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ZUSAMMENFASSUNG

Nichtmonotones Schließen ist eine der wichtigsten Aufgaben im Bereich der Wis-
sensrepräsentation und künstlichen Intelligenz. Verschiedenste Logiken wurden
entwickelt, um nichtmonotones Schließen zu formalisieren. In dieser Arbeit be-
trachten wir drei solcher Logiken, die die Nichtmonotonie auf unterschiedliche
Weise modellieren: Default Logik, Autoepistemische Logik und Circumscription.

Wir untersuchen die Komplexität verschiedener Konsistenz-, Folgerungs- und
Zählprobleme für Fragmente dieser Logiken, die durch die Beschränkung der
verfügbaren Booleschen Operatoren entstehen, sowie die Möglichkeit zwischen
Fragmenten dieser Logiken zu übersetzen. Zu diesem Zweck verallgemeinern
wir die oben genannten Logiken, indem wir allgemeine Boolesche Operatoren
anstelle der üblichen Standardbasis zulassen, und betrachten die Komplexität
der Probleme und Existenz von Übersetzungen für alle endlichen Mengen von
Booleschen Operatoren.

Unsere Resultate zeigen, dass in allen Fällen die Komplexität der betrachteten
Probleme nicht von der speziellen Menge von erlaubten Operatoren B abhängt,
sondern von der Menge der Funktionen, die sich aus B mit Hilfe von Projektionen
und Komposition bilden lässt. Darüber hinaus nimmt die Komplexität der unter-
suchten Entscheidungsprobleme für alle möglichen Operatormengen nur endlich
viele Komplexitätsgrade an. Die Komplexität der Zählprobleme wiederum ist
bis auf eine interessante Ausnahme trichotom, wobei die auftretenden Komplex-
itätsgrade die untersten drei Stufen der Zählhierarchie umfassen.

Schließlich untersuchen wir die Existenz von Übersetzungen zwischen Frag-
menten der genannten Logiken, für die die Menge der logischen Schlußfol-
gerungen invariant ist. Wir zeigen, welche Fragmente der Default Logik, der
Autoepistemischen Logik und von Circumscription sich unter dem gewählten
Übersetzungsbegriff in Fragmente der jeweils anderen zwei Logiken übersetzen
lassen. Diese Ergebnisse werden komplettiert durch die Feststellung, dass in fast
allen Fällen, in denen keine Übersetzungen angegeben sind, Übersetzungen nur
dann existieren können, wenn die Polynomialzeithierarchie kollabiert.

SCHLAGWORTE: Nichtmonotone Logik, Komplexität, Post’scher Verbund





ABSTRACT

Nonmonotonic reasoning is one of the most important tasks in the area of knowl-
edge representation and reasoning. Several logics have been developed to for-
malize nonmonotonic reasoning. In this thesis we consider three well-known
logics that facilitate nonmonotonic reasoning by different means: default logic,
autoepistemic logic and circumscription. We study the computational complexity
of consistency, reasoning and counting problems for fragments of these logics
obtained by restricting the available Boolean connectives, as well as the possi-
bility to translate between these fragments. For this we generalize the logics to
allow for arbitrary connectives rather than the Boolean standard base and study
the complexity of the problems and possibility of translations for all finite sets of
allowed Boolean connectives.

Our results show that in all cases the complexity of the problems does not
depend on the particular set B of available connectives but on the set of func-
tions expressible by projections and arbitrary compositions from B. We obtain
polytomous complexity classifications (that is, into a finite number of complexity
degrees) for all decision problems studied herein ranging from completeness for
classes in the second level of the polynomial hierarchy down to membership in
AC0. Furthermore, the counting problems are with one interesting exception
shown to be trichotomous with complexity degrees spanning the first three levels
of the counting hierarchy. To the best of our knowledge, the counting complexity
of default logic is addressed here for the first time.

Finally, we consider translations between fragments of these logics that leave
the set of propositional consequences of the input invariant. We show which
fragments of default logic, autoepistemic logic and circumscription can, under
the chosen notion of translations, be embedded into fragments of the other
two logics. We complete this picture by showing that in almost all cases in
which no translation is given, no translation preserving the set of propositional
consequences may exist unless the polynomial hierarchy collapses.

KEYWORDS: nonmonotonic logic, computational complexity, Post’s lattice
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CHAPTER 1

INTRODUCTION

1.1 COMPLEXITY THEORY

Suppose that you are given a set of villages connected via dirt roads and are asked
to tarmac a set of streets such that each pair of villages is connected via asphalted
roads. Your budget is limited, hence you want to know whether this task can
be solved with a given amount of money. This problem is fairly easy to solve:
starting from an arbitrary village v1, tarmac the shortest dirt road connecting v1
to some not yet accessible village v2. Now again choose the shortest dirt road as
above starting from either v1 or v2, and so forth until all villages are connected.

This algorithm, also known as Prim’s algorithm [Jar30, Pri57], will provide you
with a minimal cost solution which you can compare to your budget. Moreover,
the resources required to solve the problem are quite limited: one only needs
to keep track of the set of villages already connected to each other and find the
shortest dirt road leading from these to some not yet accessible village. But what
if you are instead asked to tarmac a round trip that visits each village exactly
once rather than an arbitrary set of streets. For this modification, the above
strategy will no longer work. Indeed, no one has yet found an algorithm running
in subexponential-time that answers the question whether you can tarmac a
round trip. But can we be sure that no such algorithm exists? And in which
way does the additional restriction make the problem computationally more
involved?

These questions are typically studied in an area of theoretical computer science
called (computational) complexity theory. This area analyzes the resources required
to solve a computational problem and classifies these according to their inherent
difficulty. One of the main goals of this area is to understand which problems
are easy to solve, which problems are computationally hard, and of course,
why. The class of easy decision problems is denoted by P and comprises those
problems that are efficiently (that is, polynomial-time) solvable. The first of the
above problems belongs to this class. For the second problem no polynomial-
time algorithm is known; however, given a solution we can easily verify its
correctness. Such problems are called efficiently verifiable, and the class of all such
problems is denoted NP. As any efficiently solvable problem is also efficiently
verifiable, we have P ⊆ NP. And while the question whether P = NP or P ( NP
is one of the most important open problems in computer science, the inability to
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prove or refute P = NP led to the development of a rich theory of computational
complexity.

An important role in this context play the hardest problems in NP in the sense
that an algorithm for any such problem can be transformed into one for any
problem in NP. These problems are called NP-complete. An efficient algorithm
for an NP-complete problem would thus allow for the efficient solution of all
problems in NP, that is, P = NP. The first problem shown to be NP-complete
was SAT, the satisfiability problem for propositional formulae [Coo71].

In this thesis, we will encounter problems that do not fall into the classes P or
NP, for example, problems whose complement lies in NP. This class of problems
for which the absence of solutions can be verified in polynomial-time, is known
as coNP. We also require classes for problems that are harder to solve than SAT in
the sense that they are only known to be efficiently verifiable if provided with an
oracle that is able to instantaneously answer queries to a language in NP. These
problems are called efficient verifiable relative to an NP-oracle. For example,
the problem to determine whether the lexicographic smallest assignment of a
formula sets to true a certain proposition is known to be efficiently verifiable
relative to an NP-oracle but not known to be in NP or coNP. One can now
consider problems that are efficiently verifiable relative to such problems, and
so on. The concept of efficient verification relative to an oracle thus naturally
leads to a hierarchy of complexity classes known as the polynomial hierarchy. The
(i + 1)th level of this hierarchy comprises the class Σp

i+1 of problems known to
be efficiently verifiable given an oracle for the ith level and the class Πp

i+1 of their
complements, where the Σp

0 and Πp
0 are defined as P.

We will use this rich framework of complexity theory to classify the complexity
of computational problems connected to logics for knowledge representation
and commonsense reasoning.

1.2 NONMONOTONIC LOGIC

One of the most intriguing aspects of human reasoning is its flexibility and speed.
Despite the fact that in most situations we do not have all relevant knowledge
at hand, commonsense enables one to draw conclusions by virtue of plausible
assumptions. These assumptions might be invalidated by new information about
the world; therefore human reasoning is said to be nonmonotonic.

For example, suppose that you need some advice from a colleague. As his
office is empty and it is noon, you conclude that he is gone for lunch; a conclusion
derived from an assumption about his usual behaviour. Learning that he is on a
business trip now invalidates your old conclusion.

From the very beginning of knowledge representation and reasoning, it has
been argued that classical logic is not suited to formalize the process of human
reasoning, mainly for its inherent monotonicity: once a statement is derivable
it may never be invalidated regardless of whatever knowledge one might gain.
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To overcome this deficiency, nonmonotonic logics have been introduced around
1980 [McC80, MD80, Rei80]. These logic can be distinguished by the way they
facilitate nonmonotonic behaviour:

1. by extension with new inference rules,

2. by extension with modal operators,

3. by modification of the semantics.

In this thesis, we will examine one logic from each of the above approaches and
study the complexity of natural problems arising in these. In particular, we focus
on the following well-known logics.

Default logic has been introduced by Reiter [Rei80] and extends classical (first-
order or propositional) logic with inference rules of the form α:β

γ , called

default rules. The default rule α:β
γ allows to conclude γ if the premise α is

derivable and the justification β can consistently be assumed.

Autoepistemic logic has been introduced by Moore [Moo85] and extends clas-
sical logic with a unary “introspective” operator L expressing belief. For a
formula ϕ, Lϕ states that an ideally rational agent can derive ϕ.

Circumscription has been introduced by McCarthy [McC80]. Rather than ex-
tending classical logic, it restricts the notion of satisfiability and inference
to consider the minimal model of a formula only. It has been shown that
circumscription as defined by Lifschitz [Lif85] is equivalent to reasoning
under the extended closed world assumption, which for a designated set P
allows to assume ¬p whenever p ∈ P is not derivable [GPP89].

The extensions introduced by default or autoepistemic logic condition the deriv-
able knowledge on a set of beliefs. Therefore maximal stable sets of knowledge
supersede the traditional deductive closure. For default logic these are called
stable extensions; for autoepistemic logic, stable expansions. A default or an au-
toepistemic theory may possess multiple or no such maximal stable sets of
knowledge. Thus the following questions naturally arise: Does a given set of
formulae admit a maximal stable set of knowledge? A lack thereof would cor-
respond to the case that for all possible sets of beliefs one eventually arrives
at contradictory information. The problem hence asks whether one can obtain
consistent knowledge of the world. This problem is a rough analogue of the
satisfiability problem in propositional logics and will henceforth be referred to
as the extension (respectively expansion) existence problem.

Beyond, the potential presence of multiple maximal stable sets of knowledge
leads to two different interpretations for the question whether a certain informa-
tion is derivable: the first, credulous reasoning (also referred to as brave reasoning),
asks whether a formula is contained in at least one stable extension (respectively
expansion) of the knowledge base; the second, skeptical reasoning (also referred
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to as cautious reasoning), asks whether the formula is contained in all stable ex-
tensions (respectively expansions). On an intuitive level, credulously entailed
knowledge can be considered “possible”, while skeptically entailed knowledge
is “certain” in the sense that any possible interpretation of the world entails it.
The associated decision problems are natural generalizations of the propositional
implication problem and will henceforth be referred to as the credulous reasoning
problem and the skeptical reasoning problem.

In the restricted semantics of minimal models no corresponding notion of
maximal stable sets of knowledge exists. The corresponding notion in circum-
scription are minimal (or circumscriptive) models, which exist if and only if the
given knowledge base is satisfiable. Therefore the problem of determining their
existence of is equal to SAT. For circumscription we are hence restricted to the
study of the skeptical reasoning problem, that is, to decide whether for a given
set of formulae Γ and a formula ϕ, whether ϕ is true in all minimal models of Γ.

1.3 RESULTS

While for extensions of first-order logic all of the above decision problems
are undecidable, they are decidable for extensions of propositional logic—but
presumably harder than the traditional satisfiability or implication problem:
they are known to be complete for the second level of the polynomial hierar-
chy [Nie90, CL90, Got92, EG93]. For this reason, several semantic restrictions
and parameterizations of these problems have been studied in the literature (see
[CL90, KS91, NR94, KK03, Nor04, CHS07], amongst others).

In this thesis, we take a different approach and perform a systematic study
of the complexity of the above extension (respectively expansion) existence and
reasoning problems obtained by restricting the set of allowed Boolean connec-
tives. To this end, we generalize the underlying problems to allow for arbitrary
Boolean connectives rather than the Boolean standard base {∧,∨,¬} and classify
the complexity of these problems parameterized by the set of allowed Boolean
connectives for all possible finite sets of Boolean connectives.

This approach has first been taken by Lewis [Lew79], who showed that the
satisfiability problem is NP-complete if and only if the negation of the impli-
cation (x9 y) can be composed from the given Boolean connectives. Such a
dichotomous behaviour cannot be taken for granted due to Ladner’s theorem:
if P 6= NP then there exists infinitely many degrees of complexity between
P and NP-completeness [Lad75]. Since then, Lewis’ approach has been ap-
plied to a wide range of problems including equivalence and implication prob-
lems [Rei03, BMTV09a], satisfiability and model checking in modal and temporal
logics [BHSS06, BSS+08, BMS+09, MMTV09, MMS+09], and abduction [CST10].

Herein we study whether a similarly polytomous complexity classification
is possible for the extension (respectively expansion) existence and reasoning
problems mentioned above. Our goal is to exhibit fragments of lower complexity
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which might lead to better algorithms for cases in which the set of Boolean
connectives can be restricted. Furthermore we aim to understand the sources
of hardness and to provide an understanding which connectives take the role
of x9 y in the context of the nonmonotonic logics mentioned above, that is,
which connectives account for jumps in the complexity of the problems. These
connectives may help to identify candidates for parameters in the study of
parameterized complexity of nonmonotonic logics.

To be more precise, let B denote the finite set of available Boolean connec-
tives. Although at first sight, an infinite number of sets B of allowed Boolean
connectives has to be examined, we prove, making use of results from universal
algebra, that for all considered problems the complexity does not depend on the
particular set but rather on the clone [B] of B, that is, the set of functions which
can be implemented from B using projections and arbitrary composition.

DECISION PROBLEMS

We show that both the complexity of the extension existence problem in default
logic and the complexity of the expansion existence problem in autoepistemic
logic are polytomous (see Theorems 4.1.1 and 4.2.1):

the extension existence problem remains Σp
2 -complete for all sets B such that

[B ∪ {1}] = BF; becomes ∆p
2 -complete for monotone sets B that contain conjunc-

tions, disjunctions and the constant 0; is NP-complete if [B ∪ {1}] contains ¬ and
comprises affine functions only; and becomes tractable in all other cases (with
this case splitting into P-complete, NL-complete, and trivial sub-cases). The
expansion existence problem for autoepistemic logic, on the other hand, remains
Σp

2 -complete for all B such that [B ∪ {0, 1}] includes the Boolean functions ∧ and
∨, is NP-complete if [B] contains ∨ and the Boolean constants only, and becomes
polynomial-time decidable in all other cases (with this case splitting into three
different complexity degrees inside P).

For the credulous and skeptical reasoning problems in default logic and au-
toepistemic logic, the situation is more diverse as there are two sources for the
complexity: On the one hand, we need to determine a finite characterization of
a candidate for a stable extension (respectively expansion). And, on the other
hand, we have to verify that this candidate is indeed a finite characterization as
desired—a task that requires to test for formula implication. Depending on the
Boolean connectives allowed, one or both tasks can be performed in polynomial
time or even become trivial. In principle, this yields five possible cases for the
complexity of the problems, and we will see that all five cases actually occur. In
principle, this yields five possible cases for the complexity of the problems, and
we will see that all four cases actually occur.

We obtain Σp
2 -completeness for the skeptical reasoning problems and Πp

2 -
completeness for the credulous reasoning problems for all clones where both
the stable extension and the implication problem attain their highest complexity.
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For default logic, the complexity of the reasoning problems reduces to ∆p
2 for

clones that allow for an efficient computation of stable extensions but whose
implication problem remains coNP-complete. More precisely, these problems
are ∆p

2 -complete if a stable extension may not exist and becomes coNP-complete
otherwise. Conversely, if the implication problem becomes easy but determining
an extension candidate is hard, then the credulous reasoning problem is NP-
complete, while the skeptical reasoning problems is coNP-complete. Similarly
for autoepistemic logic, the credulous and skeptical reasoning problems become
complete for respectively NP and coNP if the implication problem is tractable
but determining an expansion candidate is hard. Finally, for clones that allow for
solving both tasks in polynomial time all reasoning problems become tractable
(with these cases splitting up into different complexity degrees ranging from
membership in AC0 to completeness for P). We hence obtain polytomous classifi-
cations of the computational complexity of the problems, where for the credulous
reasoning problem in default logic, notably, complete fragments for all classes
of the polynomial hierarchy below Σp

2 occur. In contrast to this, the complexity
of credulous and skeptical reasoning in autoepistemic logic decreases in coarser
steps. These results are presented in Theorems 5.1.1, 5.1.5, 5.2.1 and 5.2.4.

As for circumscription, the complexity of the skeptical reasoning problem is
Πp

2 -complete for all clones such that the implication problem and the problem
to determine the minimality of models are intractable. If all available func-
tions are affine or monotone, then the complexity of the problem is contained
in coNP, where it is coNP-complete in the former case as long as ∨ remains
expressible using the available functions and the constant 1. This decrease in
the complexity comes from different sources: for monotone functions the test for
minimality of models becomes tractable, while for affine functions the implica-
tion problem becomes tractable. Finally, if the set of available functions is further
restricted to contain either only negations or only conjunctions, then the problem
becomes polynomial-time solvable (its complexity drops to respectively AC0[2]-
completeness or membership in AC0). This is summarized in Theorem 5.3.1.
We point out that the implication problem and the problem to determine the
minimality of models do not completely determine the complexity of the skep-
tical reasoning problem: for all sets B such that [B ∪ {0, 1}] contains ∨ and the
Boolean constants only, the latter problem remains coNP-complete whereas the
implication problem and minimality of models can be decided in polynomial
time.

COUNTING PROBLEMS

Besides the decision variants, another natural question is concerned with the
number of stable extensions (respectively expansions) or the number of minimal
models. This question refers to counting problems. Recently, counting problems
have gained quite a lot of attention in nonmonotonic logics. For circumscrip-
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tion, the counting problem (that is, determining the number of minimal models
of a propositional formula) has been studied in [DHK05, DH08]. For proposi-
tional abduction, a nonmonotonic formalism for computing explanations, some
complexity results on the problem of counting the number of “solutions” to a
propositional abduction problem were presented in [HP07, CST10]. Algorithms
based on bounded treewidth have been proposed in [JPRW08] for the counting
problems in abduction and circumscription. Here, we consider the complexity
of the problem to count the number of stable extensions, stable expansions and
minimal models of a given knowledge base. To the best of our knowledge, the
first problem is addressed here for the first time.

In particular, we show in Theorem 6.1.1 that for sets B of Boolean connec-
tives such that [B ∪ {1}] is functional complete counting the number of stable
extensions is complete for the second level of the counting hierarchy; becomes
∆p

2 -complete for all monotone sets B such that [B ∪ {1}] = M; is #P-complete
for affine sets B such that ¬ can be implemented from B ∪ {1}; and becomes
efficiently computable in all other cases. In autoepistemic logic, the complexity
of counting the number of stable expansions is trichotomous and decreases anal-
ogously to the complexity of the stable expansion problem, see Theorem 6.2.1.

We think it is important to note that for our classification of the two counting
problems above the conceptually simple parsimonious reductions are sufficient,
while for related classifications in the literature less restrictive (and more com-
plicated) reductions such as subtractive or complementive reductions had to
be used (see, for example, [DHK05, DH08, BBC+09] and some of the results
of [HP07]). Parsimonious reductions are not only the conceptually simplest
ones since they are direct analogues of the usual many-one reductions among
languages. They also form the strongest (or strictest) type of reduction with a
number of good properties, for example, all relevant counting classes are closed
under parsimonious reductions.

Lastly, the complexity of counting the number of minimal models is classified
in Theorem 6.3.1. Unlike the preceding counting problems, here we have sets of
Boolean functions for which the problem to decide whether a given assignment
is a circumscriptive model is tractable while the corresponding counting problem
is #P-complete (namely affine sets of Boolean functions that implement the
ternary exclusive-or). In all remaining cases, its complexity can be derived
from the complexity of the skeptical reasoning problem in circumscription in
the way that completeness for the second level of the polynomial hierarchy
translates to #·coNP-completeness, completeness for the first level translates to
#P-completeness, and membership in P translates to membership in FP. However,
mind that the decision problem underlying the circumscriptive model counting
problem is the question whether there exists a minimal model for the given
formula—a problem equivalent to the satisfiability problem for propositional
formulae. It thus represents a counting problem whose underlying decision
problem is, though intractable, supposedly easier to solve than the decision
problems underlying the generic complete problem for #·coNP.
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TRANSLATIONS

On the basis of these results, we finally examine the possibility of translations
preserving the derivability of propositional formulae between fragments of the
nonmonotonic logics introduced above.

We prove that, with respect to equality of the set of skeptically entailed formu-
lae, not only default logic can be embedded into autoepistemic logic but that the
latter can also be embedded into the former (Theorems 7.2.1 and 7.2.7). Thus, in
case one is interested in the set of consequences of the given theory only, one may
switch between default and autoepistemic logic. This complements results of
Janhunen [Jan99], who proves that with respect to translations preserving stable
extensions (respectively expansions), default logic is strictly more expressive. In
addition to that, we prove that monotone autoepistemic logic embeds monotone
default logic and, quite remarkably, that autoepistemic logic of disjunctions can
be embedded into the fragments of default logic containing negations as the sole
Boolean connective.

Concerning translations of circumscription into the above two logics, we show
in Theorems 7.3.1 and 7.4.1 that, although translations into both full default
logic as well as full autoepistemic logic are possible, the results for fragments
of this logic differ significantly. While circumscription restricted to Boolean
functions from B can be modularly embedded to default logic whenever ¬ can
be implemented in default logic and all functions from B can be simulated, the
analogous statement for autoepistemic logic is more restrictive: a translation
from circumscription into a not functional complete fragment of autoepistemic
logic exists only if the circumscriptive theory is equivalent to a set of literals.
Thus, while both autoepistemic logic and default logic are capable of embedding
circumscription, in default logic the concept of default rules allows a translation
that separately translates the knowledge base and the nonmonotonic features of
circumscription.

For the converse direction, translations from default logic or autoepistemic
logic to circumscription are only possible for very restrictive sets of Boolean
functions, namely those for which the skeptical reasoning problem is tractable.
These results confirm the intuition that circumscription is less expressive than
autoepistemic logic or default logic, not only for the full fragment but also
the fragments obtained by restricting the set of available Boolean functions
(Theorems 7.3.5 and 7.4.6).

Beyond these translatability results, we prove that for almost all remaining
pairs of fragments for which no translation is given, no translation is possible
unless the polynomial hierarchy collapses to its first or second level.

1.4 PUBLICATIONS

Section 2.5 was previously published in [BMTV09a]. The results on the com-
plexity of the extension existence and reasoning problems for default logic in
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Sections 4.1 and 5.1 previously appeared in [BMTV09b]; similarly, the corre-
sponding results on autoepistemic logic in Sections 4.2, 5.2 and 6.2 have been
published in [CMTV10]. The results from Section 5.3 on the complexity of reason-
ing in circumscription appeared in [Tho09]. The remaining sections of Chapter 6
and Chapter 7 contain unpublished results.





CHAPTER 2

PRELIMINARIES

This chapter introduces the basic definitions and concepts relevant throughout
this thesis and states the relevant results from complexity theory. Section 2.5
contains own results on the complexity of the propositional implication problem
which will be used several times in the subsequent chapters.

2.1 BASIC NOTATIONS

We assume that the reader is familiar with basic mathematical structures like sets,
functions, partial orders, and the basic notions from theoretical computer science.
We will also use without explanation the terms positive and negative literal,
clause, conjunctive normal form and disjunctive normal form from mathematical
logic.

The set of natural numbers {0, 1, 2, . . .} is denoted by N, the set of integers
by Z. A lattice is a partially ordered set (A,≤) such that for any two elements
a, b ∈ A, there exist a greatest lower bounded and a least upper bound in (A,≤).
We use |·| to denote both the length of strings and the cardinality of sets. As
usual, we identify decision problems with languages, that is, with the set of its
“yes”-instances.

The symbols 0 and 1 represent the Boolean constants false and true. A Boolean
function is a function f : {0, 1}n → {0, 1} for some n ∈N. We identify the n-ary
logical connective c with the n-ary Boolean function f defined by f (a1, . . . , an) :=
1 if and only if the formula c(x1, . . . , xn) evaluates to true when assigning ai to
xi for all 1 ≤ i ≤ n. The symbols ∧, ∨ and ¬ are used to denote the logical
conjunction, disjunction and negation, respectively. The symbol ⊕ denotes the
logical exclusive-or, the symbol→ logical implication, and the symbol↔ logical
equivalence.

2.2 COMPLEXITY THEORY

In order to determine the resources necessary to solve a computational problem,
we use the common terminology from complexity theory. An introduction to
this terminology can, for example, be found in [Pap94] or [AB09]. We give here
a brief recollection of the relevant classes and results.
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2.2.1 MACHINE BASED COMPLEXITY CLASSES

The class P (respectively NP) comprises those problems solvable in polynomial
time on a deterministic (respectively nondeterministic) Turing machine. Similarly,
L (respectively NL) is defined as the class of problems that can be computed
in logarithmic space on a deterministic (respectively nondeterministic) Turing
machine. Obviously, L ⊆ NL ⊆ P ⊆ NP; yet none of these inclusions is known
to be strict.

The class NP can equivalently be characterized as the class of problems that
can be efficiently verified, that is, the class of problems for which there exists a
B ∈ P and k ∈N such that for any input x

x ∈ A ⇐⇒ ∃y, |y| ≤ |x|k : (x, y) ∈ B.

While all problems encountered in this thesis are solvable in polynomial space,
some of them do not fall into the above classes. For example, problems whose
complement lies in NP. This class of problems for which the absence of solutions
can be verified in polynomial time, is known as coNP.

Similarly, there exist problems that are harder to decide than problems in NP
in the sense that an algorithm deciding the former could also decide any problem
in NP or coNP. In order to capture the complexity of these problems, the notion
of oracle Turing machines is helpful. An oracle Turing machine M is an ordinary
deterministic or nondeterministic Turing machine with an additional query tape
and three distinguished states q?, q+, q−. The operation of M on a given input is
determined relative to an arbitrary language A, the oracle (language). Whenever
M reaches the state q?, M enters q+ if the word on the query tape belongs to A;
otherwise M enters q−. This allows for the study of the complexity of a problem
relative to a given oracle: by giving access to the oracle we essentially ignore the
resources needed to decide it. This naturally leads to a hierarchy of complexity
classes: For a complexity class C, let CA denote the class of problems decidable on
a C-machine with access to the oracle A, and let CD :=

⋃
A∈D CA. The polynomial

hierarchy (PH) [MS72] is defined to consist of the classes

Σp
0 := P, Πp

0 := P, ∆p
0 := P,

Σp
k+1 := NPΣp

k , Πp
k+1 := coNPΣp

k , ∆p
k+1 := PΣp

k ,

for k ∈N. Furthermore, define PH :=
⋃

k∈N(Σp
k ∪Πp

k ∪ ∆p
k ).

Finally, the class⊕L is defined as the class of problems A for which there exists
a nondeterministic logspace Turing machine M such that, for all x, M exhibits
an odd number of accepting paths if and only if x ∈ A [BDHM92]. It holds that
L ⊆ ⊕L ⊆ P.

2.2.2 CIRCUIT COMPLEXITY CLASSES

To define the complexity classes below L, we introduce a different model of
computation, namely Boolean circuits. Let B be a set of Boolean functions. A
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AC0
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L ⊕LNL
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∆p
3

Πp
3Σp

3

Figure 2.1: Complexity classes

Boolean circuit C over B is a finite directed acyclic graph with node labels from B
and an order on the edges. The nodes of C are called gates. Gates of fan-out 0
are called output gates, gates of fan-in 0 input gates. A circuit with n input gates
and m output gates computes a function fC : {0, 1}n → {0, 1}m in the obvious
way. A family of Boolean circuits is a sequence C = (Cn)n∈N such that Cn is a
circuit with exactly n input gates. C is said to decide a problem A if, for all
n ∈N, fCn computes the characteristic function of A ∩ {0, 1}n. A circuit family
is logtime-uniform if there exists a Turing machine working in logarithmic time
that, for all n ∈N, outputs a description of Cn on inputs of length n.

The class AC0 is defined to contain all problems decidable by logtime-uniform
Boolean circuits of constant depth and polynomial size over {∧,∨,¬}, where
the fan-in of gates of the first two types is not bounded. The class AC0[2] is
defined similarly as AC0, but in addition to {∧,∨,¬} we also allow ⊕-gates of
unbounded fan-in. It is known that AC0 ( AC0[2] ( L [FSS84, Smo87]. For a
more detailed introduction on circuit complexity, the reader is referred to [Vol99].

The inclusion structure of the classes introduced thus far is depicted in Fig-
ure 2.1, where thick arrows represent strict inclusion.
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2.2.3 COUNTING COMPLEXITY CLASSES

All problems considered until now were decision problems, that is, problems for
which the answer is either “yes” or “no”. However, in many contexts, one might
be interested in counting the number of “yes”-instances instead. Such problems
are represented using a witness function f , which for every input x returns a finite
set f (x) of witnesses. This witness function gives rise to the following counting
problem: given an instance x, compute the cardinality | f (x)| of the witness set.

The counting problems computable in polynomial time on a deterministic
Turing machine are captured by the class FP. The analogue of NP is the class #P,
introduced by Valiant [Val79b]. A function f is in #P if there exists a nondeter-
ministic polynomial-time Turing machine M which, on input x, has exactly f (x)
accepting computation paths.

To deal with counting problems outside of #P, we follow [HV95] and define
#·C for a class C of decision problems to be the class of functions f such that for
some binary relation A ∈ C and some polynomial p, for all x,

f (x) := |{y | |y| ≤ p(|x|) and A(x, y)}|

In particular, we will make use of the class #·coNP, which can equivalently
be characterized as #·PNP [HV95]. We hence obtain the following chain of
inclusions:

FP ⊆ #P = #·P ⊆ #NP = #·PNP = #·coNP.

2.2.4 REDUCTIONS

Reductions are an important tool for classifying the complexity of the considered
problems. The intention of reductions is to compare problems according to their
computational complexity such that a problem A reduces to a problem B if “A
is not harder to solve than B”. By imposing restrictions on the computational
power of f , we obtain reducibilities suitable for comparing the complexity of
arbitrary problems. One of the most prominent such is the polynomial-time
many-one reducibility. A problem A ⊆ Σ? is said to be polynomial-time many-one
reducible to a problem B ⊆ ∆? (written: A≤p

m B) if there exists a polynomial-time
computable function f : Σ? → ∆? such that, for all x ∈ Σ?, x ∈ A ⇐⇒ f (x) ∈ B.
However, polynomial-time many-one reductions are too coarse for our purpose,
because we wish to provide a fine complexity classification of the decision
problems down to AC0.

We will hence resort to constant-depth reductions. A problem A is said to
be constant-depth reducible to a problem B (written: A≤cd B) if there exists a
logtime-uniform AC0-circuit family (Cn)n∈N with unbounded fan-in {∧,∨,¬}-
gates and oracle gates for B such that for all x, fC|x| (x) = 1 if and only if x ∈
A [CSV84]. We also write A≡cd B if A≤cd B and B≤cd A. It is easy to verify
that all complexity classes of decision problems introduced above are closed
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under constant-depth reductions. Note that, unlike polynomial-time many-
one reductions, constant-depth reductions are allowed to query B more than
once. This is relevant as several classes close to AC0 lack complete problems
under the more restrictive AC0 many-one reducibility, under which problem A
reduces to problem B (written: A≤AC0

m B) if there exists an AC0-computable
function f such that x ∈ A ⇐⇒ f (x) ∈ B. Still, the reader may notice that,
except for Corollary 4.1.5, all reductions between decision problems given in this
thesis are AC0 many-one reductions indeed. It is an easy exercise to show that
Corollary 4.1.5 continues to hold for AC0 many-one reductions, too.

In the context of counting problems, we require a natural generalization of the
above reductions. For our results on default and autoepistemic logic, we will use
parsimonious reductions while for circumscription we require two less restrictive
notions, namely subtractive reductions and weakly parsimonious reductions (also
referred to as counting reductions, confer [Zan91]).

Let #A and #B be the counting problems associated with the witness functions
fA : Σ?

A → ℘(∆?
A) and fB : Σ?

B → ℘(∆?
B). A weakly parsimonious reduction from #A

to #B consists of a pair of polynomial-time computable functions g : Σ?
A → Σ?

B
and h : N→N such that for all x ∈ Σ?

A, | fA(x)| = h
(∣∣ fB(g(x))

∣∣). A parsimonious
reduction is a weakly parsimonious reduction such that h is the identity. Finally,
say that #A reduces to #B via strong subtractive reduction if there exists a pair
of polynomial-time computable functions g, h : Σ?

A → Σ?
B such that, for all x ∈

Σ?
A, fB(g(x)) ⊆ fB(h(x)) and | fA(x)| = | fB(h(x))| − | fB(g(x))|. A subtractive

reduction from #A to #B is the transitive closure of strong subtractive reductions:
#A reduces to #B via subtractive reduction if there exists an n ∈N and a sequence
(#Ai)1≤i≤n such that #A1 = #A, #An = #B and #Ai reduces to #Ai+1 via strong
subtractive reduction for all 1 ≤ i < n. Clearly, each parsimonious reduction is
also a subtractive reduction.

While #P and #·coNP are closed under parsimonious and subtractive reduc-
tions, Toda and Wanatabe observed that this is not the case for weakly parsimo-
nious reductions unless the counting hierarchy collapses: For every problem
in #·PH there exists a weakly parsimonious reductions to a #P-complete prob-
lem [TW92]. However, we will use weakly parsimonious reductions to prove
#P-hardness only, which still provides sufficient evidence that the considered
problems are not contained in FP: If #A is #P-complete via weakly parsimonious
reduction, then #A ∈ FP if and only if FP = #P.

All of the above reducibilities are both transitive and reflexive, and thus induce
a preorder on problems. Problems that are maximal with respect to this preorder
in a complexity class play an important role in the classification of the complexity
of computational problems, as they can be regarded the “most difficult”. Given a
reducibility ≤, we say that a problem A is hard (respectively complete) for a class
C with respect to ≤-reductions if B ≤ A for all B ∈ C (respectively if B ≤ A for
all B ∈ C and A ∈ C). We will also write C-hard (respectively C-complete) if ≤ is
clear from the context.
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2.2.5 COMPLETE PROBLEMS

We already mentioned that Cook [Coo71] was the first to show that the satisfi-
ability problem for propositional formulae, SAT, is NP-complete with respect to
polynomial-time many-one reductions (this was independently shown by Levin
in 1973 [Lev73]). This hardness result indeed holds for the weaker constant-
depth reductions as well. A slight modification of the construction used in the
proof of this result can be used to show that the problem restricted to formulae
in conjunctive normal form with exactly three literals per clause,

Problem: 3SAT

Input: A formula ϕ in conjunctive normal form
with exactly three literals per clause

Question: Is ϕ satisfiable?

remains NP-complete with respect to constant-depth reductions. It follows that
the tautology problem for propositional formulae in disjunctive normal form with
exactly three literals per term,

Problem: 3TAUT

Input: A formula ϕ in disjunctive normal form
with exactly three literals per term

Question: Is ϕ tautological?

is coNP-complete. The following theorem summarizes the discussed complete-
ness results:

Theorem 2.2.1 ([Coo71])

1. SAT and 3SAT are NP-complete with respect to constant-depth reductions.

2. 3TAUT is coNP-complete with respect to constant-depth reductions.

A canonical generalization leads to complete problems for the classes Σp
k

and Πp
k for k > 1 [Wra76]: define quantified (Boolean) formulae as the extension of

propositional formulae with the operators ∃xϕ(x) := ϕ(0)∨ ϕ(1) and ∀xϕ(x) :=
ϕ(0) ∧ ϕ(1), where x is a variable and ϕ is a quantified Boolean formula. Say
that an occurrence of the variable x is bound if it appears in the scope of ∃x or ∀x.
A formula is closed if all occurrences of variables are bound. Let Qk := ∃ if k is
odd and Qk := ∀ if k is even. Then, for k ≥ 1, the problem

Problem: QBF∃,k
Input: A closed quantified Boolean formula of the form

ϕ = ∃x11 · · · ∃x1n1∀x21 · · · ∀x2n2 · · ·Qkxk1 · · ·Qkxknk
ψ

with ψ in conjunctive normal form if k is odd and
ψ in disjunctive normal form if k is even

Question: Is ϕ valid?
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is Σp
k -complete with respect to constant-depth reductions. Analogously, the dual

problem QBF∀,k is Πp
k -complete for all k ≥ 1.

Theorem 2.2.2 ([Wra76]) Let k ≥ 1.

1. QBF∃,k is Σp
k -complete with respect to constant-depth reductions.

2. QBF∀,k is Πp
k -complete with respect to constant-depth reductions.

In the counting complexity context, the analogous complete problems are

Problem: #ΠkSAT
Input: A quantified Boolean formula of the form

ϕ = ∀x11 · · · ∀x1n1∃x21 · · · ∃x2n2 · · ·Qkxk1 · · ·Qkxknk
ψ

with ψ in conjunctive normal form if k is even and
ψ in disjunctive normal form if k is odd

Output: The number of assignments satisfying ϕ,

where k ≥ 0. Notice that the decision problem underlying #ΠkSAT is QBF∃,k+1
and that its definition subsumes #SAT, the counting problem associated with the
propositional satisfiability problem.

Theorem 2.2.3 ([Val79b, DHK05]) For all k ≥ 0, #ΠkSAT is #·Πp
k -complete with

respect to parsimonious reductions.

Coming back to the polynomial hierarchy, we moreover require the sequentially
nested satisfiability problem defined as

Problem: SNSAT
Input: A sequence (ϕi)1≤i≤n of formulae such that ϕi contains the

propositions x1, . . . , xi−1 and zi1, . . . , zimi

Question: Is cn = 1, where ci is recursively defined via ci := 1 if and only
if ϕi is satisfiable by an assignment σ such that σ(xj) = cj for all
1 ≤ j < i?

The problem SNSAT was incidentally identified to be ∆p
2 -complete in [Got95a,

Theorem 3.4] (see also [LMS01]).

Theorem 2.2.4 ([Got95a]) SNSAT is ∆p
2 -complete with respect to constant-depth re-

ductions.

For the classes NL and P, we introduce respectively the complete directed
graph accessibility problem and the directed hypergraph accessibility problem, where
a directed hypergraph is a hypergraph H = (V, E) whose hyperedges e ∈ E
consist of a set of source nodes src(e) ⊆ V and a destination dest(e) ∈ V. A
node t ∈ V is said to be reachable from a set of nodes S ⊆ V in H if there exists a
sequence (Si)0≤i≤n of node sets such that S0 = S, t ∈ Sn, and for all 0 ≤ i < n,
Si+1 = Si ∪ {dest(e)} for some hyperedge e ∈ E with src(e) ⊆ Si. Although
both problems were originally shown to be complete with respect to logspace
many-one reductions only, one can verify that this still holds for constant-depth
and AC0 many-one reductions.
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Problem: GAP
Input: A directed graph G = (V, E) and nodes s, t ∈ V
Question: Is there a path from s to t in G?

Theorem 2.2.5 ([Sav70, Jon75]) GAP is NL-complete with respect to constant-depth
reductions.

Problem: HGAP
Input: A directed hypergraph H = (V, E), a set of nodes S ⊆ V,

and a node t ∈ V
Question: Is t reachable from S in H?

Theorem 2.2.6 ([SI90]) HGAP is P-complete with respect to constant-depth reduc-
tions, even if all edges of the given hypergraph are allowed to contain at most two source
nodes.

The next problem is complete for the class ⊕L:

Problem: MODGAP2
Input: A directed acyclic graph G with nodes s and t
Question: Is there an odd number of simple paths leading from s to t?

Theorem 2.2.7 ([BDHM92]) MODGAP2 is ⊕L-complete with respect to constant-
depth reductions.

Finally, for a string x ∈ {0, 1}?, let |x|c with c ∈ {0, 1} denote the number of
occurrences of the symbol c in x. It is easy to see that the problem

Problem: MOD2
Input: x ∈ {0, 1}?
Question: Is |x|1 ≡ 1 (mod 2)?

is complete for the class AC0[2] with respect to constant-depth reductions, for
AC0[2] merely extends AC0 with oracle gates for MOD2.

Theorem 2.2.8 MOD2 is AC0[2]-complete with respect to constant-depth reductions.

2.3 PROPOSITIONAL LOGIC

Propositional logic is usually defined in terms of the functional complete set
{∧,¬}. As we are going to study the problems parameterized by restricted sets
of Boolean functions, we give a more general definition.

Let Φ be the set of propositions or variables. Let B be a set of Boolean functions.
Then the set L(B) of (propositional) B-formulae is inductively defined as follows:
Each proposition x ∈ Φ is a B-formula. If f ∈ B is an n-ary Boolean function
and ϕ1, . . . , ϕn are B-formulae, then f (ϕ1, . . . , ϕn) is a B-formula. The set of
atomic B-formulae can hence be defined as the set of propositions and nullary
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functions from B. If B is the set of all Boolean functions or the meaning is clear
from the context, we omit the prefix “B-”. Occasionally we will also refer to
sets of formulae as theories. For a formula ϕ, we denote by Vars(ϕ) the set of
propositions occurring in ϕ and write ϕ(x1, . . . , xn) to indicate that Vars(ϕ) ⊆
{x1, . . . , xn}. The set of subformulae of ϕ is denoted by SF(ϕ). Further, let ϕ[α/β]
denote ϕ with all occurrences of the formula α replaced by the formula β.

An assignment is a mapping from propositions to the Boolean constants {0, 1}.
For ease of notation, we will sometimes identify assignments with the set of
propositions mapped to 1. For a formula ϕ and an assignment σ : Vars(ϕ) →
{0, 1}, the value of ϕ under σ is defined as the value of ϕ under the extension σ̂
of σ to L inductively defined by

σ̂(0) := 0, σ̂(1) := 1, and σ̂( f (ϕ1, . . . , ϕn)) := f (σ̂(ϕ1), . . . , σ̂(ϕn)).

If the value of ϕ under σ is 1, we say that σ is a model of ϕ and write σ |= ϕ.
A formula ϕ that possesses a model is said to be satisfiable. We say that two
formulae ϕ and ψ are equivalent (written: ϕ ≡ ψ) if and only if σ̂(ϕ) = σ̂(ψ) for
all assignments σ : Vars(ϕ) ∪Vars(ψ) → {0, 1}. A formula ϕ is said to imply a
formula ψ (written: ϕ |= ψ) if ψ is satisfied in all models of ϕ. The set of formulae
implied by ϕ is denoted by Th(ϕ) := {ψ | ϕ |= ψ}. The above notions are
extended to sets of formulae in the obvious way. We moreover identify finite sets
of formulae with their conjunction.

2.4 CLONES AND POST’S LATTICE

This thesis studies the complexity of problems parameterized by the set of
allowed Boolean connectives. Here we introduce the algebraic tools to handle
the infinite sets of problems arising from this parameterization.

A clone is a set of Boolean functions, which is closed under superposition, that
is, B contains all projections (the functions f (x1, . . . , xn) = xk for 1 ≤ k ≤ n)
and is closed under composition (for all f ∈ B of arity n and g1, . . . , gn ∈
B, f

(
g1(x1, . . . , xm1 ), . . . , gn(x1, . . . , xmn )

)
∈ B) [Pip97]. For a set B of Boolean

functions, we denote with [B] the smallest clone containing B and call B a base
for [B]. In [Pos41], Post showed that the set of all clones ordered by inclusion
together with the operations [B ∪ B′] and [B ∩ B′] forms a lattice and found a
finite base for each clone, see Figure 2.2.

To introduce the clones, we define the following properties. Say that a set
A ⊆ {0, 1}n is c-separating, c ∈ {0, 1}, if there exists an i ∈ {1, . . . , n} such that
(a1, . . . , an) ∈ A implies ai = c. Let f be an n-ary Boolean function and define the
dual of f to be the Boolean function dual( f )(x1, . . . , xn) := ¬ f (¬x1, . . . ,¬xn).
We say that

• f is c-reproducing if f (c, . . . , c) = c, c ∈ {0, 1}.
• f is c-separating if f−1(c) is c-separating, c ∈ {0, 1}.
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• f is c-separating of degree m if all A ⊆ f−1(c) with |A| = m are c-separating.

• f is monotone if a1 ≤ b1, . . . , an ≤ bn implies f (a1, . . . , an) ≤ f (b1, . . . , bn).

• f is self-dual if f ≡ dual( f ).

• f is affine if f (x1, . . . , xn) ≡ x1⊕ · · · ⊕ xn ⊕ c with c ∈ {0, 1}.
• f is essentially unary if f depends on at most one variable.

Finally, say that B is functional complete if [B] = BF. The list of all clones is
given in Table 2.1, where id denotes the identity and tn+1

n denotes the (n + 1)-ary
threshold function that evaluates to 1 if at least n of its inputs are set to 1:

tn+1
n (x0, . . . , xn+1) :=

n∨
i=0

(x0 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xn+1).

To see how restrictions on the set of Boolean connectives affect the complexity
of problems, let Π(B) be a nontrivial computational problem defined over B-
formulae (that is, a set of B-formulae). One would certainly expect the complexity
of Π(B) to drop, the less expressive B is. As an example, recall that Lewis showed
that the satisfiability problem

Problem: SAT(B)
Input: A propositional B-formula ϕ ∈ L(B)
Question: Is ϕ satisfiable?

is NP-complete if x9 y ∈ [B], and contained in P otherwise [Lew79]. The proof
of his result uses two important properties:

• The complexity of SAT(B) depends only on the clone [B] and not on the
particular B itself.

• For sets B, B′ of Boolean functions with B ⊆ [B′], we have SAT(B) ≤
SAT(B′), where ≤ is any reducibility capable of substituting B-functions
by B′-equivalents.

These properties, which facilitate a complete classification of all possible sets of
Boolean functions, hinge on the existence of small representations regardless of
the given base of a clone. To be more precise, let f be an n-ary Boolean function
and B be a set of Boolean functions. A B-formula g is called B-representation
of f if f ≡ g. It is clear that B-representations exist for every f ∈ [B]. Yet, it
may happen that the B-representation of a Boolean function contains some input
variables more than once.

Example 2.4.1 Let g(x, y) := ¬(x ∧ y). The shortest {g}-representation of the func-
tion x ∧ y is g(g(x, y), g(x, y)). Expressing x1 ∧ · · · ∧ xn using g leads to an explosion
of the formula size of the {g}-representation of f —its size is exponential in n.
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Clone Definition Base
BF All Boolean functions {x ∧ y,¬x}
R0 { f ∈ BF | f is 0-reproducing} {x ∧ y, x⊕ y}
R1 { f ∈ BF | f is 1-reproducing} {x ∨ y, x ↔ y}
R2 R0 ∩ R1 {x ∨ y, x ∧ (y↔ z)}
M { f ∈ BF | f is monotone} {x ∧ y, x ∨ y, 0, 1}
M0 M∩ R0 {x ∧ y, x ∨ y, 0}
M1 M∩ R1 {x ∧ y, x ∨ y, 1}
M2 M∩ R2 {x ∧ y, x ∨ y}
S0 { f ∈ BF | f is 0-separating} {x→ y}
Sn

0 { f ∈ BF | f is 0-separating of degree n} {x→ y, dual(tn+1
n )}

S1 { f ∈ BF | f is 1-separating} {x9 y}
Sn

1 { f ∈ BF | f is 1-separating of degree n} {x9 y, tn+1
n }

Sn
02 Sn

0 ∩R2 {x ∨ (y ∧ ¬z), dual(tn+1
n )}

S02 S0 ∩ R2 {x ∨ (y ∧ ¬z)}
Sn

01 Sn
0 ∩M {dual(tn+1

n ), 1}
S01 S0 ∩M {x ∨ (y ∧ z), 1}
Sn

00 Sn
0 ∩R2 ∩M {x ∨ (y ∧ z), dual(tn+1

n )}
S00 S0 ∩ R2 ∩M {x ∨ (y ∧ z)}
Sn

12 Sn
1 ∩R2 {x ∧ (y ∨ ¬z), tn+1

n }
S12 S1 ∩ R2 {x ∧ (y ∨ ¬z)}
Sn

11 Sn
1 ∩M {tn+1

n , 0}
S11 S1 ∩M {x ∧ (y ∨ z), 0}
Sn

10 Sn
1 ∩R2 ∩M {x ∧ (y ∨ z), tn+1

n }
S10 S1 ∩ R2 ∩M {x ∧ (y ∨ z)}
D { f ∈ BF | f is self-dual} {(x ∧ y) ∨ (x ∧ ¬z) ∨ (¬y ∧ ¬z)}
D1 D∩ R2 {(x ∧ y) ∨ (x ∧ ¬z) ∨ (y ∧ ¬z)}
D2 D∩M {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
L { f ∈ BF | f is affine} {x⊕ y, 1}
L0 L∩R0 {x⊕ y}
L1 L∩R1 {x ↔ y}
L2 L∩R2 {x⊕ y⊕ z}
L3 L∩D {x⊕ y⊕ z⊕ 1}
E { f ∈ BF | f is constant or a conjunction} {x ∧ y, 0, 1}
E0 E∩ R0 {x ∧ y, 0}
E1 E∩ R1 {x ∧ y, 1}
E2 E∩ R2 {x ∧ y}
V { f ∈ BF | f is constant or a disjunction} {x ∨ y, 0, 1}
V0 V ∩ R0 {x ∨ y, 0}
V1 V ∩ R1 {x ∨ y, 1}
V2 V ∩ R2 {x ∨ y}
N { f ∈ BF | f is essentially unary} {¬x, 0, 1}
N2 N∩D {¬x}
I { f ∈ BF | f is constant or a projection} {id, 0, 1}
I0 I∩ R0 {id, 0}
I1 I∩ R1 {id, 1}
I2 I∩ R2 {id}

Table 2.1: List of all clones with definition and bases
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To circumvent this problem, we introduce the notion of efficient implemen-
tation. Say that B efficiently implements f if there exists a B-formula g such that
f ≡ g and each variable in f occurs at most once in the body of g. Given that
all f ∈ B can be efficiently implemented in B′, we are able to conclude that
SAT(B) ≤ SAT(B′). The following lemma summarizes the results on efficient
implementation required in the subsequent chapters.

Lemma 2.4.2 Let B be a finite set of Boolean functions.

1. If [B] = BF then B efficiently implements {∧,∨,¬}.
2. If M ⊆ [B] then B efficiently implements {∧,∨}.
3. If L2 ⊆ [B] ⊆ L then B efficiently implements x⊕ y⊕ z.

4. If N ⊆ [B] then B efficiently implements ¬.

Proof. The first and fourth claim are due to Lewis [Lew79]. Although he only
proves the efficient implementation of ¬ for [B] = BF, it is easy to verify that he
merely requires ¬ ∈ [B] and the Boolean constants {0, 1}.

The second claim is due to [Sch10].
For the third claim, we have to show that x⊕ y⊕ z can be efficiently imple-

mented in any set B such that L2 ⊆ [B] ⊆ L. Let B be such that L2 ⊆ [B] and let
g(x, y, z) be a function from [B] depending on three variables. Such a function g
exists because x⊕ y⊕ z ∈ [B]. As g is affine, replacing two occurrences of any
variable with a fresh variable t does not change g modulo logical equivalence.
Let n denote the number of occurrences of x in g and assume that n is even. Re-
placing all occurrences of x with t yields a formula g′(y, z, t) ≡ y⊕ z /∈ L2, which
gives a contradiction. Analogous arguments hold for the number of occurrences
of y and z. Hence, each of the variables x, y, and z occurs an odd number of
times, and replacing all but one occurrence of each x, y, and z with t yields a
function g′(x, y, z, t) ≡ x⊕ y⊕ z in which each of the variables x, y, and z occurs
exactly once. �

2.5 THE COMPLEXITY OF IMPLICATION

The last section of this chapter is dedicated to the complexity of the implication
problem for B-formulae. This problem is of fundamental importance for the
results in this thesis, as the implication of B-formulae has to be tested in various
contexts ranging from extension existence to credulous and skeptical reasoning.

Hence, let B be a finite set of Boolean functions. We define the implication
problem for B-formulae as

Problem: IMP(B)
Input: A finite set Γ of B-formulae and a B-formula ϕ
Question: Does Γ |= ϕ hold?
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The following theorem classifies the complexity of the implication problem for
all possible sets B.

Theorem 2.5.1 Let B be a finite set of Boolean functions. Then the implication problem
for propositional B-formulae, IMP(B), is

1. coNP-complete if S00 ⊆ [B] or S10 ⊆ [B] or D2 ⊆ [B],

2. ⊕L-complete if L2 ⊆ [B] ⊆ L,

3. AC0[2]-complete if N2 ⊆ [B] ⊆ N, and

4. in AC0 in all other cases,

with respect to constant-depth reductions.

Remark 2.5.2 In [BMTV09a] it is shown that the complexity of IMP(B) restricted to
instances with |Γ| = 1 remains unchanged for all B except the case that L2 ⊆ [B] ⊆ L.
In this case, the complexity drops to AC0[2]-completeness.

We split the proof of Theorem 2.5.1 into several lemmas.

Lemma 2.5.3 Let B be a finite set of Boolean functions such that S00 ⊆ [B] or S10 ⊆
[B]. Then IMP(B) is coNP-complete with respect to constant-depth reductions.

Proof. Membership in coNP is apparent, because given Γ and ϕ, we just have
to check that for all assignments σ to the variables of Γ and ϕ, either σ 6|= Γ or
σ |= ϕ.

The hardness proof is inspired by [Rei03]. Observe that IMP(B)≡cd IMP(B ∪
{1}) if ∧ ∈ [B], and that IMP(B)≡cd IMP(B ∪ {0}) if ∨ ∈ [B] (because ϕ |=
ψ ⇐⇒ ϕ[1/t] ∧ t |= ψ[1/t] and ϕ |= ψ ⇐⇒ ϕ[0/ f ] |= ψ[0/ f ] ∨ f , where t, f
are new variables). It hence suffices to show that IMP(B) is coNP-hard for M,
because [S00 ∪ {0}] = M0, [S10 ∪ {1}] = M1 and [M0 ∪ {1}] = [M1 ∪ {0}] = M.
We claim that IMP(B) is coNP-hard for B = {∧,∨}. The proof concludes by
appealing to Lemma 2.4.2 (2.). To prove the claim, we will provide a reduction
from 3TAUT.

Let ϕ be a propositional formula in disjunctive normal form over the propo-
sitions X = {x1, . . . , xk}. Then ϕ =

∨n
i=1

∧3
j=1 `ij, where `ij are literals over

X. Take new variables Y = {y1, . . . , yk} and replace in ϕ each negative literal
`ij = ¬xl by yl . Define the resulting formula as ψ2 and let ψ1 :=

∧k
i=1(xi ∨ yi).

We claim that ϕ ∈ 3TAUT ⇐⇒ ψ1 |= ψ2.
Let us first assume ϕ ∈ 3TAUT and let σ : X ∪ Y → {0, 1} be an assignment

such that σ |= ψ1. As ϕ is a tautology, σ |= ϕ. But also σ |= ψ2, as we simply
replaced the negated variables in ϕ by positive ones and ψ2 is monotone. It
follows that ψ1 |= ψ2, since σ was arbitrarily chosen for σ |= ψ1.

For the opposite direction, let ϕ /∈ 3TAUT. Then there exists an assignment
σ : X → {0, 1} such that σ 6|= ϕ. We extend σ to an assignment σ′ : X∪Y → {0, 1}
by setting σ′(yi) = 1− σ(xi) for i = 1, . . . , k. Then σ′(xi) = 0 if and only if
σ′(yi) = 1, and consequently σ′ simulates σ on ψ2. As a result, σ′ 6|= ψ2. Yet,
either σ′(xi) = 1 or σ′(yi) = 1 for i = 1, . . . , k. Thus σ′ |= ψ1, yielding ψ1 6|= ψ2.�



2.5 The Complexity of Implication 25

Lemma 2.5.4 Let B be a finite set of Boolean functions such that D2 ⊆ [B]. Then
IMP(B) is coNP-complete with respect to constant-depth reductions.

Proof. Again we just have to argue for coNP-hardness of IMP(B). We give a
reduction from 3TAUT to IMP(B) for D2 ⊆ [B] by modifying the reduction given
in the proof of Lemma 2.5.3.

Given a formula ϕ in disjunctive normal form, we define the formulae ψ1 and
ψ2 as above. As D2 ⊆ [B], we know that g(x, y, z) := (x ∧ y) ∨ (y ∧ z) ∨ (x ∧
z) ∈ [B]. Clearly, g(x, y, 0) ≡ x ∧ y and g(x, y, 1) ≡ x ∨ y. Denote by ψB

i (t, f ),
i ∈ {1, 2}, the formula ψi with all occurrences of x ∧ y and x ∨ y replaced by
a B-representation of g(x, y, f ) and g(x, y, t), respectively, where t and f are
new propositional variables. Then ψB

i (1, 0) ≡ ψi and ψB
i (0, 1) ≡ dual(ψi). The

variables x and y may occur several times in the B-representation of g, hence
ψB

1 (t, f ) and ψB
2 (t, f ) might be exponential in the length of ϕ (recall that ψ2 is ϕ

with all negative literals replaced by new variables). That this is not the case
follows from the associativity of ∧ and ∨: we insert parentheses in such a way
that ψi is transformed into a binary tree of logarithmic depth; the size of ψB

i is
exponential in the depth of this tree and therefore polynomial.

We now map the pair (ψ1, ψ2) to (ψ′1, ψ′2), where

ψ′1 := g(ψB
1 (t, f ), t, f ) and ψ′2 := g(g(ψB

1 (t, f ), ψB
2 (t, f ), f ), t, f ).

We claim that ψ1 |= ψ2 ⇐⇒ ψ′1 |= ψ′2. To verify this claim, let σ be an arbitrary
assignment for X ∪Y. Then σ may be extended to {t, f } in the following ways:

σ(t) = 1 and σ( f ) = 0: This is the intended interpretation. In this case, we have
g(ψB

1 (1, 0), 1, 0) ≡ ψ1 ∧ 1 ≡ ψ1 and g(g(ψB
1 (1, 0), ψB

2 (1, 0), 0), 1, 0) ≡ (ψ1 ∧
ψ2) ∧ 1 ≡ ψ1 ∧ ψ2. Hence, ψ′1 |= ψ′2 if and only if ψ1 |= ψ1 ∧ ψ2.

σ(t) = 0 and σ( f ) = 1: In this case, we obtain g(ψB
1 (0, 1), 0, 1) ≡ dual(ψ1)∨ 0 ≡

dual(ψ1) and g(g(ψB
1 (0, 1), ψB

2 (0, 1), 1), 0, 1) ≡ (dual(ψ1) ∨ dual(ψ2)) ∨
0 ≡ dual(ψ1) ∨ dual(ψ2). As dual(ψ1) |= dual(ψ1) ∨ dual(ψ2) is always
valid, we conclude that ψ′1 |= ψ′2 in this case.

σ(t) = σ( f ) = c with c ∈ {0, 1}: Then both ψ′1 and ψ′2 are equivalent to c. Thus,
as in the previous case, ψ′1 |= ψ′2.

From the above case distinction, it follows that ψ1 |= ψ2 if and only if ψ′1 |= ψ′2.
Hence, 3TAUT≤cd IMP(B) via the reduction ϕ 7→ (ψ′1, ψ′2). �

Lemma 2.5.5 Let B be a finite set of Boolean functions such that L2 ⊆ [B] ⊆ L. Then
IMP(B) is ⊕L-complete with respect to constant-depth reductions.

Proof. Let B be a finite set of Boolean functions such that L2 ⊆ [B] ⊆ L, let Γ
be a set of B-formulae over Vars(Γ) = {x1, . . . , xn}, and let ϕ be a B-formula.
Observe that Γ |= ϕ if and only if Γ ∪ {ϕ⊕ t, t} is inconsistent, where t is a
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fresh variable. Let Γ′ denote Γ ∪ {ϕ⊕ t, t} rewritten such that for all ψ ∈ Γ′,
ψ = c0⊕ c1x1⊕ · · · ⊕ cnxn, where c0, . . . , cn ∈ {0, 1} and cixi is a shorthand for
(ci ∧ xi). Γ′ is logspace constructible, since c0 = 1 if and only if ψ(0, . . . , 0) = 1,
for 1 ≤ i ≤ n, ci = 1 if and only if

ψ(0, . . . , 0) 6≡ ψ(0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0),

and affine formulae can be evaluated in logarithmic space [Sch10]. Γ′ can now
be transformed into a system of linear equations S via

c0⊕ c1x1⊕ · · · ⊕ cnxn 7→ c0 + c1x1 + · · ·+ cnxn = 1 (mod 2).

Clearly, the resulting system of linear equations has a solution if and only if Γ′

is consistent. The equations are furthermore defined over the field Z2, hence
existence of a solution can be decided in ⊕L, as shown in [BDHM92].

For the ⊕L-hardness, Buntrock et al. [BDHM92] give an NC1-reduction from
MODGAP2 to the problem whether a given matrix over Z2 is non-singular. The
given reduction is actually an AC0 many-one reduction. We reduce the latter
problem to the complement of IMP({x⊕ y⊕ z}). The lower bound then follows
from ⊕L being closed under complement and Lemma 2.4.2 (3.).

First map the given matrix A = (aij)1≤i,j≤n over Z2 to a system of linear
equations defined as

S := {ai1x1 + · · ·+ ainxn = 0 | 1 ≤ i ≤ n} ∪ {x1 = 1}.

It clearly holds that A is non-singular if and only if S has no solutions. Next,
map S into a set of affine formulae Γ via

c1x1 + · · ·+ cnxn = c (mod 2) 7→ c′ ⊕ c1x1⊕ · · · ⊕ cnxn,

where c′ = 1− c. Finally, replace the constant 1 with a fresh variable t, pad all
formulae having an even number of variables with another fresh variable f , and
let Γ′ := Γ ∪ {t}. We claim that S has a solution if and only if Γ′ 6|= f .

Suppose that S has no solutions. If Γ′ is inconsistent, then Γ′ |= f . Otherwise,
Γ′ has a satisfying assignment σ. Clearly, σ(t) = 1. If σ( f ) = 0, then Γ′[t/1, f /0] is

equivalent to Γ; hence the transformation of Γ′[t/1, f /0] yields a system of linear

equations S′ that is equivalent to S and that has a solution corresponding to σ—a
contradiction to our assumption. Thus σ( f ) = 1 and, consequently, Γ′ |= f .

On the other hand, if S has a solution, then Γ possesses a model σ that can be
extended to a model σ′ of Γ′ by setting σ′(t) = 1 and σ′( f ) = 0. Concluding,
Γ′ 6|= f . �

Lemma 2.5.6 Let B be a finite set of Boolean functions such that N2 ⊆ [B] ⊆ N. Then
IMP(B) is AC0[2]-complete with respect to constant-depth reductions.
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Proof. Let B be a finite set of Boolean functions such that N2 ⊆ [B] ⊆ N. Let Γ be
a set of B-formulae and let ϕ be a B-formula, both over the set of propositions
{x1, . . . , xn}.

We will argue on membership in AC0[2] first. For all ψ ∈ Γ, ψ is equivalent
to some literal or a constant. Let Γ′ denote this set of literals and constants.
Γ′ is computable from Γ using an AC0-circuit with oracle gates for MOD2: for
each formula in Γ, we determine the atom and count the number of preceding
negations modulo 2. In the case that Γ is unsatisfiable, then either 0 ∈ Γ′ or there
exist `1, `2 ∈ Γ′ with `1 ≡ ¬`2. Both conditions can be checked in AC0, hence we
may without loss of generality assume that Γ is satisfiable. Similarly, ϕ is either
equivalent to a literal or a constant. In the former case, it holds that

Γ |= ϕ ⇐⇒ ϕ ≡ ` for some ` ∈ Γ′.

In the latter case, Γ |= ϕ if and only if Γ ≡ 1 and ϕ ≡ 1. It is easy to see that
both of these conditions can again be checked in AC0[2], as Γ ≡ 1 if and only if
Γ′ = {1}. Thus we conclude IMP(B) ∈ AC0[2].

For MOD2≤cd IMP(B), we claim that, for x = x1 · · · xn ∈ {0, 1}n, x ∈ MOD2 if
and only if t |= ¬x1¬x2 · · · ¬xn (¬t), where ¬1 := ¬, ¬0 := id, and t is a variable.

First observe that t |= ¬x1 · · · ¬xn (¬t) if and only if σ |= t implies σ |=
¬x1 · · · ¬xn (¬t) for all assignments σ : t → {0, 1}. Now, if σ(t) = 0 then t |=
¬x1 · · · ¬xn (¬t) is satisfied for all x; whereas if σ(t) = 1 then t |= ¬x1 · · · ¬xn (¬t)
if and only if 1 |= ¬x1 · · · ¬xn 0 if and only if an odd number of xi’s is equal to 1.
Summarizing, MOD2≤cd IMP(B). The claim follows from Lemma 2.4.2 (4.). �
Lemma 2.5.7 Let B be a finite set of Boolean functions such that [B] ⊆ V or [B] ⊆ E.
Then IMP(B) is in AC0.

Proof. We prove the claim for [B] ⊆ V only. The case [B] ⊆ E follows analogously.
Let B be a finite set of Boolean functions such that [B] ⊆ V. Further, let Γ be a

finite set of B-formulae and let ϕ be a B-formula, both over the set of propositions
{x1, . . . , xn}. Then, ϕ ≡ c0 ∨ c1x1 ∨ · · · ∨ cnxn for some c0, . . . , cn ∈ {0, 1}, where
cixi abbreviates (ci ∧ xi). As B-formulae can be evaluated in AC0 by guessing a
position and verifying that it contains the constant 1 or an input value that is set
to 1 [Sch10], the values of the coefficients can be determined: c0 = 1 if and only
if ϕ(0, . . . , 0) evaluates to 1, and ci = 0 if and only if c0 = 0 and

ϕ(0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0) = 0.

Equally, every formula from Γ is equivalent to an expression of the form c′0 ∨
c′1x1 ∨ · · · ∨ c′nxn with c′i ∈ {0, 1}, whose coefficients can be computed analo-
gously to those of ϕ. It now holds that Γ |= ϕ if and only if either c0 = 1 or
there exists a formula ψ ≡ c′′0 ∨ c′′1 x1 ∨ · · · ∨ c′′n xn from Γ such that c′′i ≤ ci for all
0 ≤ i ≤ n. Thus, IMP(B) can be computed in constant depth using oracle gates
for B-formula evaluation. �





CHAPTER 3

NONMONOTONIC LOGICS

This chapter defines the nonmonotonic logics default logic, autoepistemic logic,
and circumscription, and states the relevant results from the literature. To pre-
serve consistency we will largely stick to the naming conventions from the
respective logics. We begin with Reiter’s default logic.

3.1 DEFAULT LOGIC

Among the formalisms that introduce common sense into formal logic, Reiter’s
default logic [Rei80] is one of the best known and most successful formalisms
for modelling of common-sense reasoning. Default logic extends classical logical
(first-order or propositional) derivations by patterns for default assumptions.
These are of the form “in the absence of contrary information, assume . . . ” and
seem to be very well-suited for the representation of a world, in which “things
that are commonly true” outnumber “absolute thruths” [Bes89]. Reiter argued
that his logic is an adequate formalization of the human reasoning under the
closed world assumption, which allows one to assume the negation of facts not
derivable from the knowledge base. In fact, nowadays default logic is widely
used in artificial intelligence and computational logic.

Definition 3.1.1 (Default rules and default theories) Fix some finite set B of Bool-
ean functions and let α, β, γ be propositional B-formulae. A B-default (rule) is an
expression d =

α:β
γ ; α is called prerequisite, β is called justification, and γ is called

consequent of d. A B-default theory is a pair (W, D), where W is a set of propositional
B-formulae and D is a set of B-default rules.

If [B] = BF or the meaning is clear from the context, we omit the prefix “B-”.
What makes default logic presumably harder than propositional logic is the

fact that the semantics (that is, the set of consequences) of a given set of premises
are defined in terms of a fixed-point equation. The different fixed points corre-
spond to different views of the world, based on the given premises. Formally,
these are defined by means of an operator which derives all possible conse-
quences of a given set of formulae both with the help of default rules and in the
classical sense.

Definition 3.1.2 (Stable extensions) For a given B-default theory (W, D) and a set
E of formulae, let Γ(E) be the smallest set of formulae such that
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1. W ⊆ Γ(E),

2. Γ(E) is deductively closed, that is, Γ(E) = Th(Γ(E)), and

3. for all defaults α:β
γ ∈ D with α ∈ Γ(E) and ¬β /∈ E, it holds that γ ∈ Γ(E)

(in this case, we also say that the default α:β
γ is applicable).

A (stable) extension of (W, D) is a fixed point of Γ, that is, a set E such that E = Γ(E).

The following theorem by Reiter provides a finite characterization of stable
extensions.

Theorem 3.1.3 ([Rei80]) Let (W, D) be a B-default theory and E be a set of formulae.

1. Let E0 := W and Ei+1 := Th(Ei) ∪
{

γ
∣∣∣ α:β

γ ∈ D, α ∈ Ei and ¬β /∈ E
}

. Then
E is a stable extension of (W, D) if and only if E =

⋃
i∈N Ei.

2. Let GD(E) :=
{

α:β
γ ∈ D

∣∣∣ α ∈ E and ¬β /∈ E
}

. If E is a stable extension of
(W, D), then

E = Th
(

W ∪
{

γ
∣∣∣ α:β

γ ∈ GD(E)
})

.

In this case, GD(E) is also called the set of generating defaults for E.

Note that stable extensions need not be consistent. However, the following
proposition shows that this only occurs if the set W is inconsistent.

Proposition 3.1.4 ([MT93]) Let (W, D) be a B-default theory. Then L is a stable
extension of (W, D) if and only if W is inconsistent.

As a consequence we obtain:

Corollary 3.1.5 Let (W, D) be a B-default theory.

• If W is consistent, then every stable extension of (W, D) is consistent.

• If W is inconsistent, then (W, D) has a stable extension.

Now that we have defined the notion of a stable extension, we are ready to
demonstrate the nonmonotonic behaviour of default logic in an example.

Example 3.1.6 The default theory (∅, D) with D := { 1:x
¬x } has no stable extension.

On the other hand, (∅, D) with D := { 1:x
x , 1:¬x

¬x } has two stable extensions, namely
E′ := Th(x) and E′′ := Th(¬x), corresponding to applications of respectively the first
or second default in D.

Next, consider (W, D) with W := {x}, D := { x:¬y
z }. Then (W, D) has a unique

stable extension which contains z. However, if W is extended by the proposition y, then
the unique stable extension of (W ∪ {y}, D) does no longer contain z; the newly added
fact y makes the justification of x:¬y

z inconsistent with its stable extension.
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As seen in Example 3.1.6 above, default theories may posses one stable exten-
sion, multiple stable extensions, or not allow for stable extensions at all. Hence,
the extension existence problem for default logic arises naturally.

Problem: EXT(B)
Input: A B-default theory (W, D)
Question: Does (W, D) have a stable extension?

Informally, multiple stable extensions correspond to different “interpretations”
of the world, whereas a lack of stable extensions corresponds to the case that
for all possible sets of assumptions one eventually arrives at contradictory in-
formation. The extension existence problem thus asks whether one can obtain
consistent knowledge of the world. Similarly, the problem of deciding whether
a certain information is derivable gives rise to two possible modes of infer-
ence: the first, credulous reasoning, is to determine whether a given formula ϕ
appears in at least one stable extension of a given default theory (W, D) (written:
(W, D) |=cred ϕ); the second, skeptical reasoning, consists of deciding whether ϕ
is contained in all stable extensions of (W, D) (written: (W, D) |=skep ϕ). The
associated decision problems are the credulous reasoning problem and the skeptical
reasoning problem:

Problem: CREDDL(B)
Input: A B-formula ϕ and a B-default theory (W, D)
Question: Does (W, D) |=cred ϕ hold?

Problem: SKEPDL(B)
Input: A B-formula ϕ and a B-default theory (W, D)
Question: Does (W, D) |=skep ϕ hold?

They can be interpreted as the problems to determine whether ϕ is respectively
possible or certain under Γ. The complexity of these problems has been settled by
Gottlob [Got92], who showed that for the Boolean standard base B = {∧,∨,¬}
all three problems are complete for classes in the second level of the polynomial
hierarchy. It follows from Lemma 2.4.2 (1.) that the lower bound holds for
arbitrary functional complete B. As does the upper bound: the given algorithm
is independent of the particular choice of B and simply guesses and verifies a set
of generating defaults.

Theorem 3.1.7 ([Got92]) Let B be a finite set of Boolean functions such that [B] = BF.
Then EXT(B) and CREDDL(B) are Σp

2 -complete, whereas SKEPDL(B) is Πp
2 -complete.

We refine this result and classify the complexity of the above problems for all
finite sets of Boolean functions in Sections 4.1 and 5.1. Beyond these decision
problems, Section 6.1 is devoted to the study of the complexity of counting the
actual number of stable extensions of a given default theory. The possibility of
translating default logic into the other nonmonotonic logics considered in this
thesis, and vice versa, is finally studied in Sections 7.2 and 7.3.
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3.2 AUTOEPISTEMIC LOGIC

Autoepistemic logic was introduced by Moore [Moo85] in 1985. Albeit originally
created to overcome difficulties present in the nonmonotonic modal logics pro-
posed by McDermott and Doyle [MD80], it was soon shown to embed several
prominent nonmonotonic formalisms such as Reiter’s default logic [Rei80] or Mc-
Carthy’s circumscription [McC80]. Thereby autoepistemic logic can be regarded
a unified base for nonmonotonic reasoning [Nie93].

Autoepistemic logic extends propositional logic with a unary modal operator
L expressing the beliefs of an ideally rational agent, by what we mean an agent
that believes in exactly the logical consequences of his knowledge and beliefs.

Definition 3.2.1 (Autoepistemic formulae) Let B be a finite set of Boolean func-
tions. Then the set of autoepistemic B-formulae Lae(B) is defined as

ϕ ::= ψ | f (ϕ, . . . , ϕ) | Lϕ,

where f is a Boolean function from B and ψ is a propositional B-formula. The consequence
relation |= of propositional logic is extended to Lae(B) by simply treating Lϕ as an
atomic formula.

As above, we will drop the prefix “B-” if [B] = BF or the meaning is clear from
the context.

The formula Lϕ means that the agent can deduce ϕ. For example, the intuitive
meaning of the formula Lx→ y is that if the agent believes in x, then y holds. An
agent with knowledge base Σ1 := {x, Lx→ y} would thus believe in x (that is,
Lx is true) and deduce that y is a fact; while for Σ1 \ {x} = {Lx→ y} the agent
has no reason to believe in x (that is, Lx is false).

To formally capture the set of beliefs of an agent, we introduce the notion of
stable expansions. Similar to stable extensions, stable expansions are defined as
the fixed points of an operator deriving the logical consequences of the agent’s
knowledge and belief.

Definition 3.2.2 (Stable Expansions) Let B be a finite set of Boolean functions and
let Σ ⊆ Lae(B) be a set of autoepistemic B-formulae. A set ∆ ⊆ Lae is called stable
expansion of Σ if it satisfies the condition

∆ = Th(Σ ∪ L(∆) ∪ ¬L(∆)),

where L(∆) := {Lϕ | ϕ ∈ ∆} and ¬L(∆) := {¬Lϕ | ϕ 6∈ ∆}.
We give an example to provide a better understanding of the semantics and to

highlight differences with default logic.

Example 3.2.3 Let x and y be propositions and consider the set of autoepistemic for-
mulae Σ1 = {x, Lx→ y} defined above. Σ1 has a unique stable expansion containing
both propositions x and y. The set Σ2 := {Lx}, on the other hand, admits no sta-
ble expansion: Assume that ∆ was a stable expansion of Σ2. Of course, Lx ∈ ∆.
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Furthermore either x ∈ ∆ or x /∈ ∆. In the former case, x cannot be derived from
Th({Lx} ∪ L(∆) ∪ ¬L(∆))—contradictory to ∆ being a stable expansion. In the lat-
ter case, we obtain ¬Lx ∈ Th({Lx} ∪ L(∆) ∪ ¬L(∆)) from x ∈ ∆. Consequently,
{Lx,¬Lx} ⊆ ∆ and ∆ = Lae. This contradicts x /∈ ∆.

By contrast, Σ3 := {Lx→ x} has two stable expansions: one containing x and the
other not containing x. Note that the stable expansion containing x is self-justified in
that only the belief in x allows its derivation.

The theory Σ3 emphasizes an essential difference in the semantics of default
logic and autoepistemic logic. Stable extensions are minimal deductively closed
sets with respect to the given knowledge base and given default rules. The
definition of stable expansions does not require this “groundedness” of beliefs,
which may lead to peculiarities in some situations and has spawned a dicussion
on alternate definitions of stable expansions (confer, for example, [Kon88, MT89,
MT90]).

As an autoepistemic theory may admit no or several stable expansions, the
expansion existence problem, the credulous reasoning problem and the skeptical reason-
ing problem also arise in the context of autoepistemic reasoning. Let B be a finite
set of Boolean formulae, Σ ⊆ Lae(B), and ϕ ∈ Lae(B). We write Σ |=cred ϕ if ϕ
is contained in any stable expansion of Σ, and Σ |=skep ϕ if ϕ is contained in all
stable expansions of Σ.

Problem: EXP(B)
Input: A set Σ ⊆ Lae(B)
Question: Does Σ have a stable expansion?

Problem: CREDAE(B)
Input: A set Σ ⊆ Lae(B) and a formula ϕ ∈ Lae(B)
Question: Does Σ |=cred ϕ hold?

Problem: SKEPAE(B)
Input: A set Σ ⊆ Lae(B) and a formula ϕ ∈ Lae(B)
Question: Does Σ |=skep ϕ hold?

Gottlob proved that for B = {∧,∨,¬} these problems are complete for the
second level of the polynomial hierarchy [Got92]. His result generalizes to
arbitrary functional complete sets B analogously to the discussion preceding
Theorem 3.1.7. We hence obtain:

Theorem 3.2.4 ([Got92]) Let B be a finite set of Boolean functions such that [B] = BF.
Then EXP(B) and CREDAE(B) are Σp

2 -complete, whereas SKEPAE(B) is Πp
2 -complete.

Our results in Sections 4.2 and 5.2 extend this theorem to all finite sets of
allowed Boolean functions. Section 6.2 then complements these results by classi-
fying the complexity of counting the number of stable expansions of a given set
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of autoepistemic formulae. The results on translations from and to fragments of
autoepistemic logic are presented in Sections 7.2 and 7.4.

A central tool for the study of the computational complexity of the above
problems will be the following finite characterization of stable expansions given
by Niemelä [Nie90]. For ϕ ∈ Lae(B), let SFL(ϕ) := {Lψ | Lψ ∈ SF(ϕ)} be the
set of its L-prefixed subformulae.

Definition 3.2.5 (Full sets) Let B be a finite set of Boolean functions. For a set Σ ⊆
Lae(B), a set Λ ⊆ SFL(Σ) ∪ ¬SFL(Σ) is Σ-full if for each Lϕ ∈ SFL(Σ),

1. Σ ∪Λ |= ϕ if and only if Lϕ ∈ Λ, and

2. Σ ∪Λ 6|= ϕ if and only if ¬Lϕ ∈ Λ,

where ¬SFL(Σ) := {¬ϕ | ϕ ∈ SFL(Σ)}.

Lemma 3.2.6 ([Nie90]) Let B be a finite set of Boolean functions and Σ ⊆ Lae(B).

• Let Λ be a Σ-full set. Then for every Lϕ ∈ SFL(Σ) either Lϕ ∈ Λ or ¬Lϕ ∈ Λ.

• There is a one-to-one correspondence of Σ-full sets and stable expansions of Σ.

To make this one-to-one correspondence more precise, say that a formula
is quasi-atomic if it is atomic or else begins with an L. Denote by SFq(ϕ) the
set of all maximal quasi-atomic subformulae of ϕ (in the sense that a quasi-
atomic subformula is maximal if it is not a subformula of another quasi-atomic
subformula of ϕ). For example, we have SFq(¬L(¬x ∧ Lz) ∨ y) = {L(¬x ∧
Lz), y} and SFq(LLx) = {LLx}. Further write SEΣ(Λ) for the stable expansion
of Σ ⊆ Lae corresponding to Λ and say that Λ is its kernel.

Definition 3.2.7 (|=L) Let Σ ⊆ Lae and let ϕ ∈ Lae. We define the consequence
relation |=L recursively as

Σ |=L ϕ ⇐⇒ Σ ∪ SBΣ(ϕ) |= ϕ,

where SBΣ(ϕ) := {Lχ ∈ SFq(ϕ) | Σ |=L χ} ∪ {¬Lχ | Lχ ∈ SFq(ϕ), Σ 6|=L χ}.

The point in defining the consequence relation |=L is that, once a Σ-full set has
been determined, it describes membership in the stable expansion corresponding
to Λ:

Lemma 3.2.8 ([Nie90]) Let Σ ⊆ Lae, let Λ be a Σ-full set, and let ϕ ∈ Lae. It holds
that Σ ∪Λ |=L ϕ if and only if ϕ ∈ SEΣ(Λ).

3.3 CIRCUMSCRIPTION

We now turn to the last nonmonotonic logic considered in this thesis.
Like any other knowledge representation formalism, logic has to deal with

the qualification problem that denotes the impossibility of listing all conditions
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required for a real-world action to have its intended effect. To overcome this
problem, McCarthy introduced the nonmonotonic logic circumscription [McC80].
Circumscription allows to conclude that the objects that can be shown to have a
certain property P by reasoning from a given knowledge base Γ are all objects
that satisfy P. We consider propositional circumscription as defined by Lifschitz
[Lif85], which is known to coincide with reasoning under the extended closed
world assumption [GPP89], in which all formulae involving only propositions
from P that cannot be derived from Γ are assumed to be false

Given a first-order theory Γ that contains a predicate P, circumscribing P
amounts to selecting only the models of Γ in which P is assigned the value true
on a minimal set of tuples. The key intuition behind this rationale is that minimal
models have as few exceptions as possible and, thus, embody common sense. In
propositional logic, P is simply a set of propositions; whence propositional cir-
cumscription asks for the minimal models of Γ with respect to the coordinatewise
partial order induced on P by 0 < 1. The remaining propositions are partitioned
into sets Q and Z, where the propositions in Q are fixed and the propositions in
Z are allowed to vary in minimizing the extent of P.

Definition 3.3.1 (≤(P,Q,Z) and (P, Q, Z)-minimal models) Let (P, Q, Z) be a par-
tition of the set of propositions and B be a finite set of Boolean functions. The preorder
≤(P,Q,Z) on assignments σ, σ′ : P ∪Q ∪ Z → {0, 1} is defined via

σ ≤(P,Q,Z) σ′ :⇐⇒ σ ∩ P ⊆ σ′ ∩ P and σ ∩Q = σ′ ∩Q.

(Recall that we identify assignments with the set of propositions set to 1).
Further, write σ <(P,Q,Z) σ′ if σ ≤(P,Q,Z) σ′ and σ ∩ P 6= σ′ ∩ P. A model σ of a

B-formula ϕ is minimal with respect to (P, Q, Z) (or (P, Q, Z)-minimal) if there is
no model σ′ of ϕ such that σ′ <(P,Q,Z) σ.

Circumscription has also been studied in a restricted form, where all propo-
sitions are subject to minimization (that is, Q = Z = ∅). Following [Nor04],
we will call this restricted form basic circumscription and write ≤ instead of
≤(P,∅,∅) (note that ≤(P,∅,∅) coincides with the coordinatewise partial order on
assignments induced by 0 < 1).

Definition 3.3.2 (Circumscriptive models and inference) Let (P, Q, Z) be a par-
tition of the set of propositions and let B, B′ be finite sets of Boolean functions. An
assignment σ is a circumscriptive model of the B-formula ϕ (written: σ |=circ

(P,Q,Z) ϕ)
if σ is a (P, Q, Z)-minimal model of ϕ. A B′-formula ψ can be circumscriptively
inferred from ϕ (written: ϕ |=circ

(P,Q,Z) ψ) if ψ holds in all (P, Q, Z)-minimal models of
ϕ.

Example 3.3.3 Let P := {x}, Q := {y}, and Z := {z} partition the set of propo-
sitions. Then the formula y → (x ∧ z) has three (P, Q, Z)-minimal models: ∅,
{z}, and {x, y, z}. It hence holds that y → (x ∧ z) |=circ

(P,Q,Z) ¬x ∨ z, whereas
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y → (x ∧ z) 6|= ¬x ∨ z as witnessed by the assignment that sets to true x and false y
and z.

Circumscription differs from the previously introduced nonmonotonic log-
ics in that it restricts the semantics of propositional logics to minimal models
instead of introducing new concepts. Hence, the question of consistency of the
knowledge base is the same as for its satisfiability.

Remark 3.3.4 One might consider the model checking problem instead. Let B be a
finite set of Boolean functions. The model checking problem for circumscription for
B-formulae, CIRCMC(B), is defined as the task to decide whether a given assignment
σ is (P, Q, Z)-minimal for a given set Γ ⊆ L(B). The complexity of the basic version
CIRCMCQ,Z=∅(B) of this problem has been resolved for all finite sets B by Kirousis
and Kolaitis in an unpublished note [KK01a]. They prove that under polynomial-time
many-one reductions CIRCMCQ,Z=∅(B) is NP-complete if D1 ⊆ [B] or S12 ⊆ [B] or
S02 ⊆ [B], and contained in P in all other cases. It is easy to see that their result
generalizes to CIRCMC(B) and continues to hold for constant-depth reductions.

We are thus left to consider the problem of deciding whether a formula can
be inferred from the circumscription of a given knowledge base. We define this
problem as the inference problem for B-formulae in propositional circumscription.

Problem: CIRCINF(B)
Input: A B-formula ϕ, a set Γ ⊆ L(B), and

a partition (P, Q, Z) of the propositions
Question: Does Γ |=circ

(P,Q,Z) ϕ hold?

Moreover, define CIRCINFQ,Z=∅ as the restriction of the above problem to basic
circumscription, that is, instances satisfying Q = Z = ∅.

An upper bound on the complexity of these problems has first been given by
Cadoli and Lenzerini [CL90], who showed that CIRCINF({∧,∨,¬}) is contained
in Πp

2 . Soon afterwards, a matching lower bound for CIRCINFQ,Z=∅ was provided
by Eiter and Gottlob [EG93]. It can be verified that the upper bound generalizes
to arbitrary functional complete sets of Boolean functions. Lemma 2.4.2 (1.) hence
yields the following theorem.

Theorem 3.3.5 Let B be a finite set of Boolean functions such that [B] = BF. Then
CIRCINF(B) and CIRCINFQ,Z=∅(B) are Πp

2 -complete.

We extend Theorem 3.3.5 to all finite sets B of Boolean functions in Section 5.3.
Beyond, we also consider the problem of counting the number of minimal models
of a theory Γ with respect to the (P, Q, Z)-preorder. These results are presented
in Section 6.3. Finally, Sections 7.3 and 7.4 contain the results on the ability to
translate from circumscription into default logic or autoepistemic logic and vice
versa.



CHAPTER 4

EXISTENCE

We start by analyzing the computational complexity of the problem to decide the
consistency of a given knowledge base, that is, the extension existence problem
for default logic and the expansion existence problem for autoepistemic logic.

4.1 EXISTENCE OF STABLE EXTENSIONS

We first classify the complexity of the extension existence problem for B-default
theories, EXT(B), for all possible sets B of Boolean functions. The following
theorem proves that the complexity of EXT(B) forms a tetrachotomy: it remains
Σp

2 -complete only if [B ∪ {1}] comprises all Boolean functions; lowers to ∆p
2 -

completeness for monotone sets B that comprise the constant 0, conjunctions
and disjunctions; and becomes tractable for all remaining monotone sets B, in
particular being P-complete (if [B] contains 0 and either conjunctions or dis-
junctions), NL-complete (if [B ∪ {1}] contains 0 and 1 only) or trivial (if B is
1-reproducing); lastly, if B consists of affine functions and is not 1-reproducing
then the complexity of EXT(B) drops by one level of the polynomial hierarchy to
NP-completeness.

The decrease to ∆p
2 stems from the fact that for monotone functions there

exists at most one stable extension, whose generating defaults can be iteratively
computed. If furthermore the implication problem is polynomial-time decidable
or a stable extension is guaranteed to exist then the problem becomes tractable.
Finally, the decrease to NP-completeness for affine functions that are not 1-
reproducing is due to the possibility of efficiently verifying a set of generating
defaults. The classification is illustrated in Figure 4.1 on page 53.

Theorem 4.1.1 Let B be a finite set of Boolean functions. Then EXT(B) is

1. Σp
2 -complete if S1 ⊆ [B] or D ⊆ [B],

2. ∆p
2 -complete if S11 ⊆ [B] ⊆ M,

3. NP-complete if [B] ∈ {N,N2,L,L0,L3},
4. P-complete if [B] ∈ {V,V0,E,E0},
5. NL-complete if [B] ∈ {I, I0}, and

6. trivial in all other cases (that is, if [B] ⊆ R1),
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with respect to constant-depth reductions.

Notice also that the complexity of EXT(B) is asymmetric in the sense that
there exist sets of functions B such that EXT(B) is trivial while EXT(dual(B)) is
Σp

2 -complete, where dual(B) := {dual( f ) | f ∈ B}. An informal explanation of
this asymmetry is that default logic only allows for “negative introspection”: a
default can be applied only if the negation of its justification is not contained in the
stable extension. For example, the negation of 1-reproducing functions cannot be
1-reproducing, whence this introspection becomes meaningless.

The proof of Theorem 4.1.1 will be established from the lemmas in this section.
We commence with an auxiliary lemma that substantially reduces the number of
cases to be considered.

Lemma 4.1.2 EXT(B)≡cd EXT(B ∪ {1}) for each finite set B of Boolean functions.

Proof. It suffices to show that EXT(B ∪ {1})≤cd EXT(B). We essentially substi-
tute the constant 1 by a new variable t that is forced to be true (a trick that goes
back to Lewis [Lew79]).

Given a B-default theory (W, D), the reduction maps (W, D) 7→ (W ′, D′),
where W ′ := W[1/t] ∪ {t}, D′ := D[1/t] and t is a new variable not occurring in
(W, D). If (W ′, D′) possesses a stable extension E′, then t ∈ E′. Hence, E′[t/1]
is a stable extension of (W, D). On the other hand, if E is a stable extension of
(W, D), then Th(E[1/t] ∪ {t}) = E[1/t] is a stable extension of (W ′, D′). Therefore,
each extension E of (W, D) corresponds to the extension E[1/t] of (W ′, D′), and
vice versa. �

The next lemma holds the key to the complexity of the extension existence
problem for 1-reproducing and monotone functions.

Lemma 4.1.3 Let B be a finite set of Boolean functions. Let (W, D) be a B-default
theory. If [B] ⊆ R1 then (W, D) has a unique stable extension. If [B] ⊆ M then (W, D)
has at most one stable extension.

Proof. For [B] ⊆ R1, every premise, justification and consequent is 1-reproducing.
As all consequences of 1-reproducing functions are again 1-reproducing and the
negation of a 1-reproducing function is not 1-reproducing, the justifications in D
become irrelevant. Hence, the characterization of stable extensions from the first
item in Theorem 3.1.3 simplifies to the following iterative construction: E0 := W
and Ei+1 := Th(Ei) ∪

{
γ
∣∣ α:β

γ ∈ D, α ∈ Ei
}

. Then E =
⋃

i∈N Ei is the unique
stable extension of (W, D). For a similar result confer [BO02, Theorem 4.6].

For [B] ⊆ M, every formula is either 1-reproducing or equivalent to 0. As
rules with justification equivalent to 0 are never applicable, each B-default theory
(W, D) with finite D has at most one stable extension by the same argument as
above. �
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Remark 4.1.4 There exist monotone default theories that do not admit a stable extension.
Consider, for example, the default theory (W,

{ ψ:1
0
}
) with ψ ∈ L({∧,∨}) and W |= ψ.

As an immediate corollary of Lemma 4.1.3, the credulous and the skeptical
reasoning problem are equivalent for the above choices of the Boolean functions.

Corollary 4.1.5 Let B be a finite set of Boolean functions such that [B] ⊆ R1 or
[B] ⊆ M. Then CREDDL(B)≡cd SKEPDL(B).

Proof. Let B be a finite set of Boolean functions. If [B] ⊆ R1, then the claim triv-
ially holds. On the other hand, if [B] ⊆ M, then a given B-default theory (W, D)
possesses a stable extension if and only if (W, D) |=cred 1, a consistent stable
extension if and only if (W, D) 6|=skep 0, and the inconsistent stable extension if
and only if (W, ∅) |=skep 0.

Hence, (W, D) |=skep ϕ if and only if (W, D) |=cred ϕ or (W, D) 6|=cred 1; and,
similarly, (W, D) |=cred ϕ if and only if

(
(W, D) |=skep ϕ and (W, D) 6|=skep p)

)
or (W, ∅) |=skep p, where p is a fresh proposition. �

Lemma 4.1.6 Let B be a finite set of Boolean functions such that [B] = M. Then
EXT(B) is ∆p

2 -complete with respect to constant-depth reductions.

Proof. We start by showing EXT(B) ∈ ∆p
2 . Let B be a finite set of Boolean func-

tions such that [B] = M. Let (W, D) be a B-default theory. If W is inconsistent,
then (W, D) has a stable extension. Hence assume that W is consistent. As the
negated justification ¬β of every default rule α:β

γ ∈ D is either equivalent to the
constant 1 or not 1-reproducing, it holds that in the former case ¬β is contained
in any stable extension, whereas in the latter ¬β cannot be contained in a consis-
tent stable extension of (W, D). We can distinguish between those two cases in
polynomial time. Therefore, using the characterization of Theorem 3.1.3 (1.), we
can iteratively compute the applicable defaults and test whether the premise of
any default with consistent justification and unsatisfiable conclusion can be de-
rived. Algorithm 4.1 implements these steps on a deterministic Turing machine
using a coNP-oracle to test for implication of B-formulae. Clearly, Algorithm 4.1
terminates after a polynomial number of steps. Hence, EXT(B) is contained in
∆p

2 .
To show the ∆p

2 -hardness of EXT(B), we reduce from SNSAT. To this end, let
(ϕi)1≤i≤n be the given sequence of propositional formulae and assume without
loss of generality that ϕi is in conjunctive normal form for all 1 ≤ i ≤ n. For
every proposition xj or zij occurring in (ϕi)1≤i≤n, let x′j respectively z′ij be a fresh
proposition, and define

ψi := ϕi
[¬x1/x′1,...,¬xi−1/x′i−1,¬zi1/z′i1,...,¬zimi /z′i,mi

] ∧
i−1∧
j=1

(xj ∨ x′j) ∧
mi∧

j=1
(zij ∨ z′ij).
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Algorithm 4.1 Determining the existence of a stable extension

Require: (W, D)
1: if W 6≡ 0 then
2: Gnew ←W
3: repeat
4: Gold ← Gnew

5: for all α:β
γ ∈ D do

6: if Gold |= α and β 6≡ 0 then
7: if γ ≡ 0 then
8: return false
9: end if

10: Gnew ← Gnew ∪ {γ}
11: end if
12: end for
13: until Gnew = Gold
14: end if
15: return true

The key observation in the relationship of ϕi and ψi is that, for all c1, . . . , ci−1 ∈
{0, 1}, ϕi

[x1/c1,...,xi−1/ci−1]
is unsatisfiable if and only if for each model σ of

ψi
[x1/c1,...,xi−1/ci−1,x′1/¬c1,...,x′i−1/¬ci−1]

there exists an index 1 ≤ j ≤ mi such that

σ sets to 1 both zij and z′ij. We will use this observation to show that the B-default

theory (W, D) defined below has a stable extension if and only if (ϕi)1≤i≤n is
an instance of SNSAT, that is, if and only if ϕn

[x1/c1,...,xi−1/ci−1]
is satisfiable for

c1, . . . , ci−1 recursively defined via

ci := 1 ⇐⇒ ϕi
[x1/c1,...,xi−1/ci−1]

is satisfiable. (4.1)

Define W := {ψ1, . . . , ψn} and

D :=


∨mi

j=1(zij ∧ z′ij) ∨
∨i−1

j=1(xj ∧ x′j) : 1

x′i

∣∣∣∣∣∣ 1 ≤ i < n

 ∪{∨mn
j=1(znj ∧ z′nj) ∨

∨n
j=1(xj ∧ x′j) : 1

0

}
.

We will prove the claim appealing to the characterization of stable extensions

from Theorem 3.1.3 (1.). Let E0 := W. If ϕ1 is unsatisfiable then
∨m1

j=1(z1j∧z′1j):1
x′1

is applicable and thus x′1 is added to E1. On the other hand, if ϕ1 is satisfiable
then there exists a model σ of ϕ1. Define σ̂ as the extension of σ defined as
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σ̂(z′1j) = ¬σ(z1j) for all 1 ≤ j ≤ m1. By virtue of σ |= ϕ1 and the construction

of σ̂, we obtain that σ̂ |= ψ1 while σ̂ 6|= ∨m1
j=1(z1j ∧ z′1j). Summarizing, ϕ1 is

unsatisfiable if and only if
∨m1

j=1(z1j∧z′1j):1
x′1

is applicable.

Now suppose that Ei is such that for all j < i the proposition x′j is contained

in Ei if and only if ϕ
j
[x1/c1,...,xj−1/cj−1]

with c1, . . . , cj−1 defined as in (4.1) is un-

satisfiable. If ϕi
[x1/c1,...,xi−1/ci−1]

is unsatisfiable then any model of the formula

ψi ∧
∧

1≤j<i,
σ(cj)=1

xj ∧
∧

1≤j<i,
σ(cj)=0

x′j (4.2)

sets to 1 both zij and z′ij for some 1 ≤ j ≤ mi. From (4.2) and the monotonicity

of ψi, we obtain that for each model σ′ of ψi ∧∧1≤j<i,σ(cj)=0 x′j there must exist
either an index 1 ≤ j < i such that σ′ sets xj and x′j to 1, or an index 1 ≤

j ≤ mi such that σ′ sets zij and z′ij to 1. Consequently,
∨mi

j=1(zij∧z′ij)∨
∨i−1

j=1(xj∧x′j):1
x′i

is

applicable and x′i ∈ Ei+1. On the other hand, if ϕi
[x1/c1,...,xi−1/ci−1]

is satisfiable

then there exists a model σ that can be extended to σ̂ by σ̂(z′ij) = ¬σ(zij) for

all 1 ≤ j ≤ mi and σ̂(x′j) = ¬σ(xj) for all 1 ≤ j < i such that σ̂ |= ψi and

σ̂ 6|= ∨mi
j=1(zij ∧ z′ij) ∨

∨i−1
j=1(xj ∧ x′j). Summarizing, ϕi is unsatisfiable if and only

if
∨mi

j=1(zij∧z′ij)∨
∨i−1

j=1(xj∧x′j):1
x′i

is applicable.
The direction from right to left now follows from the fact that ϕn is satisfiable

if and only if
∨mn

j=1(zij∧z′ij)∨
∨n

j=1(xi∧x′i):1
0 is not applicable, which in turn implies that

(W, D) has a stable extension. Conversely, if ϕn
[x1/c1,...,xn−1/cn−1]

is unsatisfiable

with c1, . . . , cn−1 defined as in (4.1), then any model of ψi ∧∧1≤j<i,σ(cj)=0 x′j sets
to true either xj and x′j for some 1 ≤ j < i or zij and z′ij for some 1 ≤ j ≤ mi.

As a result, the default
∨mn

j=1(zij∧z′ij)∨
∨n

j=1(xj∧x′j):1
0 is applicable and (W, D) does not

possess a stable extension.
Finally, observe that all formulae contained in (W, D) are monotone. Hence,

(W, D) is a {∧,∨, 0, 1}-default theory. As ∧ and ∨ are efficient implementable
in any set B such that [B] = M by Lemma 2.4.2 (2.) and the constant 1 can be
eliminated by Lemma 4.1.2, the lemma is established. �

Lemma 4.1.7 Let B be a finite set of Boolean functions such that N ⊆ [B] ⊆ L. Then
EXT(B) is NP-complete with respect to constant-depth reductions.

Proof. Let B be a finite set of Boolean functions. We start by showing EXT(B) ∈
NP if [B] ⊆ L. Given a B-default theory (W, D), we first guess a set G ⊆ D
which will serve as the set of generating defaults for a stable extension. Let
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G′ := W ∪ {γ | α:β
γ ∈ G}. We use Theorem 3.1.3 to verify whether Th(G′) is

indeed a stable extension of (W, D). For this we inductively compute generators
Gi for the sets Ei from Theorem 3.1.3 (1.), until eventually Ei = Ei+1 (note that,
because D is finite, this always occurs). We start by setting G0 = W. Given Gi,
we check for each rule α:β

γ ∈ D, whether Gi |= α and G′ 6|= ¬β (as all formulae
belong to L(B), this is possible by Theorem 2.5.1 (2.)). If so, then γ is put into
Gi+1. If this process terminates (that is, if Gi = Gi+1), we check whether G′ = Gi.
By Theorem 3.1.3 (1.), this test is positive if and only if G generates a stable
extension of (W, D).

To show the NP-hardness of EXT(B) for N ⊆ [B], we establish a constant-depth
reduction from 3SAT to EXT(B). Let ϕ =

∧n
i=1(`i1 ∨ `i2 ∨ `i3) and `ij be literals

over the set of propositions {x1, . . . , xm} for 1 ≤ i ≤ n, 1 ≤ j ≤ 3. We transform
ϕ to the B-default theory (W, Dϕ) with W := ∅ and

Dϕ :=
{

1 : xi
xi

,
1 : ¬xi
¬xi

∣∣∣∣ 1 ≤ i ≤ m
}
∪
{
`i1 : `i2
`i3

∣∣∣∣ 1 ≤ i ≤ n
}

,

where ` denotes the literal of opposite polarity: ` := ¬x if ` = x is a positive
literal, and ` := x if ` = ¬x is a negative literal.

To prove correctness of the reduction, first assume ϕ to be satisfiable. For each
satisfying assignment σ : {x1, . . . , xm} → {0, 1} of ϕ, we claim that

E := Th({xi | σ(xi) = 1} ∪ {¬xi | σ(xi) = 0})
is a stable extension of (W, Dϕ). We will verify this claim with the help of
Theorem 3.1.3 (1.). Starting with E0 = ∅, we already get Th(E1) = E by the
default rules 1:xi

xi
and 1:¬xi

¬xi
in Dϕ. As σ is a satisfying assignment for ϕ, each

consequent of a default rule in Dϕ is already in E. Hence, E3 = E2 and therefore
E =

⋃
i∈N Ei is a stable extension of (W, Dϕ).

Conversely, assume that E is a stable extension of (W, Dϕ). Because of the de-
fault rules 1:xi

xi
and 1:¬xi

¬xi
, we either get xi ∈ E or ¬xi ∈ E for all i = 1, . . . , m. The

rules of the type `i1 :`i2
`i3

ensure that E contains at least one literal from each clause

`i1 ∨ `i2 ∨ `i3 in ϕ: if all `i1, `i2, `i3 were contained in E, then `i1 :`i2
`i3

would be ap-
plicable and so E would have to be inconsistent—contradictory to Corollary 3.1.5.
As E is deductively closed, E contains ϕ. Therefore, ϕ is satisfiable. �

Lemma 4.1.8 Let B be a finite set of Boolean functions such that [B] ∈ {E,E0,V,V0}.
Then EXT(B) is P-complete with respect to constant-depth reductions.

Proof. Let B be a finite set of Boolean functions such that [B] ∈ {E,E0,V,V0}.
Membership in P is is obtained from Algorithm 4.1, as for these types of B-
formulae, we have an efficient test for implication (Theorem 2.5.1).

To prove P-hardness for E0 ⊆ [B], we provide a reduction from the comple-
ment of HGAP restricted to hypergraphs whose edges contain at most two source
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nodes. To this end, we transform a given instance (H, S, t) to the EXT({∧, 0, 1})-
instance (W, D) with

W := {ps | s ∈ S}, D :=
{∧

v∈src(e) pv : 1

pdest(e)

∣∣∣∣ e ∈ E
}
∪
{

pt : 1
0

}
with pairwise distinct propositions pv for v ∈ V. It is easy to verify that (H, s, t) ∈
HGAP ⇐⇒ (W, D) /∈ EXT({∧, 0, 1}). Using Lemma 4.1.2 and replacing ∧ by
its B-representation, we obtain HGAP≤cd EXT(B) for all finite sets B such that
E0 ⊆ [B]. As P is closed under complementation, EXT(B) is P-complete.

For V0 ⊆ [B], set

W :=
{ ∨

s/∈S
ps

}
, D :=

{ ∨
v∈V\src(e) pv : 1∨

v∈V\(src(e)∪{dest(e)}) pv

∣∣∣∣ e ∈ E
}
∪
{∨

v∈V\{t} pv : 1

0

}
.

We claim that this mapping realizes the reduction HGAP≤cd EXT({∨, 0, 1}).
First suppose that t can be reached from S in H. Then there exists a sequence
(Si)0≤i≤n of sets of nodes such that S0 = S, t ∈ Sn, and for all 0 ≤ i < n, Si+1 is
obtained from Si by adding the destination dest(e) of a hyperedge e ∈ E with
src(e) ⊆ Si. Let (ei)0≤i<n denote the corresponding sequence of hyperedges
used to obtain Si+1 from Si. Then, for all 0 ≤ i < n, the following holds:

src(ei) ⊆ Si ⇐⇒
∨

v∈V\src(e) pv : 1∨
v∈V\(src(e)∪{dest(e)}) pv

is applicable in Ei,

where (Ei)i∈N is the sequence from Theorem 3.1.3 (1.). As
⋃

i∈N Ei is guaranteed
to be unique by Lemma 4.1.3 and t ∈ Sn, we obtain that 0 ∈ En+1. Consequently,
(W, D) does not possess a stable extension.

Conversely, if (W, D) does not admit a stable extension, then 0 has to be
derivable. Accordingly, there exists a sequence of defaults (di)0≤i≤n such that
the premise of di can be derived from W ∪

{
γ
∣∣ dj =

α:β
γ , 0 ≤ j < i

}
and dn =∨

v∈V\{t} pv :1
0 . By construction of (W, D), this sequence can be translated into a

sequence (Si)0≤i≤n of node sets in the hypergraph such that S0 = S, t ∈ Sn,
and for all 0 ≤ i < n, Si+1 is obtained from Si by adding the destination dest(e)
of a hyperedge e ∈ E with src(e) ⊆ Si. Consequently, t is reachable from S in
H and we conclude that HGAP≤cd EXT({∨, 0, 1}). Using Lemma 5.1.2, we get
HGAP≤cd EXT({∨, 0}).

To see that EXT({∨, 0})≤cd EXT(B) for all finite sets B such that V0 ⊆ [B], let
f be the B-representation of x ∨ y. Replace all occurrences of ∨ in W, D and
ϕ with f and call the result WB, DB and ϕB. The variables x or y may occur
several times in the body of f , hence the EXT(B)-instance ((WB, DB), ϕB) might
be exponential in the length of the original input. To avoid this blowup, we
exploit the associativity of ∨: we insert parentheses such that the disjunctions
in each of the above formulae are transformed into tree of logarithmic depth.
Concluding, EXT(B) is P-complete. �
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Lemma 4.1.9 Let B be a finite set of Boolean functions such that [B] ∈ {I, I0}. Then
EXT(B) is NL-complete with respect to constant-depth reductions.

Proof. Let B be a finite set of Boolean functions such that [B] ∈ {I, I0}. We will
first show membership in NL by giving a reduction to the complement of the
graph accessibility problem, GAP. Let (W, D) be a B-default theory. Analogously
to the proof of Lemma 4.1.6, it holds that (W, D) has a stable extension if and
only if either W is inconsistent or the conclusions of all applicable defaults are
consistent. Assume that W is consistent and denote by D′ ⊆ D those defaults
α:β
γ ∈ D with β 6≡ 0. Then a B-default rule α:β

γ ∈ D′ is applicable if and only
if the proposition α is contained in W or itself the conclusion of an applicable
default. Therefore, testing whether the conclusions of all applicable defaults are
consistent is essentially equivalent to solving a reachability problem in a directed
graph. Define G(W,D) as the directed graph (V, E) with

V := {0, 1} ∪W ∪
{

α, γ
∣∣∣ α:β

γ ∈ D
}

,

E := {(1, x) | x ∈W} ∪
{
(α, γ)

∣∣∣ α:β
γ ∈ D, β 6≡ 0

}
if W is consistent, and

V := {0, 1},
E := ∅

otherwise. It is easy to see that (W, D) has a stable extension if and only if there
is no path from 1 to 0 in G(W,D). Thus the function mapping the given B-default
theory (W, D) to the GAP-instance (G(W,D), 1, 0) constitutes a reduction from
EXT(B) to GAP. As the consistency of W can be determined in AC0, the reduction
can be computed using constant-depth circuits. Membership in NL follows from
the closure of NL under complementation.

To show NL-hardness, we establish a constant-depth reduction in the converse
direction. For a directed graph G = (V, E) and two nodes s, t ∈ V, we transform
the given GAP-instance (G, s, t) to (W, D) with

W := {ps}, D :=
{

pu :pu
pv

∣∣∣ (u, v) ∈ E
}
∪
{

pt :pt
0

}
Clearly, (G, s, t) ∈ GAP if and only if (W, D) does not have a stable extension.
As NL is closed under complementation, the lemma is established. �

Proof of Theorem 4.1.1. Let B be a finite set of Boolean functions.
If S1 ⊆ [B] or [B] ⊆ D, then in both cases BF = [B∪ {1}]. The first claim hence

follows from Theorem 3.1.7 and Lemma 4.1.2. The second claim follows similarly
from Lemmas 4.1.2 and 4.1.6.

For the third claim, it suffices to prove the NP-completeness of EXT(B) for
every finite set B such that N ⊆ [B] ⊆ L. This has been shown in Lemma 4.1.7.
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The remaining cases [B] ∈ {N2,L0,L3} follow from Lemma 4.1.2, because [N2 ∪
{1}] = N and [L0 ∪ {1}] = [L3 ∪ {1}] = L.

The fourth, fifth, and sixth claim follow directly from respectively Lemma 4.1.8,
Lemma 4.1.9, and Lemma 4.1.3. �

One might also be interested in a variant of the extension existence problem
that considers consistent stable extensions only. Define this problem as

Problem: EXT′(B)
Input: A B-default theory (W, D)
Question: Does (W, D) have a consistent stable extension?

It is easily observed that the complexity classification of EXT′(B) is the identical
to that of EXT(B):

Corollary 4.1.10 Let B be a finite set of Boolean functions. Then EXT′(B) is equivalent
to EXT(B) with respect to constant-depth reductions.

Proof. The proof of the corollary follows directly from the proof of Theorem 4.1.1
and the complexity of the satisfiability problem for B-formulae. Indeed, the
reduction used to prove the Σp

2 -hardness in [Got92] and the reductions used
in the proofs of Lemmas 4.1.2 and 4.1.6 to 4.1.9 all map their given input to
consistent B-default theories. The lower bounds hence carry over to EXT′(B).
Similarly, the upper bounds continue to hold as apparent from Corollary 3.1.5:
test whether the given knowledge base is satisfiable, and if so, verify the existence
of a stable extension as above. �

4.2 EXISTENCE OF STABLE EXPANSIONS

Our main result in this section is the following theorem, that summarizes the
complexity of the expansion existence problem for all finite sets B of Boolean
functions. The complexity of the problem substantially differs from that of
EXT(B): EXP(B) remains Σp

2 -complete for all B such that [B ∪ {0, 1}] includes
the Boolean functions ∧ and ∨. If only ∨ is contained in [B ∪ {0, 1}], then
the complexity drops to completeness for NP. On the other hand, if only ∧ is
contained in [B∪ {0, 1}], then the complexity drops to AC0. In case of an affine B,
the complexity drops to membership in P or completeness for AC0[2], depending
on whether B contains connectives of arity > 1. Altogether the complexity can
thus be divided into five complexity degrees. See also Figure 4.2 on page 54.

Moreover, notice that in the upper part the complexity of EXP(B) is symmet-
ric with respect to the duality implicit in Post’s lattice. Unlike default logic,
autoepistemic logic allows for both positive and negative introspection; there-
fore, no simplifications emerge for sets of 1-reproducing or sets of monotone
autoepistemic formulae.

Theorem 4.2.1 Let B be a finite set of Boolean functions. Then EXP(B) is
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1. Σp
2 -complete if D2 ⊆ [B] or S00 ⊆ [B] or S10 ⊆ [B],

2. NP-complete if V2 ⊆ [B] ⊆ V,

3. ⊕L-hard and contained in P if L2 ⊆ [B] ⊆ L,

4. AC0[2]-complete if N2 ⊆ [B] ⊆ N, and

5. in AC0 in all other cases (that is, if [B] ⊆ E),

with respect to constant-depth reductions.

The proof of Theorem 4.2.1 will be established from the lemmas in this sec-
tion. To begin with, observe that we may without loss of generality assume the
availability of the Boolean constants.

Lemma 4.2.2 EXP(B)≡cd EXP(B ∪ {0, 1}) for all finite sets B of Boolean functions.

Proof. Let B be a finite set of Boolean functions and Σ ⊆ Lae(B). For the non-
trivial direction EXP(B ∪ {0, 1}) ≤ EXP(B), we map Σ to Σ′ := Σ[1/t,0/L f ] ∪ {t},
where t and f are fresh propositions. Then the stable expansions of Σ′ and Σ are
in one-to-one correspondence, as any expansion of Σ′ includes t and ¬L f . �

As a consequence of Lemma 4.2.2, it suffices to consider sets B such that
{0, 1} ∈ [B]. This is equivalent to requiring that B is a base for one of the clones
I, N, V, E, L, M, or BF (see Table 2.1 on page 21). Provided that the necessary
Boolean functions can be efficiently implemented in the respective sets B, all other
cases follow from these seven clones. Before we start proving our classification,
we give one further observation.

Lemma 4.2.3 For all finite sets B of Boolean functions and every set Σ ⊆ Lae(B), Lae
is a stable expansion of Σ if and only if Σ ∪ SFL(Σ) is inconsistent.

Proof. Suppose that Lae is a stable expansion of Σ and let Λ denote its kernel.
Then Σ ∪ Λ |=L 0 by virtue of Lemma 3.2.8. As Σ ∪ Λ |=L 0 if and only if
Σ ∪ Λ |= 0, we obtain Λ = SFL(Σ) (notice that {Lχ | Lχ ∈ SFq(0)} = ∅, see
Definition 3.2.7). In conclusion, Σ∪ SFL(Σ) must be inconsistent. Conversely sup-
pose that Σ ∪ SFL(Σ) is inconsistent. Then so is Th(Σ ∪ L(Lae)). Consequently,
Lae is a stable expansion of Σ. �

Lemma 4.2.4 Let B be a finite set of Boolean functions such that M ⊆ [B]. Then
EXP(B) is Σp

2 -complete with respect to constant-depth reductions.

Proof. Let B be a finite set of Boolean functions as required. We have to prove
hardness, membership in Σp

2 follows from Theorem 3.2.4.
We reduce from QBF∃,2. Let ϕ := ∃x1 · · · ∃xn∀y1 · · · ∀ymψ be a quantified

Boolean formula in disjunctive normal form. In [Got92], Gottlob shows that
ϕ is valid if and only if the set Σ := {Lψ, Lx1 ↔ x1, . . . , Lxn ↔ xn} has a
stable expansion. The idea of our proof is to modify the given reduction to use
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monotone connectives only, thus proving that EXP(B) is Σp
2 -hard for every finite

set M ⊆ [B]. More precisely, we define

ψ′ := ψ[¬x1/x′1,...,¬xn/x′n ,¬y1/y′1,...,¬ym/y′m ]

and

Σ′ := {Lψ′} ∪ {yj ∨ y′j | 1 ≤ j ≤ m} ∪ {xi ∨ Lx′i , Lxi ∨ x′i | 1 ≤ i ≤ n}.

Clearly, Σ′ ⊆ Lae({∧,∨}). Moreover, for every 1 ≤ i ≤ n, we have that any
stable expansion of Σ contains either Lxi or Lx′i but not both: assume that Λ
is a Σ′-full set such that Lxi ∈ Λ and Lx′i ∈ Λ. Then, by definition of Σ′,
Σ′ ∪Λ 6|= xi and Σ′ ∪Λ 6|= x′i , although Lxi, Lx′i ∈ Λ; a contradiction to Λ being
Σ′-full. Otherwise, if Λ were a Σ′-full set such that ¬Lxi ∈ Λ and ¬Lx′i ∈ Λ,
then Σ′ ∪Λ |= xi and Σ′ ∪Λ |= x′i , a contradiction to Λ being Σ′-full, because
Lxi, Lx′i /∈ Λ. In conclusion, any Σ′-full set and equivalently any stable expansion
contains either Lxi or Lx′i but not both.

We show that Σ′ has a stable expansion if and only if ϕ is valid. First suppose
that Σ′ has a stable expansion ∆. Let Λ denote its kernel. As Σ′ ∪ SFL(Σ′) is
consistent, we obtain that ∆ 6= Lae from Lemma 4.2.3. By the argument above,
either Lxi ∈ ∆ or Lx′i ∈ ∆, but not both. Moreover, Lψ′ ∈ ∆, whence ψ′ must
be derivable from Σ′ ∪ Λ by Definition 3.2.5. Note that this implies that ψ′

is satisfied by all assignments setting either yi or y′i to 1; in particular, by all
assignments that assign a complementary value to yi and y′i for every i. Define
a truth assignment σ : {xi | 1 ≤ i ≤ n} → {0, 1} from Λ such that σ(xi) := 1 if
Lxi ∈ Λ, and σ(xi) := 0 otherwise. It follows that σ |= ∀y1 · · · ∀ymψ, thus ϕ is
valid.

Now suppose that ϕ is valid. Then there exists an assignment σ : {xi | 1 ≤
i ≤ n} → {0, 1} such that any extension of σ to y1, . . . , ym satisfies ψ. Let
Λ := {Lxi,¬Lx′i | σ(xi) = 1} ∪ {¬Lxi, Lx′i | σ(xi) = 0} ∪ {Lψ′}. We claim
that Λ is Σ′-full. If Lxi ∈ Λ, then ¬Lx′i ∈ Λ; hence {Lx′i ∨ xi,¬Lx′i} implies xi.
Conversely, if Σ′ ∪Λ |= xi then ¬Lx′i has to be in Λ, because xi occurs in Lψ′ and
the clause Lx′i ∨ xi only. From this, we obtain Lxi ∈ Λ. Therefore, Σ′ ∪Λ |= xi if
and only if Lxi ∈ Λ. From the definition of Λ now follows that Σ′ ∪Λ 6|= xi if
and only if ¬Lxi ∈ Λ. The same holds for x′i for each i. Due to the construction
of Λ, the fact that the clause yi ∨ y′i enforces y′i to be assigned a value equal to or
bigger than the one assigned to ¬yi, the definition of ψ′ and its monotonicity, we
also have Σ′ ∪Λ |= ψ′. Hence, following Definition 3.2.5, Λ is a Σ′-full set and,
by Lemma 3.2.6, Σ′ has a stable expansion.

It remains to show that ∧ and ∨ are efficiently implementable in any finite set
B such that M ⊆ [B]. As M ⊆ [B] only if [B] = M or [B] = BF, this follows from
Lemma 2.4.2. �

We cannot transfer the above result to EXP(B) for [B] = V, because we may
not assume ψ to be in conjunctive normal form. But, using a similar idea, we can
show that the problem is NP-complete.
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Lemma 4.2.5 Let B be a finite set of Boolean functions such that [B] = V. Then
EXP(B) is NP-complete with respect to constant-depth reductions.

Proof. We first show that EXP(B) is efficiently verifiable, thus proving member-
ship in NP. Let B be a finite set of Boolean functions such that [B] = V. Given a
set Σ ⊆ Lae(B) and a candidate Λ for a Σ-full set, substitute Lϕ by the Boolean
value assigned to by Λ and call the resulting set Σ′. Note that Σ′ is still equivalent
to a set of disjunctions and that IMP(B) ∈ P by Theorem 2.5.1. Therefore, the
conditions Σ′ |= ϕ if and only if Lϕ ∈ Λ, and Σ′ 6|= ϕ if and only if ¬Lϕ ∈ Λ can
be verified in polynomial time.

To show NP-hardness, we reduce 3SAT to EXP(B) as follows. Let ϕ :=∧
1≤i≤n ci with clauses ci = `i1 ∨ `i2 ∨ `i3, 1 ≤ i ≤ n, be given and let x1, . . . , xm

enumerate the propositions occurring in ϕ. From ϕ we construct the set

Σ := {Lc′i | 1 ≤ i ≤ n} ∪ {xi ∨ Lx′i , Lxi ∨ x′i | 1 ≤ i ≤ m},

where c′i = ci[¬x1/x′1, . . . ,¬xm/x′m] for 1 ≤ i ≤ n. Analogously to Lemma 4.2.4,
we obtain that for any stable expansion ∆ of Σ either xi ∈ ∆ or x′i ∈ ∆, but not
both. We claim that ϕ is satisfiable if and only if Σ has a stable expansion.

First, suppose that ∆ is a stable expansion of Σ. It is easily observed that
Σ ∪ SFL(Σ) is consistent, therefore ∆ 6= Lae. Let Λ be the kernel of ∆. As
∆ 6= Lae and Lc′i ∈ Σ for all 1 ≤ i ≤ n, Definition 3.2.5 implies that Σ ∪Λ |= c′i
and hence Σ ∪Λ |=L ci for all 1 ≤ i ≤ n. We thus conclude from Lemma 3.2.8
that ϕ ∈ ∆.

Conversely, suppose that ϕ is satisfied by the assignment σ. Define the set
Λ := {Lxi,¬Lx′i | σ(xi) = 1} ∪ {Lx′i ,¬Lxi | σ(xi) = 0} ∪ {Lc′i | 1 ≤ i ≤ n}. As
σ |= ci for any 1 ≤ i ≤ n, we obtain that Σ ∪Λ |= c′i . Concluding, Λ is a Σ-full
set. �

Next, we turn to the case [B] = L. Say that an L-prefixed formula is L-atomic if
it is of the form Lϕ for some atomic formula ϕ.

Lemma 4.2.6 Let Σ ⊆ Lae({⊕, 1}). If SFL(Σ) contains only L-atomic formulae, then
one can decide in polynomial time whether Σ has a stable expansion.

Proof. The idea is to use Gaussian elimination twice. Let Σ be as required and
suppose that Σ consists of m formulae. Then the set Σ can be seen as a system
of linear equations and thus written as Ax = By + C, where x = (x1, . . . , xn)T,
y = (Lx1, . . . , Lxn)T, A and B are Boolean matrices having m rows, and C is a
Boolean vector.

By applying Gaussian elimination to A we obtain an equivalent system A′x =
B′y + C′ with an upper triangular matrix A′. Let r denote the number of free
variables in A′x and suppose without loss of generality that these are x1, . . . , xr.
By subsequently eliminating the variables xr+1, . . . , xn, we arrive at a system T



4.2 Existence of Stable Expansions 49

equivalent to Σ of the form

{xi = fi(x1, . . . , xr) + gi(Lx1, . . . , Lxn) + ci | r< i≤n} ∪
{0 = gi(Lx1, . . . , Lxn) + ci | n< i≤ m+r},

where for each i the functions fi and gi are linear.
Observe that Σ ∪ SFL(Σ) is inconsistent if and only if T[Lx1/1, . . . Lxn/1] has

no solution. In this case Σ has Lae as a stable expansion. Hence assume that
Σ ∪ SFL(Σ) is consistent. We will now show how to construct a Σ-full set Λ.

Since the variables x1, . . . , xr are free, they cannot be derived from Σ ∪ Λ
whatever Λ is. The same occurs for every i ≥ r + 1 such that fi(x1, . . . , xr) is not
a constant function. Suppose this is the case for r + 1 ≤ i ≤ s. Then any Σ-full set
has to contain ¬Lxj for 1 ≤ j ≤ s. Let T′ be the system obtained by considering
all remaining equations while replacing Lxi with 0 for each 1 ≤ i ≤ s. For each
equation in T′, the function fi (if present) is a constant function εi. Therefore T′

consists of the following equations:

{xi = εi + g′i(Lxs+1, . . . , Lxn) + ci | s < i ≤ n} ∪
{0 = g′i(Lxs+1, . . . , Lxn) + ci | n < i ≤ m + r}

with g′i(Lxs+1, . . . , Lxn) := gi(0, . . . , 0, Lxs+1, . . . , Lxn) for s < i ≤ m + r. For
every Λ ⊆ SFL(Σ) ∪ ¬SFL(Σ) such that {¬Lx1, . . . ,¬Lxs} ⊆ Λ, and every i,
Σ ∪ Λ |= xi (respectively Σ ∪ Λ 6|= xi) if and only if T′ ∪ Λ |= xi (respectively
T′ ∪Λ 6|= xi).

Claim. Let I and J form a partition of {s + 1, . . . , n}. Then (Lxs+1, . . . , Lxn) with
Lxi = 0 if i ∈ I and Lxj = 1 if j ∈ J is a solution of the system T′[xs+1/Lxs+1, . . . ,
xn/Lxn] if and only if Λ = {¬Lx1, . . . ,¬Lxs} ∪ {¬Lxi | i ∈ I} ∪ {Lxj | j ∈ J} is
a Σ-full set.

To prove the claim, let Λ = {¬Lx1, . . . ,¬Lxs} ∪ {¬Lxi | i ∈ I} ∪ {Lxj | j ∈ J}
be a Σ-full set. Observe that Σ ∪Λ is consistent and that either T′ ∪Λ |= xi or
T′ ∪Λ |= ¬xi, for all 1 ≤ i ≤ n. Denote by λ the truth assignment induced by
Λ on SFL(Σ). Then, for every i > s, Lxi ∈ Λ if and only if λ(Lxi) = 1 if and
only if T′ ∪ Λ |= xi if and only if εi + g′i

(
λ(Lxs+1), . . . , λ(Lxn)

)
+ ci = 1; and

¬Lxi ∈ Λ if and only if λ(Lxi) = 0 if and only if T′ ∪ Λ |= ¬xi if and only if
εi + g′i

(
λ(Lxs+1), . . . , λ(Lxn)

)
+ ci = 0. This means that for every i, we have

εi + g′i
(
λ(Lxs+1), . . . , λ(Lxn)

)
+ ci = λ(Lxi). Therefore λ is a solution of the

system {Lxi = εi + gi(0, . . . , 0, Lxs+1, . . . , Lxn) + ci | s < i ≤ n}, and hence of
the system T′[xs+1/Lxs+1, . . . , xn/Lxn].

Conversely, suppose that λ is a solution of T′[xs+1/Lxs+1, . . . , xn/Lxn]. In
particular, λ satisfies

{Lxi = εi + gi(0, . . . , 0, Lxs+1, . . . , Lxn) + ci | s + 1 ≤ i ≤ n}. (4.3)
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Set Λ := {¬Lx1, . . . ,¬Lxs} ∪ {¬Lxi | s + 1 ≤ i ≤ n, λ(xi) = 0} ∪ {Lxi | s + 1 ≤
i ≤ n, λ(xi) = 1}. Then T′ ∪Λ is equivalent to

{xi = εi + g′i
(
λ(Lxs+1), . . . , λ(Lxn)

)
+ ci | s < i ≤ n} ∪

{0 = g′i
(
λ(Lxs+1), . . . , λ(Lxn)) + ci | n < i ≤ m + r}.

Therefore, by (4.3), T′ ∪Λ |= xi if and only if λ(Lxi) = 1 and T′ ∪Λ |= ¬xi if
and only if λ(Lxi) = 0. Hence, Λ is a Σ-full set. This proves the claim.

We conclude that Σ has a stable expansion if and only if T′[xs+1/Lxs+1, . . . ,
xn/Lxn] has a solution. �

Remark 4.2.7 Note that solving this last system by Gaussian elimination also gives
the total number of possible Σ-full sets: the number of consistent stable expansions
is equal to the number of solutions of T′[xs+1/Lxs+1, . . . , xn/Lxn]; testing for the
inconsistent stable expansion can be accomplished using Lemma 4.2.3 and the fact that
the satisfiability of sets of affine formulae is polynomial-time decidable.

Lemma 4.2.8 Let B be a finite set of Boolean functions such that [B] = L. Then EXP(B)
is contained in P and ⊕L-hard with respect to constant-depth reductions.

Proof. Let B be as required and Σ be a set of autoepistemic B-formulae. Then
Σ can be written in polynomial time as a set of {⊕}-formulae (see the proof of
Lemma 2.5.5). We transform this set to Σ′ as follows: introduce a fresh variable
yϕ for every non-atomic formula ϕ such that Lϕ ∈ Σ; add the equation yϕ ↔ ϕ;
and replace all occurrences of Lϕ by Lyϕ. We claim that the Σ-full sets and the
Σ′-full sets are in one-to-one correspondence. This establishes the upper bound,
because Σ′ satisfies the conditions of Lemma 4.2.6.

To prove our claim, let Λ ⊆ SFL(Σ)∪¬SFL(Σ). We give an inductive argument
on the number of L-prefixed formulae in Σ. To this end, choose an Lϕ ∈ SFL(Σ)
such that ϕ does not contain any L-prefixed subformulae. Define

Σϕ := Σ[Lϕ/Lyϕ ] ∪ {yϕ ↔ ϕ},
Λϕ := (Λ \ {Lϕ,¬Lϕ}) ∪ {Lyϕ | Lϕ ∈ Λ} ∪ {¬Lyϕ | ¬Lϕ ∈ Λ}.

That is, Σϕ differs from Σ in that we substituted a non-L-atomic subformula Lϕ
by Lyϕ and added the equation yϕ ↔ ϕ.

Observe that Σ ∪Λ |= ϕ if and only if Σϕ ∪Λϕ |= yϕ. Therefore, since Lϕ ∈ Λ
if and only if Lyϕ ∈ Λϕ, and ¬Lϕ ∈ Λ if and only if ¬Lyϕ ∈ Λϕ, it holds that Λ
is Σ-full if and only if Λϕ is Σϕ-full. Repeating the above argument eventually
yields Σ′, for which the existence of stable expansions can be tested in polynomial
time by Lemma 4.2.6.

It hence remains to establish ⊕L-hardness. We give a reduction from IMP(B)
for [B ∪ {0, 1}] = L. Given an instance (Γ, ψ) of IMP(B), let Σ := Γ ∪ {Lψ}.
Indeed, if Γ |= ψ, then Λ := {Lψ} is Σ-full; and if Λ := {Lψ} is Σ-full, then
Γ |= ψ. Thus, IMP(B)≤cd EXP(B) via the mapping (Γ, ψ) 7→ Σ. �
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Lemma 4.2.9 Let B be a finite set of Boolean functions such that [B] = N. Then
EXP(B) is AC0[2]-complete with respect to constant-depth reductions. It moreover
holds that, for every set Σ ⊆ Lae(B), there is at most one consistent stable expansion.

Proof. Let B be a finite set of Boolean functions such that [B] = N and let Σ ⊆
Lae(B) be given. Denote by Σ′ the set of formulae obtained from the {¬}-
representation of Σ by repeatedly eliminating all occurrences of ¬¬, replacing
all occurrences of LL by L, and replacing all occurrences of L¬L by ¬L. Then
Σ′ is a set of literals and formulae of the form L` or ¬L`, where ` is again a
literal. As LLϕ is true if and only if Lϕ is true, and L¬Lϕ is true if and only if
Lϕ ∨ L0 is true, it holds that Σ has a consistent stable expansion if and only if
ϕ ∈ Σ′ for all Lϕ ∈ Σ′ and ϕ /∈ Σ′ for all ¬Lϕ ∈ Σ′ . This can be tested using an
AC0-circuit. On the other hand, existence of the inconsistent stable expansion can
be tested using Lemma 4.2.3, which requires an AC0-circuit with oracle gates for
B-formula evaluation. As B-formulae can be evaluated in AC0[2] [Sch10] and Σ′

can be constructed from Σ using an AC0-circuit with oracle gates for B-formula
evaluation, we conclude that EXP(B) ∈ AC0[2].

As for the AC0[2]-completeness, observe that IMP(B) is AC0[2]-complete and
that IMP(B)≤cd EXP(B) via the reduction (Γ, ψ) 7→ Σ := Γ ∪ {Lψ}. �

Lemma 4.2.10 Let B be a finite set of Boolean functions such that [B] ⊆ E. Then
EXP(B) is solvable in AC0. It moreover holds that, for every set Σ ⊆ Lae(B), there is
at most one consistent stable expansion.

Proof. As any given set Σ ⊆ Lae(B) is equivalent to a set of propositions, the
result follows from the proof of Lemma 4.2.9 together with the fact that B-formula
evaluation can be performed in AC0 (see the proof of Lemma 2.5.7). �

Proof of Theorem 4.2.1. According to Lemma 4.2.2, EXP(B) ≡ EXP(B ∪ {0, 1}).
Note that [D1 ∪ {0, 1}] = [S02 ∪ {0, 1}] = [S12 ∪ {0, 1}] = BF and [D2 ∪ {0, 1}] =
[S00 ∪ {0, 1}] = [S10 ∪ {0, 1}] = M. Moreover, if [B] ⊆ V or [B] ⊆ L or [B] ⊆ E,
then either [B ∪ {0, 1}] ∈ {V,L,N} or [B] ⊆ E. Therefore, Lemmas 4.2.4, 4.2.5
and 4.2.8 to 4.2.10 cover all cases of the theorem. �

In many applications, one is interested in the consistent stable expansions
of an autoepistemic theory only. Denote this alternative formalization of the
expansion existence problem as EXP′(B):

Problem: EXP′(B)
Input: A set Σ ⊆ Lae(B)
Question: Does Σ have a consistent stable expansion?

From Theorem 4.2.1 and its proof one can easily settle the complexity of EXP′(B)
for all finite sets B of Boolean functions:

Corollary 4.2.11 EXP(B) ≡ EXP′(B) for all finite sets B of Boolean functions,
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Proof. The corollary follows immediately from the proof of Theorem 4.2.1. In-
deed, in each hardness proof (see Lemmas 4.2.4, 4.2.5 and 4.2.8) we have shown
that the set of autoepistemic B-formulae constructed in that proof, Σ or Σ′, does
not admit Lae as a stable expansion. Therefore, Σ or Σ′ have a stable expansion
if and only if Σ or Σ′ have a consistent stable expansion. This proves all the
hardness results. As for the upper bounds, Lemmas 4.2.4 and 4.2.5 are easily seen
to extend to the existence of a consistent stable expansion. And for the tractable
cases [B] ⊆ E and [B] ⊆ N, one can decide the existence of a consistent stable
expansion in AC0[2]. This follows from the proof of Lemmas 4.2.9 and 4.2.10.
Finally, for [B] ⊆ L, observe that the proof of Lemma 4.2.8 actually allows to
compute full sets corresponding to consistent stable expansions in polynomial
time. �
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CHAPTER 5

REASONING

This chapter analyzes the computational complexity of credulous and skeptical
reasoning in the nonmonotonic logic introduced in Chapter 3. This task, to decide
whether a given statement can be derived from a given knowledge base, is central
to knowledge representation systems. Here we extend the know complexity
results to all fragments obtained from restrictions on the set of available Boolean
functions.

We will stick to the order of the previous chapter and study the computa-
tional complexity of credulous and skeptical reasoning in default logic first,
proceed with autoepistemic logic, and finally analyze the complexity of skeptical
reasoning in circumscription.

5.1 REASONING IN DEFAULT LOGIC

We will first analyze the credulous reasoning problem and the skeptical reasoning
problem in default logic. For these problems, there are two sources of complexity.
On the one hand, we need to determine a candidate for a stable extension.
On the other hand, we have to verify that this candidate is indeed a finite
characterization of some stable extension—a task that requires to test for formula
implication. Depending on the Boolean connectives allowed, one or both tasks
can be performed in polynomial time or even become trivial. In principle, this
yields five possible cases for the complexity of CREDDL(B), namely the classes of
the polynomial hierarchy below and including Σp

2 . We will see that all five cases
actually occur, with the easy case splitting further into two sub-cases.

We obtain the full complexity of CREDDL(B), that is, Σp
2 -completeness, for all

clones B where both problems EXT(B) and IMP(B) attain their highest complexity
(compare Theorems 2.5.1 and 4.1.1). The complexity reduces to ∆p

2 for clones that
allow for an efficient computation of stable extensions but whose implication
problem remains coNP-complete. More precisely, the problem is complete for
this class if a stable extension may not exist (S11 ⊆ [B] ⊆ M) and becomes
coNP-complete otherwise (X ⊆ [B] ⊆ R1 for X ∈ {S00,S10,D2}). Conversely, if
the implication problem becomes easy but determining an extension candidate
is hard, then CREDDL(B) is NP-complete, while the dual reasoning problem
SKEPDL(B) has to test for all extensions and is coNP-complete. This is the case
for the clones [B] ∈ {N,N2,L,L0,L3}. Finally, for clones B that allow for solving
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both tasks in polynomial time, both CREDDL(B) and SKEPDL(B) are in P. The
complete classification of CREDDL(B) is given in the following theorem. It is also
depicted in Figure 5.1 on page 69.

Theorem 5.1.1 Let B be a finite set of Boolean functions. Then CREDDL(B) is

1. Σp
2 -complete if S1 ⊆ [B] or D ⊆ [B],

2. ∆p
2 -complete if S11 ⊆ [B] ⊆ M,

3. coNP-complete if S00 ⊆ [B] ⊆ R1 or S10 ⊆ [B] ⊆ R1 or D2 ⊆ [B] ⊆ R1,

4. NP-complete if [B] ∈ {N,N2,L,L0,L3},
5. P-complete if V2 ⊆ [B] ⊆ V or E2 ⊆ [B] ⊆ E or [B] ∈ {L1,L2}, and

6. NL-complete in all other cases (that is, if [B] ⊆ I),

with respect to constant-depth reductions.

The proof of Theorem 5.1.1 follows from Theorem 3.1.7 and the upper and
lower bounds given in Lemma 5.1.3 and Lemma 5.1.4 below. We start with
a result analogous to Lemma 4.1.2 for both the credulous and the skeptical
reasoning problem.

Lemma 5.1.2 CREDDL(B)≡cd CREDDL(B∪ {1}) and SKEPDL(B)≡cd SKEPDL(B∪
{1}) for each finite set B of Boolean functions.

Proof. Observe that the reduction (W, D) 7→ (W ′, D′) given in Lemma 4.1.2 has
the additional property that for each formula ϕ and each extension E of (W, D),
ϕ ∈ E if and only if ϕ[1/t] ∈ E[1/t]. �

Lemma 5.1.3 Let B be a finite set of Boolean functions. Then CREDDL(B) is contained

1. in ∆p
2 if [B] ⊆ M,

2. in coNP if [B] ⊆ R1,

3. in NP if [B] ⊆ L,

4. in P if [B] ⊆ V or [B] ⊆ E or [B] ⊆ L1, and

5. in NL if [B] ⊆ I.

Proof. Let B be a finite set of Boolean functions, let (W, D) be a B-default theory,
and let ϕ ∈ L(B).

For [B] ⊆ M, membership in ∆p
2 is obtained from a straightforward extension

of Algorithm 4.1: We first iteratively compute the applicable defaults G while
asserting that (W, D) has a stable extension using Algorithm 4.1, and eventually
verify that ϕ is implied by W and the conclusions in G.

For [B] ⊆ R1, the justifications β are irrelevant for computing a stable ex-
tension, as for every default rule α:β

γ ∈ D we cannot derive ¬β (¬β is not
1-reproducing). Thence, a unique consistent stable extension E is guaranteed
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to exist by Lemma 4.1.3. Using Algorithm 4.1 we can iteratively compute the
generating defaults of E of the unique consistent stable extension of (W, D) and
eventually check whether ϕ is implied by W and the conclusions in GD(E).

The described algorithm is a monotone Turing reduction from CREDDL(B) to
IMP(B) in the sense that for any deterministic oracle Turing machine M that
executes it, A ⊆ A′ implies that the language recognized by M with oracle A is a
subset of the language recognized by M with oracle A′. As coNP is closed under
monotone Turing reductions [Sel82], CREDDL(B) ∈ coNP.

For [B] ⊆ L, we proceed similarly as in the proof of Theorem 4.1.1 (3.). First, we
guess a set G of generating defaults and subsequently verify that both Th

(
W ∪{

γ
∣∣ α:β

γ ∈ G
})

is a stable extension and that W ∪
{

γ
∣∣ α:β

γ ∈ G
}
|= ϕ. Using

Theorem 2.5.1, both conditions may be verified in polynomial time.
For [B] ⊆ V, [B] ⊆ E, and [B] ⊆ L1, we proceed as for [B] ⊆ M. How-

ever, for these types of B-formulae we have an efficient test for implication (see
Theorem 2.5.1). Hence, CREDDL(B) ∈ P.

For [B] ⊆ I, observe that NL is closed under intersections. Hence, given a
B-default theory (W, D) and a B-formula ϕ we can first test whether (W, D) has
a stable extension E using Lemma 4.1.9 and subsequently assert that ϕ ∈ E by
reusing the graph G(W,D) constructed from (W, D): it holds that ϕ ∈ E if and
only if the node corresponding to ϕ is contained in G(W,D) and reachable from
the node 1. Thus, CREDDL(B) ∈ NL. �

We will now establish the lower bounds required to complete the proof of
Theorem 5.1.1.

Lemma 5.1.4 Let B be a finite set of Boolean functions. Then CREDDL(B) is

1. Σp
2 -hard if S1 ⊆ [B] or D ⊆ [B],

2. ∆p
2 -hard if S11 ⊆ [B],

3. coNP-hard if S00 ⊆ [B] or S10 ⊆ [B] or D2 ⊆ [B],

4. NP-hard if N2 ⊆ [B] or L0 ⊆ [B],

5. P-hard if V2 ⊆ [B], E2 ⊆ [B] or L2 ⊆ [B], and

6. NL-hard in all other clones.

Proof. The first part follows from Theorem 3.1.7 and Lemma 5.1.2.
For the second part, observe that the constant 1 is contained in any stable

extension. The second part thus follows from Lemmas 4.1.6 and 5.1.2.
For S00 ⊆ [B], S10 ⊆ [B], and D2 ⊆ [B], coNP-hardness is established by a

constant-depth reduction from IMP(B). Let Γ ⊆ L(B) and ϕ ∈ L(B). Then the
default theory (Γ, ∅) has the unique stable extension Th(Γ), and hence Γ |= ϕ
if and only if ((Γ, ∅), ϕ) ∈ CREDDL(B). Therefore, IMP(B)≤cd CREDDL(B), and
the claim follows with Theorem 2.5.1.
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For the fourth part, it suffices to prove NP-hardness for N2 ⊆ [B]; the case L0 ⊆
[B] then follows from CREDDL(N2)≤cd CREDDL(L)≡cd CREDDL(L0 ∪ {1}) and
Lemma 5.1.2. We obtain the desired hardness result by adjusting the reduction
given in the proof of Lemma 4.1.7. Consider the mapping ϕ 7→ (({ψ}, Dϕ), ψ),
where Dϕ is the set of default rules constructed from ϕ in Lemma 4.1.7, and ψ
is a satisfiable B-formula such that ϕ and ψ do not use common variables. By
Lemma 4.1.7, ϕ ∈ 3SAT if and only if ({ψ}, Dϕ) has a stable extension. As any
extension of ({ψ}, Dϕ) contains ψ, we obtain 3SAT≤cd CREDDL(B) via the above
reduction.

For the fifth part, it suffices to prove the P-hardness for [B] ∈ {L1,L2}. The
cases E2 ⊆ [B] and V2 ⊆ [B] follow analogously to the second part from Lem-
mas 4.1.8 and 5.1.2. We again provide a reduction from HGAP restricted to hyper-
graphs whose edges contain at most two source nodes. To this end, we transform
a given instance (H, S, t) to the CREDDL({x⊕ y⊕ z, 1})-instance ((W, D), ϕ) with

W := {ps | s ∈ S},

D :=
{ psrc(e) : 1

pdest(e)

 e ∈ E, |src(e)| = 1
}
∪{ psrc1(e) : 1

pe
,

psrc2(e) : 1

pe
,

psrc1(e) ⊕ psrc2(e) ⊕ pe : 1

pdest(e)

 e ∈ E, |src(e)| = 2
}

,

ϕ := pt,

and {src1(e), src2(e)} denote the source nodes of e. As for the correctness, ob-
serve that if for some e ∈ E with |src(e)| = 2 both variables psrc1(e) and psrc2(e)
can be derived from the stable extension of (W, D), then pe and consequently
pdest(e) can be derived. Conversely, if src1(e) or src2(e) cannot be derived, then
either none or two of the propositions in psrc1(e) ⊕ psrc2(e) ⊕ pe are satisfied. Thus
pdest(e) cannot be derived from the defaults corresponding to e.

Finally, it remains to show NL-hardness for I2 ⊆ [B]. We give a constant-depth
reduction from GAP to CREDDL({id}) similar to that in the proof of Lemma 4.1.9.
For a directed graph G = (V, E) and two nodes s, t ∈ V, we transform the given
GAP-instance (G, s, t) to ((W, D), ϕ), where

W := {ps}, D :=
{

pu : pu

pv

 (u, v) ∈ E
}

, ϕ := pt.

Clearly, (G, s, t) ∈ GAP if and only if ϕ is contained in all stable extensions of
(W, D). �

This completes the proof of Theorem 5.1.1.
We will next classify the complexity of the skeptical reasoning problem. The

analysis as well as the result are similar to the classification of the credulous
reasoning problem.
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Theorem 5.1.5 Let B be a finite set of Boolean functions. Then SKEPDL(B) is

1. Πp
2 -complete if S1 ⊆ [B] or D ⊆ [B],

2. ∆p
2 -complete if S11 ⊆ [B] ⊆ M,

3. coNP-complete if X ⊆ [B] ⊆ Y for X∈{S00,S10,D2,N2,L0} and Y∈{R1,L},
4. P-complete if V2 ⊆ [B] ⊆ V or E2 ⊆ [B] ⊆ E or [B] ∈ {L1,L2}, and

5. NL-complete in all other cases (that is, if [B] ⊆ I),

with respect to constant-depth reductions.

Proof. The first part again follows from Theorem 3.1.7 and Lemma 5.1.2.
For [B] ∈ {N,N2,L,L0,L3}, we guess similarly as in Theorem 4.1.1 a set G of

defaults and then verify in the same way whether W and G generate a stable
extension E. If not, then we accept. Otherwise, we check if E |= ϕ and answer
according to this test. This yields a coNP-algorithm for SKEPDL(B). Hardness for
coNP is achieved by modifying the reduction from Theorem 4.1.1 (see also the
proof of Lemma 5.1.4): map ϕ to ((∅, Dϕ), ψ), where Dϕ is defined as in the proof
of Theorem 4.1.1, and ψ is a B-formula such that ϕ and ψ do not share variables.
Then ϕ /∈ 3SAT if and only if (∅, Dϕ) does not have a stable extension. The latter
is true if and only if ψ is in all extensions of (∅, Dϕ). Hence 3SAT≤cd SKEPDL(B),
establishing the claim.

For all remaining clones B, it holds that [B] ⊆ R1 or [B] ⊆ M. Hence, Corol-
lary 4.1.5 and Theorem 5.1.1 imply the claimed results. �

5.2 REASONING IN AUTOEPISTEMIC LOGIC

In this section, we analyze the credulous and the skeptical reasoning problem
for autoepistemic logic. Similar to default logic, there are two sources for the
complexity of these problems: we need to determine a candidate for a full set
and to verify that this candidate is indeed the finite characterization of a stable
expansion.

As determining whether an autoepistemic theory admits a stable expansions
alone is Σp

2 -complete for all clones above E, V, and L, both the credulous and
skeptical reasoning problems remain complete for respectively Σp

2 and Πp
2 for

these clones, too. For the clones E, V, L and below, the implication problem and
hence the task of verifying a candidate for a stable expansion become tractable.
As a result, the complexity drops by at least one level of the polynomial hier-
archy: we obtain respectively NP- or coNP-completeness if V2 ⊆ [B] ⊆ V and
polynomial-time solvable fragments if [B] ⊆ L or [B] ⊆ E, where for the latter
fragments even the set of candidates can be computed efficiently. The complete
classification is established in Theorems 5.2.1 and 5.2.4 below and depicted in
Figure 5.2 on 70.
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Theorem 5.2.1 Let B be a finite set of Boolean functions. Then CREDAE(B) is

1. Σp
2 -complete if D2 ⊆ [B] or S00 ⊆ [B] or S10 ⊆ [B],

2. NP-complete if V2 ⊆ [B] ⊆ V,

3. ⊕L-hard and contained in P if L2 ⊆ [B] ⊆ L,

4. AC0[2]-complete if N2 ⊆ [B] ⊆ N, and

5. in AC0 in all other cases (that is, if [B] ⊆ E),

with respect to constant-depth reductions.

The proof of Theorem 5.2.1 requires two auxiliary lemmas: the first shows that
we may restrict our attention to the clones containing both Boolean constants; the
second provides an upper bounds on the complexity of CREDAE(B) via reduction
to the expansion existence problem.

Lemma 5.2.2 For all finite sets B of Boolean functions, it holds that CREDAE(B)≡cd
CREDAE(B ∪ {0, 1}) and SKEPAE(B)≡cd SKEPAE(B ∪ {0, 1}).

Proof. The proof is analogous to the proof of Lemma 4.2.2. For the nontrivial
directions, we map the given pair (Σ, ϕ) to (Σ′, ϕ′), where Σ′ := Σ[1/t,0/L f ] ∪
{t}, ϕ′ := ϕ[1/t,0/L f ], and t and f are new propositions. Correctness of these
reductions follows from the one-to-one correspondence of the stable expansions
of Σ and the stable expansions of Σ′. �

Lemma 5.2.3 For all finite sets B of Boolean functions, it holds that CREDAE(B)≤cd
EXP(B ∪ {↔}).

Proof. Let B be a finite set of Boolean functions. Given Σ ⊆ Lae(B) and ϕ ∈
Lae(B), map the pair (Σ, ϕ) to Σ′ := Σ ∪ {Lϕ ↔ p, Lp}, where p is a fresh
proposition. We claim that ϕ is contained in a stable expansion of Σ if and only if
Σ′ ∈ EXP(B).

First suppose that ϕ is contained in a stable expansion ∆ of Σ. Let Λ denote
the kernel of ∆. As Σ ∪ Λ |=L ϕ, there has to exist a set SBΣ∪Λ(ϕ) = {Lχ ∈
SFq(ϕ) | Σ ∪Λ |=L χ} ∪ {¬Lχ | Lχ ∈ SFq(ϕ), Σ ∪Λ 6|=L χ} such that Σ ∪Λ ∪
SBΣ∪Λ(ϕ) |= ϕ. We claim that Λ′ := Λ ∪ SBΣ∪Λ(ϕ) ∪ {Lϕ, Lp} is Σ′-full:

• Σ′ ∪Λ′ |= ϕ, because Σ ∪Λ ∪ SBΣ∪Λ(ϕ) |= ϕ;

• Σ′ ∪Λ′ |= p, because Σ ∪ {Lϕ, Lϕ↔ p} |= p;

• for all Lψ ∈ Λ, we have Σ′ ∪ Λ′ ≡ Σ ∪ Λ ∪ SBΣ∪Λ(ϕ) ∪ {Lϕ, Lϕ ↔
p, Lp} |=L ψ using the same derivation as for Σ∪Λ; whereas for all ¬Lψ ∈
Λ, we still have Σ′ ∪Λ′ ≡ Σ ∪Λ ∪ SBΣ∪Λ(ϕ) ∪ {Lϕ, Lϕ↔ p, Lp} 6|=L ψ.

Hence, Σ′ has a stable expansion.
Conversely, suppose that ϕ is not credulously entailed. Hence Σ does not

have Lae as a stable expansion and ¬Lϕ ∈ ∆ for all stable expansions ∆ of
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Σ. Observe that Σ′ ∪ SFL(Σ′) = Σ ∪ SFL(Σ) ∪ {Lϕ ↔ p, Lp} ∪ {Lϕ, Lp} is
consistent, therefore Lae is not a stable expansion of Σ′ either.

Hence, assume that ∆′ is a consistent stable expansion of Σ′. Then either
Lp ∈ ∆′ or ¬Lp ∈ ∆′. In the former case, ∆′ would also have to contain Lϕ,
while ϕ cannot be derived. A contradiction to ∆′ being a stable expansion
of Σ′. In the latter case, we have that Th(Σ′ ∪ L(∆′) ∪ ¬L(∆′)) ⊇ {¬Lp, Lp}.
Thus, Th(Σ′ ∪ L(∆′) ∪ ¬L(∆′)) = Lae ) ∆′—a contradiction to ∆′ being a stable
expansion. We conclude that Σ′ does not posses any stable expansions. �

Proof of Theorem 5.2.1. Let B be a finite set of Boolean functions. According to
Lemma 5.2.2 one can suppose without loss of generality that B contains the
constant 1. Since 1 belongs to all stable expansions, a set Σ of autoepistemic B-
formulae has a stable expansion if and only if 1 belongs to some stable expansion
of Σ. Therefore, the lower bounds follow from Theorem 4.2.1.

As for the upper bounds, membership of CREDAE(B) in Σp
2 for [B] = BF

follows from Theorem 3.2.4.
For [B] ⊆ V, the proof of Lemma 4.2.5 shows that, given Σ ⊆ Lae(B), we can

compute a Σ-full set Λ in NP. By Lemma 3.2.8, it remains to check whether
Σ ∪Λ |=L ϕ. To this end, we nondeterministically guess a set T ⊆ SFq(()ϕ) ∩
SFL(()ϕ), verify that Σ ∪Λ ∪ T ∪ {¬Lχ | Lχ ∈ SFq(()ϕ) ∩ SFL(()ϕ) \ T} |= ϕ,
and recursively check that

• Σ ∪Λ |=L χ for all Lχ ∈ T,

• Σ ∪Λ 6|=L χ for all Lχ ∈ SFq(()ϕ) ∩ SFL(()ϕ) \ T.

This recursion terminates after at most |ϕ| steps as |SFq(ϕ)∩SFL(ϕ)| ≤ |SF(ϕ)| ≤
|ϕ| and Σ ∪Λ |=L χ if and only if Σ ∪Λ |= χ for all propositional formulae χ.
The above algorithm hence constitutes a polynomial-time Turing reduction to the
implication problem for propositional B-formulae. Using Theorem 2.5.1, we now
obtain that Σ ∪Λ |=L ϕ is polynomial-time decidable; thence, CREDAE(B) ∈ NP.

For [B] ⊆ N and [B] ⊆ E, the proofs of Lemmas 4.2.9 and 4.2.10 show that,
given Σ ⊆ Lae(B), computation of a Σ-full set Λ can be performed in respectively
AC0[2] and AC0, while deciding Σ∪Λ |=L ϕ reduces to testing whether Σ∪Λ |=
ψ for the (unique) atomic subformula ψ ∈ SF(ϕ).

Finally, for [B ∪ {0, 1}] = L, the claim follows from Lemmas 4.2.8 and 5.2.3.�

We will now give the complexity classification of the skeptical reasoning
problem. The analysis is similar to the credulous reasoning problem.

Theorem 5.2.4 Let B be a finite set of Boolean functions. Then SKEPAE(B) is

1. Πp
2 -complete if D2 ⊆ [B] or S00 ⊆ [B] or S10 ⊆ [B],

2. coNP-complete if V2 ⊆ [B] ⊆ V,

3. ⊕L-hard and contained in P if L2 ⊆ [B] ⊆ L,

4. AC0[2]-complete if N2 ⊆ [B] ⊆ N, and
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5. in AC0 in all other cases (that is, if [B] ⊆ E),

with respect to constant-depth reductions.

To complete the proof of Theorem 5.2.4, we require a result analogous to
Lemma 5.2.3.

Lemma 5.2.5 SKEPAE(B)≤cd EXP′(B ∪ {⊕}) for all finite sets B of Boolean func-
tions, where EXP′ denotes the problem of deciding the existence of a consistent stable
expansion.

Proof. Let B be a finite set of Boolean functions. Given Σ ⊆ Lae(B) and ϕ ∈
Lae(B), map the pair (Σ, ϕ) to Σ′ := Σ ∪ {Lϕ⊕ p, Lp}, where p is a fresh propo-
sition. We claim that ϕ is contained in any stable expansion of Σ if and only if
Σ′ 6∈ EXP(B).

First suppose that there exists a stable expansion ∆ of Σ that does contain
ϕ. Let Λ denote its kernel. Then, for the same arguments as in the proof of
Lemma 5.2.3, Λ′ := Λ ∪ SBΣ∪Λ(ϕ) ∪ {¬Lϕ, Lp} is a Σ′-full set.

Conversely, suppose that ϕ is contained in all stable expansions ∆ of Σ and let
∆′ denote a consistent stable expansion of Σ′. Then either Lp ∈ ∆′ or ¬Lp ∈ ∆′.
If Lp ∈ ∆′, then ∆′ would also have to contain ¬Lϕ, while ϕ can be derived.
A contradiction to ∆′ being a stable expansion of Σ′. Otherwise, if ¬Lp ∈ ∆′,
then Σ′ ∪ L(∆′) ∪ ¬L(∆′) is inconsistent—contradictory to ∆′ being a consistent
stable expansion. We conclude that Σ′ does not posses any consistent stable
expansion. �

Proof of Theorem 5.2.4. We proceed analogous to the proof of Theorem 5.2.1. Ac-
cording to Lemma 5.2.2 one can suppose without loss of generality that B contains
the constant 0. Since 0 does not belong to any consistent stable expansion, a set
Σ of autoepistemic B-formulae has no consistent stable expansion if and only
if 0 belongs to all stable expansions of Σ. The lower bounds thus follow from
Corollary 4.2.11, while the upper bounds can be derived from Lemmas 4.2.5,
4.2.8 to 4.2.10 and 5.2.5 as in the proof of Theorem 5.2.1. �

5.3 REASONING IN CIRCUMSCRIPTION

In the last section of this chapter, we analyze the complexity of reasoning in
circumscription.

In general the problem has been shown to be complete for Πp
2 in Theorem 3.3.5;

and this completeness continues to hold for all sets of Boolean functions that
are neither monotone nor affine. If all available functions are affine or mono-
tone, then the complexity of the problem is contained in coNP, whereby it is
coNP-complete in the latter case as long as ∨ remains expressible using the
available Boolean functions and the constant 1. This decrease in the complexity
comes from different sources: for monotone functions the test for minimality of
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models becomes tractable, while for affine functions the implication problem
becomes tractable. If the set of available Boolean functions is further restricted to
contain either only negations or only conjunctions, then the problem becomes
polynomial-time solvable (that is, its complexity drops to respectively AC0[2]-
completeness or membership in AC0). The classification is shown in Figure 5.3
on page 71.

Theorem 5.3.1 Let B be a finite set of Boolean functions. Then CIRCINF(B) is

1. Πp
2 -complete if S02 ⊆ [B] or S12 ⊆ [B] or D1 ⊆ [B],

2. coNP-complete if V2 ⊆ [B] ⊆ M or S10 ⊆ [B] ⊆ M or D2 ⊆ [B] ⊆ M,

3. ⊕L-hard and contained in coNP if L2 ⊆ [B] ⊆ L,

4. AC0[2]-complete if N2 ⊆ [B] ⊆ N, and

5. in AC0 in all other cases (that is, if [B] ⊆ E),

with respect to constant-depth reductions.

Similar to Theorem 5.1.5, Theorem 5.3.1 is asymmetric in the sense that the
complexity of circumscriptive inference differs for sets of Boolean functions being
dual to each other, which is not the case for inference in propositional logic: the
inference problem for both V- and E-formulae in propositional logic is contained
in AC0, whereas CIRCINF(B) is coNP-hard if V2 ⊆ [B]. This stems from the
identification of Γ ⊆ L({∨}) with the conjunction of the contained formulae,
while the (P, Q, Z)-minimality of models for Γ allows for the simulation of atomic
negations. Therefore, CIRCINF(B) with V2 ⊆ [B] is as hard as the implication
problem for formulae in conjunctive normal form. On the other hand, if B ⊆ E
then Γ is equivalent to a conjunction of propositions, the complexity of the
circumscriptive inference problem hence remains in AC0.

This asymmetry neatly contrasts with the complexity of inference for basic
circumscription:

Theorem 5.3.2 Let B be a finite set of Boolean functions. Then CIRCINFQ,Z=∅(B) is
contained in AC0 for all B such that V2 ⊆ [B] ⊆ V and equivalent to CIRCINF(B)
with respect to constant-depth reductions in all other cases.

Remark 5.3.3 Another possible restriction of CIRCINF(B) is to require Γ to be a sin-
gleton, that is, that Γ is a formula. Denote this modified version of the problem as
CIRCINF1(B). In [Tho09], the author proves that CIRCINF1(B) is AC0[2]-complete
for all B such that L2 ⊆ [B] ⊆ L, contained in AC0 for all B such that V2 ⊆ [B] ⊆ V,
and ≤cd-equivalent to CIRCINF(B) in all other cases.

The proof of Theorems 5.3.1 and 5.3.2 will be established from the lemmas in
this section. To begin with, the following lemma reduces the number of clones to
be considered.
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Lemma 5.3.4 Let B be a finite sets of Boolean functions. It holds that CIRCINF(B)≡cd
CIRCINF(B ∪ {1}). Additionally, if ∨ ∈ [B] then CIRCINF(B)≡cd CIRCINF(B ∪
{0}). The equivalences hold even if Z = Q = ∅ is assumed.

Proof. We will first show that CIRCINF(B ∪ {1})≤cd CIRCINF(B). We map the
given CIRCINF(B∪ {1})-instance (Γ, ψ, (P, Q, Z)) to (Γ[1/t] ∪ {t}, ψ[1/t], (P∪ {t},
Q, Z)). Now, for all models σ of Γ[1/t] ∪ {t}, we have that σ(t) = 1. More-
over, there is a bijection between the models of Γ and Γ[1/t] ∪ {t}. Hence,
(Γ, ψ, (P, Q, Z)) ∈ CIRCINF(B∪{1}) ⇐⇒ (Γ[1/t] ∪{t}, ψ[1/t], (P∪{t}, Q, Z)) ∈
CIRCINF(B).

It remains to show that CIRCINF(B ∪ {0})≤cd CIRCINF(B) if ∨ ∈ [B]. For the
nontrivial direction, observe that Γ |=circ

(P,Q,Z) ψ if and only if Γ[0/ f ] |=circ
(P∪{ f },Q,Z)

ψ ∨ f . �

Lemma 5.3.5 Let B be a finite set of Boolean functions such that [B] = M. Then
CIRCINF(B) is coNP-complete with respect to constant-depth reductions, even if Q =
Z = ∅.

Proof. Let B be a finite set of Boolean functions such that [B] = M. For member-
ship in coNP, let Γ ⊆ L(B), ϕ ∈ L(B) and (P, Q, Z) be a partition of the set of
propositions. It holds that Γ |=circ

(P,Q,Z) ϕ if and only if for all (P, Q, Z)-minimal
models σ of Γ, σ |= Γ implies σ |= ϕ.

Due to the monotonicity of the functions in B, we have that σ |= ψ implies that
σ ∪ {x} |= ψ for all B-formulae ψ and all propositions x. Thus, a model σ of Γ is
(P, Q, Z)-minimal if and only if (σ ∪ Z) \ {x} 6|= Γ for all x ∈ P with σ(x) = 1.
One can hence check in polynomial time whether σ is a (P, Q, Z)-minimal model
of Γ. Consequently, to prove that Γ 6|=circ

(P,Q,Z) ϕ it suffices to guess an assignment
σ and check (in polynomial time according to the discussion above) that σ is a
minimal model of Γ falsifying ϕ. This shows that CIRCINF(B) ∈ coNP.

As for coNP-hardness, we give a reduction from 3TAUT. Let ϕ ∈ L be in
disjunctive normal form with exactly three literals per term. Assume without
loss of generality that Vars(ϕ) = {x1, . . . , xn} and denote this set by X. Let
Y = {y1, . . . , yn} be a set of propositions disjoint from X. Denote by ϕ′ the
formula derived from ϕ by replacing all negative literals ¬xi by yi. By virtue of
Lemma 2.4.2 (2.), we may assume that ∧ and ∨ can be efficiently implemented in
B. We can hence define the reduction function f as

f : ϕ 7→
({ ∧

1≤i≤n
(xi ∨ yi)

}
, ϕ′, (X ∪Y, ∅, ∅)

)
.

The formulae
∧

1≤i≤n(xi ∨ yi) and ϕ′ are obviously monotone and can further-
more be constructed using AC0-circuits. We show that ϕ ∈ 3TAUT if and only if
f (ϕ) ∈ CIRCINF(B).
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First assume that ϕ ∈ 3TAUT. Then σ |= ϕ(X) for any assignment σ : X →
{0, 1}. We define σ′ as the extension of σ to X ∪Y defined by σ′(yi) = 1− σ(xi)
for all 1 ≤ i ≤ n. As a result, for any two different models σ1, σ2 : X → {0, 1} of
ϕ, the corresponding assignments σ′1, σ′2 are incomparable under ≤(X∪Y,∅,∅).

Now assume that there exists a (X ∪Y, ∅, ∅)-minimal model σ′ of the premise
such that σ′(xi) = σ′(yi) = 1 for some 1 ≤ i ≤ n. Then both assignments
σ′ \ {xi} and σ′ \ {yi} still satisfy

∧
1≤i≤n(xi ∨ yi), a contradiction to σ′ being

minimal. Hence, any (X ∪ Y, ∅, ∅)-minimal model σ′ of the premise satisfies
σ′(xi) 6= σ′(yi) for all 1 ≤ i ≤ n. As a result, any such model is an extension of
some assignment σ : X → {0, 1} as defined above. From the assumption σ |= ϕ,
we finally obtain σ′ |= ϕ[¬x1/y1,...¬xn/yn ] = ϕ′.

As for ϕ /∈ 3TAUT, there exists an assignment σ : X → {0, 1} falsifying σ |=
ϕ. Let σ′ again be defined as the extension of σ to X ∪ Y satisfying σ′(yi) =
1 − σ(xi). According to the above discussion, σ′ is a (X ∪ Y, ∅, ∅)-minimal
model of

∧
1≤i≤n(xi ∨ yi) such that σ′ 6|= ϕ′. Hence, σ′ witnesses

{∧
1≤i≤n(xi ∨

yi)
}
6|=circ

(P,Q,Z) ϕ′. �

The following proposition re-proves coNP-hardness for a clone properly con-
tained in M. However, the proof of Lemma 5.3.5 is required to establish the
coNP-hardness of CIRCINFQ,Z=∅(B) for [B] = M (see Theorem 5.3.2).

Lemma 5.3.6 Let B be a finite set of Boolean functions such that [B] = V. Then
CIRCINF(B) is coNP-complete with respect to constant-depth reductions, while
CIRCINFQ,Z=∅(B) is contained in AC0.

Proof. Let B be a finite set of Boolean functions such that [B] = V. Membership
of CIRCINF(B) in coNP is immediate from Lemma 5.3.5. To prove its coNP-
hardness, we again reduce from 3TAUT to CIRCINF(B).

Given ϕ =
∨m

i=1(`i1 ∧ `i2 ∧ `i3) with Vars(ϕ) = {x1, . . . , xn}, we map ϕ 7→
(Γ, z, (P, Q, Z)), where P := Vars(ϕ) ∪ {x̂ : x ∈ Vars(ϕ)} ∪ {ti : 1 ≤ i ≤ m},
Q := ∅, Z := {z} with z being a fresh proposition and Γ defined as follows:

1. For each proposition x ∈ Vars(ϕ), Γ contains the formula x ∨ x̂.

2. For each term (`i1 ∧ `i2 ∧ `i3) of ϕ, Γ contains the four formulae

ti ∨ `′i1, ti ∨ `′i2, ti ∨ `′i3, ti ∨ z,

where `′ij := x if `ij = x and `′ij := x̂ if `ij = ¬x, for some x ∈ Vars(ϕ).

We claim that ϕ ∈ 3TAUT if and only if Γ |=circ
(P,Q,Z) z.

Suppose that ϕ is tautological. In this case, every assignment σ : Vars(ϕ) →
{0, 1} satisfies at least one term (`i1 ∧ `i2 ∧ `i3) of ϕ. As every model of Γ sets to
1 either x or x̂ for all x ∈ Vars(ϕ), for every model σ′ of Γ there exists a model σ′′

of Γ such that σ′′ ≤(P,Q,Z) σ′ and that is an extension of a model of ϕ. Any model
σ′ of Γ thus sets σ′(`′ij) = 1 for 1 ≤ j ≤ 3. As the corresponding ti occurs only in
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the formulae ti ∨ `′i1, ti ∨ `′i2, ti ∨ `′i3, ti ∨ z, it follows that any (P, Q, Z)-minimal
model σ′ sets σ′(ti) = 0 and σ′(z) = 1. We conclude that Γ |=circ

(P,Q,Z) z.

On the other hand, suppose that σ′(z) = 1 for all (P, Q, Z)-minimal models
σ′ of Γ. Then, any such model falsifies at least one ti, because otherwise σ′ \ {z}
would also be a (P, Q, Z)-minimal model of Γ, in contradiction to the assumption.
This in turn implies the existence of a term (`i1 ∧ `i2 ∧ `i3) such that σ |= `ij for
all 1 ≤ j ≤ 3, where σ := σ′ ∩Vars(ϕ). We conclude that σ |= ϕ.

As the propositions ti need not be numbered by i, but can rather be indexed
according to their position in the input string, we conclude that the reduction
is implementable in an AC0-circuit. Whence the coNP-hardness of CIRCINF(B)
under constant-depth reductions follows.

We will now prove that CIRCINF(B) is contained in AC0 if the problem is
restricted to Q = Z = ∅. Let Γ ⊆ L(B), let ϕ ∈ L(B), and assume without loss
of generality that Vars(Γ ∪ {ϕ}) = {x1, . . . , xn}. Moreover, let Γ = {ψi | 1 ≤
i ≤ m}. Then Γ ≡ c1 ∨

∧m
j=1

∨
i∈Ij

xi and ϕ ≡ c2 ∨
∨

i∈J xi, where c1, c2 ∈ {0, 1}
and I1, . . . , Im, J ⊆ {1, . . . , n}. These representations can be computed using
AC0-circuits, since c1 ≡ 1 (c2 ≡ 1) if and only if ∅ |= Γ (respectively ∅ |= ϕ) and
i ∈ Ik, 1 ≤ k ≤ m, (i ∈ J) if and only if c1 ≡ 0 and {xi} |= ψk (respectively i ∈ J if
and only if c2 ≡ 0 and {xi} |= ϕ). Henceforth assume without loss of generality
that ϕ 6≡ 1 (otherwise, Γ |=circ ϕ trivially holds). Define XJ := {xi : i ∈ J} to
be the set of propositions occurring in XJ and let σ : XJ → {0, 1} be the partial
assignment defined by σ(xi) = 0 for all i ∈ J. Then Γ |=circ ϕ if and only if σ
cannot be extended to a minimal model of Γ.

We show that σ cannot be extended to a minimal model of Γ if and only if
Γ[XJ /0] := c1 ∨

∧m
j=1

∨
i∈Ij\J xi is unsatisfiable. Suppose that σ cannot be extended

to a minimal model of Γ. Either σ cannot be extended to a model of Γ or for all
extensions σ′ of σ satisfying Γ, there exists a model ρ of Γ such that ρ < σ′. In
the former case, we obtain that Γ ∪ {¬xi | σ(xi) = 0} ≡ Γ[XJ /0] is unsatisfiable;
whereas in the latter case, there has to exist some minimal model ρ′ of Γ with
ρ′ < σ′ for σ′ as above. But then ρ′ ∩ {xi | i ∈ J} = ∅, because σ′ ∩ {xi | i ∈
J} = σ ∩ {xi | i ∈ J} and ρ′ < σ′—contradictory to the assumption that σ cannot
be extended to a minimal model of Γ. We conclude that for all extensions σ′ of σ,
σ′ 6|= Γ and, in particular, that Γ[XJ /0] is unsatisfiable. Conversely, suppose that σ

can be extended to a minimal model σ′ of Γ. Then, clearly, σ′ |= Γ[XJ /0].
To decide whether Γ |=circ ϕ, it thus suffices to check whether Γ[XJ /0] is satisfi-

able. As Γ[XJ /0] is satisfiable if and only if it is satisfiable by the all-1 assignment,

membership of CIRCINFQ,Z=∅(B) in AC0 follows. �
An argument similar to the above can now be used to show that CIRCINF(B) ∈

AC0 for all B such that [B] ⊆ E.

Lemma 5.3.7 Let B be a finite set of Boolean functions such that [B] = E. Then
CIRCINF(B) is contained in AC0.
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Proof. Let B be a finite set of Boolean functions such that [B] = E. Let Γ ⊆
L(B), let ϕ ∈ L(B) and let (P, Q, Z) partition the set of propositions. Then
Γ is equivalent to

∧
x∈X x for some set of propositions X. Let σ be the partial

assignment on P ∪ X defined as σ(x) := 1 if and only if x ∈ X. Let σ′ be an
arbitrary (P, Q, Z)-minimal model of Γ. Then, σ′(x) = σ(x) for all x ∈ P ∪ X.
Therefore, σ′ |= ϕ if and only if σ |= ϕ for all such σ′. We conclude that
Γ |=circ

(P,Q,Z) ϕ if and only if σ |= ϕ, which can be verified in AC0.
The claim now follows from the fact that the conjunctive representations of Γ

and ϕ can be computed using AC0-circuits: for ψ ∈ L(B) with ψ ≡ ∧x∈X x, we
have x ∈ X if and only if Vars(ψ) |= ψ and Vars(ψ) \ {x} 6|= ψ. �
Lemma 5.3.8 Let B be a finite set of Boolean functions such that [B] = L or [B] = L1.
Then CIRCINF(B) is contained in coNP and ⊕L-hard with respect to constant-depth
reductions, even if Q = Z = ∅.

Proof. Let B be a finite set of Boolean functions such that [B] = L
We will first show membership in coNP. Let Γ ⊆ L(B), ϕ ∈ L(B), and a

partition (P, Q, Z) of the set of propositions be given. To prove that Γ 6|=circ
(P,Q,Z) ϕ,

we guess an assignment σ and verify that it is a (P, Q, Z)-minimal model of Γ
that falsifies ϕ. The test for (P, Q, Z)-minimality proceeds as follows:

Let σ : Vars(Γ ∪ {ϕ})→ {0, 1} be an assignment satisfying Γ and let p1, . . . , pk
and q1 . . . , qm enumerate the propositions in P \ σ and in Q respectively. From
the definition of ≤(P,Q,Z), it follows that Γ has a model smaller than σ with
respect to ≤(P,Q,Z) if and only if Γ[p1/0,...,pk/0,q1/σ(q1),...,qm/σ(qm)] is satisfiable by
an assignment σ′ : (P ∩ σ) ∪ Z → {0, 1} setting at least one proposition in P ∩ σ
to 0. This can be tested in polynomial time, see [KK01b].

For the ⊕L-hardness, recall that the classical inference problem for affine
1-reproducing formulae is hard for ⊕L under constant-depth reductions (see
Theorem 2.5.1). Hence, mapping an instance (Γ, ϕ) over propositions X =
{x1, . . . , xn} to (Γ ∪ ∆, ϕ, (X ∪Y ∪ Z, ∅, ∅)) with ∆ := {xi ⊕ yi ⊕ zi : 1 ≤ i ≤ n},
Y := {y1, . . . , yn}, and Z := {z1, . . . , zn} yields the desired reduction: the models
of Γ extend to pairwise incomparable and therefore minimal models of Γ ∪ ∆.�
Lemma 5.3.9 Let B be a finite set of Boolean functions such that [B] = N. Then
CIRCINF(B) is AC0[2]-complete with respect to constant-depth reductions, even if
Q = Z = ∅.

Proof. Let B be a finite set of Boolean functions such that [B] = N and let (P, Q, Z)
be a partition of the set of propositions. As [{¬}] = N2, any formula ϕ is
equivalent to some literal. Denote this literal by `ϕ. Then, for Γ ⊆ L(B), Γ ≡∧

ϕ∈Γ `ϕ. Accordingly, all (P, Q, Z)-minimal models σ of Γ satisfy, for all x ∈
P ∪Vars(Γ), σ(x) = 1 if and only if `ϕ = x for some ϕ ∈ Γ. Hence all (P, Q, Z)-
minimal models of Γ coincide on P ∪Vars(Γ).

Thus, given Γ ⊆ L(B), ϕ ∈ L(B) and a partition (P, Q, Z) of the set of propo-
sitions, we can compute the above representation of Γ and accept if and only
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if ψ ≡ `ϕ for some ϕ ∈ Γ: if ψ is equivalent to an `ϕ for some ϕ ∈ Γ then any
(P, Q, Z)-minimal model evaluates ψ to 1; otherwise, if ψ 6≡ `ϕ for all ϕ ∈ Γ then
the assignment σ defined as

σ(x) :=


1 if ψ ≡ ¬x,
1 if x ∈ P ∪Vars(Γ) and x = `ϕ for some ϕ ∈ Γ,
0 for all remaining x ∈ Vars(Γ)

witnesses Γ 6|=circ
(P,Q,Z) ψ. Membership in AC0[2] follows from the fact that N-

formulae can be evaluated in AC0[2] (see [Sch10]).
To establish AC0[2]-hardness, we give a reduction from MOD2. Let w =

w1 · · ·wn with wi ∈ {0, 1}, 1 ≤ i ≤ n, be given and let f¬(x) be the B-representa-
tion of ¬. As the value of all functions in N depends on at most one variable
and [B] ⊆ L, we may without loss of generality assume that x is the last symbol
in f¬. We transform w into the formula ϕ := f1 f2 · · · fn f¬t, where fi := f¬ if
wi = 1, and fi := id otherwise. Clearly, w ∈ MOD2 if and only if t |=circ

({t},∅,∅)

f1 f2 · · · fn f¬t. �

We are now ready to give the proof of Theorems 5.3.1 and 5.3.2.

Proof of Theorems 5.3.1 and 5.3.2. According to Lemma 5.3.4, we may without
loss of generality assume that B includes the constant 1 and that B includes the
constant 0 if ∨ ∈ [B]. Now observe that [D1 ∪ {1}] ⊇ S02, [S12 ∪ {1}] ⊇ S02, and
[S02 ∪ {0, 1}] = BF. The Πp

2 -complete cases hence follow from Theorem 3.3.5
and Lemma 5.3.4. It analogously holds that [D2 ∪ {1}] ⊇ S00, [S10 ∪ {1}] ⊇ S00,
and [S00 ∪ {0, 1}] = M. Therefore, the coNP-complete cases are established from
Lemmas 5.3.4 to 5.3.6. The remaining cases follow from Lemmas 5.3.4 and 5.3.7
to 5.3.9 using identical arguments. �
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CHAPTER 6

COUNTING

The problems considered until now were decision problems, that is, problems
whose answer is either “yes” or “no”. However, in many situations one might
not only be interested in the existence of a solution but their number. Although
for many problems in P this number is computable in polynomial time (the
problem to count the number of minimum spanning trees mentioned in Chapter 1
belongs to this class), there are numerous problems in P whose counting variant
is known to be complete for #P, the class of functions counting the number of
accepting paths of NP machines. The prime example of these is the problem
to count the number of perfect matchings in a bipartite graph, or equivalently,
computing the permanent of a square matrix [Val79a]. This demonstrates that
there can be a dramatic gap between the complexity of a counting problem and
its underlying decision problem: a deterministic polynomial-time computation
using a single call to an oracle in #P suffices to decide any language in the
polynomial hierarchy [Tod91]

In this chapter, we study the complexity of counting the number of stable
extensions of a default theory, the complexity of counting the number of stable
expansions of an autoepistemic theory, and the complexity of counting the
number of circumscriptive (that is, (P, Q, Z)-minimal) models of a given set
of formulae. We provide a full classification for each of these problems for all
finite sets of allowed Boolean functions. In particular, we prove that with one
remarkable exception the complexity of all three problems forms a trichotomy:
it is either #·coNP-complete and thus presumably harder than computing the
permanent, #P-complete, or contained in FP. The exceptional case concerns
the problem to count the number of stable extensions for B-default theories
with [B ∪ {1}] = M. These theories may possess either no or exactly one stable
extension, whence the counting problem is equivalent to deciding the existence
of stable extensions and therefore ∆p

2 -complete.

We point out that for our classification of the problems to count the number
of stable extensions and to count the number of stable expansions, the concep-
tually simple parsimonious reductions are sufficient, while for related classifi-
cations in the literature less restrictive (and more complicated) reductions such
as subtractive or complementive reductions had to be used (see, for example,
[DHK05, DH08, BBC+09] and some of the results of [HP07]).
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6.1 THE NUMBER OF STABLE EXTENSIONS

We start our study of counting problems with the problem to count the number of
stable extensions of a given default theory. We formally define the stable extension
counting problem as follows:

Problem: #EXT(B)
Input: A B-default theory (W, D)
Output: The number of stable extensions of (W, D)

The following theorem proves that the complexity of this counting problem
is tetrachotomous and decreases analogously to the complexity of EXT(B): it
remains #·coNP-complete for all finite sets B such that [B ∪ {1}] = BF; becomes
∆p

2 -complete for all monotone sets B such that [B ∪ {1}] = M; is #P-complete
for affine sets B implementing ¬; and becomes efficiently computable in all
other cases (with the theorem additionally distinguishing between trivial and
nontrivial cases). The classification is illustrated in Figure 6.4 on page 84.

Observe that here we do not distinguish between decision problems and their
characteristic functions: For S11 ⊆ [B] ⊆ M, any B-default theory has zero or one
stable extension by Lemma 4.1.3. The counting problem #EXT(B) thus coincides
with the characteristic function of EXT(B), whose computation is ∆p

2 -complete.

Theorem 6.1.1 Let B be a finite set of Boolean functions. Then #EXT(B) is

1. #·coNP-complete if S1 ⊆ [B] or D ⊆ [B],

2. ∆p
2 -complete if S11 ⊆ [B] ⊆ M,

3. #P-complete if [B] ∈ {N,N2,L,L0,L3},
4. in FP if [B] ∈ {V,V0,E,E0, I, I0}, and

5. trivial in all other cases (that is, if [B] ⊆ R1),

with respect to parsimonious reductions.

Proof. We first prove the #·coNP-complete cases, then consider the ∆p
2 -complete

and #P-complete ones, and finally prove that #EXT(B) is contained in FP for
[B] ∈ {V,V0,E,E0, I, I0} and trivial in all remaining cases.

To begin with, let B be an arbitrary finite set of Boolean functions. Membership
in #·coNP in the general case is obtained from the fact that we can construct a
nondeterministic oracle Turing machine M with an NP-oracle whose accepting
computation paths are in one-to-one correspondence with the stable extensions
of its input. Given the B-default theory (W, D), M nondeterministically guesses
a set G ⊆ D and accepts if and only if G is a set of generating defaults for some
stable extension, where the test for G being a set of generating defaults proceeds
as follows. The set G = { αi :βi

γi
| 1 ≤ i ≤ k} is a set of generating set for some

stable extension of (W, D) if and only if there exists a permutation π ∈ Sk such
that
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1. W ∪ {γπ(i) | 1 ≤ i ≤ j− 1} |= απ(j) for all 1 ≤ j ≤ k,

2. W ∪ {γi | 1 ≤ i ≤ k} 6|= ¬β j for all 1 ≤ j ≤ k, and

3. W ∪ {γi | 1 ≤ i ≤ k} 6|= α or W ∪ {γi | 1 ≤ i ≤ k} |= ¬β for all α:β
γ ∈ D \G.

Using these conditions, we can iteratively construct π in deterministic poly-
nomial time using an NP-oracle. As the set of generating defaults uniquely
characterizes a stable extension, we obtain that the accepting paths of M are
in one-to-one correspondence with the stable extensions of (W, D). Hence,
#EXT(B) ∈ #·PNP = #·coNP for all finite sets B of Boolean functions.

To establish the #·coNP-hardness, let ϕ be a quantified Boolean formula of
the form ∃x1 · · · ∃xn∀y1 · · · ∀ymψ(x1, . . . , xn, y1, . . . , ym) with ψ in disjunctive
normal form. Then the reduction f : ϕ 7→ (∅, D) with

D :=
{

1 : x1
x1

,
1 : ¬x1
¬x1

,
1 : x2

x2
,

1 : ¬x2
¬x2

, . . .
1 : xn

xn
,

1 : ¬xn

¬xn
,

1 : ¬ψ

0

}
,

given in [Got92, Theorem 5.1], establishes a bijection between the assignments
σ : {xi | 1 ≤ i ≤ n} → {0, 1} that satisfy ∀y1 · · · ∀ynψ(x1, . . . , xn, y1, . . . , ym)
and the stable extensions of (∅, D). Thus, f indeed constitutes a parsimonious
reduction from #Π1SAT, that is, the problem of counting the number of satisfying
assignments of a quantified Boolean formula ∀y1 · · · ∀ymψ(x1, . . . , xn, y1, . . . , ym)
with ψ in disjunctive normal form. The #·coNP-hardness of EXT(B) for all finite
sets B such that S1 ⊆ [B] or D ⊆ [B] follows from the fact that the reduction
given in the proof of Lemma 4.1.2 is parsimonious.

The ∆p
2 -completeness of #EXT(B) for S11 ⊆ [B] ⊆ M follows from the fact that

by Lemma 4.1.3 the number of stable extensions of a B-default theory coincides
with the characteristic function of EXT(B).

As for the #P-complete cases, Lemma 4.1.7 constitutes a parsimonious reduc-
tion from #SAT. Hence, Lemma 4.1.2 implies the claim.

To establish the membership of #EXT(B) in FP for all B such that [B] ⊆ V or
[B] ⊆ E, notice that any B-default theory possesses at most one stable extension,
whose existence can be verified in polynomial time.

Finally, the triviality for all finite sets B such that [B] ⊆ R1 follows from
Lemma 4.1.3. �

6.2 THE NUMBER OF STABLE EXPANSIONS

As regards the number of stable expansions, the situation is similar to that in
default logic. Define the stable expansion counting problem as:

Problem: #EXP(B)
Input: A set Σ ⊆ L
Output: The number of stable expansions of Σ
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The complexity of #EXP(B) is trichotomous and decreases analogously to the
complexity of EXP(B). In other words, it is #·coNP-complete for exactly those
cases, where EXP(B) is Σp

2 -complete; becomes #P-complete for those, where
EXP(B) is NP-complete; and drops to membership in FP in all cases for which
EXP(B) is tractable. This is summarized in the following theorem (see also
Figure 6.5 on page 85).

Theorem 6.2.1 Let B be a finite set of Boolean functions. Then #EXP(B) is

1. #·coNP-complete if D2 ⊆ [B] or S00 ⊆ [B] or S10 ⊆ [B],

2. #P-complete if V2 ⊆ [B] ⊆ V,

3. in FP in all other cases (that is, if [B] ⊆ L or [B] ⊆ E),

with respect to parsimonious reductions.

Proof. Let B be a finite set of Boolean functions.
First, suppose that D2 ⊆ [B] or S00 ⊆ [B] or S10 ⊆ [B]. Then membership

in #·coNP follows from the one-to-one correspondence of full sets and stable
expansions (Lemma 3.2.6), since a nondeterministic oracle Turing machine with
an NP-oracle may guess a candidate for a full set and verify its fullness using Def-
inition 3.2.5. The #·coNP-hardness, on the other hand, follows from Lemma 4.2.4
analogously to the proof of Theorem 6.1.1: Let ϕ be a quantified Boolean formula
of the form ∀x1 · · · ∀xnψ(x1, . . . , xn, y1, . . . , ym) with ψ in disjunctive normal
form. Then the reduction f : ϕ 7→ Σ with

Σ := {Lψ′} ∪ {yj ∨ y′j | 1 ≤ j ≤ m} ∪ {xi ∨ Lx′i , Lxi ∨ x′i | 1 ≤ i ≤ n}

and
ψ′ := ψ[¬x1/x′1,...,¬xn/x′n ,¬y1/y′1,...,¬ym/y′m ]

is a parsimonious reduction from #Π1SAT to #EXP(B) for all finite sets B with
M ⊆ [B]. Finally observe that the reduction given in the proof of Lemma 4.2.2 is
parsimonious, whence #EXP(B) is #·coNP-complete for all B such that D2 ⊆ [B]
or S00 ⊆ [B] or S10 ⊆ [B].

Second, suppose that V2 ⊆ [B] ⊆ V. In this case, membership in #P is straight-
forward from Lemma 4.2.5, while for the #P-hardness it suffices to note that the
reduction given in the proof of Lemma 4.2.5 actually establishes a parsimonious
reduction from #SAT.

Third, suppose that [B] ⊆ L. Given Σ ⊆ Lae(B), it is easy to verify that the
transformation to Σ′ provided in the proof of Lemma 4.2.8 preserves the number
of stable expansions. The number of consistent stable expansions of Σ′ is in turn
equal to the number of solutions of the system T′[xs+1/Lxs+1, . . . , xn/Lxn] from
the proof of Lemma 4.2.6: namely 2t with t being the number of free variables
in this system of linear equations. Moreover, Lae is a stable expansion of Σ if
and only if Σ ∪ SFL(Σ) is inconsistent, which is polynomial-time decidable (see
Remark 4.2.7). Thus, #EXP(B) ∈ FP.
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Fourth, suppose that [B] ⊆ E. Then there exist at most two stable expansions;
existence for both of which can be checked in polynomial time (see Lemma 4.2.10).
Hence the claim applies. �

6.3 THE NUMBER OF MINIMAL MODELS

The last section of this chapter studies the complexity of counting the number
of circumscriptive (that is, (P, Q, Z)-minimal) models of a given set of formulae.
Formally, the circumscriptive model counting problem is defined as follows:

Problem: #CIRC
Input: A set Γ ⊆ L(B) and a partition (P, Q, Z) of the propositions
Output: The number of (P, Q, Z)-minimal models of Γ

Unlike the preceding counting problems, #CIRC involves sets of Boolean func-
tions for which the problem to decide whether a given assignment is a circum-
scriptive model is tractable while the counting problem is #P-complete (namely
those sets B that satisfy L2 ⊆ [B] ⊆ L). In all the remaining cases, the complexity
of #CIRC(B) can be derived from the complexity of CIRCINF(B) in that com-
pleteness for the second level of the polynomial hierarchy translates to #·coNP-
completeness, completeness for the first level translates to #P-completeness, and
membership in P translates to membership in FP. However, mind that the de-
cision problem underlying the circumscriptive model counting problem is the
question whether there exists a (P, Q, Z)-minimal model for the given formula—
a problem equivalent to the satisfiability problem for propositional formulae.
For S02 ⊆ [B] or S12 ⊆ [B] or D1 ⊆ [B], #CIRC(B) thus represents a problem
whose underlying decision problem is, though intractable, supposedly easier to
solve than the decision problems underlying the generic complete problem for
#·coNP.

The complexity of #CIRC is summarized in the theorem below and shown in
Figure 6.6 on page 86.

Theorem 6.3.1 Let B be a finite set of Boolean functions. Then #CIRC(B) is

1. #·coNP-complete with respect to subtractive reductions if S02 ⊆ [B] or S12 ⊆ [B]
or D1 ⊆ [B],

2. #P-complete with respect to subtractive reductions if S00 ⊆ [B] ⊆ M or S10 ⊆
[B] ⊆ M or D2 ⊆ [B] ⊆ M,

3. #P-complete with respect to weakly parsimonious reductions if V2 ⊆ [B] ⊆ V or
L2 ⊆ [B] ⊆ L, and

4. in FP in all other cases (that is, if [B] ⊆ N or [B] ⊆ E).

The proof of Theorem 6.3.1, given at the end of this section, requires some
auxiliary lemmas. Before we proceed, observe that the third item improves a
result established by Durand and Hermann in [DH08]. They give a parsimonious
reduction from the counting problem
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· · ·
u x0

y0

y′0

x1 xn−1

yn−1

y′n−1

xn v

Figure 6.1: The subgraph in G′ constructed from (u, v) ∈ E.

Problem: #S-T PATHS
Input: A directed graph G = (V, E) and nodes s, t ∈ V
Output: The number of simple paths from s to t in G,

which is #P-complete under Turing reductions [Val79b]. Durand and Hermann
thus establish the #P-hardness of #CIRC(B) for L2 ⊆ [B] with respect to Turing
reductions. We improve this result by showing that #S-T PATHS is indeed #P-
complete with respect to weakly parsimonious reductions.

Lemma 6.3.2 #S-T PATHS is #P-complete with respect to weakly parsimonious reduc-
tions.

Proof. Let #UHAMPATH denote the problem to count the number of Hamiltonian
paths from some node s to some node t in an undirected graph. #UHAMPATH is
#P-complete with respect to parsimonious reductions [Val79b]. This complete-
ness result continues to hold if the problem is restricted to graphs of degree ≤ 4:
the reduction of #SAT to #UHAMPATH given in [Sip05, Theorems 7.35 and 7.36]
with the input formula restricted to exactly three literals per clause yields a graph
of degree 4 whose number of Hamiltonian paths coincides with the number of
satisfying assignments of the original formula.

We prove that there exists a weakly parsimonious reduction from #UHAMPATH
restricted to graphs of degree≤ 4 to #S-T PATHS. To this end, let G = (V, E) be an
undirected graph, let s 6= t be nodes in V, and assume without loss of generality
that the degree of G is bounded by 4. Fix n := 3|V|. We define G′ = (V′, E′) as
the graph obtained from G by adding a node t′ to V and edges {s, t′}, {t, t′} to E.
Denote by p(G, s, t) the number of simple paths from s to t in G and by pk(G, s, t)
the number of simple paths from s to t of length k. Then p1(G′, s, t′) = 1 and
pk+1(G′, s, t′) = pk(G, s, t) for all k > 0. Finally, transform G′ to G′′ by replacing
each edge {u, v} ∈ E′ with a copy of the graph Gexp := (Vexp, Eexp) and the
connecting edges {u, x0}, {xn, v}, where

Vexp := {xi | 0 ≤ i ≤ n} ∪ {yi, y′i | 0 ≤ i < n},
Eexp :=

{
{xi, yi}, {yi, xi+1}, {xi, y′i}, {y′i , xi+1}

∣∣ 1 ≤ i < n
}

.

This substitution is indicated in Figure 6.1. Each path from s to t′ of length k in
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G′ corresponds to 2k·n simple paths from s to t′ in G′′. Thus the number of path
from s to t′ in G′′ is

p(G′′, s, t′) =
|V ′ |−1

∑
k=1

2k·n pk(G
′, s, t′) =

|V|−1

∑
k=1

2(k+1)·n pk(G, s, t) + 2n.

As the degree of G is bounded by 4, we obtain that pk(G, s, t) ≤ 4k−1. Hence, for
each 1 < i ≤ |V|,

i−1

∑
k=1

2k·n pk(G
′, s, t′) < 2(i−1)·n4|V| < 2(i−1)·n · 2n = 2i·n.

Therefore the number of Hamiltonian paths in G from s to t is can be computed
from p(G′, s, t′) by dividing with 2(|V|+1)·n = 2

1
3 n2+n, where n equals the number

of zeros from the least significant bit to the position of the first 1 in the binary
encoding of p(G′′, s, t′). �

Lemma 6.3.3 Let B be a finite set of Boolean functions. Then #CIRC(B ∪ {1}) reduces
to #CIRC(B) via parsimonious reductions for all B, and #CIRC(B ∪ {0}) reduces to
#CIRC(B) via subtractive reductions for all B such that ∨ ∈ [B].

Proof. Let B be a finite set of Boolean functions. Let Γ ⊆ L(B) and a partition
(P, Q, Z) of the set of propositions be given. For the first claim, transform Γ
to Γ′ := Γ[1/t] ∪ {t} and map (P, Q, Z) to (P ∪ {t}, Q, Z) as in the proof of
Lemma 5.3.4. Then each (P, Q, Z)-minimal model σ of Γ corresponds to the (P ∪
{t}, Q, Z)-minimal model σ′ := σ ∪ {t} and vice versa. Thus #CIRC(B ∪ {1})
parsimoniously reduces to #CIRC(B).

For the second claim, define Γ′ as {ϕ ∨ f | ϕ ∈ Γ}. Then an assignment σ is a
minimal model of Γ′ if and only if either σ( f ) = 0 and σ is a minimal model of Γ
or σ( f ) = 1 and σ(x) = 0 for all x ∈ P. Thus the functions

g
(
(Γ, (P, Q, Z))

)
:=
(
Γ′, (P ∪ { f }, Q, Z)

)
,

h
(
(Γ, (P, Q, Z))

)
:=
(
{ f }, ({ f }, Q, Z)

)
constitute a subtractive reduction from #CIRC(B ∪ {0}) to #CIRC(B): any assign-
ment that satisfies h

(
(Γ, (P, Q, Z))

)
also satisfies g

(
(Γ, (P, Q, Z))

)
, and

|MM
(
Γ′, (P ∪ { f }, Q, Z)

)
| = 2|Q|+|Z| + |MM(Γ, (P, Q, Z))|,

|MM
(
{ f }, ({ f }, Q, Z)

)
| = 2|Q|+|Z|,

where MM
(
Γ, (P, Q, Z)

)
denotes the set of (P, Q, Z)-minimal models of Γ. �

Lemma 6.3.4 Let B be a finite set of Boolean functions such that [B] = M. Then
#CIRC(B) is #P-complete with respect to subtractive reductions.
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Proof. Membership in #P is obvious from the fact that one can check in polyno-
mial time whether an assignment is a minimal model (see Lemma 5.3.5).

As for the #P-hardness, we give a subtractive reduction from #SAT to #CIRC(B)
for all B such that [B] = M. Hence, let ϕ be a propositional formula in conjunctive
normal form. Assume without loss of generality that Vars(ϕ) = {x1, . . . , xn} and
denote this set by X. Let Y = {y1, . . . , ym} be a set of propositions disjoint from
X. Now define ϕ′ to be the formula derived from ϕ by replacing all negative
literals ¬xi by yi, and let

Γ :=
{

ϕ′,
∧

1≤i≤n
(xi ∨ yi)

}
, Γ′ := Γ ∪

{ ∨
1≤i≤n

(xi ∧ yi)
}

.

Then the set of assignments σ : X → {0, 1} satisfying ϕ can be characterized as{
σ
∣∣ σ |= ϕ

}
=
{

σ : X ∪Y → {0, 1}
∣∣ σ |= ϕ′ ∧∧1≤i≤n(xi ⊕ yi)

}
=
{

σ : X ∪Y → {0, 1}
∣∣ σ |= Γ, σ 6|= Γ′

}
=
{

σ : X ∪Y → {0, 1}
∣∣ σ |= Γ

}
\
{

σ : X ∪Y → {0, 1}
∣∣ σ |= Γ′

}
.

Define the functions

f (ϕ) := (Γ, (X ∪Y, ∅, ∅)), g(ϕ) := (Γ′, (X ∪Y, ∅, ∅)).

We claim that f and g constitute a subtractive reduction from #SAT to #CIRC(B)
for any finite set B such that [B] = M.

Suppose that σ : X → {0, 1} is a model of ϕ. Define σ′ as the extension of σ
setting σ(yi) = 1− σ(xi). Clearly, σ′ |= Γ and σ′ 6|= Γ′. As all models of Γ that
set to 1 exactly one of xj and yj for all 1 ≤ j ≤ m are mutually incomparable with
respect to ≤(P,Q,Z), we obtain that σ |=circ

(P,Q,Z) Γ. Thus the mapping σ 7→ σ′ is an
injective embedding from the models of ϕ to the minimal models of Γ that do
not satisfy Γ′. Now if σ is a (P, Q, Z)-minimal model of Γ that sets to 1 both xi
and yi for some 1 ≤ i ≤ n, then σ |=circ

(P,Q,Z) Γ′. Consequently, σ 7→ σ′ is onto the

set of (P, Q, Z)-minimal models of Γ that do not satisfy Γ′. This proves the claim.
Finally, Lemma 2.4.2 (2.) yields the #P-hardness of #CIRC(B) for all finite sets

B such that [B] = M. �

Lemma 6.3.5 Let B be a finite set of Boolean functions such that [B] = V. Then
#CIRC(B) is #P-complete with respect to weakly parsimonious reductions.

Proof. Let #PERFECTMATCHING denote the problem to count the number of per-
fect matchings (that is, sets of edges such that each node is incident to exactly one
edge in the set) in a bipartite graph. It is well known that #PERFECTMATCHING
is #P-complete via parsimonious reductions [Val79a]. We give a weakly parsimo-
nious reduction from #PERFECTMATCHING to #CIRC({∨}) such that the arity of
all disjunctions is bounded by a constant. This establishes the lemma.
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u1 ...

u2 ...

v1...

v2...

(a)

u1 ...
v1...

(b)

Figure 6.2: Forbidden patterns in matchings of G1.

Let G = (V, E) be the given graph with V = {u1, . . . , un, v1 . . . , vn}. Assume
without loss of generality that n ≥ 1. We transform G in five steps to a set Γ′ of
disjunctions such that the number of perfect matchings in G can be computed
from the number of minimal models of Γ′, where all propositions are subject
to minimization (that is, P := Vars(Γ), Q := ∅, Z := ∅). This transformation
first modifies G such that the number of maximal matchings with k edges is
multiplied with a factor c(k), and next computes from the result its corresponding
edge graph whose minimal vertex covers correspond to the maximal matchings
in G. Into that edge graph, we then encode the number of vertices of G and
finally transform the outcome to a set of disjunctions.

In the first step, construct G1 = (V1, E1) with

V1 := {uj
i , vj

i | 1 ≤ i ≤ n, 1 ≤ j ≤ 2n},
E1 :=

{
(uk

i , v`j )
∣∣ (ui, vj) ∈ E, 1 ≤ k, ` ≤ 2n

}
,

analogously to the reduction from #PERFECTMATCHING to #PRIMEIMPLICANT
in [Val79b]. Note that there exist matchings in G1 that do not correspond to
matchings in G (see Figure 6.2 (a)); these matchings will be taken care of in the
next step.

Secondly, transform G1 into a graph G2 = (V2, E2), whose nodes represent the
edges of G1 and that contains an edge between two nodes if their corresponding
edges in G1 share a node (as shown in Figure 6.2 (b)) or they arise from distinct
edges in G1 that share a node in G (as shown in Figure 6.2 (a)); that is,

V2 := {x(uk
i ,v`j )
| (uk

i , v`j ) ∈ E1},

E2 :=
{{

x
(uk1

i1
,v`1

j1
)
, x

(uk2
i2

,v`2
j2
)

} ∣∣∣ uk1
i1

= uk2
i2

or v`1
j1
= v`2

j2

}
∪{{

x
(uk1

i1
,v`1

j1
)
, x

(uk2
i2

,v`2
j2
)

} ∣∣∣ (i1 = i2 and j1 6= j2
)

or
(
i1 6= i2 and j1 = j2

)}
.
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u1

u2

u3

v1

v2

v3

(u2, v2)

(u2, v1)

(u1, v1)

(u3, v1)

(u3, v3)

Figure 6.3: Bipartite graph G and its corresponding edge graph G′. Dashed
edges in G form a perfect matching, solid vertices in G′ a minimal
vertex cover.

Say that a matching is maximal if no edge can be added to it without violating
the matching property. Suppose that M is a matching in G1 that corresponds
to a maximal matching in G. Then the set of nodes in G2 whose corresponding
edges do not belong to M yield a minimal vertex cover, that is, C := V2 \M is
a minimal set of nodes such that C ∩ e 6= ∅ for all edges e ∈ E2 (see Figure 6.3
for an example). Conversely, any minimal vertex cover C of G2 is the image
of a matching in G1 that corresponds to a maximal matching in G. As for each
edge in a maximal matching in G we may in G1 choose from (2n)! possible pairs
of end-points, the number of minimal vertex covers of size i in G2 is equal to(
(2n)!

)i times the number of maximal matchings in G.
Thirdly, add to G2 nodes w1, w2, w3 and edges {w1, w2}, {w2, w3}, {w3, w1}.

Call the resulting graph G3 = (V3, E3). Each vertex cover of size i in G2 corre-
sponds to three vertex covers of size i + 2 is G3.

Fourthly, transform G3 to the set Γ of {∨}-formulae defined as

Γ :=
{

x{u,v} ∨ x{u′ ,v′} ∨ y
∣∣ {x{u,v}, x{u′ ,v′}} ∈ E3

}
.

Any minimal model of Γ is either a minimal vertex cover of G3 or it is an as-
signment setting to 1 only y. In particular, any minimal model of Γ aside the
assignment {y} sets to 1 at least two propositions, as any vertex cover of G3
contains at least two nodes.

Finally, define Γ′ as

Γ′ := Γ ∪ {zi ∨ z′i | 1 ≤ i ≤ n}.

As a result, to each minimal model of Γ there correspond 2n minimal models Γ′.
This concludes the transformation of the input.

To summarize the above, let mi(Γ) denote the number of minimal models
of Γ that have exactly i propositions set to 1, let vi(G) denote the number of
minimal vertex covers of size i in the graph G, and let ti(G) denote the number
of maximal matchings of size i in the graph G. Then the number of minimal
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models of Γ is equal to

k

∑
i=0

mi(Γ
′) = 2n ·

( k

∑
i=0

mi(Γ)
)
= 2n ·

(
1 +

k

∑
i=2

3 · vi−2(G2)
)

= 2n ·
(

1 +
n

∑
i=0

3 ·
(
(2n)!

)i · ti(G)
)

,

where k ≤ nc for some c ∈N.
Given the number x of minimal models of Γ′, we can thus obtain n from the

number of zeros from the least significant bit to the position of the first 1 in the
binary encoding of x. We are then able to compute from x the value of

n

∑
i=0

(
(2n)!

)i · ti(G). (6.1)

As (2n)! ≥ 2(j− 1)! for all 1 ≤ j ≤ n, we moreover know that

j−1

∑
i=0

(
(2n)!

)i · ti(G) ≤
(
(2n)!

)j−1 · (j− 1)! ·
j−1

∑
i=0

1
2i

< 2 ·
(
(2n)!

)j−1 · (j− 1)!

≤
(
(2n)!

)j.

Hence, the number tn(G) of perfect matchings in G can be obtained as the integer
part of the quotient of equation (6.1) and

(
(2n)!

)n. �
Proof of Theorem 6.3.1 For B = {∧,∨,¬}, the #·coNP-completeness of #CIRC(B)
has been shown in [DHK05]. As [D1 ∪ {1}] ⊇ S02, [S12 ∪ {1}] ⊇ S02, and
[S02 ∪ {0, 1}] = BF, the #·coNP-completeness of #CIRC(B) for S02 ⊆ [B] or
S12 ⊆ [B] or D1 ⊆ [B] follows from Lemma 6.3.3.

Similarly, to establish the #P-completeness of #CIRC(B) in the cases S00 ⊆
[B] ⊆ M, S10 ⊆ [B] ⊆ M, and D2 ⊆ [B] ⊆ M, it suffices to prove #P-completeness
for all B such that [B] = M. This has been shown in Lemma 6.3.4.

As for the #P-completeness of #CIRC(B) in the cases V2 ⊆ [B] ⊆ V and
L2 ⊆ [B] ⊆ L, it remains to show the #P-hardness via weakly parsimonious
reductions. In the former case,the result follows from Lemma 6.3.5, whereas in
the latter it follows from Lemma 6.3.2 and [DH08, Theorem 4].

Finally, if B is such that [B] ⊆ N or [B] ⊆ E, then the (P, Q, Z)-minimal models
are uniquely determined on the set of propositions Vars(Γ) ∪ P. Hence, the
number of (P, Q, Z)-minimal models of a given set Γ ⊆ L(B) is 2|(Q∪Z)\Vars(Γ)|.�
Remark 6.3.6 It is apparent from the above proofs that the complexity of #CIRC(B)
remains unchanged if its input is restricted to Q = Z = ∅. This exhibits another
case, where the counting problem is #P-complete while underlying decision problem is
tractable, namely for the clones V2 ⊆ [B] ⊆ V.
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CHAPTER 7

TRANSLATIONS

Having determined the computational complexity of the decision and counting
problems arising in the context of default logic, autoepistemic logic, and circum-
scription, we will now investigate their relationship. In particular, we will study
the possibility of translating between fragments of these logics.

Default and autoepistemic logic—though semantically different—are both
based on the principle of defining nonmonotonicity by means of a fixed-point
equation that describes possible sets of knowledge or beliefs. Circumscription
contrasts this approach by restricting the semantics of classical logic to minimal
models. Owing to these differences, out notion of translations will be based
on the set of skeptically entailed formulae. Although for translations between
default logic and autoepistemic logic, one could also consider the set of cred-
ulously entailed formulae for translations between default and autoepistemic
logic (called faithful translations): while the picture for translations from default
logic to autoepistemic remains almost unchanged, differences regarding the
inconsistent stable expansions yield non-translatability results in the converse
direction. This is due to the ability of an autoepistemic theory to possess the
inconsistent stable expansion aside several consistent ones. For default logic
admitting the inconsistent stable extension rules out the existence of consistent
ones.

A property worth mentioning is that of modular translations [Imi87]. A trans-
lation is called modular if the addition of facts to the knowledge base does not
require the recomputation of its image, instead the image of the modified the-
ory is obtained by adjoining to the old image the translation of the added fact.
Under the assumption that the “nonmonotonic part” of a given knowledge base
is largely invariant while the objective part may be subject to more frequent
changes, modular translations are highly desirable from the computational point
of view.

A first investigation of the relationship between default and autoepistemic
logic has been carried out by Konolige [Kon88], who showed that default logic
and strongly grounded autoepistemic logic, a more restrictive variant of autoepis-
temic logic, are equivalent. The second major approach of relating default logic
and autoepistemic logic has been taken by Marek and Truszczyński [MT89].
They showed that default logic can be embedded into a wide range of nonmono-
tonic modal logics that are based on an approach introduced by McDermott and
Doyle [MD80, McD82]. Finally, Gottlob [Got95b] showed that if no additional
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propositional atoms are to be used then no modular translation from default
logic to autoepistemic logic is possible, but that there exists a faithful translation
via the nonmonotonic version of the pure logic necessitation [MT90]. This result
was reproven shortly afterwards using a purely model-theoretic approach by
Schwarz [Sch96].

As regards translations to or from circumscription, less results can be found in
the literature. Konolige [Kon89] showed that there exists a faithful and modu-
lar translation from circumscription to autoepistemic logic. Imielinski [Imi87]
proved that default logic cannot be embedded into circumscription by a faithful
and modular translation but that there exist restricted types of default theories
that admit such translations. These results, among others, are also summarized
in [Eth87].

Lastly, Janhunen studied the intertranslatability of these three logics in [Jan99].
Disregarding the inconsistent stable extension, the inconsistent stable expansion,
and allowing the use of new propositions, he is able to show that with respect
to polynomial-time, faithful and modular translations propositional logic is
strictly less expressive than circumscription, which is strictly less expressive than
autoepistemic logic, which is again strictly less expressive than default logic,
which is equivalent to strongly grounded autoepistemic logic. At first sight,
this result seems to contradict the result by Gottlob, but it crucially relies on his
weaker notion of faithfulness.

Here, we take the opposite approach and study the intertranslatability of these
nonmonotonic logics with respect to a very weak notion of translations, namely
polynomial-time transformations that leave invariant the set of skeptically en-
tailed formulae. We prove that with respect to this notion, default logic and
autoepistemic logic are equally expressive. To be more precise, autoepistemic
logic and default logic admit translations into each other for functional complete
sets of Boolean functions and for fragments that admit efficient computation of
respectively stable extensions and stable expansions. In addition to that, mono-
tone autoepistemic logic embeds monotone default logic and, quite remarkably,
disjunctive autoepistemic logic can be embedded into the fragments of default
logic containing negation as the sole Boolean connective.

Concerning translations of circumscription into the above two logics, we show
that, though translations into both full default as well as full autoepistemic logic
are possible, the results for fragments of these logic differ significantly. While
default logic modularly embeds circumscription whenever ¬ is available and
all Boolean functions used in the source logic can be simulated, the analogous
statement for autoepistemic is more restrictive: a translation from circumscrip-
tion into a not functional complete fragment of autoepistemic logic exists only
if any circumscriptive theory is equivalent to a set of literals. Therefore, while
both autoepistemic logic and default logic are capable of embedding circumscrip-
tion, the presence of negation alone is enough for default logic to subsume the
corresponding fragment of circumscription.
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In the converse direction, translations from default logic or autoepistemic logic
to circumscription are only possible for very restricted sets of Boolean functions,
namely those for which the skeptical reasoning problem is tractable. These
results confirm the intuition that—even under the weak notion of translations
considered herein—circumscription is less expressive than autoepistemic logic
or default logic, not only for the full fragment but also the fragments obtained
by restricting the set of available Boolean functions.

Finally, for almost all fragments for which no translation is given, we show
that no translation is possible unless the polynomial hierarchy collapses.

The rest of this chapter is structured as follows. The first section defines the
notion of translations. In the remaining three sections, we study for each pair
of the considered logics the possibility of translating between them. Each of
these sections contains two theorems, one for each direction; the proofs of these
theorems will be established from the lemma following them.

7.1 PRELIMINARIES

For a finite set B of Boolean functions, write B-default logic to denote default
logic restricted to B-default theories. Analogously, define B-autoepistemic logic
and B-circumscription as respectively autoepistemic logic restricted to sets of
autoepistemic B-formulae and circumscription restricted to sets of B-formulae.

Definition 7.1.1 (Translations)

1. A translation from default logic to autoepistemic logic is a function f
mapping any finite default theory (W, D) to a finite set Σ ⊆ Lae such that
(W, D) |=skep ϕ if and only if Σ |=skep ϕ for all ϕ ∈ L over variables from
(W, D).

2. A translation from autoepistemic logic to default logic is a function f map-
ping any finite set Σ ⊆ Lae to a finite default theory (W, D) such that Σ |=skep ϕ
if and only if (W, D) |=skep ϕ for all ϕ ∈ L over variables from Σ.

3. A translation from circumscription to default logic (respectively autoepis-
temic logic) is a function f mapping any pair of a finite set Γ of formulae and
disjoint sets (P, Q, Z) of propositions such that Vars(Γ) ⊆ P ∪ Q ∪ Z to a fi-
nite default theory (respectively finite set of autoepistemic formulae) such that
Γ |=circ

(P,Q,Z) ϕ if and only if f
(
(Γ, (P, Q, Z))

)
|=skep ϕ for all ϕ ∈ L over

variables from P ∪Q ∪ Z.

4. A translation from default logic (respectively autoepistemic logic) to cir-
cumscription is a function f mapping any finite default theory (W, D) (respec-
tively finite set Σ of autoepistemic formulae) to a finite set Γ of formulae and
a disjoint sets (P, Q, Z) of propositions such that Vars(Γ) ⊆ P ∪ Q ∪ Z and
(W, D) |=skep ϕ (respectively Σ |=skep ϕ) if and only if Γ |=circ

(P,Q,Z) ϕ for all
ϕ ∈ L over variables from (W, D) (respectively Σ).
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That is, translations are mappings between nonmonotonic logics, that preserve
the skeptical semantics of the given input. Please note that the above definition
allows the usage of new variables in translations. It is hence a relaxation of the
notion used in [Got95b, Sch96, Jan99] and subsumes the notion of translations
used in [Imi87, Kon89]. In what follows, we will study the possibility of trans-
lating between fragments of the nonmonotonic formalisms considered in this
thesis.

7.2 DEFAULT LOGIC AND AUTOEPISTEMIC LOGIC

We will first study the relationship between fragments of default logic and
fragments of autoepistemic logic. Our first theorem proves that translations from
B-default logic to B′-autoepistemic logic are, with the exception of one open case,
only possible either if the set B′ ∪ {0, 1} is functional complete, or if B′ ∪ {0, 1}
contains all monotone functions and implements all functions in B, or if any
B-default theory possesses at most one efficiently computable stable extension.

Theorem 7.2.1 Let B and B′ be finite sets of Boolean functions such that [B∪{0, 1}] 6=
V or [B′ ∪ {0, 1}] 6= L. Then there exists translation from B-default logic to B′-auto-
epistemic logic

1. if [B′ ∪ {0, 1}] = BF, or

2. if [B] ⊆ M and [B] ⊆ [B′ ∪ {0, 1}], or

3. if [B] ⊆ L1 and [B] ⊆ [B′ ∪ {0, 1}], or

4. if [B] ⊆ E;

unless P = NP, no other translations are possible.

The proof of Theorem 7.2.1 will be established from the following four lemmas.
The first of which follows from [Got95b] (or equivalently from [Sch96]) together
with Lemma 2.4.2 (1.) and the fact that any Boolean formula over {∧,∨,¬} can
be restructured to be of polynomial size and logarithmic depth [Spi71].

Lemma 7.2.2 ([Got95b]) Let B and B′ be finite sets of Boolean functions such that
[B′ ∪ {0, 1}] = BF. Then there exists a translation from B-default logic to B′-autoepis-
temic logic.

Lemma 7.2.3 Let B and B′ be finite sets of Boolean functions such that S00 ⊆ [B ∪
{1}] ⊆ M and [B] ⊆ [B′ ∪ {0, 1}]. Then there exists a translation from B-default logic
to B′-autoepistemic logic.

Proof. Let B and B′ be finite sets of Boolean functions satisfying the requirements
of the lemma, and denote by (W, D) the given B-default theory. By Lemma 4.1.3,
(W, D) possesses at most one stable extension. Define

Σ := W ∪
{

Lα ∨ pα, Lpα ∨ γ

∣∣∣∣ α : β

γ
∈ D and β is satisfiable

}
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for fresh, mutually different propositions pα. We define the translation function
f to be the mapping (W, D) 7→ Σ′, where Σ′ denotes the B′-representation of Σ.

To see that f is indeed polynomial-time computable, recall that the consistency
of a set of monotone formulae is decidable in polynomial time and that, for
M ⊆ [B′ ∪ {0, 1}], B efficiently implements ∧ and ∨ by Lemma 2.4.2.

As for the correctness of the translation, first suppose that (W, D) has a stable
extension E. From Theorem 3.1.3, it follows that there exists an ordering δ1, . . . , δn
of the defaults in GD(E) such that for all 0 ≤ i ≤ n and

Λi :=

{
Lαj,¬Lpαj

∣∣∣∣∣ δj =
αj : β j

γj
and j ≤ i

}
we obtain Σ ∪Λi−1 |= αi and Σ ∪Λi−1 ∪ {Lαi} 6|= pαi . As the pαi ’s do not occur
in any formula except Lαi ∨ pαi and Lpαi ∨ γ, this eventually leads to Σ∪Λn |= α
if and only if Lα ∈ Λn and, Σ ∪Λn ∪ {Lα} 6|= pα if and only if ¬Lpα ∈ Λn, for
all premises α in GD(E). As W ∪GD(E) 6|= α for all α:β

γ ∈ D \GD(E), setting

Λ := Λn ∪
{
¬Lα, Lpα

∣∣∣∣ α : β

γ
∈ D \GD(E)

}
.

we obtain Σ ∪Λ |= α if and only if Lα ∈ Λ and, Σ ∪Λ ∪ {Lα} 6|= pα if and only
if ¬Lpα ∈ Λ. Thus, Λ is a Σ-full set. Although Σ may possess more than one
Σ-full set, the presence of Λ suffices to establish the translation: On the one hand,
for all ϕ ∈ L over propositions from (W, D) it holds that

(W, D) |=skep ϕ

⇐⇒W ∪
{

γ
∣∣∣ α:β

γ ∈ GD(E)
}
|= ϕ

⇐⇒ Σ ∪
{

Lα,¬Lpα

∣∣∣ α:β
γ ∈ GD(E)

}
∪
{
¬Lα, Lpα

∣∣∣ α:β
γ ∈ D \GD(E)

}
|= ϕ

⇐⇒ Σ ∪Λ |= ϕ.

On the other hand, any Σ-full set Λ′ has to satisfy Λn ⊆ Λ′. Thus Σ ∪ Λ |=
ϕ =⇒ Σ ∪ Λ′ |= ϕ for all ϕ ∈ L over propositions from (W, D), due to the
monotonicity of |= and pα /∈ Vars(ϕ) for all such propositions pα. Therefore,
(W, D) |=skep ϕ if and only if f ((W, D)) |=skep ϕ for all ϕ ∈ L over propositions
from (W, D).

Finally, suppose that (W, D) does not have a stable extension. Then there
has to exist an applicable default α:β

γ ∈ D, whose conclusion is equivalent to
0. By construction, Σ then contains a formula that is equivalent to Lpα. Since
the only other occurrence of pα in Σ is in Lα ∨ pα, Lα has to be 0. However, the
applicability of α:β

γ implies that α can be derived. Therefore, any Σ-full set has to
contain Lα. Hence, no consistent stable expansion of Σ may exist. �
Lemma 7.2.4 Let B and B′ be finite sets of Boolean functions such that [B] ⊆ V and
[B] ⊆ [B′ ∪ {0, 1}], or such that [B] ⊆ L1 and [B] ⊆ [B′ ∪ {0, 1}], or such that
[B] ⊆ E. Then there exists a translation from B-default logic to B′-autoepistemic logic.
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Proof. Let B and B′ be finite sets of Boolean functions satisfying the requirements
of the lemma. Then any B-default theory possesses at most one stable exten-
sion (see Lemma 4.1.3), whose existence can be efficiently decided by virtue of
Theorem 4.1.1. Consequently, the function

f ((W, D)) :=

{
W ∪

{
γ
∣∣∣ α:β

γ ∈ GD(E)
}

, if (W, D) has a stable extension E,

W otherwise,

can be computed in polynomial time. Moreover, all Boolean functions in [B]
are associative. We may thus insert parentheses into any set V of B-formulae to
obtain a set V′ such that the nesting depth of all contained formulae is logarithmic.
Let g be the function that maps V to V′ and subsequently replaces all Boolean
functions from B with their B′-representations (in particular, replacing ϕi ∧ · · · ∧
ϕn with ϕ1, . . . , ϕn). Then f ◦ g is the desired translation. �

Lemma 7.2.5 Let B and B′ be finite sets of Boolean functions such that

1. [B′ ∪ {0, 1}] ∈ {M,E,V,L,N, I},
2. [B] ⊆ M implies [B] * [B′ ∪ {0, 1}],
3. [B] ⊆ V implies [B′ ∪ {0, 1}] 6= L,

4. [B] ⊆ L1 implies [B] * [B′ ∪ {0, 1}], and

5. [B] * E.

Then there exists no translation from B-default logic to B′-autoepistemic logic unless
P = NP.

Proof. Let B and B′ be as in the statement of the lemma. We distinguish between
the possible clones of [B′ ∪ {0, 1}].

If [B′ ∪ {0, 1}] = M, then we have to prove that no translation exists for S02 ⊆
[B ∪ {1}] and L2 ⊆ [B] ⊆ L. In the first case, (W, D) := ({x ∨ (t ∧ ¬y), t}, ∅)
cannot be translated to a set Σ of autoepistemic B′-formulae. Suppose it could,
and let Λ denote the kernel of a consistent stable expansion of Σ. If Σ ∪Λ ≡ 1,
then Σ |=skep ϕ if and only if ϕ is tautological. Hence, we may without loss of
generality assume that Σ ∪Λ 6≡ 1. Then, Σ ∪Λ |=L ϕ if ϕ is contained in a stable
extension E of (W, D). As ϕ is propositional, this simplifies to Σ ∪Λ |= ϕ. But
Σ ∪Λ is equivalent to a monotone formula and therefore 1-reproducing, while
{x ∨ (t ∧ ¬y), t} ≡ {x→ y} is not. Consequently, Σ 6|=skep x→ y; contradictory
to (W, D) |=skep x→ y.

In the second case, (W, D) := ({x1⊕ x2⊕ x3}, ∅) cannot be translated to a
set Σ of autoepistemic B′-formulae either. By similar arguments, there have to
exist (not necessarily distinct) stable expansions ∆1, ∆2, ∆3 of Σ such that no
∆i is satisfied by the all-0 assignment and, for 1 ≤ i ≤ 3, ∆i is satisfied by the
assignment setting to 1 only xi. From the monotonicity of Σ it now follows that
x1 ∨ x2 ∨ x3 ∈ ∆1 ∩ ∆2 ∩ ∆3. Hence, Σ |=skep x1 ∨ x2 ∨ x3—a contradiction.
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If [B′ ∪ {0, 1}] = L, then B satisfies either S00 ⊆ [B∪ {1}] or N2 ⊆ [B∪ {1}]. In
both cases, SKEPDL(B) is coNP-hard by Theorem 5.1.5, whereas SKEPAE(B′) ∈ P
by Theorem 5.2.4. Hence, unless P = NP, no translation from B-default logic to
B′-autoepistemic logic is possible.

If [B′ ∪ {0, 1}] = V, then either N2 ⊆ [B ∪ {1}] or L2 ⊆ [B ∪ {1}] or S00 ⊆
[B ∪ {1}]. In any case, there exists a k-ary Boolean function f ∈ [B′ ∪ {0, 1}] such
that f /∈ V. Consequently, the B-representation of ({ f (x1, . . . , xk)}, ∅) cannot be
translated to a set of autoepistemic B′-formulae by an argument analogous to
the case [B′ ∪ {0, 1}] = M.

If [B′ ∪ {0, 1}] = N, then V2 ⊆ [B ∪ {1}] or L2 ⊆ [B ∪ {1}]. In both cases,
there exists a binary function f ∈ [B ∪ {1}] \N, while any set of autoepistemic
B′-formulae is equivalent to a set of literals and has at most one consistent
stable expansion. Consequently, ({ f (x1, x2)}, ∅) cannnot be translated to a set
of autoepistemic B′-formulae.

The same arguments apply for [B′ ∪ {0, 1}] ⊆ E. �

Observe that Lemmas 7.2.2 to 7.2.5 leave open only the case [B ∪ {0, 1}] = V
and [B′ ∪ {0, 1}] = L. Thus, Theorem 7.2.1 is established.

Remark 7.2.6 For the stricter notion of faithful translations (that is, translations that
constitute a bijection between the stable extensions and the stable expansions that
preserves membership on the set of objective formulae), Theorem 7.2.1 can be stated
unconditional and without open cases:

If [B′ ∪ {0, 1}] = L and N2 ⊆ [B ∪ {1}], then we may without loss of generality
assume that ¬ ∈ [B]. Define a set D of default rules as

D :=
{

1 : xi
xi

,
1 : ¬xi
¬xi

∣∣∣∣ 1 ≤ i ≤ 3
}
∪
{

x1 : x2
x3

,
x1 : x2
¬x3

}
.

Then corresponding (B ∪ {1})-default theory (∅, D) has six stable extensions, each
corresponding to a model of the formula (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) (see
the proof of Lemma 4.1.7). By Remark 4.2.7, the number of stable expansions of any set
of autoepistemic B′-formulae is either 2k or 2k + 1 for k ∈N. We thus conclude that no
faithful translation is possible.

If [B′ ∪ {0, 1}] = L and V2 ⊆ [B ∪ {1}], then the B-representation of ({x ∨ y}, ∅)
cannot be translated into a set of autoepistemic B′-formulae: if there were a set Σ ⊆
Lae(B′) such that Σ had a unique stable expansion ∆ satisfying ∆ ∩ L = Th(x ∨ y),
then x ∨ y were expressible as a conjunction of affine formulae—contradictory to a result
by Schaefer [Sch78, Lemma 3.1A].

We will now turn to translations in the converse direction. Although the
full monotone fragment of autoepistemic logic does not admit a translation to
default logic, translations exist if B′ ∪ {1} is functional complete, if B comprises
disjunctions only and ¬ ∈ [B′], or if SKEPAE(B) ∈ P and all functions from B
and both Boolean constants can be simulated using B′-default logic. Remarkably,
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the second condition does not require ∨ to be available in B′; disjunctions are
instead simulated using the nonmonotonic features of default logic.

Theorem 7.2.7 Let B and B′ be finite sets of Boolean functions such that (a) [B ∪
{0, 1}] = L implies [B′ ∪ {1}] 6= N, and (b) [B∪ {0, 1}] = V implies [B′ ∪ {1}] 6= M.
Then there exists a translation from B-autoepistemic logic to B′-default logic

1. if [B′ ∪ {1}] = BF, or

2. if [B] ⊆ V and ¬ ∈ [B′], or

3. if [B] ⊆ L and [B] ∪ {0} ⊆ [B′ ∪ {1}], or

4. if [B] ⊆ E and [B] ∪ {0} ⊆ [B′ ∪ {1}];
unless Σp

2 = Πp
2 , no other translations are possible.

The proof of Theorem 7.2.7 will be established from Lemmas 7.2.8 to 7.2.12.
The first of these lemmas establishes the translation of arbitrary fragments

of autoepistemic logic into full default logic. The existence of this translation
independently follows from [Jan99, Propositions 4.9 and 4.10].

Lemma 7.2.8 Let B and B′ be finite sets of Boolean functions such that [B′ ∪ {1}] =
BF. Then there exists a translation from B-autoepistemic logic to B′-default logic.

Proof. Let B and B′ be finite sets of Boolean functions such that [B′ ∪ {1}] =
BF. Let Σ ⊆ Lae(B) be the given set of autoepistemic formulae, let SFL(Σ) =
{Lψ1, . . . , Lψn}, and let t /∈ Vars(Σ). We map Σ to the B′-representation of the
default theory (W, D), where W := Σ[Lψ1/pψ1 ,...,Lψn/pψn ,1/t] ∪ {t} and

D :=
{

1 : pψi

pψi

,
1 : ¬pψi

¬pψi

∣∣∣∣ 1 ≤ i ≤ n
}
∪
{

ψi : ¬pψi

0
,

pψi : ¬ψi

0
,
∣∣∣∣ 1 ≤ i ≤ n

}
.

Observe that the B′-representation of W and D can without loss of generality
be assumed to be polynomial in the size of (W, D), as B′ ∪ {1} efficiently imple-
ments {∧,∨,¬}, which implies that all formulae in Σ can be restructured to be
of at most logarithmic depth [Spi71].

We proceed in two steps to show that f constitutes a translation from B-
autoepistemic logic to B′-default logic. First we prove that any consistent stable
expansion ∆ with kernel Λ ⊆ SFL(Σ) ∪ ¬SFL(Σ) is a Σ-full set if and only if

GΛ :=
{

1 : pψi

pψi

∣∣∣∣ Lψi ∈ Λ
}
∪
{

1 : ¬pψi

¬pψi

∣∣∣∣¬Lψi ∈ Λ
}

(7.1)

is the set of generating defaults for some consistent stable extension of (W, D).
And second, we show that for all ϕ ∈ L over variables from Σ and all consistent
stable expansions ∆, ϕ ∈ ∆ ⇐⇒ W ∪ GΛ |= ϕ, where Λ is the kernel of ∆.

Observe that we may without loss of generality restrict our attention to consis-
tent stable expansions: the (non-)existence of the inconsistent stable expansion
does not alter the set of skeptical consequences of a given set Σ ⊆ Lae(B).
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So suppose that Λ is a Σ-full set such that Σ ∪Λ is consistent. Then, for each
Lψi ∈ SFL(Σ), Σ ∪Λ |= ψi if and only if Lψi ∈ Λ, and Σ ∪Λ 6|= ψi if and only if
¬Lψi ∈ Λ. With pψi := 1 if Lψi ∈ Λ and pψi := 0 otherwise, this is equivalent to
Σ[Lψ1/pψ1 ,...,Lψn/pψn ]

|= ψi if and only if pψi ∈ Λ and Σ[Lψ1/pψ1 ,...,Lψn/pψn ]
6|= ψi if

and only if ¬pψi ∈ Λ. For a set G of defaults, let c(G) :=
{

γ
∣∣∣ α:β

γ ∈ G
}

. Then,
substituting pψi for Lψi in Σ, we obtain

W ∪ c(GΛ) |= ψi ⇐⇒
1 : pψi

pψi

∈ GΛ (7.2)

and

W ∪ c(GΛ) 6|= ψi ⇐⇒
1 : ¬pψi

¬pψi

∈ GΛ, (7.3)

for all 1 ≤ i ≤ n. Accordingly, it follows that for all 1 ≤ i ≤ n neither
ψi :¬pψi

0

nor
pψi :¬ψi

0 are applicable: If
1:pψi
pψi
∈ GΛ, then both justifications ¬pψi and ¬ψi

are inconsistent with Th
(
W ∪ c(GΛ)

)
by (7.2). If, on the other hand,

1:¬pψi
¬pψi

∈ GΛ,
then their premises cannot be derived by (7.3). Therefore GΛ is a maximal set of
applicable default rules whose justifications are consistent with W. This allows
us to conclude that GΛ is a set of generating defaults for some stable expansion
of (W, D).

Conversely, let G be the set of generating defaults for some consistent stable
extension of (W, D). Then, by Proposition 3.1.4, W is consistent and for all
1 ≤ i ≤ n neither

ψi :¬pψi
0 nor

pψi :¬ψi
0 can be contained in G. As a result of this, if

ψi can be derived, then ¬pψi cannot. This in turn implies that
1:pψi
pψi

is applicable
and has to be contained in G. Furthermore, if pψi can be derived, then ¬ψi has

to be inconsistent with Th(W ∪ c(G)), because
pψi :¬ψi

0 is not applicable. Hence,

W ∪ c(G) |= ψi. Summarizing,
1:pψi
pψi
∈ G if and only if W ∪ c(G) |= ψi. For the

remaining default rules
1:¬pψi
¬pψi

in G, this implies W ∪ c(G) 6|= ψi. As either
1:pψi
pψi

or
1:¬pψi
¬pψi

is always applicable, we obtain that G has to contain exactly one of
these default rules for each 1 ≤ i ≤ n. Setting

Λ :=
{

Lψi

∣∣∣∣ 1 : pψi

pψi

∈ G
}
∪
{
¬Lψi

∣∣∣∣ 1 : ¬pψi

¬pψi

∈ G
}

thus yields
(
W ∪ c(G)

)
[pψ1 /Lψ1,...,pψn /Lψn ]

≡ Σ ∪ Λ as well as the equivalences

Σ ∪ Λ |= ψi if and only if Lψi ∈ Λ, and Σ ∪ Λ 6|= ψi if and only if ¬Lψi ∈ Λ.
Therefore, Λ is a Σ-full set and G = GΛ as defined in (7.1).

To conclude the proof, let ϕ ∈ L be over variables from Σ and ∆ be a consistent
stable expansion with kernel Λ. As ϕ is propositional, it holds that ϕ ∈ ∆ ⇐⇒
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Σ ∪Λ |=L ϕ ⇐⇒ Σ ∪Λ |= ϕ ⇐⇒ W ∪ GΛ |= ϕ. This concludes the proof,
because W ∪ GΛ |= ϕ if and only if ϕ is contained in the stable extension of
(W, D) with generating defaults GΛ. �

The following lemma presents the translation from the disjunctive fragment of
autoepistemic logic to default logic restricted to essentially unary functions. This
particularly emphasizes the expressive power inherent to default rules, since this
constitutes the only translation eliminating Boolean connectives other than ∧ by
exploiting the nonmonotonic features of the target logic.

Lemma 7.2.9 Let B and B′ be finite sets of Boolean functions such that [B] ⊆ V and
N2 ⊆ [B′]. Then there exists a translation from B-autoepistemic logic to B′-default logic.

Proof. Let B and B′ be as in the statement of the lemma. Let Σ ⊆ Lae(B) be the
given set of autoepistemic formulae. The idea is to construct a stable extension
for each model of a stable expansion of Σ.

Autoepistemic logic restricted to consistent stable expansions can be char-
acterized as the nonmonotonic modal logic KD45 [Shv90, MT93]. Using the
KD45-equivalences LLϕ ≡ Lϕ and L(Lϕ ∨ ψ) ≡ Lϕ ∨ Lψ, we can hence trans-
form Σ to a set Σ′ whose consistent stable expansions are identical to those of Σ
and whose formulae are of the form ϕ = Lβ1 ∨ . . . ∨ Lβk ∨ γ, where k ≥ 0 and
β1, . . . , βk, γ are disjunctions of propositions. The set Σ′ is the image of a default
theory (W, D) under Konolige’s translation scheme [Kon88], where

W := {γ | ϕ = γ ∈ Σ′ ∩ L} and

D :=
{

1 : ¬β1 ∧ · · · ∧ ¬βk
γ

∣∣∣∣ ϕ = Lβ1 ∨ . . . ∨ Lβk ∨ γ ∈ Σ′, k > 0
}

.

As this translation is known to be faithful for for prerequisite-free default logic
[MT89], it follows that the stable extensions of (W, D) coincide with the objective
parts of the consistent stable expansions of Σ′ and hence those of Σ. Therefore,
Σ |=skep ϕ iff (W, D) |= ϕ for all propositional formulae ϕ over Vars(Σ).

We conclude the proof by eliminating all connectives except ¬ from (W, D).
To this end, first map (W, D) to the equivalent default theory (∅, D′) with

D′ := D ∪
{

1 : 1
γ

∣∣∣∣ γ ∈W
}

.

Next, let d =
1:β
γ be some default from D′. By converting β to negation normal

form, we can write β as a conjunction of negative literals and constants β ≡∧
1≤i≤n β′i. Moreover, γ = γ1 ∨ · · · ∨ γm is a disjunction of propositions or

constants. Let b1, . . . , bn, c1, . . . , cm−1 be fresh and pairwise distinct propositions.
Define

Djust(d) :=
{

1 : β′1
b1

}
∪
{

bi−1 : β′i
bi

∣∣∣∣ 1 < i ≤ n
}



7.2 Default Logic and Autoepistemic Logic 97

and

Dconcl(d) :=


{

bn :¬γ1
0

}
if m = 1,{

bn :¬γ1
c1

}
∪
{

ci−1 :¬γi
ci

∣∣∣ 1 < i < m
}
∪
{

cm−1 :¬γm
0

}
if m > 1.

Let (∅, D′′) be obtained from (∅, D′) by adding the default rules DVars(Σ) :={
1:x
x , 1:¬x

¬x

∣∣∣ x ∈ Vars(Σ)
}

, replacing all d ∈ D′ with the default contained in

Djust(d) ∪ Dconcl(d) (using a fresh set of propositions for each default), and
substituting 0 (respectively 1) with f (respectively t) while adding t and ¬ f to
W. Then, by virtue of Lemma 2.4.2 (4.), (∅, D′′) can clearly be rewritten as a
B′-default theory.

As for the correctness of the transformation from (W, D) to (∅, D′′), let E be a
consistent stable extension of (W, D), let d ∈ GD(E) be a generating default of

E, and let σ be a model of E. Define G′ :=
{

1:x
x

∣∣∣ σ(x) = 1
}
∪
{

1:¬x
¬x

∣∣∣ σ(x) = 0
}

to be the set of defaults from DVars(Σ) corresponding to σ. Using the iterative
construction from Theorem 3.1.3 (1.), it is not hard to see that, for E′0 = ∅ and

E′1 = Th(E′0) ∪
{

γ
∣∣∣ α:β

γ ∈ G′
}

, W ⊆ Th(E′2) and all defaults in Djust(d) may be

successively applied to obtain a set E′i such that bn ∈ E′i . As γ = γ1 ∨ · · · ∨ γm ∈
E, there exists an index i such that the default from Dconcl(d) with justification
¬γi may not be applied. Similarly, for all defaults d not applicable in E, there
exists a negated literal in the justification of d such that the corresponding default
in Djust(d) is not applicable. Consequently, 0 cannot be derived and the iterative
construction will eventually converge to a set E′ such that all justifications of
default applied in its construction are consistent with E′. Hence, E′ is a stable
extension of (∅, D′′) such that E′ contains exactly those formulae satisfied by σ.

On the other hand, if (W, D) does not possess a consistent stable extension,
then W is inconsistent by Proposition 3.1.4. To any assignment of σ : W → {0, 1}
there hence exists a formula γ ∈ W such that σ 6|= γ. Assume for simplicity
that γ is equivalent to a disjunction

∨
1≤i≤m γi of propositions (the case ϕ ≡ 0

is analogous). Then, σ |= ¬γi for all 1 ≤ i ≤ m, which implies that 0 can be
derived from the defaults in Dconcl(

1:1
γ ). Therefore, (∅, D′′) does not possess a

stable extension.
From this we obtain that, for all ϕ ∈ L over Vars(Σ),

Σ |=skep ϕ ⇐⇒ (W, D) |=skep ϕ

⇐⇒ σ ∈ E for all stable extensions E of (W, D)

⇐⇒ σ |= ϕ for all models σ of all stable extensions of (W, D)

⇐⇒ ϕ ∈ E for all stable extensions E of (∅, D′′)

⇐⇒ (W ′, D′) |=skep ϕ. �
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Lemma 7.2.10 Let B and B′ be finite sets of Boolean functions such that [B] ⊆ L and
[B] ∪ {0} ⊆ [B′ ∪ {1}], or such that [B] ⊆ E and [B] ∪ {0} ⊆ [B′ ∪ {1}]. Then there
exists a translation from B-autoepistemic logic to B′-default logic.

Proof. Let B and B′ be as in the statement of the lemma and denote by Σ ⊆ Lae(B)
the given set of autoepistemic B-formulae.

Suppose first that [B ∪ {0, 1}] = L and [B] ∪ {0} ⊆ [B′ ∪ {1}]. For B ⊆
L, the consistent Σ-full sets can be described as the solutions of the system
T′[xs+1/Lxs+1, . . . , xn/Lxn] of linear equations from the proof of Lemma 4.2.6.
Denote by T′′ the system of linear equations obtained by applying Gaussian
elimination to T′[xs+1/Lxs+1, . . . , xn/Lxn] and assume without loss of generality
that the variables Lxt+1, . . . , Lxn, s ≤ t, are free in T′′. Then the set of Σ-full sets
is L := {ΛI | I ⊆ {t + 1, . . . , n}}, where

ΛI := {Lxi | t < i, i ∈ I} ∪ (7.4)

{¬Lxi | t < i, i /∈ I} ∪ (7.5)

{Lxi | s < i ≤ t, f (Lxt+1, . . . , Lxn) = 1} ∪ (7.6)

{¬Lxi | s < i ≤ t, f (Lxt+1, . . . , Lxn) = 0} ∪ (7.7)

{¬Lxi | i ≤ s}. (7.8)

Observe that (7.6)–(7.8) do not depend on I. Hence, there is a Σ-full set for any set
of beliefs Lxt+1, . . . , Lxn. We define the translation as f (Σ) := (W ′, D′), where
W ′ and D′ are the (B′ ∪ {1})-representation of

W := (Σ′ ∪Π)[Lx1/0,...,Lxs/0,Lxs+1/pxs+1 ,...,Lxn/pxn ]

and

D :=
{

1 : pxi

pxi

,
1 : ¬pxi

¬pxi

∣∣∣∣ t < i ≤ n
}

,

where Σ′ ⊆ Lae(B) is the set of autoepistemic formulae constructed in the proof
of Lemma 4.2.8 and Π being derived from the equations in T′′. Notice that all
connectives in [B] are associative, thus W ′ and D′ may without loss of generality
be assumed to be of size polynomial in |W| and |D| by a simple restructuring
argument (compare the proof of Lemma 7.2.4).

It is easy to see that the stable expansions of Σ are in one-to-one correspon-
dence with the stable extensions of (W, D). So it remains to show that the
set of skeptically entailed propositional formulae over variables from Σ re-
mains unaltered. To this end, let ϕ be a propositional formulae over variables
from Σ, let ∆ be a consistent stable expansion, and let Λ be its kernel. Then
ϕ ∈ ∆ ⇐⇒ Σ ∪Λ |=L ϕ ⇐⇒ Σ′ ∪Λ′ |= ϕ ⇐⇒ W ∪ G |= ϕ ⇐⇒ E |= ϕ,
where Λ′ is the Σ′-full set corresponding to Λ (as constructed in the proof of

Lemma 4.2.8), G :=
{ 1:pxi

pxi

∣∣∣ Lxi ∈ Λ′
}
∪
{ 1:¬pxi
¬pxi

∣∣∣¬Lxi ∈ Λ′
}

, and E the sta-
ble extension corresponding to the set G of generating defaults. It is obvi-
ous that this construction also works for the case that [B ∪ {0, 1}] = N and
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[B] ∪ {0} ⊆ [B′ ∪ {1}], as in this case there exists at most one consistent stable
expansion, whence Π can be written using negations only. This concludes the
proof of the first part.

Hence, suppose that [B] ⊆ E and [B] ∪ {0} ⊆ [B′ ∪ {1}]. Again, Σ is known
to have at most one consistent stable expansion whose kernel can be computed
in polynomial time using the proof of Lemma 4.2.10. Suppose without loss of
generality that SFL(Σ) = {Lϕ1, . . . , Lϕn} and define, for a Σ-full set Λ, ci(Λ) :=
0 if ¬Lϕi ∈ Λ and ci(Λ) := 1 if Lϕi ∈ Λ. Now set W := Σ′

[Lϕ1/c1(Λ),...,Lϕn/cn(Λ)]

if Σ has a consistent stable expansion with kernel Λ, and W := {0} otherwise.
Then the function f mapping Σ to the B′-representation of W and an empty set
of default rules yields the desired translation. �

Lemma 7.2.11 Let B and B′ be finite sets of Boolean functions such that 0 /∈ [B′ ∪ {1}].
Then there exists no translation from B-autoepistemic logic to B′-default logic.

Proof. Let B and B′ be finite sets of Boolean functions such that 0 /∈ [B′ ∪ {1}].
Then [B′ ∪{1}] ⊆ R1 and any B′-default theory is guaranteed to have a consistent
stable extension by Lemma 4.1.3. Therefore Σ := {L f } cannot be translated into
an equivalent B′-default theory. �

Lemma 7.2.12 Let B and B′ be finite sets of Boolean functions such that

1. [B′ ∪ {1}] ∈ {M,E,V,L,N, I},
2. [B ∪ {0, 1}] = V implies [B′ ∪ {1}] ( M,

3. [B ∪ {0, 1}] ⊆ L implies [B′ ∪ {1}] ⊆ M,

4. [B] * E.

Then there exists no translation from B-autoepistemic logic to B′-default logic unless
Σp

2 = Πp
2 .

Proof. Let B and B′ be finite sets of Boolean functions as in the statement of the
lemma. We will to distinguish between the possible clones of [B′ ∪ {1}].

For [B′ ∪ {1}] = M, we distinguish two possible cases. First, if [B] * M, then
this induces the existence of a k-ary f ∈ [B ∪ {0, 1}] such that f /∈ [B′ ∪ {1}].
Hence, { f (x1, . . . , xk), t}[1/t,0/L f ] ⊆ Lae(B) cannot be translated to a B′-default
theory: any B′-default theory has at most one stable extension that is equivalent
to a monotone formula. Second, if [B] ⊆ M and [B] ( V, then EXP(B) is Σp

2 -
complete (by conditions (2.) and (4.) of the lemma), while EXT(B′) is contained
in ∆p

2 . Consequently, there cannot be a translation from B-autoepistemic logic to
B′-default logic unless Σp

2 = Πp
2 .

Similarly, if [B′ ∪ {1}] ⊆ V or [B′ ∪ {1}] ⊆ E, then either V ⊆ [B ∪ {0, 1}]
or N ⊆ [B ∪ {0, 1}]. In the latter case, Σ := {¬x} cannot be translated to B′-
autoepistemic logic. In the former, EXP(B) is at least NP-hard, while EXT(B) ∈ P.
Consequently, no translation from B-autoepistemic logic to B′-default logic exists
unless P = NP.
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Next, if [B′ ∪ {1}] = L, then M ⊆ [B ∪ {0, 1}]. As a result EXP(B) is Σp
2 -

complete, whereas EXT(B′) is contained in NP. Thus a translation from B-
autoepistemic logic to B′-default logic exists only if NP = Σp

2 . This is equivalent
to the condition NP = coNP.

Lastly, if [B′ ∪ {1}] = N, then again M ⊆ [B ∪ {0, 1}]. Thus, no translations is
possible unless NP = coNP. �

Concluding, Lemmas 7.2.8 to 7.2.10 cover all cases in which a transition was
claimed to exist, while Lemmas 7.2.11 and 7.2.12 refute the existence of transla-
tions in all remaining cases except (a) [B ∪ {0, 1}] = L and [B′ ∪ {1}] = N, and
(b) [B ∪ {0, 1}] = V and [B′ ∪ {1}] = M. Hence, Theorem 7.2.7 is established.

Remark 7.2.13 Theorem 7.2.7 differs significantly from the analogue statement for
faithful translations. For finite sets B and B′ of Boolean functions, there exists a faithful
translation from B-autoepistemic logic to B′-default logic if and only if [B] ⊆ E or
[B] ⊆ N ⊆ [B′ ∪ {1}]. This is due to Σ1 := {t, p⊕ Lp⊕ t, p⊕ Lq⊕ t} and Σ2 :=
{Lp ∨ q, Lq ∨ p}.

• Σ1 admits two stable expansions: a consistent one containing {¬Lp,¬Lq} and
the inconsistent stable expansion. Thence, by Proposition 3.1.4, there is no faithful
translation for all B such that L2 ⊆ [B].

• The set Σ2 admits two consistent stable expansions. Lemma 4.1.3 hence yields
the inexistence of a faithful translation for all B′ such that V2 ⊆ [B] ⊆ M and
V2 ⊆ [B] ⊆ R1.

7.3 DEFAULT LOGIC AND CIRCUMSCRIPTION

In the last section, we have seen that default logic and autoepistemic logic admit
translations to each other in presence of functional complete sets of Boolean
functions, from the monotone fragment of default logic to the monotone fragment
of autoepistemic logic, from the disjunctive fragment autoepistemic logic to
default logic restricted to essentially unary functions, and if the set of stable
extensions or stable expansions can be efficiently computed.

For translations from circumscription to default logic the situation is different:
with the exception of the open cases, translations from B-circumscription to
B′-default logic exist only if B′-default logic is able to express all functions from
B ∪ {¬}. That is, negation is enough to subsume the corresponding fragment of
circumscription in default logic. We point out that these translations are modular.

Theorem 7.3.1 Let B and B′ be finite sets of Boolean functions such that (a) [B] ⊆ M
implies [B′ ∪ {1}] /∈ {N,L}, and (b) [B ∪ {0, 1}] = L implies [B′ ∪ {1}] 6= N. Then
there exists a translation from B-circumscription to B′-default logic

1. if ¬ ∈ [B′ ∪ {1}] and [B] ⊆ [B′ ∪ {1}], or

2. if ¬ ∈ [B′ ∪ {1}] and [B] ⊆ E;
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unless NP = coNP, no other translations are possible.

The proof of Theorem 7.3.1 is established from the following three lemmas.
The first asserts the existence of a translation in the above mentioned cases. The
second and third lemma show that in all other cases, no translation may exist.

Lemma 7.3.2 Let B and B′ be finite sets of Boolean functions such that ¬ ∈ [B′ ∪ {1}]
and [B] ⊆ [B′ ∪ {1}], or such that ¬ ∈ [B′ ∪ {1}] and [B] ⊆ E. Then there exists a
translation from B-circumscription to B′-default logic.

Proof. Let B and B′ be finite sets of Boolean functions such that ¬ ∈ [B′ ∪ {1}]
and [B] ⊆ [B′ ∪ {1}] or such that ¬ ∈ [B′ ∪ {1}] and [B] ⊆ E. Following ideas
presented in [Eth87] (see also [Nie93]), we translate the given pair

(
Γ, (P, Q, Z)

)
with Γ ⊆ L(B) and (P, Q, Z) being a partition of Vars(Γ), to (W, D), where W is
the B′-representation of Γ[1/t] ∪ {t} and

D :=
{

: ¬p
¬p

∣∣∣∣ p ∈ P
}
∪
{

: ¬q
¬q

,
: q
q

∣∣∣∣ q ∈ Q
}

.

Any (P, Q, Z)-minimal model σ of Γ clearly corresponds to a stable extension,
with generating defaults

Gσ :=
{

: ¬p
¬p

∣∣∣∣ p ∈ P \ σ

}
∪
{

: ¬q
¬q

∣∣∣∣ q ∈ Q \ σ

}
∪
{

: q
q

∣∣∣∣ q ∈ Q ∩ σ

}
.

Vice versa, any stable extension of (W, D) corresponds to a (P, Q, Z)-minimal
model of Γ. This yields

Γ |=circ
(P,Q,Z) ϕ ⇐⇒ ϕ is satisfied by all (P, Q, Z)-minimal models σ of Γ

⇐⇒ W ∪ Gσ |= ϕ for all (P, Q, Z)-minimal models σ of Γ

⇐⇒ (W, D) |=skep ϕ.

As for the computation of the translation, note that [B′ ∪ {1}] is among the
clones N, L, BF. In the first two cases, the B′-representation of Γ[1/t] ∪ {t} can
be computed in polynomial time as in the proof of Lemma 2.5.5. Lastly, if
[B′ ∪ {1}] = BF, then B′ ∪ {1} efficiently implements the Boolean standard base.
Therefore, Γ[1/t] ∪ {t} can be rewritten as a set of formulae of logarithmic depth
in polynomial time [Spi71]. Consequently, space and time needed to compute its
B′-representation can be bounded by a polynomial. �
Lemma 7.3.3 Let B and B′ be finite sets of Boolean functions such that ¬ /∈ [B′ ∪ {1}].
Then there exists no translation from B-circumscription to B′-default logic.

Proof. Let B and B′ be finite sets of Boolean functions such that ¬ /∈ [B′ ∪ {1}].
Then ∅ |=circ

({x},∅,∅)
¬x. As ¬ /∈ [B′ ∪ {1}], either [B′ ∪ {1}] ⊆ R1 or [B′ ∪ {1}] ⊆

M or both. Therefore, any consistent stable extension of a B′-default theory is
1-reproducing and no translation from B-circumscription to B′-default logic can
exist. �
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Lemma 7.3.4 Let B and B′ be finite sets of Boolean functions such that

1. [B] * [B′ ∪ {1}],
2. [B ∪ {0, 1}] = BF or [B′ ∪ {1}] /∈ {N,L}, and

3. [B] * E.

Then there exists no translation from B-circumscription to B′-default logic unless NP =
coNP.

Proof. Let B and B′ be finite sets of Boolean functions such that [B] * [B′ ∪ {1}]
and [B] * E. We distinguish among the possible clones of [B′ ∪ {1}].

If [B′ ∪ {1}] ⊆ R1 or [B′ ∪ {1}] ⊆ M, then any consistent stable extension of a
B′-default theory is 1-reproducing. As regards B, we know that x ∨ y ∈ [B∪ {1}]
or x⊕ y⊕ z ∈ [B ∪ {1}]. Define Γ := {x ∨ y ∨ z}, Γ′ := {x⊕ y⊕ z}, and P :=
{x, y, z}, Q := ∅, Z := ∅. Clearly, Γ |=circ

(P,Q,Z) ϕ (respectively Γ′ |=circ
(P,Q,Z) ϕ)

if and only if f1in3(x, y, z) |= ϕ, where f1in3 denotes the Boolean function that
evaluates to true if exactly one of its arguments is set to true: f1in3(x, y, z) :=
(x∧¬y∧¬z)∨ (¬x∧ y∧¬z)∨ (¬x∧¬y∧ z). Clearly, f1in3 /∈ R1 ∪M. Therefore,
no translation from B-circumscription to B′-default logic may exist.

If [B′ ∪ {1}] ⊆ L, then S02 ⊆ [B] or S12 ⊆ [B] or D1 ⊆ [B] by the second
condition in the statement of the lemma. For all such sets B, CIRCINF(B) is
known to be Πp

2 -complete, while SKEPDL(B′) ∈ coNP. Hence, no translation
may exist unless NP = coNP. �

Observe that the second condition in Lemma 7.3.4 is equivalent to [B] * M
or [B] * L or [B′ ∪ {1}] /∈ {N,L}. Lemmas 7.3.3 and 7.3.4 hence refute the
existence of translations in all cases except those covered by Lemma 7.3.2 and
those excluded in Theorem 7.3.1. This concludes the proof of Theorem 7.3.1.

As for the converse direction, we show that full default logic cannot be em-
bedded into circumscription unless PH collapses to its first level. Hence, even
under the weak notion of translations considered herein, circumscription is in
general less expressive than default logic. This statement carries over to almost
all fragments of default logic such that SKEPDL(B) is intractable: conditioned on
NP 6= coNP and with the exception of the open cases, B-default logic can be trans-
lated to B′-circumscription if and only if SKEPDL(B) ∈ P and [B] ⊆ [B′ ∪ {1}].
Key to these translations is that for these fragments both the implication problem
is tractable and that stable extensions are guaranteed to be unique.

Theorem 7.3.5 Let B and B′ be finite sets of Boolean functions such that (a) [B ∪
{1}] = V implies [B′ ∪ {0, 1}] 6= L or 0 ∈ [B∪ {1}] \ [B′ ∪ {1}], and (b) [B∪ {1}] ∈
{N,L} or S00 ⊆ [B ∪ {1}] ⊆ R1 implies S1 * [B′]. Then there exists a translation
from B-default logic to B′-circumscription

1. if [B] ⊆ V and [B] ⊆ [B′ ∪ {1}], or

2. if [B] ⊆ L1 and [B] ⊆ [B′ ∪ {1}], or
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3. if [B] ⊆ E;

unless NP = coNP, no other translations are possible.

Similar to the previous theorems, the proof of Theorem 7.3.5 will be established
from the lemmas in the rest of this section.

Lemma 7.3.6 Let B and B′ be finite sets of Boolean functions such that [B] ⊆ V and
[B] ⊆ [B′ ∪ {1}], or such that [B] ⊆ L1 and [B] ⊆ [B′ ∪ {1}], or such that [B] ⊆ E.
Then there exists a translation from B-default logic to B′-circumscription.

Proof. Let B and B′ be finite sets of Boolean functions as in the statement of the
lemma. Let (W, D) denote the given B-default theory. By Lemma 4.1.3, (W, D)
has at most one stable extension E whose generating defaults can be computed
efficiently. We can hence define the translation as the mapping of (W, D) to the
B′-representation of

(
Γ, (P, Q, Z)

)
, where Γ := W ∪

{
γ
∣∣ α:β

γ ∈ GD(E)
}

, P := ∅,

Q := ∅, Z := Vars(Γ). It clearly holds that (W, D) |=skep ϕ if and only if
Γ |=circ

(P,Q,Z) ϕ for all ϕ ∈ L over propositions from (W, D). We conclude by
observing that, by the associativity of ∨ and ↔, and the fact that [B] ⊆ E or
[B] ⊆ [B′ ∪ {1}], the B′-representation of Γ is guaranteed to be polynomial-time
computable. �

Lemma 7.3.7 Let B and B′ be finite sets of Boolean functions such that SKEPDL(B) is
coNP-hard and SAT(B′) is in P. Then there exists no translation from B-default logic
to circumscription unless P = NP.

Proof. Assume that P 6= NP and suppose for a contradiction that there exists
a translation from B-default logic to B′-circumscription such that SKEPDL(B)
is coNP-hard and SAT(B′) is in P. Let (W, D) be some B-default theory, let
ϕ ∈ L(B), and define D′ := D ∪ { ϕ:x

y } for fresh propositions x and y. Denote by(
Γ, (P, Q, Z)

)
the translation of (W, D′). It now holds that (W, D) |=skep ϕ if and

only if (W, D′) |=skep y if and only if Γ |=circ
(P,Q,Z) y if and only if there exists no

minimal model σ of Γ such that σ(y) = 0. However, deciding (W, D) |=skep ϕ is
coNP-hard while deciding the existence of a minimal model of Γ with σ(y) = 0
is contained in P; a contradiction to the existence of a translation. �

Lemma 7.3.8 Let B and B′ be finite sets of Boolean functions such that SKEPDL(B) is
∆p

2 -hard and SAT(B′) is in NP. Then there exists no translation from B-default logic to
circumscription unless NP = coNP.

Proof. Analogous to Lemma 7.3.7. �

Lemma 7.3.9 Let B and B′ be finite sets of Boolean functions such that

1. V2 ⊆ [B] ⊆ V or L2 ⊆ [B] ⊆ L1,

2. [B] * [B′ ∪ {1}], and
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3. [B ∪ {0, 1}] = V implies [B′ ∪ {0, 1}] 6= L or 0 ∈ [B ∪ {1}] \ [B′ ∪ {1}].
Then there exists no translation from B-default logic to B′-circumscription.

Proof. Let B and B′ be finite sets of Boolean functions as in the statement of the
lemma. First consider the case that 0 ∈ [B ∪ {1}] \ [B′ ∪ {1}]. Then ({0}, ∅)
cannot be translated into B′-circumscription, because any set of B′-formulae is
trivially satisfiable. We may thus assume that 0 ∈ [B∪{1}] implies 0 ∈ [B′ ∪{1}].

If V2 ⊆ [B] ⊆ V then, by the given conditions on B and B′ and the fact that
0 ∈ [B ∪ {1}] implies 0 ∈ [B′ ∪ {1}], [B′ ∪ {1}] ⊆ N or [B′ ∪ {1}] ⊆ E. In both
cases the (P, Q, Z)-minimal models of any given circumscriptive theory Γ are
uniquely determined on Vars(Γ)∪ P. From this, it is easy to see that x ∨ y cannot
be translated to B′-circumscription.

On the other hand, if L2 ⊆ [B] ⊆ L1 then [B′] ⊆ M or [B′] ⊆ N. In the latter case,
the same arguments as for the case V2 ⊆ [B] ⊆ V apply. In the former, we have
x ↔ y /∈ [B′ ∪ {1}]. Thus a translation

(
Γ, (P, Q, Z)

)
of (W, D) := ({x ↔ y}, ∅)

has to circumscribe at least one proposition (that is, P 6= ∅). Moreover, the
restriction of the (P, Q, Z)-minimal models of Γ to {x, y} has to coincide with
the set of models of x ↔ y. Let σ and σ′ denote two models of Γ such that
σ ∩ {x, y} = ∅ and σ′ ∩ {x, y} = {x, y}. For σ and σ′ to be (P, Q, Z)-minimal,
there have to exist propositions p, q ∈ P satisfying σ(p) 6= σ′(p), σ(q) 6= σ′(q)
and σ(p) 6= σ(q). But this contradicts the monotonicity of Γ, because σ |= Γ and
σ ∪ {x} 6|= Γ. �

This completes the proof of Theorem 7.3.5. Indeed, the existence of the claimed
translations follows from Lemma 7.3.6. On the other hand, Lemma 7.3.7 shows
that for N ⊆ [B ∪ {1}] or S00 ⊆ [B ∪ {1}] ⊆ R1 translations from B-default
logic to B′-circumscription may exist only if S1 ⊆ [B′] or P = NP; Lemma 7.3.8
shows that for [B ∪ {1}] ∈ {M,BF} translations from B-default logic to B′-
circumscription may exist only if NP = coNP; and Lemma 7.3.9 shows that for
[B] * [B′ ∪ {1}] and either V2 ⊆ [B] ⊆ V or L2 ⊆ [B] ⊆ L1 translations from B-
default logic to B′-circumscription may exist only if V2 ⊆ [B] ⊆ V, L2 ⊆ [B′] ⊆ L,
and {0} ∩ [B ∪ {1}] ⊆ {0} ∩ [B′ ∪ {1}]. Concluding, Lemmas 7.3.7 to 7.3.9 cover
all remaining cases except those excluded in the statement of the theorem.

7.4 AUTOEPISTEMIC LOGIC AND CIRCUMSCRIPTION

In the last section of this chapter, we study the possibility of translating cir-
cumscription into autoepistemic logic and vice versa. Commencing with the
former direction, we prove that translations from B-autoepistemic logic to B′-
circumscription are possible if B′ ∪ {0, 1} is functional complete or if SKEPAE(B)
is polynomial-time decidable and ¬ ∈ [B′]. Accordingly, the fragments of
autoepistemic logic that allow for translations to circumscription are a strict
subset of the fragments of default logic that do so. In all remaining cases except
[B ∪ {0, 1}] = L and [B′ ∪ {0, 1}] = L, no translation is possible unless P = NP.
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Theorem 7.4.1 Let B and B′ be finite sets of Boolean functions such that [B∪{0, 1}] 6=
L or [B′ ∪ {0, 1}] 6= L. Then there exists a translation from B-circumscription to B′-
autoepistemic logic

1. if [B′ ∪ {0, 1}] = BF, or

2. if ¬ ∈ [B′] and [B] ⊆ E, or

3. if ¬ ∈ [B′] and [B] ⊆ N;

unless P = NP, no other translations are possible.

We prove Theorem 7.4.1 from the four lemmas below.

Lemma 7.4.2 Let B and B′ be finite sets of Boolean functions such that ¬ ∈ [B′] and
[B] ⊆ E, or such that [B] ⊆ N. Then there exists a translation from B-circumscription
to B′-autoepistemic logic.

Proof. The key idea is that for [B] ⊆ E or [B] ⊆ N, the (P, Q, Z)-minimal models
of a given Γ ⊆ L(B) are determined on Vars(Γ) ∪ P: σ : Vars(Γ) → {0, 1} is
(P, Q, Z)-minimal if and only if σ(x) = 1 for all x ∈ Vars(Γ) such that Γ |= x,
and σ(x) = 0 for all x ∈ P \ Vars(Γ) and all x ∈ Vars(Γ) such that Γ |= ¬x.
We can therefore map the tuple

(
Γ, (P, Q, Z)

)
to the B′-representation of the

autoepistemic theory Σ defined as Γ ∪ {¬p | p ∈ P \Vars(Γ)}. The correctness
of this translation follows from the fact that for all assignments σ, σ |= Σ if and
only if σ is a (P, Q, Z)-minimal model of Γ. �

Lemma 7.4.3 Let B and B′ be finite sets of Boolean functions such that ¬ /∈ [B′]. Then
there exists no translation from B-circumscription to B′-autoepistemic logic.

Proof. Let B and B′ be finite sets of Boolean functions such that ¬ /∈ [B′]. Then
[B′ ∪ {0, 1}] ⊆ M. Consequently,

(
∅, ({x}, ∅, ∅)

)
cannot be translated into a set

of autoepistemic formulae analogously to the proof of Lemma 7.3.3. �

Lemma 7.4.4 Let B and B′ be finite sets of Boolean functions such that [B] * E,
[B] * L, and [B′ ∪ {0, 1}] = L. Then there exists no translation from B-circumscription
to B′-autoepistemic logic unless P = NP.

Proof. Let B and B′ be finite sets of Boolean functions such that [B] * E and [B] *
L and [B′ ∪ {0, 1}] = L. The conditions on B are equivalent to V2 ⊆ [B ∪ {1}]. In
this case, CIRCINF(B) is coNP-hard, whereas SKEPAE(B′) ∈ P. Hence, if there
exists a translation that preserved the set of skeptical consequences of the given
circumscriptive theory, then P = NP. �

Lemma 7.4.5 Let B and B′ be finite sets of Boolean functions such that [B] * E, [B] *
N, and [B′ ∪ {0, 1}] = N. Then there exists no translation from B-circumscription to
B′-autoepistemic logic.
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Proof. Let B and B′ be as in the statement of the lemma. We distinguish two cases.
First suppose that [B] ⊆ L. Consider Γ := {x⊕ y⊕ z} and P := {x, y, z}, Q := ∅,
Z := ∅. Analogously to the proof of Lemma 7.3.4, it holds that Γ |=circ

(P,Q,Z) ϕ

if and only if f1in3(x, y, z) |= ϕ for all ϕ ∈ L. On the other hand, any set
Σ ⊆ Lae(B′) has at most one consistent stable expansion (see Lemma 4.2.9).
Hence, if there existed a translation f from B-circumscription to B′-autoepistemic
logic, then either f

(
(Γ, (P, Q, Z))

)
|=skep ϕ for at least one of ϕ ∈ {x, y, z} or

f
(
(Γ, (P, Q, Z))

)
6|=skep f1in3(x, y, z), both of which yield a contradiction.

Hence suppose that [B] * L. The proof of this case is completely analogous
to the proof of Lemma 7.4.4 except for the fact that SKEPAE(B′) is contained in
AC0[2] ( coNP. From this we obtain an unconditional result. �

To conclude the proof of Theorem 7.4.1, note that Theorems 7.2.1 and 7.3.1
together assert the existence of a translation from B-circumscription to B′-auto-
epistemic logic for all B′ such that [B′ ∪ {0, 1}] = BF (see also [Jan99] for an
alternative proof). Moreover, ¬ ∈ [B′] if and only if [B′ ∪ {0, 1}] is among the
clones N, L, BF. Hence, Lemmas 7.4.2 to 7.4.5 cover all cases except [B∪ {0, 1}] =
[B′ ∪ {0, 1}] = L. This establishes the theorem.

Lastly, it remains to discuss translations from autoepistemic logic to circum-
scription. Similar to the case of translations from default logic, full autoepistemic
logic cannot be translated to circumscription unless P = NP. This continues to
hold even for monotone autoepistemic logic. Indeed, with the exception of the
case [B ∪ {0, 1}] = V and S1 ⊆ [B′], B-autoepistemic logic can only be translated
into B′-circumscription if SKEPAE(B) ∈ P and the necessary Boolean functions
can be simulated using circumscription.

Theorem 7.4.6 Let B and B′ be finite sets of Boolean functions such that [B∪{0, 1}] =
V implies S1 * [B′]. Then there is a translation from B-autoepistemic logic to B′-circum-
scription

1. if [B] ⊆ L and [B] ∪ {0} ⊆ [B′ ∪ {1}], or

2. if [B] ⊆ N and 0 ∈ [B′ ∪ {1}], or

3. if [B] ⊆ E and 0 ∈ [B′ ∪ {1}];
unless NP = coNP, no other translations are possible.

The proof of Theorem 7.4.6 will be established from the lemmas in the remain-
der of this section.

Lemma 7.4.7 Let B and B′ be finite sets of Boolean functions such that 0 ∈ [B′ ∪ {1}]
and [B] ⊆ N, or such that 0 ∈ [B′ ∪ {1}] and [B] ⊆ E. Then there exists a translation
from B-autoepistemic logic to B′-circumscription.

Proof. Let B and B′ be finite sets of Boolean functions such that 0 ∈ [B′ ∪ {1}]
and [B] ⊆ N. Denote by Σ ⊆ Lae(B) the given autoepistemic theory. Then Σ is
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equivalent to a set Σ+ ∪ Σ− ∪ ΣL, where Σ+ is a set of positive literals, Σ− is a
set of negative literals and ΣL is a set of L-prefixed formulae and negations of
L-prefixed formulae. This representation can be computed efficiently, as can be
seen from the proof of Lemma 2.5.6. We map Σ to

(
Γ, (P, Q, Z)

)
, where P := Σ−,

Q := ∅, Z := Σ+, and

Γ :=

{
Σ+ if Σ has a consistent stable expansion,
{0} otherwise.

If Σ has a consistent stable expansion, then any (P, Q, Z)-minimal model of
Γ sets to 1 all propositions occurring in Σ+ and to 0 all propositions occurring
Σ−. Hence, Σ |=skep ϕ implies Γ |=circ

(P,Q,Z) ϕ, for all propositional formulae
ϕ over propositions from Σ. It is easy to see that the converse direction also
holds. On the other hand, if Σ does not admit a consistent stable expansion,
then all propositional formulae are skeptically implied by both Σ and Γ. This
concludes the proof of the first part of the lemma. The second part follows from
the observation that any set of autoepistemic B-formulae can be rewritten as a
set of autoepistemic formulae without using conjunctions. �

Lemma 7.4.8 Let B and B′ be finite sets of Boolean functions such that [B] ⊆ L and
[B] ∪ {0} ⊆ [B′ ∪ {1}]. Then there exists a translation from B-autoepistemic logic to
B′-circumscription.

Proof. Let B and B′ be finite sets of Boolean functions such that [B] ⊆ L and
[B] ∪ {0} ⊆ [B′ ∪ {1}]. Let Σ ⊆ Lae(B) be the given autoepistemic theory.

Using Lemma 4.2.8, we can transform Σ to a set Σ′ ⊆ Lae(B) such that all L-
prefixed formulae in Σ are L-atomic and Σ |=skep ϕ ⇐⇒ Σ′ |=skep ϕ for all ϕ ∈
L over propositions from Σ. Moreover, the consistent Σ′-full sets of Σ′ ⊆ Lae(B)
can be described as solutions of the system T′ from the proof of Lemma 4.2.6
(see also Lemma 7.2.10). Denote by T′′ the system of linear equations obtained
by applying Gaussian elimination to T′[xs+1/Lxs+1, . . . , xn/Lxn] and let Π be
the set of autoepistemic formulae equivalent to the equations in T′′. We define
the translation to map Σ to

(
Γ′, (P, Q, Z)

)
, where P := ∅, Q := ∅, Z := Vars(Γ),

and Γ′ is the B′-representation of

Γ :=
{
(Σ′ ∪Π)[Lx1/0,...,Lxs/0,Lxs+1/ps+1,...,Lxn/pn

] if Σ has a consistent expansion,
{0} otherwise.

To prove the correctness of this translation, first suppose that Σ possesses
no consistent stable expansions. Consequently, all propositional formulae are
skeptically entailed by Σ, and all propositional formulae are circumscriptively
entailed by Γ. Hence, suppose that Σ admits at least one consistent stable
expansion. Let ϕ ∈ L be over propositions from Σ. If Σ |=skep ϕ, then Σ′ ∪Λ |= ϕ
for each Σ′-full set Λ. This can be rewritten as Σ′ ∪Π |= ϕ by appealing to the
fact that the assignments σ satisfying the set Π and the Σ′-full sets Λ of Σ′ are
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in one-to-one correspondence: to Λ associate the unique assignment satisfying
Λ restricted to {Lxi | s < i ≤ n}. Replacing Lxi by pxi for all s < i ≤ n hence
yields Γ |=circ

(P,Q,Z) ϕ.
As for the converse direction, suppose that Σ does not skeptically entail ϕ.

Then there exists a Σ′-full set Λ such that Σ′ ∪Λ is consistent and Σ′ ∪Λ 6|= ϕ.
Let σ be the assignment witnessing this fact, that is, σ |= Σ′ ∪ Λ and σ 6|= ϕ.
By the above argument, we also obtain σ |= Σ′ ∪Π. Therefore, the assignment
σ′ defined by σ′(x) := σ(x) for all x ∈ Vars(Σ) and σ′(pxi ) := σ(Lxi) for all
1 ≤ i ≤ s witnesses Γ 6|=circ

(P,Q,Z) ϕ.

This concludes the proof, since the B′-representation of Γ ⊆ L({⊕}) can be
efficiently computed using Lemma 2.4.2 (3.) and the associativity of x⊕ y. �

Lemmas 7.4.7 and 7.4.8 verify the existence of all translations claimed in
Theorem 7.4.6. To conclude the proof, we will show that, conditioned on NP 6=
coNP, no translations from B-autoepistemic logic to B′-circumscription may exist
if 0 /∈ [B′ ∪ {1}] (Lemma 7.4.9), or if [B] * N, [B] * E, [B] * L (Lemma 7.4.10), or
if [B] * N, [B] * E, [B] * [B′ ∪ {1}] (Lemma 7.4.11).

Lemma 7.4.9 Let B and B′ be finite sets of Boolean functions such that 0 /∈ [B′ ∪ {1}].
Then there exists no translation from B-autoepistemic logic to B′-circumscription.

Proof. The set Σ := {L f } has the unique stable expansion Lae. However, if
0 /∈ [B′ ∪ {1}] then [B] ⊆ R1 or [B] ⊆ D; hence any circumscriptive theory built
from B′-formulae is satisfiable. �

Lemma 7.4.10 Let B and B′ be finite sets of Boolean functions such that M ⊆ [B ∪
{0, 1}]. Then there exists no translation from B-autoepistemic logic to B′-circumscription
unless NP = coNP.

Proof. Let B and B′ be as in the statement of the lemma. Consequently, EXP′(B),
the problem to decide whether a given set of autoepistemic B-formulae has a con-
sistent stable expansion, is Σp

2 -complete. Assume that there exists a translation
f from B-autoepistemic logic to B′-circumscription. Then EXP′(B)≤cd SAT(B′)
via Σ ∈ EXP′(B) ⇐⇒ Σ 6|=skep 0 ⇐⇒ Γ 6|=circ

(P,Q,Z) 0 ⇐⇒ Γ ∈ SAT(B′), where

f (Σ) =
(
Γ, (P, Q, Z)

)
. Consequently, NP = Σp

2 and NP = coNP. �

Lemma 7.4.11 Let B and B′ be finite sets of Boolean functions such that [B∪ {0, 1}] =
V and S1 * [B′], or such that [B ∪ {0, 1}] = L and [B] * [B′ ∪ {1}] Then there exists
no translation from B-autoepistemic logic to B′-circumscription unless P = NP.

Proof. First, let B and B′ be finite sets of Boolean functions such that [B∪{0, 1}] =
V and [B′ ∪ {1}] 6= BF. Then [B′ ∪ {1}] is situated below R1, M, or L. The first
case follows from Lemma 7.4.9. For the second and third, consider some formulae
ϕ in conjunctive normal form with exactly three literals per clause. Let Σ denote
the set of autoepistemic B-formulae constructed in the proof of Lemma 4.2.5 and
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suppose there exists a translation
(
Γ, (P, Q, Z)

)
of Σ to B′-circumscription. Then

ϕ is satisfiable if and only if Σ 6|=skep 0 if and only if Γ 6|=circ
(P,Q,Z) 0 if and only if Γ

is satisfiable. But the satisfiability of Γ ⊆ L(B′) can be determined in polynomial
time for all B′ such that S1 * [B′], see [Lew79]. As EXP(B) is NP-complete by
Theorem 4.2.1, P = NP.

Second, let B and B′ be finite sets of Boolean functions [B ∪ {0, 1}] = L and
[B] * [B′ ∪{1}]. Then [B′ ∪{1}] is situated below R1, E, or V. The first case again
follows from Lemma 7.4.9. For the second and third, we have x ↔ y /∈ [B′ ∪ {1}].
The claim now follows from the last paragraph in the proof of Lemma 7.3.9: any
translation of x ↔ y has to circumscribe at least one proposition, from which we
eventually obtain a contradiction to its monotonicity. �

Eventually, using Lemmas 7.4.7 to 7.4.11, Theorem 7.4.6 is established.





CHAPTER 8

EPILOGUE

In this thesis, we systematically studied the computational complexity of consis-
tency and reasoning problems for fragments of nonmonotonic logics obtained by
restricting the available Boolean connectives. We hope that the results presented
contribute to a better understanding of the sources of complexity for these prob-
lems and lead to better algorithms in situations where the occurring formulae
are written over a restricted set of Boolean functions.

Future research in this direction should aim at determining the exact com-
plexity of the problems CIRCINF(B) and EXP(B) for L2 ⊆ [B] ⊆ L, for which we
were only able to obtain ⊕L-hardness and membership in respectively NP and
P. While the latter gap is rather small, it is yet unknown whether the former
one is tractable. It can alternatively be rephrased as the question whether in
all minimal models of a given knowledge base an odd number of propositions
from a given set A is set to 1. When A is restricted to be a singleton set, the
problem is known to be polynomial-time solvable, whereas the related question
whether some assignment belongs to the set of minimal models is known to be
coNP-complete [DH03].

Further, a finer classification of the complexity beyond the usual worst-case
measures would be of interest. Despite the fact that the considered consistency
and reasoning problems are complete for the second level of the polynomial
hierarchy, knowledge representation and reasoning systems are widely used
in practice. The question arises why these systems remain manageable. In-
sights into this question might be gained from the analysis of the structure
of typical instances (that is, its average case complexity) or the parameterized
complexity of the problems. Here, connectives accounting for jumps in the com-
plexity might lead to parameters that, in connection with other restrictions, yield
fixed-parameter tractability. As a simple example, the following “small model
credulous reasoning” problem is easily seen to be fixed-parameter tractable:

Input: Formulae ϕ, ψ ∈ Lae({∧,∨}) in conjunctive normal form
Parameter: The number of (binary) ∧-connectives in ϕ and k ∈N

Question: Does ϕ admit a stable expansion ∆ with |∆ ∩ SFL(ϕ)| = k such
that ψ ∈ ∆?

Given the number l of conjunctions in ϕ, it follows from the monotonicity of ϕ
that to any model σ of ϕ there exists a model σ′ such that |σ′| ≤ l + 1 and σ′ |= ϕ.
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To test whether ψ is contained in a stable expansion ∆ with |∆ ∩ SFL(ϕ)| = k,
it hence suffices to verify that ψ is satisfied in all models of ϕ setting to 1 at
most l propositions. This combined with the restriction of the search space of
the stable expansions yields a fixed-parameter tractable algorithm. But if the
number of ∧-connectives is dropped from the parameter, the problem becomes
fixed-parameter intractable. Indeed, we can reduce the A[2]-complete problem
p-AWSAT2(∆+

1,2) to the above problem parameterized by the number of L-
operators only (for the definition of the problem p-AWSAT2(∆+

1,2) and the class
A[2], see [FG06]).

In addition to the consistency and reasoning problems, we presented new
counting problems from the area of knowledge representation and reasoning
that are complete for the first and second level of the counting hierarchy. These
problems may prove helpful in deriving the counting complexity of similar
problems in the area of knowledge representation and nonmonotonic reasoning.

Finally, we examined the existence of translations between the above men-
tioned fragments of nonmonotonic logics and exhibited those that admit trans-
lations to other nonmonotonic logics. These results were complemented by
showing that, conditioned on the strictness of the polynomial hierarchy, in al-
most all cases in which no translation was given indeed no translation may exist.
The open cases can be summarized as follows:

1. Translations from B-default logic

a. for [B ∪ {0, 1}] = V to B′-autoepistemic logic for [B ∪ {0, 1}] = L

b. for [B ∪ {0, 1}] = V to B′-circumscription for [B ∪ {0, 1}] = L

c. for [B ∪ {0, 1}] ∈ {N,L,M} to B′-circumscription for [B′ ∪ {1}] = BF

2. Translations from B-autoepistemic logic

a. for [B ∪ {0, 1}] = L to B-default logic for [B ∪ {1}] = N

b. for [B ∪ {0, 1}] = V to B′-default logic for [B′ ∪ {1}] = M

c. for [B ∪ {0, 1}] = V to B′-circumscription for [B′ ∪ {1}] = BF

3. Translations from B-circumscription

a. for [B ∪ {0, 1}] ∈ {V,M} to B′-default logic for [B ∪ {0, 1}] ∈ {N,L}
b. for [B ∪ {0, 1}] = L to B′-default logic for [B ∪ {1}] = N

c. for [B ∪ {0, 1}] = L to B′-autoepistemic logic for [B ∪ {0, 1}] = L

The difficulty in proving or refuting the existence of a translation in these cases
arises from different sources.

First, the disjunctive fragments of default logic are no more expressive than
the disjunctive fragments of propositional logic. The existence of a translation
consequently reduces to the question whether there exists an affine autoepis-
temic (respectively an affine circumscriptive theory) that can be computed in
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polynomial time and is equivalent to the propositional representation of the
given default theory. This pertains the cases (1.a.) and (1.b.).

Second, nonmonotonicity might allow for the simulation of connectives not
present in the set of available Boolean connectives. To refute the existence of a
translation, counterexamples would hence have to take the extended capabilities
of the target logic into account. On the other hand, there seems to be no obvious
construction for translations. This subsumes (1.c.), (2.b.), (2.c.), and (3.a.).

Third, for (2.a.), (3.b.), and (3.c.), the expressive power of the fragment (or
its exact computational complexity) are not known. In particular, establishing
a translation for (3.c.) would lead to a polynomial-time upper bound for the
circumscriptive inference problem for affine B-formulae, CIRCINF(B) for L2 ⊆
[B] ⊆ L, and also resolve (3.c.). Closing these gaps would hence lead to insights
into the expressiveness and the computational complexity of the corresponding
fragments.

The results on the intertranslatability of nonmonotonic logics are particularly
interesting in light of their connections to logic programming using the stable set
semantics: Bidoit and Froidevaux showed that general logic programs coincide
with the fragment of default logic obtained by restricting the knowledge base,
prerequisites and conclusions to positive literals, and justifications to negative
literals [BF87]. In particular, extended logic programs coincide with B-default
logic for [B] = N [GL91]. For extended disjunctive logic programs, similar
connections exist to autoepistemic logic [LS93]. Thus, Theorem 7.2.1 reproves
parts of the embedding of extended logic programs to autoepistemic logic found
in the latter article. Further investigating these connections and the resulting
consequences would be very interesting.
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[MT93] V. W. Marek and M. Truszczyński. Nonmonotonic Logic. Springer,
1993.



120 Bibliography
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