
Masterarbeit

Logics for Context-Free
Languages

Michael Thomas

14. Juli 2006

Prüfer:
Prof. Dr. Heribert Vollmer
Prof. Dr. Kurt Schneider

Institut für Theoretische Informatik
Gottfried Wilhelm Leibniz Universität Hannover

Erklärung

Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbstständig
verfasst und keine anderen Quellen und Hilfsmittel als die angegebenen
benutzt habe.

Michael Thomas

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Words and Languages . 5
2.2 Formal Logic . 5
2.3 Ehrenfeucht-Fraïssé Games 8
2.4 Grammars and Automata 11

3 Definability of Languages in FO[+] 15
3.1 Numerical Predicates Expressible in CFL 15
3.2 Introducing First-Order Logic with Addition 17

3.2.1 Logics for Regular Languages 17
3.2.2 Languages in FO[+] 21

3.3 Limitations to the Definability of FO[+] 22
3.3.1 Indefinable Languages 22
3.3.2 A general upper bound 29

3.4 Context-Free Languages and FO[+] 31
3.4.1 FO[+] and linear recursive grammars 31
3.4.2 FO[+] and finite-turn PDAs 40

3.5 Context-Free Numerical Predicates 45

4 Conclusions and Further Work 47

Bibliography 49

1

Contents

2

1 Introduction

In 1960, Büchi showed that a set is a regular language if and only if it
is the set of models of a sentence in monadic second-order logic with
successor. Since then the relation of formal language classes to first- and
second-order logic has been investigated. Their connection to boolean
circuits led to further interesting results: For example, all regular sets
definable in first-order logic with arbitrary numerical predicates are already
sets of models of sentences in first-order logic with order and the ternary
modulo-operator only, the so-called regular numerical predicates. In 1994,
Straubing surveyed that area in his book Finite Automata, Formal Logic,
and Circuit Complexity [Str74], summarizing the connection of the regular
languages to first-order logics, the circuit classes below NC1 and finite
semigroup theory.

Yet, the context-free languages—the class containing the sets of syntacti-
cally correct computer programs in common programming languages—have
solely been related to formal logics in a semantic approach by Lautemann,
Schwentick and Thérien [LST95].

The present thesis investigates the relationship of context-free languages
to an extension of first-order logic with a non-regular numerical predicate,
the addition. At first, chapter 2 will provide the necessary framework of
formal languages and logic. Chapter 3 will start with a motivation for
the choice of that logic called FO[+]. Then, examples of definable and
indefinable languages in FO[+] will be given and a general upper bound for
the definability will be derived. Furthermore, a subset of the context-free
languages, the class of linear recursive languages, is shown to be captured
by that logic; and as separation from the boolean closure of the linear
recursive languages fails, equality is conjectured. That conjecture is then
sustained by the fact that the class of context-free languages recognizable

3

1 Introduction

with finite-turn pushdown automata, a proper superclass of the linear
recursive languages, is shown not to capture FO[+] on the level of context-
free languages; therefore, it is incomparable to FO[+]. Finally, Chapter 4
concludes by briefly summarizing the results and pointing out the open
questions.

4

2 Preliminaries

The mathematical preliminaries used in this thesis mostly concern formal
logic, formal languages and finite automata. It is the intention of this
chapter to shortly recall the necessary terminology.

2.1 Words and Languages
An alphabet is a non-empty finite set of symbols. Throughout this thesis,
alphabets will usually be denoted by uppercase Greek letters Σ,∆,Γ. The
elements of an alphabet are called letters. A word (or string) over an
alphabet Σ is a finite sequence of elements of Σ. A word w will be written
in a concatenated fashion w = a1a2 · · · an, where a1, a2, . . . , an ∈ Σ are the
successive elements of the sequence. The length |w| of a word w is the
number of elements in the sequence w. The number of occurrences of the
letter a ∈ Σ in w will be denoted by |w|a. The empty sequence, called the
empty word, will be denoted by ε. For words u = u1 · · ·un, v = v1 · · · vm

the concatenation u · v or uv is defined as uv = u1 · · ·unv1 · · · vm. The
set of all strings over an alphabet Σ is denoted by the Kleene closure Σ?;
furthermore, let Σ+ = Σ? \ {ε}. A language is a subset of Σ? and will
usually be denoted by L.

2.2 Formal Logic
In order to describe properties of words in formal logic, first-order and
monadic second-order formulas will be used, with the latter being second-
order formulas wherein quantification of second-order variables is allowed
over unary second-order variables, i. e. set variables, only.

5

2 Preliminaries

A vocabulary is a finite collection of constant, relation (or predicate)
and function symbols. A structure over a vocabulary σ consists of a set U,
called universe, together with an interpretation σA of

• each constant symbol c in σ as an element cA in the universe U,

• each k-ary relation symbol R from σ as a k-ary relation RA ⊆ Uk,
and

• each k-ary function symbol f from σ as a function fA : Uk → U.

A structure like the above will be denoted by A = 〈U, σA〉, where σA

may be replaced by the symbols contained, for convenience. Further on,
elements of the universe a ∈ U will also be referred to as elements of the
structure a ∈ A; and the superscript distinguishing a symbol from its
interpretation is going to be omitted from now on—the meaning will be
clear from the context.

Let σ be a vocabulary. An atomic formula over σ is of the form
P (x1, . . . , xk), where x1, x2, . . . , xk are variables and P is a k-ary predi-
cate symbol in σ. For example, for a variable x and a letter b, Qb(x) is
an atomic formula. First-order formulas over σ are build from atomic
formulas in the usual way, using the connectives and (∧), or (∨), negation
(¬) and universal (∀x) and existential (∃x) quantifiers. Second-order for-
mulas are build analogously, additionally using second-order quantification
over relations (∃X, ∀X). Variable occurrences that are quantified will
be called bound; occurrences of unbound variables also will be called free.
If x1, . . . , xk are all the free first-order variables and X1, . . . , Xl are all
the free second-order variables of a formula ϕ, then it will be denoted by
ϕ(x1, . . . , xk, X1, . . . , Xl). A sentence is a formula without free first- and
second-order variables. A structure A over the vocabulary σ is said to
model a sentence ϕ over σ, written A |= ϕ, if ϕ is satisfied by interpreting
each symbol in σ by its interpretation σA. Two formulas ϕ1, ϕ2 are said to
be (logically) equivalent if A |= ϕ1 ⇐⇒ A |= ϕ2 for all structures A; this
will be written ϕ1 ≡ ϕ2.

6

2.2 Formal Logic

Moreover, in first-order and monadic second-order logic, every occurrence
of a k-ary function f : Uk → U can be substituted by a k + 1-ary predicate
Rf = {(x, f(x)) |x ∈ Uk} so that the original and modified formula is
equivalent, hence vocabularies may be restricted to constant and predicate
symbols, the relational vocabularies.

Let Σ be an alphabet. Each word w = a1a2 · · · an ∈ Σ? is identified
with a structure over a relational vocabulary σ, called the word model
w, that consists of the universe U = {1, . . . , n} (roughly speaking the
set of positions in w) and an interpretation σw of the symbols in σ. If
w = w1 · · ·wn is a word over an alphabet Σ, then the vocabulary σ of the
word model w will always contain the unary predicate symbols Qa, a ∈ Σ,
with the fixed interpretation

w |= Qa(x) ⇐⇒ wx = a

for x ∈ {1, . . . , n}, and the binary predicate symbol = with the usual
interpretation

w |= x = y ⇐⇒ x = y

for x, y ∈ {1, . . . , n}. For example, over Σ = {a,b}, the word ababb
corresponds to the word model ababb = 〈{1, 2, 3, 4, 5},=, Qa, Qb〉, where
Qa = {1, 3} and Qb = {2, 4, 5}. Since the main interest of this thesis is
almost exclusively on word models, the predicate symbols Qa, a ∈ Σ, and
= will be omitted when vocabularies are written out. Hence, the above
word model over a vocabulary σ containing the symbols Qa, <, + and =
will be denoted by 〈{1, 2, 3, 4, 5},+, <〉.

A special kind of structures will be defined in order to ease handling of
formulas with free variables: Let w be a word model over the vocabulary σ
and V a structure with the same universe over a vocabulary σ′, distinct from
σ, consisting only of constant symbols. A (w, V)-structure is a structure
over symbols of both vocabularies, a vocabulary denoted by σ ∪ σ′, in
which every symbol from σ is interpreted as in w and every constant in σ′

in interpreted as in V . Then, for any formula ϕ(x1, . . . , xk) over σ there
exists a formula φ over an vocabulary σ ∪ σ′ with k new constant symbols

7

2 Preliminaries

c1, . . . , ck, that is built from ϕ by replacing each free variable xi, 1 ≤ i ≤ k,
by the constant symbol ci, such that for all a1, . . . , ak ∈ {1, . . . , |w|}

w |= ϕ(a1, . . . , ak) ⇐⇒ (w, V) |= φ,

with cV
i = ai, 1 ≤ i ≤ k; for the sake of clarity, (w, V) will also be written

with as (w,~c). Then (w, V) can be interpreted as a word

(w1, V1) · · · (wn, Vn)

over the alphabet Σ×P({ci | 1 ≤ i ≤ k}), where w = w1 · · ·wn and V1∪· · ·∪
Vn is the partitioning of {ci|1 ≤ i ≤ k} that satisfies cV

i = ai ⇒ ci ∈ Vai .
This notation will prove useful when defining numerical relations through
automata.

To improve legibility, the predicate symbols possessing arithmetic
equivalents will be written in the natural fashion. For example, the
predicate symbols <, = will be written in infix notation; the successor
predicate will be denoted by x + 1 = y, for variables x, y.

Let ϕ be a sentence. The language defined by ϕ is

L(ϕ) =
{
w ∈ Σ∗ ∣∣ w |= ϕ

}
.

The class of all languages definable by a first-order formula over a vocabu-
lary σ is denoted by FO[σ]. Analogously, the class of all languages definable
in monadic second-order will be denoted by MSO[σ]. Occasionally FO[σ]
and MSO[σ] will also be used to refer to the underlying logic.

2.3 Ehrenfeucht-Fraïssé Games
Ehrenfeucht-Fraïssé games are a powerful tool to gain inexpressibility
results for first-order logic. The game is played in rounds by two players,
the spoiler and the duplicator. Given a pair of structures (A,B), the
spoiler will try to show these structures are different while the duplicator
will try to show they are the same. In an r-round game each round i,
1 ≤ i ≤ r, consists of the following steps:

8

2.3 Ehrenfeucht-Fraïssé Games

1. The spoiler chooses a structure (A or B) and picks an element ai ∈ A

or bi ∈ B.

2. The Duplicator responds by picking an element in the other structure,
bi ∈ B or ai ∈ A, respectively.

Over strings one can interpret a player’s move as the placement of a
pebble on that position. To define the winner of a game, the notation of
partial isomorphisms is required:

Definition 2.1. Given two structure A,B over the same relational vocab-
ulary σ and tuples ~a = (a1, · · · ar) in A and ~b = (b1, · · · br) in B, (~a,~b)
defines a partial isomorphism between A and B if

• for all 1 ≤ i, j ≤ r, ai = aj iff bi = bj,

• for every constant symbol c from σ and all 1 ≤ i ≤ r, ai = cA
i iff

bi = cB
i , and

• for every k-ary predicate symbol P from σ and all ij ∈ [1, r], 1 ≤
j ≤ k,

(ai1 , . . . , aik) ∈ PA iff (bi1 , . . . , bik) ∈ PB.

Returning to Ehrenfeucht-Fraïssé game, the duplicator wins the r-round
game with moves ~a in A and moves~b ∈ B if and only if ((~a,~cA), (~b,~cB)) is a
partial isomorphism between the structures A and B, where ~c = (c1, . . . , ck)
is the tuple of all constant symbols in σ, the vocabulary of the structures.
If the duplicator can win the r-round game on the pair of σ-structures
(A,B), he is said to have a winning strategy (in the σ-game on (A,B));
this will be denoted by A ∼σ

r B. If the vocabulary is clear from the context,
the superscript σ will be omitted.

Informally an Ehrenfeucht-Fraïssé game is won by the duplicator if he
can respond to the moves of the spoiler in such a way that, after each
round, the pebbles placed in the first structure and the pebbles placed in
the second structure behave in exactly the same way with respect to the
predicates in the vocabulary.

9

2 Preliminaries

Let the quantifier rank of a formula ϕ denote the maximum depth of
quantifier nesting in ϕ. Two structures A and B are said to agree on a set
S of formulas if for all ϕ ∈ S : A |= ϕ ⇐⇒ B |= ϕ.

Proposition 2.2 (Ehrenfeucht-Fraïssé, cf. [Lib04]). Let A and B be struc-
tures over the vocabulary σ. Then A ∼σ

r B if and only if A and B agree
on all ϕ ∈ FO[σ] with quantifier rank ≤ r.

Hence, ∼σ
r can also be interpreted as an equivalence relation on structures.

Within this interpretation each move in a game corresponds to an operation
introducing a new constant symbol: Given a pair of structures (A,B) and
the player’s moves ~a and ~b, an r-round Ehrenfeucht-Fraïssé game generates
a family of structures ((Ai,Bi))0≤i≤r, where (A0,B0) = (A,B) and, for
0 ≤ i < r, (Ai+1,Bi+1) is obtained from (Ai,Bi) by inserting the constant
symbol ci into the vocabulary and the interpretations cA

i = ai, cB
i = bi

into the structures. With this, the winning condition from above may be
reformulated: the duplicator wins a r-round Ehrenfeucht-Fraïssé game, if
Ar ∼0 Br.

To finally relate the inexpressibility of languages in first-order logic to
Ehrenfeucht-Fraïssé games, the following corollary is stated.

Corollary 2.3. Let L ⊆ Σ? be a language. Then L /∈ FO[σ] iff, for all
k ∈ N, there exist strings u ∈ L, v /∈ L such that u ∼σ

k v.

Proof. Assume there exists a k ∈ N so that for all strings u ∈ L, v /∈ L,
u �σ

k v holds. Hence, for every pair u ∈ L, v /∈ L, there is a formula ϕu,v

with quantifier rank ≤ k such that u |= ϕu,v ⇐⇒ v 6|= ϕu,v. There are
only finitely many FO[σ]-formulas of quantifier rank ≤ k. This leads to
L(ϕ) = L for the conjunction of all such formulas ϕu,v. The opposite gives
the direction from left to right.

For the direction from right to left, let k ∈ N be an arbitrary number.
Let u ∈ L, v /∈ L be the strings with u ∼σ

k v. The latter enforces u |=
ϕ ⇐⇒ v |= ϕ for every formula ϕ of quantifier rank ≤ k. Hence, no
first-order formula over σ defines L, for k can be chosen arbitrary.

10

2.4 Grammars and Automata

Henceforth, Ehrenfeucht-Fraïssé games will be considered over word
models mostly. On account for this, the natural extension of ∼σ

k on strings
is introduced: let Σ be an alphabet and let u, v ∈ Σ?, then u ∼σ

k v ⇐⇒
u ∼σ

k v.

2.4 Grammars and Automata

Grammars are a constructive method to describing languages. A grammar
is a quadruple G = (V,Σ, P, S), where

• V is a finite set of variables (or nonterminal symbols),

• Σ is an alphabet, w. l. o. g. Σ ∩ V = ∅,

• P ⊆ (Σ∪V)+× (Σ∪V)? is a finite set of productions (or rules), and

• S ∈ N is the starting symbol.

Grammars are arranged hierarchically according to the difficulty of their
productions. The classes of that hierarchy, the Chomsky hierarchy, will be
briefly recalled: A grammar is called context-sensitive if β ∈ (Σ∪V \{S})?

and either |α| ≤ |β| or α = S for all (α, β) ∈ P . A context-sensitive
grammar is called context-free if α ∈ V for all (α, β) ∈ P ; that is P ⊆
(V × (Σ ∪ V \ {S})+) ∪ {(S, ε)}. Finally, a context-free grammar is called
regular if β ∈ Σ∪Σ · V or P ⊆ (V × (Σ∪ (Σ · V)))∪ {(S, ε)}, respectively.
We will also write α → β ∈ P instead of (α, β) ∈ P .

To define the language generated by a grammar, let α, β ∈ (V ∪ Σ)?.
β can be derived from α, written α ⇒1

G β or α ⇒G β, if α = α1Aα2,
β = α1γα2 and A → γ ∈ P for some α1, α2 ∈ (V ∪ Σ)?. Now, with
α ⇒0

G α for all α ∈ (Σ ∪ V)?, the relations ⇒i+1
G , i > 1, and ⇒?

G can
defined as

α ⇒i+1
G β ⇐⇒ ∃γ ∈ (Σ ∪ V)? : α ⇒i

G γ ∧ γ ⇒G β

11

2 Preliminaries

and the reflexive transitive closure of ⇒G, respectively. The language
generated by a grammar G = (V,Σ, P, S) is defined as

L(G) = {w ∈ Σ? |S ⇒?
G w}.

A language will be called context-sensitive/context-free/regular if it ad-
mits a context-sensitive/context-free/regular grammar. The set of all
context-sensitive/context-free/regular languages will be denoted by CSL/
CFL/REG, the class of all context-free grammars by CFG.

Aside from grammars there are formalisms to describe the language
classes with simplified computer models. A finite automaton (or FA) is a
quintuple A = (Q,Σ, δ, q0, F), where

• Q is the finite set of states,

• Σ is the finite set of the input alphabet,

• δ : Q× Σ → P(Q) is the transition function,

• q0 ∈ Q is the starting state, and

• F ⊆ Q is the set of final states.

The extended transition function δ̂ : Q×Σ? → P(Q) is defined inductively
by δ̂(q, a) = δ(q, a) for q ∈ Q, a ∈ Σ and δ̂(q, aw) = δ̂(δ(q, a), w) for
q ∈ Q, a ∈ Σ, w ∈ Σ?. The language accepted by a FA A is defined as

L(A) = {w ∈ Σ? | δ̂(q0, w) ∩ F 6= ∅}.

The set of all languages accepted by finite automata equals the set of
regular languages.

A pushdown automata (or PDA) is a septuple P = (Q,Σ,Γ, δ, q0,⊥, F),
where

• Q is the finite set of states,

• Σ is the finite set of the input alphabet,

12

2.4 Grammars and Automata

• Γ is the finite set of the stack alphabet,

• δ : Q × (Σ × {ε}) × Γ → P(Q× Γ?), with |δ(q, a, A)| finite for all
q ∈ Q, a ∈ Σ, A ∈ Γ, is the transition function,

• q0 ∈ Q is the starting state,

• ⊥ ∈ Γ is the initial stack symbol, and

• F ⊆ Q is the set of final states.

Just like finite automata, pushdown automata are used to decide mem-
bership in languages in the sense that accepted words belong to it. But
contrary to finite automata, pushdown automata have the ability to store
information on a stack. Since this information influences their behavior
on strings, a formalism beyond δ̂ is required that takes the stack into
consideration.

A configuration of a PDA P is a triple (q, w, α) ∈ Q×Σ?×Γ?, where q is
the state that P is in, w is the rest of the input word and α = A1 · · ·An ∈ Γ?

is the contents of the stack with A1 being on top. The behavior of P
is then described using the transition relation 7−−P induced by δ: Let
(q, aw, Aα) and (q′, w, βα) be configurations of P , where a ∈ Σ ∪ {ε}, w ∈
Σ?, A ∈ Γ, α, β ∈ Γ?, then

(q, aw, Aα) 7−−P (q′, w, βα) ⇐⇒ (q′, β) ∈ δ(q, a, A).

The reflexive transitive closure of 7−−P will be denoted by 7−−?
P .

Given a PDA P and a word w, called input word, P is initialized in
configuration (q0, w,⊥); w is accepted by P if and only if (q0, w,⊥) 7−−?

P

(q0, ε, γ) for some γ ∈ Γ?. The language accepted by P is the set

L(P) = {w ∈ Σ? | (q0, w,⊥) 7−−?
P (q0, ε, γ), γ ∈ Γ?}.

It holds that the class of languages acceptable with PDAs is exactly CFL.
If a PDA P satisfies

|δ(q, a, A)|+ |δ(q, ε, A)| ≤ 1,

13

2 Preliminaries

for all q ∈ Q, a ∈ Σ, A ∈ Γ, then P is said to be deterministic. The set of
languages accepted by deterministic PDAs will be denoted DCFL, the set
of all deterministic context-free languages.

Let q, q′ ∈ Q, a ∈ Σ, A, B1, · · · , Bk ∈ Γ. A transition (q′, B1 · · ·Bk) ∈
δ(q, a, A) with k > 1 is equivalent to the stack operation push(B1 · · ·Bk)
(i. e. an operation, in which the string B1 · · ·Bk is put on top of a stack);
a transition (q′, ε) ∈ δ(q, a, A) is equivalent to the stack operation pop(A)
(i. e. an operation that removes the topmost symbol). A turn in the
operation of a PDA P is a transition c′ 7−−P c′′ such that c 7−−P c′ 7−−P c′′,
where c 7−−P c′ is a push-operation and c′ 7−−P c′′ is a pop-operation, or
vice versa.

14

3 Definability of Languages in FO[+]

Context-free languages have been shown to coincide with the class of
languages defined by sentences of the form ∃Mϕ, where ϕ ∈ FO[<] and
M is a binary second order variable restricted to the class of matchings
[LST95].

Since this approach yields a semantic restriction on the quantification, it
is reasonable to investigate which context-free languages can be captured
by first-order logic without semantic restrictions when extended with a
numerical predicate that can relate positions in a similar way as matchings
do. Proper candidates are numerical predicates definable in CFL; this
preserves the possibility of showing equality of the extended first-order
logic with the subclass of CFL to identify later on.

3.1 Numerical Predicates Expressible in CFL

Let Σ be an alphabet and R be a k-ary numerical relation. R is said to
be definable in REG (CFL resp.) if there is a FA A (PDA P resp.) that
accepts the set of all (w,~c)-structures satisfying R. That is in the case of
REG

L(A) =
{
(w,~c) ∈ Σ? ×P({ci | 1 ≤ i ≤ k})

∣∣ w |= R(c1, . . . , ck)
}
.

The atomic formulas x = y, Qa(x) for all a ∈ Σ, the natural order-
predicate x < y and the natural modulo-predicate x ≡ y (mod z) are
definable in REG (e. g. figure 3.1; for more information, cf. [Str74]),
whereas the natural addition x + y = z is not definable in REG:

Assume x + y = z is definable by a formula ϕ(x, y, z) ∈ FO[<] and let

15

3 Definability of Languages in FO[+]

q1

(a, ∅)

q0 q2

(a, x) (a, y)

(a, ∅)(a, ∅)

Figure 3.1: A finite automaton defining the numerical relation x < y over
Σ = {a}.

w be a word model. Then the formula

φ(x) ≡ ∃z (∀y(y ≤ z) ∧ ϕ(x, x, z)) (3.1)

is true for the position x = |w|
2 if |w| is even; φ(x) is inconsistent otherwise.

Thus the sentence

∃x (φ(x) ∧ ∀y(y ≤ x → Qa(x)) ∧ ∀y(y > x → Qb(x)))

defines the language {anbn |n > 0} /∈ REG, what contradicts the assump-
tion that addition is definable in REG. Nevertheless, the relation x+y = z
is definable in CFL:

Let Σ = {a}, w = w1 · · ·wn ∈ Σ? and V be a structure containing
the constant symbols x, y and z. Define a PDA P over the alphabet
Σ ×P({x, y, z}) such that (w1, V1) · · · (wn, Vn) is accepted if and only if
(Vi)i∈{1,...,n} is a partition of {x, y, z} and x ∈ Vi, y ∈ Vj , z ∈ Vk =⇒ i+j =
k:

P =
(
{q0, q1, q2, q3},Σ×P({x, y, z}) , {0,⊥}, δ, q0,⊥, {q3}

)
,

where
δ(q0, (a, ∅),⊥) = (q0, 0⊥),
δ(q0, (a, {x}),⊥) = (q1, 0⊥),
δ(q0, (a, {x, y}),⊥) = (q2,⊥),
δ(q0, (a, ∅), 0) = (q0, 00),
δ(q0, (a, {x}), 0) = (q1, 00),
δ(q0, (a, {x, y}), 0) = (q2, 0).

δ(q1, (a, ∅), 0) = (q1, 0),
δ(q1, (a, {y}), 0) = (q2, ε),
δ(q2, (a, ∅), 0) = (q2, ε),
δ(q2, (a, {z}),⊥) = (q3,⊥),
δ(q3, (a, ∅),⊥) = (q3,⊥),

16

3.2 Introducing First-Order Logic with Addition

On the other hand, first-order logic extended with addition over integers
yields the expressive power to capture languages in CFL. For example,
formula (3.1), with ϕ(x, x, z) replaced by x + x = z, defines {anbn |n >
0} ∈ CFL \ REG. Therefore, addition is a sensible candidate for further
investigation.

3.2 Introducing First-Order Logic with Addition
First-order logic with addition, FO[+], refers to the class of languages
definable by first-order formulas over the vocabulary +, = and Qa, for all
a ∈ Σ, where the interpretation of = and Qa is as determined in section 2.2
and the interpretation of + is the natural addition: let w ∈ Σ? and x, y, z
be constant symbols, then

(w, x, y, z) |= x + y = z ⇐⇒ x(w,x,y,z) + y(w,x,y,z) = z(w,x,y,z).

In order to relate FO[+] to other first-order logics, a brief survey of the
elementary results connecting languages and logics will be given.

3.2.1 Logics for Regular Languages

The logics to be surveyed are the first- and monadic second-order logic
with successor, FO[+1] and MSO[+1], and first-order logic together with
the natural ordering, FO[<]. The successor predicate +1 as well as the
order predicate < are hereby interpreted as

(w, x, y) |= x + 1 = y ⇐⇒ x(w,x,y) + 1 = y(w,x,y)

and
(w, x, y) |= x < y ⇐⇒ x(w,x,y) < y(w,x,y).

They have been of quite an interest due to their connection to regular lan-
guages and boolean circuit classes. To present the results, some definitions
have yet to be made.

17

3 Definability of Languages in FO[+]

Definition 3.1. A star-free regular expression over an alphabet Σ is an
expression built from the symbols ∅ and a, for each a ∈ Σ, using the
operations concatenation (·), union (+) and complement ().

The language L(α) defined by a star-free regular expression α is defined
as L(∅) = ∅, L(a) = {a}, for all a ∈ Σ, L(α1 + α2) = L(α1) ∪ L(α2),
L(α1 · α2) = L(α1) · L(α2), and L(α) = L(α).

A language defined by a star-free regular expression will be denoted as a
star-free language and the set of all such languages as star-free REG.

Now the results crucial to this context are summarized by the following
theorem. Their proofs will be omitted, instead the ideas will be sketched
and references be given.

Theorem 3.2. 1. The set of strings of even length is not definable in
FO[<].

2. FO[+1] (FO[<] = star-free REG (REG = MSO[+1].

Proof sketch. 1. Let Σ be an alphabet. The set of strings of even length
is the language L =

{
w ∈ Σ?

∣∣ |w| ≡ 0 (mod 2)
}

. Assume L = L(ϕ)
for some ϕ ∈ FO[<] with quantifier rank r, and consider the words
a2r and a2r+1, for some a ∈ Σ. There is a winning-strategy for the
duplicator in the r-round Ehrenfeucht-Fraïssé game on (a2r

, a2r+1).
Hence a2r |= ϕ ⇐⇒ a2r+1 |= ϕ, what gives a contradiction.
This winning strategy of the duplicator ensures that, after each
round l, the distances between corresponding pebbles in the two
word models are large enough not be be distinguished by another
r − l rounds. In particular, let (z1, . . . , zl) and (z′1, . . . , z

′
l) be the

moves in a2r and a2r+1, respectively; and let z−1 = 1, z′−1 = 1,
z0 = 2r, z′0 = 2r + 1 be the minimal and maximal positions in the
word models. Then, for all −1 ≤ i, j ≤ l,

• if |zi − zj | < 2r−l or |z′i − z′j | < 2r−l, then |zi − zj | = |z′i − z′j |,

• |zi − zj | ≥ 2r−l iff |z′i − z′j | ≥ 2r−l,

18

3.2 Introducing First-Order Logic with Addition

• zi ≤ zj iff z′i ≤ z′j .

This claim can be proven by induction on r and is carried out in
[Lib04, Theorem 3.6]. Another proof is shown in [Str74, Theorem
2.1].

2. "FO[+1] (FO[<]": The successor predicate is definable in FO[<] via
the formula ϕ(x, y) ≡ x < y ∧ ¬∃z(x < z ∧ z < y), thus FO[+1] ⊆
FO[<]. To separate these classes from each other, an equivalence
relation ≈k

r on Σ? is defined: w1 ≈k
r w2 if and only if w1 and w2

have the same prefix and suffix of length k− 1 and every substring v
of length |v| ≤ k does occurs either in both words ≥ r-times or the
same number of times.

The languages definable in FO[+1] coincide with unions of equivalence
classes of ≈k

r . But since akbakcak ≈k
r akcakbak for all r > 0 and

k chosen large enough, the language L(a?ba?ca?) ∈ FO[<] is not
definable in FO[+1]. [Str74, chapter IV.3] contains the necessary
details.

"FO[<] = star-free REG": Both directions are proven by induction
on the composition of either star-free regular expressions or first-order
formulas. For example, ∅ is defined by the formula ∀x(x 6= x); for
a ∈ Σ, {a} is defined by ∃x(∀y(y = x) ∧ Qa(x)); and for star-free
expressions e1, e2 with L(ei) = L(ϕi), ϕi ∈ FO[<] for i ∈ {1, 2}, e1 is
defined by ¬ϕ1, e1 + e2 is defined by ϕ1 ∨ ϕ2 and e1 · e2 is defined
by ∃xϕ′

1 ∧ ϕ′
2, where ϕ′

1 is constructed from ϕ1 by replacing each
quantifier Qyφ, Q ∈ {∃,∀} with Qy(y ≤ x∧φ), and ϕ′

2 is constructed
from ϕ2 by replacing each quantifier Qyφ with Qy(y > x ∧ φ). See
[Lib04, Theorem 7.26] for the complete proof.

"star-free REG (REG": As seen in theorem 3.2-1 the language
L((aa)?) is not definable in FO[<], ergo not star-free. This ensues
the claim.

"REG = MSO[+1]": This result is due to Büchi. First let L be a

19

3 Definability of Languages in FO[+]

regular language recognized by the finite automaton A with states
{q0, . . . , qk}. L is defined by an MSO[+1]-formula that expresses the
existence of a valid computation path on inputs belonging to L. That
is, if A accepts input w, |w| = n, then

a) there exists a partitioning X0 ∪ · · · ∪Xq−1 of {1, . . . , n} so that
j ∈ Xi if and only if A is in state i after reading the jth letter
of w,

b) after reading the first letter, A enters the state qk with 1 ∈ Xk,
c) the transitions between different Xi’s are consistent with the

automaton, and
d) the automaton enters an accepting state after reading the last

letter.

The conditions enumerated above can be checked in FO[<] by for-
mulas ϕi, i ∈ {a,b, c,d}. Hence the formula ϕ ∈ MSO[+1] defining
L is of the form

∃X0 · · · ∃Xq−1ϕa ∧ ϕb ∧ ϕc ∧ ϕd,

where Xi, 0 ≤ i < q are the set variables.
For the converse direction a finite automaton is constructed by
induction on the composition of the defining formula. For details,
consult [Str74, Theorem III.1.1] or [Lib04, Theorem 7.21].

Returning to first-order logic with addition, the relation of FO[<] to
FO[+] will be determined next.

Theorem 3.3. FO[<] (FO[+].

Proof. The inclusion follows from the logical equivalence of the formulas
x < y and ∃z(x+z = y) over initial segments of N, i. e. over sets {1, . . . , n}
for some arbitrary n ∈ N.

20

3.2 Introducing First-Order Logic with Addition

Furthermore, strictness is gained from the definability of the set of
even-length strings: over every alphabet Σ the formula

ϕ ≡ ∃z
(
∀x(x ≤ z) ∧ ∃y(y + y = z)

)
defines the language L(ϕ) = {w ∈ Σ? | |w| ≡ 0 (mod 2)}.

3.2.2 Languages in FO[+]
The fact that FO[+] exceeds FO[<] in terms of definable languages raises
the question for examples. This subsection is devoted to presenting some
interesting languages definable in FO[+].

Example 3.4. The language L1 = {anbn |n > 0} is definable in FO[+] by
the formula

∃x∃y
(
x + x = y ∧ ∀z

(
z ≤ y ∧ (z ≤ x → Qa(z)) ∧ (z > x → Qb(z))

))
.

L1 lies in CFL \ REG.

Example 3.5. The language L2 = {anbncn |n > 0} is definable in FO[+]
by the formula

∃x1∃x2∃y
(
x1 + x1 = x2 ∧ x1 + x2 = y ∧ ∀z

(
z ≤ y ∧ (z ≤ x1→ Qa(z))∧

(x1 < z ≤ x2→ Qb(z))∧
(x2 < z→ Qc(z))

))
.

L2 lies in B(DCFL) \CFL: it is the intersection of {anbncm |n, m > 0} ∈
DCFL and {anbmcm |n, m > 0} ∈ DCFL; and L2 /∈ CFL, as commonly
known.

Example 3.6. The language L3 = {ww |w ∈ Σ?} is expressible in FO[+]
by the formula

∃x
(
∃y

(
x + x = y ∧ ∀z(z ≤ y)

)
∧

∀y
(
y ≤ x → ∃z

(
x + y = z ∧

∧
a∈Σ Qa(y) ↔ Qa(z)

)))
.

L3 lies in B(CFL) \ CFL: L3 ∈ CFL and L3 /∈ CFL.

21

3 Definability of Languages in FO[+]

3.3 Limitations to the Definability of FO[+]

As seen in the examples 3.5 and 3.6, the expressive power of FO[+] exceeds
that of the context-free languages. But where are the bounds to the
definability of FO[+]? And are there yet regular languages that can not be
expressed in FO[+]? The latter question will also be tackled in section 3.5.
Now indefinable languages and an upper bound for the languages definable
in FO[+] will be presented.

3.3.1 Indefinable Languages

The extension of FO[<] with addition introduces positional argumentation.
One can assume that in presence of a neutral letter the power gained
by addition is rendered useless, as positions of letters may be shifted by
insertion and deletion of the neutral letter. The generalization of the
above assumption to arbitrary numerical predicates is the Crane Beach
Conjecture [BIL+01, Sch01]. It poses a central tool for indefinability results
of languages in logics.

Definition 3.7. Let L ⊆ Σ? be a language. e ∈ Σ is called neutral letter
for L if for all u, v ∈ Σ?: uv ∈ L ⇐⇒ uev ∈ L.

Theorem 3.8 (Crane Beach Conjecture in the case of FO[+]). Every language
L ∈ FO[+] that has a neutral letter is definable in FO[<].

The actual proof given in [BIL+01] follows from collapse results for first-
order queries over finite databases given in [LS01]. A suitable reformulation
of which will be given below preceding the proof of theorem 3.8. The
results of [LS01] are based again on a result worked out in [Lyn82] stating
that for each first-order formula ϕ with addition there is an infinite set
Q ⊆ N such that ϕ can not distinguish between subsets of Q. Details of
this proof will become important in the proof of theorem 3.13.

Let a mapping q : N → N be called order-preserving iff i < j ⇐⇒ q(i) ≤
q(j) for all i, j ∈ N.

22

3.3 Limitations to the Definability of FO[+]

Proposition 3.9 ([LS01], theorem 3). For every k ∈ N there exists a
r(k) ∈ N and an order-preserving mapping q : N → N such that for every
vocabulary σ and n, m ∈ N: if

〈{1, · · · , n}, σA〉 ∼<
r(k) 〈{1, · · · ,m}, σB〉,

then
〈{1, · · · , q(n)}, σq,A〉 ∼+

k 〈{1, · · · , q(m)}, σq,B〉,

with σq,A being a shorthand for the set of interpretations Rq,A = {q(i) | i ∈
RA} of all symbols R in σ.

Proof of theorem 3.8. Let L ⊆ Σ? be a language with a neutral letter
e. Assume that L /∈ FO[<], then there exist strings u = u1 · · ·un, v =
v1 · · · vm ∈ Σ? with u ∈ L, v /∈ L and u ∼<

r(k) v for every r(k) ∈ N.
Construct strings u′, v′ ∈ Σ? from u, v by inserting the neutral letter

e so that u′q(i) = ui and v′q(j) = vj for 1 ≤ i ≤ n, 1 ≤ j ≤ m, with q as
in proposition 3.9. Since u = 〈{1, · · · , n}, σA〉 ∼<

r(k) 〈{1, · · · ,m}, σB〉 = v,
an application of the proposition induces

〈{1, . . . , q(n)}, σq,A〉 ∼+
k 〈{1, . . . , q(m)}, σq,B〉.

This gives a winning strategy for the duplicator in the k-round +-game on
(u′, v′): every move of the players in (u, v) can be directly translated to
the word models of u′ and v′.

Choosing the vocabulary σ as the set of symbols Qa, a ∈ Σ, + and =, it
follows u′ ∼+

k v′ and eventually L /∈ FO[<] =⇒ L /∈ FO[+]. The converse
results in the claim.

With theorem 3.8 at hand a first language can be shown not to lie in
FO[+].

Corollary 3.10. Let Σ = {a,b}. The language L =
{
w ∈ Σ?

∣∣ |w|a ≡ 0
(mod 2)

}
is not definable in FO[+].

23

3 Definability of Languages in FO[+]

Proof. Let Σ = {a,b} and L =
{
w ∈ {a,b}?

∣∣ |w|a ≡ 0 (mod 2)
}

. Assume
L is definable in FO[<] by a formula ϕ. Then L(φ) = {an |n ≡ 0 (mod 2)}
for the formula

φ ≡ ϕ ∧ ∀x(Qa(x)).

This contradicts theorem 3.2-1: L is not definable in FO[<].
Furthermore, for every u, v ∈ Σ?: uv ∈ L ⇐⇒ ubv ∈ L, because

|uv|a = |ubv|a. So b is a neutral letter for L, what enforces L /∈ FO[+] in
connection with the Crane Beach Conjecture.

Even though this language is indeed regular, it is likewise possible to
show indefinability of proper context-free languages.

Lemma 3.11. FO[+] is closed under length preserving homomorphisms.

Proof. Let ϕ ∈ FO[+] define the language L ⊆ Σ? and let h : Σ? → ∆? be
a length preserving homomorphism, i. e. h satisfies h(xy) = h(x)h(y) and
|h(x)| = |x| for all x, y ∈ Σ?.

Construct ϕh ∈ FO[+] from ϕ by replacing Qa(x) with Qh(a)(x) for all
a ∈ Σ?. Since h(w) = h(w1) · · ·h(wn) for w = w1 · · ·wn ∈ Σ?, it holds

w ∈ L ⇐⇒ w |= ϕ ⇐⇒ h(w) |= ϕh ⇐⇒ h(w) ∈ h(L),

where h(L) = {h(w) |w ∈ L}. Thus h(L) ∈ FO[+].

Corollary 3.12. Let Σ be an alphabet with {a,b} (Σ and R ∈ {=, 6=, <, >}
be a binary relation. Then the language L =

{
w ∈ Σ?

∣∣ |w|a R |w|b
}

is not
definable in FO[+].

Proof. Let R ∈ {=, 6=, <, >} and let L =
{
w ∈ {a,b, c}?

∣∣ |w|a R |w|b
}

.
With lemma 3.11, it suffices to show L /∈ FO[+] over the alphabet ∆ =
{a,b, c}. The homomorphism h : Σ → ∆ = {a,b, c} that maps every letter
different from a and b to c then gives the desired result.

Assume L is definable in FO[<] via ϕ. Then the formula

φ ≡ ϕ ∧ ∃x∀y
(
(y ≤ x → Qa(y)) ∧ (x < y → Qb(y))

)

24

3.3 Limitations to the Definability of FO[+]

defines the language L(φ) = {anbm |n R m} /∈ REG. This is contradictory
to FO[<] ⊂ REG (theorem 3.2-2). It follows that L /∈ FO[<]. Moreover
the letter c serves as neutral letter for L, and thus L /∈ FO[+].

Going more into the details of the proof of proposition 3.9, the set
of languages on which the expressiveness of FO[<] and FO[+] coincide
can be extended from languages with neutral letters to languages with
neutral letters and certain restrictions placed on the length of their strings.
Intuitively this should be clear, since the power of addition is rendered
useless by neutral letters—any condition concerning lengths can not restore
it, because strings may be arbitrary pumped or padded.

Theorem 3.13. Let Σ be an alphabet with {a} (Σ. None of the languages{
w ∈ Σ?

∣∣ |w|a ≡ h (mod p), |w| ≡ l (mod r)
}

, h, l, p, r ∈ N, 0 ≤ h < p,
0 ≤ l < r, is definable in FO[+].

Proof. For h, l, p, r ∈ N and 0 ≤ h < p, 0 ≤ l < r, let L(h,p)(l,r) =
{
w ∈

Σ?
∣∣ |w|a ≡ h (mod p), |w| ≡ l (mod r)

}
. It suffices to show that L(h,p)(l,r)

is not definable in FO[+] over the alphabet Σ = {a, e}; any letter in Σ
different from a can be mapped to e via a length-preserving homomorphism.

Assume L(h,p)(l,r) is definable via ϕ ∈ FO[+] with quantifier rank ≤
k. The order-preserving mapping q : N → N that is utilized to prove
proposition 3.9 is defined as q(i) = pi+1 for any sequence satisfying the
conditions

p0 = 0,
pi ≥ 2k+3f(k)3pi−1 + 2g(k)f(k)2 for all i > 0, and
pi ≡ pj (mod f(k)!) for all i, j > 0,

where f, g : N → N,

f(0) = 1, f(i + 1) = 2f(i)4,
g(0) = 0, g(i + 1) = 2g(i)f(i)2 + f(i)!,

are strictly increasing functions that ensure indistinguishability with respect
to all linear combinations of positions. As p1 can be chosen arbitrary beyond

25

3 Definability of Languages in FO[+]

a certain threshold, it is possible to satisfy f(k)! | pi − l; in other words
q(i− 1) ≡ l (mod f(k)!), or q(i− 1) ≡ l (mod r).

With this choice of q it is possible to construct strings that are not
distinguishable by first-order sentences with addition:

According to theorem 3.2-1, there exists m(k) ∈ N so that a2m(k) ∼<
m(k)

a2m(k)+1. Let u = apx+h and v = apx+h+1, where x > d2m(k)−h
p e. It

follows that the strings u′, v′ ∈ Σ?, constructed from u, v by inserting
the neutral letter e so that u′q(i) = ui and v′q(j) = vj for 1 ≤ i ≤ px + h,
1 ≤ j ≤ px + h + 1 (cf. proof of theorem 3.8), are of length l (mod r) with
u′ ∼+

k v′. Now |u′|a = |u|a ≡ h (mod p), |v′|a = |v|a ≡ h + 1 6≡ h (mod p)
and q(|u|) ≡ q(|v|) ≡ l (mod r) result in u′ ∈ L(h,p)(l,r), v

′ /∈ L(h,p)(l,r),
which is contradictory to u′ ∼+

k v′. Hence L(k,p)(l,r) /∈ FO[+].

Another consequence of the preceding is the theorem of Ginsburg and
Spanier, cf. [GS66]:

Corollary 3.14 (FO[+]-sentences have semi-linear spectra). For every sen-
tence ϕ ∈ FO[+] the set Spec(ϕ) =

{
n ∈ N \ {0}

∣∣ 〈{1, . . . , n},+〉 |= ϕ
}

is
semi-linear, i. e. there exist n0, p ∈ N such that

n ∈ Spec(ϕ) ⇐⇒ n + p ∈ Spec(ϕ)

for all n > n0.

Proof. Construct strings u′, v′ as in the previous proof over a one letter
alphabet Σ = {e}. Then again it is u′ ∼k v′. Furthermore, |u′| = q(|u|),
|v′| = q(|v|) = q(|u|+1), and thus |v′| − |u′| = q(|u|+1)− q(|u|) = l · f(k)!
for some l ∈ N; w. l. o. g. l = 1 can be assumed. Hence

u′ |= ϕ ⇐⇒ v′ |= ϕ,

what implies

〈{1, . . . , q(|u|)},+〉 ∼+
k 〈{1, . . . , q(|u|) + f(k)!},+〉,

26

3.3 Limitations to the Definability of FO[+]

because the symbol Qe can be dropped from σ—it does not contain any
information. Now setting n = q(|u|) and p = f(k)! yields

〈{1, . . . , n},+〉 |= ϕ ⇐⇒ 〈{1, . . . , n + p},+〉 |= ϕ.

Since q(|u|) = p|u|+1 may be chosen arbitrary beyond 2g(k)f(k)2, this
holds for all n ≥ n0 = 2g(k)f(k)2.

Corollary 3.14 gives a nice connection to relations of natural numbers
resulting in the indefinability of the set of prime numbers in FO[+].

Proposition 3.15. The set of prime numbers is not definable in FO[+], i. e.
let Σ be an alphabet and let P denote the set of all prime numbers, then{
w ∈ Σ?

∣∣ |w| ∈ P
}

/∈ FO[+].

Proof. The set of prime numbers is not semi-linear: Assume the opposite
with parameter p and choose an n ∈ P with n > n0, n > p. It is gcd(n, p) =
1 and n ∈ P ⇐⇒ n + p ∈ P ⇐⇒ n + kp ∈ P for all k ∈ N. Thus {x |x ≡ kp
(mod n)} = {0, . . . , n− 1}. So there exists a k ∈ N with n|(n + kp), what
contradicts the assumption.

Proposition 3.15 also provides the insight that multiplication and the
divisibility relations can not be definable in FO[+] (otherwise the set of
primes could be defined using formulas for one of the latter sets). However,
lets now turn to a famous set of conext-free languages, the Dyck languages.

Definition 3.16. Let Σ be an alphabet and let ∆ = Σ∪Σ with Σ = {a | a ∈
Σ}. The Dyck language D?

Σ is defined as the equivalence class [ε] with
respect to the equivalence relation implied by aa = ε for a ∈ Σ.

For any given alphabet Σ, the Dyck language D?
Σ is generated by the

grammar G = ({S, T},Σ, P, S) with the rules P = {S → ε, S → TS} ∪
{T → aSa | a ∈ Σ}. G is equivalent to a context-free grammar. Hence
D?

Σ ∈ CFL.
It is folklore that D?

Σ ∈ DCFL \ REG, what involves that D?
Σ supple-

mented with a neutral letter is not definable in FO[+]. Accordingly also

27

3 Definability of Languages in FO[+]

Greibach’s hardest context-free language HΣ ∈ CFL \DCFL [ABB97, pp.
27–28] supplemented with a neutral letter can not be definable in FO[+].
This is particularly interesting in the context of groupodial based language
classes, since HΣ is complete for the class LOGCFL (cf. [LMSV01]).

Due to the preceding results and the closure under length-preserving
homomorphisms, it can be conjectured that D?

Σ /∈ FO[+]. But the problem
with proving this is that, for every w ∈ D?

Σ, there is an even number of
positions between two corresponding letters; whereas the construction in
theorem 3.8 relies heavily on the fact that, between adjacent positions in
u, an odd number of neutral letters is being inserted when constructing
u′ (pi ≡ pj (mod f(k)!) for all i, j > 0, and f(k)! is even for all k > 1).
Nevertheless, a small variation of the grammar G is indefinable:

Let Σ′ = Σ ∪ {e} for some e /∈ Σ and consider the grammar G =
({S, T},Σ, P, S) with the rules

P = {S → e, S → TS} ∪ {T → aSa | a ∈ Σ}.

Obviously G is a context-free grammar. L(G) is a variant of the Dyck
language that extends the equivalence relation aa = ε with the rule e = ε.
Let D?

Σ,e denote the language generated by G.

Theorem 3.17. Let Σ be an alphabet and let e /∈ Σ, then D?
Σ,e /∈ FO[+].

Proof. Let D?
Σ,e be over ∆ = Σ ∪Σ ∪ {e}, where Σ = {a | a ∈ Σ}. Assume

D?
Σ,e = L(ϕ) for ϕ ∈ FO[+] with quantifier rank ≤ k. For c ∈ Σ, consider

the length preserving homomorphism f : ∆? → {a,b}?,

f(x) =

{
a, if x = c or x = c,

b, otherwise.

The language f(D?
Σ) is the set of strings having

• an even length,

• an even number of positions with the letter a, and

28

3.3 Limitations to the Definability of FO[+]

• an odd number of b’s between two adjacent positions with the letter
a.

Fix k ∈ N and let q : N → N denote an order-preserving mapping con-
forming to the conditions of the proof of theorem 3.13 that additionally
satisfies q(1) ≡ 0 (mod 2). According to theorem 3.2-1, there exists an
r(k) so that a2r(k) ∼<

r(k) a2r(k)+1.
Construct once more strings u′, v′ from u = a2r(k)

, v = a2r(k)+1 by
inserting the letter b so that u′q(i) = ui for all 1 ≤ i ≤ 2r(k) and v′q(j) = vj

for all 1 ≤ j ≤ 2r(k)+1. The inserted blocks of (the letter b) in u′ and v′ are
of odd length, because q maps all positions in u and v to even positions in u′

and v′: q(i) ≡ q(j) (mod f(k)!) for all i, j > 0 and f(k)! is even for k > 1.
In particular q(|u|) ≡ q(|v|) ≡ 0 (mod 2). Concluding, it holds u′ ∼+

k v′,
but |u|a ≡ 0 6≡ 1 ≡ |v|a (mod 2), therefore u ∈ f(D?

Σ), v /∈ f(D?
Σ). Hence

D?
Σ,e /∈ FO[+].

3.3.2 A general upper bound
So far, several languages have been shown not to lie in FO[+]. Yet an
upper bound for the expressive power of first-order with addition is lacking.

An answer to this question will be gathered from first-order logics
supplemented with "counting quantifiers", as investigated in [Str74].

Definition 3.18. Let A = 〈U, σA〉 be a structure and let ϕ(x) be a first-
order formula over σ. A counting quantifier ∃r mod q is defined as a quantor
with the semantics

A |= ∃r mod qxϕ(x) iff |{x ∈ U |A |= ϕ(x)}| ≡ r mod q.

Denote by (FO+MOD)[σ] the extension of first-order logic over the vocab-
ulary σ with the counting quantifiers ∃r mod q for all q > 1 and 0 ≤ r < q.

That is, ∃r mod qxϕ(x) holds for formula ϕ(x) if the number of positions
in U satisfying ϕ(x) is congruent to r modulo q. It is obvious that counting
quantifiers add expressiveness to FO[+]:

29

3 Definability of Languages in FO[+]

Example 3.19. Reconsider the language investigated in corollary 3.10,
L =

{
w ∈ Σ?

∣∣ |w|a ≡ 0 mod 2
}

. L /∈ FO[+] is definable in (FO+MOD)[+]
by the short formula

∃0 mod 2xQa(x).

Therefore, FO[+] ((FO+MOD)[+] ⊆ (FO+MOD)[+,×], where × is
interpreted as the natural multiplication. Even more is known about the
last inclusion: in [Ruh99], Ruhl separated (FO+MOD)[+] from (FO+
MOD)[+,×] by showing that deterministic transitive closure can not be
expressed in (FO+MOD)[+]. Let AC0 denote the set of languages definable
by polynomial-size, constant-depth boolean circuits with AND-, OR- and
NOT-gates; and let TC0 denote AC0 supplemented with MOD-gates.
Together with (FO+MOD)[+,×] = TC0 (cf. [BIS90]), the following bound
for the expressiveness of FO[+] can be given:

Theorem 3.20. Let NSPACE(s) denote the set of all languages definable by
Turing machines in space ≤ cs for some c ∈ N and let L = NSPACE(log n).
Then

FO[+] ((FO+MOD)[+] ((FO+MOD)[+,×] = TC0 ⊆ L (CSL.

Proof. The inclusions FO[+] ⊆ (FO+MOD)[+] ⊆ (FO+MOD)[+,×]
are obviously true. The separation FO[+] ((FO+MOD)[+] follows from
example 3.19. For the separation of (FO+MOD)[+] from (FO+MOD)[+,×],
consult [Ruh99]. The equality (FO+MOD)[+,×] = TC0 is shown in [BIS90,
theorem 11.2] and is a straight-forward translation between sentences of
(FO+MOD)[+,×] and constant-depth, polynomial-size circuits. Finally
TC0 ⊆ L = SPACE(log(n)) (NSPACE(n) = CSL follows directly from
the definitions of TC0, L and CSL as well as the existence of languages in
SPACE(n) \ SPACE(log n).

The resulting relation of FO[+] to the classes of the Chomsky hierarchy
is shown in figure 3.2; there ∃MatchingFO[<] denotes class of languages
definable by sentences ∃Mϕ, where M is a matching and ϕ ∈ FO[<].

30

3.4 Context-Free Languages and FO[+]

∃Matching FO[<]

FO[+1]

CFL

star-free REG

REG

FO[<]

FO[+]CSL

MSO[+1]

Figure 3.2: FO[+] related to the Chomsky hierarchy.

3.4 Context-Free Languages and FO[+]

The previous section has been devoted to explore the limitations of FO[+],
and it has been shown that even though FO[+] captures some languages
beyond CFL, it does not entirely capture CFL. This section investigates
whether a nice characterization of the fragment of CFL being captured by
FO[+] can be given.

3.4.1 FO[+] and linear recursive grammars

Let G = (V,Σ, P, S) be a context-free grammar. A loop is a sequence
of productions (pi)1≤i≤n, n ∈ N, so that pi ≡ Ai → αi1Ai+1αi2 ∈ P for
1 ≤ i < n and pn ≡ An → αn1A1αn2 ∈ P , with αi1 , αi2 ∈ (Σ∪V)?, Ai ∈ V ,
1 ≤ i ≤ n. A production p ∈ P contained in a loop will be denoted as
loop production. The length of a loop is the number of productions in its
sequence. A loop is called linear if αi1 , αi2 ∈ Σ? for all 1 ≤ i ≤ n. The
notion of linear loops is inspired by linear context-free grammars, whose

31

3 Definability of Languages in FO[+]

rules contain at most one nonterminal on every production’s right-side.
The languages generated by these grammars are recognized by 1-turn
PDAs, i. e. PDAs that alter their stack operation only once, from push to
pop or vice versa (cf. [Har78]).

Let G = (V,Σ, P, S) be a context-free grammar and let (pi)1≤i≤n be a
loop in G. Then

Var((pi)1≤i≤n) = {A ∈ V | pi ≡ A → α, 1 ≤ i ≤ n}

is the set of variables on the left-hand sides of productions in (pi)1≤i≤n.

Definition 3.21. Let G = (V,Σ, P, S) be a context-free grammar. G is
called linear recursive if every loop is linear and there is a partitioning
V = V1 ∪ V2 ∪ · · · ∪ Vk such that the left-hand nonterminals of every
loop lie in one partition and different loops have distinct sets of left-hand
nonterminals.

That is, for loops (pi)1≤i≤n, (qj)1≤j≤m

Var((pi)1≤i≤n) ⊆ Vl,

for some 1 ≤ l ≤ k, and

Var((pi)1≤i≤n) ∩Var((qi)1≤i≤m) = ∅.

Note that this implies the following partial order on V : A < B ⇐⇒
min

{
k

∣∣ S ⇒k
G αAβ, α, β ∈ (Σ ∪ V)?

}
< min

{
k

∣∣ S ⇒k
G αBβ, α, β ∈

(Σ ∪ V)?
}

for A,B ∈ V .
However, the set of languages generated by linear recursive gram-

mars is neither a subclass nor a superclass of the languages generated
by linear grammars. For the first direction consider the language L =
{ananb

m
b
m |n, m > 0}. L is generated by a grammar with starting symbol

S and rules

S → AB,A → aAa,A → aa,B → bBb, B → bb.

32

3.4 Context-Free Languages and FO[+]

L can not be recognized by a 1-turn PDA, since —informally speaking—
the push and pop operation has to change more than once to compare
the lengths in the first and in the second parts. For the other direction
the language L =

{
w ∈ Σ?

∣∣ |w|a ≡ 0 (mod 2)
}

from corollary 3.10 is
linear, but not linear recursive: L(G) = L for the linear CFG G =
({S, U, G},Σ, P, S) with the rules

P =
{
S → ε, S → aU,U → aG, G → aU

}
∪

{
X → bX

∣∣ b ∈ Σ \ {a}, X ∈ {G, U}
}
.

The fact that L is not linear recursive will be covered in example 3.22.
This discrepancy emerges since restrictions are placed on the productions

belonging to some loop only. Linear recursive grammars may rather be
thought of as a concatenation and nesting of linear grammars not containing
"entangled" loops.

Example 3.22. • Consider the language L = {anbn |n ∈ N}. L is
generated by a linear recursive CFG G = ({S}, {a, b}, P, S) with the
productions P = {S → aSb, S → ab}.

• There is no linear recursive CFG generating the language L =
{
w ∈

{a, b}?
∣∣ |w|a ≡ 0 (mod 2)

}
/∈ FO[+]:

Assume L = L(G) for the linear recursive CFG G. To generate L, G
has to contain a loop; w. l. o. g. the loop productions can be assumed
to generate one terminal per production only. Hence the number
of a’s modulo 2 has to be remembered in the nonterminals of the
loop. Since counting modulo 2 requires at least two nonterminals
to distinguish the different cosets and the production of a single b
does not change the number of a’s, loops that differ in more than
terminals have to exist. Thus, G can not be linear recursive.

• The Dyck language D?
Σ admits no linear recursive CFG.

Assume L(G) = D?
Σ for the linear recursive CFG G = (V,Σ, P, S).

G admits a partial order on P , viz the order mentioned succeeding

33

3 Definability of Languages in FO[+]

definition 3.21. Therefore, every non-loop-production may only be
used once in a derivation.

Let x ∈ D?
Σ. The number of partitions x = uavaw with u, v, w ∈

(Σ ∪ Σ)?, a ∈ Σ, a ∈ Σ being a’s corresponding character and
uanvanw ∈ D?

Σ for all n ∈ N is bounded by the number of nonter-
minals on the right-hand side of all non-loop productions. Let k be
the maximal number of partitions over all x derivable from G. Then
the word (alal)k+1 with l > max{m |A → α ∈ P, |α| = m} can not
be derivable from G, and L(G) (D?

Σ follows.

Lemma 3.23. Let G = (V,Σ, P, S) be a linear recursive CFG. Then there
exists a linear recursive CFG G′ = (V ′,Σ, P ′, S) and a partitioning V ′

1 ∪
· · · ∪ V ′

n of V ′ such that L(G) = L(G′), every loop in G′ is of length one
and, for all loops (pi)1≤i≤k in G,

Var((pi)1≤i≤k) = Vl,

for some 1 ≤ l ≤ n.

Proof. Let G = (V,Σ, P, S) be a linear recursive CFG. There exists a
partitioning V1 ∪ V2 ∪ · · · ∪ Vn = V such that for each pair of loops
(pi)1≤i≤k1 , (qj)1≤i≤k2 the following holds:

Var((pi)1≤i≤k1) ⊆ Vl,

for some 1 ≤ l ≤ n, and

Var((pi)1≤i≤k1) ∩Var((qj)1≤j≤k2) = ∅.

Let P = P1∪P2∪· · ·∪Pn be the partitioning of P implied by the left-hand
sides of the productions, viz.

Pl = {p ∈ P | p ≡ A → α, A ∈ Vl, α ∈ (V ∪ Σ)?},

34

3.4 Context-Free Languages and FO[+]

for 1 ≤ k ≤ l. Let (pi)1≤i≤m(l) be a loop in one of the Pl,

pi ≡ Ai → αi1Ai+1αi2 , 1 ≤ i < m(l),
pm(l) ≡ Am(l) → αm1(l)A1αm2(l),

where Ai ∈ Vl, αi1 , αi2 ∈ Σ? for 1 ≤ i ≤ m(l). For each nonterminal in
{Ai | pi ≡ Ai → βi1Bβi2 , B /∈ Vl, βi1 , βi2 ∈ Σ?, 1 ≤ i ≤ m(l)}, introduce a
new nonterminal A′

i and set Vli = {A′
i},

Pli = {A′
i → αi1 · · ·αm1(l)α1 · · ·αi1−1A

′
iαi2αi2−1 · · ·α1αm2(l) · · ·αi2}

∪ {A′
i → βi1Bβi2 ∈ P,B /∈ Vl}.

If Pl is loop-free, set Pli = Vli = ∅. As a consequence, for all 1 ≤ l ≤ n, the
set P ′

l = Pl \ {pm(l) | (pi)1≤i≤m(l) is a loop in Pl} is loop-free, each loop in⋃
1≤i≤m(l) Pli is of length one and for every loop (pi)1≤i≤m there is some

1 ≤ j ≤ m(l) so that Var((pi)1≤i≤m) = Vlj . Thus define G′ = (V ′,Σ, P ′, S),
where

V ′ = V ∪
⋃

1≤l≤n
1≤i≤m(l)

Vli ,

P ′ = (P \ {pm | (pi)1≤i≤m is a loop in P})
∪

⋃
1≤l≤n

1≤i≤m(l)

(Pli ∪ {Ai → A′
i |A′

i ∈ Vli}).

Next L(G) = L(G′) will be shown. Therefore let w ∈ Σ?. If S ⇒?
G w

and w does not contain any loops, then S ⇒?
G′ w by the same sequence of

productions. If there exists A ∈ V such that

S ⇒?
G α1Aα2 ⇒k

G α1β1Aβ2α2 ⇒G α1β1γ1Bγ2β2α2 ⇒?
G w

for some k ≥ 1, α1, α2, β1, β2, γ1, γ2 ∈ (V ∪ Σ)?, A 6= B ∈ V , then

S ⇒?
G′ α1Aα2 ⇒G′ α1A

′α2 ⇒l
G′ α1β1A

′β2α2 ⇒G′ α1β1γ1Bγ2β2α2 ⇒?
G′ w

35

3 Definability of Languages in FO[+]

for l = k
x , where x is the length of the loop starting in nonterminal A ∈ V .

The opposite direction holds with the identical argumentation. Hence
L(G) = L(G′).

Now a fragment of CFL being captured by FO[+] can be specified. Let
linear recursive CFL denote the set of all languages generated by linear
recursive grammars, i. e. {L | there exists a linear recursive CFG with
L(G) = L}.

Theorem 3.24. Linear recursive CFL ⊆ FO[+].

Proof. Let G = (V,Σ, P, S) be a linear recursive CFG. According to to the
above lemma, G can be assumed to contain only linear loops of length one.
A formula φ ∈ FO[+] with L(φ) = L(G) can be constructed as follows:

For u, w = w1 . . . wn ∈ Σ?, let ϕ··
u(x, y) be a formula with

w |= ϕ··
u(x, y) ⇐⇒ wx+1 · · ·wy−1 = u

if x+1 < y, and ϕ··
u(x, y) ≡ true otherwise. Furthermore, let ϕ∗·

u (x, y) and
ϕ·∗

u (x, y) be formulas with

w |= ϕ∗·
u (x, y) ⇐⇒ wx · · ·wy−1 = u,

w |= ϕ·∗
u (x, y) ⇐⇒ wx+1 · · ·wy = u

if x < y, and ϕ·∗
u (x, y) ≡ ϕ·∗

u (x, y) ≡ true otherwise. Analogously define
ϕ∗∗

u (x, y) to hold if the string beginning in position x and ending in position
y equals u. Clearly ϕ··

u(x, y), ϕ∗·
u (x, y), ϕ·∗

u (x, y), ϕ∗∗
u (x, y) ∈ FO[+].

Now define a formula χX(x, y) that holds if and only if the string
beginning in position x and ending in y can be derived from a variable
X: for every non-loop production p ≡ X → α, α = v0X1v1 · · · vs−1Xsvs,
X1, . . . , Xs ∈ V \ {X}, v0, . . . , vs ∈ Σ?, s ≥ 1, define

χp(x, y)≡∃x1∃y1 · · · ∃xs∃ys

(
(x ≤ x1 < y1 ≤ x2 < · · · ≤ xs < ys ≤ y)∧

(ϕ∗·
v0

(x, x1) ∧ ϕ··
v1

(y1, x2) ∧ · · · ∧ ϕ·∗
vs

(ys, y))∧
(χX1(x1, y1) ∧ χX2(x2, y2) ∧ · · · ∧ χXs(xs, ys))

)
,

(3.2)

36

3.4 Context-Free Languages and FO[+]

and χp(x, y) = ϕ∗∗
v0

(x, y) if s = 0 (i. e. p ≡ X → v0 ∈ Σ?). Equation 3.2
expresses that there is a partitioning of the string such that all substrings
wxi · · ·wyi , 1 ≤ i ≤ s, can be derived from the corresponding Xi and
the remaining substrings of terminals between them are matched by the
terminals in the production.

Those production formulas are grouped by their left-hand nonterminals:
for every variable X ∈ V not occurring on the left-hand side of any loop
production define

χX(x, y) ≡
∨
p∈P

p≡X→α

χp(x, y),

where α ∈ (V ∪ Σ)?. For every other variable X ∈ V there is exactly one
loop production X → v0Xv1 ∈ P , where v0, v1 ∈ Σ?. Thus define

χX(x, y)≡∃xt∃yt

(
xt ≤ yt ∧ xt − x mod |v0| ≡ 0 ∧ y − yt mod |v1| ≡ 0 ∧
∀z(x ≤ z < xt ∧ z−xmod|v0| ≡ 0 → ϕ∗·

v (z, z+|v0|))∧
∀z(yt < z ≤ y ∧ y−z mod|v1| ≡ 0 → ϕ·∗

v (z, z+|v1|))∧
∃dx∃dy

(
x + dx = xt ∧ yt + dy = y ∧ ϑ|v0|,|v1|(dx, dy)

)
∧(∨

p≡X→γ∈P
γ∈(V \{X}∪Σ)?

χp(xt, yt)
))

,

(3.3)
where ϑk0,k1(x, y) is a formula that holds if x

k0
= y

k1
. This is expressible in

FO[+], since k0, k1 are constants depending on the production:

ϑk1,k2(x, y)≡∃d1 · · · ∃dk0∃e1 · · · ∃ek1

(∧
1<i≤|k0| di = di + d1∧∧
1<i≤|k1| ei = ei + e1∧

e1 = d1 ∧ dk0 = x ∧ ek1 = y
)
.

Altogether, for a variable X ∈ V occurring on the left-hand side of some
loop production and a string w ∈ Σ?, equation (3.3) expresses that the
substring beginning in position x and ending in y can be split into 3 parts
s1 = wx · · ·wxt−1, s2 = wxt · · ·wyt , s3 = wyt+1 · · ·wy, where

37

3 Definability of Languages in FO[+]

• |s1| and |s3| are a multiples of |v0| and |v1| respectively,

• s1 consists of subsequent occurrences of v0,

• s3 consists of subsequent occurrences of v1,

• |s1|
|v0| = |s3|

|v1| , and

• s2 can be derived from some variable that "exits the loop".

Due to the existence of a partial order on V , the formula χX(x, y) is
well-defined for all X ∈ V . And finally the formula

φ ≡ ∃x∃y (χS(x, y) ∧ ∀z(x ≤ z ∧ z ≤ y))

holds for any given word model w if and only if S ⇒?
G w.

Corollary 3.25. B(linear recursive CFL) ⊆ FO[+].

Unfortunately the converse of theorem 3.24 does not hold, since it is
possible to construct a non-linear recursive CFLs definable in FO[+].

For example, take the language of all strings over {a,b} in which each
substring matching ba?b contains an even number of a’s, i. e. L =

{
w ∈

Σ?
∣∣ ∀u, v ∈ {a,b}?, w = ubanbv : n ≡ 0 (mod 2)

}
. L is definable in

FO[+] via the formula

∀x∀y
(
Qb(x) ∧Qb(y) ∧ ∀z(x ≤ z ≤ y → Qa(z))

)
→ ∃d

(
x + d = y ∧ ϕ(d)

)
,

where ϕ(d) holds if and only if d is an even number.
Although L ∈ CFL, it does not admit a linear recursive grammar, since

the number of substrings matching a? is unbounded and every rule has
to be of finite length. Assume L(G) = L for a linear recursive grammar
G = (V, {a,b}, P, S). Then P has to contain a rule that inserts a b at the
end of the current derivate and starts the next block of a’s; accordingly, it
is of the form A1 → αbA2, with A1, A2 ∈ V , α ∈ ({a,b} ∪ V)?. From the
definition of linear recursiveness and the fact that a word in L may contain

38

3.4 Context-Free Languages and FO[+]

arbitrary many blocks of a’s, it follows that α ∈ {a,b}? and that there exists
a sequence of rules such that A2 ⇒?

G β1A1β2 for some β1, β2 ∈ ({a,b}∪V)?.
Since every loop of G must be primitive, β1, β2 ∈ {a,b}? has to hold. This
contravenes the arbitrary size of the blocks of a’s. Thus L(G) (L, a
contradiction.

Corollary 3.26. Linear recursive CFL (FO[+].

As L ∈ CFL, the above actually shows linear recursive (FO[+]∩CFL.
However, the separation of B(linear recursive CFL) from FO[+] fails with
this particular L: L is generated by a linear-recursive grammar with the
rules

S → aSa, S → aSb, S → bSa, S → bSb, S → bTb, T → aTa, T → a

and starting symbol S.
Inherently, the boolean closure adds expressiveness to linear recursive

CFL. And yet separation of these two classes fails with every suitable
language mentioned before.

Conjecture 3.27. B(linear recursive CFL) = FO[+].

Another approach to gaining a formal description of the fragment of
CFL definable in FO[+] is the relaxation of the restrictions on grammars.
However, this approach does not work in a non-trivial way: Dropping the
restriction that each two loops have to lie in distinct partitions results in the
possibility to specify a grammar for the language L =

{
w ∈ {a, b}?

∣∣ |w|a ≡
0 (mod 2)

}
/∈ FO[+]. For example, L = L(G) for a grammar G with

starting symbol S and rules

S → ε, G → aU, U → aG,
S → G, G → bG, U → bU,

G → b, U → a.

Likewise dropping the restriction that disallows sharing of nonterminals
standing on left-hand sides of loop productions among loops admits a

39

3 Definability of Languages in FO[+]

grammar with starting symbol S and rules

S → ε, S → T, T → aTa, T → bT, T → Tb,

defining the above language L, too.

3.4.2 FO[+] and finite-turn PDAs

In the following the relationship of FO[+] to a superclass of linear recursive
grammars will be investigated. This superclass is the set of all languages
recognizable by PDAs that change their stack operation only finitely often
from push to pop, or vice versa, while working. The idea to investigate
such PDAs raises from linear grammars being recognizable by 1-turn PDAs
and that concatenation and nesting of linear grammars with primitive
loops only results in linear recursive grammars. For an in-depth survey on
the connection of finite-turn PDAs to linear grammars, see [Har78].

Definition 3.28. A finite-turn PDA P = (Q,Σ,Γ, δ, q0,⊥, F) is a PDA
that turns its stack operation finitely often from push to pop, or vice versa,
for all w ∈ L(P).

Furthermore, let finite-turn CFL denote the set of all context-free lan-
guages recognizable by finite-turn PDAs.

Lemma 3.29. Every linear recursive CFL is recognizable by a finite-turn
PDA.

Proof. Let G = (V,Σ, P, X0), V = {Xi | 0 ≤ i ≤ n}, be a linear recursive
grammar, in which w. l. o. g. every loop is of length at most one. The
rules of P are in the form Xi0 → v0Xi1v1 · · · vs−1Xisvs, where Xik ∈ V ,
0 ≤ k ≤ n, and v0, . . . , vs ∈ Σ? with either (1) ik 6= i0 for all k > 0 or (2)
s = 1. Since G admits a partial order on V , ik ≥ i0 can be assumed for
all k > 0. Let ni, 1 ≤ i ≤ n, denote the number of productions in P with
nonterminal Xi of the left-hand side and let ni,j , 1 ≤ j ≤ ni, denote the
length of their corresponding right-hand sides.

40

3.4 Context-Free Languages and FO[+]

Furthermore, for 1 ≤ i ≤ n, let

Pi = {Xi → αi,j,0 · · ·αi,j,ni,j |αi,j,0, · · · , αi,j,ni,j ∈ Σ ∪ V, 1 ≤ j ≤ ni} ⊆ P

denote all the rules with Xi on the left-hand side.
In the following a PDA P = (Q,Σ,Γ, δ, qX0 ,⊥, F) with L(P) = L(G)

will be defined. The set of states is given as the union of two sets,

Q = {qXi | 0 ≤ i ≤ n} ∪ {qi,j,k | 1 ≤ i ≤ n, 1 ≤ j ≤ ni, 1 ≤ k ≤ ni,j},

where a state in the first set expresses that P now expects a string matching
a rule with Xi on the left-hand side; and a state in the second set expresses
that the jth rule with nonterminal Xi on the left-hand side has been read
up to the kth character.

The stack alphabet is given by

Γ = Σ ∪ {⊥} ∪ {Bi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ ni},

in which the symbol Bi,j represents the jth rule of Xi.
Now define the transition function δ as follows: for every rule in Pi

satisfying case (1), i. e. for every 1 ≤ j ≤ ni with Xi → αi,j,0 · · ·αi,j,ni,j ∈
Pi and αi,j,0, · · · , αi,j,ni,j ∈ Σ ∪ V \ {Xi}, define

1. δ(qXi , ε, A) 3 (qi,j,0, A),
for all A ∈ Γ;

2. δ(qi,j,k, αi,j,k+1, A) 3 (qi,j,k+1, A),
for all A ∈ Γ, αi,j,k+1 ∈ Σ, 0 ≤ k < ni,j ;

3. δ(qi,j,k, ε, A) 3 (qXi′ , A),
for all A ∈ Γ, αi,j,k+1 = Xi′ ∈ V, 0 ≤ k < ni,j ;

4. δ(qi,j,ni,j , ε, A) 3 (qi′,j′,k′ , A),
for all A ∈ Γ, Xi′ → αi′,j′,0 · · ·αi′,j′,ni′,j′ ∈ P with αi′,j′,k′ = Xi.

For every rule in Pi satisfying case (2), i. e. for every 1 ≤ j ≤ ni with
Xi → αi,j,0 · · ·αi,j,ni,j ∈ Pi and αi,j,0, · · · , αi,j,ni,j ∈ Σ ∪ {Xi}, define

41

3 Definability of Languages in FO[+]

1. δ(qXi , ε, A) 3 (qi,j,0, A),
for all A ∈ Γ;

2. δ(qi,j,k, αi,j,k+1, A) 3 (qi,j,k+1, A),
for all A ∈ Γ, αi,j,k+1 ∈ Σ, 0 ≤ k < ni,j ;

3. δ(qi,j,k, ε, A) 3 (qXi , Bi,jA),
for all A ∈ Γ, αi,j,k+1 = Xi, 0 ≤ k < ni,j ;

4. δ(qi,j,ni,j , ε, Bi,j) 3 (qi′,j′,k′ , ε),
for all Xi′ → αi′,j′,0 · · ·αi′,j′,ni′,j′ ∈ P with αi′,j′,k′ = Xi.

Now the set of final states can be specified as the set of states that P
resides in after completely reading the last letter of a derivation from the
starting symbol X0. That is

F = {q0,j,n0,j | 1 ≤ j ≤ n0}.

It remains to show that L(G) = L(P). If Xi0 ⇒G w ∈ Σ? is a one-
step derivation of some nonterminal Xi0 in G, then there is a production
Xi0 → w ∈ P and, according to the above definitions, (qXi0

, wx, γ) 7−−?
P

δ(qi0,j,ni0,j , x, γ), for all x ∈ Σ?, γ ∈ Γ?.
Otherwise, if Xi0 ⇒G v0Xi1v1 · · · vs−1Xisvs is a one-step derivation

using the jth rule in Pi0 , then for all w = v0w0v1 · · · vs−1wsvs ∈ Σ? with
Xil ⇒?

G wl for 1 ≤ l ≤ s there is a sequence of configurations

(qXi0
, w, γ) 7−−P (qi0,j,0, wx, γ)

7−−?
P (qi0,j,|v0w0···vl|, wlvl+1 · · · vs−1wsvsx, γ)

7−−P (qXil
, wlvl+1 · · · vs−1wsvsx, γ)

7−−?
P (qi0,j,|v0w0···vlwl|, vl+1 · · · vs−1wsvsx, γ)

7−−?
P (qi0,j,ni0

,j , x, γ)

for all x ∈ Σ?, γ ∈ Γ?, 0 ≤ l ≤ s. Hence, by induction on the length of
a derivation and the choice i0 = 0, x = ε and γ = ⊥, (qX0 , w,⊥) 7−−?

P

42

3.4 Context-Free Languages and FO[+]

(qX , ε,⊥) is obtained. On the other hand, if such a sequence of config-
urations exists, one can analogously construct a derivation of G. Thus
L(G) = L(P).

Unfortunately this superclass of linear recursive grammars does not
capture the context-free languages expressible in FO[+], what strengthens
conjecture 3.27.

Theorem 3.30. FO[+] ∩ CFL * finite-turn CFL.

Proof. Consider the context-free language

L =
{
w ∈ {a,b}?

∣∣ w = w1 · · ·wn, wi = amibmi ,mi > 0, 1 ≤ i ≤ n
}
.

Clearly L ∈ CFL. L is definable in FO[+] by a formula expressing that

1. the word begins with an a,

2. the word ends with a b, and

3. all strings between adjacent positions of the substring ba (including
the first a and last b) match anbn for some n > 0.

The following formula ϕ ∈ FO[+] defines L:

ϕ≡ ∃x
(
∀y(x ≤ y) ∧Qa(x)

)︸ ︷︷ ︸
1.

∧∃x
(
∀y(y ≤ z) ∧Qb(x)

)
∧︸ ︷︷ ︸

2.

∀x∀y
(
x < y ∧Qa(x) ∧

(
Qb(x− 1) ∨ ∀z(x ≤ z)

)
∧

Qb(y) ∧
(
Qa(y + 1) ∨ ∀z(z ≤ y)

)
∧

∀z
(
z < x ∨ y > z ∨ ¬(Qb(z) ∧Qa(z + 1))

)
→ ∃z

(
Qa(z) ∧Qb(z + 1) ∧ ∃d(x + d = z ∧ z + d = y)

))
.︸ ︷︷ ︸

3.

Next assume L is recognizable by a finite-turn PDA. Let k ∈ N be the
minimal number of stack-operation turns necessary to recognize L and

43

3 Definability of Languages in FO[+]

choose any word w ∈ L for which this number of turns is reached. w is of
the form w1 · · ·wn, n ∈ N, with wi = amibmi for all 1 ≤ i ≤ n. In order to
test the number of a’s and the number of b′s in some wi for equality, at
least one stack operation turn is necessary:

Assume there is a PDA P that could test this equality without any
stack operation turn. Let Q be the set of states of P and let Γ be its
stack alphabet, then there are only |Q| · |Γ| possible configurations while
reading the block of a’s. Thus, if wi = amibmi , with mi > |Q| · |Γ|, P
has to enter some configuration c twice. Let l be the number of letters
read by P between two successive occurrences of c. Then P accepts w′ =
w1 · · ·wi−1w

′
iwi+1 · · ·wn, w′

i = a2l+dbl+d for all d ∈ N, because it resides in
the same configuration after reading w1 · · ·wi−1a

l+d and w1 · · ·wi−1a
2l+d;

this contradicts the assumption of the existence of P .
Hence, in order to recognize the word w, at least n ≤ k stack oper-

ations turns are necessary. Now consider the word w′ = w′
1 · · ·w′

k−n+1

with w′
i = am′

ibm′
i , 1 ≤ i ≤ k − n + 1 and the concatenation ww′ =

w1 · · ·wnw′
1 · · ·w′

k−n+1 = w̃1 · · · w̃k+1 ∈ L for suitable w̃i ∈ Σ?, 1 ≤ i ≤
k+1. It is compelling that ww′ is only recognizable with at least k+1 > k
stack operation turns. This contradicts the existence of a finite-turn PDA
recognizing L.

From an intuitive point of view, theorem 3.30 states that FO[+] is
capable of defining context-free languages not being recognizable with
finite-turn PDAs. Hence first-order logic contains formalisms to finitely
describe patterns that require a PDA to perform arbitrary many stack
operation turns.

Note that the converse of theorem 3.30 does not hold either. The
language of words with an even number of occurrences of the symbol a is
regular and can therefore be recognized by a finite-turn PDA (which in
fact does not use its stack at all). Along with corollary 3.10, it follows:

Corollary 3.31. 1. Finite-turn CFL * FO[+].
2. Finite-turn CFL and FO[+] are incomparable.

44

3.5 Context-Free Numerical Predicates

The resulting inclusion diagram is depicted in figure 3.3.
Besides, L ∈ B(linear recursive CFL) holds again, as its complement is

generated by a linear recursive grammar with the rules

S → aSa, T → aTb, A → aA, B → bB,
S → aSb, T → A, A → a, B → b,
S → bSa, T → B,
S → bSb,
S → bTa

and starting symbol S.

linear recursive CFL

FO[+]

FO[+] ∩ CFL

B(finite-turn CFL)

CSL

finite-turn CFL

B(linear recursive CFL)

Figure 3.3: Dashed lines are inclusions, solid lines are proper inclusions.

3.5 Context-Free Numerical Predicates

Theorem 3.32. Let N denote the set of all numerical predicates, then
FO[N] ∩ REG = FO[<,≡], where ≡ denotes equality modulo n for all
n ∈ N \ {0}.

45

3 Definability of Languages in FO[+]

Proof sketch. The inclusion from right to left is trivial regarding section 3.1.
The opposite inclusion is proven using the result FO[N] = AC0 (see
e. g. [Str74]). Hence it suffices to prove AC0 ∩ REG ⊆ FO[<,≡]. This
is accomplished by showing that the syntactic monoid of any language
L ∈ AC0 ∩ REG contains no nontrivial group: otherwise there existed a
cyclic group of cardinality q > 0 permitting the definition of {a1 · · · an ∈
{0, 1}? |

∑n
i=1 ai ≡ 0 (mod q)} ∈ AC0, which contradicts AC0 (TC0. A

detailed version of this proof can be found in [Str74, section IX.3].

Theorem 3.32 implies that all regular languages definable in first-order
logic with arbitrary numerical predicates are already definable in FO[<,≡].
First of all, this shows that FO[+] does not exceed the definability of
FO[<,≡] on the level of the regular languages:

Corollary 3.33. REG ∩ FO[+] \ FO[<,≡] = ∅.

Subsequently this also raises the question whether there is a set of
numerical predicates that captures all context-free languages definable in
first-order logic. Due to section 3.1, such a set must be a superset of the
addition.

Corollary 3.34. FO[+] ∩ CFL ⊆ FO[N] ∩ CFL.

Since FO[N]∩CFL is not closed under intersection, these two classes can
not coincide. Hence the boolean closure of CFL is considered instead. But
is the inclusion strict, or are there still other predicates grasping essential
parts of context-freeness?

Conjecture 3.35. FO[+] ∩B(CFL) = FO[N] ∩B(CFL).

46

4 Conclusions and Further Work

The central subject considered in this thesis is the relationship of first-order
logic to subsets of the context-free languages.

Therefore, a brief summary of the elementary results concerning FO[<]
and REG has been given initially. Then investigation turned towards
FO[+], an extension of ordered first-order logic, by which its definability is
extended beyond the star-free regular languages. Examples for languages
that are definable and languages that are indefinable in FO[+] have been
given and a general upper bound for the definability of FO[+] has been
derived.

It has been shown that the boolean closure of linear recursive context-
free languages is captured by FO[+]. Further on, both separation and
matching of these classes failed, yielding conjecture 3.27:

Is B(linear recursive CFL) = FO[+]?

In aspiration to gain the opposite of the former inclusion, i. e. the
inclusion of FO[+] in a superclass of linear recursive CFL, the relationship
of FO[+] to finite-turn CFL has been examined. It has been shown that
this superclass does not capture all languages in FO[+]∩CFL, making the
latter both incomparable.

Finally section 3.5 focused on which set of numerical predicates suffices
to define all the context-free languages definable in first-order logic (with
arbitrary numerical predicates) at all. As no new results were obtained,
the situation has been briefly surveyed and the question was raised whether
the inclusion FO[N] ∩B(CFL) ⊇ FO[+] is strict? And if, for which set of
numerical predicates does equality hold?

Which set of relations R satisfies FO[N] ∩B(CFL) = FO[R]?

47

4 Conclusions and Further Work

One possible approach to this problem offers [BLM93], in which CFL has
been proven to coincide with the set of FO[<]-formulas with a single unary
Lindström quantifier, Qun

GrpFO[<]. Hence FO[N] ∩ B(CFL) = FO[N] ∩
FO[Qun

Grp]. Likewise the power of FO[+] on the level of CFL can be
expressed as FO[+]∩CFL = FO[+]∩Qun

GrpFO[<]. But no viable application
of this reformulation has been found yet, since it simply relocates the
context-freeness into an "oracle" question to the Lindström quantifier.

48

Bibliography

[ABB97] Jean-Michel Autebert, Jean Berstel, and Luc Boasson, Context-
free languages and pushdown automata, Handbook of Formal
Languages, Vol. 1: Word, Language, Grammar (1997), 111–174.

[BIL+01] David A. Mix Barrington, Neil Immerman, Clemens Laute-
mann, Nicole Schweikardt, and Denis Thérien, The crane beach
conjecture, Logic in Computer Science, 2001, pp. 187–196.

[BIS90] David A. Mix Barrington, Neil Immerman, and Howard Straub-
ing, On uniformity within NC, Journal of Computer and System
Sciences 41 (1990), no. 3, 274–306.

[BLM93] F. Bédard, F. Lemieux, and P. McKenzie, Extensions to Bar-
rington’s M-program model, Theoretical Computer Science 107
(1993), 31–61.

[GS66] S. Ginsburg and E. H. Spanier, Semigroups, presburger formulas
and languages, Pacific Journal of Mathematics 16 (1966), 285–
296.

[Har78] Michael A. Harrison, Introduction to formal language theory,
Adddion-Wesley, Reading, Massachusetts, 1978.

[Lib04] Leonid Libkin, Elements of finite model theory, Springer-Verlag,
Berlin, Germany, 2004.

[LMSV01] Clemens Lautemann, Pierre McKenzie, Thomas Schwentick,
and Heribert Vollmer, The descriptive complexity approach to
LOGCFL, Journal of Computer and System Sciences 62 (2001),
no. 4, 629–652.

49

Bibliography

[LS01] Clemens Lautemann and Nicole Schweikardt, An Ehrenfeucht-
Fraïssé approach to collapse results for first-order queries over
embedded databases, STACS ’01: Proceedings of the 18th An-
nual Symposium on Theoretical Aspects of Computer Science
(London, UK), Springer-Verlag, 2001, pp. 455–466.

[LST95] Clemens Lautemann, Thomas Schwentick, and Denis Thérien,
Logics for context-free languages, CSL ’94: Selected Papers
from the 8th International Workshop on Computer Science
Logic (London, UK), Springer-Verlag, 1995, pp. 205–216.

[Lyn82] James F. Lynch, On sets of relations definable by addition,
Journal of Symbolic Logic 47 (1982), no. 3, 659–668.

[Ruh99] Matthias Ruhl, Counting and addition cannot express deter-
ministic transitive closure, Logic in Computer Science, 1999,
pp. 326–334.

[Sch01] Nicole Schweikardt, On the expressive power of first-order logic
with built-in predicates, Ph.D. thesis, Fachbereich Mathematik
und Informatik, Johannes Gutenberg-Universität Mainz, Ger-
many, December 2001.

[Str74] Howard Straubing, Finite automata, formal logic, and circuit
complexity, Birkhäuser Verlag, Basel, Switzerland, 1974.

50

	Introduction
	Preliminaries
	Words and Languages
	Formal Logic
	Ehrenfeucht-Fraïssé Games
	Grammars and Automata

	Definability of Languages in FO[+]
	Numerical Predicates Expressible in CFL
	Introducing First-Order Logic with Addition
	Logics for Regular Languages
	Languages in FO[+]

	Limitations to the Definability of FO[+]
	Indefinable Languages
	A general upper bound

	Context-Free Languages and FO[+]
	FO[+] and linear recursive grammars
	FO[+] and finite-turn PDAs

	Context-Free Numerical Predicates

	Conclusions and Further Work
	Bibliography

