
The Weak Base Method for Constraint
Satisfaction

Von der

Fakultät für Elektrotechnik und Informatik

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades einer

DOKTORIN DER NATURWISSENSCHAFTEN

Dr. rer. nat.

genehmigte Dissertation
von

Dipl.-Math. Ilka Schnoor

geboren am 11. September 1979, in Eckernförde

2008

Schlagwörter: Berechnungskomplexität, Constraint Satisfaction Probleme, Uni-
verselle Agebra

Keywords: Computational complexity, Constraint satisfaction problems, Uni-
versal algebra

Referent: Heribert Vollmer, Gottfried Wilhelm Leibniz Universität Hannover
Korreferent: Martin Mundhenk, Friedrich-Schiller-Universitt Jena
Tag der Promotion: 21.11.2007

iii

Danksagung

Vor kurzem, so scheint es, begann ich erst mein Studium und nun habe ich diese
Arbeit fertiggestellt. In dieser Zeit haben mich viele Menschen auf diesem Weg
begleitet und unterstützt. Zuerst sind da meine Betreuer zu nennen: Heribert
Vollmer, der mich angeleitet und ermutigt hat und mich auf einer Stelle getra-
gen hat, die es eigentlich gar nicht gab, und Nadia Creignou, die unermüdlich
Verbesserungsvorschläge für diese Arbeit geliefert und viele Formulare für mich
ausgefüllt hat. Dann meine Kollegen Michael Bauland und Anca Vais, die
durch ihre lebhafte Art immer wieder Schwung ins Institut bringt und mit der
ich gerne ein Büro geteilt habe. Und alle meine Coautoren.

Ganz besonders Erwähnen möchte ich meine Eltern Frauke und Jürgen Jo-
hannsen, die mir die wissenschaftliche Ausbildung ermöglicht und mich dabei
immer unterstützt haben. Und natürlich Henning, der so vieles für mich ist:
Freund, Kollege und mein Mann, und der alle Höhen und Tiefen in der Entste-
hung dieser Arbeit mit mir durchlebt hat.

Euch allen vielen Dank!

Acknowledgement

Not long ago, it seems, I started to study Mathematics and now I have com-
pleted this thesis. Many were with me in this time and gave me support. My
advisors are the first ones to mention: Heribert Vollmer, who directed and
encouraged me and managed to employ me without a position, and Nadia
Creignou, who gave many constructive suggestions for this thesis and did a lot
of paperwork. My colleagues Michael Bauland and Anca Vais, who brought
live to the institute and with whom I liked to share an office. And all my
coauthors.

Especially I want to mention my parents Frauke and Jürgen Johannsen, who
made my scientific education possible and always fully supported me. And of
course Henning, who is so much to me: friend, collegue, and husband, and who
went with me through all highs and lows I experienced during the writing of
this thesis.

I thank you all very much!

iv

Zusammenfassung

Constraint Satisfaction Probleme sind von großer Bedeutung in der Kom-
plexitätstheorie. Sie verallgemeinern eine Vielzahl von Erfüllbarkeits- und kom-
binatorischen Problemen und liefern kanonische Repräsentanten für viele Kom-
plexitätsklassen. Schaefer klassifizierte in [Sch78] die Komplexität Boolscher
Constraint Satisfaction Probleme und zeigte ein dichotomes Komplexitäts-
verhalten dieser Probleme, welches auch für Constraint Satisfaction Probleme
über beliebigen endlichen Grundbereichen vermutet wird [FV98]. Algebrais-
che Werkzeuge, die eine Galois-Verbindung zwischen in Constraint-Instanzen
auftretenden Klauseln und Mengen von Funktionen ausnutzen, liefern eine
Methode um Komplexitätsklassifikationen für Constraint-Probleme zu finden
und zu beweisen. Es gibt jedoch viele zu Constraint Satisfaction verwandte
Probleme, für die diese Methode nicht benutzt werden kann.

In dieser Arbeit entwickeln wir eine Methode die es ermöglicht eine verfein-
erte Galois-Verbindung zu benutzen um Komplexitätsklassifikationen für solche
Probleme zu erhalten. Anschließend führen wir diese Methode vor, indem wir
die Komplexität zweier aus verschiedenen Bereichen stammender Constraint-
Probleme klassifizieren. Zuerst betrachten wir das balancierte Erfüllbarkeits-
Problem, bei dem nach Lösungen gefragt wird, die, zusätzlich zu den in der
Constraint-Instanz gegebenen lokalen Bedingungen, eine globale Ausgewogen-
heits-Bedingung erfüllen. Dann beschäftigen wir uns mit einer nicht-mono-
tonen Logik und untersuchen Fragestellungen für auf Constraint-Formeln be-
schränkte Default Logik. In beiden Fällen erzielen wir durch den Einsatz un-
serer neuen Methode vollständige Komplexitätsklassifikationen.

Abschließend untersuchen wir das Problem alle Lösungen einer gegebenen
Constraint-Instanz aufzuzählen. Für Boolesche Instanzen wurde die Kom-
plexität dieses Problems vollständig von Creignou und Hébrard klassifiziert
[CH97]. Wir betrachten Instanzen über beliebigen endlichen Grundbereichen
und präsentieren eine Familie von neuen effizienten Aufzähl-Algorithmen. Wir
unternehmen außerdem erste Schritte auf dem Weg zu einer vollständigen Klas-
sifikation für das Aufzähl-Problem über dem 3-wertigen Grundbereich.

v

Abstract

Constraint satisfaction problems are an important class of problems in com-
plexity theory. They generalize many combinatorial problems as well as satisfi-
ability problems and provide canonical complete problems for many complexity
classes. The computational complexity of all Boolean constraint satisfaction
problems was classified by Schaefer [Sch78] and reveals a dichotomic behav-
ior that is conjectured to also hold for arbitrary domains [FV98]. Algebraic
tools involving a Galois correspondence between clauses appearing in the con-
straint instances and sets of functions give a method to obtain complexity
classifications in the constraint context. However, for many problems related
to constraint satisfaction these tools cannot be applied.

In this thesis we develop a method that allows to use a refined Galois corre-
spondence to obtain complexity classifications for those problems. Afterwards
we demonstrate our new method by classifying two constraint problems from
different contexts: first we consider the balanced satisfiability problem, where
we require the solutions to satisfy a global condition additionally to the local
constraints given in the constraint instance. Then we turn to nonmonotonic
logics and study the complexity of reasoning in default logic restricted to con-
straint formulas. In both cases we achieve full classifications using our new
method as an essential tool.

Finally we study the problem of enumerating all solutions of a given con-
straint instance. For the Boolean case a full classification has been achieved
by Creignou and Hébrard [CH97]. We look at instances over arbitrary finite
domains and present a template for new efficient enumeration algorithms. We
achieve a first step towards a classification of the enumeration problem over
the three-element domain.

vi

Contents

1 Introduction 1
Publications . 4

2 Preliminaries 5
2.1 Computational Complexity . 5
2.2 Relations and Constraints . 9
2.3 Closure Properties . 11

3 Weak Bases 21
3.1 Small Weak Systems . 22
3.2 Boolean Weak Bases . 30

4 Balanced Satisfiability 35
4.1 Basic Facts and Easy Cases . 36
4.2 Hardness Results for Basic Relations 40
4.3 Hardness Results with unified Proofs 45
4.4 Hardness Results with Non-Unified Poofs 53
4.5 Exact Satisfiability . 64

5 Default Logic 67
5.1 Reiter’s Default Logic . 68
5.2 Existence of an Extension . 71
5.3 Credulous and Skeptical Reasoning 79

vii

viii Contents

6 The Enumeration Problem 87
6.1 Previous Results . 88
6.2 Partial Enumerability . 90
6.3 Criteria . 92
6.4 Lexicographical Orderings . 97
6.5 Towards a Dichotomy for Three-Element Domains 99

Bibliography 102

List of Figures

2.1 The Polynomial Time Hierarchy 7
2.2 The Lattice of all Boolean Co-Clones 19

4.1 The Complexity of Balanced Satisfiability 65

5.1 The Complexity of Default Reasoning 85

ix

x List of Figures

Chapter 1

Introduction

In complexity theory we deal with the question what amount of resources com-
putational tasks need to be completed by a computer. The resources we are
interested in are time, i.e., the number of computation steps, and space, i.e., the
required memory to perform the task. To argue on a formal basis in this field
and independent from engineering details and programming languages, math-
ematical models of computers and algorithms are used. The most employed
model is the Turing Machine introduced by Alan M. Turing in 1936 [Tur36].
Turing Machines allow a formal definition of efficient algorithms which need
polynomial time in the length of the input to finish their computation. The
class of all computational questions that can be answered by efficient algo-
rithms is the class P.

In complexity theory, both positive and negative complexity results are of
interest. We take a look at the satisfiability problem, which is the following
question: we are given a propositional formula and have to find out whether
this formula is satisfiable. Up to now no efficient algorithm for this task is
known, nor is there a proof that such an algorithm does not exist.

But if we are additionally given an assignment for the formula, then we
can easily verify whether it satisfies the formula or not. That means, even if
we maybe cannot efficiently determine if the formula has a solution, we can
efficiently verify the correctness of a given solution. This behavior is charac-
teristic for the problems in the well-known class NP. As mentioned before,
the satisfiability problem is not proven to be not in P, and so is no problem
from NP. The question whether there indeed is an NP-problem that is not in
P, or whether P equals NP, is the famous P-NP-problem and one of the most
important open questions in complexity theory.

The hardest problems in NP are called NP-complete. They have the prop-
erty, that an efficient algorithm solving such a problem directly yields efficient
algorithms for all other NP-problems and thus implies that P equals NP. The

1

2 Chapter 1. Introduction

theory of NP-completeness was initiated by Stephen A. Cook in 1971, when he
showed that the satisfiability problem, as first problem at all, is NP-complete
[Coo71]. From then on many other problems have been proven to be NP-
complete. A large collection of NP-complete problems was compiled by Michael
R. Garey and David S. Johnson in [GJ79].

As the satisfiability problem naturally represents NP, many complexity
classes are represented by problems related to formulas. The study of these
formula problems helps to provide a better understanding of the structure of
and relationships between complexity classes.

An important topic in this line is the study of constraint satisfaction prob-
lems. These are satisfiability problems for formulas that are of the form

C1 ∧ · · · ∧ Cn,

where C1, . . . , Cn are clauses built from templates out of a fixed set Γ. The
templates formalize constraints that are applied to variables in the clauses, so a
satisfying assignment must take all those constraints of the variables formulated
in the clauses into account.

Thomas J. Schaefer studied the complexity of the Boolean satisfiability
problem and found out in 1978 that for every fixed and finite set of templates
Γ, the problem is in P or NP-complete [Sch78]. This dichotomic behavior is
surprising, because, due to a classic result from Richard E. Ladner, there are
infinitely many degrees of complexity petween P and NP, provided that P
differs from NP [Lad75]. Thomás Feder and Moshe Y. Vardi conjectured in
[FV98], that this dichotomy also holds for non-Boolean constraint satisfaction
problems, where a finite set of values can be assigned to the variables. This
conjecture is still an open question and an active field of research. However,
Andrei A. Bulatov succeeded in 2002 to prove that the dichotomy holds in the
case of three-valued satisfaction problems [Bul06].

Besides satisfiability, many other problems have been studied, especially in
the context of Boolean constraint problems. Nadia Creignou and Miki Her-
mann achieved a dichotomy for the problem of counting [CH96] and Nadia
Creignou and Jean-J. Hébrard for the problem of enumerating [CH97] all so-
lutions of a given Boolean constraint formula and there are classifications for
the equivalence and the isomorphism problem by Elmar Böhler, Edith Hemas-
paandra, Steffen Reith and Heribert Vollmer [BHRV02, BHRV04].

Constraint formulas also have been used to examine restrictions of non-
monotonic logics, which are widely used in artificial intelligence. In contrast
to classical propositional logic, in nonmonotonic logics the set of consequences
drawn from a set of formulas can shrink when adding more formulas. Some
nonmonotonic logics investigated in the constraint context are circumscription,

3

studied by Gustav Nordh and Peter Johnsson [NJ04, Nor05], and abduction,
studied by Nadia Creignou, Gustav Nordh, and Bruno Zanuttini [NZ05, CZ06].

One of the most effective techniques used to obtain complexity classifica-
tions for constraint problems are algebraic tools that group the infinitely many
problems that arise from infinitely many template-sets Γ into a (still infinite
but) well structured hierarchy. These tools were known in mathematics since
the 1960’s, and they were first applied in a complexity setting by Peter G. Jeav-
ons, David A. Cohen, and Marc Gyssens in [JCG97, Jea98]. This technique
allows an easy proof for Schaefer’s dichotomy and was essential for Bulatov’s
dichotomy. However, it could not be used for all results mentioned, for exam-
ple the complexity classifications for the enumerating problem by Creignou and
Hébrard and for the equivalence problem by Böhler et al. needed alternative
arguments. The reason is, that the classes in the hierarchy mentioned above
are well suited for the satisfiability problem but do not canonically fit to the
equivalence and the enumeration problem.

This is the starting point for the research in this thesis: we present an
algebraic tool that allows to use a refined hierarchy suitable to most of all
problems dealing with constraint formulas: we introduce weak bases giving a
method which does not require to consider the refined classes in the hierarchy
explicitly. Using this method it is often sufficient to investigate the well-known
classes arising from the classical tools.

After presenting our method in Chapter 3, we show in the next two chapters
how to use it. In Chapter 4 we study the complexity of the balanced constraint
satisfiability problem, which is the question whether a given constraint formula
has a satisfying assignment that is equally equipped with 0 and 1. This problem
is related to the question whether a given formula has a satisfying assignment
where the number of 1s is exactly a given number k. This question is of
practical importance if every variable set to 1 is connected with a certain cost.
We additionally consider the counting variants of both questions, and achieve
a full complexity classification with respect to the fixed template-set Γ, for all
of these problems. The key idea in proving the classification is the application
of the weak base method developed in Chapter 3.

In Chapter 5 we apply our new method to computational questions arising
in Default logic, a nonmonotonic logic introduced by Raymond Reiter. By
making use of weak bases we accomplish complexity classifications that seemed
not to be possible before.

Finally in Chapter 6 we consider the task to enumerate all solutions of
a given constraint formula. Creignou and Hébrard gave a simple criterion
determining exactly when there is an efficient enumeration algorithm in the
Boolean case [CH97]. We show that this criterion cannot be generalized to non-
Boolean enumeration problems. We present a broad class of new enumerating

4 Chapter 1. Introduction

algorithms and achieve a first step towards a full classification in the three-
valued case.

Publications

The results in Chapter 3 will be published in [SS07b], an early version appeared
as [SS06b]. Chapter 4 is based on unpublished joint work with Nadia Creignou
and Henning Schnoor. The results in Chapter 5 are a continuation of the
resarch in [CHS07], where we achieved a classification for what we there called
“conjunctive queries.” In this thesis we use the weak base method to obtain
a classification for actual constraint formulas. Finally the results in Chapter 6
appeared in [SS07a].

Chapter 2

Preliminaries

2.1 Computational Complexity

We start with a few notations: N denotes the set of all natural numbers
{0, 1, 2, . . . }. For a set D we define D1 = D and Di+1 = Di × D, i ≥ 1.
If t ∈ Dk is some tuple, then t[i] denotes the i-th component of t. If A is a
subset of D we write A ⊆ D and if the subset is strict we write A (D.

We now introduce basic concepts from computational complexity. Let Σ be
a finite alphabet and A a language over Σ, i.e., A ⊆ Σ∗ =

⋃
n∈N Σn. Then A is a

decision problem connected with the following question: Given a word w ∈ Σ∗,
does w belong to A? We denote the complement of A by A =def Σ∗ \ A.

As model of computation we use the Turing Machine (see [Pap94]). We
will not introduce Turing Machines formally, since for the complexity classes
we work with, we do not need a detailed view on their mode of computation.

We define complexity classes for decision problems: the class P is the set of
all decision problems that can be decided by a deterministic Turing Machine
in time bounded by a polynomial in the size of the input, NP is the set of all
decision problems that can be decided by a non-deterministic Turing Machine
in time bounded by a polynomial in the size of the input, and PSPACE is the
class of all decision problems that can be decided by a deterministic Turing
Machine in space bounded by a polynomial in the size of the input.

For a complexity class C we define the class coC to be the set {A | A ∈ C}.
If C is defined by deterministic Turing Machines bounded in time or space,
then coC = C, in particular it holds that coP = P and coPSPACE = PSPACE.
However, it is unknown whether NP equals coNP.

Directly from the above definitions it follows that P ⊆ NP and P ⊆
PSPACE. The equation NP ⊆ PSPACE can easily be seen as well.

Between P and PSPACE there lies the polynomial hierarchy, introduced by

5

6 Chapter 2. Preliminaries

Meyer and Stockmeyer [MS72, Sto77]. Its classes are defined via Turing ma-
chines with access to oracles. An oracle for a problem A can answer questions
of the form “is w from A?” in constant time. For a class of problems C the
classes PC and NPC consist of all decision problems solvable by a deterministic
(and non-deterministic respectively) Turing machine with access to an oracle
from C in polynomial time. Intuitively a problem from PC can be decided in
polynomial time, if we have full knowledge about the problems in C.

The polynomial hierarchy contains the following classes:

ΣP
0 =def ∆P

0 =def P

and for every i ∈ N

∆P
i+1 =def PΣP

i ,

ΣP
i+1 =def NPΣP

i ,

ΠP
i =def coΣP

i ,

PH =def

⋃
i∈N

ΣP
i .

It is easy to see that ΣP
1 = NP and ΠP

1 = coNP. Furthermore the following
inclusions hold for every i ∈ N:

∆P
i ⊆ ΣP

i ⊆ ∆P
i+1 ⊆ ΠP

i+1 ⊆ ∆P
i+2 ⊆ PH ⊆ PSPACE.

This gives an inclusion structure as it is illustrated in Figure 2.1. For none of
these inclusions it is known, whether it is strict, a special case is the famous
question whether P equals NP. However, all inclusions are believed to be strict
and the equality of ∆P

k and ΣP
k for some k ∈ N would imply ∆P

k = ΣP
i = ΠP

i =
∆P
i = PH for all i ≥ k.

The problems we study in this thesis are located in the first two levels of
the polynomial hierarchy: the classes arising in our classifications are P, NP,
coNP, ΠP

2 , and ΣP
2 .

To compare the complexity of problems, many different notions of reduc-
tions have been introduced. For our purposes the following is suitable.

Let A ⊆ Σ∗ and B ⊆ Π∗ be decision problems, then A is many-one reducible
to B in logarithmic space (A ≤log

m B) if there is a function f : Σ∗ → Π∗ that
satisfies the following conditions:

1. for every x ∈ Σ∗ holds: x ∈ A if and only if f(x) ∈ B, and

2. f can be computed by a deterministic Turing machine in space bounded
by c log n+d, where n is the length of the input and d, c ∈ N are constants.

2.1. Computational Complexity 7

PH

PSPACE

∆P
1

= ∆P
0 = ΣP

0 = ΠP
0 = P

∆P
2

∆P
3

ΣP
1 = NP

ΣP
2

ΣP
3

coNP = ΠP
1

ΠP
2

ΠP
3

Figure 2.1: The Polynomial Time Hierarchy

8 Chapter 2. Preliminaries

Intuitively A ≤log
m B means “A is not harder than B”, because to decide

whether x ∈ A we can use a decision algorithm forB and ask whether f(x) ∈ B.
Let C be some complexity class. A decision problem A is called hard for

C (or C-hard) under ≤log
m , if for every B ∈ C it holds B ≤log

m A, i.e., if no
problem from C is harder than A. If additionally it holds that A ∈ C, then A is
complete for C (or C-complete) under ≤log

m . Since we only use ≤log
m -reductions

for decision problems, we just say A is hard for C (or C-hard) or A is complete
for C (or C-complete).

It can be shown that ≤log
m is transitive, i.e., A ≤ B and B ≤ D implies

A ≤ D (see [Pap94]). Therefore if a problem A is hard for a class C, then B is
hard for C if and only if A ≤log

m B.
The class PSPACE and all classes from the polynomial hierarchy are closed

under ≤log
m -reductions, i.e., if C is one of those classes and A and B are problems

such that B ∈ C, then A ≤log
m B implies A ∈ C.

We define the well known satisfiability problem, which is the most famous
representative of all NP-complete problems:

Problem: SAT
Input: a propositional formula ϕ
Question: does ϕ have a satisfying assignment?

In fact SAT was the first problem which was proven to be NP-complete in
a seminal paper by Cook [Coo71].

Besides deciding whether a given instance satisfies some property there is
a more general computational tasks: the problem of computing a function
f : Σ∗ → Π∗ for some alphabets Σ and Π. These problems are called function
problems. In Chapter 4 we study counting problems, which are a special case of
function problems. A typical counting problem is the following generalization
of SAT.

Problem: #SAT
Input: a propositional formula ϕ
Question: how many satisfying assignments does ϕ have?

In general a counting problem is the task to compute a function f : Σ∗ → N
for some alphabet Σ.

We define the complexity classes that are important in our study of count-
ing problems. The complexity class FP is the class of all functions that can
be computed by a deterministic Turing Machine in time bounded by a poly-
nomial in the size of the input. The complexity class #P is the class of all
counting functions f , such that there exists a non-deterministic Turing Ma-
chine, which stops in time bounded by a polynomial in the input size, and

2.2. Relations and Constraints 9

which has on input w exactly f(w) accepting computation paths. FP is the
canonical generalization of the decision class P, and #P was introduced by
Valiant [Val79b, Val79a]. It holds that every counting problem from FP also
is in #P.

To relate the the complexity of counting problems we use many-one count-
ing reductions :

Definition 2.1. Let f : Σ∗ → N and g : Π∗ → N be counting problems for
some alphabets Σ and Π. Then f is many-one counting reducible (or simply
counting reducible) to g in logarithmic space, if there exist functions α : Σ∗ →
Π∗ and β : N→ N, such that:

1. for every x ∈ Σ∗ holds: f(x) = β(g(α(x))), and

2. α and β can be computed by deterministic Turing machines in space
bounded by c log n + d, where n is the length of the input and d, c ∈ N
are constants.

If β is the identity function, then f is parsimonious reducible to g in logarithmic
space.

To denote that f reduces parsimonious to g in logarithmic space the no-
tation f ≤log

! g has been established. In this thesis we use additionally the
notation f ≤log

c g to indicate that f is counting reducible to g in logarithmic
space.

We say a counting problem g is #P-hard under counting (parsimonious)
reductions, if for every counting problem f from #P holds f ≤log

c g (f ≤log
! g).

The problem g is #P-complete under counting (parsimonious) reductions if it is
from #P and additionally #P-hard under counting (parsimonious) reductions.
If we only speak of #P-hardness and #P-completeness we mean #P-hardness
and #P-completeness under counting reductions.

Again both reducibilities, ≤log
c and ≤log

! , are transitive, therefore to show
that some problem g is #P-hard under counting (parsimonious) reductions it is
sufficient to show that there is some problem f that is #P-hard under counting
(parsimonious) reductions, such that f ≤log

c g (f ≤log
! g).

2.2 Relations and Constraints

In this section we will introduce constraint formulas which are the main subject
of this thesis.

An n-ary relation R over a set D is a subset of Dn, in this case D is called
the domain of R. In this thesis, if we speak of domains, we mean finite sets.

10 Chapter 2. Preliminaries

The Boolean domain is the set {0, 1}. A constraint language over D is a set of
non-empty relations over D.

We use different notions for relations. Sometimes we prefer to represent a
relationR ⊆ Dn as matrix by writing its tuples as row vectors in lexicographical
order, or if D is the Boolean domain, we represent R as a propositional formula
ϕ(x1, . . . , xn) with

R = {(I(x1), . . . , I(xn)) | I is a satisfying truth assignment for ϕ)} .

Example 2.2. 1. Let R = {(0, 1, 2), (1, 2, 0), (1, 1, 0)} be a relation over the
domain {0, 1, 2}. When representing R as matrix we write:

R =

0 1 2
1 1 0
1 2 0

2. By x1 ∨ ¬x2 we represent the relation {(0, 0), (1, 0), (1, 1)}.

For a domain D and a ∈ D we define the following relations over D:

Ca =def {(a)}
EqD =def {(d, d) | d ∈ D} .

For the Boolean domain we define:

Eq =def Eq{0,1}

Imp =def {0, 1}2 \ {(1, 0)}
Ork =def {0, 1}k \ {(0, . . . , 0)}

1-in-3 =def {(0, 0, 1), (0, 1, 0), (1, 0, 0)}
Nae =def {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}
Dup =def {0, 1}3 \ {(0, 1, 0), (1, 0, 1)}

Evenk =def

{
(a1, . . . , ak) ∈ {0, 1}k | a1 + · · ·+ ak is even

}
Oddk =def

{
(a1, . . . , ak) ∈ {0, 1}k | a1 + · · ·+ ak is odd

}
.

Let D be a domain and let X be a set of variables. For an n-ary rela-
tion R over D and some variables x1, . . . , nn ∈ X an R-clause is of the form

2.3. Closure Properties 11

R(x1, . . . , xn). We also call R-clauses constraints, or if R is from some con-
straint language Γ over D, we call them Γ-clauses. An assignment of D to
X is a function I : X → D. We say I satisfies the R-clause R(x1, . . . , xn) if
(I(x1), . . . , I(xn)) ∈ R.

A constraint formula over Γ (or a Γ-formula) is a finite conjunction of
Γ-clauses, i.e., a formula of the form

ϕ = R1(x1
1, . . . , x

1
n1

) ∧ · · · ∧Rk(x
k
1, . . . , x

k
nk

),

where Ri ∈ Γ is an ni-ary relation and xij ∈ X for 1 ≤ i ≤ k and 1 ≤ j ≤ ni.

By Var(ϕ) =def

{
xij | 1 ≤ i ≤ k and 1 ≤ j ≤ ni

}
we denote the set of variables

appearing in ϕ. An assignment I of D to X satisfies ϕ if it satisfies every
constraint in ϕ. An assignment of D to Var(ϕ) that satisfies ϕ is a solution for
ϕ. If ϕ has a solution we say that ϕ is satisfiable. The set of all solutions for
ϕ is denoted by Sol(ϕ).

Let Γ be a constraint language over some domain. A question very inten-
sively studied in complexity theory is the constraint satisfaction problem:

Problem: CSP(Γ)
Input: a Γ-formula ϕ
Question: is ϕ satisfiable?

Theorem 2.3 ([Sch78, Bul06]). Let Γ be a finite constraint language over
a domain with maximal three elements, then CSP(Γ) is complete for NP, or
decidable in polynomial time.

The dichotomy for two-element domains was proven in 1978 and is known
as Schaefer’s Theorem. The more recent result for constraint languages over
three-element domains from Bulatov has been proven in 2002 and strengthens a
conjecture by Feder and Vardi, saying that the constraint satisfaction problem
is in P or NP-complete for all finite constraint languages over arbitrary finite
domains [FV98].

2.3 Closure Properties

Two constraint formulas ϕ and ψ are equivalent (ϕ ≡ ψ) if they have exactly
the same solutions. We define three different closures for constraint languages:

Definition 2.4. Let Γ be a constraint language over a domain D.

12 Chapter 2. Preliminaries

• 〈Γ〉 is the set of all relations R over D, such that R = ∅ or there exist
distinct variables x1, . . . , xn, y1, . . . , yk and a Γ ∪ {EqD}-formula ϕ such
that

R(x1, . . . , xn) can be expressed by ∃y1 . . . ykϕ.

That means every solution of ϕ satisfies R(x1, . . . , xn) and every solution
of R(x1, . . . , xn) can be extended to a solution of ϕ. We call 〈Γ〉 the
co-clone generated by Γ and say that Γ is a base of 〈Γ〉.

• 〈Γ〉@ is the set of all relations R over D, such that R = ∅ or there exist
distinct variables x1, . . . , xn and a Γ ∪ {EqD}-formula ϕ such that

R(x1, . . . , xn) is equivalent to ϕ.

We call 〈Γ〉@ the weak system generated by Γ and say that Γ is a base of
〈Γ〉@.

• 〈Γ〉@, 6= is the set of all relations R over D, such that R = ∅ or there exist
distinct variables x1, . . . , xn and a Γ-formula ϕ such that

R(x1, . . . , xn) is equivalent to ϕ.

We call 〈Γ〉@, 6= the weak system without equality generated by Γ and say
that Γ is a base of 〈Γ〉@, 6=.

Often co-clones are referred to as relational clones and weak systems (with-
out equality) are sometimes called weak systems with 0 (and without identifi-
cation). Note that the 6= in the notation 〈.〉@,6=, does not have the meaning
of inequality, but symbolizes the disallowance of equality-clauses. In the case
of one-element constraint languages Γ = {R} we often write 〈R〉 instead of
〈{R}〉, etc.

It follows directly from the definitions that Γ ⊆ 〈Γ〉@, 6= ⊆ 〈Γ〉@ ⊆ 〈Γ〉.
Further the defined closures have the properties stated in the next proposition.

Proposition 2.5. Let Γ1,Γ2 be constraint languages over a domain D and ϕ1

a Γ1-formula. Then the following holds:

1. Γ1 ⊆ 〈Γ2〉 implies that there exists a Γ2-formula ϕ2 that can be computed
in logarithmic space from ϕ1, and that is satisfiable if and only if ϕ1 is;

2. Γ1 ⊆ 〈Γ2〉@, 6= implies that there exists a Γ2 ∪ {EqD}-formula ϕ2 that can
be computed in logarithmic space from ϕ1, and that is equivalent to ϕ1;

3. Γ1 ⊆ 〈Γ2〉@, 6= implies that there exists a Γ2-formula ϕ2 that can be com-
puted in logarithmic space from ϕ1, and that is equivalent to ϕ1.

2.3. Closure Properties 13

It follows immediately from part 1 of the previous proposition that, for
finite constraint languages Γ1 and Γ2, it holds

Γ1 ⊆ 〈Γ2〉 implies CSP(Γ1) ≤log
m CSP(Γ2).

The following definitions lead to a strong connection between constraint
languages and sets of functions.

Let D be a domain. A k-ary partial D-valued function is a function f :
A → D with A ⊆ Dk for a k ≥ 1. We say f is not defined on Dk \ A. If
A = Dk, then f is a total D-valued function. We denote theset of all total D-
valued functions by OPD. When speaking of D-valued functions we normally
mean total D-valued functions. For the Boolean domain D = {0, 1} we speak
of Boolean functions and partial Boolean functions.

Definition 2.6. Let R be an n-ary relation over a domain D, let A ⊆ Dk for
some k ≥ 1 and let f : A → D be a partial D-valued function. Then f is a
partial polymorphism of R (or R is invariant under f) if for all t1, . . . , tk ∈ R,
such that (t1[i], . . . , tk[i]) ∈ A for every i ∈ {1, . . . , n}, it holds

(f(t1[1], . . . , tk[1]), . . . , f(t1[n], . . . , tk[n])) ∈ R,

i.e., if R is closed under coordinate-wise application of f . If f is total, we say
f is a polymorphism of R.

The set of all polymorphisms of a relation R is denoted by Pol(R), and
the set of all partial polymorphisms by pPol(R). For a constraint language Γ,
we say f is a (partial) polymorphism of Γ, if f is a (partial) polymorphism of
each relation from Γ and we set Pol(Γ) =def

⋂
R∈Γ Pol(R) and pPol(Γ) =def⋂

R∈Γ pPol(R).
For a partial D-valued function f , we denote the set of all relations over

D that are invariant under f by Inv(f). Accordingly the set of all relations
invariant under a set F of partial D-valued functions, Inv(F) =

⋂
f∈F Inv(f),

consists of all relations that are invariant under all functions from F .
We often apply functions coordinate wise to tuples, like in Definition 2.6.

For an n-ary D-valued partial function and tuples t1, . . . , tn ∈ Dk we set

f(t1, . . . , tn) =def (f(t1[1], . . . , tk[1]), . . . , f(t1[n], . . . , tk[n]))

to simplify notation.
We define some D-valued functions: the function prki : Dk → D, defined by

prki (a1, . . . , ak) = ai for every (a1, . . . , ai) ∈ Dk, is the k-ary projection to the
i-th component; id =def pr1

1 is the identity; for a ∈ D the constant function
ca : D → D, defined by ca(d) = a for all d ∈ D.

14 Chapter 2. Preliminaries

Let f, g1, . . . , gn be partial D-valued functions such that f is of arity n and
g1, . . . , gn are of arity k. Then the composition of f and (g1, . . . , gn) is the k-ary
partial D-valued function

f ◦ (g1, . . . , gn) : A→ D,

defined on

A=
{
t ∈ Dk |g1, . . . , gn are defined on t and f is defined on (g1(t), . . . , gn(t))

}
,

such that for every (a1, . . . , ak) ∈ A holds

f ◦ (g1, . . . , gn)(a1, . . . , ak) = f(g1(a1, . . . , ak), . . . , gn(a1, . . . , ak)).

For a function f : A→ B and a subset A′ of A, the function f |A′ : A′ → B
defined by f |A′(a) = f(a) for every a ∈ A′ is called the restriction of f to A′.

Definition 2.7. Let D be a domain.

1. A set of total D-valued functions, that contains all projections and is
closed under arbitrary composition, is called a clone over D. For a set F
of total D-valued functions, [F] denotes the smallest clone containing F .

2. A set of partial D-valued functions that contains all projections, is closed
under arbitrary composition, and is closed under restriction of functions,
is called a strong partial clone over D. For a set F of partial D-valued
functions, [F]p denotes the smallest strong partial clone containing F .

It holds for every constraint language Γ that Pol(Γ) is a clone and pPol(Γ)
is a strong partial clone. Conversely, Inv(F) forms a co-clone if F is a set of
total D-valued functions, and a weak system if F is a set of partial D-valued
functions.

We say a set of D-valued (partial D-valued) functions F is a base of a clone
(strong partial clone) C if [F] = C ([F]p = C).

The next two results show very strong connections between clones and
co-clones and between strong partial clones and weak systems. The Galois
correspondences stated in Proposition 2.8 follow directly from the definitions
of the operators Pol, pPol and Inv.

Proposition 2.8. Let D be a domain.

1. Pol and Inv form a Galois correspondence between the set of all D-valued
functions and the set of all relations over D, i.e., for sets of relations

2.3. Closure Properties 15

Γ1,Γ2 over D and sets of D-valued functions F1,F2 it holds that

Γ1 ⊆ Γ2 ⇒ Pol(Γ1) ⊇ Pol(Γ2),

F1 ⊆ F2 ⇒ Inv(F1) ⊇ Inv(F2),

Γ1 ⊆ Inv(Pol(Γ1)),

F1 ⊆ Pol(Inv(F1)).

2. pPol and Inv form a Galois correspondence between the set of all partial
D-valued functions and the set of all relations over D, i.e., for sets of
relations Γ1,Γ2 over D and sets of partial D-valued functions F1,F2 it
holds that

Γ1 ⊆ Γ2 ⇒ pPol(Γ1) ⊇ pPol(Γ2),

F1 ⊆ F2 ⇒ Inv(F1) ⊇ Inv(F2),

Γ1 ⊆ Inv(pPol(Γ1)),

F1 ⊆ pPol(Inv(F1)).

Points 1a and 1b in the next theorem were proven independently by Geiger
[Gei68], and by Bodnarchuk, Kalužnin, Kotov and Romov [BKKR69]. Points
2a and 2b are from Romov [Rom81], but an implicit proof can be found in
[Gei68] as well.

Theorem 2.9 ([Gei68, BKKR69, Rom81]). Let D be a domain, Γ a constraint
language over D, F a set of D-valued functions, and B a set of partial D-valued
functions. The following equations hold:

1a. Inv(Pol(Γ)) = 〈Γ〉

1b. Pol(Inv(F)) = [F]

2a. Inv(pPol(Γ)) = 〈Γ〉@
2b. pPol(Inv(B)) = [B]p

It follows from the previous results that there is a one-to-one correspondence
between clones and co-clones and a one-to-one correspondence between strong
partial clones and weak systems. Each clone C corresponds uniquely to the
co-clone Inv(C) and each strong partial clone D to the weak system Inv(D).
The next corollary is a list of simple conclusions from the previous theorems.

Corollary 2.10. Let D be a domain, Γ1 and Γ2 constraint languages over D,
F1 and F2 sets of D-valued functions and B1 and B2 sets of partial D-valued
functions.

16 Chapter 2. Preliminaries

1a. Pol(Γ1) = Pol(Γ2) if and only if 〈Γ1〉 = 〈Γ2〉.

1b. Inv(F1) = Inv(F2) if and only if [F1] = [F2].

2a. pPol(Γ1) = pPol(Γ2) if and only if 〈Γ1〉@ = 〈Γ2〉@.

2b. Inv(B1) = Inv(B2) if and only if [B1]p = [B2]p.

For each domain D the inclusion structure of all clones over D forms a
lattice, as well as the inclusion structures of all strong partial clones, co-clones
and weak systems over D. It holds that the lattice of all clones over D is dual
to the lattice of all co-clones D and the lattice of all strong partial clones over
D is dual to the lattice of weak systems over D.

The lattice of all clones over the Boolean domain is well known: in [Pos41]
Post identified all Boolean clones and found a finite base for each of them. In
Table 2.3 all Boolean clones and Post’s bases are listed.

We often express Boolean functions as propositional formulas: a proposi-
tional formula ϕ(x1, . . . , xn) represents the n-ary function f , such that for all
a1, . . . , an ∈ {0, 1} it holds f(a1, . . . , an) = 1 if and only if there is a satisfying
assignment I for ϕ such that I(x1) = a1, . . . , I(xn) = an. For example x ∨ y
represents the function that gives 1 if and only if at least one of its arguments
are 1. Sometimes we denote Boolean functions by Boolean operators, for in-
stance we write only ∨ instead of x ∨ y, → instead of x → y, or ¬ instead
of ¬(x) or x. The Boolean constant functions c0 and c1 we denote sometimes
with 0 and 1.

For n ≥ 1 we define hn : Dn+1 → D to be the n+ 1-ary function that gives
1 if and only if at least n of its arguments are 1, i.e., hn(a1, . . . , an+1) = 1 if
and only if a1 + · · ·+ an+1 ≥ n.

In the following we define some properties of Boolean functions. Let f :
{0, 1}k → {0, 1} a k-ary Boolean function. For a ∈ {0, 1} we say f is a-
reproducing, if f(a, . . . , a) = a. We say f is a-separating if there exists an
i ∈ {1, . . . , k} such that for every t ∈ Dk with f(t) = a it holds that t[i] = a.
For some m ≥ 2 we call f a-separating of degree m, if for every A ⊆ Dk, such
that |A| = m and f(t) = a for all t ∈ A, there exists an i ∈ {1, . . . , k} such
that t[i] = a for all t ∈ A. We say f is monotone if a1 ≤ b1, . . . , ak ≤ bk implies
f(a1, . . . , ak) ≤ f(b1, . . . , bk). The k-ary Boolean function dual(f) is defined by
dual(f)(a1, . . . , ak) = f(a1, . . . , an). If f = dual(f), then f is self-dual. Finally
f is linear if there is a set of indices I ⊆ {1, . . . , k}, such that either for all
a1, . . . , ak ∈ {0, 1} it holds f(a1, . . . , ak) = 1 if and only if

∑
i∈I ai is even, or

for all a1, . . . , ak ∈ {0, 1} it holds f(a1, . . . , ak) = 1 if and only if
∑

i∈I ai is
odd.

2.3. Closure Properties 17

We denote the co-clone that corresponds to a Boolean clone C by IC =def

Inv(C). Figure 2.3 shows the lattice of all Boolean co-clones which is dual
to Post’s lattice of all Boolean clones. A list of finite or, in the not finitely
generated cases, uniform bases for the Boolean co-clones was was presented by
Böler et al. [BRSV05] and can be seen in Table 3.2 in Chapter 3.

For an n-ary Boolean relation R, we define

dual(R) =def {(a1, . . . , an) ∈ {0, 1}n | (a1, . . . , an) ∈ R}

to be the relation dual to R. For a set of relations Γ, we set dual(Γ) =def

{dual(R) | R ∈ Γ}. Note that dual(dual(Γ)) = Γ and that a Boolean function
f is is a polymorphism of Γ if and only if dual(f) is a polymorphism of dual(Γ).
The dual of a Boolean co-clone can be found in Figure 2.3 via the vertical
symmetry axis: it is the mirror-image of the original co-clone. For example
dual(IV1) = IE0.

We now can state Schaefer’s Theorem in more detail.

Theorem 2.11 ([Sch78]). Let Γ be a finite constraint language over {0, 1}.
Then CSP(Γ) is NP-complete, if IN2 ⊆ 〈Γ〉. Otherwise it holds CSP(Γ) ∈ P.

The counting version of the constraint satisfiability problem is defined as:

Problem: #CSP(Γ)
Input: a Γ-formula ϕ
Question: how many solutions does ϕ have?

Creignou and Hermann classified the complexity of #CSP(Γ) for every finite
Boolean constraint language Γ.

Theorem 2.12 ([CH96]). Let Γ be a finite constraint language over {0, 1}. If
〈Γ〉 ⊆ IL2, then CSP(Γ) ∈ FP. Otherwise CSP(Γ) is #P-complete.

We say a Boolean constraint language Γ is Schaefer, if IN * 〈Γ〉. That
means Γ is Schaefer if and only if Γ is a subset of one of the following co-
clones: IV2, IE2, ID2, IL2. For many problems in the constraint context the
Schaefer property guarantees efficient solvability.

18 Chapter 2. Preliminaries

Clone Definition Base

BF All Boolean functions {∨,∧,¬}
R0 {f ∈ BF | f is 0-reproducing } {∧,⊕}
R1 {f ∈ BF | f is 1-reproducing } {∨,↔}
R2 R1 ∩ R0 {∨, x ∧ (y ↔ z)}
M {f ∈ BF | f is monotone } {∨,∧, 0, 1}
M0 M ∩ R0 {∨,∧, 0}
M1 M ∩ R1 {∨,∧, 1}
M2 M ∩ R2 {∨,∧}
Sm
0 {f ∈ BF | f is 0-separating of degree m} {→, dual(hm)}

S0 {f ∈ BF | f is 0-separating } {→}
Sm
02 Sm

0 ∩ R2 {x ∨ (y ∧ z), dual(hm)}
S02 S0 ∩ R2 {x ∨ (y ∧ z)}
Sm
01 Sm

0 ∩M {dual(hm), 1}
S01 S0 ∩M {x ∨ (y ∧ z), 1}
Sm
00 Sm

0 ∩ R2 ∩M {x ∨ (y ∧ z), dual(hm)}
S00 S0 ∩ R2 ∩M {x ∨ (y ∧ z)}
Sm
1 {f ∈ BF | f is 1-separating of degree m} {x ∧ y, hm}

S1 {f ∈ BF | f is 1-separating } {x ∧ y}
Sm
12 Sm

1 ∩ R2 {x ∧ (y ∨ z), hm}
S12 S1 ∩ R2 {x ∧ (y ∨ z)}
Sm
11 Sm

1 ∩M {hm, 0}
S11 S1 ∩M {x ∧ (y ∨ z), 0}
Sm
10 Sm

1 ∩ R2 ∩M {x ∧ (y ∨ z), hm}
S10 S1 ∩ R2 ∩M {x ∧ (y ∨ z)}
D {f ∈ BF | f is self-dual} {xy ∨ xz ∨ (y ∧ z)}
D1 D ∩ R2 {xy ∨ xz ∨ yz}
D2 D ∩M {xy ∨ yz ∨ xz}
L {f ∈ BF | f is linear} {⊕, 1}
L0 L ∩ R0 {⊕}
L1 L ∩ R1 {↔}
L2 L ∩ R {x⊕ y ⊕ z}
L3 L ∩D {x⊕ y ⊕ z ⊕ 1}
V {f ∈ BF | f is constant or an n−ary OR function} {∨, 0, 1}
V0 [{∨}] ∪ [{0}] {∨, 0}
V1 [{∨}] ∪ [{1}] {∨, 1}
V2 [{∨}] {∨}
E {f ∈ BF | f is constant or an n−ary AND function} {∧, 0, 1}
E0 [{∧}] ∪ [{0}] {∧, 0}
E1 [{∧}] ∪ [{1}] {∧, 1}
E2 [{∧}] {∧}
N [{¬}] ∪ [{0}] ∪ [{1}] {¬, 1}
N2 [{¬}] {¬}
I [{0}] ∪ [{1}] {id, 0, 1}
I0 [{0}] {id, 0}
I1 [{1}] {id, 1}
I2 [{id}] {id}

Table 2.1: Bases for all Boolean Clones

2.3. Closure Properties 19

IR0 IR1

IBF

IR2

IM

IM0 IM1

IM2

IS2
1

IS3
1

IS1

IS2
12

IS3
12

IS12

IS2
11

IS3
11

IS11

IS2
10

IS3
10

IS10

IS2
0

IS3
0

IS0

IS2
02

IS3
02

IS02

IS2
01

IS3
01

IS01

IS2
00

IS3
00

IS00ID2

ID

ID1

IL2

IL

IL0 IL1IL3

IE2

IE

IE0 IE1

IV2

IV

IV1IV0

II0 II1

IN2

II

II2

IN

Figure 2.2: The Lattice of all Boolean Co-Clones

20 Chapter 2. Preliminaries

Chapter 3

Weak Bases

The knowledge about the Boolean clones provided by Post in his seminal paper
[Pos41], has become an important tool in the constraint satisfaction context.
There is an easy proof for Schaefer’s Theorem (see Theorem 2.11) that uses
Post’s characterization of the Boolean clones given in Table 2.3 and the strong
connection between clones and co-clones stated in Proposition 2.8 and Theo-
rem 2.9.

The reason why we can rely on this connection when classifying the com-
plexity of CSP(Γ) for each finite constraint language Γ is that the complexity of
CSP(Γ) depends only on the co-clone generated by Γ. Proposition 2.5 implies
that, if two finite constraint languages Γ1 and Γ2 generate the same co-clone,
then Γ1-formulas can be transformed in satisfiability equivalent Γ2-formulas
and vice versa.

However, there are problems in the constraint satisfaction context for which
this transformation does not give a reduction. For example for non-Boolean
domains it is not clear whether the complexity of the problem EQUIV(Γ),
which is the question if two given Γ-formulas are equivalent, depends only on
the co-clone 〈Γ〉. Similarly CSP∗(Γ), the problem whether a given Γ-formula
has a non-constant solution, is not known to be complexity-invariant under
the property of generating the same co-clone. In both cases the existential
quantifiers appearing in the definition of the co-clone closure are the obstacle.

It is obvious that the weak systems without equality are a more suitable
structure when looking at the equivalence problem, because the 〈.〉@, 6=-closure
allows to transform a Γ1-formula in an equivalent Γ2-formula, if Γ1 and Γ2

generate the same weak system without equality (see Proposition 2.5). For
CSP∗(Γ) it can be shown that the complexity depends only on the weak system
generated by Γ. Since weak systems and strong partial clones correspond to
each other in the same way as clones and co-clones do, one can use the theory
of strong partial clones to classify the complexity of CSP∗(Γ). But there is

21

22 Chapter 3. Weak Bases

a big drawback: the strong partial clones are not fully identified, not even
in the Boolean case. An aggravating factor is that the lattice of all Boolean
strong partial clones, and so the lattice of all Boolean weak systems, contains
an uncountable number of classes, whereas the number of Boolean clones is
countable.

In this chapter we identify some strong partial clones, which play a special
role for many classifications in the constraint satisfaction context. Every clone
C canonically corresponds to a set of strong partial clones. We will detect
and characterize the largest strong partial clone in this set. The intuition is
that this strong partial clone corresponds to the “easiest” weak system whose
polymorphisms are exactly C, therefore lower complexity bounds for this “easy”
weak system, transfer to all weak systems corresponding to C.

We show how to construct bases, which we call weak bases, for these kind of
weak systems and give for every Boolean co-clone a weak base that is minimal
in a certain sense. We also give a method to identify weak bases that generate
the “easiest” weak system without equality corresponding to a certain co-clone.

Later, in Chapters 4 and 5, we will see how the theory of weak bases can be
used as a tool to classify the complexity of problems in the constraint context.

3.1 Small Weak Systems

Since strong partial clones over D are closed under arbitrary composition and
contain all projections over D, their total functions form clones. For a clone C
we let

I(C) =def {B | B strong partial clone such that B ∩OPD = C}

denote the set of all strong partial clones that, reduced to only their total
functions, are equal to C. The notation I(C) stems from the fact that I(C) is
an interval in the lattice of all strong partial clones over D.

Clearly [C]p is the smallest strong partial clone in I(C). We will show that
I(C) also has a largest element.

Let

I∪(C) =def

⋃
B∈I(C)

B

be the union of all partial clones whose total functions are exactly C. We will
give a characterization of I∪(C) and show that it again is a strong partial clone
from I(C).

We need the following definition to characterize I∪(C).

3.1. Small Weak Systems 23

Definition 3.1. Let C be a clone over a domain D and f : E → D an n-ary
partial D-valued function. Then f is C-total, if for all m > 0 and for all m-ary
functions g1, . . . , gn ∈ C the composition f ◦ (g1, . . . , gn) is either non-total or
from C.

That means in other words that f is C-total if and only if [C ∪ {f}]p ∈
I(C). The next theorem shows that C-totality is preserved by all operations
involved in generating strong partial clones, that is by arbitrary composition
and restriction.

Theorem 3.2. Let C be a clone over a domain D and F a set of C-total
functions. Then the following holds:

1. every function from [F]p is C-total,

2. the set of all C-total functions forms a strong partial clone.

Proof. 1. Since obviously all projections over D are C-total, it is sufficient
to prove that arbitrary composition and restriction of functions preserve
C-totality.

Let f, g1, . . . , gn be C-total partial D-valued functions such that f is of
arity n and g1, . . . , gn are of arity m for an m > 0. Let h1, . . . , hm ∈ C be
k-ary functions. Then it holds:

(f◦(g1, . . . , gn))◦(h1, . . . , hm) =f◦(g1◦(h1, . . . , hm), . . . , gn◦(h1, . . . , hm)).

We distinguish two cases:

Case 1: gi ◦ (h1, . . . , hm) ∈ C for all i ∈ {1, . . . , n}. Then it holds that
(f ◦ (g1, . . . , gn)) ◦ (h1, . . . , hm) is either from C or non-total, since f
is C-total.

Case 2: there is an i ∈ {1, . . . , n} such that gi ◦ (h1, . . . , hm) /∈ C. Since
gi is C-total, it holds that the composition gi ◦ (h1, . . . , hm) is non-
total. If gi ◦ (h1, . . . , hm) is not defined for some v ∈ Dk, then
(f ◦ (g1, . . . , gn)) ◦ (h1, . . . , hm) is not defined for v either. Therefore
(f ◦ (g1, . . . , gn)) ◦ (h1, . . . , hm) is non-total as well.

Thus f ◦ (g1, . . . , gn) is C-total.

Now let g′1 be a restriction of g1. If g′1 ◦ (h1, . . . , hm) is total, then it is
equal to g1 ◦ (h1, . . . , hm). Since g1 is C-total, g′1 also is C-total. It follows
that [F]p contains only C-total functions.

24 Chapter 3. Weak Bases

2. It follows directly from the above that the set of of all C-total functions
is closed under arbitrary composition and restriction, therefore it forms
a strong partial clone.

The following theorem shows that I∪(C) consists of all C-total functions.
From this result we conclude that I(C) indeed has a greatest element which is
the strong partial clone of all C-total functions.

Theorem 3.3. Let C be a clone over the domain D. Then I∪(C) is exactly the
strong partial clone of all C-total functions.

Proof. We start by proving that every function from I∪(C) is C-total. Let f be
from I∪(C) with arity n. That means there exists a strong partial clone B ∈
I(C) such that f ∈ B. Assume f is not C-total. Then there are g1, . . . , gn ∈ C,
such that h =def f ◦ (g1, . . . , gn) ∈ OPD \ C. Since B ∈ I(C), it holds that
C ⊆ B, and this implies h ∈ B, which is a contradiction to h ∈ OPD \ C.
Hence, f is C-total.

Now we show that every C-total function is from I∪(C). Let f be a C-
total function. Since obviously every function from C is C-total, it follows from
Theorem 3.2 that every function from [{f} ∪ C]p is C-total. None of the total
functions from OPD \C is C-total, therefore [{f} ∪ C]p∩OPD = C. This means
[{f} ∪ C]p ∈ I(C), thus f ∈ I∪(C).

So we know that I∪(C) is the greatest strong partial clone in I(C). We
are now interested in the associated weak system Inv(I∪(C)). The following
definition is central to our approach of using strong partial clones to obtain
complexity classifications.

Definition 3.4. Let C be a clone over a domain D and let Γ be a constraint
language over D. If 〈Γ〉@ = Inv(I∪(C)), we call Γ a weak base for the co-clone
IC.

The name weak base is motivated by the next corollary which shows that a
weak base Γ for a co-clone IC is a co-clone base of IC and generates the smallest
weak system of all co-clone bases of IC.

Corollary 3.5. Let C be a clone over D and Γ a weak base for IC. Then the
following holds:

1. 〈Γ〉@ = Inv(I∪(C))

2. 〈Γ〉 = IC

3. If 〈Γ〉 = 〈Γ′〉 for some constraint language Γ′ over D, then 〈Γ〉@ ⊆ 〈Γ′〉@

3.1. Small Weak Systems 25

Proof. 1. Since pPol(Γ) = I∪(C), it holds Inv(pPol(Γ)) = Inv(I∪(C)). Due
to Theorem 2.9 it follows that Inv(pPol(Γ)) = 〈Γ〉@, which proves this
point.

2. It holds that Pol(Γ) = I∪(C)∩OPD = C, since pPol(Γ) = I∪(C). Because
of Theorem 2.9, it follows Inv(Pol(Γ)) = 〈Γ〉, therefore 〈Γ〉 = IC.

3. Let Γ′ be a constraint language over D such that 〈Γ′〉 = 〈Γ〉. With Corol-
lary 2.10 it follows that Pol(Γ′) = Pol(Γ) = C. Then pPol(Γ′) ∈ I(C) and
therefore pPol(Γ′) ⊆ I∪(C) = pPol(Γ). Since pPol and Inv form a Ga-
lois correspondence as stated in Proposition 2.8, it holds Inv(pPol(Γ)) ⊆
Inv(pPol(Γ′)). Using Theorem 2.9 we conclude that 〈Γ〉@ ⊆ 〈Γ′〉@.

This shows that Inv(I∪(C)) is the smallest weak system that is included in
IC but not in any co-clone which is a proper subset of IC.

Corollary 3.5 says that the relations from Inv(I∪(C)) can be expressed by
constraint formulas over Γ ∪ {EqD} for every constraint language Γ such that
Pol(Γ) = C. This property is essential for the complexity classifications we
show in Chapters 4 and 5.

The rest of this chapter is devoted to finding finite weak bases for IC. We
need the following definitions to construct weak bases: let R be a relation.
R(l, k) is the value at row l and column k in the matrix representation of R.
Note that this is a unique notation because the rows in the matrix represen-
tation of R are ordered lexicographically. By R(l,−) we denote the l-th row
vector and by R(−, k) the k-th column vector in the matrix representation of
R.

The relation D-Colsn is the |D|n-ary relation of size n, defined by

D-Colsn(l, k) =def D
n(k, l)

for all l ∈ {1, . . . , n} and k ∈ {1, . . . , |D|n}. That means the columns of
D-Colsn are exactly the tuples from Dn. If D is the Boolean domain, we often
write just Colsn.

Example 3.6. The columns of the matrix representation of Cols3 are exactly
the binary numbers from 0 to 23 − 1 = 7:

Cols3 =

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

For a set F of D-valued functions the F-closure of a relation R over D,

denoted by F(R), is the relation ∩S∈Inv(F),R⊆SS, i.e., the minimal superset of

26 Chapter 3. Weak Bases

R that is invariant under F . We say R is an F-core of F(R). For a single
partial function f we write f(R) instead of {f}(R) and speak of f -closures and
f -cores.

Example 3.7. We consider the Boolean relation R, defined by R(x, y, z) =
x ∨ y ∨ z. Due to [BRSV05] (see Table 3.2 as well) R generates the Boolean
co-clone IV, i.e., Pol(R) = V. It follows that V(R) = R.

We are looking for a minimal V-core of R. From Table 2.3 we know that
V = [{∨, c0, c1}], therefore a relation S is a V-core of R if and only if it is a
{∨, c0, c1}-core of R. The matrix representation of R is

0 0 0
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

.

It is easy to see that the first and the last row of R can be obtained by applaying
c0 and c1 to some other row, for instance to the second one of R. With the
notation above this means c0(R(2,−)) = R(1, 0) and c1(R(2,−)) = R(7, 0).
Therefore

R1 =def R \ {(0, 0, 0), (1, 1, 1)}

is a V-core of R.
Further it holds that R(2,−) ∨R(4,−) = R(6,−). So

R2 =def R \ {(0, 0, 0), (1, 1, 1), (1, 1, 0)}

is another V-core of R.
Note that all remaining rows cannot be generated from other rows in this

way, therefore there is no smaller V-core for R, than R2.

Let s ∈ N. For a clone C we say that s is a core-size of the co-clone IC if
there is a relation R such that 〈R〉 = IC and R has a C-core of size s. If s is
a core-size of IC and there is no r < s that is a core-size of IC, then s is the
minimal core-size of IC.

In Example 3.7 we showed that 4 is a core-size of the Boolean co-clone
IV. However, we will see that 4 is not the minimal core-size of IV in the next
section.

Note that not every co-clone has a core-size. If IC has no finite base, there is
no relation R such that 〈R〉 = IC. In this case we define the minimal core-size

3.1. Small Weak Systems 27

of IC to be∞. If on the contrary IC is generated by a finite constraint language
Γ, then we can easily find a relation R that generates the same co-clone as Γ:
let R be the Cartesian product of all relations of Γ, then it can be proven that
〈Γ〉 = 〈R〉. Therefore a co-clone has a finite core-size if and only if it has a
finite base.

The following lemma is a technical result we need to identify finite weak
bases. It says that if R and S are relations such that R is an F -core of S, then
every tuple from S can be generated by a single application of some function
f ∈ F to the tuples of R.

Lemma 3.8. Let R be a relation over a domain D and F a set of D-valued
functions. Let s =def |R| be the size of R. Then for every t ∈ F(R) there is
an s-ary function f ∈ [F] such that

t = f(R(1,−), . . . , R(s,−)).

Proof. We prove the lemma by induction. If t ∈ R, that means if t = R(i,−)
for some 1 ≤ i ≤ s, then choose f =def prsi .

Otherwise there is a function g ∈ F such that t = g(t1, . . . , tk) for some
t1, . . . , tk ∈ F(R). Due to induction we know that there are s-ary func-
tions f1, . . . , fk ∈ [F] such that for every 1 ≤ i ≤ k it holds that ti =
fi(R(1,−), . . . , R(s,−)). Set

f =def g ◦ (f1, . . . , fk).

Then we have t = f(R(1,−), . . . , R(s,−)), which proves the lemma.

Now we show that we can construct weak bases from relations of the type
D-Colss for certain s. The idea is, that the fact that such a relation contains
all tuples from Ds as columns, helps us to control partial functions.

Theorem 3.9. Let C be a clone over a domain D and let s ∈ N be a core-size
of IC. Then C(D-Colss) is a weak base of IC.

Proof. To show that C(D-Colss) is a weak base of IC, we have to prove the
following equation:

〈C(D-Colss)〉@ = Inv(I∪(C)).
According to Corollary 2.10 this is equivalent to

pPol(C(D-Colss)) = I∪(C).

Let B =def pPol(C(D-Colss)). Note that B is a strong partial clone. To
prove the theorem it is enough to show

B = I∪(C).

28 Chapter 3. Weak Bases

First we show that I∪(C) ⊆ B. Let f ∈ I∪(C) be an n-ary partial function.
According to Theorem 3.3 we know that f is C-total. To prove that f is a
partial polymorphism of C(D-Colss) let t1, . . . , tn be tuples from C(D-Colss).
Due to Lemma 3.8 there exist s-ary functions h1, . . . , hn ∈ C such that for
every 1 ≤ i ≤ n it holds

ti = hi(D-Colss(1,−), . . . , D-Colss(s,−)).

Let g =def f ◦ (h1, . . . , hn). Then it follows:

f(t1, . . . , tn) = f ◦ (h1, . . . , hn)(D-Colss(1,−), . . . , D-Colss(s,−))

= g(D-Colss(1,−), . . . , D-Colss(s,−)).

If g is total, then g is from C because f is C-total, and it follows f(t1, . . . , tn) ∈
C(D-Colss). If g is not total, then g is not defined on at least one of the
columns of D-Colss, because every tuple from Ds is a column in D-Colss. Then
g(D-Colss(1,−), . . . , D-Colss(s,−)) is not defined and therefore f(t1, . . . , tn) is
not defined either. Hence, f is a partial polymorphism of C(D-Colss).

Now we prove B ⊆ I∪(C) by showing that B ∈ I(C). That means we show
that the total functions from B are exactly C. Clearly it holds C ⊆ B, so we
prove that every total function from B is a function from C.

Let f ∈ B be a total function. Then f is a polymorphism of C(D-Colss).
Since s is a core-size of IC, there exists a relation S over D such that |S| = s
and 〈C(S)〉 = IC. So we have Pol(C(S)) = C.

We show that f is a polymorphism of C(S). Let n be the arity of f
and t1, . . . , tn ∈ C(S). According to Lemma 3.8 there exist s-ary functions
h1, . . . , hn ∈ C such that for every 1 ≤ i ≤ n holds

ti = hi(S(1,−), . . . , S(s,−)).

Since h1, . . . , hn and f are polymorphisms of C(D-Colss) and the polymor-
phisms of a relation are closed under arbitrary composition, it follows that
g =def f ◦ (h1, . . . , hn) is a polymorphism of C(D-Colss) as well. This implies
that

t =def g(D-Colss(1,−), . . . , D-Colss(s,−)) ∈ C(D-Colss).

We use Lemma 3.8 again: there exists an s ary function h ∈ C such that

t = h(D-Colss(1,−), . . . , D-Colss(s,−)).

Since every element of Ds is a column of D-Colss, it holds that g = h. It
follows that g ∈ C and therefore

f(t1, . . . , tn) = g(S(1,−), . . . , S(s,−)) ∈ C(S).

Thus, C(S) is invariant under f and this implies that f ∈ C. Hence, B ⊆ I∪(C),
which completes the proof.

3.1. Small Weak Systems 29

With the above theorem we can construct a weak base for every co-clone
for which we know a finite base, since finite bases give us core-sizes.

Example 3.10. We construct a weak base for the Boolean co-clone IN. Ac-
cording to Table 2.3, it holds that 〈Dup〉 = IN and [{¬, c1}] = N. Recall
that Dup = {0, 1}3 \ {(0, 1, 0), (1, 0, 1)}. One can verify that the relation
{(0, 0, 1), (0, 1, 1)} is an N-core of Dup, therefore 2 is a core-size of IN.

Theorem 3.9 says that N(Cols2) is a weak base for IN. It holds that

Cols2 =

(
0 0 1 1
0 1 0 1

)
.

If we close this relation under ¬ and c1, we get

N(Cols2) =

0 0 0 0
0 0 1 1
0 1 0 1
1 0 1 0
1 1 0 0
1 1 1 1

 .

The second and the third row form Cols2, the last row is generated by c1,
and the first, the fourth and the fifth row result from the application of ¬ to
the last row and the rows from Cols2.

The motivation for our interest in weak bases is that we want to use them
as a tool to classify the complexity of problems in the constraint satisfaction
context. However, often the more restricted closure 〈.〉@, 6= fits more naturally
to problems than the 〈.〉@-closure. The problems examined in Chapter 4 and
Chapter 5 are examples for this phenomenon.

For some weak bases we can show that their properties with respect to
the 〈.〉@-closure mentioned in Corollary 3.5, hold for the 〈.〉@, 6=-closure as well.
To be able to give a criterion for such weak bases we introduce the notion of
redundancy.

Let R be a relation over a domain D of arity n. We say R is =-redundant if
there are i, j ∈ {1, . . . , n} such that i 6= j and R(−, i) = R(−, j). We say R is
>-redundant if there is an i ∈ {1, . . . , n} such that for all (a1, . . . , an) ∈ R holds
that for every b ∈ D we have (a1, . . . , ai−1, b, ai+1, . . . , an) ∈ R. In other words
R is =-redundant if the matrix representation of R has two equal columns and
R is >-redundant if there is a relation S such that R has exactly the same
columns as S×D. We say R is redundant if R is =-redundant or >-redundant
and R is irredundant if R is neither =-redundant nor >-redundant.

The following proposition shows that we do not need EqD-clauses to express
irredundant functions.

30 Chapter 3. Weak Bases

Proposition 3.11. Let Γ be a constraint language over a domain D and let
R be an irredundant relation over D such that R ∈ 〈Γ〉@. Then it holds that
R ∈ 〈Γ〉@, 6=.

Proof. Since R ∈ 〈Γ〉@ it holds that the clause R(x1, . . . , xn) is equivalent to
some constraint formula ϕ over Γ ∪ {EqD} with Var(ϕ) = {x1, . . . , xn}. We
show that we can remove all EqD-clauses from ϕ without changing its set of
solutions.

Let EqD(xi, xj) be a clause in ϕ for some i, j ∈ {1, . . . , n}. If i 6= j, then
R(−, i) = R(−, j), which means R is =-redundant. Since this contradicts the
irredundancy of R it holds that i = j. Note that the clause then is satisfied
by all assignments to xi. If xi does not appear in any other clause of ϕ, then
xi does not depend on the other variables of ϕ, i.e., R is >-redundant in the
column R(−, i). Again this is a contradiction to the redundancy of R, therefore
we can assume that xi appears in some other clause in ϕ. But then the clause
EqD(xi, xj) does not restrict the set of solutions for ϕ and we can delete it from
ϕ without changing its set of solutions.

Thus, ϕ ≡ ϕ′, where ϕ′ contains exactly the clauses from ϕ that are no
equality clauses. Therefore R(x1, . . . , xn) is equivalent to the Γ-formula ϕ′,
which means R ∈ 〈Γ〉@, 6=.

Let Γ be a weak base for a co-clone IC. If every relation from Γ is irredun-
dant, we call Γ an irredundant weak base of IC.

The previous proposition yields the next corollary saying that irredundant
weak bases have the same properties for the 〈.〉@,6=-closure as weak bases have
for the 〈.〉@-closure: they generate the smallest weak system without equality
of all constraint languages generating the same co-clone. Note the similarity
between the following corollary and point 3 in Corollary 3.5.

Corollary 3.12. Let C be a clone over a domain D and let Γ be an irredundant
weak base for IC. Let Γ′ be a constraint language over D such that 〈Γ′〉 = IC.
Then it holds 〈Γ〉@, 6= ⊆ 〈Γ′〉@, 6=.

Note that the weak bases that can be constructed with Theorem 3.9 are all
=-irredundant, because D-Colss has no double columns. However, these weak
bases are not necessarily >-irredundant.

3.2 Boolean Weak Bases

Since for a core-size s the arity of D-Colss is |D|s, our weak bases can become
very large quickly. To be able to work with weak bases it is therefore in our

3.2. Boolean Weak Bases 31

interest to find minimal core-sizes of co-clones. In this section we give the
minimal core-sizes for all Boolean co-clones.

The results from this section can be seen in Table 3.2. It shows for each
Boolean co-clone its minimal core-size. It also lists bases discovered by Böhler
et al. [BRSV05] for the co-clones. Note that most of these bases are not weak
bases.

Theorem 3.13. The minimal core-sizes given in Table 3.2 for the Boolean
co-clones are correct.

Proof. Due to [BRSV05] the eight co-clones IS0, IS00, IS01, IS02, IS1, IS10, IS11,
and IS12 do not have finite bases, therefore their minimal core-size is ∞.

As an example for the other cases we prove that the minimal core-size of
IV is 2.

We start with showing that 2 is a core-size of the co-clone IV. Let R =def

Cols2 = {(0, 0, 1, 1), (0, 1, 0, 1)}. We show that V(R) generates IV. The matrix
representation of V(R) is

V(R) =

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 1 1 1

 .

Since V ⊆ Pol(V(R)), it holds 〈V(R)〉 ⊆ IV according to Proposition 2.8. One
can verify that the following equivalence is true:

∃t, u, v, wR(t, x, y, v) ∧R(u,w, z, v) ≡ x ∨ y ∨ z.

Since the relation S defined by

S(x, y, z) ≡ x ∨ y ∨ z

forms a base of IV (see Table 3.2) it holds that 〈V(R)〉 = IV. Thus, IV has 2
as a core-size.

Now assume that 1 is a core-size of IV. Then V(Cols1) is a weak base of
IV due to Theorem 3.9. In particular we have 〈V(Cols1)〉 = IV. But it holds
V(Cols1) = {(0, 0), (0, 1), (1, 1)} = Imp and 〈Imp〉 = IM due to Table 3.2.
Hence, 1 is not a core-size of IV, so 2 is the minimal core-size of IV.

The minimal core-sizes for the other Boolean co-clones can be verified in
a similar way: to prove that the stated minimal core-size s for a co-clone IC
really is a core-size one shows that C(Colss) is a co-clone base of IC. For the
minimality of s one shows that C(Colss−1) is not a co-clone base of IC, by

32 Chapter 3. Weak Bases

Co-Clone Min. core-size Base

IBF 1 {Eq}
IR0 1 {C0}
IR1 1 {C1}
IR2 1 {C0,C1}
IM 1 {Imp}
IM0 2 {Imp,C0}
IM1 2 {Imp,C1}
IM2 3 {Imp,C0,C1}
ISm

0 , m ≥ 2 m {Orm}
IS0 ∞ {Orm | m ≥ 1}
ISm

02, m ≥ 2 m {Orm,C0}
IS02 ∞ {Orm | m ≥ 1} ∪ {C0}
ISm

01, m ≥ 2 m {Orm, Imp}
IS01 ∞ {Orm | m ≥ 1} ∪ {Imp}
IS2

00 3
˘

Or2, Imp,C0

¯
ISm

00, m ≥ 3 m {Orm, Imp,C0}
IS00 ∞ {Orm | m ≥ 1} ∪ {Imp,C0}
ISm

1 , m ≥ 2 m {dual(Orm)}
IS1 ∞ {dual(Orm) | m ≥ 1}
ISm

12, m ≥ 2 m {dual(Orm),C1}
IS12 ∞ {dual(Orm) | m ≥ 1} ∪ {C1}
ISm

11, m ≥ 2 m {dual(Orm), Imp}
IS11 ∞ {dual(Orm) | m ≥ 1} ∪ {Imp}
IS2

10 3
˘

dual(Or2), Imp,C1

¯
ISm

10, m ≥ 3 m {dual(Orm), Imp,C1}
IS10 ∞ {dual(Orm) | m ≥ 1} ∪ {Imp,C1}
ID 1

˘
Odd2

¯
ID1 2

˘
Odd2,C1

¯
ID2 3

˘
Odd2, Imp

¯
IL 2

˘
Even4

¯
IL0 2

˘
Even4,C0

¯
,
˘

Even3
¯

IL1 2
˘

Even4,C1

¯
,
˘

Odd3
¯

IL2 3
˘

Even4,C0,C1

¯
,
˘

Even3,C1

¯
IL3 3

˘
Even4,Odd2

¯
,
˘

Odd4
¯

IV 2 {x ∨ y ∨ z}
IV0 2 {x ∨ y ∨ z, x}
IV1 3 {x ∨ y ∨ z, x}
IV2 3 {x ∨ y ∨ z, x, x}
IE 2 {x ∨ y ∨ z}
IE0 3 {x ∨ y ∨ z, x}
IE1 2 {x ∨ y ∨ z, x}
IE2 3 {x ∨ y ∨ z, x, x}
IN 2 {Dup}
IN2 3

˘
Dup,Even4,Odd2

¯
, {Nae}

II 2
˘

Even4, Imp
¯

II0 2
˘

Even4, Imp,C0

¯
II1 2

˘
Even4, Imp,C1

¯
II2 3

˘
Even4, Imp,C0,C1

¯
, {1-in-3}

Table 3.1: Minimal core-sizes and bases for all Boolean co-clones

3.2. Boolean Weak Bases 33

proving that C(Colss−1) generates a co-clone smaller than IC. Since it is easy
to show that every co-clone which has r ∈ N as a core-size, has r + 1 as a
core-size as well, this is sufficient to prove that s is the minimal core-size of
IC.

The concept of weak bases we have developed is essential for the classifica-
tions in the next two chapters. It allows, even if the co-clone closure cannot be
shown to preserve the complexity of the particular problem, to use the co-clone
structure to obtain hardness results, by switching over from a co-clone IC to
the smallest corresponding weak system Inv(I∪(C)). But we have to be careful
in one point: if we have two co-clones IC and ID such that IC ⊆ ID, then it
does not necessarily hold that Inv(I∪(C)) ⊆ Inv(I∪(D)). For example we have
IR1 ⊆ IR2, but the weak base {(0, 1), (1, 1)} of IR1 is not in the weak system
generated by {(0, 1)} which is a weak base for IR2. That this fact effects the
use of weak bases for classifications can be seen in Chapter 4.

It is an interesting task for future research to find out which pairs of co-
clones hand down their inclusion relation to their smallest weak systems. An-
other issue that arises is the inclusion structure of the weak systems corre-
sponding to the same co-clone.

34 Chapter 3. Weak Bases

Chapter 4

Balanced Satisfiability

In this chapter we apply the tools from Chapter 3 to classify the complexity
of the balanced satisfiability problem which is an example for a global satisfia-
bility problem. In a global satisfiability problem we have additionally to local
constraints expressed by constraint clauses a global condition restricting the
solutions of a formula. In the case of balanced satisfiability we require the
solutions to set exactly on half of the variables to 1.

Let Γ be a constraint language over the Boolean domain {0, 1} and let ϕ
be a constraint formula over Γ. A balanced assignment for ϕ is an assignment
I : Var(ϕ) → D that assigns 0 to the same number of variables as 1, that
means it fullfills | {x ∈ Var(ϕ) | I(x) = 0} | = | {x ∈ Var(ϕ) | I(x) = 1} |. If I
additionally satisfies ϕ we call I a balanced solution of ϕ.

The balanced satisfiability problem for Γ-formulas is defined as follows:

Problem: BAL-CSP(Γ)
Input: a Γ-formula ϕ
Question: does ϕ have a balanced solution?

Additionally we look at the counting version of this problem, i.e., the ques-
tion how many balanced solutions a given Γ-formula has.

Problem: #BAL-CSP(Γ)
Input: a Γ-formula ϕ
Question: how many balanced solutions does ϕ have?

Partial results for the decision problem and an optimization version of bal-
anced satisfiability have been achieved by Bazgan and Karpinski [BK05]. The
aim of this chapter is to prove a full complexity classification for both prob-
lems, saying that for every finite Boolean constraint language BAL-CSP(Γ) is
in P or NP-complete and #BAL-CSP(Γ) is in FP or complete for #P.

35

36 Chapter 4. Balanced Satisfiability

We start with stating canonical upper complexity bounds and observing
that the complexity of both problems we look at is invariant under the 〈.〉@,6=-
closure. We then show the polynomial time results in Section 4.1. Our focus
lies on the hardness results in the later sections: in Section 4.2 we show that
both problems are NP-hard or #P-hard for some special one-element constraint
languages, which we need in many later proofs. Then we deal with general finite
constraint languages in the next two sections. All those hardness results follow
the same scheme: to show that for all constraint languages Γ generating a
fixed Boolean co-clone IC the problems BAL-CSP(Γ) and #BAL-CSP(Γ) are
hard for NP or #P, we prove the hardness for an irredundant weak base of
IC. For the proofs in Section 4.3 we do not need to construct an irredundant
weak bases explicitly and we can handle several co-clones at once, because
their irredundant weak bases share some properties. In Section 4.4 we work
with concrete irredundant weak bases and cover only one co-clone per proof.
Allthough the arguments are very similar their is no obvious way to unify
these proofs. We give the appearing constructions all in detail as an example
how to work with irredundant weak bases. These non-unifiable cases include
among others the non-Schaefer co-clones. The reason for their uncomfortable
behavior could lie in a fact mentioned in Chapter 3: inclusions of co-clones do
not necessarily transfer to the weaker closure operators.

4.1 Basic Facts and Easy Cases

First we state the obvious upper complexity bounds for BAL-CSP(Γ) and
#BAL-CSP(Γ).

Proposition 4.1. For every finite constraint language Γ over {0, 1} it holds
that BAL-CSP(Γ) ∈ NP and #BAL-CSP(Γ) ∈ #P.

Proof. Given a Γ-formula ϕ, an algorithm can easily verify if a guessed as-
signment for ϕ is a balanced solution for ϕ. Therefore we can construct a
non-deterministic polynomial time Turing Machine ϕ that branches out for
every possible Boolean assignment to the variables of the input formula and
accepts in a branch if the according assignment is a balanced solution for ϕ.
This proves BAL-CSP(Γ) ∈ NP and #BAL-CSP(Γ) ∈ #P.

To make sure that we can use the tools developed in Chapter 3, we prove
that the computational complexity of BAL-CSP(Γ) depends only on the weak
system without equality generated by Γ. The result follows directly from the
fact that two equivalent formulas have the same solutions.

4.1. Basic Facts and Easy Cases 37

Proposition 4.2. Let Γ1 and Γ2 be finite constraint languages over {0, 1}
such that Γ1 ⊆ 〈Γ2〉@, 6=. Then it holds #BAL-CSP(Γ1) ≤log

! #BAL-CSP(Γ2)

and BAL-CSP(Γ1) ≤log
m BAL-CSP(Γ2).

Proof. Let ϕ be a constraint formula over Γ1. According to Proposition 2.5
we can compute a Γ2-formula ϕ′, that is equivalent to ϕ, using only loga-
rithmic space. Since ϕ and ϕ′ have the same set of solutions, they have the
same set of balanced solutions as well, therefore it holds #BAL-CSP(Γ1) ≤log

!

#BAL-CSP(Γ2) and in particular BAL-CSP(Γ1) ≤log
m BAL-CSP(Γ2).

Note that the above proof cannot be generalized canonically to work with
the weakend prerequisite Γ1 ⊆ 〈Γ2〉@ or even Γ1 ⊆ 〈Γ2〉 instead of Γ1 ⊆ 〈Γ2〉@,6=.
Therefore, at this point, we cannot apply the classical methods involving only
the co-clone closure. However, in the end of this chapter, we will see that the
proposition stays true with this modified prerequisites, i.e, that the complex-
ity of balanced satisfiability depends only on the co-clone generated by the
according constraint language.

A helpful property of balanced satisfiability is that we can exploit the sym-
metry in Post’s Lattice: the next proposition says that the complexity of our
problem is invariant under dualization.

Proposition 4.3. Let Γ be a finite constraint language over {0, 1}, then it
holds #BAL-CSP(dual(Γ)) ≤log

! #BAL-CSP(Γ)

Proof. Let ϕ be a Γ-formula and let ϕ′ be the dual(Γ)-formula obtained by
replacing every clause R(x1, . . . , xn) from ϕ by dual(R)(x1, . . . , xn). It is easy
to see that an assignment I : Var(ϕ) → {0, 1} satisfies ϕ if and only if the
assignment I ′ : Var(ϕ) → {0, 1}, defined by I ′(x) = ¬I(x) for all x ∈ Var(ϕ),
satisfies ϕ′. Since I is balanced if and only if I ′ is, and since the replacement
of the clauses is a local operation that works in logarithmic space, this proves
the reduction stated in the proposition.

We now show that BAL-CSP(Γ) and #BAL-CSP(Γ) are solvable in polyno-
mial time for finite Boolean constraint languages Γ, such that 〈Γ〉 ⊆ ID1. As an
intermediate problem we use a version of SUBSET-SUM, which is the question
whether, given a sequence of natural numbers k1, . . . , kn and a natural number
S, there is a subsequence ki1 , . . . , kim of k1, . . . , kn, such that the sum over its
elements is exactly S. This problem is well known to be NP-complete [Kar72].
However, if the numbers k1, . . . , kn in the input are given in a unary represen-
tation, then we can solve the problem in polynomial time [GJ79]. We give the
formal definition for the counting version of this variant of SUBSET-SUM:

38 Chapter 4. Balanced Satisfiability

Problem: #UNARY-SUBSET-SUM
Input: a sequence 1k1 , . . . , 1kn for some n, k1, . . . , kn ∈ N and a

natural number S.
Question: how many sets I ⊆ {1, . . . , n} exist, such that

∑
i∈I ki = S?

By 1k we denote the word of length k over the alphabet {1}, i.e., 10 is the
empty word and 11 = 1, 12 = 11, 13 = 111, etc.

We show that we can solve #UNARY-SUBSET-SUM in polynomial time
in the next theorem. The algorithm in the proof is strongly based on a pseudo-
polynomial time algorithm for PARTITION from [GJ79].

Lemma 4.4. #UNARY-SUBSET-SUM ∈ FP.

Proof. Let 1k1 , . . . , 1kn for some n, k1, . . . , kn ∈ N and S ∈ N be an instance
for #UNARY-SUBSET-SUM. The following algorithm computes for every
0 ≤ i ≤ n and 0 ≤ j ≤ S the number of sets I ⊆ {1, . . . , i} such that∑

i∈I ki = j and stores this information in a matrix T . The algorithm fills the
matrix line by line and relies on earlyer entries when computing the current
one. The information we will looking for will be in T (n, S). This approach is
known as dynamic programming.

1: let T be an (n+ 1)× (S + 1)-matrix
2: T (0, 0) := 1
3: for j = 1, . . . , S do
4: T (0, j) := 0
5: end for
6: for i = 1, . . . , n do
7: for j = 0, . . . , S do
8: if j < ki then
9: T (i, j) := T (i− 1, j)

10: else
11: T (i, j) := T (i− 1, j) + T (i− 1, j − ki)
12: end if
13: end for
14: end for
15: return T (n, S)

The algorithm fills a (n + 1) × (S + 1)-matrix and needs only polynomial
time for each entry, so the algorithm is polynomial in the length of the instance
which is O(k1 + · · ·+kn+S). Note that without using unary coding the length
of the input is O(log(k1 · · · knS)) and the running time of the above algorithm
is exponential in the size of the input.

4.1. Basic Facts and Easy Cases 39

The following result covers all polynomial time cases for our problems. In
the next section we will see that for all other cases we prove NP-hardness and
#P-hardness respectively.

Theorem 4.5. Let Γ be a finite constraint language over {0, 1} such that 〈Γ〉 ⊆
ID1. Then BAL-CSP(Γ) ∈ P and #BAL-CSP(Γ) ∈ FP

Proof. Due to [CKZ05] it holds that the constraint language

Σ =def

{
C0,C1,Even2,Odd2

}
is a so called plain base for ID1, that means it has the following properties:
〈Σ〉 = ID1 and 〈Γ〉@, 6= ⊆ 〈Σ〉@, 6=. Therefore it follows from Proposition 4.2 that

#BAL-CSP(Γ) ≤log
! #BAL-CSP(Σ) and BAL-CSP(Γ) ≤log

m BAL-CSP(Σ) is
true. So, it is sufficient to show #BAL-CSP(Σ) ∈ FP to prove the theorem.

Let ϕ be a constraint-formula over Σ. Since Σ is Schaefer it follows from
Schaefer’s Theorem (see Theorem 2.11) that we can check in polynomial time
whether ϕ is satisfiable. If this is the case, we can partition Var(ϕ) in classes
X0, . . . , Xn, Y0, . . . , Yn for some n ∈ N, such that the following is true for every
v ∈ Var(ϕ):

• if C1(v) is a clause in ϕ, then v ∈ X0;

• if C0(v) is a clause in ϕ, then v ∈ Y0;

• if ϕ has neither a C0-clause nor a C1-clause, then X0 = Y0 = ∅;

• if v ∈ Xi (resp. v ∈ Yi) for some 0 ≤ i ≤ n, then Xi (resp. Yi) is
the set of all variables v′ of ϕ such that for every solution I for ϕ holds
I(v) = I(v′);

• if v ∈ Xi (resp. v ∈ Yi) for some 0 ≤ i ≤ n, then Yi (resp. Xi) is
the set of all variables v′ of ϕ such that for every solution I for ϕ holds
I(v) 6= I(v′).

Note that we can construct this partition in polynomial time, because for two
variables v and v′ from Var(ϕ) it holds that I(v) = I(v′) for each solution I
of ϕ, if and only if v and v′ are connected by a path of clauses that includes
an even number of Odd2 clauses. And it holds that I(v) 6= I(v′) for each
solution I of ϕ, if and only if v and v′ are connected by a path of clauses that
includes an odd number of Odd2 clauses. By a path of clauses we mean a
set of clauses {c1, . . . , cm}, such that for every 1 ≤ i ≤ m − 1 it holds that
Var(ci)∩Var(ci+1) 6= ∅, or that ci and ci+1 are both Ca-clauses for an a ∈ {0, 1}.

40 Chapter 4. Balanced Satisfiability

Assuming that we do not have a pair of empty classes (Xi, Yi) for 1 ≤ i ≤ n,
it holds that the number of solutions for ϕ equals 2n, because for every pair
(Xi, Yi) with 1 ≤ i ≤ n we can chose independently whether we set the variables
from Xi to 1 and from Yi to 0 or the other way round. Note that the values
for the variables in X0 and Y0 are fixed.

Let ki =def |Xi| − |Yi| for every i ∈ {1, . . . , n}. Without loss of generality
assume that ki ≥ 0 for every i ∈ {1, . . . , n}, otherwise exchange Xi with Yi.
Let I be a solution for ϕ and let IX be the set of all indices i 6= 0 such that I
maps the variables from Xi to 1, i.e.,

IX =def {i | 1 ≤ i ≤ n and I(x) = 1 for all x ∈ Xi}

Let K(I) be the number of variables v ∈ Var(ϕ) such that I(v) = 1. Then
it holds:

K(I) = |X0|+
n∑
i=1

|Yi|+
∑
i∈IX

ki

It follows that I is balanced if and only if

1

2
|Var(ϕ)| −

n∑
i=1

|Yi| − |X0| =
∑
i∈IX

ki.

Thus the number of balanced solutions for ϕ is exactly the number of sub-
sets IX ⊆ {1, . . . , n} such that IX satisfies the previous equation. Note that∑n

1=1 ki ≤ |Var(ϕ)|, therefore the length of the string 1ki is polynomial in the
length of ϕ. Hence, since #UNARY-SUBSET-SUM is in FP due to Lemma 4.4,
we can compute the number of balanced solutions for ϕ in polynomial time.

Note that for some K ∈ N we can compute the number of all solutions I
for ϕ, that map exactly K variables of ϕ to 1, in polynomial time as well. We
just have to replace 1

2
|Var(ϕ)| in the last equation by K.

4.2 Hardness Results for Basic Relations

In this section we look at the three relations Imp, Or2 and Odd3 to be able
to use them later to obtain complexity results for more general constraint
languages.

Lemma 4.6. BAL-CSP(Imp) is NP-hard and #BAL-CSP(Imp) is #P-hard
under counting reductions.

4.2. Hardness Results for Basic Relations 41

Proof. First we prove the NP-hardness of BAL-CSP(Imp). For that we make
a reduction from the following problem:

Problem: K-CLOSURE
Input: a directed graph G = (V,E) and k ∈ N
Question: Is there a V ′ ∈ V such that |V ′| = k and for all (u, v) ∈ E

it holds u ∈ V ′ or v /∈ V ′?
Speaking more intuitively the question is whether there is a k-element

subset V ′ of V such that no edge goes from V \ V ′ to V ′. Due to [GJ79]
K-CLOSURE is NP-complete.

We show K-CLOSURE ≤log
m BAL-CSP(Imp). Let G = (V,E) be a di-

rected graph and k ∈ N. Let n =def |V |. We construct a constraint for-
mula over {Imp} with variables X =def V ∪ {t1, . . . , tk, f1, . . . , fn−k}, where
t1, . . . , tk, f1, . . . , fn−k are all distinct variables and not from V . We set

ϕ =def

∧
(u,v)∈E

Imp(u, v) ∧
k∧
i=1

∧
x∈X

Imp(x, ti) ∧
n−k∧
i=1

∧
x∈X

Imp(fi, x).

Let V ′ ⊆ V such that |V ′| = k and for every (u, v) ∈ E it holds that u ∈ V ′
or v /∈ V ′. It is easy to see that the assignment I : X → {0, 1} defined by

I(x) =def

{
0 if x ∈ V ′ ∪ {f1, . . . , fn−k}
1 otherwise

is a balanced solution for ϕ.
Now let I : X → {0, 1} be a balanced solution for ϕ. Assume I(ti) = 0

for an i ∈ {1, . . . , k}. Then, because of the clauses
∧
x∈X Imp(x, ti), it follows

that I(x) = 0 for every x ∈ X. This contradicts the fact that I is balanced,
therefore it holds I(ti) = 1 for every i ∈ {1, . . . , k} and analogously it follows
I(fi) = 0 for every i ∈ {1, . . . , n− k}.

Because I is balanced I maps k variables from V to 0 and n− k variables
form V to 1. Let

V ′ =def {x ∈ V | I(x) = 0} .

Then we have |V ′| = k. Let (u, v) ∈ E and assume u /∈ V ′ and v ∈ V ′. That
means I(u) = 1 and I(v) = 0. Since Imp(u, v) is a clause from ϕ we have a
contradiction. Hence, V ′ satisfies all properties for a k-closure.

Since ϕ can be constructed in logarithmic space, it follows

K-CLOSURE ≤log
m BAL-CSP(Imp).

Thus, BAL-CSP(Imp) is NP-hard.

42 Chapter 4. Balanced Satisfiability

Now we show that #BAL-CSP(Imp) is #P-hard by proving

#CSP(Imp) ≤log
! #BAL-CSP(Imp).

Let
ϕ =def Imp(x1, y1) ∧ · · · ∧ Imp(xn, yn).

Let k =def |Varϕ| and z1, . . . , zk be new and distinct variables. We set:

ϕ′ =def ϕ ∧
k−1∧
i=1

Imp(zi, zi+1).

Obviously every balanced solution for ϕ′ can be restricted to a solution for ϕ.
For the converse direction we show that every solution for ϕ can be ex-

tended in exactly one way to a balanced solution for ϕ′. Let I : Var(ϕ) →
{0, 1} be a solution for ϕ. Let k0 =def | {x ∈ Var(ϕ) | I(x) = 0} | and k1 =def

| {x ∈ Var(ϕ) | I(x) = 1} |. If we want to extend I to a balanced solution for
ϕ′, then we have to assign 0 to k1 variables from {z1, . . . , zk} and 1 to k0 vari-
ables from {z1, . . . , zk}. In order to satisfy all clauses of the form Imp(zi, zi+1)
we have to set I(zi) = 0 if i ≤ k1 and I(zi) = 1 otherwise.

Thus, there is a one-to-one correspondence between solutions for ϕ and
balanced solutions for ϕ′. Since ϕ′ can be constructed from ϕ in logarithmic
space, this proves the reduction #CSP(Imp) ≤log

! #BAL-CSP(Imp). Due to
Theorem 2.12 it holds that #CSP(Imp) is #P-hard, therefore it follows #P-
hardness of #BAL-CSP(Imp).

The NP-hardness for BAL-CSP(Or2) was proven in [BK05], we add the
#P-hardness for the counting problem.

Lemma 4.7. BAL-CSP(Or2) is NP-hard and #BAL-CSP(Or2) is #P-hard
under counting reductions.

Proof. Bazgan and Karpinski showed in [BK05] that BAL-CSP(dual(Or2)) is
NP-hard, therefore due to Proposition 4.3 it also holds that BAL-CSP(Or2) is
NP-hard.

For the #P-hardness of #BAL-CSP(Or2) we show the following reduction:

#CSP(Or2) ≤log
! #BAL-CSP(Or2).

Let ϕ be an Or2-formula. For every x ∈ Var(ϕ) let x′ be a new variable. We
define

ϕ′ =def ϕ ∧
∧

x∈Var(ϕ)

Or2(x, x′).

4.2. Hardness Results for Basic Relations 43

Note that ϕ′ can be constructed from ϕ in logarithmic space.
It is easy to see that a balanced assignment I : Var(ϕ′) → {0, 1} satisfies

the subformula
∧
x∈Var(ϕ) Or2(x, x′) if and only if for every x ∈ Var(ϕ) holds

I(x) 6= I(x′). Therefore every solution I : Var(ϕ) → {0, 1} for ϕ can be
extended to a balanced solution for ϕ′ only in one way: by setting I(x′) 6=def

I(x) for every x ∈ Var(ϕ). Because obviously every balanced solution for ϕ′

satisfies ϕ, we have a one-to-one correspondence between solutions for ϕ and
balanced solutions for ϕ′. Thus, #CSP(Or2) ≤log

! #BAL-CSP(Or2).
Since

〈
Or2
〉

= IS2
0 (see Table 3.2), it holds that #CSP(Or2) is #P-hard due

to Theorem 2.12. This gives us #P-hardness for #BAL-CSP(Or2).

Again, the NP-hardness for BAL-CSP(Odd3) was proven in [BK05]. Note
that in the proof for the #P-hardness of #BAL-CSP(Odd3) we reduce a non-
Schaefer to a Schaefer case.

Lemma 4.8. BAL-CSP(Odd3) is NP-hard and #BAL-CSP(Odd3) is #P-hard
under counting reductions.

Proof. The NP-hardness of BAL-CSP(Odd3) was already proven in [BK05].
For the #P-hardness of the counting problem it is sufficient to show that
#CSP(1-in-3) ≤log

! #BAL-CSP(Odd3), because #CSP(1-in-3) is hard for #P
due to Table 3.2 and the result from Creignou and Hermann stated in The-
orem 2.12. Note that, since CSP(1-in-3) is an NP-complete problem due to
Theorem 2.11, the following reduction is also an alternative proof for the NP-
hardness of BAL-CSP(Odd3).

Let

ϕ =def

n∧
i=1

1-in-3(xi, yi, zi)

be a constraint formula over {1-in-3}. We construct an Odd3-formula using
additionally to the variables appearing in ϕ the following new and distinct
variables: ai, bi, ci, di for every 1 ≤ i ≤ n; ti, f i for every 1 ≤ i ≤ k where
k =def 2|Var(ϕ)|+ 4n; and v′ for every v ∈ ϕ.

We set:

ϕ′ =def

n∧
i=1

{
Odd3(xi, yi, zi) ∧Odd3(di, di, di)∧

Odd3(di, xi, ai) ∧Odd3(di, yi, bi) ∧Odd3(di, zi, ci) }

∧
k∧
i=1

Odd3(ti, ti, ti) ∧Odd3(ti, f i, f 1)

∧
∧

v∈Var(ϕ)

Odd3(f 1, v, v′).

44 Chapter 4. Balanced Satisfiability

Note that |Var(ϕ′)| = 2|Var(ϕ)|+ 4n+ 2k = 3k. Let I : Var(ϕ′)→ {0, 1} be a
balanced solution for ϕ′. We show that I is uniquely determined by its values
for Var(ϕ). For every 1 ≤ i ≤ k, it holds that I(ti) = 1, because Odd3(ti, ti, ti)
is a clause from ϕ′, and I(f i) = I(f 1), because Odd3(ti, f i, f 1) is a clause
from ϕ′. Now assume I(f 1) = 1. Then it follows I(f 1) = · · · = I(fk) =
I(t1) = · · · = I(tk) = 1. But since 2k > 1

2
|Var(ϕ)| = 3

2
k this contradicts the

prerequisite that I is balanced. Therefore we have

I(f 1) = · · · = I(fk) = 0.

With this the clauses Odd3(f 1, v, v′) give us I(v) 6= I(v′) for every v ∈ Var(ϕ).
So I is already balanced on Var(ϕ) ∪ {v′ | v ∈ Var(ϕ)} and as well on the set{
t1, . . . , tk, f 1, . . . , fk

}
. It follows that I is also balanced on the rest of the

variables of ϕ′, i.e., on {a1, b1, c1, d1, . . . , an, bn, cn, dn}.
Since we have the clause Odd3(di, di, di) for every 1 ≤ i ≤ n, it holds that

I(d1) = · · · = I(dn) = 1.

Therefore the clauses Odd3(di, xi, ai), Odd3(di, yi, bi), and Odd3(di, zi, ci), give
us I(xi) = I(ai), I(yi) = I(bi), and I(zi) = I(ci). Thus, for every variable from
ϕ′ its value under I is uniquely determined by I|Var(ϕ).

We now show that I|Var(ϕ) is a solution for ϕ. Assume there is a clause
1-in-3(xi, yi, zi) in ϕ that is not satisfied by I|Var(ϕ). Since Odd3(xi, yi, zi) is
a clause in ϕ′ and Odd3 = 1-in-3 ∪ {(1, 1, 1)}, it holds that I(xi) = I(yi) =
I(zi) = 1. Due to the above it follows I(ai) = I(bi) = I(ci) = I(di) = 1.
We showed above that I is balanced on {a1, b1, c1, d1, . . . , an, bn, cn, dn}, that
means there exists a j ∈ {1, . . . , n} such that I(aj) + I(bj) + I(cj) + I(dj) < 2,
otherwise we cannot compensate that I(ai) = I(bi) = I(ci) = I(di) = 1.
Because I(dj) = 1 and I(xj) = I(aj), I(yj) = I(bj), and I(zj) = I(cj) it
follows that I(xj) + I(yj) + I(zj) = 0, which is a contradiction to the fact
that Odd3(xj, yj, zj) is a clause from ϕ′. Thus, every balanced solution for ϕ′

restricted to Var(ϕ) is a solution for ϕ.
Now let I : Var(ϕ)→ {0, 1} be a solution for ϕ. We prove that exactly one

extension of I to Var(ϕ′) is a balanced solution for ϕ′. It holds I(xi) + I(yi) +
I(zi) = 1 for every i ∈ {1, . . . , n}, because 1-in-3(xi, yi, zi) is a clause from ϕ.
So, by setting

I(ai) =def I(xi), I(bi) =def I(yi),
I(ci) =def I(zi), I(di) =def 1

we extend I such that it is balanced on {a1, b1, c1, d1, . . . , an, bn, cn, dn}. If we
extend I further according to the above by setting

I(v′) 6=def I(v), I(ti) =def 1,
I(fi) =def 0

4.3. Hardness Results with unified Proofs 45

for every v ∈ ϕ and every 1 ≤ i ≤ k, we get a balanced solution for ϕ′. Due to
the above this is the only extension of I to Var(ϕ′) that is a balanced solution
for ϕ′. Hence, there is a one-to-one correspondence between solutions of ϕ and
balanced solutions of ϕ′.

Obviously ϕ′ can be constructed from ϕ in logarithmic space, so we showed
#CSP(1-in-3) ≤log

! #BAL-CSP(Odd3), which completes the proof.

4.3 Hardness Results with unified Proofs

Now we start to look at finite Boolean constraint languages. The first theorem
covers all constraint languages that generate IM, IV, IE, or II.

Theorem 4.9. Let Γ be a finite constraint language over {0, 1} such that 〈Γ〉 ⊆
II and 〈Γ〉 * IN2. Then BAL-CSP(Γ) is NP-hard and #BAL-CSP(Γ) is #P-
hard under counting reductions.

Proof. We show Imp ∈ 〈Γ〉@, 6=, then the hardness for both, the decision and the

counting problem, follows from Lemma 4.6 and Proposition 4.2. Since 〈Γ〉 *
IN2 and since [¬] = N2 (see Table 2.3), it holds that ¬ is no polymorphism
of Γ. That means there exists a relation R in Γ such that ¬ /∈ Pol(Γ). Then
there is a t ∈ R such that ¬t /∈ R. Since 〈Γ〉 ⊆ II, it holds that c0 and c1 are
polymorphisms of Γ and in particular of R, which means c0(t) = (0, . . . , 0) ∈ R
and c1(t) = (1, . . . , 1) ∈ R. Note that t /∈ {(0, . . . , 0), (1, . . . , 1)}, otherwise
¬t ∈ R. The following equation is true:

Imp(x0, x1) = R(xt[1], . . . , xt[arity(R)]).

Hence, Imp ∈ 〈R〉@ ⊆ 〈Γ〉@. Since Imp is irredundant, it follows due to Propo-
sition 3.11 that Imp ∈ 〈Γ〉@, 6=.

The next theorem deals with constraint languages that generate one of the
following co-clones: IM1, IV1, IE1, ISm01. In the proof we work with weak bases,
however we do not need to compute any concrete weak base and we see that
weak bases for the above co-clones share some properties.

Theorem 4.10. Let Γ be a finite constraint language over {0, 1} such that
IM1 ⊆ 〈Γ〉 (II1. Then BAL-CSP(Γ) is NP-hard and #BAL-CSP(Γ) is #P-
hard under counting reductions.

Proof. Let T-Imp be the relation C1 × Imp. We divide the proof in two parts:
in the first part we show T-Imp ∈ 〈Γ〉@,6=. Then we show BAL-CSP(Imp) ≤log

!

BAL-CSP(T-Imp) in the second part. The proposition then follows from
Lemma 4.6 and Proposition 4.2.

46 Chapter 4. Balanced Satisfiability

We start with the first part. Let s be a core-size of 〈Γ〉 and let

R =def Pol(Γ)(Colss).

According to Theorem 3.9 it holds that {R} is a weak base of 〈Γ〉 which
implies that 〈R〉@ ⊆ 〈Γ〉@ due to Corollary 3.5. It is enough to show that
T-Imp ∈ 〈R〉@, then, since T-Imp is irredundant, it follows T-Imp ∈ 〈Γ〉@,6=
with Proposition 3.11.

We distinguish two cases: 〈Γ〉 ⊆ IV1 and 〈Γ〉 * IV1.

Case 1: 〈Γ〉 ⊆ IV1. Let S be the Boolean relation defined by

S(t, x, y) ≡ R(x, y, . . . , y︸ ︷︷ ︸
2s−1−1

, t, . . . , t︸ ︷︷ ︸
2s−1

).

We show S = T-Imp. Since 〈Γ〉 (II1, it holds that c1 ∈ Pol(Γ) and
therefore (1, . . . , 1) ∈ R and (1, 1, 1) ∈ S. Because ∨ ∈ V1 ⊆ Pol(Γ) it
follows that the nested application of ∨ to all tuples of Colss is in R, i.e.,

(0, 1, . . . , 1) = Colss(1,−) ∨ · · · ∨ Colss(s,−) ∈ R.

This means (1, 0, 1) ∈ S. Since

(0, . . . , 0︸ ︷︷ ︸
2s−1

, 1, . . . , 1︸ ︷︷ ︸
2s−1

) = Colss(1,−) ∈ R,

it holds that (1, 0, 0) ∈ S, hence T-Imp ⊆ S.

Note that Pol(R) contains only functions which are monotone and 1-
reproducing because Pol(R) ⊆ M1 = M ∩ R1 (see Table 2.3 and Fig-
ure 2.3). Since Colss(−, 2s) = (1, . . . , 1) and since all polymorphisms
of Γ are 1-reproducing, it follows R(−, 2s) = (1, . . . , 1) and therefore it
holds for all a, b ∈ {0, 1} that (0, a, b) /∈ S.

Finally assume (1, 1, 0) ∈ S. Then

u =def (1, 0, . . . , 0︸ ︷︷ ︸
2s−1−1

, 1, . . . , 1︸ ︷︷ ︸
2s−1

) ∈ R.

With Lemma 3.8 it follows that there is an s-ary Boolean function g ∈
Pol(Γ) such that

g(Colss(1,−), . . . ,Colss(s,−)) = u.

It holds that g is not monotone because g(0, . . . , 0) = u[1] = 1 and
g(0, . . . , 0, 1) = u[2] = 0. Since every function from Pol(Γ) is monotone,
this is a contradiction. Hence T-Imp = S and therefore T-Imp ∈ 〈R〉@ ⊆
〈Γ〉@.

4.3. Hardness Results with unified Proofs 47

Case 2: 〈Γ〉 * IV1. In this case 〈Γ〉 = IE1 (see Figure 2.3). Let S be the
Boolean relation defined by

S(t, x, y) ≡ R(x, . . . , x︸ ︷︷ ︸
2s−1

, y, . . . , y︸ ︷︷ ︸
2s−1−1

, t).

We show S = T-Imp. With the same arguments as in the first case it
holds (1, 1, 1) ∈ S. Because ∧ ∈ E1, it follows that

(0, . . . , 0, 1) = Colss(1,−) ∧ · · · ∧ Colss(s,−) ∈ R,

which means (1, 0, 0) ∈ S. Since

(0, . . . , 0︸ ︷︷ ︸
2s−1

, 1, . . . , 1︸ ︷︷ ︸
2s−1

) = Colss(1,−) ∈ R,

it holds that (1, 0, 1) ∈ S, hence T-Imp ⊆ S.

Again all functions from Pol(Γ) are monotone and 1-reproducing. So,
using the same arguments as in the first case, we have for all a, b ∈ {0, 1}
that (0, a, b) /∈ S.

Finally assume (1, 1, 0) ∈ S. Then

u =def (1, . . . , 1︸ ︷︷ ︸
2s−1

, 0, . . . , 0︸ ︷︷ ︸
2s−1−1

, 1) ∈ R.

With Lemma 3.8 it follows that there is an s-ary Boolean function g ∈
Pol(Γ) such that

g(Colss(1,−), . . . ,Colss(s,−)) = u.

But g is not monotone because g(0, . . . , 0) = u[1] = 1 and g(1, . . . , 1, 0) =
u[2s−1] = 0. This contradicts that every function of Pol(Γ) is monotone,
therefore (1, 1, 0) /∈ S. Hence T-Imp = S and it follows T-Imp ∈ 〈R〉@ ⊆
〈Γ〉@.

We showed that in both cases T-Imp ∈ 〈Γ〉@. Since T-Imp is irredundant it
follows with Proposition 3.11 that T-Imp ∈ 〈Γ〉@, 6=, so due to Proposition 4.2

it holds that #BAL-CSP(T-Imp) ≤log
! #BAL-CSP(Γ).

Now, in the second part of the proof, we show #BAL-CSP(Imp) ≤log
!

#BAL-CSP(T-Imp). Let

ϕ =def Imp(x1, y1) ∧ · · · ∧ Imp(xn, yn)

48 Chapter 4. Balanced Satisfiability

be some Imp-formula. We construct a T-Imp-formula ϕ′ depending on ϕ. Let
t and f be new (not from Var(ϕ)) and distinct variables. We set:

ϕ′ =def T-Imp(t, x1, y1) ∧ · · · ∧ T-Imp(t, xn, yn) ∧
∧

x∈Var(ϕ)

T-Imp(t, f, x).

Note that every solution for ϕ′ must map t to 1. Furthermore every balanced
solution for ϕ′ must map f to 0 because otherwise 1 is assigned to all variables.
Since every balanced solution I : Var(ϕ)→ {0, 1} for ϕ extended by I(t) =def 1
and I(f) =def 0 is a balanced solution for ϕ′, and conversely every balanced
solution for ϕ′ restricted to Var(ϕ) is a balanced solution for ϕ, it holds that
ϕ has the same number of balanced solutions as ϕ′. Therefore and because ϕ′

can be computed in logarithmic space it follows that #BAL-CSP(Imp) ≤log
!

#BAL-CSP(T-Imp).
Combining the results from both parts we have

#BAL-CSP(Imp) ≤log
! #BAL-CSP(T-Imp) ≤log

! #BAL-CSP(Γ).

Due to Lemma 4.6, BAL-CSP(Imp) is NP-hard and #BAL-CSP(Imp) is #P-
hard, thus BAL-CSP(Γ) is NP-hard and #BAL-CSP(Γ) is #P-hard as well.

We look at the co-clones IM2, IV2, IE2, and ISm00 for m ≥ 2 next. The proof
for the NP- and #P-hardness is very similar to the previous proof.

Theorem 4.11. Let Γ be a finite constraint language over {0, 1} such that
IM2 ⊆ 〈Γ〉 ⊆ IV2. Then BAL-CSP(Γ) is NP-hard and #BAL-CSP(Γ) is #P-
hard under counting reductions.

Proof. For this proof we define the relation TF-Imp =def C1 × C0 × Imp.
Similarly to the proof of Theorem 4.10 we show that TF-Imp ∈ 〈Γ〉@, 6= first,

and then prove that #BAL-CSP(Imp) ≤log
! #BAL-CSP(TF-Imp).

According to Proposition 2.8 and Figure 2.3 we have V2 ⊆ Pol(Γ) (M, so
due to Table 2.3 it holds that ∨ ∈ Pol(Γ) and every function from Pol(Γ) is
monotone.

Let s ≥ 2 be a core-size of 〈Γ〉. Then R =def Pol(Γ)(Colss) is a weak base
for 〈Γ〉 according to Theorem 3.9. Let n =def 2s.

Let S be the Boolean relation defined by

S(t, f, x, y) =def R(f, x, . . . , x︸ ︷︷ ︸
n
4
−1

, y, . . . , y︸ ︷︷ ︸
n
4

, t, . . . , t︸ ︷︷ ︸
n
2

).

We show S = TF-Imp. Since Colss(1,−) ∈ R, it holds that (1, 0, 0, 0) ∈ S and
since Colss(1,−) ∨ Colss(2,−) ∈ R it holds that (1, 0, 0, 1) ∈ S. Because

4.3. Hardness Results with unified Proofs 49

(0, 1, . . . , 1) = Colss(1,−) ∨ · · · ∨ Colss(s,−) ∈ R,

we have that (1, 0, 1, 1) ∈ S. Thus TF-Imp ⊆ S.
Since we have that Pol(Γ) ⊆ R2, it holds that all polymorphisms of Γ are

both 0-reproducing and 1-reproducing. It follows that the first column of R
equals (0, . . . , 0) and and the last column of R equals (1, . . . , 1). Therefore it
remains to prove (1, 0, 1, 0) /∈ S. Assume this is not the case. Then

u =def (0, 1, . . . , 1︸ ︷︷ ︸
n
4
−1

, 0, . . . , 0︸ ︷︷ ︸
n
4

, 1, . . . , 1︸ ︷︷ ︸
n
2

) ∈ R.

Due to Lemma 3.8 there is an s-ary Boolean function g ∈ Pol(Γ) such that

g(Colss(1,−), . . . ,Colss(s,−)) = u.

It holds that g is not monotone, because we have that g(0, . . . , 0, 1) = u[2] = 1
and that g(0, 1, . . . , 1) = u[n

2
] = 0. Since every function from M2 is monotone

this is a contradiction. Hence TF-Imp = S and therefore TF-Imp ∈ 〈R〉@ ⊆
〈Γ〉@. Note that TF-Imp is irredundant, therefore it follows from Proposi-
tion 3.11 that TF-Imp ∈ 〈Γ〉@, 6=. Thus, according to Proposition 4.2 it holds

#BAL-CSP(TF-Imp) ≤log
! #BAL-CSP(Γ).

Now we prove #BAL-CSP(Imp) ≤log
! #BAL-CSP(TF-Imp). Let

ϕ =def Imp(x1, y1) ∧ · · · ∧ Imp(xn, yn)

be some {Imp}-formula. We construct a {TF-Imp}-formula ϕ′ depending on
ϕ: let t and f be new and distinct variables. We set:

ϕ′ =def TF-Imp(t, f, x1, y1) ∧ · · · ∧ TF-Imp(t, f, xn, yn)

Note that the following holds:

ϕ′ ≡ ϕ ∧ C1(t) ∧ C0(f).

It is easy to see that ϕ and ϕ′ have the same number of balanced solutions.
Therefore and because ϕ′ can be computed in logarithmic space it follows that
#BAL-CSP(Imp) ≤log

! #BAL-CSP(TF-Imp). So together we have

#BAL-CSP(Imp) ≤log
! #BAL-CSP(TF-Imp) ≤log

! #BAL-CSP(Γ).

Lemma 4.6 says that BAL-CSP(Imp) is NP-hard and #BAL-CSP(Imp) is
#P-hard, thus BAL-CSP(Γ) is NP-hard and #BAL-CSP(Γ) is #P-hard.

50 Chapter 4. Balanced Satisfiability

The following theorem covers the cases ISm0 and ISm02 for all m ≥ 2.

Theorem 4.12. Let Γ be a finite constraint language over {0, 1} such that
〈Γ〉 = ISm02 or 〈Γ〉 = ISm0 for some natural number m ≥ 2. Then BAL-CSP(Γ)
is NP-hard and #BAL-CSP(Γ) is #P-hard under counting reductions.

Proof. This proof follows the same lines as the proofs for Theorems 4.10 and
4.11.

Let T-Or =def C1 × Or2 and TF-Or =def C1 × C0 × Or2. First we look at
the cases 〈Γ〉 = ISm0 and 〈Γ〉 = ISm02 separately to show that T-Or ∈ 〈Γ〉@,6= in
the first case and TF-Or ∈ 〈Γ〉@,6= in the second.

Then we prove NP-hardness for BAL-CSP(T-Or) and BAL-CSP(TF-Or)
and #P-hardness for #BAL-CSP(T-Or) and #BAL-CSP(TF-Or).

Let s be a core-size of 〈Γ〉 and R =def Pol Γ(Colss). Then R is a weak base
of 〈Γ〉 due to Theorem 3.9.

Case 1: 〈Γ〉 = ISm0 for some m ≥ 2. We show T-Or ∈ 〈Γ〉@, 6=.

Let S be the Boolean relation defined by

S(t, x, y) ≡ R(x, . . . , x︸ ︷︷ ︸
2s−1

, y, . . . , y︸ ︷︷ ︸
2s−2

, t, . . . , t︸ ︷︷ ︸
2s−2

).

Note that s ≥ 2 according to Table 3.2. We show S = T-Or. Since
〈Γ〉 ⊆ II1, it holds that c1 ∈ Pol(Γ) and therefore (1, . . . , 1) ∈ R and
(1, 1, 1) ∈ S. Because →∈ Sm0 it follows that

(1, . . . , 1︸ ︷︷ ︸
2s−1

, 0, . . . , 0︸ ︷︷ ︸
2s−2

, 1, . . . , 1︸ ︷︷ ︸
2s−2

) = Colss(1,−)→ Colss(2,−) ∈ R,

which means (1, 1, 0) ∈ S. Since Colss(1,−) ∈ R, it holds that (1, 0, 1) ∈
S, hence T-Or ⊆ S.

Note that {dual(hm),→} is a base for Sm0 (see Table 2.3) and both
dual(hm) and → are 1-reproducing. Since Colss(−, 2s) = (1, . . . , 1), it
follows R(−, 2s) = (1, . . . , 1) and therefore it holds for all a, b ∈ {0, 1}
that (0, a, b) /∈ S.

Finally we show that (1, 0, 0) /∈ S: Assume (1, 0, 0) ∈ S. Then according
to Lemma 3.8 there is some s-ary function g ∈ Sm0 such that

(0, . . . , 0︸ ︷︷ ︸
2s−1

, 0, . . . , 0︸ ︷︷ ︸
2s−2

, 1, . . . , 1︸ ︷︷ ︸
2s−2

) = g(Colss(1,−), . . . ,Colss(s,−)).

That means g(Colss(−, i)) = 1 if and only if 2s−1 + 2s−2 < i ≤ 2r, and
therefore we have g(a1, . . . , as) = a1 ∧ a2. So it holds that

f =def g ◦ (pr2
1, pr2

2, pr2
1, . . . , pr2

1)

4.3. Hardness Results with unified Proofs 51

is the function represented by ∧ and thus ∧ ∈ [{g}] ⊆ Sm0 . Since [{∧}] =
E2 it follows E2 ⊆ Sm0 , which is not true (see Figure 2.3). Hence, S =
T-Or and therefore T-Or ∈ 〈R〉@ ⊆ 〈Γ〉@.

Because T-Or is irredundant, it follows from Proposition 3.11 that T-Or ∈
〈Γ〉@, 6=. Proposition 4.2 implies #BAL-CSP(T-Or) ≤log

! #BAL-CSP(Γ).

Case 2: 〈Γ〉 = ISm02 for some m ≥ 2. We show TF-Or ∈ 〈Γ〉@,6=. Let S be the
Boolean relation defined by

S(t, f, x, y) ≡ R(f, . . . , f︸ ︷︷ ︸
2s−2

, x, . . . , x︸ ︷︷ ︸
2s−2

, y, . . . , y︸ ︷︷ ︸
2s−2

, t, . . . , t︸ ︷︷ ︸
2s−2

).

We show S = TF-Or. Since Colss(1,−) ∈ R and Colss(2,−) ∈ R, it
holds that (1, 0, 0, 1) ∈ S and (1, 0, 1, 0) ∈ R. Note that ∨ ∈ V2 ⊆ Pol(Γ)
(see Figure 2.3). That means Colss(1,−)∨Colss(2,−) ∈ R and therefore
(1, 0, 1, 1) ∈ S. Hence, TF-Or ⊆ S.

Since Sm02 ⊆ R0 and Sm02 ⊆ R1 every polymorphism of Γ is 0-reproducing
and 1-reproducing. Therefore the first column of R equals (0, . . . , 0) and
the last column of R equals (1, . . . , 1), that means all tuples from S have
the form (1, 0, a, b) for some a, b ∈ {0, 1}.
Assume (1, 0, 0, 0) ∈ S. Then according to Proposition 3.11 there is some
s-ary function g ∈ Sm02 such that

(0, . . . , 0︸ ︷︷ ︸
2s−2

, 0, . . . , 0︸ ︷︷ ︸
2s−2

, 0, . . . , 0︸ ︷︷ ︸
2s−2

, 1, . . . , 1︸ ︷︷ ︸
2s−2

) = g(Colss(1,−), . . . ,Colss(s,−)).

In Case 1 we showed that then E2 ⊆ Pol(Γ), which again is contradiction.
Thus, S = TF-Or and therefore TF-Or ∈ 〈R〉@ ⊆ 〈Γ〉@. Since TF-Or is
irredundant, it follows that TF-Or ∈ 〈Γ〉@,6=. With Proposition 4.2 we

get #BAL-CSP(TF-Or) ≤log
! #BAL-CSP(Γ).

To complete the proof it is sufficient to show NP-hardness for the problems
BAL-CSP(T-Or) and BAL-CSP(TF-Or), and #P-hardness for the counting
versions #BAL-CSP(T-Or) and #BAL-CSP(TF-Or).

We first prove BAL-CSP(Or2) ≤log
m BAL-CSP(T-Or) and afterwards show

#BAL-CSP(Or2) ≤log
! #BAL-CSP(TF-Or). For that let

ϕ = Or2(x1, y1) ∧ · · · ∧Or2(xn, yn)

be an
{

Or2
}

-formula. We construct a {T-Or}-formula ϕ′ and a {TF-Or}-
formula ϕ′′ depending on ϕ: let t and f be new and distinct variables. We
set:

ϕ′ =def T-Or(t, x1, y1) ∧ · · · ∧ T-Or(t, xn, yn) ∧ T-Or(t, t, f),

52 Chapter 4. Balanced Satisfiability

and

ϕ′′ =def TF-Or(t, f, x1, y1) ∧ · · · ∧ TF-Or(t, f, xn, yn)

Note that ϕ′ and ϕ′′ can be computed in logarithmic space. Obviously every
balanced solution I : Var(ϕ) → {0, 1} for ϕ can be extended to a balanced
solution for ϕ′ and ϕ′′ by setting I(t) =def 1 and I(f) =def 0. For both ϕ′ and
ϕ′′, this is the only satisfying extension of I that is balanced.

Now let I : Var(ϕ′) → {0, 1} be a balanced solution of ϕ′. It is obvious
that I(t) = 1. If I(f) = 0, the restriction of I to Var(ϕ) is a balanced solution
for ϕ. If on the other hand I(f) = 1, then it holds that I assigns 0 to two
variables more of Var(ϕ) than 1. Let z ∈ Var(ϕ) be a variable mapped to
0 by I and let J : Var(ϕ) → {0, 1} defined by J(z) = 1 and for all x 6= z:
J(x) = I(x). Since every Or2-clause of ϕ is satisfied by I|Var(ϕ) and because
of the monotonicity of Or2, the clauses are satisfied by J as well, so J is a
balanced solution for ϕ. Thus ϕ has a balanced solution if and only if ϕ′ has
one. Therefore we showed BAL-CSP(Or2) ≤log

m BAL-CSP(T-Or) which gives us
NP-hardness of BAL-CSP(T-Or) due to Lemma 4.7. Note that this reduction
is not parsimonious, we will show the #P-hardness of #BAL-CSP(T-Or) later.

Let I : Var(ϕ′′) → {0, 1} be a balanced solution of ϕ′′. Since I(0) = 0
and I(1) = 1, it follows I|Var(ϕ) is a balanced solution for ϕ. So ϕ has the

same number of balanced solutions as ϕ′′ and we showed #BAL-CSP(Or2) ≤log
!

#BAL-CSP(TF-Or). Thus, due to Lemma 4.7 it holds that BAL-CSP(TF-Or)
is NP-hard and #BAL-CSP(TF-Or) is #P-hard.

For the #P-hardness of #BAL-CSP(T-Or) we show that #CSP(Or2) ≤log
!

#BAL-CSP(T-Or). Let

ϕ =def Or2(x1, y1) ∧ · · · ∧Or2(xn, yn)

be an Or2-formula. Let f , t and v′ for every v ∈ Var(ϕ) be a new and distinct
variables. We define

ϕ′ =def T-Or(t, x1, y1)∧· · ·∧T-Or(t, xn, yn)∧
∧

v∈Var(ϕ)

T-Or(t, v, v′)∧T-Or(t, t, f).

The correctness of the reduction can be proven analogously to the correct-
ness of the reduction in the proof of Lemma 4.7. Since ϕ′ can be constructed
from ϕ in logarithmic space, it holds #CSP(Or2) ≤log

! #BAL-CSP(T-Or).
With Lemma 4.7 it follows #BAL-CSP(T-Or) is hard for #P. This completes
the proof.

4.4. Hardness Results with Non-Unified Poofs 53

4.4 Hardness Results with Non-Unified Poofs

In this section we work in all proofs with concrete irredundant weak bases.
The minimal core-sizes provided in Table 3.2 allow us to work with relations
of a manageable arity. First we deal with the case where 〈Γ〉 = ID2.

Theorem 4.13. Let Γ be a finite constraint language over {0, 1} such that
〈Γ〉 = ID2. Then BAL-CSP(Γ) is NP-hard and #BAL-CSP(Γ) is #P-hard
under counting reductions.

Proof. Due to Table 2.3 it holds [h2] = D2. Note that h2(a, b, c) is true if and
only if a+b+c ≥ 2. Since 3 is a core-size of ID2 (see Table 3.2), it follows from
Theorem 3.9 that R =def h2(Cols3) is a weak base of ID2. It can be verified
that

R =

0 0 0 0 1 1 1 1
0 0 0 1 0 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

Note that the second row is generated by the coordinatewise application of h2 to
the other three rows, which build Cols3. Clearly, R is irredundant. According
to Corollary 3.12 it holds 〈R〉@, 6= ⊆ 〈Γ〉@,6=.

We define Boolean relations S and T in the following way:

S(t, f, x, y) =def R(f, f, x, x, y, y, t, t)

and

T (t, f, v, w, x, y) =def R(f, f, v, w, y, x, t, t).

It follows {S, T} ⊆ 〈R〉@, 6= ⊆ 〈Γ〉@,6=. Therefore, according to Proposition 4.2,

it holds #BAL-CSP({S, T}) ≤log
! #BAL-CSP(Γ).

The following equivalences can be verified:

S(t, f, x, y) ≡ C1(t) ∧ C0(f) ∧Odd2(x, y)

T (t, f, v, w, x, y) ≡ C1(t) ∧ C0(f) ∧ Imp(v, w) ∧Odd2(v, x) ∧Odd2(w, y)

We show that #BAL-CSP(Imp) ≤log
! #BAL-CSP({S, T}). Let

ϕ =def

n∧
i=1

Imp(xi, yi)

54 Chapter 4. Balanced Satisfiability

be an Imp-formula. We construct a {S, T}-formula: let z′, and z′′ for every
z ∈ Var(ϕ) and t and f , be new and distinct variables. We set:

ϕ′ =
n∧
i=1

T (t, f, xi, yi, x
′
i, y
′
i) ∧ S(t, f, x′i, x

′′
i) ∧ S(t, f, y′i, y

′′
i).

It holds that

ϕ′ ≡ ϕ ∧
n∧
i=1

Imp(xi, yi) ∧
∧
z∈ϕ

Odd2(z, z′) ∧Odd2(z′, z′′) ∧ C1(t) ∧ C0(f)

Every balanced solution I : Var(ϕ′) → {0, 1} of ϕ′ is already balanced on
Var(ϕ′) \ Var(ϕ), because I(t) 6= I(f) and because the clauses of the form
Odd2(z′, z′′) provide that for every z ∈ ϕ it holds I(z′) 6= I(z′′). It follows that
I is balanced on Var(ϕ) as well and therefore I|Var(ϕ) is a balanced solution for
ϕ.

Conversely, every balanced solution I : Var(ϕ) → {0, 1} for ϕ can be ex-
tended to a balanced solution of ϕ by setting

I(t) =def 1, I(f) =def 0,
I(z′) 6=def I(z), I(z′′) =def I(z) for every z ∈ Var(ϕ).

Since every other extension of I to Var(ϕ′) does not satisfy ϕ′, we have a
one-to-one correspondence between balanced solutions of ϕ and the balanced
solutions of ϕ′. Hence,

#BAL-CSP(Imp) ≤log
! #BAL-CSP({S, T}) ≤log

! #BAL-CSP(Γ).

Due to Lemma 4.6 #BAL-CSP(Imp) is hard for #P and BAL-CSP(Imp)
is hard for NP. Therefore #BAL-CSP(Γ) is hard for #P and BAL-CSP(Γ) is
hard for NP.

With the next four theorems we cover the cases IL, IL1, IL2 and IL3. Note
that the hardness-results transfer to IL0 due to Proposition 4.3, because IL0 =
dual(IL1). The proofs of the following theorems are very similar, however they
differ in so many details that there does not seem to be a way to combine them.

Theorem 4.14. Let Γ be a finite constraint language over {0, 1} such that
〈Γ〉 = IL. Then BAL-CSP(Γ) is NP-hard and #BAL-CSP(Γ) is #P-hard
under counting reductions.

4.4. Hardness Results with Non-Unified Poofs 55

Proof. The minimal core-size of IL is 2 (see Table 3.2), therefore R =def

L(Cols2) is weak base of IL. It can be verified that

R =

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

= Even4.

The second and the third row are from Cols2, the other ones result from the
application of functions from L to them.

Since Even4 is obviously irredundant it follows from Corollary 3.12 that
Even4 ∈ 〈Γ〉@, 6=. Therefore we know #BAL-CSP(Even4) ≤log

! #BAL-CSP(Γ)
due to Proposition 4.2.

We show #BAL-CSP(Odd3) ≤log
c #BAL-CSP(Even4). Let

ϕ =def

n∧
i=1

Odd3(xi, yi, zi)

be an Odd3-formula. Let k =def |Var(ϕ)| and let t, t1, . . . , tk, f, f1, . . . , fk be
new and distinct variables. We set:

ϕ′ =def

n∧
i=1

Even4(t, xi, yi, zi) ∧
k∧
i1

Even4(t, t, t, ti) ∧ Even4(f, f, f, fi).

We prove that ϕ′ has exactly twice as many balanced solutions as ϕ. First
note that the clauses Even4(t, t, t, ti) and Even4(f, f, f, fi) for all i ∈ {1, . . . , k}
imply that every solution of ϕ′ maps t1, . . . , tk to the same value as t and
f1, . . . , fk to the same value as f . Further, every balanced solution of ϕ′ must
map f and t to different values, because otherwise this value would be assigned
to at least 2k + 2 variables, which is more than half of the variables of ϕ.

Now let I : Var(ϕ)→ {0, 1} be a balanced solution of ϕ. It can be verified
that we get a balanced solution for ϕ′ by setting

I(f) =def I(f1) =def . . . =def I(fk) =def 0 and

I(t) =def I(t1) =def . . . =def I(tk) =def 1.

This is the only extension of I to Var(ϕ′) that is balanced and satisfies ϕ′,
because if we map t to 0, then the I(t) + I(xi) + I(yi) + I(zi) would be odd for
every i ∈ {1, . . . , n}.

56 Chapter 4. Balanced Satisfiability

Finally let I : Var(ϕ′) → {0, 1} be a balanced solution for ϕ. Since I
is already balanced on the new introduced variables, it holds that I is also
balanced on Var(ϕ). For every 1 ≤ i ≤ n we know that I(t)+I(xi)+I(yi)+I(zi)
is even, therefore I(xi)+I(yi)+I(zi) is odd if and only if I(t) = 0. That means
I|Var(ϕ) is a balanced solution for ϕ if and only if I(t) = 1.

Since ¬ ∈ N2 ⊆ L, it holds that I ′, defined by I ′(x) = ¬I(x), is a bal-
anced solution of ϕ′ as well. That means exactly half of that balanced solu-
tions of ϕ′ can be restricted to a balanced solution of ϕ. Thus, ϕ′ has ex-
actly twice as many balanced solutions as ϕ. Because ϕ′ can be computed
in logarithmic space, it follows that we have a counting reduction between
#BAL-CSP(Odd3) and #BAL-CSP(Even4). Since #BAL-CSP(Odd3) is #P-
hard and BAL-CSP(Odd3) is NP-hard due to Lemma 4.8, and since we showed
#BAL-CSP(Even4) ≤log

! #BAL-CSP(Γ) above, it holds that #BAL-CSP(Γ) is
#P-hard under counting reductions and BAL-CSP(Γ) is NP-hard.

Theorem 4.15. Let Γ be a finite constraint language over {0, 1} such that
〈Γ〉 = IL3. Then BAL-CSP(Γ) is NP-hard and #BAL-CSP(Γ) is #P-hard
under counting reductions.

Proof. The minimal core-size of IL3 is 3 due to Table 3.2, therefore it follows
from Theorem 3.9 that R =def L3(Cols3) is a weak base for IL3. It can be
verified that

R =

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0

.

Note that the first three tuples of R form Cols3. It holds that

R4(x1, x2, x3, x4, x5, x6, x7, x8) ≡

Even4(x1, x2, x3, x4)∧Odd2(x1, x8)∧Odd2(x2, x7)∧Odd2(x3, x6)∧Odd2(x4, x5).

It can be seen that R is irredundant, therefore it follows from Corollary 3.12
that R ∈ 〈Γ〉@, 6=. So we know #BAL-CSP(R) ≤log

! #BAL-CSP(Γ) due to
Proposition 4.2.

In the proof of Theorem 4.14 we showed that BAL-CSP(Even4) is NP-hard
and #BAL-CSP(Even4) is #P-hard under counting reductions. Therefore it

4.4. Hardness Results with Non-Unified Poofs 57

suffices to show #BAL-CSP(Even4) ≤log
! #BAL-CSP(R) to prove this theorem.

Let

ϕ =def

n∧
i=1

Even4(wi, xi, yi, zi)

be an Even4-formula. Without loss of generality assume that k =def |Var(ϕ)|
is at least 2. For every v ∈ Var(ϕ) let v1, . . . , vk be new and distinct variables.
We set:

ϕ′ =def

n∧
i=1

R(wi, xi, yi, zi, z
1
i , y

1
i , x

1
i , w

1
i) ∧ · · · ∧R(wi, xi, yi, zi, z

k
i , y

k
i , x

k
i , w

k
i).

Then the following equivalence holds:

ϕ′ ≡ ϕ ∧
∧

v∈Var(ϕ)

Odd2(v, v1) ∧ · · · ∧Odd2(v, vk).

Let I : Var(ϕ′) → {0, 1} be a balanced solution of ϕ′. Clearly I|Var(ϕ) is
a solution of ϕ. We show that I|Var(ϕ) is balanced. Let l0 be the number
of variables mapped to 0 and l1 be the number of variables mapped to 1 by
I|Var(ϕ). It holds for every v ∈ Var(ϕ) and for every 1 ≤ i ≤ k that I(v) 6= I(vi)
in order to satisfy Odd2(v, vi). Therefore I maps l0 + kl1 variables to 0 and
l1 + kl0 variables to 1. Since I is balanced, it follows l0 + kl1 = l1 + kl0, which
implies l0 = l1 because k ≥ 2. Hence, I|Var(ϕ) is a balanced solution for ϕ.

Obviously I is uniquely determined by I|Var(ϕ). Now let I : Var(ϕ)→ {0, 1}
be a balanced solution for ϕ. For every i ∈ {1, . . . , k} and ever v ∈ Var(ϕ)
we set I(vi) 6=def I(v). Clearly this extension satisfies ϕ′ and with the above
equations it can be seen that it is balanced on Var(ϕ′).

Thus we have a one-to-one correspondence between balanced solutions from
ϕ and balanced solutions from ϕ′. Since ϕ′ can be computed in logarithmic
space, it follows #BAL-CSP(Even4) ≤log

! #BAL-CSP(R), which completes the
proof.

Theorem 4.16. Let Γ be a finite constraint language over {0, 1} such that
〈Γ〉 = IL1. Then BAL-CSP(Γ) is NP-hard and #BAL-CSP(Γ) is #P-hard
under counting reductions.

Proof. Since 2 is a core-size of IL1 due to Table 3.2 it follows with Theorem 3.9
that R =def L1(Cols2) is a weak base for IL1. It can be verified that

R =

0 0 1 1
0 1 0 1
1 0 0 1
1 1 1 1

 .

58 Chapter 4. Balanced Satisfiability

Note that the first two rows of R are the ones from Cols2. It is easy to see
that R = Odd2×C1 and that R is irredundant. It follows from Corollary 3.12
that R ∈ 〈Γ〉@, 6=. Therefore we know #BAL-CSP(R) ≤log

! #BAL-CSP(Γ) due
to Proposition 4.2.

We show #BAL-CSP(Odd3) ≤log
c #BAL-CSP(R), then the theorem follows

with Lemma 4.8. Let
n∧
i=1

Odd3(xi, yi, zi)

be an Odd3-formula. Let k =def Var(ϕ) and let t, t1, . . . , tk, f, f1, . . . , fk be new
and distinct variables. We set:

ϕ′ =def

n∧
i=1

R(xi, yi, zi, t) ∧
k∧
i1

Even4(fi, fi, ti, ti)

The correctness of the reduction can be shown with similar arguments as
in the proof of Theorem 4.14. Note that here we get a parsimonious reduction
because the variable t must be mapped to 1 by every solution.

Since ϕ′ can be constructed in logarithmic space, the proof is complete.

Theorem 4.17. Let Γ be a finite constraint language over {0, 1} such that
〈Γ〉 = IL2. Then BAL-CSP(Γ) is NP-hard and #BAL-CSP(Γ) is #P-hard
under counting reductions.

Proof. The minimal core-size of IL2 is 3 (see Table 3.2), therefore R =def

L2(Cols3) is a weak base for IL2 according to Theorem 3.9. It holds that

R =

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 1

 .

The first three tuples of R are the ones from Cols3. It can be verified that the
following equivalence is true:

R(x1, x2, x3, x4, x5, x6, x7, x8) ≡

Odd3(x2, x3, x4)∧Odd2(x2, x7)∧Odd2(x3, x6)∧Odd2(x4, x5)∧C0(x1)∧C1(x8)

It is easy to see that R is irredundant. So it follows from Corollary 3.12 that
R ∈ 〈Γ〉@, 6=. Therefore we know #BAL-CSP(R) ≤log

! #BAL-CSP(Γ) due to
Proposition 4.2.

Lemma 4.8 says that BAL-CSP(Odd3) is NP-hard and #BAL-CSP(Odd3)
is #P-hard under parsimonious reductions. Therefore to prove this theorem it
suffices to show #BAL-CSP(Odd3) ≤log

! #BAL-CSP(R).

4.4. Hardness Results with Non-Unified Poofs 59

Let

ϕ =def

n∧
i=1

Odd3(xi, yi, zi)

be an Odd3-formula. Without loss of generality assume that k =def |Var(ϕ)|
is at least 2. Let f , t and v1, . . . , vk for every v ∈ Var(ϕ) be new and distinct
variables. We set:

ϕ′ =def

n∧
i=1

R(t, xi, yi, zi, z
1
i , y

1
i , x

1
i , f) ∧ · · · ∧R(t, xi, yi, zi, z

k
i , y

k
i , x

k
i , f).

Then the following equivalence holds:

ϕ′ ≡ ϕ ∧ C0(f) ∧ C1(t) ∧
∧

v∈Var(ϕ)

Odd2(v, v1) ∧ · · · ∧Odd2(v, vk)

The correctness of this reduction can be proven with using similar arguments
as in the proof of Theorem 4.15.

Since ϕ′ can be constructed in logarithmic space from ϕ, it follows that
#BAL-CSP(Odd3) ≤log

! #BAL-CSP(R), which completes the proof.

Finally we prove NP-hardness and #P-hardness for the non-Schaefer con-
straint languages. Note that the case II is already covered in Theorem 4.9 and
that II0 is dual to II1. For the remaining four non-Schaefer co-clones the proofs
again are very similar, but not obviously unifiable.

Theorem 4.18. Let Γ be a finite constraint language over {0, 1} such that
〈Γ〉 = II2. Then BAL-CSP(Γ) is NP-complete and #BAL-CSP(Γ) is complete
for #P under counting reductions.

Proof. Due to Table 3.2, the minimal core-size of II2 is 3, therefore R =def

I2(Cols3) is a weak base for II2 according to Theorem 3.9. Because [id] = I2

(see Table 2.3), it holds that R = Cols3. That means

R =

 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 .

It can be verified that the following equivalence is true:

R(x1, x2, x3, x4, x5, x6, x7, x8) ≡1-in-3(x2, x3, x5) ∧ C0(x1) ∧ C1(x8)

∧Odd2(x2, x7) ∧Odd2(x3, x6) ∧Odd2(x4, x5)

60 Chapter 4. Balanced Satisfiability

Since R is irredundant, it follows R ∈ 〈Γ〉@,6= from Corollary 3.12. Therefore

we have #BAL-CSP(R) ≤log
! #BAL-CSP(Γ) due to Proposition 4.2.

It can be seen that 1-in-3 generates the co-clone II2 in Table 3.2, therefore it
follows from Schaefer’s Theorem (Theorem 2.11) that CSP(1-in-3) is NP-hard
and from Theorem 2.12 that #CSP(1-in-3) is hard for #P under parsimonious
reductions. Hence, showing #CSP(1-in-3) ≤log

! #BAL-CSP(R) completes the
proof. Let

ϕ =def

n∧
i=1

1-in-3(xi, yi, zi)

be a constraint formula over {1-in-3}. Let f , t and v′ for every v ∈ Var(ϕ) be
new and distinct variables. We define an R-formula ϕ′:

ϕ′ =def

n∧
i=1

R(f, xi, yi, z
′
i, zi, y

′
i, x
′
i, t)

According to the above it holds

ϕ′ ≡ ϕ ∧
∧

v∈Var(ϕ)

Odd2(vi, v
′
i) ∧ C0(f) ∧ C1(t).

Obviously every balanced solution of ϕ′ satisfies ϕ as well and every solution of
varphi can be extended uniquely to a balanced solution for ϕ′. Since the formula
ϕ′ can be constructed in logarithmic space it follows that #CSP(1-in-3) ≤log

!

#BAL-CSP(R).

Theorem 4.19. Let Γ be a finite constraint language over {0, 1} such that
〈Γ〉 = IN2. Then BAL-CSP(Γ) is NP-complete and #BAL-CSP(Γ) is complete
for #P under counting reductions.

Proof. Due to Table 3.2, the minimal core-size of IN2 is 3, therefore R =def

N2(Cols3) is a weak base for IN2 according to Theorem 3.9. It holds that

R =

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0

 .

It can be verified thatR = Cols3∪dual(Cols3). SinceR is irredundant, it follows
from Corollary 3.12 that R ∈ 〈Γ〉@, 6=. Therefore we have #BAL-CSP(R) ≤log

!

#BAL-CSP(Γ) due to Proposition 4.2.

4.4. Hardness Results with Non-Unified Poofs 61

Due to Table 3.2 it holds that 1-in-3 generates the II2, therefore it follows
from Schaefer’s Theorem (Theorem 2.11) that CSP(1-in-3) is NP-hard and
from Theorem 2.11 that #CSP(1-in-3) is hard for #P under parsimonious
reductions. Hence, showing #CSP(1-in-3) ≤log

c #BAL-CSP(R) completes the
proof. Let

ϕ =def

n∧
i=1

1-in-3(xi, yi, zi)

be a constraint formula over {1-in-3}. Let f , t and v′ for every v ∈ Var(ϕ) be
new and distinct variables. We define an R-formula ϕ′:

ψ =def

n∧
i=1

R(f, xi, yi, z
′
i, zi, y

′
i, x
′
i, t)

We show that the number of balanced solutions for ψ is exactly twice the
number of solutions for ϕ. Let ϕ′ be the formula from ϕ in the proof of
Theorem 4.18. Note that a solution for ψ maps f to 0 if and only if it is a
solution for ϕ′. It maps f to 1 if and only if it is a solution for dual(ϕ′).

Since the number of solutions for ϕ and balanced solutions for ϕ′ is exactly
the same (see proof of Theorem 4.18), and since ϕ′ has exactly the same number
of balanced solutions as dual(ϕ), it holds that the number of balanced solutions
for ψ is exactly twice the number of solutions for ϕ.

Since the formula ψ can be constructed in logarithmic space it follows that
#CSP(1-in-3) ≤log

c #BAL-CSP(R).

Theorem 4.20. Let Γ be a finite constraint language over {0, 1} such that
〈Γ〉 = II0. Then BAL-CSP(Γ) is NP-complete and #BAL-CSP(Γ) is complete
for #P under counting reductions.

Proof. Due to Table 3.2, the minimal core-size of II0 is 2, therefore R =def

I0(Cols2) is a weak base for II0 according to Theorem 3.9. It holds that

R =

 0 0 0 0
0 0 1 1
0 1 0 1

 .

Since R is irredundant, it follows R ∈ 〈Γ〉@,6= from Corollary 3.12. Therefore

we have #BAL-CSP(R) ≤log
! #BAL-CSP(Γ) due to Proposition 4.2.

Since 〈R〉 = II0 and 〈C1〉 = IR1, it holds that

〈{R,C1}〉 = 〈II0 ∪ IR1〉 = II2.

62 Chapter 4. Balanced Satisfiability

Therefore it follows Theorem 2.11 that CSP({R,C1}) is NP-hard and from
Theorem 2.12 that #CSP({R,C1}) is hard for #P under parsimonious re-
ductions. Hence, showing #CSP({R,C1}) ≤log

! #BAL-CSP(R) completes the
proof. Let

ϕ =def

n∧
i=1

R(wi, xi, yi, zi) ∧
m∧
i=1

C1(vi)

be a constraint formula over {R,C1}. Let k =def |Var(ϕ)| the number of
variables appearing in ϕ and let f, f1, . . . , fk, t, t1, . . . , tk and x′ for every x ∈
Var(ϕ) be new and distinct variables. We define an R-formula ϕ′:

ϕ′ =def

n∧
i=1

R(wi, xi, yi, zi) ∧
∧

x∈Var(ϕ)

R(f, x, x′, t)

∧
k∧
i=1

R(fi, fi, t, ti) ∧
m∧
i=1

R(f, f, t, vi)

Note that |Var(ϕ′)| = 4k + 2. Let I : Var(ϕ′)→ {0, 1} be a balanced solution
for ϕ′. The clauses of the form R(fi, fi, t, ti) give us that I(f1) = · · · = I(fk) =
0 and I(t) = I(t1) = · · · = I(tk). Since f appears in some of the clauses in
the first position, we have I(f) = 0. It follows I(t) = I(t1) = · · · = I(tk) = 1,
otherwise I would map at least 2k+2 variables to 0 which means that I would
not be balanced. Because of the clauses of the type R(f, f, t, vi), it holds that
I(v1) = · · · = I(vm) = I(t) = 1, therefore I satisfies ϕ.

From the clauses of the type R(f, x, x′, t) it follows that for all x ∈ Var(ϕ)
it holds I(x) 6= I(x′). That means I is uniquely determined by I|Var(ϕ). So
for every solution of ϕ we can define at most one extension that is a balanced
solution for ϕ.

Now let I : Var(ϕ)→ {0, 1}. We extend I by defining:

I(f) =def I(f1) =def . . . =def I(fk) =def 0,
I(t) =def I(t1) =def . . . =def I(tk) =def 1, and
I(x′) 6=def I(x) for every x ∈ Var(ϕ).

Obviously this extension is balanced and, since for all i ∈ 1, . . . ,m we have
I(vi) = 1, it satisfies ϕ′. Hence, the balanced solutions for ϕ′ are exactly unique
extensions of solutions for ϕ. Since ϕ′ can be constructed in logarithmic space,
we proved #CSP({R,C1}) ≤log

! #BAL-CSP(R).

Theorem 4.21. Let Γ be a finite constraint language over {0, 1} such that
〈Γ〉 = II0. Then BAL-CSP(Γ) is NP-complete and #BAL-CSP(Γ) is complete
for #P under counting reductions.

4.4. Hardness Results with Non-Unified Poofs 63

Proof. Due to Table 3.2, the minimal core-size of IN is 2, therefore R =def

N(Cols2) is a weak base for II0 according to Theorem 3.9. It holds that

R =

0 0 0 0
0 0 1 1
0 1 0 1
1 0 1 0
1 1 0 0
1 1 1 1

 .

Since R is irredundant, it follows R ∈ 〈Γ〉@, 6= from Corollary 3.12. Therefore

we have #BAL-CSP(R) ≤log
! #BAL-CSP(Γ) due to Proposition 4.2.

Since 〈R〉 = II0 and 〈C0,C1〉 = IR2, it holds that

〈{R,C0,C1}〉 = 〈IN ∪ IR2〉 = II2.

Therefore it follows from Theorem 2.11 that CSP({R,C0,C1}) is NP-hard and
from Theorem 2.12 that #CSP({R,C0,C1}) is hard for #P under parsimo-
nious reductions. Hence, showing #CSP({R,C0,C1}) ≤log

! #BAL-CSP(R)
completes the proof. Let

ϕ =def

n∧
i=1

R(wi, xi, yi, zi) ∧
m0∧
i=1

C0(vi) ∧
m1∧
i=1

C1(ui)

be a constraint formula over {R,C0,C1}. Let k =def |Var(ϕ)| be the number
of variables occurring in ϕ and let f, f1, . . . , fk, t, t1, . . . , tk and x′ for every
x ∈ Var(ϕ) be and distinct variables. We define an R-formula ϕ′:

ϕ′ =def

n∧
i=1

R(wi, xi, yi, zi) ∧
∧

x∈Var(ϕ)

R(f, x, x′, t)

∧
k∧
i=1

R(f, f, f, fi) ∧R(t, t, t, ti)

∧
m0∧
i=1

R(f, f, f, vi) ∧
m1∧
i=1

R(t, t, t, ui).

This construction is very similar to the one in the proof of Theorem 4.20.
The correctness of this reduction can be shown with analogous arguments.
Note that R is complementive, therefore we get here that the number of bal-
anced solutions for ϕ′ is exactly twice the number of solutions for ϕ. Since
ϕ′ can be constructed in logarithmic time, this gives #CSP({R,C0,C1}) ≤log

c

#BAL-CSP(R).

64 Chapter 4. Balanced Satisfiability

Our main theorem summarizes the previous results to state a complete
complexity classification for the balanced satisfiability problems. A graphical
overview of this dichotomy can be seen in Figure 4.4.

Theorem 4.22. Let Γ be a finite constraint language over {0, 1}.

• BAL-CSP(Γ) is decidable in polynomial time if 〈Γ〉 ⊆ ID1, and in all
other cases BAL-CSP(Γ) is NP-complete.

• #BAL-CSP(Γ) is computable in polynomial time if 〈Γ〉 ⊆ ID1, and in all
other cases #BAL-CSP(Γ) is #P-complete under counting reductions.

Proof. The upper complexity bounds follow from Proposition 4.1 and The-
orem 4.5. The lower bounds follow from Theorems 4.9-4.21 and Proposi-
tion 4.3.

4.5 Exact Satisfiability

We have shown that weak bases can be used to obtain a full classification for
the balanced satisfiability problem and its counting version. It turns out, that
the complexity of these problems depends only on the co-clone generated by
the according constraint language, although in the first place we could only
prove that it depends only on the generated weak system without equality
(see Proposition 4.2). In some cases we had to work with concrete weak bases
(Section 4.4) and deal with every co-clone one-by-one, and in some cases we
could work with properties of weak bases and deal with several co-clones at
the same time (Section 4.3).

Note that the classification for balanced satisfiability also holds for the more
general problem of exact satisfiability, also known in the literature as K-ONES.

Problem: K-ONES(Γ)
Input: a Γ-formula ϕ, k ∈ N
Question: does ϕ have a solution that maps exactly k variables to 1?

Since every Boolean constraint formula ϕ has a balanced solution if and
only if ϕ has a solution with exactly 1

2
|Var(ϕ)| variables set to 1, it holds that

BAL-CSP(Γ) reduces trivially to K-ONES(Γ) for every Boolean constraint lan-
guage Γ. The proof for Theorem 4.5, which covers all polynomial time cases
of balanced satisfiability, gives a polynomial time result for the exact satisfia-
bility as well. The results for #BAL-CSP(Γ) transfer to the counting variant
#K-ONES(Γ) of the exact satisfiability problem in the same way, therefore we
obtain the following classification.

4.5. Exact Satisfiability 65

IR0 IR1

IBF

IR2

IM

IM0 IM1

IM2

IS2
1

IS3
1

IS1

IS2
12

IS3
12

IS12

IS2
11

IS3
11

IS11

IS2
10

IS3
10

IS10

IS2
0

IS3
0

IS0

IS2
02

IS3
02

IS02

IS2
01

IS3
01

IS01

IS2
00

IS3
00

IS00ID2

ID

ID1

IL2

IL

IL0 IL1IL3

IE2

IE

IE0 IE1

IV2

IV

IV1IV0

II0 II1

IN2

II

II2

IN

Complexity of BAL-CSP/#BAL-CSP:

NP-/#P-complete

in P/in FP

Figure 4.1: The Complexity of Balanced Satisfiability

66 Chapter 4. Balanced Satisfiability

Corollary 4.23. Let Γ be a finite constraint language over {0, 1}.

• K-ONES(Γ) is decidable in polynomial time if 〈Γ〉 ⊆ ID1, and in all other
cases K-ONES(Γ) is NP-complete.

• #K-ONES(Γ) is computable in polynomial time if 〈Γ〉 ⊆ ID1, and in all
other cases #K-ONES(Γ) is #P-complete.

Chapter 5

Default Logic

As a second example for applications of weak bases we classify the complexity
of constraint problems in the context of propositional default logic. Default
logic is a nonmonotonic logic introduced by Reiter in [Rei80]. It allows to
model human behavior to complement incomplete information with default
assumptions. We give an often used example: if someone told us that there
was a bird in the garden, then we would intuitively think about a bird that can
fly. However, there are birds like ostriches and penguins, that cannot fly, and
nobody told us that the special bird in the garden is a flying bird. In default
logic we can express as a rule that we assume by default every bird to be able
to fly, as long as we do not know that the bird belongs to a race of non-flying
birds. Due to the ability to express such default assumptions, default logic is
important in artificial intelligence.

We look at three computational problems that arise in this context: the
first one is the question if a given set of facts and a given set of default rules
are consistent; the second is whether the default rules can be applied such that
an additionally given formula results as a consequence; and the last one is the
question whether a given formula results as a consequence, no matter in which
order the rules are applied. The last two questions are known as credulous
reasoning and skeptical reasoning.

The complexity of these three problems has been studied by different au-
thors. Gottlob showed that these problems are either complete for ΣP

2 or ΠP
2

[Got92]. Kautz and Selman [KS91] and Stillman [Sti90] proved NP- and coNP-
completeness and polynomial time results for various syntactical restrictions of
these problems.

We look at the above problems in the constraint satisfaction context, that
means we restrict all formulas appearing in the input to be constraint formulas
over a fixed Boolean constraint language Γ. Using the tools developed in
Chapter 3 we achieve a full complexity classification for all three questions.

67

68 Chapter 5. Default Logic

5.1 Reiter’s Default Logic

A default d is an expression of the form

α : Mβ1, . . . ,Mβm
γ

,

where α, β1, . . . , βm, γ are propositional formulas. We call α the prerequisite,
β1, . . . , βm the justification, and γ the consequence of d. Intuitively d is a rule
saying that if α is known and β1, . . . , βm are consistent with what we know, then
γ is believed to be true. The rule mentioned in the example in the beginning
of the chapter can be expressed by a default of the form

x is bird : Mx can fly

x can fly
.

A default theory T is a pair (W,D), where W is a set of propositional
formulas and D a set of defaults. We refer to W as the knowledge base of T .

The set of formulas that can be derived to be believed from a default theory
is formalized in the concept of extensions, which we define now. For a set S of
propositional formulas we define Th(S) to be the deductive closure of S, i.e.,
the set of all formulas that are propositionally implied by S.

Definition 5.1. Let T = (W,D) be a default theory. For a set S of proposi-
tional formulas let ∆(S) be the smallest set satisfying the following properties:

1. W ⊆ ∆(S)

2. Th(∆(S)) = ∆(S)

3. If

α : Mβ1, . . . ,Mβm
γ

∈ D, α ∈ ∆(S), and ¬β1, . . . ,¬βm /∈ S,

then γ ∈ ∆(S).

A set of propositional formulas E is an extension for T , if E is a fixpoint of ∆,
i.e., if ∆(E) = E.

Note that if S is inconsistent and deductively closed, it holds that ∆(S) =
Th(W). Therefore T has an inconsistent extension if and only if the knowledge
base W is inconsistent. In this case Th(W) is the only extension of T .

The following theorem provides an alternative definition of extensions.

5.1. Reiter’s Default Logic 69

Theorem 5.2 ([Rei80]). Let T = (W,D) a default theory and E a set of
propositional formulas. Let E0 = W and

Ei+1 = Th(Ei)∪
{
γ | α : Mβ1, . . . ,Mβm

γ
∈ D, α ∈ Ei and ¬β1, . . . ,¬βm /∈ E

}
for all i ∈ N. Then it holds that E is an extension for T if and only if
E =

⋃
i∈NEi.

The previous theorem shows that E is the deductive closure of W and
the consequences added in the recursion. The next corollary formalizes this
statement. For a default theory T = (W,D) with extension E the set

gd(E, T) =def

{
α : Mβ1, . . . ,Mβm

γ
∈ D | α ∈ E,¬β1, . . . ,¬βm /∈ E

}
is called the set of generating defaults of E. For a set of defaults D, we denote
the set of all consequences appearing in D by cons(D).

Corollary 5.3 ([Rei80]). Let T = (W,D) be a default theory and let E be an
extension for T . Then the following equation is true.

E = Th(W ∪ cons(gd(E, T)))

That means every extension is uniquely characterized by its generating
defaults. So for finite default theories, i.e., default theories with a finite set of
defaults and a finite knowledge base, all extensions have a finite representation.
The size of this representation is bounded by the size of the given default theory
T , because the generating defaults of an extension are a subset of the defaults
in T .

The following three algorithmic questions have been investigated:

1. Given a default theory, does it have an extension? The existence of an
extension means that the rules formulated in the defaults of the theory
do not conflict in view of the underlying knowledge base.

2. Given a default theory T and a formula ϕ, does ϕ belong to some exten-
sion for T? This question is referred to as credulous or brave reasoning.
The underlying intuition is that it is possible to conclude ϕ from T by
applying defaults from T .

3. Given a default theory T and a formula ϕ, does ϕ belong to every exten-
sion for T? We speak of skeptical or cautious reasoning in this case. If ϕ
is in every extension of T , it means that the defaults from T force us to
conclude ϕ.

70 Chapter 5. Default Logic

Georg Gottlob proved that the first two questions are ΣP
2 -complete problems

and the third question is a ΠP
2 -complete problem [Got92].

We take a closer look at these problems and investigate their complexities if
we allow constraint formulas over some finite Boolean constraint language only.
Let Γ be a finite Boolean constraint language. A Γ-default is an expression of
the form

α : Mβ1, . . . ,Mβm
γ

,

where α, β1, . . . , βm, γ are Γ-formulas. A Γ-default theory is a tuple T = (W,D)
where the knowledge base W is a set of Γ- formulas, and D is a set of Γ-defaults.
If the prerequisite α is a tautology, e.g. the empty conjunction of constraint
clauses, we write just

: Mβ1, . . . ,Mβm
γ

.

Since every constraint formula over a Boolean constraint language is equivalent
to some propositional formula, we treat Γ-formulas as propositional formulas
and Γ-default theories as default theories.

Let E be an extension for some Γ-default theory T . Note that E contains
not only Γ-formulas and that E can even contain formulas that are not equiv-
alent to any Γ-formula. However, according to Corollary 5.3, E is uniquely
identified by its set of generating defaults which is a set of Γ-defaults.

In this chapter we investigate the complexity of the following three problems
for every finite Boolean constraint language Γ.

Problem: EXT(Γ)
Input: a Γ-default theory T = (W,D)
Question: does T have an extension?

Problem: CRED(Γ)
Input: a Γ-default theory T = (W,D) and a Γ-formula ϕ
Question: does ϕ belong to some extension for T?

Problem: SCEPT(Γ)
Input: a Γ-default theory T = (W,D) and a Γ-formula ϕ
Question: does ϕ belong to every extension for T?

The general upper complexity bounds for these problems follow directly
from Gottlob’s complexity results for unrestricted propositional default logic.

Proposition 5.4 ([Got92]). Let Γ be a finite constraint language over {0, 1}.
Then EXT(Γ) ∈ ΣP

2 , CRED(Γ) ∈ ΣP
2 , and SCEPT(Γ) ∈ ΠP

2 .

5.2. Existence of an Extension 71

First we show, that for two constraint languages that generate the same
weak system without equality, each of the three problems above have the same
complexity.

Proposition 5.5. Let Γ1 and Γ2 be finite constraint languages over {0, 1} such
that Γ1 ⊆ 〈Γ2〉@, 6=. Then EXT(Γ1) ≤log

m EXT(Γ2), CRED(Γ1) ≤log
m CRED(Γ2),

and SCEPT(Γ1) ≤log
m SCEPT(Γ2).

Proof. Let T = (W,D) be a Γ1-default theory and ϕ a Γ1-formula. Due to
Proposition 2.5, for every Γ1-formula we can construct an equivalent Γ2-formula
in logarithmic space. Let T ′ = (W ′, D′) be the Γ2-default theory that results
from T by replacing every occurring Γ1-formula by an equivalent Γ2-formula
and let ϕ′ be a Γ2-formula that is equivalent to ϕ. Then T and T ′ differ only
in equivalent replacements, therefore they have exactly the same extensions
and since ϕ and ϕ′ are equivalent, ϕ′ is in some or respectively all of these
extensions if and only if ϕ is. This proves the three reductions stated in the
proposition.

In the end of this chapter we will see that the above proposition even
holds if we only stipulate that Γ1 ⊆ 〈Γ2〉 instead of Γ1 ⊆ 〈Γ2〉@, 6=. However,
there is no obvious way to generalize the above proof to give this stronger
version of Proposition 5.5. That the complexity for all three questions depends
only on the co-clone generated by the according constraint language will be a
consequence of our classification.

5.2 Existence of an Extension

We first classify the complexity of EXT(Γ) depending on the constraint lan-
guage Γ. The classifications for the constraint problems in the context of
credulous and skeptical reasoning will be addressed afterwards.

With the first proposition we cover all cases, in which all formulas are 0-
valid or all formulas are 1-valid. A formula is 0-valid (1-valid) if it can be
satisfied by setting all variables to 0 (to 1). We show that in these cases
there exists a unique extension for every default theory. Considering that sets
of 0-valid formulas are allways consistent as well as sets of 1-valid formulas,
this result is not surprising. The proof relies on Reiter’s characterization of
extensions given in Theorem 5.2, which specifies a unique extension for every
default theory over a constraint language mentioned in the proposition.

Proposition 5.6. Let Γ be a finite constraint language over {0, 1} such that
〈Γ〉 ⊆ II0 or 〈Γ〉 ⊆ II1. Then every Γ-default theory has exactly one extension.

72 Chapter 5. Default Logic

Proof. Let 〈Γ〉 ⊆ II0. Then every Γ-formula ϕ is 0-valid, i.e., the assignment
that maps every variable from ϕ to 0 is a solution for ϕ. Let T = (W,D)
be a Γ-default theory. Then, according to Corollary 5.3, it holds that every
extension is the deductive closure of a set of Γ-formulas. Obviously the deduc-
tive closure of 0-valid formulas contains only 0-valid formulas, therefore as well
every extension of T contains only 0-valid formulas.

Now consider the construction of the set Ei in Theorem 5.2. Since every
justification β of every Γ-default from D is 0-valid it follows that ¬β is not
0-valid and therefore cannot appear in any extension of T . That means Ei does
not depend on the choice of the extension E for every i ∈ N. Since the union⋃
i∈NEi again contains only 0-valid formulas, it is the unique extension of T .

For 〈Γ〉 ⊆ II1 all Γ-formulas are 1-valid and the proof works analogously to
the above.

It turns out that these are the only easy cases in the sense that for all
other Boolean constraint languages Γ than mentioned in the proposition, we
will show later that the problem EXT(Γ) is hard for NP or even for ΣP

2 .
We now prove that for Schaefer constraint languages our problem is included

in NP.

Proposition 5.7. Let Γ be a finite constraint language over {0, 1} such that
〈Γ〉 ⊆ IE2, 〈Γ〉 ⊆ IV2, 〈Γ〉 ⊆ ID2, or 〈Γ〉 ⊆ IL2. Then EXT(Γ) ∈ NP.

Proof. Note that a constraint language Γ satisfying the prerequisites of the
proposition is Schaefer.

The following non-deterministic algorithm checks if a default theory has an
extension by first guessing a set of defaults D′ and then verifying that D′ is a
set of generating defaults of an extension:

1: input: a Γ-default theory T = (W,D)
2: guess a set D′ ⊆ D of generating defaults
3: let ψ :=

∧
ϕ∈W∪cons(D′) ϕ

4: for every default α:Mβ1,...,Mβm

γ
∈ D′ do

5: verify that ψ � α and ψ 2 ¬βi for every 1 ≤ i ≤ m
6: end for
7: for every default α:Mβ1,...,Mβm

γ
∈ D \D′ do

8: verify that ψ 2 α or ψ � ¬βi for some 1 ≤ i ≤ m
9: end for

We first show that the algorithm verifies that the set D′ guessed in line 2
is a set of generating defaults of an extension for T , i.e., we show that E =def

Th(W ∪ cons(D′)) is an extension for T with generating defaults D′.

5.2. Existence of an Extension 73

Note that the formula ψ defined in line 3 is a conjunction of Γ-formulas and
therefore itself is a Γ-formula. It also holds E = Th({ψ}) and it holds ϕ ∈ E
if and only if ψ � ϕ for every propositional formula ϕ.

In lines 4-6 it is verified that all defaults α:Mβ1,...,Mβm

γ
∈ D′ satisfy the con-

ditions α ∈ E and ¬β1, . . . ,¬βm /∈ E, which ensure that γ ∈ ∆(E). Therefore
cons(D′) ⊆ ∆(E) and since W ⊆ ∆(E) and ∆(E) is deductively closed, it
follows ∆(E) ⊆ E.

Lines 7-9 check that for all defaults α:Mβ1,...,Mβm

γ
∈ D \D′ at least one of the

conditions α ∈ E and ¬β1, . . . ,¬βm /∈ E is not satisfied. That means these
defaults do not affect ∆(E). So, because of the minimality of ∆(E), it holds
that E = ∆(E), which means E is an extension for T with generating defaults
D′.

We now have a closer look on the running time of the algorithm. Note
that ψ � ϕ is true if and only if ψ is equivalent to ψ ∧ ϕ and ψ � ¬ϕ is true
if and only if ψ ∧ ϕ is not satisfiable. Since Γ is Schaefer, we can decide in
polynomial time whether two Γ-formulas are equivalent according to [BHRV02]
and whether a Γ-formula is satisfiable in polynomial time according to [Sch78].
Hence, lines 5 and 8 can be implemented to perform in polynomial time, and
so the above algorithm is an non-deterministic polynomial time algorithm.

To complete the complexity classification for EXT(Γ), we identify the NP-
and ΣP

2 -hard cases. The next lemma provides implementation results that are
helpful for our hardness results. In the proof we work with irredundant weak
bases that are introduced in Chapter 3.

Lemma 5.8. Let Γ be a finite constraint language over {0, 1}. The following
is true:

1. if IR2 ⊆ 〈Γ〉, then C0 × C1 ∈ 〈Γ〉@,6=

2. if 〈Γ〉 ⊆ IN2 and 〈Γ〉 * IN, then Odd2 ∈ 〈Γ〉@, 6=.

Proof. 1. Let IR2 ⊆ 〈Γ〉. Let s be a core-size of 〈Γ〉. Due to Theorem 3.9 it
holds that

R =def Pol(Γ)(Colss)

is a weak base for 〈Γ〉. Note that according to Table 3.2 we have s ≥ 1.
Let

ϕ =def R(x, . . . , x︸ ︷︷ ︸
2s−1

, y, . . . , y︸ ︷︷ ︸
2s−1

).

We show that C0 × C1(x, y) ≡ ϕ. Since C0 × C1 = {(0, 1)}, we have
to show that the assignment I : {x, y} → {0, 1} with I(x) =def 0 and

74 Chapter 5. Default Logic

I(y) =def 1 is the only solution for ϕ. Since Pol(Γ) ⊆ R2, it holds that
every polymorphism is both 0-reproducing and 1-reproducing. Consider
Colss. Its leftmost column contains only 0s and its rightmost column
contains only 1s. So if we apply Pol(Γ) these columns still contain only
0s or only 1s. Hence, R(−, 1) = (0, . . . , 0) and R(−, 2s) = (1, . . . , 1) and
every solution for ϕ maps x to 0 and y to 1.

It is easy to see, that I indeed is a solution of ϕ, because

Colss(1,−) = (0, . . . , 0︸ ︷︷ ︸
2s−1

, 1, . . . , 1︸ ︷︷ ︸
2s−1

).

Thus, C0 × C1(x, y) ≡ ϕ which means C0 × C1 ∈ 〈R〉@ ⊆ 〈Γ〉@. Since
C0×C1 is irredundant, it follows C0×C1 ∈ 〈Γ〉@,6= due to Proposition 3.11.

2. Let 〈Γ〉 ⊆ IN2 and 〈Γ〉 * IN. Let s be a core-size of 〈Γ〉 and let

R =def Pol(Γ)(Colss).

Define S to be the 2-ary Boolean relation such that

S(x, y) ≡ R(x, . . . , x︸ ︷︷ ︸
2s−1

, y, . . . , y︸ ︷︷ ︸
2s−1

).

We show that S = Odd2. Note that ¬ ∈ Pol(Γ) because 〈Γ〉 ⊆ IN2. It
holds that

Colss(1,−) = (0, . . . , 0︸ ︷︷ ︸
2s−1

, 1, . . . , 1︸ ︷︷ ︸
2s−1

).

Since Colss ⊆ R and ¬ ∈ Pol(Γ) is a polymorphism of R, it follows
that {(0, 1), (1, 0)} = Odd2 ⊆ S. Now assume (0, 0) ∈ S, which means
(0, . . . , 0) ∈ R. This implies that c0 is a polymorphism of R. Since ¬ is
a polymorphism of R as well, it then follows 〈Γ〉 ⊆ IN, which contradicts
the given prerequisites. So it holds (0, 0) /∈ S and analogously it holds
(1, 1) /∈ S. Thus, S = Odd2.

Therefore we have Odd2 ∈ 〈R〉@ ⊆ 〈Γ〉@, and since Odd2 is irredundant,
it follows Odd2 ∈ 〈Γ〉@, 6=.

We now prove that EXT(Γ) is NP-hard if Γ generates a co-clone above IR2.
With the previous lemma the proposition easily follows from an NP-hardness
result from Kautz and Selman for default logics that are build only from literals
[KS91].

Proposition 5.9. Let Γ be a finite constraint language over {0, 1} such that
IR2 ⊆ 〈Γ〉. Then EXT(Γ) is NP-hard.

5.2. Existence of an Extension 75

Proof. Due to Lemma 5.8 it holds that C0×C1 ∈ 〈Γ〉@, 6=. Since it follows from

Proposition 5.5 that EXT(C0 × C1) ≤log
m EXT(Γ), it is sufficient to show that

EXT(C0 × C1) is NP-hard.
We use the following result from Kautz and Selman: It is NP-hard to

decide if a given default theory in which all formulas are conjunctions of literals
has an extension [KS91]. Note that > and ⊥ appearing in their notation
can be expressed by the empty conjunction of literals and by conjunction of
contradicting literals. Translated to our notation this result can be formulated
as EXT({C0,C1}) is NP-hard. Note that the result from Kautz and Selman
was proven for a more restricted type of default theories, where the defaults
are required to match a special form.

Let T = (W,D) be a default theory over {C0,C1} and let f and t be
variables not appearing in T . To construct a {C0 × C1}-default theory ex-
change every clause C0(x) in T by C0 × C1(x, t) and every clause C1(x) in T
by C0 × C1(f, x). Additionally add the clause C0 × C1(f, t) to the knowledge
base W . It is easy to see, that the old default theory has an extension if and
only if the new one has one. So this reduction transfers the NP-hardness from
Kautz and Selman to EXT(C0 × C1), which completes the proof.

Now we show NP-hardness for the cases IN2, IL3 and ID. However, the
result for IN2 is not optimal as we will see in Proposition 5.11.

Proposition 5.10. Let Γ be a finite constraint language over {0, 1} such that
ID ⊆ 〈Γ〉 ⊆ IN2. Then EXT(Γ) is NP-hard.

Proof. Due to Lemma 5.8 it holds Odd2 ∈ 〈Γ〉@,6=, therefore it follows with

Proposition 5.5 that EXT(Odd2) ≤log
m EXT(Γ). To complete the proof we

show that EXT(Odd2) is NP-hard.
Similarly as in the proof of Proposition 5.9, the NP-hardness of EXT(Odd2)

follows from the NP-hardness of EXT({C0,C1}) which is proven in [KS91].
Let T = (W,D) be a {C0,C1}-default theory. Let t and f be new variables

and for a {C0,C1}-formula ϕ let ϕ′ be the formula obtained from ϕ by replacing
every clause C0(x) by Odd2(x, t) and every clause C1(x) by Odd2(x, f). Let T ′

be the default theory that is obtained by exchanging every formula ϕ in T by
ϕ′ and adding the clause Odd2(f, t) to the knowledge base.

For {C0,C1}-formulas ϕ and ψ it holds that ϕ � ψ if and only if ϕ′ ∧
Odd2(t, f) � ψ′ and it holds that ϕ � ¬ψ if and only if ϕ′ ∧ Odd2(t, f) � ¬ψ′.
That means a set F ⊆ D is a set of generating defaults of an extension for T if
and only if the corresponding set F ′ where every formula ϕ from F is replaced
by ϕ′ is a set of generating defaults of an extension for T ′.

Since T ′ can be constructed in logarithmic space, it follows

EXT({C0,C1}) ≤log
m EXT(Odd2).

76 Chapter 5. Default Logic

The following two propositions prove ΣP
2 -hardness for the cases IN2 and II2.

The proofs are very similar and direct modifications of Gottlob’s hardness proof
for the question if some (non-restricted) default theory has an extension. In
both cases we reduce from the complement of QBF2(Γ). The Problem QBF2(Γ)
is the question if a given quantified formula of the type ∀x1, . . . , xk∃y1, . . . , ylϕ,
where ϕ is a constraint formula over Γ with Var(ϕ) = {x1, . . . , xk, y1, . . . , yl},
is valid. Hemaspaandra proved that QBF2(Γ) is complete for ΠP

2 , if Γ is not
Schaefer [Hem04].

Proposition 5.11. Let Γ be a finite constraint language over {0, 1} such that
〈Γ〉 = IN2. Then EXT(Γ) is ΣP

2 -hard.

Proof. Since 〈Γ〉 * IN (see Figure 2.3), we know from Lemma 5.8 that Odd2 ∈
〈Γ〉@, 6=. Therefore it holds

〈
Γ ∪

{
Odd2

}〉
@, 6= = 〈Γ〉@,6= and it follows EXT(Γ ∪{

Odd2
}

) ≤log
m EXT(Γ) due to Proposition 5.5. So it is sufficient to prove

ΣP
2 -hardness of EXT(Γ ∪

{
Odd2

}
).

We show QBF2(Γ) ≤log
m EXT(Γ ∪

{
Odd2

}
). Let

ψ =def ∀x1, . . . , xk∃y1, . . . ylϕ

be an instance for QBF2(Γ), i.e., ϕ is a Γ-formula and it holds that Var(ϕ) =
{x1, . . . , xk, y1, . . . , yl}. Let x′1, . . . , x

′
k, z be distinct variables not appearing in

ϕ. We construct a default theory T = (W,D) over Γ ∪
{

Odd2
}

by setting:

W =def {Odd(xi, x
′
i) | 1 ≤ i ≤ k}

and

D =def

{
: MOdd2(xi, xi+1)

Odd2(xi, xi+1)
| 1 ≤ i ≤ k − 1

}
∪
{

: MOdd2(xi, x
′
i+1)

Odd2(xi, x′i+1)
| 1 ≤ i ≤ k − 1

}
∪
{

: Mϕ

Odd2(z, z)

}
The idea behind this construction is the following: we use the the variables

x′i to express ¬xi. The defaults in the first two sets simulate assignments to the
∀-quantified variables x1, . . . , xk by forcing each possible extension to contain
for any two variables xi and xj either xi = xj or xi 6= xj. The last default
guarantees that ¬ϕ is valid in each extension, because it has a non-consistent

5.2. Existence of an Extension 77

consequence. Note that this construction is similar to the construction from
Gottlob in the ΣP

2 -hardness proof for the question if a default theory has an
extension [Got92].

We prove that T has an extension if and only if ψ is not valid. First assume
that T has an extension E. Since W is consistent, E is consistent as well.
Consider the default

: Mϕ

Odd2(z, z)
∈ D.

If ¬ϕ /∈ E, then the default implies Odd2(z, z) ∈ E, which contradicts the con-
sistency of E. This means ¬ϕ ∈ E. Since the ∃-quantified variables y1, . . . , yl
do not appear in T otherwise than in the justification of the considered default,
it holds that satisfying assignments for all formulas in E do not depend on the
variables y1, . . . , yl. It follows that there exists an assignment to the variables
x1, . . . , xk such that every extension to Var(ϕ) satisfies ¬ϕ. Thus, ψ is not
valid.

For the other direction let ψ be not valid. Then there is an assignment I to
x1, . . . , xk, such that every extension of I to Var(ϕ) satisfies ¬ϕ. We construct
an extension for T . Let

S0 =def

{
Odd2(xi, x

′
i+1) | 1 ≤ i ≤ k − 1 and I(xi) = I(xi+1)

}
and

S1 =def

{
Odd2(xi, xi+1) | 1 ≤ i ≤ k − 1 and I(xi) 6= I(xi+1)

}
.

We prove that E =def Th(W ∪S0 ∪S1) is an extension for T , i.e., we prove
that ∆(E) = E. First note that E is consistent. Since for every ψ ∈ S0 ∪ S1

there is a default :Mψ
ψ
∈ D, it follows E ⊆ ∆(E).

Assume E (∆(E). Then there is some default d ∈ D such that its
consequence γ is not in E and its justification is consistent with E, which

implies γ ∈ ∆(E). If d is of the form :MOdd2(xi,xi+1)

Odd2(xi,xi+1)
for some i ∈ {1, . . . , k1},

then Odd2(xi, x
′
i+1) ∈ E. Since Odd2(xi+1, x

′
i+1) ∈ W ⊆ E, it holds that the

justification β = Odd2(xi, xi+1) is not consistent to E in this case. Analogously

the justification is not consistent to E, if d is of the form
:MOdd2(xi,x

′
i+1)

Odd2(xi,x′i+1)
.

So, d is the default :Mϕ
Odd2(z,z)

. Let J be an assignment that satisfies every

formula from W ∪S0∪S1. Obviously it holds either that J |{x1,...,xk} = I, or that
J |{x1,...,xk} = I ′ which is defined by I ′(x) = ¬I(x). Recall that every extension
of I to Var(ϕ) satisfies ¬ϕ. Since Γ ⊆ IN2, it holds that ϕ is complementive
therefore ¬ϕ is complementive as well and every extension of I ′ to Var(ϕ)
satisfies ¬ϕ as well. Hence, ¬ϕ ∈ E, so the justification of D is not consistent
to E.

78 Chapter 5. Default Logic

Thus we showed that E = ∆(E), i.e that E is an extension of T . It
is easy to see that T can be constructed in logarithmic space, so we proved
QBF2(Γ) ≤log

m EXT(Γ ∪
{

Odd2
}

). Since 〈Γ〉 = IN2, it holds that QBF2(Γ) is
ΠP

2 -complete due to [Hem04], which completes the proof.

To complete the classification we cover the case of the largest Boolean co-
clone II2 in the next proposition. The proof is only a slight modification from
Gottlob’s proof for ΣP

2 -hardness of the problem whether a default theory has
an extension.

Proposition 5.12. Let Γ be a finite constraint language over {0, 1} such that
〈Γ〉 = II2. Then EXT(Γ) is ΣP

2 -complete.

Proof. This proof is similar to the proof of Proposition 5.11. Since according
to Lemma 5.8 it holds C0,C1 ∈ 〈Γ〉@,6=, and since QBF2(Γ) is ΠP

2 -complete for

〈Γ〉 = II2 [Hem04], it is enough to show QBF2(Γ) ≤log
m EXT(Γ ∪ {C0 × C1}).

Let

ψ =def ∀x1, . . . , xk∃y1, . . . ylϕ

be an instance for QBF2(Γ), i.e., ϕ is a constraint formula over Γ such that
Var(ϕ) = {x1, . . . , xk, y1, . . . , yl}. Let f and t be two different variables not
appearing in ϕ. We construct a Γ∪{C0 × C1}-default T = (W,D) by defining:

W =def {C0 × C1(f, t)} ,

D =def

{
: MC0 × C1(xi, t)

C0 × C1(xi, t)
| 1 ≤ i ≤ k − 1

}
∪
{

: MC0 × C1(f, xi)

C0 × C1(f, xi)
| 1 ≤ i ≤ k

}
∪
{

: Mϕ

C0 × C1(t, t)

}
The variables t and f simulate the constants 0 and 1. The defaults in the first
two sets simulate assignments for the variables x1, . . . , xk and the last default
makes sure that every extension contains ¬ϕ.

It holds that T has an extension if and only if ψ is not valid. We omit the
proof for this because it works analogously to the proof of Proposition 5.11.
Since T can be constructed in logarithmic space, this completes the proof.

Now we summarize the results of this section in the following trichotomy
theorem:

5.3. Credulous and Skeptical Reasoning 79

Theorem 5.13. Let Γ be a finite contraint language over {0, 1}. Then the
following holds:

• If IN2 ⊆ 〈Γ〉, then EXT(Γ) is ΣP
2 -complete.

• Otherwise, if IR2 ⊆ 〈Γ〉 or ID ⊆ 〈Γ〉, then EXT(Γ) is NP-complete.

• In all other cases EXT(Γ) is decidable in polynomial time.

5.3 Credulous and Skeptical Reasoning

It is easy to see that credulous reasoning cannot be easier than the question
if there exists an extension at all: since the knowledge base W of a default
theory T = (W,D) is a subset of every extension of T , it holds that T has an
extension if and only T has an extension that contains

∧
ϕ∈W ϕ. This proves

the next proposition.

Proposition 5.14. Let Γ be a finite constraint language over {0, 1}. Then
EXT(Γ) ≤log

m CRED(Γ).

In Proposition 5.6 we showed that in the case of 0-valid or 1-valid constraint
languages there always exists a unique extension. Therefore for such constraint
languages credulous reasoning and skeptical reasoning are the same questions.
We show that both problems are in P for constraint languages that additionally
are Schaefer, and coNP-complete for constraint languages that additionally are
non-Schaefer.

Proposition 5.15. Let Γ be a finite constraint language over {0, 1} such that
〈Γ〉 ⊆ II0 or 〈Γ〉 ⊆ II1. Then the following holds:

• If IN ⊆ 〈Γ〉, then CRED(Γ) and SCEPT(Γ) are coNP-complete.

• Otherwise CRED(Γ) and SCEPT(Γ) are in P.

Proof. In this proof we assume 〈Γ〉 ⊆ II0, for 〈Γ〉 ⊆ II1 the result follows
analogously.

Since 〈Γ〉 ⊆ II0 every Γ-default theory T has a unique extension E(T) due
to Proposition 5.6. So, a formula is in some extension of T if and only if it is
in every extension of T , which means CRED(Γ) = SCEPT(Γ).

There are two cases to consider:

Case 1: IN * 〈Γ〉. In this case it holds 〈Γ〉 ⊆ IV0, 〈Γ〉 ⊆ IE0, 〈Γ〉 ⊆ IL0, or
〈Γ〉 ⊆ ID0, i.e., Γ is Schaefer.

80 Chapter 5. Default Logic

We give a polynomial time algorithm that, given a Γ-default theory T
and a Γ formula ϕ, constructs the extension of T and checks whether ϕ
belongs to it. The algorithm accepts if this is not the case, and rejects
otherwise. The reason why we give an algorithm that decides CRED(Γ)
rather than CRED(Γ) is that we want to use it in the next case to prove
a coNP-result.

1: input a Γ-default theory T = (W,D), a Γ-formula ϕ
2: let E := W
3: let E ′ := ∅
4: while E 6= E ′ do
5: E ′ := E
6: for all α:Mβ1,...,Mβm

γ
∈ D do

7: if E ′ � α then
8: E := E ∪ {γ}
9: end if

10: end for
11: end while
12: if E � ϕ then
13: reject
14: else
15: accept
16: end if

Lines 2-11 implement the construction in Theorem 5.2. Since E(T) con-
tains only 0-valid formulas, for every justification β the condition that
¬β /∈ E(T) is true. So it is easy to see, that, if we execute lines 5-10, and
if we have Th(E) = Th(Ei) for the set Ei from Theorem 5.2 before the
execution, it holds Th(E) = Th(Ei+1) after the execution. Since we start
with E = W , it holds that Th(E) = E(T) after executing lines 2-11.

Thus, the algorithm checks in line 12, whether ϕ ∈ E(T) and rejects if
this is the case and accepts otherwise.

Note that, for some set S of formulas and a formula ψ it holds that S � ψ
if and only if the conjunction of all formulas from S implies ψ. Since Γ
is Schaefer, the implication problem for Γ-formulas is solvable in poly-
nomial time (this follows from [BHRV02] and can be found explicitly in
[SS07b]). Hence, the above algorithm decides CRED(Γ) and SCEPT(Γ)
in polynomial time.

Case 2: IN ⊆ 〈Γ〉. Note that in this case the implication problem for Γ-formulas

5.3. Credulous and Skeptical Reasoning 81

is complete for coNP [SS07b], therefore the above algorithm does not
prove decidability in polynomial time for CRED(Γ) and SCEPT(Γ).

The coNP-hardness of CRED(Γ) and SCEPT(Γ) follows easily from the
coNP-completeness of the implication problem for Γ-formulas, because if
ϕ and ψ are Γ-formulas, then it holds ϕ � ψ if and only if ψ is in the
unique extension of T = ({ϕ} , ∅).
To show that CRED(Γ) and SCEPT(Γ) are in coNP we modify the above
algorithm to get a non-deterministic algorithm that accepts if and only
if ϕ /∈ E(T). We replace line 7 by:

7a: guess an assignment I that satisfies every formula in E ′

7b: if I satisfies α then

And we replace line 12 by:

12a: guess an assignment I that satisfies every formula in E
12b: if I satisfies ϕ then

The guessed assignments are meant to be assignments for all variables
appearing in T and ϕ. First note that we now have a non-deterministic
algorithm that runs in polynomial time, since for testing if an assignment
satisfies a Γ-formula we just have to test if the assignment satisfies every
clause of the formula.

We now prove that the algorithm is correct. First we look at the new lines
7a and 7b. If E ′ � α, then every assignment I satisfying every formula
in E, satisfies α as well, therefore γ is added to E in line 8. If E ′ 2 α,
then there exists an assignment that satisfies every formula from E ′ but
not α. If the algorithm guesses this assignment, then γ is not added to
E in line 8, otherwise it is added. That means, if the algorithm guesses
in each iteration an assignment that is a counterexample for E ′ � α if
there is one, then it adds exactly the same to E as the polynomial time
algorithm without modification. So, the assignments I can be guessed
such that Th(E) = E(T) after the execution of the while loop. If, for
some non-deterministic choice, E ′ � α does not hold and the algorithm
does not guess a counter-example, then γ is added even if it might not
be in the extension E(T). In this case we have E(T) ⊆ Th(E).

Now assume ϕ /∈ E(T). If the algorithm guesses such that Th(E) = E(T)
after the execution of the while loop, then there is a satisfying assignment
satisfying all formulas from E, that satisfies not ϕ. Thus, guessing this
in line 12a the algorithm accepts.

82 Chapter 5. Default Logic

For the converse direction let ϕ ∈ E(T). According to the above it
holds, for every possible guess of I in every iteration of the while loop,
that E(T) ⊆ Th(E) after the execution of the while loop. Therefore
ϕ ∈ Th(E) and every possible assignment I the algorithm can choose in
line 12a satisfies ϕ, which means the algorithm rejects.

Hence, the outlined algorithm decides CRED(Γ) and SCEPT(Γ) in non-
deterministic polynomial time. Therefore CRED(Γ) and SCEPT(Γ) are
in coNP.

In the cases where we showed NP-completeness for EXT(Γ), we get NP-
and coNP-completeness for CRED(Γ) and SCEPT(Γ) with similar proofs.

Proposition 5.16. Let Γ be a finite constraint language over {0, 1} such that
Γ is Schaefer and such that IR2 ⊆ 〈Γ〉 and ID ⊆ 〈Γ〉. Then CRED(Γ) is
NP-complete and SCEPT(Γ) is coNP-complete.

Proof. To see that CRED(Γ) ∈ NP consider the algorithm given in the Proof
of Proposition 5.7. Give the algorithm a Γ-formula χ as additional input and
add the following line in the end:

10: verify that ψ � χ

All verifications of the algorithm have a positive result if and only if the algo-
rithm guesses the generating defaults of an extension that contains χ. Since Γ is
Schaefer, the new verification can be done in polynomial time in the same way
as the other verifications in the algorithm. This shows that CRED(Γ) ∈ NP.

Adding instead the line

10: verify that ψ 2 χ

gives an NP-algorithm for SCEPT(Γ), which implies that SCEPT(Γ) ∈ coNP.
The NP-hardness of CRED(Γ)-follows from Propositions 5.9, 5.10 and 5.14.

For the coNP-hardness we use a result from Kautz and Selman which can
be formulated as: SCEPT({C0,C1}) is coNP-hard [KS91]. Reductions very
similar to those in the proofs for Propositions 5.9 and 5.10 transfer the coNP-
hardness of SCEPT({C0,C1}) to SCEPT(Γ).

Finally we show ΣP
2 - and ΠP

2 -completeness results for constraint languages
generating IN2 or II2. Again the arguments in the proof are very similar to those
used for the corresponding cases in the previous section (see Propositions 5.11
and 5.12).

Proposition 5.17. Let Γ be a finite constraint language over {0, 1} such that
IN2 ⊆ 〈Γ〉. Then CRED(Γ) is ΣP

2 -complete and SCEPT(Γ) is ΠP
2 -complete.

5.3. Credulous and Skeptical Reasoning 83

Proof. The upper complexity bounds follow from Proposition 5.4. The ΣP
2 -

hardness of CRED(Γ)-follows from Propositions 5.11, 5.12 and 5.14.
The ΠP

2 -hardness of SCEPT(Γ) can be proven by a slight modification of
Gottlob’s proof for the coNP-hardness of skeptical reasoning. We make a re-
duction from QBF2(Γ) similar to the reductions in Propositions 5.11 and 5.12.
Let

ψ =def ∀x1, . . . , xk∃y1, . . . ylϕ

be an instance for QBF2(Γ), i.e., ϕ is a Γ-formula and it holds that Var(ϕ) =
{x1, . . . , xk, y1, . . . , yl}. Let x′1, . . . , x

′
k, t, f be distinct variables not appearing

in ϕ.
If 〈Γ〉 = IN2 we construct the default theory T = (W,D) by setting:

W1 =def {Odd(xi, x
′
i) | 1 ≤ i ≤ k}

and

D =def

{
: MOdd2(xi, xi+1)

Odd2(xi, xi+1)
| 1 ≤ i ≤ k − 1

}
∪
{

: MOdd2(xi, x
′
i+1)

Odd2(xi, x′i+1)
| 1 ≤ i ≤ k − 1

}
∪
{

: Mϕ

ϕ

}
For 〈Γ〉 = II2 we construct the default theory T = (W,D) by defining:

W =def {C0 × C1(f, t)} ,

D =def

{
: MC0 × C1(xi, t)

C0 × C1(xi, t)
| 1 ≤ i ≤ k

}
∪
{

: MC0 × C1(f, xi)

C0 × C1(f, xi)
| 1 ≤ i ≤ k

}
∪
{

: Mϕ

ϕ

}
It holds that ψ is valid if and only if ϕ belongs to each extension for T .

The proof uses similar arguments as the proof for Proposition 5.11, therefore
we omit it here.

Since for 〈Γ〉 = IN2 we have Odd2 ∈ 〈Γ〉@,6=, and for 〈Γ〉 = II2 we have

C0×C1 ∈ 〈Γ〉@, 6=, it holds QBF2(Γ) ≤log
m SCEPT(Γ). With the ΠP

2 -hardness of
QBF2(Γ) from [Hem04], it follows that SCEPT(Γ) is hard for coNP.

84 Chapter 5. Default Logic

We combine the results of this section in the following two theorems. Note
that the first theorem classifies the complexity of CRED(Γ) in four different
complexity classes, whereas in the classification for SCEPT(Γ) there are only
three different complexity classes involved. For a graphical overview of these
classifications see Figure 5.3.

Theorem 5.18. Let Γ be a finite constraint language over {0, 1}. Then the
following holds:

• If IN2 ⊆ 〈Γ〉, then CRED(Γ) is ΣP
2 -complete.

• Otherwise, if IR2 ⊆ 〈Γ〉 or ID ⊆ 〈Γ〉, then CRED(Γ) is NP-complete.

• Otherwise, if IN ⊆ 〈Γ〉, then CRED(Γ) is coNP-complete.

• In all other cases CRED(Γ) is decidable in polynomial time.

Theorem 5.19. Let Γ be a finite constraint language over {0, 1}. Then the
following holds:

• If IN2 ⊆ 〈Γ〉, then SCEPT(Γ) is ΠP
2 -complete.

• Otherwise, if IR2 ⊆ 〈Γ〉 or ID ⊆ 〈Γ〉, then SCEPT(Γ) is coNP-complete.

• In all other cases SCEPT(Γ) is decidable in polynomial time.

We achieved full classifications for the three problems EXT(Γ), CRED(Γ)
and SCEPT(Γ) using the weak base method. These classification remain true
if we allow the constraint formulas to have existential quantified variables (in
this case we speak of conjunctive queries) as was proven in [CHS07].

It is worth noticing that the constraint languages generating one of the
Boolean co-clones IN, II, II0, and II2 are the only cases, where the complexity
of EXT(Γ) is not the same as the complexity CRED(Γ) and where the com-
plexity of SCEPT(Γ) is not dual to the complexity of CRED(Γ). Note that
the corresponding cases for credulous and skeptical reasoning are incorrect in
[CHS07].

5.3. Credulous and Skeptical Reasoning 85

IR0 IR1

IBF

IR2

IM

IM0 IM1

IM2

IS2
1

IS3
1

IS1

IS2
12

IS3
12

IS12

IS2
11

IS3
11

IS11

IS2
10

IS3
10

IS10

IS2
0

IS3
0

IS0

IS2
02

IS3
02

IS02

IS2
01

IS3
01

IS01

IS2
00

IS3
00

IS00ID2

ID

ID1

IL2

IL

IL0 IL1IL3

IE2

IE

IE0 IE1

IV2

IV

IV1IV0

II0 II1

IN2

II

II2

IN

Complexity of EXT/CRED/SCEPT:

ΣP
2 -/ΣP

2 -/ΠP
2 -complete

NP-/NP-/coNP-complete

in P/coNP-/coNP-complete

in P/in P/in P

Figure 5.1: The Complexity of Default Reasoning

86 Chapter 5. Default Logic

Chapter 6

The Enumeration Problem

Up to now we studied the complexity of different decision and counting prob-
lems for constraint formulas. In this chapter we look at a the enumeration
problem for constraint formulas, which is the problem to enumerate all solu-
tions of a given constraint formula. This problem is of great relevance, because
in practice we are not only interested in knowing whether a formula is satisfi-
able, we also want to know which solutions the formula has. For example when
the formula represents a database query, the solutions represent the matching
entries.

In contrast to counting and decision problems, for enumerating problems
neither complexity classes nor notions for reductions have been established. We
use the notion of polynomial delay to express efficient enumerability. Roughly
speaking, polynomial delay means we have to wait only polynomial time for the
next solution to be printed. Another difference to Chapters 4 and 5, where we
only look at the Boolean domains, is that we consider the enumeration problem
for constraint languages over arbitrary domains. Although one can show that
the existence of efficient enumeration algorithms for Γ-formulas depends only
on the weak system generated by Γ, both the lack of established complexity
notions and leaving the Boolean domain make it difficult to apply the tools
from Chapter 3, because we do not know the structure of the strong partial
clones over arbitrary domains.

In fact for the Boolean domain Creignou and Hébrard showed that effi-
cient enumeration algorithms for Γ formulas exist, if and only if the constraint
satisfaction problem for constraint formulas over Γ ∪ {C0,C1} is solvable in
polynomial time [CH97]. The algorithm that works in these cases is of a sim-
ple type and was generalized to arbitrary domains by Cohen [Coh04]. To our
knowledge this elementary algorithm captures all known efficiently enumerable
constraint languages to date. We prove that there are more sophisticated al-
gorithms that allow to enumerate solutions efficiently in cases where the well

87

88 Chapter 6. The Enumeration Problem

known algorithm is not efficient. But we will see that these algorithms are
limited, when we want to enumerate solutions in a given order.

After presenting basic definitions and previous results in Section 6.1, we give
a template for new enumeration algorithms in Section 6.2. Then, in Section 6.3,
we give criteria to identify cases where the new algorithms work efficiently.
Especially the results in Section 6.3 are very technical, therefore we explain all
constructions with an example over the three-element domain.

In Section 6.4 we show that we can efficiently enumerate solutions in a
highly customizable order exactly in the cases where the elementary algorithm
mentioned above yields efficient enumerability. Finally we consider a fragment
of all constraint languages over the three-element domain and identify all its
efficiently enumerable cases in Section 6.5.

6.1 Previous Results

How can we measure the complexity of the task to enumerate all solutions
of a given formula? Since in general number of solutions for a formula ϕ is
exponential in the number of variables appearing in ϕ, the time needed to print
all solutions does not provide the information if this is an easy task or not. To
capture the difficulty of finding the solutions we use the notion of polynomial
delay introduced by Johnson, Papadimitriou and Yannakakis [JPY88].

For a constraint language Γ an enumeration algorithm is an algorithm that,
given a Γ-formula ϕ as input, puts out every solution of ϕ exactly once.

Definition 6.1. An algorithm has polynomial delay, if the computing time
before the first output, between every two consecutive outputs, and after the
last output until halting is each bounded by a fixed polynomial in the length
of the input.

If there is an enumeration algorithm with polynomial delay for Γ, we say
that Γ is efficiently enumerable. Using a polynomial delay enumeration algo-
rithm we have to wait only polynomial time for either the first solution or, if
none exists, the halting of the algorithm, therefore it is trivial that CSP(Γ) ∈ P,
if Γ is efficiently enumerable..

We consider a very simple enumerating scheme suggested by Valiant in
[Val79b]. Given a formula ϕ over the domain D with Varϕ = {x1, . . . , xn} we
do the following: for every a ∈ D we check whether ϕ∧Ca(x1) is satisfiable and
if this is the case we recursively enumerate all solutions I of ϕ[x1/a], extended
by I(xn) = a.

This approach leads to an enumeration algorithm with polynomial delay,
if the satisfiability tests can be done in polynomial time, which yields to the

6.1. Previous Results 89

following theorem from Cohen. For a constraint language Γ over a domain D
we define Γ+ =def Γ {Ca | a ∈ D}.
Theorem 6.2 ([Coh04]). Let Γ be a finite constraint language. If CSP(Γ+) is
in P, then Γ is efficiently enumerable.

Creignou and Hébrard showed in [CH97] that if we only look at Boolean
constraint languages, then the previous theorem captures all efficient cases.
Note that, supposing P 6= NP, a Boolean constraint language Γ is Schaefer if
and only if CSP(Γ+) ∈ P.

Theorem 6.3 ([CH97]). Let Γ be a finite constraint language over {0, 1}. Then
Γ is efficiently enumerable if and only if CSP(Γ+) ∈ P.

We will see that, when considering other domains than the Boolean, there
are are efficiently enumerable constraint languages Γ, such that CSP(Γ+) is NP-
complete and we will develop criteria to identify such constraint languages. To
give an intuition for our techniques, we use the following example to explain
the constructions in this chapter.

Example 6.4. Let Γex be the constraint language over the domain {1, 2, 3},
that contains only the following relation.

Rex =def

1 0 0 0
1 0 0 1
1 0 1 0
1 1 0 0
2 0 0 2
2 0 2 0
2 2 0 0

We show that Γ+

ex = {Rex,C0,C1,C2} is NP-complete. Since CSP(1-in-3) is
NP-complete due to Schaefer’s Theorem (see Theorem 2.11), it suffices to show
CSP(1-in-3) ≤log

m CSP(Γ+
ex). Let

ϕ =def 1-in-3(x1, y1, z1) ∧ · · · ∧ 1-in-3(xn, yn, zn)

and
ϕ′ =def Rex(v, x1, y1, z1) ∧ · · · ∧Rex(v, xn, yn, zn) ∧ C2(v),

where v is a new variable. It is easy to see that ϕ has a solution if and only if
ϕ′ has one.

Hence CSP(Γ+
ex) is NP-complete. So it seems that the algorithm outlined

above cannot be implemented with polynomial delay (unless P = NP) and
Theorem 6.2 does not give us that Γex is efficiently enumerable. However, in
the course of this chapter, we will present an efficient enumeration algorithm
for Γex.

90 Chapter 6. The Enumeration Problem

Although Γex will be a counter-example for the converse direction in The-
orem 6.2, we will show in section 6.4 that we can generalize Theorem 6.3 to
larger domains, by providing an even stronger notion of efficient enumerability,
that is equivalent to CSP(Γ+) ∈ P.

6.2 Partial Enumerability

The main idea when enumerating the solutions of a Γex-formula ϕ is to divide
the problem in two tasks: the first one is to find all “pre-solutions” for ϕ
which map every variable either to 0 or to {1, 2}. The second task is to refine
this “pre-solutions” to “real” solutions by specifying which of the variables
associated with {1, 2} take the value 1 and which of them take the value 2. An
advantage of this approach is, that for finding the “pre-solutions” we do not
distinguish between 1 and 2, and for refining the “pre-solutions” we only need
to consider the values 1 and 2. So we splitted the problem of enumerating the
solutions for a formula over a three-valued domain in two Boolean enumeration
tasks. This allows us to apply the classification from Creignou and Hébrard
for the Boolean case stated in Theorem 6.3. We need the next definitions to
formalize this idea.

Let D be a domain, and E a partition of D. We denote by ∼E the equiva-
lence relation corresponding to E and by fE : D → E the function that maps
every element to its equivalence class.

We say a partition E ′ of D is a refinement of E if for a, b ∈ D holds that
a ∼E′ b implies a ∼E b, i.e., if fE

′
(a) ⊆ fE(a) for every a ∈ D. In this case we

write E ′ ≤ E.

Let Γ be a constraint language over D, let ϕ be a Γ-formula and let E ′ ≤ E
be partitions of D. Let I : Var(ϕ) → E and I ′ : Var(ϕ) → E ′ be assignments
of E and E ′ to Var(ϕ). If for all x ∈ Var(ϕ) we have I ′(x) ⊆ I(x), then we
say I ′ is compatible with I. If ϕ has a solution J : Var(ϕ)→ D, such that for
all x ∈ Var(ϕ) it holds J(x) ∈ I(x), then I is a partial E-solution for ϕ and
we say J is compatible with I. The set of all partial E-slutions or ϕ is denoted
with SolE(ϕ).

The discrete partition of D, where we have exactly one partition for each
element, we denote by Ddisc =def {{a} | a ∈ D}.

Definition 6.5. Let Γ be a constraint language over a domain D and let E1

and E2 be partitions of D, such that E2 is a refinement of E1.

• Γ is efficiently E1-enumerable, if there exists an algorithm which has
polynomial delay and which, given a Γ-formula ϕ, enumerates SolE1(ϕ).

6.2. Partial Enumerability 91

• Γ is efficiently E1 → E2-enumerable, if there exists an algorithm which
has polynomial delay and which, given a Γ-formula ϕ and an assign-
ment I : Var(ϕ)→ E1, enumerates all partial E2-solutions for ϕ that are
compatible with I.

• Γ is efficiently E1 → D-enumerable, if Γ is efficiently E1 → Ddisc-
enumerable.

Note that partial Ddisc-solutions correspond directly to “real” solutions,
therefore Γ is efficiently Ddisc-enumerable if and only if Γ is efficiently enumer-
able.

In the following theorem we show how we can obtain efficient enumeration
algorithms by combining efficient algorithms that enumerate partial solutions
for different partitions of the domain.

Theorem 6.6. Let Γ be a constraint language over a domain D, and let E1

and E2 be partitions of D such that E2 ≤ E1. If Γ is efficiently E1-enumerable
and efficiently E1 → E2-enumerable, then Γ is efficiently E2-enumerable.

Proof. Let A be an algorithm that, given a Γ-formula ϕ, enumerates SolE1(ϕ)
with polynomial delay, and let B be an algorithm that, given a Γ-formula ϕ and
an assignment I : Var(ϕ)→ E1, enumerates all partial E2-solutions compatible
to I with polynomial delay. Note that both algorithms exist because Γ is
efficiently E1-enumerable and efficiently E1 → E2-enumerable.

We modify A: let ϕ be the input of A. Every time A wants to print a
partial E1-solution I, we call instead B on ϕ and I.

Obviously the new algorithm has polynomial delay, because both algorithms
A and B have polynomial delay, and for each of the solutions I ∈ SolE1(ϕ),
there is a compatible partial E2-solution for ϕ which is put out by B.

Since all printing is done by B, it holds that every output is a partial E2-
solution. Note that for two different partial E1-solutions I, I ′ there is no partial
E2 solution compatible with both I and I ′, therefore no output is printed twice.

Finally every partial E2-solution for ϕ is printed out, because every partial
E2-solution I is compatible with the partial E1-solution J , which is defined
uniquely by J(a) ⊇ I(a) for every a ∈ D. Thus, it follows that Γ is efficiently
E2-enumerable.

For the constraint language Γex from Example 6.4 we consider the partition
E = {{0} , {1, 2}}. The “pre-solutions” we spoke of in the beginning of this
section correspond to partial E-solutions. In the next section we will see that
Γex is efficiently E-enumerable and efficiently E → {0, 1, 2}-enumerable. So,

92 Chapter 6. The Enumeration Problem

according to the previous theorem we can build an efficient enumeration algo-
rithm for Γ by nesting the efficient algorithms that exist due to the efficient E-
and E → {0, 1, 2}-enumerability of Γex.

The following corollary follows directly from Theorem 6.6.

Corollary 6.7. Let Γ be a constraint language over a domain D and let
Ek ≤ · · · ≤ E1 be partitions of D such that Γ is efficiently E1-enumerable
and efficiently Ei → Ei+1-enumerable for every i ∈ {1, . . . , k − 1}. Then Γ is
efficiently enumerable.

6.3 Criteria

In this section we develop criteria for partial enumerability. We construct
constraint languages at which we have to look if we want to know if a given
constraint language is efficiently E- or E1 → E2-enumerable.

Let D and D′ be domains, let Γ be a constraint language over D and
let f : D → D′ be a unary function. For a relation R from Γ, we define
Rf =def {(f(a1), . . . , f(an)) | (a1, . . . , an) ∈ R} and further we define Γf =def

{Rf | R ∈ Γ}.
Let E be a partition of a domain D. A function g : D → D is a representa-

tion function for E if for all a, b ∈ D it holds that a ∼E b implies g(a) = g(b),
and that g(a) ∈ fE(a). That means g maps every element from D to a unique
representative of its equivalence class with respect to ∼E.

We now are ready to present our criterion for efficient E-enumerability.
Note that for a partition E of D and a constraint language Γ over D, it holds
that ΓfE is a relation over the domain E.

Theorem 6.8. Let Γ be a finite constraint language over a domain D and let
E be a partition of D such that there exists a representation function for E
which is a polymorphism of Γ. Then the following is equivalent:

1. Γ is efficiently E-enumerable,

2. ΓfE is efficiently enumerable.

Proof. Let ϕ be a Γ-formula and let ϕ′ be the ΓfE -formula that has a clause
RfE (x1, . . . , xn) if and only if ϕ has the clause R(x1, . . . , xn). That means ϕ′

can be obtained from ϕ in polynomial time by, for every R ∈ Γ, replacing each
R-clause by an RfE -clause with the same variables, and vice versa.

We show that SolE(ϕ) = Sol(ϕ′), then the theorem follows because we can
enumerate the partial E-solutions of ϕ by enumerating the solutions of ϕ′ and
the other way round.

6.3. Criteria 93

Let I : Var(ϕ) → E be an assignmet of E to the variables of Γ. We show
that I is a partial E-solution for ϕ if and only if I is a solution for ϕ′.

First assume that I is a partial E-solution for ϕ. This means there is a
solution J : Var(ϕ)→ D for ϕ such that for every a ∈ D we have J(a) ∈ I(a).
Let RfE (x1, . . . , xn) be a clause in ϕ′. Then (J(x1), . . . , J(xn)) ∈ R, because
R(x1, . . . , xn) is a clause in ϕ. Due to the definition of RfE , it follows

(fE(J(x1)), . . . , fE(J(xn))) ∈ RfE .

Since fE maps every element of D to its equivalence class, it holds fE ◦ J = I.
Therefore we have that I is a solution of ϕ′.

Now we assume that I is a solution for ϕ. Let R(x1, . . . , xn) a clause from ϕ.
Since RfE (x1, . . . , xn) is a clause in ϕ′ it holds that (I(x1), . . . , I(xn)) ∈ RfE .
Due to the construction of RfE , it follows that there exists a tuple (a1, . . . , an) ∈
R such that

(fE(a1), . . . , fE(an)) = (I(x1), . . . , I(xn)).

Due to the prerequisites, there exists a g ∈ Pol(Γ) which is a representa-
tion function for E. We define an assignment J : Var(ϕ) → D by set-
ting for every x ∈ Var(ϕ): J(x) =def g(a) if and only if a ∈ I(x). Note
that J is well defined because g is a representation function for E. It fol-
lows that (J(x1), . . . , J(xn)) = (g(a1), . . . , g(an)). Since g ∈ Pol(Γ) we have
(J(x1), . . . , J(xn)) ∈ R, therefore J is a solution for ϕ. Due to the construction
of J it holds for every a ∈ D that J(a) ∈ I(a) is true. Hence I is a partial
E-solution for ϕ.

Thus it holds SolE(ϕ) = Sol(ϕ′), which completes the proof.

We consider the constraint language Γex from Example 6.4 again. If we
choose the partition E = {{0} , {1, 2}}, then f2→1 : {0, 1, 2} → {0, 1, 2}, de-
fined f2→1(2) =def 1 and f2→1(a) =def a for a ∈ {0, 1}, is a representation
function for E. It can easily be verified that f2→1 ∈ Pol(Γex), therefore it fol-
lows from Theorem 6.8 that Γex is efficiently E-enumerable if and only if ΓexfE

is efficiently enumerable. It holds that ΓexfE =
{
RexfE

}
and

RexfE =

{1, 2} {0} {0} {0}
{1, 2} {0} {0} {1, 2}
{1, 2} {0} {1, 2} {0}
{1, 2} {1, 2} {0} {0}

To get a Booelan relation we identify {0} with 0 and {1, 2} with 1:

RexfE =

1 0 0 0
1 0 0 1
1 0 1 0
1 1 0 0

94 Chapter 6. The Enumeration Problem

It can be seen that ∧ is a polymorphism of this relation, therefore it holds
that ΓexfE is Schaefer and can be enumerated efficiently due to Theorem 6.3.
Hence, Γex is efficiently E-enumerable.

We need the next definition to be able to state the criterion for efficient
E1 → E2-enumerability. For an n-ary relation R over a domain D and for
a set of indices I ⊆ {1, . . . , n} we define the projection of R to I to be the
relation RI =def {(ai1 , . . . , aik) | (a1, . . . , an) ∈ R}, where I = {i1, . . . , ik} and
i1 < · · · < ik.

Definition 6.9. Let D be a domain and E1 and E2 partitions of D such that
E2 ≤ E1.

1. For an n-ary relation R over D and a tuple v ∈ R we define:

RE1→E2
v =def

{
fE2(t) | t ∈ R and v = fE1(t)

}
{i∈{1,...,n}| v[i]/∈E2}

2. For a constraint language Γ over D we define:

ΓE1→E2 =def

{
RE1→E2
v | R ∈ Γ and v ∈ RfE1

}
Observe that ΓE1→E2 is a constraint language over the domain E2.

Theorem 6.10. Let Γ be a finite constraint language over a domain D, and
let E2 ≤ E1 be partitions of D, such that there exists a representation function
for E2 which is a polymorphism of Γ. Then the following is equivalent:

1. Γ is efficiently E1 → E2-enumerable,

2. ΓE1→E2 is efficiently enumerable.

Proof. Let ΓE1→E2 be efficiently enumerable. We show that Γ is efficiently
E1 → E2-enumerable. We need to show that there is an algorithm that takes
a Γ-formula ϕ and an assignment I : Var(ϕ) → E1 of E1-to the variables of
ϕ, and that enumerates all partial E2-solutions for ϕ that are compatible to
I with polynomial delay. The algorithm works as follows: first we check for
every clause R(x1, . . . , xn) in ϕ if (I(x1), . . . , I(xn)) ∈ RfE1 . If there is a clause
for which this is not the case, we halt, because it follows that no solution for
ϕ is compatible to I, and therefore no partial E2-solution of ϕ is either.

Otherwise we construct the ΓE1→E2-formula ψ that has for every clause
R(xi, . . . , xn) from ϕ the corresponding clause RE1→E2

v (xi1 , . . . , xik), where v =
(I1(x1), . . . , I1(xn)) and {i1, . . . , ik} = {i ∈ {1, . . . , n} | I1(xi) /∈ E2} such that
i1 < · · · < ik. Clearly this construction can be done in polynomial time.

6.3. Criteria 95

Now we use a polynomial delay enumeration algorithm for ΓE1→E2 to enu-
merate the solutions for ψ. Before printing a solution J : Var(ψ) → E2 for ϕ,
we extend it to Var(ϕ) by setting J(x) =def I(x) for every x ∈ Var(ϕ)\Var(ψ).

Since ΓE1→E2 is efficiently enumerable, this algorithm can be implemented
to work with polynomial delay. We show the correctness of the algorithm in
the end of the proof.

Let Γ be efficiently E1 → E2-enumerable. We show that there is an algo-
rithm that enumerates all solutions of a given ΓE1→E2-formula ψ with poly-
nomial delay. First we check if for every variable x ∈ Var(ψ) the following
holds: if x appears twice in ψ, lets say x is the i-th variable in an R-clause
and the j-th variable in an S-clause for some not necessarily distinct relations
R, S ∈ ΓE1→E2 , then the set Ri of all values in the i-th column of R and the set
Sj of all values in the j-th column of S are not disjoint. If that is not the case,
then it is obvious that ψ is not satisfiable, which means we let the algorithm
halt.

Otherwise we construct a Γ-formula ϕ and an assignment I : Var(ϕ)→ E1

in the following way: for every clause RE1→E2
v (xi1 , . . . , xik) with R ∈ Γ, v ∈

RfE1 , and {i1, . . . , ik} = {i ∈ {1, . . . , n} | v[i] /∈ E2} such that i1 < · · · < ik, we
add the clause R(x1, . . . , xn) to ψ, where every variable xi with v[i] ∈ E2 is a
new variable. Additionally we set I(xi) =def v[j]. Note that I is well defined,
because we made sure that all columns of relations that correspond to the same
variable are not disjoint. Due to the construction of RE1→E2

v , this implies that
the corresponding values in the tuple v are equal. This construction is reverse
to the one in the first part of the proof and can be performed in polynomial
time.

Now we enumerate all partial E2-solutions J for ϕ that are compatible to
I. For every enumerated J we print the restriction J |Var(ψ) to the variables
of ϕ. Since Γ is efficiently E1 → E2-enumerable, the algorithm works with
polynomial delay.

To show the correctness of both exhibited algorithms, it suffices to prove
that every partial E2-solution of ϕ which is compatible with I can be restricted
to a solution of ψ, and every solution of ψ can be extended to exactly one partial
E2-solution of ϕ compatible with I.

First let J : Var(ϕ)→ E2 be a partial E2-solution for ϕ that is compatible
with I. Then there exists a solution J ′ for ϕ such that J ′(x) ∈ J(x) ⊆ I(x) for
every x ∈ Var(ϕ). That means it holds for every clause R(x1, . . . , xn) from ϕ
and the corresponding clause RE1→E2

v (xi1 , . . . , xik) from ψ that

(J(x1), . . . , J(xn)) ∈
{
fE2(t) | t ∈ R and v = fE1(t)

}
.

Note that v = (I(x1), . . . , I(xn)). It follows that (J(xi1), . . . , J(xik)) ∈ RE1→E2
v ,

therefore J restricted to Var(ψ) is a solution for ψ.

96 Chapter 6. The Enumeration Problem

For the other direction let J : Var(ψ)→ E2 be a solution for ψ. We define
J ′ : Var(ϕ) → E2 by J ′(x) = J(x) for x ∈ Var(ψ) and J ′(x) = I(x) otherwise
(note that I(x) ∈ E2 in these cases and therefore J ′ is the only extension of
J compatible with I). Then for every clause R(x1, . . . , xn) from ϕ and the
corresponding clause RE1→E2

v (xi1 , . . . , xik) from ψ it holds that

(J ′(xi1), . . . , J
′(xik)) = (J(xi1), . . . , J(xik)) ∈ RE1→E2

v .

It follows that (J ′(x1), . . . , J ′(xn)) ∈
{
fE2(t) | t ∈R and v =fE1(t)

}
and J ′ is

compatible to I. Let t be a tuple from R such that fE2(t)=(J ′(x1), . . . , J ′(xn)).
Let g be the representation function for E2 which is an element of Pol(Γ). Then
we know that g(t) ∈ R. Therefore the assignment K : Var(ϕ) → D defined
by K(x) =def g(a) if a ∈ J ′(x) is a solution for ϕ that is compatible with J ′.
Hence J ′ is a partial E2-solution for ϕ that is compatible with I. That proves
the correctness of the two algorithms above.

We use the previous theorem to show that Γex from Example 6.4 is effi-
ciently E → D-enumerable for D = {0, 1, 2}, and E = {{0} , {1, 2}}. First we
construct the constraint language ΓE→Dex . We have seen above that

v1 = ({1, 2} , {0} , {0} , {0}),
v2 = ({1, 2} , {0} , {0} , {1, 2}),
v3 = ({1, 2} , {0} , {1, 2} , {0}), and

v4 = ({1, 2} , {1, 2} , {0} , {0})

are all tuples from RexfE . Therefore Γex
E→D consists of the following relations:

Rex
E→D
v1

= {(1, 0, 0, 0)}{1} = {(1)}
Rex

E→D
v2

= {(1, 0, 0, 1), (2, 0, 0, 2)}{1,4} = {(1, 1), (2, 2)}
Rex

E→D
v3

= {(1, 0, 1, 0), (2, 0, 2, 0)}{1,3} = {(1, 1), (2, 2)}
Rex

E→D
v4

= {(1, 1, 0, 0), (2, 2, 0, 0)}{1,2} = {(1, 1), (2, 2)}

If we identify the value 2 with 0, then Γex
E→D is invariant under ∧, therefore

Γex
E→D is Schaefer. Due to Theorem 6.3 it holds that Γex

E→D is efficiently
enumerable and then it follows from Theorem 6.10 that Γex is efficiently E → D-
enumerable.

We showed above that Γex is efficiently E-enumerable, therefore it follows
from Theorem 6.6 that Γex is efficiently enumerable. Since CSP(Γ+

ex) is NP-
complete, we obtain the following corollary.

Corollary 6.11. There exists an efficiently enumerable constraint language Γ
over the three-element domain such that CSP(Γ+) is NP-complete.

6.4. Lexicographical Orderings 97

6.4 Lexicographical Orderings

It can be seen easily that the algorithm outlined in Section 6.1 orders its output
by grouping together all solutions that map x1 to the same value.

We define a stronger notion of efficient enumerability in which we require
to print the solutions in a given order.

A variable E-lexicographical enumeration algorithm for Γ is an algorithm
which takes a Γ-formula ϕ, a linear order <Var(ϕ) on Var(ϕ), and for every x ∈
Var(ϕ) a linear order <x on E as input and enumerates all partial E-solutions
of ϕ in the following linear order: if I : Var(ϕ) → E2 and I ′ : Var(ϕ) → E2

are partial E2-solutions for ϕ, then I is printed before I ′ if and only if there
is some x ∈ Var(ϕ) such that for all y ∈ Var(ϕ) with y ≤Var(ϕ) x it holds that
I(y) = I ′(y) and I(x) <x I

′(x).
That means the algorithm prints the solutions in a lexicographical order,

where each variable x has its own sorting criterion <x. In the context of
databases it is very natural to demand the output of a query to be ordered by
different criteria for different columns. For example we would like to order the
movies of the last year descending in the number of awards and, in the case of
ties, assending in the number of tickets sold.

We say that Γ is efficiently variable lexicographical (E-lexicographical) enu-
merable if Γ has a variable Ddisc-lexicographical (E-lexicographical) enumera-
tion algorithm with polynomial delay.

The next theorem shows, that a constraint language is efficiently variable
lexicographical enumerable if and only if a modification of the algorithm out-
lined in Section 6.1 works. Note that every class of a partition E of D can be
seen as unary relation over D.

Theorem 6.12. Let Γ be a constraint language over a domain D and let E be
a partition on D. Then Γ is efficiently variable E-lexicographical enumerable
if and only if CSP(Γ ∪ E) is in P.

Proof. Let E = {D1, . . . , Dk}, and first assume that CSP(Γ∪E) is decidable in
polynomial time. Let ϕ be a Γ-formula, let <Var(ϕ) be a linear order on Var(ϕ)
and let <x be a linear order on E for every x ∈ Var(ϕ). We give an algorithm
that takes a Γ-formula ϕ, the above orders, and a {D1, . . . , Dk}-formula ψ with
Varψ ⊆ Varϕ as input and generates all partial solutions of ϕ∧ψ in the correct
order with polynomial delay. To enumerate all partial solutions of ϕ, apply the
algorithm on ϕ and the empty formula ψ.

1: procedure Generate
2: input a Γ-formula ϕ, an E-formula ψ with Var(ψ) ⊆ Var(ϕ), and linear

input orders <Var(ϕ) on Var(ϕ) and <x on E for all x ∈ Var(ϕ)

98 Chapter 6. The Enumeration Problem

3: if ϕ ∧ ψ /∈ SAT then
4: halt
5: end if
6: if Var(ϕ) = Var(ψ) then
7: Print the partial assignment uniquely defined by ψ
8: halt
9: end if

10: Let x be the <Var(ϕ)-smallest variable in Var(ϕ) \ Var(ψ)
11: Let Di1 <x Di2 <x · · · <x Dik

12: for j = 1 to j = k do
13: Generate(ϕ, ψ ∧Dij (x), <Var(ϕ), <x for all x ∈ Var(ϕ))
14: end for

This algorithm is a generalization of the algorithms in the proof of Theo-
rem 9 in [Coh04] and in Section 3 of [CH97]. It works with polynomial delay,
since the satisfiability test used in the algorithm can be performed in polyno-
mial time by our prerequisites.

Now assume that Γ has a variable E-lexicographical enumeration algorithm,
and let ϕ be a Γ ∪ E-formula. For 1 ≤ i ≤ k let

Xi =def {x ∈ Var(ϕ) | Di(x) is a clause in ϕ}

be the set of all variables that appear in a Di-clause. Further let X :=
⋃k
i=1Xi

be the set of variables that are constrained by some Di from E.

Now, define <Var(ϕ) to be a linear order on Var(ϕ) such that for all x ∈ X
and y ∈ Var(ϕ)\X, it holds that x <Var(ϕ) y. For each x ∈ Xi, define the order
<x in such a way that Di is the smallest element of E with respect to <x. Let
ϕ′ be the Γ-formula obtained from ϕ by deleting all E-clauses. Now, enumerate
the solutions of ϕ′ according to the order as defined above. By construction of
the order, the formula ϕ is satisfiable if and only if the first partial solution I
returned by the algorithm satisfies the ϕ. This gives a polynomial-time decision
procedure for CSP(Γ ∪ E).

Observe that Γ ∪Ddisc equals Γ+, therefore the previous theorem directly
leads to the following corollary, which generalizes Theorem 6.3 from Creignou
and Hébrard to non-Boolean domains.

Corollary 6.13. Let Γ be a constraint language over a domain D. Then Γ is
efficiently variable lexicographical enumerable if and only if CSP(Γ+) ∈ P.

6.5. Towards a Dichotomy for Three-Element Domains 99

6.5 Towards a Dichotomy for Three-Element

Domains

It is a long-term goal to find a characterization that separates all constraint
languages that are efficiently enumerable from those that cannot be enumerated
in an efficient way. One challenging aspect in this ambition is, that it is not
sufficient to consider only the co-clones to achieve a full classification. Since
equivalent formulas have the same set of solutions, it is obvious that the 〈.〉@, 6=-
closure provides efficient enumerability and it is not hard to show that the
〈.〉@-closure also has this property. But, in contrast to the question if a formula
has a balanced solution and the problems in the context of default reasoning
studied in Chapters 4 and 5, there are constraint languages generating the
same co-clone, such that one is efficiently enumerable and the other is not (if
P 6= NP). An example for those constraint languages over a three-element
domain can be found in [SS06a].

However, we look at a fragment of all constraint languages over the three-
element domain and identify all of its efficiently enumerable cases. For this
classification we need the following definitions and the subsequent lemma.

Let D be a domain an D′ a subset of D. A function f : Dn → D is
conservative on D′, if for all a1, . . . , an ∈ D′ it holds f(a1, . . . , an) ∈ D′.

For a domain D and a, b ∈ D, we define fa→b : D → D to be the function
that fulfills f(a) = b and f(x) = x for all x ∈ D \ {a}.

Lemma 6.14. Let Γ be a relation over the domain D = {a, b, c}, and let
E = {{a, b} , {c}} be a partition of D, such that all polymorphisms of Γ are
conservative on the classes in E. Then

{a, b} × Cb × Cc ∈ 〈Γ〉@,6= or {a, b} × Cc ∈ 〈Γ〉@,6= .

Proof. To implement the relations we define the following Γ-formula which uses
variables from {xa, xb, xc}:

ϕ =def

∧
R∈Γ

∧
t∈R

R(xt[1], . . . , xt[nR]),

where for every R ∈ Γ we denote by nR the arity of R.
Before we prove the lemma we show that f : D → D is a polymorphism

of Γ if and only If : Var(ϕ) → D defined by If (xα) = f(α) for each α ∈ D is
a solution for ϕ. Let f be a polymorphism of R. By construction of ϕ, it is
obvious that Iid, is a solution of ϕ. Since f ∈ Pol(Γ), we know that f(Iid) is a
solution of ϕ as well. Now for α ∈ D, it holds that f(Iid)(xα) = f(Iid(xα)) =
f(α), i.e., f(Iid) = If satisfies ϕ.

100 Chapter 6. The Enumeration Problem

For the converse, assume that If is a solution of ϕ. Let R ∈ Γ and let
t ∈ R. We show that f(t) ∈ R. Since If satisfies ϕ, we know that If satisfies
the clause R(xt[1], . . . , xt[nR]), i.e., (If (xt[1]), . . . , If (xt[nR])) ∈ R. Obviously, it
holds (If (xt[1]), . . . , If (xt[nR])) = f(t), therefore f is a polymorphism of Γ.

To prove the lemma we distinguish two cases:

Case 1: fb→a /∈ Pol(Γ). We prove that {a, b} × Cb × Cc ∈ 〈Γ〉@,6= by showing
that I : {xa, xb, xc} → {a, b, c} is a solution of ϕ if and only if I(xa) ∈
{a, b}, I(xb) = b, and I(xc) = c. First, let I be a solution for ϕ. Because
all polymorphisms of Γ are conservative on {a, b} and on {c} we know,
according to the above, that that I(xc) = c, and I(xa), I(xb) ∈ {a, b}.
Assume that I(xb) 6= b, i.e., I(xb) = a. If I(xa) = a, then, due to the
above, it holds that fb→a is a polymorphism of Γ, which is a contradiction
to our assumption. For the other case, if I(xa) = b, then we know
that f ′ is a polymorphism of Γ, where f ′ is defined by f ′(a) =def b,
f ′(b) =def a, and f ′(c) =def c. Since fa→b ∈ Pol(Γ), we conclude that
f ′ ◦ fa→b = fb→a ∈ Pol(Γ), which again is a contradiction.

Now, let I(xa) ∈ {a, b}, I(xb) = b, and I(xc) = c. It is obvious that
I(xa) = a implies that I is a solution for ϕ: this follows from the above,
because id is always a polymorphism. Therefore, assume that I(xa) = b.
Then I corresponds to the function fa→b, which is a polymorphism of Γ.
Due to the above it follows that I is a solution for ϕ.

Case 2: fb→a ∈ Pol(R). We consider the formula ψ which is obtained from
ϕ by identifying the variables xa and xb. Then Var(ψ) = {x, xc}, where
x = xa = xb. We show that {a, b} × Cc ∈ 〈Γ〉@,6= by proving that I :
{x, xc} → {a, b, c} is a solution for ψ if and only if I(x) ∈ {a, b} and
I(xc) = c.

First, let I be a solution for ψ. Due to the construction of ψ, it follows
from the above, that f defined by f(a) =def f(b) =def I(x), f(c) =def c is
a polymorphism of Γ. Since all polymorphisms are conservative on {a, b}
and on {c}, it follows that I(x) ∈ {a, b}, and I(xc) = c.

Now, assume I(x) ∈ {a, b} and I(xc) = c. Since fa→b ∈ Pol(R), it follows
from the above, that I1 defined by I1(xc) =def c, I1(xb) =def I1(x) =def b
is a solution for ϕ. Therefore, I1 restricted to {x, xc} is a solution for ψ.
The second possible assignment fulfilling the requirements is I2, defined
by I2(x) =def a, I2(xc) =def c. We extend I2 to an assignment for ϕ by
setting I2(xa) =def I2(xb) =def a. This is a solution of ϕ, because fb→a is
a polymorphism of Γ. Hence, {a, b} × Cc ∈ 〈Γ〉@, 6=.

The following proposition follows directly from [BKJ00].

6.5. Towards a Dichotomy for Three-Element Domains 101

Proposition 6.15 ([BKJ00]). Let Γ be a constraint language over a domain
D. If every unary polymorphism of Γ is a permutation on D, then CSP(Γ) ∈ P
if and only if CSP(Γ+) ∈ P.

We can identify all efficiently enumerable constraint language over a three-
element domain D, whose polymorphisms are conservative on the classes of
some non-trivial partition of D. The classification is a corollary of the results
in this chapter.

Corollary 6.16. Let Γ be a relation over the domain {a, b, c}, and let E =
{{a, b} , {c}} be a partition of D, such that all polymorphisms of Γ are conser-
vative on the classes in E. Then the following holds:

• If fa→b /∈ Pol(Γ) and fb→a /∈ Pol(Γ), then Γ is efficiently enumerable if
and only if CSP(Γ) ∈ P.

• Otherwise, Γ is efficiently enumerable if and only if ΓE→D is Schaefer,
and ΓfE is Schaefer (or P = NP).

Proof. First, assume that fa→b and fb→a are not polymorphisms of Γ. Let
f : D → D be a polymorphism of Γ. Since f is conservative on {a, b} and on
{c}, it holds that f(c) = c and f(a), f(b) ∈ {a, b}. It follows that f(a) 6= f(b),
otherwise f would be equal to either fa→b or fb→a. Therefore f is a permutation
on D and due to Proposition 6.15 we know, that CSP(Γ) ∈ P if and only if
CSP(Γ+) ∈ P. Then it follows with Theorem 6.2 that CSP(Γ) ∈ P implies
that Γ is efficiently enumerable. Conversely, if Γ is efficiently enumerable, then
CSP(Γ) is obviously in P.

Now, assume that, without loss of generality, fa→b ∈ Pol(R). Note that fa→b
is a representation function for E. If ΓE→D is Schaefer, and ΓfE is Schaefer,
then both, ΓE→D and ΓfE are efficiently enumerable according to Theorem 6.3.
It follows from Theorem 6.10 that Γ is efficiently E → D-enumerable, and
from Theorem 6.8 that Γ is efficiently E-enumerable. Then Γ is efficiently
enumerable due to Theorem 6.6.

If on the other hand Γ is efficiently enumerable, then CSP(Γ) ∈ P. Since
every polymorphism of Γ is conservative on the classes of E, and since the
constraint language E is invariant exactly under the the functions that are
conservative on the classes of E, it follows from Proposition 2.8 that 〈Γ ∪ E〉 =
〈Γ〉. Therefore it holds that CSP(Γ∪E) ∈ P and, according to Theorem 6.12,
Γ is efficiently E-enumerable. Since fa→b is a representation function for E
we know from Theorem 6.8 that ΓfE is efficiently enumerable. Then, unless
P = NP, it holds due to Theorem 6.3 that ΓfE is Schaefer.

We now show that ΓE→D is Schaefer. It is sufficient to show that Γ is
efficiently E → D-enumerable, then the result follows from Theorem 6.10 and

102 Chapter 6. The Enumeration Problem

Theorem 6.3. Let ϕ be a Γ-formula and I : Var(ϕ) → E an assignment of
E to Var(ϕ). We enumerate all solutions for ϕ that are compatible I in the
following way: if I maps every variable to c, then we test if I is a solution
for ϕ and print I if this is the case; then we halt, because I cannot be refined
further. Otherwise we use Lemma 6.14. If

S =def {a, b} × Cb × Cc ∈ 〈Γ〉@, 6= ,

there is according to Corollary 2.10 a Γ-formula ψS such that ψS(x, y, z) ≡
S(x, y, z). We enumerate all solutions of the following Γ-formula:

ϕ′ =def ϕ ∧
∧

I(x)=c

ψS(xab, xb, x) ∧
∧

I(x)={a,b}

ψS(x, xb, xc),

where xb and xc are new variables and xab ∈ Var(ϕ), such that I(xab) = {a, b}.
Since J(xb) = b and J(xc) = c for all solutions J of ϕ′, there is a one-to-one
correspondence between solutions of ϕ compatible with I and solutions of ϕ′.
For every enumerated solution J of ϕ′ we print J |Var(ϕ). If {a, b}×Cc ∈ 〈Γ〉@,6=
we can construct a similar Γ-formula and proceed in the same way. Since Γ is
efficiently enumerable this algorithm works with polynomial delay. Hence, Γ is
efficiently E → D-enumerable.

We presented new enumeration algorithms and gave criteria to detect con-
straint languages for which they can applied efficiently. Our example shows
that these algorithms cover more cases than previously known from [Coh04].
In [SS06a] we give another algorithm that enumerates the efficiently only for
very special constraint languages. The concept of partial enumerability allows
to combine this and other efficient algorithms to new ones.

We achieved a dichotomy for constraint languages over the three-element
domain that are conservative in a certain sense. The next step toward a full
classification for the three-element domain, is to develop methods for achieving
negative complexity results. Another topic for future research is to formulate
the criteria given in Section 6.3 in terms of partial polymorphisms and strong
partial clones.

Bibliography

[BHRV02] E. Böhler, E. Hemaspaandra, S. Reith, and H. Vollmer. Equivalence
and isomorphism for Boolean constraint satisfaction. In Computer
Science Logic, volume 2471 of Lecture Notes in Computer Science,
pages 412–426, Berlin Heidelberg, 2002. Springer Verlag.

[BHRV04] E. Böhler, E. Hemaspaandra, S. Reith, and H. Vollmer. The com-
plexity of Boolean constraint isomorphism. In 21st Symposium on
Theoretical Aspects of Computer Science, Lecture Notes in Com-
puter Science, Berlin Heidelberg, 2004. Springer Verlag.

[BK05] C. Bazgan and M. Karpinski. On the complexity of global con-
straint satisfaction. In 16th International Symposium on Algo-
rithms and Computation, Lecture Notes in Computer Science,
pages 624–633. Springer Verlag, 2005.

[BKJ00] A. A. Bulatov, A. A. Krokhin, and P. G. Jeavons. Constraint
satisfaction problems and finite algebras. In 27th International
Colloquium on Automata, Languages and Programming, pages 272–
282, 2000.

[BKKR69] V. G. Bodnarchuk, L. A. Kalužnin, V. N. Kotov, and B. A. Romov.
Galois theory for Post algebras. i, ii. Cybernetics, 5:243–252, 531–
539, 1969.

[BRSV05] E. Böhler, S. Reith, H. Schnoor, and H. Vollmer. Bases for Boolean
co-clones. Information Processing Letters, 96:59–66, 2005.

[Bul06] A. A. Bulatov. A dichotomy theorem for constraint satisfaction
problems on a 3-element set. Journal of the ACM, 53(1):66–120,
2006.

[CH96] N. Creignou and M. Hermann. Complexity of generalized satisfia-
bility counting problems. Information and Computation, 125:1–12,
1996.

103

104 Bibliography

[CH97] N. Creignou and J.-J. Hébrard. On generating all solutions of gen-
eralized satisfiability problems. Informatique Théorique et Appli-
cations/Theoretical Informatics and Applications, 31(6):499–511,
1997.

[CHS07] P. Chapdelaine, M. Hermann, and I. Schnoor. Complexity of de-
fault logic on generalized conjunctive queries. In 9th International
Conference on Logic Programming and Nonmonotonic Reasoning,
pages 58–70, 2007.

[CKZ05] N. Creignou, P. G. Kolaitis, and B. Zanuttini. Preferred representa-
tions of boolean relations. Electronic Colloquium on Computational
Complexity (ECCC), (119), 2005.

[Coh04] D. Cohen. Tractable decision for a constraint language implies
tractable search. Constraints, 9(3):219–229, 2004.

[Coo71] S. A. Cook. The complexity of theorem proving procedures. In
Proceedings 3rd Symposium on Theory of Computing, pages 151–
158. ACM Press, 1971.

[CZ06] N. Creignou and B. Zanuttini. A complete classification of the com-
plexity of propositional abduction. SIAM Journal on Computing,
36(1):207–229, 2006.

[FV98] T. Feder and M. Y. Vardi. The computational structure of mono-
tone monadis SNP and constraint satisfaction: a study through
Datalog and group theory. SIAM Journal on Computing, 28(1):57–
104, 1998.

[Gei68] D. Geiger. Closed systems of functions and predicates. Pacific
Journal of Mathematics, 27(2):228–250, 1968.

[GJ79] M. R. Garey and D.S. Johnson. Computers and intrctability. A
guide to the theory of NP-completeness. W. H. Freeman and Com-
pany, 1979.

[Got92] G. Gottlob. Complexity results for nonmonotonic logics. Journal
of Logic and Computation, 2(3):397–425, 1992.

[Hem04] E. Hemaspaandra. Dichotomy theorems for alternation-bounded
quantified boolean formulas. CoRR, cs.CC/0406006, 2004.

[JCG97] P. G. Jeavons, D. A. Cohen, and M. Gyssens. Closure properties
of constraints. Journal of the ACM, 44(4):527–548, 1997.

Bibliography 105

[Jea98] P. G. Jeavons. On the algebraic structure of combinatorial prob-
lems. Theoretical Computer Science, 200:185–204, 1998.

[JPY88] D. Johnson, C. Papadimitriou, and M. Yannakakis. On generat-
ing all maximal independent sets. Information Processing Letters,
27(3):119–123, 1988.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In Com-
plexity of Computer Computations, pages 85–103, 1972.

[KS91] H. A. Kautz and B. Selman. Hard problems for simple default
logics. Artificial Intelligence, 49(1-3):243–279, 1991.

[Lad75] R. Ladner. On the structure of polynomial-time reducibility. Jour-
nal of the ACM, 22:155–171, 1975.

[MS72] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for
regular expressions with squaring requires exponential time. In
13th Symposium on Switching and Automata Theory, pages 125–
129. IEEE Computer Society Press, 1972.

[NJ04] G. Nordh and P. Jonsson. An algebraic approach to the complexity
of propositional circumscription. In 19th Symposium on Logic in
Computer Science (LICS), pages 367–376, 2004.

[Nor05] G. Nordh. A trichotomy in the complexity of propositional circum-
scription. In 11th International Conference on Logic for Program-
ming, volume 3452 of Lecture Notes in Computer Science, pages
257–269. Springer Verlag, 2005.

[NZ05] G. Nordh and B. Zanuttini. Propositional abduction is almost al-
ways hard. In 19th International Joint Conference on Artificial
Intelligence (IJCAI’05), pages 534–539, 2005.

[Pap94] C. M. Papadimitriou. Computational complexity. Addison-Wesley,
Reading, Massachusetts, 1994.

[Pos41] E. Post. The two-valued iterative systems of mathematical logic.
Annals of Mathematical Studies, 5:1–122, 1941.

[Rei80] R. Reiter. A logic for default reasoning. Artificial Intelligence,
13(1-2):81–132, 1980.

[Rom81] B. A. Romov. The algebras of partial functions and their invariants.
Cybernetics and Systems Analysis, 17(2):157–167, 1981.

106 Bibliography

[Sch78] T. J. Schaefer. The complexity of satisfiability problems. In 10th
Symposium on Theory of Computing, pages 216–226. ACM Press,
1978.

[SS06a] H. Schnoor and I. Schnoor. Enumerating all solutions for constraint
satisfaction problems. Technical report, Theoretical Computer Sci-
ence, University of Hannover, 2006.

[SS06b] H. Schnoor and I. Schnoor. New algebraic tools for constraint sat-
isfaction. In N. Creignou, P. Kolaitis, and H. Vollmer, editors,
Complexity of Constraints, Dagstuhl Seminar Proceedings, 2006.

[SS07a] H. Schnoor and I. Schnoor. Enumerating all solutions for constraint
satisfaction problems. In 24th International Symposium on Theo-
retical Aspects of Computer Science, pages 694–705, 2007.

[SS07b] H. Schnoor and I. Schnoor. Partial polymorphisms and constraint
satisfaction problems. In N. Creignou, P. Kolaitis, and H. Vollmer,
editors, Complexity of Constraints, LNCS series, 2007. To appear.

[Sti90] J. Stillman. It’s not my default: The complexity of membership
problems in restricted propositional default logics. In 8th National
Conference on Artificial Intelligence (AAAI), pages 571–578, 1990.

[Sto77] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Com-
puter Science, 3:1–22, 1977.

[Tur36] A. M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical
Society, 2(42):230–265, 1936.

[Val79a] L. G. Valiant. The complexity of computing the permanent. The-
oretical Computer Science, 8:189–201, 1979.

[Val79b] L. G. Valiant. The complexity of enumeration and reliability prob-
lems. SIAM Journal of Computing, 8(3):411–421, 1979.

