖾 ∶ ℕ → 𝖳𝗒𝗉𝖾𝖤𝗋𝗋𝗈𝗋
𝖤𝗋𝗋𝖨𝗌𝖭𝗈𝖥𝗎𝗇𝖼𝗍𝗂𝗈𝗇 ∶ 𝖳𝗒𝗉𝖾𝖤𝗋𝗋𝗈𝗋

▹
During typechecking, different conditions need to be asserted. This is done in auxilliary
functions.

Definition 5.6. The auxilliary functions for typechecking are defined as follows:

(i) The function 𝗍𝖾𝗌𝗍𝖳𝗒𝗉𝖾𝖤𝗊 checks whether two given types are equal. Here, =𝗌𝗍𝗒𝗉𝖾=
is used to compare types with each other. It is a proof of 𝗂𝗌𝖣𝗂𝗌𝖼𝗋𝖾𝗍𝖾 𝖳𝗒, which itself
is derived from the requirement of ground types to be discrete.

𝗍𝖾𝗌𝗍𝖳𝗒𝗉𝖾𝖤𝗊 ∶ 𝖳𝗒 → 𝖳𝗒 → 𝖳𝗒𝗉𝖾𝖤𝗋𝗋𝗈𝗋 + ⊤
𝗍𝖾𝗌𝗍𝖳𝗒𝗉𝖾𝖤𝗊 𝜎 𝜏 𝗐𝗂𝗍𝗁 𝜎 =𝗌𝗍𝗒𝗉𝖾= 𝜏
... | 𝗒𝖾𝗌 _ ..≡ 𝗋𝗂𝗀𝗁𝗍 𝗍𝗍
... | 𝗇𝗈 _ ..≡ 𝗅𝖾𝖿𝗍 (𝖤𝗋𝗋𝖳𝗒𝗉𝖾𝖬𝗂𝗌𝗆𝖺𝗍𝖼𝗁 𝜎 𝜏)

39

(ii) The function 𝗍𝖾𝗌𝗍𝖥𝗂𝗇 checks whether a given natural number refers to a valid vari-
able. If it is valid, the corresponding index for accessing the context is returned,
or else, an error.

𝗍𝖾𝗌𝗍𝖥𝗂𝗇 ∶ (𝑛 ∶ ℕ) → (𝑖 ∶ ℕ) → 𝖳𝗒𝗉𝖾𝖤𝗋𝗋𝗈𝗋 + 𝖥𝗂𝗇 𝑛
𝗍𝖾𝗌𝗍𝖥𝗂𝗇 𝑛 𝑖 𝗐𝗂𝗍𝗁 𝖼𝗈𝗆𝗉𝖺𝗋𝖾 𝑖 𝑛
... | 𝗅𝖾𝗌𝗌 (𝑖<𝑛) ..≡ 𝗋𝗂𝗀𝗁𝗍 (𝖿𝗂𝗇 𝑖 𝑖<𝑛)
... | 𝖾𝗊𝗎𝖺𝗅 _ ..≡ 𝗅𝖾𝖿𝗍 (𝖤𝗋𝗋𝖭𝗈𝖲𝗎𝖼𝗁𝖵𝖺𝗋𝗂𝖺𝖻𝗅𝖾 𝑖)
... | 𝗀𝗋𝖾𝖺𝗍𝖾𝗋 _ ..≡ 𝗅𝖾𝖿𝗍 (𝖤𝗋𝗋𝖭𝗈𝖲𝗎𝖼𝗁𝖵𝖺𝗋𝗂𝖺𝖻𝗅𝖾 𝑖)

(iii) The function 𝗍𝖾𝗌𝗍𝖥𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖳𝗒𝗉𝖾 checks whether a given type is a function type, and
if it is, returns the domain and target types, or else, an error.

𝗍𝖾𝗌𝗍𝖥𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖳𝗒𝗉𝖾 ∶ 𝖳𝗒 → 𝖳𝗒𝗉𝖾𝖤𝗋𝗋𝗈𝗋 + (𝖳𝗒 × 𝖳𝗒)
𝗍𝖾𝗌𝗍𝖥𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖳𝗒𝗉𝖾 (𝜄 _) ..≡ 𝗅𝖾𝖿𝗍 (𝖤𝗋𝗋𝖨𝗌𝖭𝗈𝖥𝗎𝗇𝖼𝗍𝗂𝗈𝗇)
𝗍𝖾𝗌𝗍𝖥𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖳𝗒𝗉𝖾 (𝜎 ⇒ 𝜏) ..≡ 𝗋𝗂𝗀𝗁𝗍 (𝜎 , 𝜏)

▹
Definition 5.7. The typechecker of 𝜆→ is defined by two mutually recursive functions.
𝗌𝗒𝗇′ synthesizes the type of a term in a context. 𝖼𝗁𝖾𝖼𝗄′ checks whether a term has a
given type in a context. The idea for such an architecture is taken from Dunfield and
Krishnaswami [11].

𝗌𝗒𝗇′ ∶ 𝖢𝗍𝗑 𝑛 → 𝖳𝖾𝗋𝗆 → 𝖳𝗒𝗉𝖾𝖤𝗋𝗋𝗈𝗋 + 𝖳𝗒
𝖼𝗁𝖾𝖼𝗄′ ∶ 𝖢𝗍𝗑 𝑛 → 𝖳𝖾𝗋𝗆 → 𝖳𝗒 → 𝖳𝗒𝗉𝖾𝖤𝗋𝗋𝗈𝗋 + ⊤

Since our 𝜆-abstractions are “Church-style”, types can actually be fully synthesized.
This leads to a simple checking function. It only has to check whether the inferred type
of a term is equal to the stated type.

𝖼𝗁𝖾𝖼𝗄′ 𝛤 𝑡 𝜏 ..≡ 𝗌𝗒𝗇′ 𝛤 𝑡 >>= 𝗍𝖾𝗌𝗍𝖳𝗒𝗉𝖾𝖤𝗊 𝜏
The synthesizing is done as follows:

𝗌𝗒𝗇′ {𝑛} 𝛤 (Λ 𝜎 𝑡) ..≡ 𝗌𝗒𝗇′ (𝜎 , , 𝛤) 𝑡 >>= (𝜆 𝜏 → 𝗋𝗂𝗀𝗁𝗍 (𝜎 ⇒ 𝜏))
𝗌𝗒𝗇′ {𝑛} 𝛤 (𝖺𝗉𝗉 𝑡 𝑠) ..≡ 𝗌𝗒𝗇′ 𝛤 𝑡

>>= 𝗍𝖾𝗌𝗍𝖥𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝖳𝗒𝗉𝖾
>>= 𝜆 {(𝜎 , 𝜏) → 𝖼𝗁𝖾𝖼𝗄′ 𝛤 𝑠 𝜎 >> 𝗋𝗂𝗀𝗁𝗍 𝜏}

𝗌𝗒𝗇′ {𝑛} 𝛤 (𝖵 𝑖) ..≡ 𝗍𝖾𝗌𝗍𝖥𝗂𝗇 𝑛 𝑖 >>= (𝗋𝗂𝗀𝗁𝗍 ∘ 𝛤)
𝗌𝗒𝗇′ {𝑛} 𝛤 (𝖼𝖼𝗈𝗇𝗌𝗍 𝑐) ..≡ 𝗋𝗂𝗀𝗁𝗍 (𝜄 (𝖼𝗍𝗒𝗉𝖾 𝑐))

▹
We want to be able to use the 𝖥𝖨𝖱 type for expressing the fact that type checking or
synthesizing succeeds. In order to do this, we define alternative functions, taking a single
tuple as argument.

𝗌𝗒𝗇 ∶ 𝖢𝗍𝗑 𝑛 × 𝖳𝖾𝗋𝗆 → 𝖳𝗒𝗉𝖾𝖤𝗋𝗋𝗈𝗋 + 𝖳𝗒
𝗌𝗒𝗇 (𝛤 , 𝑡) ..≡ 𝗌𝗒𝗇′ 𝛤 𝑡

40

𝖼𝗁𝖾𝖼𝗄 ∶ 𝖢𝗍𝗑 𝑛 × 𝖳𝖾𝗋𝗆 × 𝖳𝗒 → 𝖳𝗒𝗉𝖾𝖤𝗋𝗋𝗈𝗋 + ⊤
𝖼𝗁𝖾𝖼𝗄 (𝛤 , 𝑡 , 𝐴) ..≡ 𝖼𝗁𝖾𝖼𝗄′ 𝛤 𝑡 𝐴

Notation. We denote successful typechecking of the term 𝑡 with the type 𝜏 in the context
Γ by Γ ⊢ 𝑡 ∶∶ 𝜏 .

⊢∶∶_ ∶ (𝛤 ∶ 𝖢𝗍𝗑 𝑛) → 𝖳𝖾𝗋𝗆 → 𝖳𝗒 → 𝒰𝟢
𝛤 ⊢ 𝑡 ∶∶ 𝜏 ..≡ 𝖥𝖨𝖱 (𝛤 , 𝑡 , 𝜏) 𝖼𝗁𝖾𝖼𝗄

5.5 Typing proofs
We show that the typechecker behaves exactly as the typing rules stated above require.
This means that, for every rule, we can prove implications up and down: from the
hypothesis to the derivation and also, from a valid derivation back to the hypothesis.

Since such derivation rules describe implications, they can be formalized using functions:

Theorem 5.8. The typechecker respects the typing rules given above.

(i) The constant rule.

𝖼𝖼𝗈𝗇𝗌𝗍⇓ ∶ ∀{𝑐 𝜏} → {𝛤 ∶ 𝖢𝗍𝗑 𝑛} → 𝜄 (𝖼𝗍𝗒𝗉𝖾 𝑐) = 𝜏
→ 𝛤 ⊢ (𝖼𝖼𝗈𝗇𝗌𝗍 𝑐) ∶∶ 𝜏

𝖼𝖼𝗈𝗇𝗌𝗍⇑ ∶ ∀{𝑐 𝜏} → {𝛤 ∶ 𝖢𝗍𝗑 𝑛} → 𝛤 ⊢ (𝖼𝖼𝗈𝗇𝗌𝗍 𝑐) ∶∶ 𝜏
→ 𝜄 (𝖼𝗍𝗒𝗉𝖾 𝑐) = 𝜏

(ii) The variable rule. Here, in the case of 𝖵⇑, the existence of an index 𝑗 can be
stipulated since we know that the natural number 𝑖 accesses a valid variable. The
property of 𝑖 < 𝑛 is implicitly contained in 𝑖 being used as an index into Γ.

𝖵⇓ ∶ ∀{𝑖 𝜏} → {𝛤 ∶ 𝖢𝗍𝗑 𝑛} → 𝛤 𝑖 = 𝜏
→ 𝛤 ⊢ 𝖵 (∘ 𝑖) ∶∶ 𝜏

𝖵⇑ ∶ ∀{𝑖 𝜏} → {𝛤 ∶ 𝖢𝗍𝗑 𝑛} → 𝛤 ⊢ (𝖵 𝑖) ∶∶ 𝜏
→ Σ (𝜆 𝑗 → (𝛤 𝑗 = 𝜏) × (∘ 𝑗 = 𝑖))

(iii) The lambda rule. Here it is useful to consider the cases of a lambda term having a
ground type (Λ⇑𝜄) or a function type (Λ⇑⇒) individually.

Λ⇓ ∶ ∀{𝑡 𝜎 𝜏} → {𝛤 ∶ 𝖢𝗍𝗑 𝑛} → (𝜎 , , 𝛤) ⊢ 𝑡 ∶∶ 𝜏
→ 𝛤 ⊢ (Λ 𝜎 𝑡) ∶∶ 𝜎 ⇒ 𝜏

Λ⇑𝜄 ∶ ∀{𝑡 𝜎 𝑐} → {𝛤 ∶ 𝖢𝗍𝗑 𝑛} → 𝛤 ⊢ (Λ 𝜎 𝑡) ∶∶ (𝜄 𝑐)
→ ⊥

41

Λ⇑⇒ ∶ ∀{𝑡 𝜎 𝜎2 𝜏} → {𝛤 ∶ 𝖢𝗍𝗑 𝑛}
→ 𝛤 ⊢ (Λ 𝜎 𝑡) ∶∶ (𝜎2 ⇒ 𝜏)
→ (𝜎2 , , 𝛤 ⊢ 𝑡 ∶∶ 𝜏) × (𝜎2 = 𝜎)

Λ⇑ ∶ ∀{𝑡 𝜎 𝜓} → {𝛤 ∶ 𝖢𝗍𝗑 𝑛}
→ (𝛤 ⊢ Λ 𝜎 𝑡 ∶∶ 𝜓)
→ Σ (𝜆 𝜏 → (𝜎 , , 𝛤 ⊢ 𝑡 ∶∶ 𝜏) × ((𝜎 ⇒ 𝜏) = 𝜓))

(iv) The application rule.

𝖺𝗉𝗉⇓ ∶ ∀{𝑠 𝑡 𝜎 𝜏} → {𝛤 ∶ 𝖢𝗍𝗑 𝑛}
→ (𝛤 ⊢ 𝑡 ∶∶ 𝜎 ⇒ 𝜏) → (𝛤 ⊢ 𝑠 ∶∶ 𝜎)
→ 𝛤 ⊢ 𝖺𝗉𝗉 𝑡 𝑠 ∶∶ 𝜏

𝖺𝗉𝗉⇑ ∶ ∀{𝑠 𝑡 𝜏} → {𝛤 ∶ 𝖢𝗍𝗑 𝑛}
→ 𝛤 ⊢ 𝖺𝗉𝗉 𝑡 𝑠 ∶∶ 𝜏
→ Σ (𝜆 𝜎 → (𝛤 ⊢ 𝑡 ∶∶ 𝜎 ⇒ 𝜏) × (𝛤 ⊢ 𝑠 ∶∶ 𝜎))

Proof. These statements are proven using the 𝖥𝖨𝖱 type and the related 𝖽𝗈𝗌𝗉𝗅𝗂𝗍♦ and
𝖾𝗏𝖺𝗅♦ functions.

The typing properties of 𝜆→ can now be used to prove further statements, such as the
following.

Theorem 5.9. If a term 𝑡 is well-typed, then its type is uniquely determined.

𝗎𝗇𝗂𝗊𝗎𝖾𝖳 ∶ ∀{𝑡 𝜏 𝜐} → {𝛤 ∶ 𝖢𝗍𝗑 𝑛} → (𝑇 ∶ 𝛤 ⊢ 𝑡 ∶∶ 𝜏) → (𝑈 ∶ 𝛤 ⊢ 𝑡 ∶∶ 𝜐)
→ 𝜏 = 𝜐

5.6 Weakening
Given a term Γ ⊢ 𝑡 ∶∶ 𝜏 , it can be modified to be valid in contexts which are weaker
than Γ, that is, contexts which contain additional variables. Using list operations, such
a weakened context is denoted by (𝑗 ↓ 𝜎) Γ, meaning the context obtained by inserting
the type 𝜎 at position 𝑗 into Γ.

Considering now the term 𝑡, we need to update it accordingly, because the variables
which it refers to in Γ have different indices in (𝑗 ↓ 𝜎) Γ. Concretely, variables 𝑉 𝑖 before
the point of insertion (𝑖 < 𝑗) are still correct. But variables with 𝑖 ≥ 𝑗 need to skip the
type 𝜎 at 𝑗.

In order to implement this, we first define translation of indices.

Definition 5.10. The up-translation of an index 𝑖 at an insertion point 𝑗 is
denoted by 𝑖 ↥ 𝑗. Depending on whether 𝑖 comes before or after 𝑗, it is either kept the
same or increased by one.

42

↥ ∶ (𝑖 𝑗 ∶ ℕ) → ℕ
↥ 𝑖 𝑗 𝗐𝗂𝗍𝗁 𝖼𝗈𝗆𝗉𝖺𝗋𝖾 𝑖 𝑗
... | 𝗅𝖾𝗌𝗌 𝑖<𝑗 ..≡ 𝑖
... | 𝖾𝗊𝗎𝖺𝗅 𝑖=𝑗 ..≡ (𝗌𝗎𝖼 𝑖)
... | 𝗀𝗋𝖾𝖺𝗍𝖾𝗋 𝑖>𝑗 ..≡ (𝗌𝗎𝖼 𝑖)

▹

This operation can now be extended to terms.

Definition 5.11. The up-translation of a term is defined by induction. Constant
terms are unaffected. For variables, the up-translation of indices is used. For lambda
abstractions, the term inside is translated, but since the lambda introduces a new variable
itself, the insertion point 𝑗 has to be incremented. For applications, both the function
and its argument are translated.

⇈ ∶ 𝖳𝖾𝗋𝗆 → ℕ → 𝖳𝖾𝗋𝗆
⇈ (𝖼𝖼𝗈𝗇𝗌𝗍 𝑥) 𝑗 ..≡ 𝖼𝖼𝗈𝗇𝗌𝗍 𝑥
⇈ (𝖵 𝑖) 𝑗 ..≡ 𝖵 (𝑖 ↥ 𝑗)
⇈ (Λ 𝜎 𝑡) 𝑗 ..≡ Λ 𝜎 (𝑡 ⇈ 𝗌𝗎𝖼 𝑗)
⇈ (𝖺𝗉𝗉 𝑓 𝑥) 𝑗 ..≡ 𝖺𝗉𝗉 (𝑓 ⇈ 𝑗) (𝑥 ⇈ 𝑗)

▹

The operation of up-translating a term is exactly what is needed when weakening a
context. This is stated as a theorem.

Theorem 5.12 (Weakening). For a term Γ ⊢ 𝑡 ∶∶ 𝜏 , well-typedness in a weakened context
(𝑗 ↓ 𝜎) Γ is achieved by up-translating 𝑡 at 𝑗.

𝗐𝖾𝖺𝗄 ∶ ∀{𝜏 𝑡} → {𝛤 ∶ 𝖢𝗍𝗑 𝑛}
→ (𝛤 ⊢ 𝑡 ∶∶ 𝜏)
→ (𝜎 ∶ 𝖳𝗒) → (𝑗 ∶ 𝖥𝗂𝗇 (𝗌𝗎𝖼 𝑛))
→ (𝑗 ↓ 𝜎) 𝛤 ⊢ (𝑡 ⇈ ∘ 𝑗) ∶∶ 𝜏

5.7 Substitution

Substitution is the operation of replacing variables in a term with their respective values.
First, the operation of simultaneously substituting all variables is encoded in a type.
Then, its effect on a term can be stated.

Definition 5.13. A simultaneous substitution of terms is encoded as an infinite
list of terms, mapping every possible index to a new term.

𝖳𝖲𝗎𝖻 ∶ 𝒰𝟢
𝖳𝖲𝗎𝖻 ..≡ ℕ → 𝖳𝖾𝗋𝗆

▹

43

Before continuing, we have to consider how substitution is going to work inside of
lambda abstractions. A lambda abstraction inserts a new variable at the front of the
context, which means that inside, all previous variables are accessed using indices that
are incremented by one. It follows that, in order to apply a substitution inside of a
lambda, we need to modify it to correctly handle the new variable names.

Definition 5.14. We call such a modification an extended substitution. It maps
the newly introduced lambda variable to itself. All other variables are mapped to terms
in the original substitution (at a decremented index), which need to be up-translated in
order to account for the new indexing.

𝖾𝗑𝗍𝖳 ∶ 𝖳𝖲𝗎𝖻 → 𝖳𝖲𝗎𝖻
𝖾𝗑𝗍𝖳 𝛿 𝗓𝖾𝗋𝗈 ..≡ 𝖵 𝟢
𝖾𝗑𝗍𝖳 𝛿 (𝗌𝗎𝖼 𝑛) ..≡ (𝛿 𝑛) ⇈ 𝟢

▹
Now the action of a simultaneous substitution on a term can be stated.

Definition 5.15. The action of a simultaneous substitution 𝛿 on a term 𝑡 is
defined by induction on 𝑡. A constant remains unchanged. A variable is replaced by the
corresponding term in 𝛿. For lambda abstractions, the term inside is substituted using
𝖾𝗑𝗍𝖳 𝛿. For applications, the substitution acts on both, the function and its argument.

[] ∶ 𝖳𝖾𝗋𝗆 → 𝖳𝖲𝗎𝖻 → 𝖳𝖾𝗋𝗆
[] (𝖼𝖼𝗈𝗇𝗌𝗍 𝑥) 𝛿 ..≡ 𝖼𝖼𝗈𝗇𝗌𝗍 𝑥
[] (𝖵 𝑖) 𝛿 ..≡ 𝛿 𝑖
[] (Λ 𝑋 𝑡) 𝛿 ..≡ Λ 𝑋 (𝑡 [𝖾𝗑𝗍𝖳 𝛿])
[] (𝖺𝗉𝗉 𝑓 𝑥) 𝛿 ..≡ 𝖺𝗉𝗉 (𝑓 [𝛿]) (𝑥 [𝛿])

▹

Typing information can be added to substitutions. For this, we consider a well-typed
term Δ ⊢ 𝑡 ∶∶ 𝜏 , to which a substitution 𝛿 is going to be applied. Since the variables of 𝑡
all have to be in Δ, these are the only entries of 𝛿 which we have to consider. It is now
natural to add the following requirement for 𝛿: All replacements terms must have the
same type as the variable which they replace. Additionally, since the replacement terms
may contain variables themselves, they all have to be valid in the same context Γ.

Such a typed substitution is called a context morphism:

Definition 5.16. A context morphism between Γ and Δ is a substitution 𝛿,
together with a proof that for every variable in Δ, its replacement term has the same
type, as checked in the context Γ.

⇉ ∶ 𝖢𝗍𝗑 𝑚 → 𝖢𝗍𝗑 𝑛 → 𝒰𝟢
⇉ 𝛤 𝛥 ..≡ Σ (𝜆 (𝛿 ∶ 𝖳𝖲𝗎𝖻) → Π (𝜆 𝑖 → 𝛤 ⊢ 𝛿 (∘ 𝑖) ∶∶ 𝛥 𝑖))

▹
For the next step, we add typing information to the extension of substitutions, giving

44

us an extension of context morphisms.

Definition 5.17. The extension of context morphisms is defined using the exten-
sion of substitions, as well as context weakening (Theorem 5.12). It has the following
type:

𝖾𝗑𝗍𝖬 ∶ {𝛤 ∶ 𝖢𝗍𝗑 𝑚} → {𝛥 ∶ 𝖢𝗍𝗑 𝑛} → (𝜎 ∶ 𝖳𝗒)
→ (𝛤 ⇉ 𝛥)
→ (𝜎 , , 𝛤) ⇉ (𝜎 , , 𝛥)

▹

Now the following theorem about substition can be stated and proven:

Theorem 5.18 (Substitution). Substituting a well typed term Δ ⊢ 𝑡 ∶∶ 𝜏 with a context
morphism 𝛿 ∶ Γ ⇉ Δ preserves well-typedness.

[]⇓ ∶ ∀{𝑡 𝜎} → {𝛤 ∶ 𝖢𝗍𝗑 𝑚} → {𝛥 ∶ 𝖢𝗍𝗑 𝑛}
→ 𝛥 ⊢ 𝑡 ∶∶ 𝜎
→ (𝛿 ∶ 𝛤 ⇉ 𝛥)
→ 𝛤 ⊢ 𝑡 [𝖿𝗌𝗍 𝛿] ∶∶ 𝜎

Proof. This proof works by induction on the term 𝑡. For the case of a lambda term, it
recursively calls itself with an extended 𝛿 (as in Definition 5.17), in order to accomodate
for the newly introduced variable.

5.8 Single substitution
Having defined simultaneous substitution, we can, as a special case of it, define single
substitution. Here, only a single variable gets replaced.

Definition 5.19. The single substitution of the 𝑗-th variable with the term 𝑡 is
denoted by 𝑗 / 𝑡.

It is defined as a simultaneous substitution, where the 𝑗-th variable is replaced with
𝑡, variables with index 𝑖 < 𝑗 are kept the same, and variables with index 𝑖 > 𝑗 are
down-translated, filling in the hole left at index 𝑗. This is done using ↧, which is defined
analogously to ↥.

/ ∶ ℕ → 𝖳𝖾𝗋𝗆 → 𝖳𝖲𝗎𝖻
/ 𝑗 𝑡 𝑖 𝗐𝗂𝗍𝗁 𝖼𝗈𝗆𝗉𝖺𝗋𝖾–𝖾𝗊 𝑖 𝑗
/ 𝑗 𝑡 𝑖 | 𝖾𝗊𝗎𝖺𝗅 _ ..≡ 𝑡
/ 𝑗 𝑡 𝑖 | 𝗇𝗈𝗍𝖾𝗊 _ ..≡ 𝖵 (𝑖 ↧ 𝑗)

▹

For the case of substituting the first variable, we define a corresponding context mor-
phism.

45

Definition 5.20. For a well-typed term 𝑇 ∶ Γ ⊢ 𝑡 ∶∶ 𝜏 , the following context morphism
can be defined.

𝖲𝗎𝖻𝟢 ∶ ∀{𝑡 𝜏} → {𝛤 ∶ 𝖢𝗍𝗑 𝑚} → (𝑇 ∶ 𝛤 ⊢ 𝑡 ∶∶ 𝜏) → 𝛤 ⇉ (𝜏 , , 𝛤)
𝖲𝗎𝖻𝟢 {𝑚} {𝑡} {𝜏} {𝛤} 𝑇 ..≡ (𝟢 / 𝑡) , 𝗉𝗋𝗈𝗈𝖿

𝗐𝗁𝖾𝗋𝖾
𝗉𝗋𝗈𝗈𝖿 ∶ (𝑖 ∶ 𝖥𝗂𝗇 (𝗌𝗎𝖼 𝑚)) → 𝛤 ⊢ (𝟢 / 𝑡) (∘ 𝑖) ∶∶ (𝜏 , , 𝛤) 𝑖

Here, the implementation of 𝗉𝗋𝗈𝗈𝖿 uses 𝑇 for the case of 𝑖 = 0, and the fact that
Γ ⊢ 𝖵 𝑖 ∶∶ Γ 𝑖 for 𝑖 > 0. ▹

5.9 Reduction
A 𝜆→ term can be executed. This means that applying a function to an argument is
evaluated by substituting the function variable with the argument. Such a process is
called 𝛽-reduction.

In this section we introduce 𝛽-reduction as a relation between terms. The definitions
are based on Twelf code found in Schürmann [21].

Definition 5.21. The single step 𝛽 reduction of a term 𝑡 to a term 𝑢 is denoted by
𝑡 ↦ 𝑢 and defined as the following inductive data type.

𝖽𝖺𝗍𝖺 _↦_ ∶ 𝖳𝖾𝗋𝗆 → 𝖳𝖾𝗋𝗆 → 𝒰𝟢 𝗐𝗁𝖾𝗋𝖾
𝗋𝖻𝖾𝗍𝖺 ∶ ∀{𝜎 𝑟 𝑠 𝑡 𝑢} → (𝑡 = 𝖺𝗉𝗉 (Λ 𝜎 𝑟) 𝑠) → (𝑢 = 𝑟 [𝟢 / 𝑠]) → 𝑡 ↦ 𝑢
𝗋𝗅𝖺𝗆 ∶ ∀{𝜎 𝑟 𝑠} → 𝑟 ↦ 𝑠 → Λ 𝜎 𝑟 ↦ Λ 𝜎 𝑠
𝗋𝖺𝗉𝗉𝟣 ∶ ∀{𝑟 𝑠 𝑡 𝑢 𝑣} → (𝑟 ↦ 𝑠) → (𝑡 = 𝖺𝗉𝗉 𝑟 𝑣) → (𝑢 = 𝖺𝗉𝗉 𝑠 𝑣) → 𝑡 ↦ 𝑢
𝗋𝖺𝗉𝗉𝟤 ∶ ∀{𝑟 𝑠 𝑡 𝑢 𝑣} → (𝑟 ↦ 𝑠) → (𝑡 = 𝖺𝗉𝗉 𝑣 𝑟) → (𝑢 = 𝖺𝗉𝗉 𝑣 𝑠) → 𝑡 ↦ 𝑢

▹
The actual reduction is performed in 𝗋𝖻𝖾𝗍𝖺, where the application of a lambda ab-

straction Λ 𝜎 𝑟 to a term 𝑠 is reduced to 𝑟 [0/𝑠]. The other constructors allow for beta
reduction to be performed inside lambda terms (𝗋𝗅𝖺𝗆) and on both sides of a function
application (𝗋𝖺𝗉𝗉𝟣 and 𝗋𝖺𝗉𝗉𝟤).

The constructor 𝗋𝗅𝖺𝗆 differs from the other three in that its output type directly
expresses the form of the resulting reduction, while everywhere else the auxilliary terms
𝑡 and 𝑢 are used, together with proofs about what form they should have. This is
necessitated by the implementation of the normalization proof mentioned in the next
section, which needs to be able to explictly transform these equalities. But since this is
not necessary for 𝗋𝗅𝖺𝗆, it can be stated here in this more concise form.
Remark. When considering the connection of type theory and logic, 𝛽-reduction corre-
sponds to cut-elimination [12].

46

Definition 5.22. The multi step 𝛽 reduction of a term 𝑡 to a term 𝑢 is denoted by
𝑡 ↦∗ 𝑢 and defined as a sequence of single step reductions.

𝖽𝖺𝗍𝖺 _↦∗_ ∶ 𝖳𝖾𝗋𝗆 → 𝖳𝖾𝗋𝗆 → 𝒰𝟢 𝗐𝗁𝖾𝗋𝖾
𝗋𝗂𝖽 ∶ ∀{𝑡} → 𝑡 ↦∗ 𝑡
∙∘ ∶ ∀{𝑟 𝑠 𝑡} → 𝑟 ↦ 𝑠 → 𝑠 ↦∗ 𝑡 → 𝑟 ↦∗ 𝑡

▹

Evaluating a term should not change its type. This is formulated as a theorem.

Theorem 5.23. For every well-typed term 𝑡, the term 𝑢 obtained by a single reduction
step is also well-typed.

𝖩𝖲𝗍𝖾𝗉 ∶ ∀{𝑡 𝑢 𝜏} → {𝛤 ∶ 𝖢𝗍𝗑 𝑛} → (𝑡 ↦ 𝑢) → 𝛤 ⊢ 𝑡 ∶∶ 𝜏 → 𝛤 ⊢ 𝑢 ∶∶ 𝜏

Proof. This proof works by induction on the constructors of reduction. For the case of
𝗋𝖻𝖾𝗍𝖺, Theorem 5.18 is be used.

5.10 Normal form

A term is called normal if it cannot be reduced any further [19]. Consequently, an
important goal for a type theory is to be normalizing, i.e., for every term in it to have
a normal form.

More practically, we want to have a reduction algorithm for 𝜆→ which can be used to
evaluate terms. Proving that such an algorithm terminates would imply normalization.

But since in Agda all functions have to be terminating, and a termination proof for an
algorithm like stated in Sestoft [23] seems to be to be too complex to be automatically
derived by the Agda typechecker, we cannot even define this algorithm without resorting
to macros which disable the termination checker.

Because of this, we approach this problem by first proving normalization for terms
of 𝜆→. Such a proof, being necessarily constructive, gives us a reduction algorithm for
free.

The proof we use is an adaptation of Abel’s proof of Normalization for the Simply-
Typed Lambda-Calculus in Twelf [1]. It is not repeated here - only the necessary defini-
tions and conclusions are stated.

The proof works by taking the well-typedness of the term which is being reduced
into account. As a result, the definition of a term in normal form also contains typing
information.

Definition 5.24. A term in typed normal form is defined by two mutually inductive
datatypes.

𝖽𝖺𝗍𝖺 _⊢_↓_ {𝑛 ∶ ℕ} (𝛤 ∶ 𝖢𝗍𝗑 𝑛) ∶ 𝖳𝖾𝗋𝗆 → 𝖳𝗒 → 𝒰𝟢
𝖽𝖺𝗍𝖺 _⊢_↑_ {𝑛 ∶ ℕ} (𝛤 ∶ 𝖢𝗍𝗑 𝑛) ∶ 𝖳𝖾𝗋𝗆 → 𝖳𝗒 → 𝒰𝟢

47

We write Γ ⊢ 𝑡 ↓ 𝜏 if 𝑡 is normal and neutral, i.e., if it is either a variable (𝗇𝖾−𝗏𝖺𝗋)
or a constant (𝗇𝖾−𝖼𝗈𝗇𝗌𝗍), or if it is an application (𝗇𝖾−𝖺𝗉𝗉) where the function term
is neutral (and as such does not contain lambda expressions) and therefore cannot be
reduced.

𝖽𝖺𝗍𝖺 _⊢_↓_ {𝑛} 𝛤 𝗐𝗁𝖾𝗋𝖾
𝗇𝖾–𝗏𝖺𝗋 ∶ (𝑖 ∶ 𝖥𝗂𝗇 𝑛) → {𝜎 ∶ 𝖳𝗒} → (𝛤 𝑖 = 𝜎) → 𝛤 ⊢ 𝖵 (∘ 𝑖) ↓ 𝜎
𝗇𝖾–𝖼𝗈𝗇𝗌𝗍 ∶ (𝑐 ∶ 𝖢𝗈𝗇𝗌𝗍) → {𝜎 ∶ 𝖳𝗒} → (𝜄 (𝖼𝗍𝗒𝗉𝖾 𝑐) = 𝜎) → 𝛤 ⊢ 𝖼𝖼𝗈𝗇𝗌𝗍 𝑐 ↓ 𝜎
𝗇𝖾–𝖺𝗉𝗉 ∶ ∀{𝑟 𝑠 𝜌 𝜎} → (𝛤 ⊢ 𝑟 ↓ (𝜎 ⇒ 𝜌)) → (𝛤 ⊢ 𝑠 ↑ 𝜎)

→ 𝛤 ⊢ (𝖺𝗉𝗉 𝑟 𝑠) ↓ 𝜌
We write Γ ⊢ 𝑡 ↑ 𝜏 if 𝑡 is normal, i.e., if it is either neutral (𝗇𝖿−𝗇𝖾) or a lambda
abstraction of a normal term (𝗇𝖿−𝗅𝖺𝗆).

𝖽𝖺𝗍𝖺 _⊢_↑_ {𝑛} 𝛤 𝗐𝗁𝖾𝗋𝖾
𝗇𝖿–𝗇𝖾 ∶ ∀{𝑡 𝜏} → (𝛤 ⊢ 𝑡 ↓ 𝜏) → 𝛤 ⊢ 𝑡 ↑ 𝜏
𝗇𝖿–𝗅𝖺𝗆 ∶ ∀{𝑠 𝜎 𝜏 𝜓} → (𝜓 = 𝜎 ⇒ 𝜏) → ((𝜎 , , 𝛤) ⊢ 𝑠 ↑ 𝜏) → 𝛤 ⊢ Λ 𝜎 𝑠 ↑ 𝜓

▹
This definition guarantees that a normal term cannot have subterms of the form

𝖺𝗉𝗉 (Λ 𝜎 𝑡) 𝑠. This is because lambda abstractions can only be formed at the outermost
level of a term or in the argument position of an application. Without such subterms,
no 𝛽-reduction can be done, making terms in normal form irreducible.

Lemma 5.25. A term in typed normal form is well-typed.

𝗇𝖿𝗃↑ ∶ ∀{𝑛 𝑡 𝐴} → {𝛤 ∶ 𝖢𝗍𝗑 𝑛} → 𝛤 ⊢ 𝑡 ↑ 𝐴 → 𝛤 ⊢ 𝑡 ∶∶ 𝐴

Proof. Since the definition of a typed normal form already captures the concept of well-
typedness, this proof is trivial.

Theorem 5.26 (Weak normalization). For every well-typed term Γ ⊢ 𝑡 ∶∶ 𝜏 there exists
a sequence of reduction steps 𝑡 ↦ ∗𝑢 to a term in normal form Γ ⊢ 𝑢 ↑ 𝜏 .

𝗇𝖿 ∶ ∀{𝑡 𝜏} → {𝛤 ∶ 𝖢𝗍𝗑 𝑛} → 𝛤 ⊢ 𝑡 ∶∶ 𝜏 → Σ (𝜆 𝑢 → (𝑡 ↦∗ 𝑢) × (𝛤 ⊢ 𝑢 ↑ 𝜏))

Proof. Omitted.

Remark. This is a proof of weak normalization. Strong normalization would imply that
every sequence of reduction steps terminates.

The normalization algorithm for 𝜆→ is defined as follows:

Definition 5.27. The normal form of a well-typed term 𝑡 is the term 𝑢 whose exis-
tence was proven above.

𝗇𝗈𝗋 ∶ ∀{𝑡 𝜏} → {𝛤 ∶ 𝖢𝗍𝗑 𝑛} → 𝛤 ⊢ 𝑡 ∶∶ 𝜏 → 𝖳𝖾𝗋𝗆
𝗇𝗈𝗋 𝑇 ..≡ 𝖿𝗌𝗍 (𝗇𝖿 𝑇)

▹

48

Using this, a notion of equality between terms can be introduced:

Definition 5.28. Two terms are said to be 𝛽-equal if their normal forms are equal.

=𝛽= ∶ ∀{𝑡 𝑢 𝜏} → {𝛤 ∶ 𝖢𝗍𝗑 𝑛} → (𝛤 ⊢ 𝑡 ∶∶ 𝜏) → (𝛤 ⊢ 𝑢 ∶∶ 𝜏) → 𝒰𝟢
=𝛽= 𝑇 𝑈 ..≡ 𝗇𝗈𝗋 𝑇 = 𝗇𝗈𝗋 𝑈

▹

Remark. This is the concept behind the definitional equality (≡) which was mentioned
in chapter 2.

5.11 Example: Church numerals

As an example of working in 𝜆→, we present a small formalization of natural numbers,
using Church numerals [22].

We choose 𝖡𝗈𝗈𝗅 as the type of ground types and also as the type of constants, mapped
via the identity function.

𝗉𝖺𝗋𝖺𝗆 ∶ 𝖫𝖺𝗆𝖻𝖽𝖺𝖯𝖺𝗋𝖺𝗆 𝑖 𝑗
𝗉𝖺𝗋𝖺𝗆 ..≡ 𝗅𝖺𝗆𝖻𝖽𝖺𝖯𝖺𝗋𝖺𝗆 𝖡𝗈𝗈𝗅 𝖡𝗈𝗈𝗅–𝗂𝗌𝖣𝗂𝗌𝖼 𝖡𝗈𝗈𝗅 𝗂𝖽𝖿

We call the two resulting types 𝛼 and 𝛽, and their only terms 𝑎 and 𝑏 respectively.

𝛼 𝛽 ∶ 𝖳𝗒
𝛼 ..≡ 𝜄 𝗍𝗋𝗎𝖾
𝛽 ..≡ 𝜄 𝖿𝖺𝗅𝗌𝖾

𝖺 𝖻 ∶ 𝖳𝖾𝗋𝗆
𝖺 ..≡ 𝖼𝖼𝗈𝗇𝗌𝗍 𝗍𝗋𝗎𝖾
𝖻 ..≡ 𝖼𝖼𝗈𝗇𝗌𝗍 𝖿𝖺𝗅𝗌𝖾

For better legibility when constructing terms, we introduce the following notation:

⇨ ..≡ Λ
$..≡ 𝖺𝗉𝗉

Since the normalization algorithm only works on well-typed terms, we do not work
directly with terms, but with proofs of their well-typedness. Therefore, we also introduce
a shorter notation for applying a well-typed function to a well-typed term:

..≡ 𝖺𝗉𝗉⇓
Now the identity function on 𝛼 can be written as follows:

𝗂𝖽𝛼 ∶ [] ⊢ 𝛼 ⇨ 𝖵 𝟢 ∶∶ 𝛼 ⇒ 𝛼
𝗂𝖽𝛼 ..≡ 𝗍𝗍 , 𝖿𝗂𝗋, 𝗋𝖾𝖿𝗅

And, given a well-typed constant 𝖺𝖺:

𝖺𝖺 ∶ [] ⊢ 𝖺 ∶∶ 𝛼

49

𝖺𝖺 ..≡ 𝗍𝗍 , 𝖿𝗂𝗋, 𝗋𝖾𝖿𝗅
We can show that applying the identity function to it does nothing:

𝗍𝗁𝟣 ∶ 𝗂𝖽𝛼 # 𝖺𝖺 =𝛽= 𝖺𝖺
𝗍𝗁𝟣 ..≡ 𝗋𝖾𝖿𝗅

The natural numbers are defined as higher order functions. The 𝑛-th numeral is
encoded as the function which maps a function 𝑓 to its 𝑛-times repeated composition
with itself, 𝑓 ↦ 𝑓𝑛. We call this type 𝖭𝖭.

𝖭𝖭 ∶ 𝖳𝗒
𝖭𝖭 ..≡ (𝛼 ⇒ 𝛼) ⇒ (𝛼 ⇒ 𝛼)

The first 4 natural numbers are defined as follows:

𝗇𝟢 ∶ [] ⊢ (𝛼 ⇒ 𝛼) ⇨ (𝛼) ⇨ 𝖵 𝟢 ∶∶ 𝖭𝖭
𝗇𝟣 ∶ [] ⊢ (𝛼 ⇒ 𝛼) ⇨ (𝛼) ⇨ 𝖵 𝟣 $ 𝖵 𝟢 ∶∶ 𝖭𝖭
𝗇𝟤 ∶ [] ⊢ (𝛼 ⇒ 𝛼) ⇨ (𝛼) ⇨ 𝖵 𝟣 $ (𝖵 𝟣 $ 𝖵 𝟢) ∶∶ 𝖭𝖭
𝗇𝟥 ∶ [] ⊢ (𝛼 ⇒ 𝛼) ⇨ (𝛼) ⇨ 𝖵 𝟣 $ (𝖵 𝟣 $ (𝖵 𝟣 $ 𝖵 𝟢)) ∶∶ 𝖭𝖭

They all typecheck correctly:

𝗇𝟢 ..≡ 𝗍𝗍 , 𝖿𝗂𝗋, 𝗋𝖾𝖿𝗅
𝗇𝟣 ..≡ 𝗍𝗍 , 𝖿𝗂𝗋, 𝗋𝖾𝖿𝗅
𝗇𝟤 ..≡ 𝗍𝗍 , 𝖿𝗂𝗋, 𝗋𝖾𝖿𝗅
𝗇𝟥 ..≡ 𝗍𝗍 , 𝖿𝗂𝗋, 𝗋𝖾𝖿𝗅

We can define a successor function:

𝗇𝗌𝗎𝖼 ∶ [] ⊢ 𝖭𝖭 ⇨ (𝛼 ⇒ 𝛼) ⇨ 𝛼 ⇨ 𝖵 𝟣 $ (𝖵 𝟤 $ 𝖵 𝟣 $ 𝖵 𝟢) ∶∶ 𝖭𝖭 ⇒ 𝖭𝖭
𝗇𝗌𝗎𝖼 ..≡ 𝗍𝗍 , 𝖿𝗂𝗋, 𝗋𝖾𝖿𝗅

And check that 𝗌𝗎𝖼(𝗌𝗎𝖼 0) = 2.

𝗍𝗁𝟤 ∶ 𝗇𝗌𝗎𝖼 # (𝗇𝗌𝗎𝖼 # 𝗇𝟢) =𝛽= 𝗇𝟤
𝗍𝗁𝟤 ..≡ 𝗋𝖾𝖿𝗅

We can also define addition and multiplication:

++ ∶ [] ⊢ 𝖭𝖭 ⇨ 𝖭𝖭 ⇨ (𝛼 ⇒ 𝛼) ⇨ 𝛼 ⇨ (𝖵 𝟥 $ 𝖵 𝟣) $ (𝖵 𝟤 $ 𝖵 𝟣 $ 𝖵 𝟢)
∶∶ 𝖭𝖭 ⇒ 𝖭𝖭 ⇒ 𝖭𝖭

++ ..≡ 𝗍𝗍 , 𝖿𝗂𝗋, 𝗋𝖾𝖿𝗅

∗∗ ∶ [] ⊢ 𝖭𝖭 ⇨ 𝖭𝖭 ⇨ (𝛼 ⇒ 𝛼) ⇨ 𝛼 ⇨ (𝖵 𝟥 $ (𝖵 𝟤 $ 𝖵 𝟣) $ 𝖵 𝟢)
∶∶ 𝖭𝖭 ⇒ 𝖭𝖭 ⇒ 𝖭𝖭

∗∗ ..≡ 𝗍𝗍 , 𝖿𝗂𝗋, 𝗋𝖾𝖿𝗅
And test their properties.

𝗍𝗁𝟥 ∶ (++ # 𝗇𝟣 # 𝗇𝟤) =𝛽= 𝗇𝟥
𝗍𝗁𝟥 ..≡ 𝗋𝖾𝖿𝗅

50

𝗍𝗁𝟦 ∶ (∗∗ # 𝗇𝟢 # 𝗇𝟣) =𝛽= 𝗇𝟢
𝗍𝗁𝟦 ..≡ 𝗋𝖾𝖿𝗅

𝗍𝗁𝟧 ∶ (∗∗ # 𝗇𝟤 # 𝗇𝟥) =𝛽= (++ # 𝗇𝟥 # 𝗇𝟥)
𝗍𝗁𝟧 ..≡ 𝗋𝖾𝖿𝗅

Remark. Here, # is used to apply the functions ++ and ∗∗ to two arguments.
All of these correct statements typecheck, while false propositions would not. This

shows that 𝜆→ is powerful enough to encode basic arithmetic.

51

6 Interpretation
In this chapter we present categorical semantics for the simply typed 𝜆-calculus by giving
an interpretation into cartesian closed categories. The definitions and the structure of
the theorems, as well as the core ideas for proving them are taken from Pitts [20].

6.1 Parametrization
In order to formulate an interpretation, we need to choose a parametrization for 𝜆→, as
well as a corresponding CCC into which it can be interpreted. Such a choice is again
encoded in a parametrization.

Definition 6.1. A parametrization of the interpretation is given by the following
record:

𝗋𝖾𝖼𝗈𝗋𝖽 𝖨𝖯𝖺𝗋𝖺𝗆 (𝑖 𝑗 ∶ 𝖴𝖫𝖾𝗏𝖾𝗅) ∶ 𝒰 (𝗅𝗌𝗎𝖼 (𝗅𝗆𝖺𝗑 𝑖 𝑗)) 𝗐𝗁𝖾𝗋𝖾
𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍𝗈𝗋 𝗂𝖯𝖺𝗋𝖺𝗆

It contains a parametrization of 𝜆→,

𝖿𝗂𝖾𝗅𝖽
𝗉𝖺𝗋𝖺𝗆 ∶ 𝖫𝖺𝗆𝖻𝖽𝖺𝖯𝖺𝗋𝖺𝗆 𝑖 𝑗

a cartesian closed category 𝒞,

𝖿𝗂𝖾𝗅𝖽
𝒞 ∶ 𝖢𝖺𝗍𝖾𝗀𝗈𝗋𝗒 𝑖 𝑗
𝖢𝖢𝖢 ∶ 𝗂𝗌𝖢𝖢𝖢 𝒞

a function 𝖬, relating ground types of 𝜆→ to objects in 𝒞, and a function 𝖬𝖼, relating
constants to global sections of their respective type.

𝖿𝗂𝖾𝗅𝖽
𝖬 ∶ 𝖦𝗇𝖽 → 𝖮𝖻𝗃
𝖬𝖼 ∶ (𝑐 ∶ 𝖢𝗈𝗇𝗌𝗍) → 𝟏 ⇁ (𝖬 (𝖼𝗍𝗒𝗉𝖾 (𝑐)))

▹
Remark. A global section of an object 𝐴 is simply a morphism 1 ⇁ 𝐴.

6.2 Definition
The interpretation is divided into four seperate functions: the interpretation of types
(𝖳⟦_⟧), of contexts (𝖢⟦_⟧), of typing judgements (𝖩⟦_⟧) and of context morphisms

52

(𝖬⟦_⟧).
Definition 6.2. A type of 𝜆→ is interpreted as an object of 𝒞. For ground types, 𝖬
is used. Function types are mapped to exponential objects.

𝖳⟦_⟧ ∶ 𝖳𝗒 → 𝖮𝖻𝗃
𝖳⟦_⟧ (𝜄 𝑥) ..≡ 𝖬 𝑥
𝖳⟦_⟧ (𝐴 ⇒ 𝐵) ..≡ 𝖳⟦ 𝐵 ⟧ ̂ 𝖳⟦ 𝐴 ⟧

▹

Definition 6.3. A context of 𝜆 → is interpreted as the finite product of its types
(themselves interpreted first).

𝖢⟦_⟧ ∶ ∀{𝑛} → 𝖢𝗍𝗑 𝑛 → 𝖮𝖻𝗃
𝖢⟦_⟧ 𝛤 ..≡ ⨅ (𝖳⟦_⟧ ∘ 𝛤)

▹

Remark. Similarly to 𝖮=⟦ _ ⟧, which turns equalities of objects into arrows, we define
𝖳=⟦ _ ⟧ and 𝖢=⟦ _ ⟧ for equalities of types and of contexts.

Definition 6.4. A typing judgement Γ ⊢ 𝑡 ∶∶ 𝜏 is interpreted as a morphism from the
context 𝖢⟦ Γ ⟧ to the type 𝖳⟦ 𝜏 ⟧:

𝖩⟦_⟧ ∶ ∀{𝑡 𝜏} → {𝛤 ∶ 𝖢𝗍𝗑 𝑛} → (𝛤 ⊢ 𝑡 ∶∶ 𝜏) → 𝖢⟦ 𝛤 ⟧ ⇁ 𝖳⟦ 𝜏 ⟧

(i) A constant term 𝖼𝖼𝗈𝗇𝗌𝗍 𝑐 is interpreted using the terminal arrow ! and the global
section 𝖬𝖼 𝑐. Finally, since the target type of the resulting arrow must be 𝖳⟦ 𝜏 ⟧, a
type correction has to be added using 𝖳=⟦ _ ⟧.

𝖢⟦ Γ ⟧ 𝟏 𝖬 (𝖼𝗍𝗒𝗉𝖾 𝑐) 𝖳⟦ 𝜏 ⟧! 𝖬𝖼 𝑐 𝖳=⟦ 𝑝 ⟧

𝖩⟦_⟧ {𝑡 ..≡ 𝖼𝖼𝗈𝗇𝗌𝗍 𝑐} 𝑇 ..≡ 𝗅𝖾𝗍 𝑝 ..≡ 𝖼𝖼𝗈𝗇𝗌𝗍⇑ 𝑇
𝗂𝗇 ! ⋄ (𝖬𝖼 𝑐) ⋄ 𝖳=⟦ 𝑝 ⟧

(ii) A variable with index 𝑖 is interpreted by the 𝑖-th projection arrow 𝜋𝑖 𝑖, followed by
a type correction.

𝖢⟦ Γ ⟧ 𝖳⟦ Γ 𝑖 ⟧ 𝖳⟦ 𝜏 ⟧𝜋𝑖 𝑖 𝑇 =⟦Γ𝑖=𝜏⟧

𝖩⟦_⟧ {𝑡 ..≡ 𝖵 𝑥} {𝜏} 𝑇 ..≡ 𝗅𝖾𝗍 𝑖 , 𝛤 𝑖=𝜏 , _ ..≡ 𝖵⇑ 𝑇
𝗂𝗇 𝜋𝗂 𝑖 ⋄ 𝖳=⟦ 𝛤𝑖=𝜏 ⟧

(iii) A lambda abstraction Λ𝜎𝗋 is interpreted recursively: Since its type has to be a
function type (𝜓 ⇒ 𝜌), we can use Λ ⇑⇒ to get a judgement (𝜓, , Γ) ⊢ 𝑟 ∶∶ 𝜌.
Interpreting this, we get a morphism 𝖢⟦ Γ ⟧ × 𝖳⟦ 𝜓 ⟧ ⇁ 𝖳⟦ 𝜌 ⟧, which we can curry

53

to get a morphism 𝖢⟦ Γ ⟧ ⇁ 𝖳⟦ 𝜌 ⟧ ̂𝖳⟦ 𝜓 ⟧. A type correction has to be added.

𝖢⟦ Γ ⟧ 𝖢⟦ 𝗍𝖺𝗂𝗅 (𝜓, , Γ) ⟧ 𝖳⟦ 𝜌 ⟧ ̂𝖳⟦ 𝜓 ⟧ = 𝖳⟦ 𝜏 ⟧𝖢=⟦ 𝗍𝖺𝗂𝗅= 𝜓 Γ ⟧ 𝖼𝗎𝗋𝗋𝗒 𝖩⟦ 𝑅 ⟧

𝖩⟦_⟧ {𝑡 ..≡ Λ 𝜎 𝑟} {𝜄 _} 𝛬𝑅 ..≡ ⊥–𝖾𝗅𝗂𝗆 (Λ⇑𝜄 𝛬𝑅)
𝖩⟦_⟧ {𝑡 ..≡ Λ 𝜎 𝑟} {𝜓 ⇒ 𝜌} {𝛤} 𝛬𝑅 ..≡ 𝗅𝖾𝗍 𝑅 , _ ..≡ Λ⇑⇒ 𝛬𝑅

𝗂𝗇 𝖢=⟦ 𝗍𝖺𝗂𝗅= 𝜓 𝛤 ⟧ ⋄ 𝖼𝗎𝗋𝗋𝗒 𝖩⟦ 𝑅 ⟧

(iv) An application 𝖺𝗉𝗉 𝑡 𝑠 is also interpreted recursively: The typing judgements for 𝑡
and 𝑠 are interpreted individually, resulting in the morphisms 𝖢⟦ Γ ⟧ ⇁ 𝖳⟦ 𝜏 ⟧ �̂�⟦ 𝜎 ⟧
and 𝖢⟦ Γ ⟧ ⇁ 𝖳⟦ 𝜎 ⟧. These are combined using the product of morphisms and then
joined with 𝖾𝗏.

𝖢⟦ Γ ⟧ 𝖳⟦ 𝜏 ⟧ ̂𝖳⟦ 𝜎 ⟧ × 𝖳⟦ 𝜎 ⟧ 𝖳⟦ 𝜏 ⟧⟨𝖩⟦ 𝑇 ⟧ , 𝖩⟦ 𝑆 ⟧⟩ 𝖾𝗏

𝖩⟦_⟧ {𝑡 ..≡ 𝖺𝗉𝗉 𝑡 𝑠} {𝜏} 𝑇 𝑆 ..≡ 𝗅𝖾𝗍 𝜎 , 𝑇 , 𝑆 ..≡ 𝖺𝗉𝗉⇑ 𝑇 𝑆
𝗂𝗇 ⟨ 𝖩⟦ 𝑇 ⟧ , 𝖩⟦ 𝑆 ⟧ ⟩ ⋄ 𝖾𝗏

▹
Definition 6.5. A context morphism is interpreted as a finite product over the inter-
pretations of the judgements it contains.

𝖬⟦_⟧ ∶ {𝛤 ∶ 𝖢𝗍𝗑 𝑚} → {𝛥 ∶ 𝖢𝗍𝗑 𝑛} → (𝑓 ∶ 𝛤 ⇉ 𝛥) → 𝖢⟦ 𝛤 ⟧ ⇁ 𝖢⟦ 𝛥 ⟧
𝖬⟦_⟧ (𝑓 , 𝐹) ..≡ ⟪ (𝜆 𝑖 → 𝖩⟦ 𝐹 𝑖 ⟧) ⟫

▹

6.3 Properties
Having defined the interpretation functions, we can now state how they interact with
concepts like weakening and substitution.

Lemma 6.6. The context morphism of substituting the first variable with a term 𝑇 ∶ Γ ⊢ 𝑡 ∶∶ 𝜏
is like the product of 𝗂𝖽 and 𝖩⟦ 𝑇 ⟧, except that a type correction arrow is used instead of
𝗂𝖽. Using diagrams, we say that the arrow

𝖢⟦ Γ ⟧ 𝖢⟦ 𝜏, , Γ ⟧𝖬⟦ 𝖲𝗎𝖻𝟢 𝑇 ⟧

is equal to the following:

𝖢⟦ Γ ⟧ 𝖢⟦ 𝗍𝖺𝗂𝗅 (𝜏 , , Γ) ⟧ × 𝖳⟦ 𝜏 ⟧⟨𝖢=⟦ 𝗍𝖺𝗂𝗅= 𝜏 Γ ⟧ , 𝖩⟦ 𝑇 ⟧⟩

In Agda this is formalized using the following statement:

54

𝖨𝖲𝗎𝖻𝟢 ∶ ∀{𝑡 𝜏} → {𝛤 ∶ 𝖢𝗍𝗑 𝑚}
→ (𝑇 ∶ 𝛤 ⊢ 𝑡 ∶∶ 𝜏)
→ 𝖬⟦ 𝖲𝗎𝖻𝟢 𝑇 ⟧ = ⟨ 𝖢=⟦ (𝗍𝖺𝗂𝗅= 𝜏 𝛤) ⟧ , 𝖩⟦ 𝑇 ⟧ ⟩

Theorem 6.7 (Semantics of weakening). The interpretation of a weakened term 𝗐𝖾𝖺𝗄𝑇 𝜎𝑗
is equal to the morphism of type 𝖢⟦ (𝑗 ↓ 𝜎) Γ ⟧ → 𝖢⟦ Γ ⟧ which projects all types except
the 𝑗-th, followed by 𝖩⟦ 𝑇 ⟧.

𝖢⟦ (𝑗 ↓ 𝜎) Γ ⟧ 𝖢⟦ 𝜆𝑖 → (𝑗 ↓ 𝜎)Γ(𝑖 ↥𝖿 𝑗) ⟧

𝖢⟦ Γ ⟧

𝖳⟦ 𝜏 ⟧

⟪(𝜆𝑖→𝜋𝑖(𝑖 ↥𝖿 𝑗))⟫

𝖩⟦ 𝗐𝖾𝖺𝗄 𝑇 𝜎 𝑗 ⟧

𝖢=⟦ 𝗂𝗇𝗌𝖾𝗋𝗍𝖫𝖲𝗁𝗂𝖿𝗍𝖫 Γ 𝑗 𝜎 ⟧

𝖩⟦ 𝑇 ⟧

𝖨𝖶𝖾𝖺𝗄 ∶ ∀{𝑚 𝑡 𝜏} → {𝛤 ∶ 𝖢𝗍𝗑 𝑚} → (𝜎 ∶ 𝖳𝗒)
→ (𝑇 ∶ 𝛤 ⊢ 𝑡 ∶∶ 𝜏) → (𝑗 ∶ 𝖥𝗂𝗇 (𝗌𝗎𝖼 𝑚))
→ 𝖩⟦ 𝗐𝖾𝖺𝗄 𝑇 𝜎 𝑗 ⟧

=
⟪ (𝜆 𝑖 → 𝜋𝗂 {𝐴 ..≡ 𝜆 𝑘 → 𝖳⟦ ((𝑗 ↓ 𝜎) 𝛤) 𝑘 ⟧} (𝑖 ↥𝖿 𝑗)) ⟫
⋄ 𝖢=⟦ 𝗂𝗇𝗌𝖾𝗋𝗍𝖫𝖲𝗁𝗂𝖿𝗍𝖫 𝛤 𝑗 𝜎 ⟧
⋄ 𝖩⟦ 𝑇 ⟧

Remark. The function _↥𝖿_ is like _↥_, but defined for finite indices instead of natural
numbers. The term 𝗂𝗇𝗌𝖾𝗋𝗍𝖫𝖲𝗁𝗂𝖿𝗍𝖫 Γ 𝜎 𝑗 is a proof of

(𝜆𝑖 → (𝑗 ↓ 𝜎) Γ (𝑖 ↥𝖿 𝑗)) = Γ
meaning that inserting an element into a list Γ, and then building a list which skips this
element is equal to the original list.

Corollary 6.8. The interpretation of weakening can be specialized to the case where an
element is inserted at the front. Instead of the complex projection function which skips
the 𝑗-th object from before, we can simply use 𝜋1, projecting the tail of (0 ↓ 𝜎) Γ.

𝖢⟦ (0 ↓ 𝜎) Γ ⟧ 𝖢⟦ 𝗍𝖺𝗂𝗅((0 ↓ 𝜎) Γ) ⟧

𝖢⟦ Γ ⟧

𝖳⟦ 𝜏 ⟧

𝜋1

𝖩⟦ 𝗐𝖾𝖺𝗄 𝑇 𝜎 0 ⟧

𝖢=⟦ 𝗌𝗒𝗆(𝗍𝖺𝗂𝗅= 𝜎 Γ) ⟧

𝖩⟦ 𝑇 ⟧

55

𝖨𝖶𝖾𝖺𝗄𝟢 ∶ ∀{𝑡 𝜏} → {𝛤 ∶ 𝖢𝗍𝗑 𝑚} → (𝜎 ∶ 𝖳𝗒) → (𝑇 ∶ 𝛤 ⊢ 𝑡 ∶∶ 𝜏)
→ 𝖩⟦ 𝗐𝖾𝖺𝗄 𝑇 𝜎 𝖿𝗓𝖾𝗋𝗈 ⟧

=
𝜋𝟣 ⋄ 𝖢=⟦ 𝗌𝗒𝗆 (𝗍𝖺𝗂𝗅= 𝜎 𝛤) ⟧ ⋄ 𝖩⟦ 𝑇 ⟧

Proof. This statement is a special case of Theorem 6.9.

Remark. Here, 𝗍𝖺𝗂𝗅= can be used since the definitional equality 𝗍𝖺𝗂𝗅 ((𝖿𝗓𝖾𝗋𝗈 ↓ 𝜎) Γ) ≡
𝗍𝖺𝗂𝗅 (𝜎, , Γ) holds.

Lemma 6.9 (Semantics of extending a context morphism). The arrow

𝖢⟦ 𝜎, , Γ ⟧ 𝖢⟦ 𝜎, , Δ ⟧𝖬⟦ 𝖾𝗑𝗍𝖬 𝜎 𝐹 ⟧

can be split into the arrows

𝖢⟦ 𝗍𝖺𝗂𝗅 (𝜎, , Γ) ⟧ 𝖢⟦ 𝗍𝖺𝗂𝗅 (𝜎, , Δ) ⟧𝖢=⟦ 𝗌𝗒𝗆 (𝗍𝖺𝗂𝗅= 𝜎 Γ) ⟧ ⋄𝖬⟦ 𝐹 ⟧ ⋄𝖢=⟦ 𝗍𝖺𝗂𝗅= 𝜎 ∆ ⟧

and
𝖳⟦ 𝜎 ⟧ 𝖳⟦ 𝜎 ⟧𝗂𝖽

𝖨𝖾𝗑𝗍 ∶ {𝛤 ∶ 𝖢𝗍𝗑 𝑚} → {𝛥 ∶ 𝖢𝗍𝗑 𝑛} → (𝐹 ∶ 𝛤 ⇉ 𝛥) → (𝜎 ∶ 𝖳𝗒)
→ 𝖬⟦ 𝖾𝗑𝗍𝖬 𝜎 𝐹 ⟧

=
(𝖢=⟦ 𝗌𝗒𝗆 (𝗍𝖺𝗂𝗅= 𝜎 𝛤) ⟧ ⋄ 𝖬⟦ 𝐹 ⟧ ⋄ 𝖢=⟦ 𝗍𝖺𝗂𝗅= 𝜎 𝛥 ⟧) ×× 𝗂𝖽

Proof. This proof uses Corollary 6.8 in order to decompose arrows of type 𝖢⟦ 𝜎, , Γ ⟧ →
𝖳⟦ Δ 𝑖 ⟧ into 𝜋1 and an arrow of type 𝖢⟦ Γ ⟧ → 𝖳⟦ Δ 𝑖 ⟧.

Theorem 6.10 (Semantics of substitution). The interpretation of a substitution 𝑇 [𝐹] ⇓
is a composition of the interpretations of the context morphism 𝐹 and the judgement 𝑇 .

𝖢⟦ Δ ⟧ 𝖢⟦ Γ ⟧

𝖳⟦ 𝜏 ⟧

𝖬⟦ 𝐹 ⟧

𝖩⟦ 𝑇 [𝐹]⇓ ⟧
𝖩⟦ 𝑇 ⟧

𝖨𝖲𝗎𝖻 ∶ ∀{𝑡 𝜏} → {𝛤 ∶ 𝖢𝗍𝗑 𝑚} → {𝛥 ∶ 𝖢𝗍𝗑 𝑛}
→ (𝑇 ∶ 𝛤 ⊢ 𝑡 ∶∶ 𝜏)
→ (𝐹 ∶ 𝛥 ⇉ 𝛤)
→ 𝖩⟦ 𝑇 [𝐹]⇓ ⟧ = 𝖬⟦ 𝐹 ⟧ ⋄ 𝖩⟦ 𝑇 ⟧

Proof. Similar to the proof of Theorem 5.18, this proof uses Lemma 6.9 for the case of
𝑡 being a lambda term.

56

6.4 Soundness
The interpretation of 𝜆→ terms into categories should be compatible with the internal
notion of 𝛽-equality: Terms which are considered equal should have the same interpre-
tation. Such a property is called soundness.

𝛽-equality is based on reduction, therefore the main challenge is to prove that a single
reduction step does not change the interpretation of a term.

Theorem 6.11. The interpretation of a well typed term does not change after a single
reduction step.

𝖲𝗂𝗇𝗀𝗅𝖾𝖲𝗍𝖾𝗉 ∶ ∀{𝑡 𝑢 𝜏} → {𝛤 ∶ 𝖢𝗍𝗑 𝑛}
→ (𝑤 ∶ 𝑡 ↦ 𝑢)
→ (𝑇 ∶ 𝛤 ⊢ 𝑡 ∶∶ 𝜏)
→ 𝖩⟦ 𝑇 ⟧ = 𝖩⟦ 𝖩𝖲𝗍𝖾𝗉 𝑤 𝑇 ⟧

Proof. The proof works by induction on the definition of a single reduction step. The
most interesting case is that of 𝗋𝖻𝖾𝗍𝖺, it involves substition of the first variable. In order
to prove it, we have to use the properties described in Lemma 6.6 and Theorem 6.10.

By combining multiple steps, and then applying the resulting proof to the case of
normalization, the following two corollaries are obtained.

Corollary 6.12. The interpretation of a well typed term does not change after multiple
reduction steps.

𝖬𝗎𝗅𝗍𝗂𝖲𝗍𝖾𝗉 ∶ ∀{𝑡 𝑢 𝜏} → {𝛤 ∶ 𝖢𝗍𝗑 𝑛}
→ (𝑤 ∶ 𝑡 ↦∗ 𝑢)
→ (𝑇 ∶ 𝛤 ⊢ 𝑡 ∶∶ 𝜏) → (𝑈 ∶ 𝛤 ⊢ 𝑢 ∶∶ 𝜏)
→ 𝖩⟦ 𝑇 ⟧ = 𝖩⟦ 𝑈 ⟧

Corollary 6.13. The interpretation of a term and of its normal form are the same.

𝗇𝗈𝗋𝗌𝗈𝗎𝗇𝖽 ∶ ∀{𝑡 𝜏} → {𝛤 ∶ 𝖢𝗍𝗑 𝑛}
→ (𝑇 ∶ 𝛤 ⊢ 𝑡 ∶∶ 𝜏)
→ 𝖩⟦ 𝑇 ⟧ = 𝖩⟦ 𝗇𝗈𝗋⇓ 𝑇 ⟧

Finally, this can be used to show soundness.

Corollary 6.14 (Soundness). The interpretation is sound with respect to 𝛽-equality.

𝗌𝗈𝗎𝗇𝖽 ∶ ∀{𝑡 𝑢 𝜏} → {𝛤 ∶ 𝖢𝗍𝗑 𝑛}
→ (𝑇 ∶ 𝛤 ⊢ 𝑡 ∶∶ 𝜏) → (𝑈 ∶ 𝛤 ⊢ 𝑢 ∶∶ 𝜏)
→ (𝑇 =𝛽= 𝑈)
→ 𝖩⟦ 𝑇 ⟧ = 𝖩⟦ 𝑈 ⟧

57

Proof. Since the normal forms 𝗇𝗈𝗋⇓ 𝑇 and 𝗇𝗈𝗋⇓ 𝑈 are equal, so are their interpretations:

𝖩⟦ 𝗇𝗈𝗋⇓ 𝑇 ⟧ = 𝖩⟦ 𝗇𝗈𝗋⇓ 𝑈 ⟧
By applying Corollary 6.13 to both sides, this means that the interpretations of the
original terms have to be equal as well:

𝖩⟦ 𝑇 ⟧ = 𝖩⟦ 𝑈 ⟧

58

7 Discussion and further work

This shows how an implementation of 𝜆→ and its interpretation into a CCC can be
formalized in Agda.

Nevertheless, some aspects of the code are not entirely satisfactory:

• The definitions of finite types and finite lists are problematic. Their encoding was
chosen to fit the problems encountered early on. But in chapter 6, this resulted in
many correction arrows having to be added, making theorems and proofs needlessly
more complex. Also, because of how these arrows are defined, the interpretation
function for judgements does not compute.
These problems could have been avoided with a recursive definition of lists - but this
in turn would produce its own set of problems, presumably around the definition
of weakening, since there, arbitrary indices into a list have to be dealt with.
Such a conflict arises because a single definition is used everywhere, and it could
be solvable if different definitions which fundamentally describe the same object
could be used interchangebly.
Fortunately, this seems to be exactly what the concept of univalence provides and
it would be interesting to see how it can be applied here.

• The code was only written with focus on correctness, not on performance. Because
of this, evaluating the 𝛽-equality of simple terms may sometimes take multiple
minutes, while using several gigabytes of memory.
Since this evaluation is done as part of typechecking a file, using the CTT normal-
ization of Agda, it is not immediately clear what the reason for such performance
problems could be.
Still, before any practical usage can happen, this direction has to be explored as
well.

Concerning the goal of visualizing programs, this exploration of the semantics of 𝜆→
reinforces the idea that category theory and diagrams should be useful tools: it is natural
to think about computations as morphisms from a context to their result type.

But it also raises questions: Arrows have no clear representation. As encoded by
the very concept of a commutating diagram, the same computation could be visualized
using different combinations of arrows. This indicates that there is no canonical way to
represent a program diagrammatically, while at the same time, it could be possible to
leverage this fact for zooming in and out of a representation.

59

Finally, 𝜆→ is a very simple type theory, missing many of the constructions found
in real world programming languages (sum types, general data types, dependent types).
Because of this, the next natural step would be to extend it with these concepts, while
also moving to appropriate categories, where the corresponding semantics can be formu-
lated.

60

Bibliography
[1] Andreas Abel. Normalization for the simply-typed lambda-calculus in twelf.

Electronic Notes in Theoretical Computer Science, 199:3 – 16, 2008. ISSN
1571-0661. doi: https://doi.org/10.1016/j.entcs.2007.11.009. URL http://www.
sciencedirect.com/science/article/pii/S1571066108000753. Proceedings of
the Fourth International Workshop on Logical Frameworks and Meta-Languages
(LFM 2004).

[2] Agda cubical library. URL https://github.com/Saizan/cubical-demo. Ac-
cessed: 2018-04-08.

[3] Agda online documentation. URL https://agda.readthedocs.io/en/v2.5.4.1/.
Accessed: 2018-07-27.

[4] Agda prelude library. URL https://github.com/UlfNorell/agda-prelude. Ac-
cessed: 2018-05-24.

[5] Agda source code repository. URL https://github.com/agda/agda. Accessed:
2018-07-27.

[6] Steve Awodey. Category Theory. Oxford University Press, Inc., New York, NY,
USA, 2nd edition, 2010. ISBN 0199237182, 9780199237180.

[7] Felice Cardone and J Roger Hindley. History of lambda-calculus and combinatory
logic. Handbook of the History of Logic, 5:723–817, 2006.

[8] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical
type theory: a constructive interpretation of the univalence axiom. arXiv preprint
arXiv:1611.02108, 2016.

[9] Robert L. Constable. The triumph of types: Principia mathematica’s impact on
computer science. URL http://hdl.handle.net/1813/28696. Accessed: 2018-07-
28.

[10] Thierry Coquand and Christine Paulin. Inductively defined types. In Proceedings
of the International Conference on Computer Logic, COLOG ’88, pages 50–66,
London, UK, UK, 1990. Springer. ISBN 3-540-52335-9. URL http://dl.acm.org/
citation.cfm?id=646125.758641.

[11] J. Dunfield and N. R. Krishnaswami. Sound and Complete Bidirectional Typecheck-
ing for Higher-Rank Polymorphism with Existentials and Indexed Types, January
2016. arXiv:1601.05106.

61

http://www.sciencedirect.com/science/article/pii/S1571066108000753
http://www.sciencedirect.com/science/article/pii/S1571066108000753
https://github.com/Saizan/cubical-demo
https://agda.readthedocs.io/en/v2.5.4.1/
https://github.com/UlfNorell/agda-prelude
https://github.com/agda/agda
http://hdl.handle.net/1813/28696
http://dl.acm.org/citation.cfm?id=646125.758641
http://dl.acm.org/citation.cfm?id=646125.758641

[12] Herman Geuvers. Introduction to type theory. In Language Engineering and Rig-
orous Software Development, pages 1–56. Springer, Berlin, Heidelberg, 2009.

[13] Fairouz Kamareddine, Twan Laan, and Rob Nederpelt. Types in logic and
mathematics before 1940. Bull. Symbolic Logic, 8(2):185–245, 06 2002. doi:
10.2178/bsl/1182353871. URL https://doi.org/10.2178/bsl/1182353871.

[14] Elaine Landry and Jean-Pierre Marquis. Categories in context: Historical, foun-
dational, and philosophical. Philosophia Mathematica, 13(1):1–43, 2005. doi:
10.1093/philmat/nki005. URL http://dx.doi.org/10.1093/philmat/nki005.

[15] Per Martin-Löf. An intuitionistic theory of types. Twenty-five years of constructive
type theory, 36:127–172, 1998.

[16] Anders Mörtberg. Standalone implementation of cubical type theory. URL https:
//github.com/mortberg/cubicaltt. Accessed: 2018-03-18.

[17] nLab authors. database of categories. http://ncatlab.org/nlab/show/
database%20of%20categories, August 2018. Revision 27. Accessed: 2018-08-13.

[18] nLab authors. dependent type. http://ncatlab.org/nlab/show/dependent%
20type, August 2018. Revision 15. Accessed: 2018-08-04.

[19] nLab authors. normal form. http://ncatlab.org/nlab/show/normal%20form,
August 2018. Revision 2. Accessed: 2018-08-04.

[20] Andrew Pitts. Brief notes on the category theoretic semantics of simply
typed lambda calculus. URL https://www.cl.cam.ac.uk/teaching/1617/L108/
catl-notes.pdf. Accessed: 2018-06-06.

[21] Carsten Schürmann. Automating the meta theory of deductive systems. PhD thesis,
Pittsburgh, PA, USA, 2000.

[22] Peter Selinger. Lecture notes on the lambda calculus, April 2008. arXiv:0804.3434.

[23] Peter Sestoft. Demonstrating lambda calculus reduction. In The essence of compu-
tation, pages 420–435. Springer, 2002.

[24] Michael Shulman, 2018. URL https://homotopytypetheory.org/2017/09/16/
a-hands-on-introduction-to-cubicaltt/#comment-108334. Comment on blog-
post. Accessed: 2018-07-29.

[25] Micheal Shulman. Homotopical trinitarianism: A perspective on homotopy
type theory. Talk, 2018. URL https://home.sandiego.edu/~shulman/papers/
trinity.pdf. Accessed: 2018-07-28.

[26] Peter Smith. Category theory: A gentle introduction, February 2016. URL https:
//www.logicmatters.net/resources/pdfs/GentleIntro.pdf. Accessed: 2018-
07-28.

62

https://doi.org/10.2178/bsl/1182353871
http://dx.doi.org/10.1093/philmat/nki005
https://github.com/mortberg/cubicaltt
https://github.com/mortberg/cubicaltt
http://ncatlab.org/nlab/show/database%20of%20categories
http://ncatlab.org/nlab/show/database%20of%20categories
http://ncatlab.org/nlab/revision/database%20of%20categories/27
http://ncatlab.org/nlab/show/dependent%20type
http://ncatlab.org/nlab/show/dependent%20type
http://ncatlab.org/nlab/revision/dependent%20type/15
http://ncatlab.org/nlab/show/normal%20form
http://ncatlab.org/nlab/revision/normal%20form/2
https://www.cl.cam.ac.uk/teaching/1617/L108/catl-notes.pdf
https://www.cl.cam.ac.uk/teaching/1617/L108/catl-notes.pdf
https://homotopytypetheory.org/2017/09/16/a-hands-on-introduction-to-cubicaltt/#comment-108334
https://homotopytypetheory.org/2017/09/16/a-hands-on-introduction-to-cubicaltt/#comment-108334
https://home.sandiego.edu/~shulman/papers/trinity.pdf
https://home.sandiego.edu/~shulman/papers/trinity.pdf
https://www.logicmatters.net/resources/pdfs/GentleIntro.pdf
https://www.logicmatters.net/resources/pdfs/GentleIntro.pdf

[27] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foun-
dations of Mathematics. https://homotopytypetheory.org/book, Institute for
Advanced Study, 2013.

[28] Philip Wadler. Monads for functional programming. In International
School on Advanced Functional Programming, pages 24–52, Berlin, Heidel-
berg, 1995. Springer. URL http://homepages.inf.ed.ac.uk/wadler/papers/
marktoberdorf/baastad.pdf. Accessed: 2018-08-05.

63

https://homotopytypetheory.org/book
http://homepages.inf.ed.ac.uk/wadler/papers/marktoberdorf/baastad.pdf
http://homepages.inf.ed.ac.uk/wadler/papers/marktoberdorf/baastad.pdf

Erklärung der Selbstständigkeit
Hiermit versichere ich, die vorliegende Bachelorarbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet zu haben. Die Arbeit
hat in gleicher oder ähnlicher Form noch keinem anderen Prüfungsamt vorgelegen.

Hannover, den 13. August 2018

Maxim Urschumzew

	Introduction
	Formalization in Agda
	About Agda
	Introduction to Agda

	Basic constructs
	Finite type
	Finite lists
	Error handling

	Category theory
	What is a category?
	Universal properties
	Cartesian closed categories
	Finite products

	Simply typed λ-calculus
	Parametrization
	Types
	Terms
	The typechecker
	Typing proofs
	Weakening
	Substitution
	Single substitution
	Reduction
	Normal form
	Example: Church numerals

	Interpretation
	Parametrization
	Definition
	Properties
	Soundness

	Discussion and further work

