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Abstract

Over the course of four years, Even, Selman and Yacobi [EY80, SY82, ESY84] came up

with a conjecture about the existence of certain NP-hard promise problems and their

relation to the security of public-key cryptography. The conjecture, if it were true, has

several interesting consequences such as P 6= NP and that no non-probabilistic

public-key cryptosystem is able to comprise an NP-hard cracking problem. Moreover,

it is also related to the theory of propositional proof systems, boolean formulas and

some other complexity issues, strengthening the impression that it could be really hard

to prove. Though the conjecture still remains open, there has been some exciting

progress and evidence recently [HMPRS12].
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1 Introduction
More than thirty years have passed since Even, Selman and Yacobi [EY80, SY82, ESY84]

stipulated their conjecture on promise problems, which was originally raised to concern

the security of public-key cryptosystems. In more detail, they asserted that no underly-

ing cracking problem could be NP-hard at all. Beyond these main intention, the so-called

ESY conjecture comes up with a wide range of different consequences, as we will see in

one of the following sections, and also can be reformulated to deal with the more famous

disjoint NP-pairs instead of promise problems. Up until now, there has been a lot of

progress regarding the conjecture itself or the concepts involved. Before investigating

these results, we will take a closer look at what it is all about.

1.1 Disjoint NP-pairs and promise problems

There is a fundamental relation between promise problems and disjoint NP-pairs and

that is why the latter will be considered first.

Disjoint NP-pairs play an important role in the theory of proof complexity and par-

ticularly when considering propositional proof systems [Raz94, Pud01, GSZ07] such as

resolution or natural deduction. A pair (A,B) belongs to the class DisNP if A and B are

two nonempty, disjoint sets in NP. Razborov, for example, showed that the existence of

an optimal propositional proof system (which is a proof system that is able to simulate

all other proof systems) implies the existence of a complete pair for DisNP and raised

the question whether we can find one. The belief is that there do not exist optimal

propositional proof systems, which in turn would imply that a variant of the previously

mentioned conjecture is true [GSSZ04]. As a further example, several questions have

come up as to whether an p-inseparable disjoint pair (A,B) exists within DisNP, mean-

ing that there is no separator belonging to P (a separator is any superset of A that is

disjoint from B). Interestingly enough, this was connected to the existence of NP-hard

promise problems and moreover led to a different appearance of the conjecture [GS88].

Promise problems (or at least complexity issues for promise problems) were first inves-

tigated by S. Even and Y. Yacobi in 1980 [EY80] originally modeling cracking problems

for public-key cryptosystems (short: PKCSs) and, among others, have quite recently

come into force in quantum computation. Though decision problems tend to be the
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standard approach for perceiving problems, it is way more natural to talk about the

relating promise problem instead (see [Gol06] for a proper discussion). Often one does

not want to decide a property for all strings out of {0, 1}∗, but only for the ones that

already fulfill a certain promise.

Definition 1.1. A promise problem is a disjoint pair of sets (Πyes,Πno) with Πyes,Πno ⊆
{0, 1}∗. The set Πyes ∪ Πno is called the promise.

Πyes represents the set of strings that belong to the promise and fulfill a specific

property, whereas a string belongs to Πno if it is promised but does not have the property.

By taking a look at a common decision problem such as SAT the approach of considering

promise problems becomes more convincing. For example, one may be interested in the

satisfiability of Boolean formulas that have at most one satisfying assignment. This

problem is called Unambiguous - SAT and is shown to stay computationally hard, even

if the mentioned promise is given, by the Valiant–Vazirani theorem [VV86] (if there is a

polynomial-time algorithm for Unambiguous - SAT, then NP = RP). Hence, Πyes ∪ Πno

would be the set of all (binary representations of) Boolean formulas that have at most

one satisfying assignment and Πyes the subset of the ones being satisfiable. Classically

it would be Πyes ∪ Πno = {0, 1}∗ and that is when we say that the promise is trivial.

On the other hand, there are some reasons why promise problems did not prevail (every

decision problem with inputs over {0, 1}∗ could be handled as promise problem with

trivial promise). For example, when it comes to some well-known structural relations

which need not hold consistently: the existence of an NP-hard promise problem within

NPP∩coNPP (as promise complexity class extensions of NP and coNP) does not seem to

imply NP = coNP, which means that there truly are some relevant differences between

promise and decision problems apart from being different ways of looking at problems.

The standard notion of complexity classes for languages extends naturally towards

promise problems because every promise Πyes∪Πno can be seen as a decision problem and

every decision problem may be considered to be a promise problem (every language L ⊆
Σ∗ extends to the promise problem (L,Σ∗\L). To distinguish between complexity classes

for decision problems and those for promise problems, Selman and Yacobi formerly

introduced the classes NPP and coNPP as extensions of NP and coNP [SY82]. Before

coming to these, we need to define solutions for promise problems.
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Definition 1.2. A deterministic Turing machine M that decides whether an already

promised input x belongs to Πyes or Πno is said to solve the promise problem (Πyes,Πno):

∀x [x ∈ Πyes ∪ Πno ⇒ [M(x) ↓ ∧(M(x) = 1⇔ x ∈ Πyes)]].

Note that for inputs outside the promise, it does not matter whether the Turing

machine says ”yes“ or ”no“. At least until the following definition.

Definition 1.3. A solution of a promise problem is the set of inputs being accepted

by a Turing machine that solves the promise problem, therefore any set S that includes

Πyes and is disjoint from Πno.

In this manner, solutions to promise problems can be handled set-theoretically, though

not every solution needs to be recursive by definition. However, since we are focusing

on polynomial-time complexity issues, we will assume in the following that if a Turing

machine M solves a promise problem then it halts on every input, leading to recursive

solutions only. Now we are able to state the aforementioned complexity classes for

promise problems.

Definition 1.4. NPP is the class of promise problems (Πyes,Πno) that have a solution

in NP and coNPP is the class of promise problems, so that (Πno,Πyes) is in NPP.

Note that a language L ∈ NP is a solution to (Πyes,Πno) if and only if L ∈ coNP is a

solution to (Πno,Πyes).

Definition 1.5. A promise problem is NP-hard if it is solvable and every solution is

NP-hard.

The property for NP-hard promise problems of being solvable is necessary because

otherwise, every unsolvable promise problems would be NP-hard since the set of solutions

then is the empty set.

There is also another way to treat the complexity classification, such as that a promise

problem, for example, belongs to P in the sense of decision problems, if there is a

deterministic polynomial-time algorithm A satisfying

x ∈ Πyes ⇒ A(x) = 1 and

x ∈ Πno ⇒ A(x) = 0
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(compare [Gol06]). Since we are talking about a polynomial-time algorithm, the re-

sponding Turing machine halts on every input and therefore every solution of the promise

problem belongs to P, which coincides with the suiting former definition. It depends on

personal preferences which definition to work with. Since we partly need to focus on the

original papers, we are best going with the former one.

Alternatively to the pair (Πyes,Πno) a promise problem can be written (and formerly

was written) as a pair of predicates (Q,R) with promise Q and property R (being a

superset of Πyes). The transformation from one to another is quite simple:

(Πyes,Πno) 7−→ (Πyes ∪ Πno, R), while R ⊇ Πyes and

(Q,R) 7−→ (Q ∩R,Q \R)

(compare with the picture in Section 1.2). This denotation makes sense since a promise

problem then is directly denoted by its relating objects (for example could Q be the set

of Hamiltonian graphs and R be the set of 3-colorable ones). Both variants describe the

same promise problem and will come into force in two apparently different conjectures.

1.2 ESY conjecture and implications

We now state the ESY conjecture in its current form which is in the manner of disjoint

NP-pairs (recall the relation between promise problems and disjoint pairs).

ESY conjecture. For every two disjoint languages A,B ∈ NP, there is a separator S,

meaning A ⊆ S and B ∩ S = ∅, that is not Turing-hard for NP.

Or in other words, there do not exist disjoint NP-pairs all of whose separators are

NP-hard (via Turing reductions). The following equivalent (see [GS88]) conjecture is

the original one as introduced by Even, Selman and Yacobi in 1984 [ESY84]:

ESY conjecture (previously). There exists no promise problem (Q,R) such that

(i) (Q,R) ∈ NPP ∩ coNPP,

(ii) (Q,R) is NP-hard, and

(iii) Q is in NP.

Again, we are talking about NP-hardness via Turing reductions (we will generalize the

reduction types in Chapter 3).
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Two years before, in the year 1982 where the conjecture first came up, there had not

yet been a point (iii). However, with the promise problem (Q,R) := (EX, SAT1), where

EX(x, y) = 1 ⇔ SAT(x) ⊕ SAT(y) and SAT1 := λxλySAT(x) so that SAT1(x, y) ⇔
SAT(x) (SAT(x) asserts that x is satisfiable), there was an example which is both in

NPP∩coNPP and NP-hard (see [SY82]) forcing them to reformulate it. Since EX has been

shown to be DP-complete [ESY84], where DP := {L1 ∩ L2 | L1 ∈ NP and L2 ∈ coNP},
they subsequently conjectured that Q cannot be in NP (note that NP ⊆ DP).

To see the equivalence of the newer and former conjecture simply observe that if (Q,R)

actually is a promise problem that satisfies the conditions of the former conjecture, it

naturally extends to the disjoint NP-pair (Q∩R,Q\R). Because every separator S then

is a solution to (Q,R), it is also NP-hard by condition (ii). Vice versa, every disjoint NP-

pair (A,B) having only NP-hard separators provides a suiting (former) promise problem

(A ∪B,A).

Σ∗

A B

S
R R

Q

Note that the separator or solution S does not only need to contain inputs satisfying

property R. If NP = coNP then the conjecture is false, because by taking A to be SAT

and B to be its complement SAT, then the only possible separator would again be SAT,

which is NP-hard for sure (we will come to this later).

This commonly unknown and by now more than thirty-years-old conjecture, named

after the initials of its originators, has some wide-ranging and fascinating consequences

apart from NP 6= coNP (and therefore P 6= NP) concerning complexity theory, Boolean

formulas and public-key cryptography, making it obviously hard to prove.

The conjecture, for example, does imply that satisfying assignments of Boolean for-

mulas cannot be computed by single-valued NP-machines, thus SAT /∈ NPSV [ESY84,
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GS88], and also has an impact on the task of computing functions and finding solutions

when they are unique. If one knows in advance given any x, that at most one y will

satisfy a feasibly recognizable property R(x, y), then define

A := {〈x,w〉 | ∃y such that R(x, y) = 1 and w is a prefix of y },

B := {〈x,w〉 | ∃y such that R(x, y) = 1 and w is not a prefix of y}.

An important case for this is factoring, where x is a number and y is a unique repre-

sentation of its prime factorization. Then (A,B) is a disjoint NP-pair and any separator

C can be used to find y by building up w character-by-character using Turing queries to

C [Reg12]. Remember that UP stands for Unambiguous non-deterministic Polynomial-

time and is the class of all decision problems solvable by a non-deterministic Turing

machines such that

(1) if the answer is “yes”, exactly one computational path accepts,

(2) if the answer is “no”, all computational paths reject.

Observe that P ⊆ UP ⊆ NP and that an example for a language in UP is the previous

mentioned Unambiguous - SAT. Thus if the conjecture is true, then NP 6= UP and there,

for example, would be no way of reducing the effort for the determination of satisfying

assignments to SAT down to a unique choice. On the contrary, if the task of finding y

(when it exists) is always NP-hard then the conjecture is false.

One of the most interesting implications of the conjecture and the main motivation

of this paper is that if the conjecture holds, then no cracking problem of a PKCS that

can be formulated as disjoint NP-pair or promise problem respectively could be NP-

hard to crack. RSA for example is one of these systems fitting the model and that

may be one of the reasons why there had been no real competitor yet based on an

NP-hard cracking problem. On the other hand, probabilistic encryption is said to be

unaffected by the conjecture and thus being a disadvantage of it. In Section 2.2 we

will falsify this assumption and show that if the conjecture is true and the considered

cryptosystem additionally fulfills a certain condition, then it also does not comprise an

NP-hard cracking problem.

To date there is no hypothesis known that implies the ESY conjecture or all of its

consequences, fueling its power. Even so there has been some exciting progress on

variants of the conjecture recently. We will take a detailed look at this in Chapter 3.
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1.3 Public-key cryptosystems

In the year 1976, Diffie and Hellman [DH76] introduced a new variant of encryption which

became widely known as public-key cryptography or, in distinction to previous symmet-

ric approaches, as asymmetric encryption. The large benefit of public-key encryption

consists of not relying on any hidden key exchanges in contrast to classical symmetric

cryptosystems, where the same key is used both for encryption and decryption (and

therefore must be known to all participants). While public-key approaches often require

more runtime than symmetric ones (at least for large messages), it is not unusual to

combine both in hybrid systems, meaning public-key encryption for the transmission

of keys for symmetric systems. However, all of these three possibilities are currently

applied in many different algorithms. We will now come to a more formal description of

the public-key approach:

A public-key cryptosystem (PKCS) is a triple (E,D,G) with encryption function E,

decryption function D and key-generator G. All of these functions are publicly-known

and can be computed in polynomial-time. The key-generator delivers a pair of keys

(pk, sk) containing pk as public key and sk as secret key by processing G(x) for a

randomly generated string x. The secret key remains concealed and is only known

to the receiver. For a (binary encoded) plain-text message m, one may now compute

c = E(m, pk) and afterward send this cryptogram c to the receiver who then determines

m = D(c, sk).

E D

G

c

sk

pk

m m

x

Transmitter Receiver

(based on [ESY84], p.161.)

One of the most commonly known PKCSs is RSA, named after the initials of its

originators Rivest, Shamir and Adleman [RSA78]. For the sake of completeness and to
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provide an impression on how a PKCS may work in detail, we now presume to shortly

describe the general RSA-cryptosystem (based on [Bey11]). RSA works as followed:

(1) Generation of two large prime numbers p and q (commonly 1024, 2048 or 4096 bit)

and multiplication to receive n = p · q.

(2) Determination of two exponents e, d ∈ N such that e · d ≡ mod ϕ(n) 1, where ϕ

denotes Euler’s ϕ-function ϕ(n) := |Z∗n|. Then pk = (n, e) and sk = (n, d).

(3) Splitting of the plaintext message m into parts x1, ..., xk such that xi < n for

1 ≤ i ≤ k.

(4) Encryption of each of those parts with E(xi, (n, e)) = xei mod n and transmission

to the receiver.

(5) Decryption of each of the cryptograms ci with D(ci, (n, d)) = cdi mod n.

The computation of a pair (e, d) that satisfies the properties out of step two is quite

easy and can be done with the help of the extended Eucledian algorithm. Function E

and D provide efficient computation with multiple squaring and multiplication. If an

eavesdropper manages to compute one of the prime numbers p, q or the exponent d with

the help of the information (n, e) and c (the knowledge of d enables easy factorization of

n), he is able to decrypt any ciphertext within that session. Thus the security of RSA

is based on the complexity of factorizing large integer numbers (the problem is known

as FACT), for which it is neither known to be NP-complete nor if it can be done in

polynomial-time. It is assumed that FACT ∈ NPI where NPI stands for NP-Intermediate

and is the class of all problems that are are contained in NP \P not being NP-complete.

If P 6= NP then NPI 6= ∅ by Ladner’s theorem (therefore P 6= NP ⇔ NPI 6= ∅) and this

may provide some evidence.

Finally, there also exist probabilistic public-key cryptosystems, as mentioned before,

which additionally contain the factor of randomness. We will investigate those and

deliver a recent example of a probabilistic PKCS with Gentry’s homomorphic encryption

[Gen09a] in Section 2.2. The existence of such a fully homomorphic encryption system

is quite fascinating because at first, no one was ever able to construct one before and

second, this provides several possibilities for the encryption and decryption process, as

we will see in the relating section. Nevertheless, we will show that if the ESY conjecture

holds, it cannot be NP-hard to crack either.
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2 Security of public-key

cryptosystems
We said that if the ESY conjecture holds, then no cracking problem of a PKCS that can

be formulated as promise problem or disjoint NP-pair can be NP-hard. In this chapter

we will take a closer look at these transformation and why this is implied. Furthermore,

we will investigate probabilistic public-key encryption which is said to be unaffected by

the conjecture and then provide a proof that under a certain assumption, some of the

well-known probabilistic cryptosystems cannot be NP-hard to crack too.

2.1 Classical public-key cryptosystems

For the purpose of a comprehensible derivation and to illustrate the former chain of

thoughts, in this section, the construction of the responding promise problem and the

connection to the ESY conjecture will be done in the classical form for promise prob-

lems as originally considered by Even, Selman and Yacobi, meaning (Q,R) instead of

(Πyes,Πno) (keep in mind that they are convertible into each other). In Section 2.2 we

will again work with the disjoint notation for promise problems and therewith deliver

two possible approaches. This intention may be a bit confusing, but since we want to

gain a more encompassing impression on promise problems it may be quite reasonable.

As stated in the introduction, recall that a PKCS is a triple (E,D,G) with encryp-

tion function E, decryption function D and key generator G such that for a pair of

keys (pk, sk) generated by G and a plain-text message m the transmitter may compute

E(m, pk) = c and afterward send this cryptogram to the receiver (through an open

channel) who then determines D(c, sk) = m. The connection between a classical PKCS

and promise problems can be derived by considering its relating cracking problem (short:

CP) which is the problem of computing m (under knowledge of E, D, G, pk and c) such

that E(m, pk) = c. A PKCS can be deemed secure if this computational task leads to

enormous and impractical long runtime. Since function E is not forced to be onto, there

may be no m satisfying the conditions. However, E is one-one, which means that if there

is such an m, then it is unique. This problem can, at first, be formulated as decision

problem in the following way:
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CPD :=

{
〈m′, pk, c〉

∣∣∣∣m′ ≥ m, where m is the message that

satisfies E(m, pk) = c

}
The inequality m′ ≥ m is reasonable because if we can say whether the numerical value

of m′ is greater or equal than the numerical value of m (encoded as binary numbers)

then we are also able to determine the plain-text message via binary search.

To receive the related promise problem, we only need to add the promise condition to

the decision version of the cracking problem, which is the property of the existence of

such x and m.

Input : 〈m′, pk, c〉 ,
Promise Q : ∃x,m such that G(x) = (pk, sk) and E(m, pk) = c,

Property R : m′ ≥ m, where m is the message which satisfies

E(m, pk) = c.

This generates the promise problem CPP , where CPP = (Q,R). Thus we have easily

seen that the cracking problem of any classical PKCS can be formulated as a promise

problem. We will now show that every cracking promise problem is in NPP ∩ coNPP.

A promise problem belongs to NPP ∩ coNPP if and only if it has a solution in NP

and a solution in coNPP. The first property is given by concerning a non-deterministic

polynomial-time Turing machine M that on inputs of form 〈m′, pk, c〉, guesses m and x

and if the promise holds, simply checks whether m′ ≥ m. Since M solves the promise

problem and halts on every input, the language accepted by M is recursive and belongs

to NP, thus CP ∈ NPP. To see the second part, simply take M again but now check

whether m < m′. Call this Turing machine M ′. Observe that for every language L

accepted by M , there is a language L′ accepted by a Turing machine M ′ described as

above so that L = L′. Therefore there also exists a solution in coNP which leads to

CP ∈ coNPP and finally to CP ∈ NPP ∩ coNPP.

To imply the aforementioned consequences for PKCSs, it is necessary to show that Q

is in NP. To do so, we need to concern Q as decision problem (recall that every promise

can be seen as decision problem):

Q ={〈m′, pk, c〉 | ∃x,m such that G(x) = (pk, sk) and E(m, pk) = c}

Clearly, Q is polynomial verifiable. A solution or proof for an input would be the pair
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〈x,m〉 satisfying the conditions of the language. Since G and E are publicly known and

can be computed in polynomial time, these can easily be verified. So Q ∈ NP.

Because CPP ∈ NP∩ coNP and Q ∈ NP, the cracking promise problem fulfills (i) and

(iii) of the ESY conjecture and thus cannot be NP-hard (property (ii)) if the conjecture

holds.

Obviously, this result would not cause a heavy impact on practical encryption. Clearly,

the conjecture additionally implies P 6= NP and therefore may provide some evidence for

a problem like FACT to be in NPI (which means not in P), but we neither can confirm

that cracking problems of PKCSs provide polynomial-time algorithms nor that they do

not (even if a cracking problem is in P, this does not automatically lead to insecurity of

the relating PKCS). The only thing to be sure about is that no PKCS can be NP-hard

to crack, which is truly interestingly enough for theoretical aspects by itself.

One central statement out of that recent paper on the ESY conjecture [HMPRS12]

is that the conjecture, in contrast to certain assumptions, does even affect probabilistic

approaches, as we will now see in the next section.

2.2 Probabilistic public-key cryptosystems

A probabilistic public-key cryptosystem (E,D,G) (probabilistic PKCS) works the same

way a classical PKCS does, despite the fact that the encryption function E (in general)

additionally depends on a random generated string r. Thus we have E(m, r, pk) = c and

D(c, sk) = m if c is a valid cipher text for m. Note that one normally receives different

cipher texts for the same message because of the randomness yielded by r.

Due to its (more or less) recent relevance and specific properties, we will now consider

an interesting example of probabilistic encryption with Gentry’s homomorphic cryptosys-

tem [Gen09a]. The outstanding feature of Gentry’s encryption scheme is the property

of being fully homomorphic, prior also known as private homomorphic, which is some-

thing that no other cryptosystem was able to provide before. However, there came up

plenty of partially homomorphic cryptosystems (we will see the difference between those

properties later) like Elgamal [Elg85], Goldwasser-Micali [GM84] or even RSA [RSA78]

and thus the question arose whether there even exists a fully homomorphic one. We will

now investigate the corresponding advantages and what this means in particular.
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The following part contains some definitions and notations out of Gentry’s paper

[Gen09a]. For any cryptosystem one is interested in the question whether it is possible

to perform some processing on the encrypted plaintext (querying, writing into it or

simply anything that can be efficiently expressed as a circuit) only with the use of the

public key and without the necessity of decrypting or of knowing the content, as if it

would have been done before the encryption. If a cryptosystem is fully homomorphic,

then it provides this possibility and it would not matter whether something is applied

to the message before the encryption or afterward - the resulting decrypted ciphertext

would be the same. This question was originally raised by R. Rivest in 1978 and led to

some serious considerations. As an application there had been several ideas given such

as private data banks (or cloud-computing in general) where users can store encrypted

data on an untrusted server and allow the server to process on and respond to user’s

data queries without the need of additional expensive client-depending interactions for

decryption. Since then, plenty more possible ideas were listed and for sure, the reader

may imagine some by himself.

Gentry describes his cryptosystem as follows. A fully homomorphic encryption scheme

E basicly consists of three algorithms:

KeyGenE(λ) = (pk, sk) : The key generator using a security parameter λ.

EncryptE(πi, pk) = ψi : Encryption function having the plaintext and

the public key as input.

DecryptE(ψi, sk) = πi : Decryption function for ciphertexts and suiting

secret keys.

Moreover, the cryptosystem has an additional fourth algorithm EvaluateE for process-

ing encrypted data. For any circuit C of a permitted set of circuits CE , any valid public

key pk and any ciphertexts πi with EncryptE(πi, pk) = ψi, it needs to hold that:

EvaluateE(ψ1, ..., ψt, C, pk) = ψ,

where ψ is a valid encryption of C(π1, ..., πt) under pk. The computational complexity

of those algorithms should not exceed λO(1). We concern the following relating definition.

Definition 2.1. E is correct for circuits in CE if for any key-pair (pk, sk) output by

KeyGenE(λ), any circuit C ∈ CE , any plaintexts π1, ..., πt, and any ciphertexts Ψ =

〈ψ1, ..., ψt〉 with EncryptE(pk, πi) = ψi, it is the case that
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EvaluateE(Ψ, C, pk) = ψ ⇒ C(π1, ..., πt) = DecryptE(sk, ψ).

Observe that the property of being correct is quite exactly the possibility that we

have with a fully homomorphic cryptosystem as we described in the introductory part

of Section 2.2. Now we are able to state the property of being homomorphic.

Definition 2.2. E is homomorphic for circuits in CE if E is correct for CE and DecryptE

can be expressed as a circuit DE of size polynomial in λ.

Definition 2.3. E is fully homomorphic if it is homomorphic for all circuits.

Thus an encryption scheme is only partially homomorphic if it is not homomorphic

for all circuits (for example only for addition or multiplication).

Gentry separates the development of his cryptosystem into three steps. First, the con-

struction of an encryption scheme that permits evaluation of arbitrary circuits. Second,

the construction of an encryption scheme that uses ideal lattices and is almost boot-

strappable and third, the explanation of a way to decrease the depth of the decryption

circuit, without reducing the depth that the scheme is able to evaluate, to obtain a

bootstrappable encryption scheme (which means that it can actually evaluate its own

decryption circuit and therefore has a self-referential property). If one is interested in re-

ceiving more details, we refer to his paper [Gen09a] or his complete PhD thesis [Gen09b].

Unfortunately, more work needs to be done to obtain a satisfying and efficient imple-

mentation of his cryptosystem (if even possible), though we additionally note that there

also exist an extended approach of his ideas without the use of ideal lattices. We will

now show that even if the difficulties for an efficient implementation were overcome, the

relating cracking problem cannot be NP-hard to crack.

To achieve this observation we need to consider a certain characteristic for encryption

functions of probabilistic cryptosystems.

Definition 2.4. A probabilistic cryptosystem is called error-free if whenever m and m′

are two distinct messages, then for every r and public key pk, it holds that

E(m, r, pk) 6= E(m′, r, pk).

The following theorem is one of the main results out of [HMPRS12] and obviously

increases the value of the ESY conjecture.
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Theorem 2.5 ([HMPRS12]). If the ESY conjecture holds, then any error-free prob-

abilistic PKCS is not NP-hard to crack.

Proof. Given an error-free probabilistic PKCS (E,D,G), let

Πyes :=

{
〈m′, pk, c〉

∣∣∣∣ ∃m, r, x, sk such that E(m, r, pk) = c,

G(x) = 〈pk, sk〉 and m ≥ m′

}
,

Πno :=

{
〈m′, pk, c〉

∣∣∣∣∃m, r, x, sk such that E(m, r, pk) = c,

G(x) = 〈pk, sk〉 and m < m′

}
.

Since the cryptosystem is error-free we have that Πyes ∩ Πno = ∅ and both Πyes and

Πno are in NP (compare Section 2.1). Thus (Πyes,Πno) is a disjoint NP-pair. Clearly,

a separator for this pair can be used to crack the cryptosystem (use oracle queries to

the separator to generate the plain-text message m via binary search). Thus if the ESY

conjecture holds, then this problem has a separator that is not NP-hard and hence is

not NP-hard to crack.

Because the Goldwasser-Micali cryptosystem [GM84] as well as Gentry’s homomorphic

cryptosystem [Gen09a] are shown to be error-free, we receive the following corollary.

Corollary 2.6. If the ESY conjecture holds, then the Goldwasser-Micali cryptosystem

and Gentry’s homomorphic cryptosystem cannot be NP-hard to crack.

Note again that, for now, we are only talking about NP-hardness via Turing reduc-

tions. Since the proof of Theorem 2.5 depends on adaptive oracle queries, some weaker

reduction types and their corresponding ESY conjectures (see Section 3.2) do not im-

mediately imply the same consequences.

This result significantly increases the value of the ESY conjecture since probabilistic

public-key encryption was said to be unaffected by its consequences. Clearly, there also

exist many probabilistic cryptosystems which are not error-free such as the Atjai-Dwork

cryptosystem [AD97] (on the other hand, if the polynomial-time hierarchy is infinite,

this one is also known to not have a NP-hard cracking problem [NS98]). However, in

[HMPRS12] it is shown that if the ESY-conjecture holds, then the Atjai-Dwork cryp-

tosystem could be modified to efficiently check for collisions and hence would also become
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error-free. So if the ESY-conjecture holds, then the Atjai-Dwork cryptosystem is not

NP-hard to crack either.

We have now observed that some well-known probabilistic PKCSs do not comprise

NP-hard cracking problems if the conjecture holds and hence that any other error-free

PKCS is among that compilation. There also exist certain construction patterns for

the design of probabilistic cryptosystems based on NP-hard combinatorial problems (see

[FK93]). Those are provably NP-hard to crack (but often without practical relevance).

Thus if one of these can be shown to be error-free, then the ESY conjecture is wrong.

In the next chapter we will investigate the ESY conjecture for reduction types other

than Turing. We remark that the implication for non-probabilistic PKCSs of not being

NP-hard for the considered type of reductions remains the same. Consequently, those

weaker hardness assumptions may lead to weaker implications for complexity because if

P 6= NP and even if we have a problem that is, for example, not NP-hard for one-one

reductions, it still may be NP-hard for truth-table reductions. Unfortunately, only the

ESY conjecture for Turing reductions provides significant implications for the security

of PKCSs.
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3 ESY-R conjectures
The ESY conjecture has not yet come up with many possible accesses. Hence one

may think of whether the conjecture can be weakened in such a way that some of

its significant consequences remain unaffected and maybe some more interconnecting

approaches appear. Unsurprisingly, the ESY conjecture can be generalized to allow

different kinds of hardness apart from Turing hardness. This separation is useful since

some weaker reduction types actually have nearly the same set of consequences as the

original conjecture. We note that most of the definitions and results out of the following

sections are based on [HMPRS12].

3.1 Preliminaries

For a language L and a string x let x−1 define the immediate predecessor of x in standard

lexicographic order and L|x define the characteristic sequence of all predecessors of x in

standard lexicographic order: L(ε)L(0)L(1)...L(x− 1).

Moreover, let NQP (here it refers to non-deterministic quasi-polynomial and no quan-

tum complexity class) be the class of all languages that can be accepted by non-

deterministic Turing machines in quasi-polynomial-time, meaning run times slower than

polynomial but not as slow as exponential. Therefore

NQP =
⋃
c>0 NTIME(2log(n)c).

3.1.1 Truth-table reductions and strong non-determinism

Truth-table reductions are an interesting type of reduction between the classical ones

by Karp and Cook. In contrast to Turing reductions, where the Turing machine may

adaptively ask questions one by one and with respect to previous answers, all oracle

queries must be presented at the same time.

Furthermore, we will investigate strong non-determinism which is a restriction of

classical non-determinism, where none of the paths of the responding Turing machine

is allowed to output a wrong computation. Instead it may output ⊥ which can be seen

as something like “I don’t know”. The restriction even allows us to define strong non-

deterministic computable functions which cannot be done so simply when considering

classical non-determinism.
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Definition 3.1. A function f is called SNP-computable (SNQP-) if there is a non-

deterministic polynomial-time (quasi-polynomial-time) bounded Turing machineM , such

that for every x, at least one path of M(x) outputs f(x) and no path outputs a wrong

answer. Some paths may output ⊥.

Clearly, every (deterministic) polynomial-time computable function is SNP-computable

and every SNP-computable function is SNQP-computable. Since no path outputs a

wrong answer, one benefit of strong non-determinism is that we have the possibility

to invert the output of a Turing machine, for example, when considering characteristic

functions of languages.

Definition 3.2. A function f is called polynomially-bounded if there is a polynomial p

such that |f(x)| ≤ |p(x)| for all inputs x.

Now we come to the different types of truth-table reductions we will need in the

following.

Definition 3.3. A language A is

(1) polynomial k-truth-table reducible (≤P
ktt),

(2) strong, non-deterministic polynomial k-truth-table reducible (≤SNP
ktt ),

(3) strong, non-deterministic quasi-polynomial k-truth-table reducible (≤SNQP
ktt ),

to a language B, if there is a

(1)+(2) polynomial-time computable function f ,

(3) quasi-polynomial-time, polynomially-bounded, computable function f ,

and a/an

(1) polynomial-time computable function t,

(2) SNP-computable function t,

(3) SNQP-computable function t,

such that for every x

f(x) = 〈q1, ..., qk〉 and

t(x,B(q1), ..., B(qk)) = A(x).
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Function f is called the truth-table generator which computes the k queries that

represent the oracle questions, whereas function t is called the truth-table evaluator that

determines the output. The respective result can be summarized in a so-called truth-table

(example with k = 2):

t(x) B(q1) B(q2)

0 0 0

1 0 1

1 1 0

0 1 1

Note that strong, non-deterministic reductions only use strong non-determinism for

the truth-table evaluator and not for the generation of the queries. Moreover, observe

that k-truth-table reductions are a special case of classic truth-table reductions (≤tt),
where the number of queries may depend on the size of the input.

Definition 3.4. Let D denote a complexity class out of {P, SNP, SNQP} and let A and

B be two languages such that A ≤D
tt B via 〈f, t〉. The reduction is called

(1) bounded (≤Dbtt) if there is a constant k > 0 such that A ≤D
ktt B,

(2) length-increasing (≤Dktt,li) if the length of every query is bigger than the length of

the input,

(3) weakly-length-increasing (≤Dktt,wli) if there is at least one query that is bigger than

the length of the input.

Moreover, we say that a query qi is relevant if it holds that

t(x,B(q1), ..., B(qi), ..., B(qk(x))) 6= t(x,B(q1), ..., B(qi), ...B(qk(x))).

If a query qi is relevant then knowing answers to all other queries still does not help

us to determine A(x).

3.1.2 Unpredictability

The notion of unpredictability tries to capture the complexity of languages given ad-

ditional auxiliary information of all predecessors of the input. It turns out that, for
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example, SAT becomes considerably easy when having information about the satisfia-

bility of every predecessor. In contrary, it is known that EXP contains some languages

that are unpredictable for some upper bounds on the runtime of the predictors and it is

supposed that NP contains such languages too (see Section 3.4).

Unpredictability is very similar to the notion of genericity [ASFH87, ASNT96] and is

equivalent for deterministic computations [BM95].

The conditions in the following definition are in much the same manner as for the

SNP-computability of functions.

Definition 3.5. We say that a non-deterministic Turing machine M is strong if for

every input x, exactly one of the following conditions hold:

(1) at least one path of M accepts x and no path rejects,

(2) at least one path of M rejects x and no path accepts.

Some paths of the machine may output ⊥.

Definition 3.6. Let M be a strong non-deterministic Turing machine and L be a lan-

guage. M is a predictor for L if for every x ∈ L, M accepts 〈x, L|x〉 and for every x /∈ L,

M rejects 〈x, L|x〉.

Given complete information about the characteristic sequence of L regarding x, the

Turing machine M is able to determine whether x ∈ L or x /∈ L.

Definition 3.7. Let t(n) be any time bound and L and L′ be two languages such that

L ⊆ L′. We say that L is

(1) SNTIME(t(n))-unpredictable,

(2) SNTIME(t(n))-unpredictable within L′,

if for every strong non-deterministic Turing machine M that predicts L, M runs for

more than t(n) time on inputs of the form 〈x, L|x〉 for

(1) all but finitely many x.

(2) all but finitely many x ∈ L′.

Note that the running time t(n) of the predictor is in terms of the length of the input

which is 〈x, L|x〉 rather than x. Measured in terms of the length of x, it is roughly

t(|x|+ 2|x|). This observation is very important for some of the upcoming proofs.
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3.1.3 Secure one-way functions and pseudorandom generators

Intuitively, one-way functions are functions that are easy to compute but hard to invert

(which is the task of finding an x on given y such that f(x) = y). Though, the question

is still open as to whether such ones even exist. None of the functions that are currently

applied in certain algorithms for cryptography, personal identification, authentication

and so forth have been proven to completely satisfy the conditions for being a secure

one-way function (which besides would imply that P 6= NP).

Furthermore, we need to state some definitions about O-oracle circuits. An O-oracle

circuit C, denoted by CO, is nothing more than a Boolean circuit with access to oracle

O (implemented as specific oracle-gate).

The whole theory of (secure) one-way functions, pseudorandom generators or actually

hard-core functions is quite complex and requires much background knowledge. The

following definitions are only the specific parts out of these concepts which we need

to state to obtain some results for the ESY conjecture. Hence if one is interested in

receiving more context we refer to [GL89, HILL99] or similar papers.

Definition 3.8. A family of functions {fn} : Σn → Σl(n) is one-way, s(n)-secure against

oracle O if fn is uniformly computable in polynomial-time and for every non-uniform

circuit CO of size at most s(n) and for sufficiently large n, it holds that

Pr
x∈Σn

[
CO(fn(x)) ∈ f−1

n (fn(x))
]
≤ 1

s(n)
.

This means that for sufficiently large n and any x of that size, even for any non-

uniform oracle-circuit of size at most s(n) given fn(x), the probability that the circuit

computes an element of the preimage of fn(x) must not exceed 1
s(n)

. Thus f−1
n is a rather

hard function. The property for fn of being uniformly computable in polynomial time

relates to the whole time for determining the function fn and computing fn(x) (x ∈ Σn).

For any function f : {0, 1}n → {0, 1} and oracle O, the circuit complexity of f relative

to O-oracle, denoted by CO
f , is the size of the smallest O-oracle circuit that computes

f on every input of size n. If a family of functions {fn} is one-way, s(n)-secure against

O-oracle circuits, then f−1
n has a circuit complexity relative to O-oracle of at least s(n).

The next definition concerns pseudorandom generators. These are some kind of de-

terministic procedures computing pseudorandom strings such that no statistical test is
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able to distinguish between those and the uniform distribution. Thus pseudorandomness

is no ”real“ randomness but provides the benefit of being easy to compute and always

mapping the same inputs (often called ”seeds“) to the exact same output, which makes

it useful for, for example, testing or different security protocols.

Definition 3.9. A pseudorandom generator is a function Gn out of a family of functions

{Gn} : Σm(n) → Σn such that Gn is uniformly computable in time 2O(m(n)) and for every

circuit C of size at most O(n), it holds that

| Pr
x∈Σn

[C(x) = 1]− Pr
y∈Σm(n)

[C(Gn(y)) = 1]| ≤ 1/8.

The probability that a circuit evaluates to true on a random input x must be about

the same probability (tolerance 12%) that the same circuit evaluates to true on the

pseudorandom string computed by the generator Gn.

Finally, given an oracle O, G is said to be secure against O-oracle if the above in-

equality holds for all O-oracle circuits CO of size at most O(n), for almost all n.

3.2 Generalization, ESY-m and ESY-tt

In this section we will concern generalized forms of the ESY conjecture along with that

one for Turing reductions. By now, there have already been several investigations on

certain other reduction types such as for (polynomial-time) many-one reductions.

ESY-R conjecture. For every two disjoint languages A,B ∈ NP, there is a separator

C, meaning A ⊆ C and B ∩ C = ∅, that is not R-hard for NP.

Although the ESY conjecture deals with arbitrary languages A and B, one of the

languages can always be taken to be SAT which eases some of the upcoming proofs.

Observation 3.10. The ESY-R conjecture is equivalent to the following statement:

For every set B in NP that is disjoint from SAT, there is a separator that is not R-hard

for NP.

Proof. Let (C,D) be a disjoint NP-pair. Let f be a one-one, length-increasing reduction

from C to SAT (every reduction to SAT can be modified to be one-one and length-

increasing by simply adding an encoded form of the input to the end of the formula

21



which does not effect the satisfiability). Consider the disjoint pair (SAT, f(D)). Since f

is length-increasing, f(D) ∈ NP (note that the image of f consists of formulas regardless

of whether the inputs are out of C or D). Assume there is a separator S for (SAT, f(D))

that is not R-hard for NP. Then SAT ⊆ S and S ∩ f(D) = ∅. Let S ′ := {y | f(y) ∈ S}.

C

S’

D

SATf(C)

S

Σ∗ Σ∗

f(D)

f

f

f−1

Observe that C ⊆ S ′ and D ∩ S ′ = ∅. Therefore S ′ is a separator for (C,D). If S ′ is

R-hard for NP, then it implies that S is also R-hard for NP. This is a contradiction.

If for any two types of reductions, one reduction is stronger than the other, then

there is a simple relation between those reductions and the ESY conjectures for those

reductions.

Observation 3.11. Let R and R′ be two types of reductions, such that R′-hardness

for NP implies R-hardness for NP. If the ESY-R conjecture holds then the ESY-R′

conjecture holds.

Proof. Suppose R′-hardness for NP implies R-hardness for NP and that the ESY-R′

conjecture does not hold. Then there exists a disjoint NP-pair (A,B) such that all

separators are R′-hard for NP. Because R′-hardness for NP implies R-hardness for NP,

every separator of (A,B) must also be R-hard for NP. Thus the ESY-R conjecture does

not hold.

This observation allows us to collate different types of the conjecture. Let A and B

be two languages and ≤D
r denote the D-time r-reduction between two languages, where

D is a complexity class out of {P, SNP, SNQP}. Since the following implications hold:
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A ≤D
m B ⇒ A ≤D

1tt B ⇒ ... ⇒ A ≤D
btt B ⇒ A ≤D

tt B ⇒ A ≤D
T B

⇑ ⇑ ⇑
A ≤D

1tt,li B ⇒ ... ⇒ A ≤D
btt,li B ⇒ A ≤D

tt,li B

, we receive these connections for the ESY-≤D
r conjectures:

ESY-≤D
T ⇒ ESY-≤D

tt ⇒ ESY-≤D
btt ⇒ ... ⇒ ESY-≤D

1tt ⇒ ESY-≤D
m

⇓ ⇓ ⇓
ESY-≤D

tt,li ⇒ ESY-≤D
btt,li ⇒ ... ⇒ ESY-≤D

1tt,li

Note that for getting from implications within reduction types to the corresponding

implications within ESY-R conjectures (or vice versa), it is always necessary to think

the other way around.

Additionally, with

A ≤P
r B ⇒ A ≤SNP

r B ⇒ A ≤SNQP
r B,

it follows that

ESY-≤SNQP
r ⇒ ESY-≤SNP

r ⇒ ESY-≤P
r .

These implications are worth mentioning since we need to work with some more com-

plicated forms of the conjecture as, for example, the ESY-≤SNQP
ktt,wli conjecture which will

be considered in Section 3.4.

The next observation is a generalization of the connection between the ESY conjecture,

NP and coNP. Recall that ≤P
1 stands for polynomial-time one-one reductions.

Observation 3.12. Let R be a reduction type such that if A ≤P
1,li B for languages A

and B, it holds that A ≤R B. Then the ESY-R conjecture implies NP 6= coNP.

Proof. Suppose NP = coNP and consider the disjoint NP-pair (SAT, SAT). The only

separator is SAT which is ≤P
m-hard for NP by Cook’s Theorem. Since the generic re-

duction f out of the proof of Cook’s Theorem can be modified to simply add an unique

encoded form of the input to the resulting formula which does not effect the satisfiabil-

ity, SAT is also ≤P
1 -hard for NP. Observe that with this modification the reduction also
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becomes length-increasing because |f(x)| is at least of size |x|. Hence SAT is ≤P
1,li-hard

for NP and moreover also R-hard for NP for every R-reduction that is implied by the

≤P
1,li-reduction. Thus the ESY-R conjecture does not hold.

We will now have a look at two results for the ESY-m and the ESY-tt conjecture (if

not otherwise mentioned, we are always talking about polynomial-time reductions).

Proposition 3.13 ([GSSZ04]). NP 6= coNP if and only if the ESY-m conjecture holds

(there is no disjoint NP-pair all of whose separators are ≤P
m-hard for NP).

Proof. We will prove the negation and moreover only need to take care of the second

direction because with Observation 3.12 it already has been shown that NP = coNP

implies that the conjecture is wrong for those types of reductions for which SAT is NP-

hard. Let (A,B) ∈ DisNP and suppose that all of its separators are ≤P
m-hard for NP.

Because B is a separator for (A,B), it holds that SAT ≤P
m B and hence SAT ≤P

m B.

Therefore SAT ∈ NP and finally NP = coNP.

Observation 3.14 ([HMPRS12]). The ESY-tt conjecture implies that NP 6= UP,

NP 6= coNP and that satisfying assignments of Boolean formulas cannot be computed

by single-valued NP-machines.

Proof. Assume NP = UP. Thus SAT ∈ UP and hence let R be a verifier that witnesses

that SAT is in UP (this means that for any x, there is at most one w with R(x,w) = 1).

Consider the following two disjoint languages in NP (compare with Section 1.2):

A :={〈x, i〉 | ∃w such that R(x,w) = 1 and the i-th bit of w is 1 },

B :={〈x, i〉 | ∃w such that R(x,w) = 1 and the i-th bit of w is 0 }.

Though this observation does not matter here, note that w cannot directly be seen as

assignment for the variables since Boolean formulas can have more than one satisfying

assignment but w must be unique. Now consider any separator S for (A,B). Let m be

the number of Boolean variables in the formula x (observe that SAT(x) ⇔ A(〈x, i〉) ⊕
B(〈x, i〉) for 1 ≤ i ≤ m). Below is a truth-table reduction from SAT to S.

1. Produce the queries 〈x, 1〉,...,〈x,m〉.

2. If 〈x, i〉 ∈ S (⇒ 〈x, i〉 /∈ B), then ai := 1, else, ai := 0.

3. Accept x if and only if R(x, a1a2...am) = 1.
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As described for Turing reductions in the introductory part 1.2, we generate each of

the m bits of w by querying (non-adaptively) to S and therewith receive the unique

certificate if x is satisfiable. Hence SAT ≤P
tt S and that results in S being NP-hard. So

the ESY-tt conjecture does not hold.

A similar argument shows that if the ESY-tt conjecture holds, then satisfying assign-

ments of Boolean values cannot be computed by single-valued NP-machines (see [GS88]

for more information on NPSV and the affiliation).

Lastly, consider Observation 3.12 for the implication of NP 6= coNP (every ≤P
1,li-

reduction is a ≤P
tt-reduction).

These implications indicate that the ESY-tt conjecture could be as hard to prove as

the original conjecture. We will take a step further and consider the ESY-btt conjecture

which turned out to provide better approaches.

3.3 ESY-≤D
btt,li

In this section we will investigate several results for the ESY-≤SNP
btt,li conjecture (hence

for the ESY-≤P
btt,li conjecture) and afterward relax the length-increasing restriction in

Section 3.4 to obtain some stronger statements.

At first we need a result in regard to the existence of unpredictable sets. Recall that

a language L is SNTIME(t(n))-unpredictable within another language L′, if L ⊆ L′ and

every strong non-deterministic Turing machine that predicts L, runs for more than t(n)

time for all but finitely many inputs of form 〈x, L|x〉 and with x ∈ L′.

Theorem 3.15. For every r > 0 there is a set R that is SNTIME(2log(n)r)-unpredictable

within SAT.

The proof mainly consists of two steps. First, that known results about generic lan-

guages imply the existence of DTIME(22log(n)
r

)-unpredictable languages and the observa-

tion that every DTIME(2t(n))-unpredictable language is SNTIME(t(n))-unpredictable and

second, the construction of an unpredictable language within SAT that is SNTIME(2log(n)r)-

unpredictable out of an arbitrary language. For a more detailed version we refer to

[HMPRS12]

We now state two observations for the queries produced by truth-table reductions

under the following precondition.
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Precondition. There exists a disjoint NP-pair (A,B) with separator S (then A ⊆ S

and S ∩B = ∅) and there is a language C that ≤SNP
ltt -reduces to S via 〈f, t〉 for an l ≥ 1

but does not ≤SNP
(l−1)tt-reduce to S.

For an input x and the above truth-table generator f , let f(x) = 〈q1, ..., ql〉. We

suppose that ql is the largest query (in standard lexicographic order) and denote it with

bx. Recall that a query is relevant if it is indispensable for the correct computation of

t(x, f(x)).

Observation 3.16. Under the above precondition there exist infinitely many x such

that bx is relevant.

Proof. Suppose not. Then for all but a finite number of x, we could remove bx from the

list of queries and therewith obtain an ≤SNP
(l−1)tt-reduction from C to S. This contradicts

that C does not ≤SNP
(l−1)tt-reduce to S.

Let

T :={x | bx is relevant }.

Observation 3.17. Under the above precondition there exist infinitely many x ∈ T

such that bx /∈ A ∪B.

Proof. Suppose not. Then for all but finitely many x ∈ T , the query bx is relevant and

belongs to A ∪B. Hence consider the following reduction 〈f ′, t′〉 from C to S: on input

x, f ′ first computes f(x) = 〈q1, q2, ..., ql−1, bx〉 and then output the queries 〈q1, ..., ql−1〉.
Let Q1 and Q2 be two polynomial-time computable verifier for A and B respectively

such that the length of witnesses for positive instances in A and B is bounded by nr,

r > 0. We now describe t′:

1. Let b1 = S(q1), ..., bl−1 = S(ql−1).

2. Compare t(x, b1, ..., bl−1, 0) with t(x, b1, ..., bl−1, 1) to check whether bx is relevant

or not. If bx is not relevant, then output t(x, b1, ...bl−1, 0) (or t(x, b1, ...bl−1, 1)).

3. Guess a witness w ∈ Σnr . IfQ2(bx, w) holds (bx ∈ B), then output t(x, b1, ..., bl−1, 0).

4. If Q2(bx, w) does not hold, then guess a witness u ∈ Σnr . If Q1(bx, u) holds (bx ∈ A)

then output t(x, b1, ..., bl−1, 1), else output ⊥.
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We claim that the above reduction is an ≤SNP
(l−1)tt-reduction from C to S, which would

contradict that C does not ≤SNP
(l−1)tt-reduce to S. Clearly, f ′ produces only l−1 queries. If

bx is not relevant, then t′(x, b1, ..., bl−1) = t(x, b1, ..., bl−1, 0) = t(x, b1, ..., bl−1, 1) = C(x)

by our initial assumption that C ≤SNP
ltt -reduces to S via 〈f, t〉. Hence suppose that bx

is relevant. Then for all but finitely many x, bx is in A ∪ B and moreover, we are

able to simply ignore the finitely many x for which bx is not in A ∪ B (only finitely

many exceptions). If bx ∈ B, then bx /∈ S (recall that B and S are disjoint) and

therefore t′(x, b1, ..., bl−1) = t(x, b1, ..., bl−1, 0) = C(x). If bx ∈ A, then bx ∈ S. Thus

t′(x, b1, ..., bl−1) = t(x, b1, ..., bl−1, 1) = C(x). If bx /∈ A ∪ B then the output is ⊥.

Thus the reduction is always correct. It remains to show that this is an SNP-reduction.

Hence f ′ must be computable in deterministic polynomial-time and t′ has to be SNP-

computable. The first can be seen quite easily since f ′ mainly computes f from the

SNP-reduction 〈f, t〉. To see the second, we take a look at the steps 2-4 and again

observe that t is SNP-computable, so we only need to focus on the remainder. If bx ∈ B,

then there is a w ∈ Σnr such that Q2(bx, w) holds (step 3) and hence there is at least

one path which outputs the correct answer. Because B is disjoint from A, for every

u ∈ Σnr , Q1(bx, u) does not hold (step 4) and thus no path outputs the wrong answer.

A similar argumentation shows that if bx ∈ A, then bx /∈ B and there is no w ∈ Σnr

such that Q2(bx, w) holds, but there is an u ∈ Σnr such that Q1(bx, u) holds. Thus C

≤SNP
(l−1)tt-reduces to S and this ends the proof.

The following Theorem is one of the main results out of [HMPRS12].

Theorem 3.18 ([HMPRS12]). If NP 6= coNP then the ESY-≤SNP
btt,li conjecture is true.

Proof. Suppose NP 6= coNP. Let (A, SAT) be a disjoint NP-pair and Q1 and Q2 be two

polynomial-time computable verifier for A and SAT respectively. Assume that the length

of witnesses for positive instances in A and SAT is bounded by nr, r > 0. Let R be a

set that is SNTIME(2log(n)2r)-unpredictable within SAT (exists by Theorem 3.15). This

provides the separator S := A ∪ R for (A, SAT). We will show that there is no k ≥ 0

such that S is ≤SNP
ktt,li-hard for NP and achieve this by induction over k. For the base case

consider k = 0. This means that the number of queries for the truth-table reduction

is zero and that there is an SNP-computable function t such that t(x) = SAT(x). This

implies NP = coNP since strong non-determinism allows to complement outputs and

therewith contradicts the hypothesis NP 6= coNP. Thus S cannot be ≤SNP
0tt,li-hard.
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As the inductive hypothesis, assume that S is not ≤SNP
(l−1)tt,li-hard (we use l to dis-

tinguish between this induction and the definition of a ≤ktt-reduction). Now suppose

that there is a length-increasing l-truth-table reduction 〈f, t〉 such that SAT ≤SNP
ltt,li S for

contradiction. For an input x, let f(x) = 〈q1, ..., ql−1, bx〉, where bx is assumed to be

the largest query. Observe that the proofs of Observation 3.16 and 3.17 still go through

if we modify the assumptions for the reductions from C to S out of the precondition

to include the property of being length-increasing. This results to the following claim

(consider the pair (A, SAT) and C = SAT to suit the languages in the precondition).

Claim 1. There exist infinitely many y /∈ A ∪ SAT with the following property: There

exists an x such that |x| < |y|, y = bx and y is relevant.

Note that the property |x| < |y| results out of f being length-increasing. This allows us

to build the following predictor for R (to recall: a predictor is a strong non-deterministic

Turing machine that for every y ∈ R, accepts 〈y,R|y〉 and for every y /∈ R, rejects

〈y,R|y〉). Let M be a strong non-deterministic algorithm that decides R (no further

requirements apart from the existence) and I be the set of all y for which the conditions

of Claim 1 hold (we want to come to a result about the runtime on those infinitely many

inputs y ∈ I). The predictor works as follows.

1. Input 〈y,R|y〉.

2. If y ∈ A ∪ SAT, then run M(y) and stop.

3. Search for an x such that |x| < |y| and bx = y. If no such x is found then run

M(y) and stop.

4. Let f(x) = 〈q1, ..., ql−1, y〉 (ql = bx = y by step 3). Compute bi = S(qi), where

1 ≤ i ≤ l − 1 and S = A ∪R (⇒ (qi ∈ S ⇔ (qi ∈ A ∨ qi ∈ R))), by

a) Decide the membership of qi ∈ A by running a brute force algorithm for A

(with the help of the verifier Q1).

b) Decide the membership of qi ∈ R by looking at R|y.

5. Compare t(x, b1, ..., bl−1, 0) with t(x, b1, ..., bl−1, 1) to check whether y is relevant or

not. If y is not relevant, then run M(y) and stop.

6. Now it is ensured that y ∈ I. Compute SAT(x). Find the unique bit b such that

SAT(x) = t(x, b1, ..., bl−1, b).
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7. Accept if and only if b equals 1.

Note that no path of the predictor is allowed to output wrong answers (restriction to

be a strong Turing machine) and hence it is not allowed to simply, non-deterministically

guess witnesses for A or SAT (see step 2 and 4a).

Claim 2. The above predictor correctly decides R and for infinitely many strings from

SAT runs in time 2log(n)2r .

If y /∈ I, then the predictor runs M(y) and thus is correct on all such y. Now let

y ∈ I. We know that SAT(x) = t(x, b1, ..., bl−1, S(y)). Since y is relevant, SAT(x) 6=
t(x, b1, ..., bl−1, S(y)). Therefore the b out of step 6 equals S(y). Because y /∈ A∪SAT, it

holds that y ∈ S (b = 1, step 7) if and only if y ∈ R. Thus the above predictor correctly

decides every y in I and hence correctly decides R.

Now we will show that for every y ∈ I (infinitely many!), the above predictor halts in

quasi-polynomial time. Let |y| = m and note that the length of x found in step 3 is at

most m (more precise: m− 1). Deterministic checking for membership of y in A ∪ SAT

takes O(2m
r
) time. Since y = bx is the largest query produced, it holds that |qi| ≤ m

for 1 ≤ i ≤ l − 1, and since A can be decided in time 2n
r
, step 4a takes O(2m

r
) time.

Because y > qi for 1 ≤ i ≤ l − 1 (again in standard lexicographic order), step 4b takes

polynomial time. Computing SAT(x) takes O(2m) time. Lastly, the predictor computes

the function t. However, t is SNP-computable which means that its computation time

is sub-exponential and negligible. Thus the total time taken is O(2m
r
) and hence also

O(2m
r+1

). Since the runtime of the predictor is measured in terms of the length of

〈y,R|y〉, which is at least 2m, the total time taken becomes O(2log(n)r+1
) for input length

n. Hence for every y ∈ I, the predictor runs in time 2log(n)2r . Because I is an infinite set

and by definition is a subset of SAT, the claim follows.

The existence of a predictor forR with runtime 2log(n)2r contradicts the SNTIME(2log(n)2r)-

unpredictability within SAT and thus the definition of R. Because Claim 1 and 2 result

out of the assumption that SAT ≤SNP
ltt,li-reduces to S, this cannot hold. Therefore we have

shown that S is not ≤SNP
ltt,li-hard for NP. This completes the induction step. Thus there

is no k ≥ 0 such that S is ≤SNP
ktt,li-hard for NP and hence S cannot be ≤SNP

btt,li-hard for NP.

This completes the proof of the theorem.

The main result of this section is a corollary of Theorem 3.18.
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Theorem 3.19 ([HMPRS12]). NP 6= coNP if and only if the ESY-≤P
btt,li conjecture

holds.

Proof. Suppose NP 6= coNP. Then the ESY-≤SNP
btt,li conjecture is true by Theorem 3.18.

Since ESY-≤SNP
btt,li implies ESY-≤P

btt,li (see the part behind Observation 3.11), the first

direction holds. The second direction directly follows by Observation 3.12 (every ≤P
1,li-

reduction is a ≤P
btt,li-reduction).

Thus the ESY-≤P
btt,li conjecture is equivalent to NP 6= coNP, as it holds for the ESY-

≤P
m conjecture. Unfortunately, we have no hypotheses yet that imply one of those.

Though, we actually have two for the ESY-≤P
btt conjecture, as we will see in the next

section.

3.4 ESY-≤P
btt

In this section we relax the length-increasing requirement and consider general bounded

truth-table reductions. We show two interesting relations between the existence of cer-

tain unpredictable sets, secure one-way functions against O-oracle circuits and the ESY-

≤P
btt conjecture.

Theorem 3.20 ([HMPRS12]). If NP has an SNTIME(n2)-unpredictable set, then the

ESY-≤P
btt conjecture holds.

Recall that the runtime of the predictor refers to the length of the input which is

〈x, L|x〉 instead of x (approximately |x|+ 2|x| in terms of the length of x).

Some parts of the proof are very similar to the proof of Theorem 3.18. Hence we will

focus on the differences and shorten some redundant parts.

Proof. Let U be an SNTIME(n2)-unpredictable set in NP and (A, SAT) be a disjoint

NP-pair. As before, let Q1 and Q2 be polynomial-time computable verifier for A and

SAT and again assume that the lengths of witnesses is bounded by nr. Since NP has an

SNTIME(n2)-unpredictable set it follows that NP has an SNTIME(2log(n)2r)-unpredictable

set which we call G (this observation results out of a similar technique as used in

[ASTZ97] called “reverse padding trick” and will not further be described here). Now let

G0 := {x |x0 ∈ G } and G1 := {x |x1 ∈ G } (x ∈ {0, 1}∗) and observe that G0, G1 ∈ NP.
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Claim 1. Since G is SNTIME(2log(n)2r)-unpredictable, neither G0 nor G1 is in NP∩coNP.

Suppose G0 is in NP ∩ coNP. Then we are able to build the following predictor for

G which then contradicts the SNTIME(2log(n)2r)-unpredictability. Let M be a strong

non-deterministic algorithm that decides G (no further requirements apart from the

existence) and R1 and R2 be two polynomial-time computable verifier for G0 and G0

respectively. Assume that the runtime of R1 and R2 is bounded by nk for k > 0 and

that the lengths of witnesses are bounded by ns for s > 0.

1. Input 〈y,G|y〉.

2. If y = x1 or y = ε, then run M(y) and stop.

3. Otherwise it holds that y = x0. Guess a witness w ∈ Σns . If R1(x,w) holds

(⇒ x ∈ G0 ⇒ y ∈ G) then accept {y,G|y}.

4. If R1(x,w) does not hold, then guess a witness u ∈ Σns . If R2(x, u) holds (⇒ x ∈
G0 ⇒ y /∈ G) then reject {y,G|y}, else output ⊥.

Clearly, if y = x1 or y = ε, then the predictor correctly decides G by computing

M(y). If y = x0, then it holds that y ∈ G ⇔ x ∈ G0. Either there exists a witness w

such that R1(x,w) holds or there exists a witness u such that R2(x, u) holds. Hence at

least one path outputs the correct answer and no path outputs a wrong answer (some

paths outputs ⊥). Since the runtime of R1 and R2 is bounded by nk, the runtime of

the predictor is O(nk) for infinitely many inputs (there exist infinitely many y of form

y = x0). Because the runtime is clearly within 2log(n)2r for infinitely many inputs and the

predictor is correct on all inputs, this contradicts the SNTIME(2log(n)2r)-unpredictability

of G. The same argument, but the other way around, shows that G1 cannot be in

NP ∩ coNP.

We will now show that with the above result and the existence of the SNTIME(2log(n)2r)-

unpredictable set G, we are able to construct a separator for (A, SAT) that is not ≤P
btt-

hard for NP.

Let G′ := G1 \ SAT and S be the separator A ∪ G′. Then A ⊆ S and S ∩ SAT = ∅.
We claim that S is not ≤P

btt-hard for NP and again show this by induction. Moreover,

we proof a stronger statement. Since G0 is in NP, the claim follows if for every k ≥ 0,

G0 does not ≤SNP
ktt -reduce to S.
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The base case is when k = 0 and the number of queries is zero. This means that there

is an SNP-computable function t such that t(x) = G0(x). Hence G0 ∈ NP ∩ coNP since

strong non-determinism allows to complement outputs. This is a contradiction because

G0 was proven to be not in NP ∩ coNP.

As the inductive hypothesis, assume that G0 does not ≤SNP
(l−1)tt-reduce to S. We will

now prove that G0 does not ≤SNP
ltt -reduce to S. Hence assume that G0 actually does

≤SNP
ltt -reduce to S and let 〈f, t〉 be one such reduction from G0 to S. Given x, let Qx

denote the set of queries produced by f(x) and let bx be the largest query, as it was in

the proof of Theorem 3.18.

Claim 2. For all but finitely many x, it holds that x0 < bx1 in standard lexicographic

order.

Suppose the opposite and that there exist infinitely many strings x such that x0 > bx1.

Since bx is the largest query, it holds for infinitely many x that x0 > qi1 and x > qi, for

every qi ∈ Qx. Again, this enables us to build the following predictor for G. As before,

let M be a strong non-deterministic algorithm that decides G.

1. Input 〈y,G|y〉.

2. If y = x1 or y = ε, run M(y) and stop.

3. Otherwise it holds that y = x0. Use f to compute Qx = {q1, ..., ql}, where bx = ql.

If x ≤ bx, run M(y) and stop.

4. Now it holds that y > bx. Determine S(qi), where 1 ≤ i ≤ l and S = A ∪G′, by

a) Decide the membership of qi ∈ A by running a brute force algorithm for A

(with the help of the verifier Q1).

b) Decide the membership of qi ∈ G′ (recall: G′ = G1 \ SAT) by deciding the

membership in G1 and SAT via looking at 〈y,G|y〉 (qi1 < y and qi ∈ G1 ⇔
qi1 ∈ G) and computing SAT(x), since it holds that qi ∈ G′ ⇔ (qi ∈ G1∧ qi /∈
SAT).

5. Determine G0(x) by computing t(S(q1), ..., S(ql)). This will tell whether y ∈ G or

not because y = x0 and x ∈ G0 ⇔ x0 ∈ G.
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It is easy to see that the above predictor correctly decides G. Suppose |y| = m. Since

t is SNP-computable, the total time taken for step 3 to 5 is at most 2m
2r

. Because there

exist infinitely many y of the form y = x0 and the runtime is measured in terms of the

length of 〈y,G|y〉 := n, the predictor runs in time 2log(n)2r for infinitely many inputs.

This contradicts the SNTIME(2log(n)2r)-unpredictability of G.

As before, we consider whether a query is relevant or not. Observation 3.16 and 3.17

and Claim 2 result in the following claim (for the precondition: consider (A, SAT) as

disjoint NP-pair and let C be G0).

Claim 3. There exist infinitely many y /∈ A ∪ SAT with the following property: There

exists an x with x < y such that bx = y and y is relevant.

Note that the property x < y follows from the result x0 < bx1 out of Claim 2 and not

because of f being length-increasing (which it is not here) as it was the case in Claim

1 in the proof of Theorem 3.18 (there we received |x| < |y|). We will now describe a

predictor for G. As before, let M be a strong non-deterministic algorithm that decides

G and let I be the set of all y for which the conditions of Claim 3 hold (again, we want

to come to a result about the runtime on this infinitely many y ∈ I). The predictor

works as follows (compare with the predictor in the proof of Theorem 3.18:

1. Input 〈z,G|z〉.

2. Let z = yb. If b = 0 or y ∈ A ∪ SAT, run M(z) and stop.

3. Search for an x such that x < y and bx = y. If there is no such x, then run M(z)

and stop.

4. Now it holds that z = y1 and y /∈ A ∪ SAT. Let f(x) = 〈q1, ...ql−1, y〉. Compute

bi = S(qi), where 1 ≤ i ≤ l − 1 and S = A ∪G′, by

a) Decide the membership of qi ∈ A by running a brute force algorithm for A

(with the help of the verifier Q1).

b) Decide the membership of qi ∈ G′ (recall: G′ = G1 \ SAT) by deciding the

membership in G1 and SAT via looking at 〈z,G|z〉 (z > y ⇒ z > qi since

y > qi, and qi ∈ G1 ⇔ qi1 ∈ G) and computing SAT(qi), since it holds that

qi ∈ G′ ⇔ (qi ∈ G1 ∧ qi /∈ SAT).
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5. Compare t(x, b1, ..., bl−1, 0) with t(x, b1, ..., bl−1, 1) to check whether y is relevant or

not by comparing . If y is not relevant, then run M(z) and stop.

6. Now it is ensured that y ∈ I. Compute SAT(x). Find the unique bit b such that

SAT(x) = t(x, b1, ..., bl−1, b).

7. Accept if and only if b equals 1.

Claim 4. The above predictor correctly decides G and for infinitely many strings runs

in time 2log(n)2r .

The proof is very similar to the proof of Claim 2 out of the proof of Theorem 3.18, so

we presume to skip the statement of nearly the same explanation. The main difference

in the runtime of the predictor is the computation of SAT(qi) for 1 ≤ i ≤ l − 1 in step

4b, which takes O(2m) time for |y| = m (note that |qi| ≤ m) and therefore does not

significantly increase the overall runtime.

The existence of a predictor forG with runtime 2log(n)2r contradicts the SNTIME(2log(n)2r)-

unpredictability and thus the definition of G. Because Claim 1-4 result out of the as-

sumption that G0 ≤SNP
ltt -reduces to S, this cannot hold. Therefore we have shown that

S is not ≤SNP
ltt -hard for NP. This completes the induction step. Thus there is no k ≥ 0

such that S is ≤SNP
ktt -hard for NP and hence S cannot be ≤SNP

btt -hard for NP. Clearly, this

implies that S cannot be ≤P
btt-hard for NP. This completes the proof of the theorem.

We will now come to the second set of hypotheses that imply the ESY-≤P
btt conjecture.

The following part requires the notions out of Section 3.1.3.

Observation 3.21. Suppose that every set A that is ≤SNP
ktt -hard for NP is ≤SNP

ktt,wli-hard

for NP. Then NP 6= coNP if and only if the ESY-≤P
btt conjecture holds.

Proof. The second direction of the bi-implication unconditionally holds by Observa-

tion 3.12. Thus we only need to focus on the first. With Theorem 3.18 we have shown

that NP 6= coNP implies the truth of the ESY-≤SNP
btt,li conjecture and therefore also of the

ESY-≤P
btt,li conjecture (Observation 3.11). Hence we consider the proof of Theorem 3.18

and try to remove the necessity of the reduction to be length-increasing. To achieve

this, we need to make use of the above assumption that every set A that is ≤SNP
ktt -hard

for NP is ≤SNP
ktt,wli-hard for NP. The only parts of the proof of Theorem 3.18 where the
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length-increasing property was required were in Claim 1 and in the runtime analysis of

Claim 2. Thus assume that there is an ≤SNP
ltt -reduction and no ≤SNP

(l−1)tt-reduction from

SAT to S (hence no ≤SNP
(l−1)tt,wli-reduction) in place of the length-increasing reductions

out of the proof of Theorem 3.18. Then by our assumption, there also is an ≤SNP
ltt,wli-

reduction 〈f, t〉 from SAT to S. Observe that the proof of Observation 3.16 still goes

through, even if we consider the above weakly length-increasing reduction for the pre-

condition (though, if we remove the largest query, then the resulting reduction may not

be weakly length-increasing anymore, but we additionally have that there does not exist

any ≤SNP
(l−1)tt-reduction). Moreover, since 〈f, t〉 is weakly length-increasing, it holds for

every x, that there is at least one query that is larger than x and in particular, the

biggest query y = bx must be larger than x. Thus Claim 1 still remains and enables

us to build the respective predictor for R. Observe, that because y = bx is the largest

query produced and because it is also larger than x, it again constrains the runtime of

the predictor in the analysis of Claim 2. Hence with these changes, based on the above

assumption, the proof of Theorem 3.18 still holds, implies the truth of the ESY-≤SNP
btt

conjecture and furthermore the truth of the ESY-≤P
btt conjecture.

The next observation is quite similar, though it deals with quasi-polynomial reductions

and NQP instead of NP. Observe that the proof of Observation 3.21 still goes through

if we replace the SNP-reductions with SNQP-reductions and demand for NQP 6= coNP

instead of NP 6= coNP.

Observation 3.22. Suppose that every set A that is ≤SNQP
ktt -hard for NP is ≤SNQP

ktt,wli-hard

for NP and that NQP 6= coNP. Then the ESY-≤P
btt conjecture holds.

We now state two results where each of them implies one of the hypotheses for the

above Observation 3.22. Afterward, we will summarize the hypotheses for those results

in Theorem 3.28 and finally obtain a further indication for the ESY-≤P
btt conjecture.

Observation 3.23. Suppose that there exists an ε > 0 and a one-one, one-way function

that is 2n
ε
-secure against NP ∩ coNP-oracle circuits. Then NQP 6= coNP.

Proof. Note that every one-way function f can be trivially inverted by a polynomial-size

circuit with an NP-oracle. To see this, consider the oracle

O := {〈x, y〉 | ∃x′ : f(xx′) = y }
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to build up x bit by bit. Now suppose NQP = coNP (hence NP = coNP and also

NQP = coNQP which finally results to NQP = coNP = NP = coNQP). Then every one-

way function can be trivially inverted by a polynomial-size circuit with an NQP∩coNQP-

oracle (NQP ∩ coNQP = NP). A simple padding argument shows that one can convert

such circuits into quasi polynomial-size circuits with NP∩coNP-oracles. This could work

as followed:

x 7−→ x$...$ s.t. |x$...$| = 2log(|x|)
k

(for a k ≥ 1),

O′ := {x$...$ | x ∈ O}.

Observe that if O is an NQP ∩ coNQP-oracle, then it holds that O′ is an NP ∩ coNP-

oracle because the size of the inputs is quasi-polynomial larger than the size of the inputs

to O. The respective circuit grows by the same factor since we need quasi-polynomial

many additional gates for the quasi-polynomial many $ as input for the oracle-gate.

Thus there is no ε > 0 such that there is a one-one, one-way function that is 2n
ε
-secure

against NP ∩ coNP-oracle circuits.

The proof of the upcoming second result heavily relies on the ideas of the papers of

Agrawal [Agr02] and Agrawal and Watanabe [AW09] who showed, among several other

results, that if one-one, one-way functions exist, then all NP-complete languages are

complete via non-uniform, one-one and length-increasing reductions. Before we come to

this, we need to set up one more definition.

Henceforth, we will view an ≤SNP
ktt -reduction 〈f, t〉 as a function from Σ∗ to (Σ∗)k×Tk,

where Tk is the set of all truth-tables for k variables. Then if A ≤SNP
ktt B, then x

f,t7→
〈q1, ...qk, tk〉, where tk ∈ Tk. Denote this function by Ff,t.

Definition 3.24. A truth-table-reduction 〈f, t〉 is α-sparse on a set S ⊆ Σn, 0 < α < 1,

if for every x0 in S,

| {x ∈ Σn | Ff,t(x) = Ff,t(x0)} | ≤ 2n

2nα
.

This means that the number of elements of length n that result in the same queries

and truth-table as any element out of S (which also have length n) must not exceed 2n

2nα
.

Now we state the theorem that implies the other hypothesis for Observation 3.22.

Theorem 3.25. Suppose that there exists an ε > 0 and a one-one, one-way function

that is 2n
ε
-secure against NP ∩ coNP-oracle circuits. Then every language that is ≤SNP

ktt -

hard for NP is also ≤SNQP
ktt,wli-hard for NP.
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Proof. Let {fo}n : Σn → Σl(n) be a one-one, one-way function family that is 2n
ε
-secure

against NP ∩ coNP-oracle circuits (for an ε > 0) and L be an ≤SNP
ktt -complete language

for NP (thus L ∈ NP). We will first come to a result that under those assumptions,

it holds that for every language A in NP, there is also a sparse ≤SNP
ktt -reduction to L.

Afterward, we claim that from every language A in NP, there is also a certain randomized

≤SNP
ktt,wli-reduction to L and finally remove the randomness.

Claim 1. There exists a γ > 0 such that for every language A in NP, there is an ≤SNP
ktt -

reduction from A to L that is γ-sparse on An := {w ∈ A | |w| = n} for every n ≥ 0.

The proof of this claim requires some more background knowledge of so called hard-

core functions [GL89, HILL99]. Hence we presume to simply state a few essential but

already known properties and results within.

Goldreich and Levin showed that every one-way function f , padded to the form

f ′(x, y) = (f(x), y) with |x| = |y| has by itself a so called hard-core predicate of the

same security, often denoted by b(x), that can be easily computed on input x but can-

not be efficiently guessed only with the information of f(x). To cite from their paper:

”Intuitively, the hard-core predicate “concentrates” the onewayness of the function in a

strong sense“.

If we suppose, for the sake of simplicity, that the language A is only defined on even

length strings (otherwise we could work with A′ = A·A), then define the Goldreich-Levin

hard-core function [GL89] using the one-way function fo out of the hypothesis:

fgl(xy) := {fo(x), y, x⊕ y},

where xy is a 2n bit string and x⊕ y the above mentioned hard-core predicate. Note

that x ⊕ y refers to the inner product modulo 2 for Boolean vectors and results in one

single bit.

The following observation on hard-core functions is a well-known result[GL89, HILL99].

Claim 2. There exists a γ (< ε) such that for every sufficiently large n, for every oracle

O in NP ∩ coNP, and for every O-oracle circuit D of size at most 2n
γ
,

| Pr
x,y∈Σn

[D(fo(x), y, x⊕ y) = 1]− Pr
x,y∈Σn,b∈{0,1}

[D(fo(x), y, b) = 1] | ≤ 1
2(3n)

γ ,

37



where b is called the hard-core bit.

Now define

B := {fgl(w) | w ∈ A}.

Observe that since fo is one-one, it holds that fgl is one-one and thus B ∈ NP (recall

that A ∈ NP). Because L is an ≤SNP
ktt -complete language for NP, there is an ≤SNP

ktt -

reduction 〈g, t〉 from B to L. Hence 〈f, t〉 is a ≤SNP
ktt -reduction from A to L if we set

f = g ◦ fgl. Note that there is an oracle O ∈ NP ∩ coNP such that f can be computed

in polynomial-time using queries to O.

A B L
ktt-reduction

ktt-reduction

fgl 〈g, t〉

〈g ◦ fgl, t〉

Now we will show that 〈f, t〉 is γ-sparse on A2n and therewith complete the proof of

Claim 1. Suppose that 〈f, t〉 is not γ-sparse on A2n. Then by the definition of an α-

sparse reduction there exists a string w0 ∈ A2n, such that the size of the following set S

is bounded below as follows:

|S := {w ∈ Σ2n | Ff,t(w) = Ff,t(w0)} | ≥ 22n

2(2n)
γ .

Observe that since fgl is one-one, it holds that |S| = |fgl(S)| and Fg,t(fgl(S)) =

{Ff,t(w0)} (always the same queries and truth-table). Hence define an O-oracle circuit

D that on input string z of length l(n) +n+ 1 (this is exactly the size of every string in

the image of fgl) behaves as follows:

If Fg,t(z) = Ff,t(w0) then accept, otherwise reject.

This oracle circuit contradicts the upper bound of the allowed difference between the

probabilities out of Claim 2 as we will ascertain now:

By the definition of S and the observation we made right before the definition of D,

it holds that the circuit D accepts a string z ∈ Σl(n)+n+1 if and only if z ∈ fgl(S). This

results to the following probability:
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pn := Pr
x,y∈Σn

[D(fo(x), y, x⊕ y) = 1] = Pr
x,y∈Σn

[(fo(x), y, x⊕ y) ∈ fgl(S)]

= |S|
22n

≥
22n

2(2n)
γ

22n

= 1
2(2n)

γ

Note that 22n is the total number of different binary strings of length 2n. Thus

pn ≥ 1
2(2n)

γ . Furthermore, we have that:

Pr
x,y∈Σn,b∈{0,1}

[D(fo(x), y, b) = 1] = Pr [b = x⊕ y] · Pr [D(fo(x), y, b) = 1 | b = x⊕ y]

+ Pr [b = x⊕ y ] · Pr [D(fo(x), y, b) = 1 | b = x⊕ y ]

= 1/2 · Pr [D(fo(x), y, x⊕ y) = 1]

+ 1/2 · Pr [D(fo(x), y, x⊕ y) = 1]

= 1/2 · pn

+ 1/2 · 0

= 1
2
pn

Observe that for every x and y, the tuple 〈fo(x), y, x⊕ y〉 does not belong to fgl(Σ
2n)

(only 〈fo(x), y, x⊕ y〉) and hence does not belong to fgl(S). Furthermore, it holds that

Fg,t(〈fo(x), y, x⊕ y〉) 6= Ff,t(w0) (same observation as before but with 〈fo(x), y, x⊕ y〉
instead of fgl(S). So D does not accept 〈fo(x), y, x⊕ y〉. This results to:

| Pr
x,y∈Σn

[D(fo(x), y, x⊕ y) = 1]− Pr
x,y∈Σn,b∈{0,1}

[D(fo(x), y, b) = 1] | = 1
2
pn

≥ 1
2

1
2(2n)

γ

Because of 1
2

1
2(2n)

γ ≥ 1
2(3n)

γ and since D is a polynomial-size circuit with access to

an NP ∩ coNP-oracle O, this contradicts the hard-core bit of Claim 2. Thus 〈f, t〉 is a

≤SNP
ktt -reduction that actually is γ-sparse on A2n. This completes the proof of Claim 1.

We will now show that for any set A in NP there is also a certain randomized, weakly

length-increasing ≤SNP
ktt -reduction from A to L, which is an ≤SNP

ktt -reduction 〈h, t〉 that

additionally depends on a random string r ∈ Σ∗ and only for a certain probability needs

to generate a query that is larger then the input:
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(1) For every x and r, if Fh,t(x, r) = 〈q1, ..., qk, tk〉, then x ∈ A⇔ tk(L(q1)...L(qk)) = 1,

(2) For every x ∈ A of length n it holds that

Pr
r∈Σ∗

[∃qi ∈ Qx,r such that |qi| > n] ≥ 3/4,

where Qx,r is the set of all queries produced by h(x, r).

Claim 3. Let A be any language in NP. Then there is a randomized, weakly length-

increasing ≤SNP
ktt -reduction from A to L if the length of the random string r is set to be⌊

20kn
γ

⌋
(γ of out Claim 1).

By Claim 1 there is an ≤SNP
ktt -reduction 〈h′, t〉 from A to L that is γ-sparse on An

for every n ≥ 0. We construct a ≤SNP
ktt -reduction 〈h, t〉 from A × Σ∗ to L by simply

adding a random string r ∈ Σ∗ to the input. Observe that this reduction is γ-sparse on

S := An×Σm for every m,n ≥ 0. We will now show that because of this, the reduction

is also randomized, weakly length-increasing if we set m =
⌊

20kn
γ

⌋
and r ∈ Σm. Let

R be the set of all tuples 〈q1, ...qk, tk〉, where each qi is of length at most n and tk is a

truth-table over k variables. Thus

R := {〈q1, ...qk, tk〉 | |qi| ≤ n for 1 ≤ i ≤ k, tk ∈ Tk} and

R := {〈q1, ...qk, tk〉 | ∃qi such that |qi| > n, tk ∈ Tk}.

We actually want to come to a result about the number of r ∈ Σm that are mapped

to a tuple that belongs to R. The number of different combinations of queries where the

size of each query is smaller than n is 2(n+1)k (including empty and identical queries)

and the number of different truth-tables is 22k (we have 2k different combinations for

S(q1), ..., S(qk) and either 0 or 1 as output of a truth-table evaluator on each of those

combinations). So it holds that

|R| = 2(n+1)k · 22k .

For a string x of size n, define

Cx := {r ∈ Σm | Fh,t(x, r) ∈ R} and

Cx := {r ∈ Σm | Fh,t(x, r) ∈ R}.

Note that every tuple (x, r) ∈ Σn × Σm can be trivially encoded as a string of length

2(n+m) and that there exist 2m different r ∈ Σm (thus |Cx|+ |Cx| = 2m). Since 〈h, t〉
is γ-sparse on S, it holds for every (x0, r0) ∈ An × Σm, that
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|G(x0, r0) := {(x, r) ∈ Σn × Σm | Fh,t(x, r) = Fh,t(x0, r0)} | ≤ 22n+2m

2(2n+2m)γ .

Now observe that the size of Cx is at most as large as the number of different tuples

out of the image of Fh,t, for which the size of each query is smaller than n (which is the

size of R), times the number of elements (x, r) that could be mapped to the same tuple

of Fh,t (which is the largest possible size of G). We obtain

|Cx| ≤ |R| ·max ({|G(x0, r0)| : (x0, r0) ∈ S}) ≤ 2(n+1)k · 22k · 22n+2m

2(2n+2m)γ .

Lemma 3.26 ([HMPRS12]). If m is set to be
⌊

20kn
γ

⌋
, then the upper bound for the

size of Cx is at most 1
4
2m.

We will skip the proof of this lemma since we do not need more than the result for

further progression. Thus for every x, the size of Cx is at most 1
4
2m and the size of Cx is

at least 3
4
2m, which is at least three times the size of Cx. This means that for our above

≤SNP
ktt -reduction, every x ∈ A of length n, m =

⌊
20kn
γ

⌋
and r ∈ Σm, the probability that

at least one query is larger than the length of the input is at least 3/4. This completes

the proof of the claim.

We will now observe that we can derandomize the above reduction. For this last step

we need a result about pseudorandom generators. Most of the known constructions

of pseudorandom generators are based on certain hardness assumptions of the circuit

complexity of a function. We will use the following pseudorandom generator out of a

paper of Klovans and van Melkebeek.

Theorem 3.27 ([KvM02]). If there is a exponential-time computable function f with

circuit complexity at least 2n
ε

(ε > 0) relative to O-oracle, then there is a constant a > 0

and a pseudorandom generator G : Σblog(n)ac → Σn that is secure against O-oracle.

Recall that the circuit complexity of a function relative to O-oracle is the size of the

smallest O-oracle circuit that computes f on every input of size n, and moreover, note

that our hypothesis (there exists a one-one, 2n
ε
-secure function against NP∩coNP-oracle

circuits) implies the existence of such an exponential-time computable function whose

NP ∩ coNP-oracle circuit complexity is 2n
δ

for some γ > δ > 0 (consider f−1). With

the help of this hard function, it is possible to construct a pseudorandom generator

G : Σblog(m)ac → Σm that is secure against NP∩ coNP-oracle circuits of size O(m). Thus

for every x ∈ A of length n, we have the following:
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Pr
r∈Σblog(m)ac

[∃qi ∈ Qx,G(r) such that |qi| > n] ≥ 1/2,

where Qx,G(r) is the set of all queries produced by h(x,G(r)).

Observe that without the pseudorandom generator, we had a probability of more than

3/4 to receive at least one query that is larger than the input, but since we henceforth

consider strings r ∈ Σblog(m)ac and only obtain pseudorandomness, this results to a

small decrease (compare with the definition of a pseudorandom generator). We will now

describe the query generator of the derandomized reduction from A to L on input x of

length n:

1. Set m =
⌊

20kn
γ

⌋
.

2. Cycle through all strings r of length blog(m)ac and compute h(x,G(r)) = 〈q1, ...qk〉,
until there is at least one query being larger than n or until all r have been checked.

3. If there is such a query that is larger than n, output the tuple 〈q1, ...qk〉 and stop.

4. Otherwise output 〈0, ..., 0〉.

If for every r, the length of every query of h(x,G(r)) is at most n, then by the previous

inequality it must be the case that x is not in A, because if x would be in A, then for at

least half of the r ∈ Σblog(m)ac there would be a query that is larger than the input. Thus

if no such r can be found, then the reduction simply outputs 〈0, ..., 0, F 〉, where F is the

truth-table for k variables that always evaluates to false. Observe that the run time of

the query generator is deterministic quasi-polynomial since there exist 2blog(m)ac different

r and the pseudorandom generator G can be computed in 2O(blog(m)a)c. Hence this is a

correct ≤SNQP
ktt,wli-reduction from A to L and this completes the proof of Theorem 3.25.

As mentioned before, the following theorem summarizes the results of this section and

therefore is a corollary out of Observation 3.22 and 3.23 and Theorem 3.25.

Theorem 3.28 ([HMPRS12]). Suppose that there exists an ε > 0 and a one-one,

one-way function that is 2n
ε
-secure against NP ∩ coNP-oracle circuits. Then the ESY-

≤P
btt conjecture holds.

If there is an ε > 0 and a one-one, one-way function that is 2n
ε
-secure against

NP ∩ coNP-oracle circuits, then by Observation 3.23 it holds that NQP 6= coNP and
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by Theorem 3.25 it holds that every language that is ≤SNP
ktt -hard for NP is ≤SNQP

ktt,wli-hard

for NP. Since those two implications fulfill the requirements for Observation 3.22, we

finally obtain the truth of the ESY-≤P
btt conjecture.

With this result, we have achieved two hypotheses out of quite different areas and each

of them implies the truth of the ESY-≤P
btt conjecture and therefore NP 6= coNP. Maybe

there are some ways of weakening the hypothesis (we could, for example, consider the

existence of one-way functions that are only hard against subexponential-size circuits

having no oracles), relax the truth-table restriction out of the proofs to be unbounded

or even discover other relations to the conjecture that provide easier accesses.

3.5 Comparison and open questions

We will now summarize the results we obtained and those which were previously known

about the ESY-R conjectures. Furthermore, we will describe some open questions that

need to be focused on. By investigating these, one perhaps can imagine more and

different possibilities to achieve stronger statements or other accessible hypotheses. First

of all, the following diagram shows what is known about the ESY-R conjectures:

ESY-≤P
T

ESY-≤P
tt

ESY-≤P
btt

ESY-≤P
m

ESY-≤P
1

ESY-≤P
btt,li

ESY-≤P
m,li

ESY-≤P
tt,li

Unpredictable set

Secure one-way function
=⇒

Th. 3.20=⇒

Th. 3.28

??? =⇒

??? =⇒

NP 6= coNP

NP 6= coNP

NP 6= coNP

NP 6= coNP

NP 6= UP, SAT /∈ NPSV

NP 6= UP, SAT /∈ NPSV

⇐=

=⇒

⇐⇒
Th. 3.19

⇐⇒
Prop. 3.13

=⇒

=⇒
=
⇒

=
⇒

=
⇒

=
⇒

=
⇒

=
⇒

⇐⇒

=⇒

=⇒

=⇒

Observe that since the ESY-≤P
btt,li conjecture and the ESY-≤P

m conjecture are both

equivalent to NP 6= coNP (by Proposition 3.13 and Theorem 3.19), they are also equiv-

alent to each other. The question marks hint that there is no hypothesis known that

implies either the ESY-≤P
T conjecture or the ESY-≤P

tt conjecture, which obviously results
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out of their wide range of consequences and is another evidence for the hardness of the

task of finding proofs for them. Unfortunately, the belief is that the ESY-≤P
btt conjecture

does not imply NP 6= UP, but there has been no proof up to now.

Though it is an open question whether every ≤P
btt-hard language for NP is hard

for ≤P
btt,li-reductions, which would result to ESY-≤P

btt ⇔ ESY-≤P
btt,li and ESY-≤P

btt ⇔
NP 6= coNP, there exist several indications that every ≤P

m-complete language for NP is

complete for ≤P
m,li-reductions [Agr02, HP07, BHHT10, GHP10]. Maybe one of the ideas

out of those papers can be adapted to solve the respective problem for ≤P
btt-reductions

and moreover, this would be one of the next steps for further progression on the ESY

conjecture. Another approach is the investigation of even more restricted truth-table

reductions where the reduction is only allowed to make O(log(n)) queries.

Lastly to mention, it is also an interesting set of questions, whether some of the known

or assumed implications and bi-implications hold relative to oracles. We note that there

exists an oracle relative to which the ESY-≤P
m conjecture holds and NP = UP. Since

ESY-≤P
m ⇔ ESY-≤P

btt,li, then there is also an oracle relative to which the ESY-≤P
btt,li

conjecture holds and NP = UP. On the contrary, there has not yet been found an oracle

relative to which the ESY-≤P
btt conjecture holds and NP = coNP.
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4 Conclusion
The more than thirty-year-old ESY conjecture on promise problems, or in its equivalent

recent form, on disjoint NP-pairs, is only one example out of a number of many un-

solved assumptions and problems within complexity theory, yet another one that seems

to provide some evidence on the big question whether we finally obtain P 6= NP or not.

Though the original conjecture for Turing reductions additionally implies the former

main motivation of its formulation, which is the non-existence of any non-probabilistic

public-key cryptosystems with NP-hard cracking problems and the non-existence of re-

spective error-free probabilistic ones, it does not apparently seem to provide any feasible

access. On the contrary, certain other ESY-R conjectures can be handled somehow eas-

ier, but unfortunately come up with a weaker set of consequences or even lose a few

of the primary implications. Nevertheless, the ESY-≤P
btt conjecture, which we mainly

considered in this thesis, is even equivalent to NP 6= coNP. Moreover, it provides two

interesting hypothesis out of quite different areas. On the one hand, the existence of a

certain unpredictable language and on the other hand, the existence of some kind of a

secure one-way function, which both would imply the truth of the ESY-≤P
btt conjecture.

Maybe we can find some further approaches to even connect certain other subjects to

some of the ESY-R conjectures. Perhaps the ESY conjecture finally holds the key to

confirm the widely believed assumption P 6= NP.
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