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Zusammenfassung

Constraint Satisfaction Probleme sind von grofler Bedeutung in der Kom-
plexitatstheorie. Sie verallgemeinern eine Vielzahl von Erfiillbarkeits- und kom-
binatorischen Problemen und liefern kanonische Reprasentanten fiir viele Kom-
plexitétsklassen. Schaefer klassifizierte in [Sch78] die Komplexitédt Boolscher
Constraint Satisfaction Probleme und zeigte ein dichotomes Komplexitats-
verhalten dieser Probleme, welches auch fiir Constraint Satisfaction Probleme
tiber beliebigen endlichen Grundbereichen vermutet wird [FV98|. Algebrais-
che Werkzeuge, die eine Galois-Verbindung zwischen in Constraint-Instanzen
auftretenden Klauseln und Mengen von Funktionen ausnutzen, liefern eine
Methode um Komplexitatsklassifikationen fiir Constraint-Probleme zu finden
und zu beweisen. Es gibt jedoch viele zu Constraint Satisfaction verwandte
Probleme, fiir die diese Methode nicht benutzt werden kann.

In dieser Arbeit entwickeln wir eine Methode die es ermoglicht eine verfein-
erte Galois-Verbindung zu benutzen um Komplexitéatsklassifikationen fiir solche
Probleme zu erhalten. Anschliefend fiihren wir diese Methode vor, indem wir
die Komplexitat zweier aus verschiedenen Bereichen stammender Constraint-
Probleme klassifizieren. Zuerst betrachten wir das balancierte Erfillbarkeits-
Problem, bei dem nach Losungen gefragt wird, die, zusatzlich zu den in der
Constraint-Instanz gegebenen lokalen Bedingungen, eine globale Ausgewogen-
heits-Bedingung erfiillen. Dann beschaftigen wir uns mit einer nicht-mono-
tonen Logik und untersuchen Fragestellungen fiir auf Constraint-Formeln be-
schrankte Default Logik. In beiden Fallen erzielen wir durch den Einsatz un-
serer neuen Methode vollstandige Komplexitatsklassifikationen.

Abschlielend untersuchen wir das Problem alle Losungen einer gegebenen
Constraint-Instanz aufzuzahlen. Fiir Boolesche Instanzen wurde die Kom-
plexitat dieses Problems vollstandig von Creignou und Hébrard klassifiziert
[CH97]. Wir betrachten Instanzen iiber beliebigen endlichen Grundbereichen
und prasentieren eine Familie von neuen effizienten Aufzahl-Algorithmen. Wir
unternehmen auflerdem erste Schritte auf dem Weg zu einer vollstandigen Klas-
sifikation fiir das Aufzahl-Problem iiber dem 3-wertigen Grundbereich.



Abstract

Constraint satisfaction problems are an important class of problems in com-
plexity theory. They generalize many combinatorial problems as well as satisfi-
ability problems and provide canonical complete problems for many complexity
classes. The computational complexity of all Boolean constraint satisfaction
problems was classified by Schaefer [Sch78] and reveals a dichotomic behav-
ior that is conjectured to also hold for arbitrary domains [FV98]. Algebraic
tools involving a Galois correspondence between clauses appearing in the con-
straint instances and sets of functions give a method to obtain complexity
classifications in the constraint context. However, for many problems related
to constraint satisfaction these tools cannot be applied.

In this thesis we develop a method that allows to use a refined Galois corre-
spondence to obtain complexity classifications for those problems. Afterwards
we demonstrate our new method by classifying two constraint problems from
different contexts: first we consider the balanced satisfiability problem, where
we require the solutions to satisfy a global condition additionally to the local
constraints given in the constraint instance. Then we turn to nonmonotonic
logics and study the complexity of reasoning in default logic restricted to con-
straint formulas. In both cases we achieve full classifications using our new
method as an essential tool.

Finally we study the problem of enumerating all solutions of a given con-
straint instance. For the Boolean case a full classification has been achieved
by Creignou and Hébrard [CH97]. We look at instances over arbitrary finite
domains and present a template for new efficient enumeration algorithms. We
achieve a first step towards a classification of the enumeration problem over
the three-element domain.
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Chapter 1

Introduction

In complexity theory we deal with the question what amount of resources com-
putational tasks need to be completed by a computer. The resources we are
interested in are time, i.e., the number of computation steps, and space, i.e., the
required memory to perform the task. To argue on a formal basis in this field
and independent from engineering details and programming languages, math-
ematical models of computers and algorithms are used. The most employed
model is the Turing Machine introduced by Alan M. Turing in 1936 [Tur36].
Turing Machines allow a formal definition of efficient algorithms which need
polynomial time in the length of the input to finish their computation. The
class of all computational questions that can be answered by efficient algo-
rithms is the class P.

In complexity theory, both positive and negative complexity results are of
interest. We take a look at the satisfiability problem, which is the following
question: we are given a propositional formula and have to find out whether
this formula is satisfiable. Up to now no efficient algorithm for this task is
known, nor is there a proof that such an algorithm does not exist.

But if we are additionally given an assignment for the formula, then we
can easily verify whether it satisfies the formula or not. That means, even if
we maybe cannot efficiently determine if the formula has a solution, we can
efficiently verify the correctness of a given solution. This behavior is charac-
teristic for the problems in the well-known class NP. As mentioned before,
the satisfiability problem is not proven to be not in P, and so is no problem
from NP. The question whether there indeed is an NP-problem that is not in
P, or whether P equals NP, is the famous P-NP-problem and one of the most
important open questions in complexity theory.

The hardest problems in NP are called NP-complete. They have the prop-
erty, that an efficient algorithm solving such a problem directly yields efficient
algorithms for all other NP-problems and thus implies that P equals NP. The
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theory of NP-completeness was initiated by Stephen A. Cook in 1971, when he
showed that the satisfiability problem, as first problem at all, is NP-complete
[CooT1]. From then on many other problems have been proven to be NP-
complete. A large collection of NP-complete problems was compiled by Michael
R. Garey and David S. Johnson in [GJT79].

As the satisfiability problem naturally represents NP, many complexity
classes are represented by problems related to formulas. The study of these
formula problems helps to provide a better understanding of the structure of
and relationships between complexity classes.

An important topic in this line is the study of constraint satisfaction prob-
lems. These are satisfiability problems for formulas that are of the form

Cy A= NChy,

where C,...,C, are clauses built from templates out of a fixed set I'. The
templates formalize constraints that are applied to variables in the clauses, so a
satisfying assignment must take all those constraints of the variables formulated
in the clauses into account.

Thomas J. Schaefer studied the complexity of the Boolean satisfiability
problem and found out in 1978 that for every fixed and finite set of templates
', the problem is in P or NP-complete [Sch78]. This dichotomic behavior is
surprising, because, due to a classic result from Richard E. Ladner, there are
infinitely many degrees of complexity petween P and NP, provided that P
differs from NP [Lad75]. Thomés Feder and Moshe Y. Vardi conjectured in
[FV98], that this dichotomy also holds for non-Boolean constraint satisfaction
problems, where a finite set of values can be assigned to the variables. This
conjecture is still an open question and an active field of research. However,
Andrei A. Bulatov succeeded in 2002 to prove that the dichotomy holds in the
case of three-valued satisfaction problems [Bul06].

Besides satisfiability, many other problems have been studied, especially in
the context of Boolean constraint problems. Nadia Creignou and Miki Her-
mann achieved a dichotomy for the problem of counting [CH96] and Nadia
Creignou and Jean-J. Hébrard for the problem of enumerating [CH97] all so-
lutions of a given Boolean constraint formula and there are classifications for
the equivalence and the isomorphism problem by Elmar Bohler, Edith Hemas-
paandra, Steffen Reith and Heribert Vollmer [BHRV02, BHRV04].

Constraint formulas also have been used to examine restrictions of non-
monotonic logics, which are widely used in artificial intelligence. In contrast
to classical propositional logic, in nonmonotonic logics the set of consequences
drawn from a set of formulas can shrink when adding more formulas. Some
nonmonotonic logics investigated in the constraint context are circumscription,



studied by Gustav Nordh and Peter Johnsson [NJ04, Nor05], and abduction,
studied by Nadia Creignou, Gustav Nordh, and Bruno Zanuttini [NZ05, CZ06].

One of the most effective techniques used to obtain complexity classifica-
tions for constraint problems are algebraic tools that group the infinitely many
problems that arise from infinitely many template-sets I" into a (still infinite
but) well structured hierarchy. These tools were known in mathematics since
the 1960’s, and they were first applied in a complexity setting by Peter G. Jeav-
ons, David A. Cohen, and Marc Gyssens in [JCG97, Jea98|. This technique
allows an easy proof for Schaefer’s dichotomy and was essential for Bulatov’s
dichotomy. However, it could not be used for all results mentioned, for exam-
ple the complexity classifications for the enumerating problem by Creignou and
Hébrard and for the equivalence problem by Bohler et al. needed alternative
arguments. The reason is, that the classes in the hierarchy mentioned above
are well suited for the satisfiability problem but do not canonically fit to the
equivalence and the enumeration problem.

This is the starting point for the research in this thesis: we present an
algebraic tool that allows to use a refined hierarchy suitable to most of all
problems dealing with constraint formulas: we introduce weak bases giving a
method which does not require to consider the refined classes in the hierarchy
explicitly. Using this method it is often sufficient to investigate the well-known
classes arising from the classical tools.

After presenting our method in Chapter 3, we show in the next two chapters
how to use it. In Chapter 4 we study the complexity of the balanced constraint
satisfiability problem, which is the question whether a given constraint formula
has a satisfying assignment that is equally equipped with 0 and 1. This problem
is related to the question whether a given formula has a satisfying assignment
where the number of 1s is exactly a given number k. This question is of
practical importance if every variable set to 1 is connected with a certain cost.
We additionally consider the counting variants of both questions, and achieve
a full complexity classification with respect to the fixed template-set I', for all
of these problems. The key idea in proving the classification is the application
of the weak base method developed in Chapter 3.

In Chapter 5 we apply our new method to computational questions arising
in Default logic, a nonmonotonic logic introduced by Raymond Reiter. By
making use of weak bases we accomplish complexity classifications that seemed
not to be possible before.

Finally in Chapter 6 we consider the task to enumerate all solutions of
a given constraint formula. Creignou and Hébrard gave a simple criterion
determining exactly when there is an efficient enumeration algorithm in the
Boolean case [CHI97]. We show that this criterion cannot be generalized to non-
Boolean enumeration problems. We present a broad class of new enumerating
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algorithms and achieve a first step towards a full classification in the three-
valued case.

Publications

The results in Chapter 3 will be published in [SS07b], an early version appeared
as [SS06b]. Chapter 4 is based on unpublished joint work with Nadia Creignou
and Henning Schnoor. The results in Chapter 5 are a continuation of the
resarch in [CHSO7], where we achieved a classification for what we there called
“conjunctive queries.” In this thesis we use the weak base method to obtain
a classification for actual constraint formulas. Finally the results in Chapter 6
appeared in [SS07a].



Chapter 2

Preliminaries

2.1 Computational Complexity

We start with a few notations: N denotes the set of all natural numbers
{0,1,2,...}. For a set D we define D' = D and D' = D' x D, i > 1.
If t € D* is some tuple, then t[i] denotes the i-th component of t. If A is a
subset of D we write A C D and if the subset is strict we write A C D.

We now introduce basic concepts from computational complexity. Let ¥ be
a finite alphabet and A a language over X, i.e., A C ¥* = (J, .y X" Then Ais a
decision problem connected with the following question: Given a word w € ¥*,
does w belong to A? We denote the complement of A by A =, 3*\ A.

As model of computation we use the Turing Machine (see [Pap94]). We
will not introduce Turing Machines formally, since for the complexity classes
we work with, we do not need a detailed view on their mode of computation.

We define complexity classes for decision problems: the class P is the set of
all decision problems that can be decided by a deterministic Turing Machine
in time bounded by a polynomial in the size of the input, NP is the set of all
decision problems that can be decided by a non-deterministic Turing Machine
in time bounded by a polynomial in the size of the input, and PSPACE is the
class of all decision problems that can be decided by a deterministic Turing
Machine in space bounded by a polynomial in the size of the input.

For a complexity class C we define the class coC to be the set {A | A € C}.
If C is defined by deterministic Turing Machines bounded in time or space,
then coC = C, in particular it holds that coP = P and coPSPACE = PSPACE.
However, it is unknown whether NP equals coNP.

Directly from the above definitions it follows that P € NP and P C
PSPACE. The equation NP C PSPACE can easily be seen as well.

Between P and PSPACE there lies the polynomial hierarchy, introduced by

5
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Meyer and Stockmeyer [MS72, Sto77]. Its classes are defined via Turing ma-
chines with access to oracles. An oracle for a problem A can answer questions
of the form “is w from A?” in constant time. For a class of problems C the
classes P¢ and NP¢ consist of all decision problems solvable by a deterministic
(and non-deterministic respectively) Turing machine with access to an oracle
from C in polynomial time. Intuitively a problem from P° can be decided in
polynomial time, if we have full knowledge about the problems in C.
The polynomial hierarchy contains the following classes:

5o =def Dy =aef P
and for every i € N

P P
Ay =aer P,
P
EzP—H —def NP )
Il =def COZZP,

7

PH =4 | J =V

1€N

It is easy to see that ¥ = NP and II} = coNP. Furthermore the following
inclusions hold for every ¢ € N:

A7 C X C AL, ST, © A, © PHC PSPACE.

This gives an inclusion structure as it is illustrated in Figure 2.1. For none of
these inclusions it is known, whether it is strict, a special case is the famous
question whether P equals NP. However, all inclusions are believed to be strict
and the equality of A} and X} for some k € N would imply A} =X =11} =
AP = PH for all i > k.

The problems we study in this thesis are located in the first two levels of
the polynomial hierarchy: the classes arising in our classifications are P, NP,
coNP, IIY, and X¥.

To compare the complexity of problems, many different notions of reduc-
tions have been introduced. For our purposes the following is suitable.

Let A C ¥* and B C IT* be decision problems, then A is many-one reducible
to B in logarithmic space (A <! B) if there is a function f : ¥* — II* that
satisfies the following conditions:

1. for every x € ¥* holds: z € A if and only if f(x) € B, and

2. f can be computed by a deterministic Turing machine in space bounded
by ¢ log n+d, where n is the length of the input and d, ¢ € N are constants.
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Intuitively A Sln‘;g B means “A is not harder than B”, because to decide
whether x € A we can use a decision algorithm for B and ask whether f(x) € B.

Let C be some complexity class. A decision problem A is called hard for
C (or C-hard) under <!99  if for every B € C it holds B <! A i.., if no
problem from C is harder than A. If additionally it holds that A € C, then A is
complete for C (or C-complete) under <. Since we only use <!°¢-reductions
for decision problems, we just say A is hard for C (or C-hard) or A is complete
for C (or C-complete).

It can be shown that g;gg is transitive, i.e., A < B and B < D implies
A < D (see [Pap94]). Therefore if a problem A is hard for a class C, then B is
hard for C if and only if A <l°¢ B.

The class PSPACE and all classes from the polynomial hierarchy are closed
under <!°¢-reductions, i.e., if C is one of those classes and A and B are problems
such that B € C, then A <°¢ B implies A € C.

We define the well known satisfiability problem, which is the most famous
representative of all NP-complete problems:

Problem: SAT
Input: a propositional formula ¢
Question: does ¢ have a satisfying assignment?

In fact SAT was the first problem which was proven to be NP-complete in
a seminal paper by Cook [Coo71].

Besides deciding whether a given instance satisfies some property there is
a more general computational tasks: the problem of computing a function
f X" — II* for some alphabets ¥ and II. These problems are called function
problems. In Chapter 4 we study counting problems, which are a special case of

function problems. A typical counting problem is the following generalization
of SAT.

Problem: #SAT
Input: a propositional formula ¢
Question: how many satisfying assignments does ¢ have?

In general a counting problem is the task to compute a function f : ¥>* — N
for some alphabet X.

We define the complexity classes that are important in our study of count-
ing problems. The complexity class FP is the class of all functions that can
be computed by a deterministic Turing Machine in time bounded by a poly-
nomial in the size of the input. The complexity class #P is the class of all
counting functions f, such that there exists a non-deterministic Turing Ma-
chine, which stops in time bounded by a polynomial in the input size, and
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which has on input w exactly f(w) accepting computation paths. FP is the
canonical generalization of the decision class P, and #P was introduced by
Valiant [Val79b, Val79al. It holds that every counting problem from FP also
is in #P.

To relate the the complexity of counting problems we use many-one count-
ing reductions:

Definition 2.1. Let f : ¥* — N and ¢ : [I* — N be counting problems for
some alphabets ¥ and II. Then f is many-one counting reducible (or simply
counting reducible) to g in logarithmic space, if there exist functions o : ¥* —
IT* and S : N — N, such that:

1. for every x € ¥* holds: f(z) = B(g(a(x))), and

2. o and ( can be computed by deterministic Turing machines in space
bounded by ¢ logn + d, where n is the length of the input and d,c € N
are constants.

If 3 is the identity function, then f is parsimonious reducible to g in logarithmic
space.

To denote that f reduces parsimonious to g in logarithmic space the no-
tation f <,® g has been established. In this thesis we use additionally the
notation f <!°¢ g to indicate that f is counting reducible to g in logarithmic
space.

We say a counting problem g is #P-hard under counting (parsimonious)
reductions, if for every counting problem f from #P holds f <% g (f <\ g).
The problem g is #P-complete under counting (parsimonious) reductions if it is
from #P and additionally #P-hard under counting (parsimonious) reductions.
If we only speak of #P-hardness and #P-completeness we mean #P-hardness
and #P-completeness under counting reductions.

Again both reducibilities, <& and §}°g, are transitive, therefore to show
that some problem g is #P-hard under counting (parsimonious) reductions it is
sufficient to show that there is some problem f that is #P-hard under counting
(parsimonious) reductions, such that f <! g (f <\ g).

2.2 Relations and Constraints

In this section we will introduce constraint formulas which are the main subject
of this thesis.

An n-ary relation R over a set D is a subset of D", in this case D is called
the domain of R. In this thesis, if we speak of domains, we mean finite sets.
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The Boolean domain is the set {0,1}. A constraint language over D is a set of
non-empty relations over D.

We use different notions for relations. Sometimes we prefer to represent a
relation R C D" as matrix by writing its tuples as row vectors in lexicographical
order, or if D is the Boolean domain, we represent R as a propositional formula
o(xq,...,z,) with

R=A{(I(x1),...,I(x,)) | I is a satisfying truth assignment for ¢)}.

Example 2.2. 1. Let R = {(0,1,2),(1,2,0),(1,1,0)} be a relation over the
domain {0, 1,2}. When representing R as matrix we write:

R:

(-

1
1
2

S O N

2. By x1 V =25 we represent the relation {(0,0), (1,0), (1,1)}.

For a domain D and a € D we define the following relations over D:

Ca =aer {(a)}
EqD =def {(d, d) | d e D}

For the Boolean domain we define:

Eq = EQ{0,1}
Imp =4 {0,132\ {(1,0)}

OrF =4 {0,1Y*\ {(0,...,0)}
1-in-3 =4 {(0,0,1),(0,1,0),(1,0,0)}

Nae =4, {0,1}*\ {(0,0,0), (1,1,1)}
Dup =4 {0,1}*\ {(0,1,0),(1,0,1)}
Even® = {(al, car) €{0,1Y Jay+ -4 ay s even}

0dd* =4y { (@1, .- a0) € {0,1}" [ @1 + -+ + o is odd |

Let D be a domain and let X be a set of variables. For an n-ary rela-
tion R over D and some variables x1,...,n, € X an R-clause is of the form
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R(z1,...,x,). We also call R-clauses constraints, or if R is from some con-
straint language I' over D, we call them I'-clauses. An assignment of D to
X is a function [ : X — D. We say [ satisfies the R-clause R(x1,...,x,) if
(I(x1),...,I(z,)) € R.

A constraint formula over T' (or a I'-formula) is a finite conjunction of
['-clauses, i.e., a formula of the form

o =Ry(zy,...,25 ) A ARp(2f, ... 2k ),

where R; € I' is an n;-ary relation and m; eXforl<i<kand1l<j<n,;
By Var(p) =gef {xé |1<i<kand1<j< nl} we denote the set of variables
appearing in . An assignment I of D to X satisfies  if it satisfies every
constraint in ¢. An assignment of D to Var(y) that satisfies ¢ is a solution for
. If  has a solution we say that ¢ is satisfiable. The set of all solutions for
¢ is denoted by Sol(yp).

Let ' be a constraint language over some domain. A question very inten-
sively studied in complexity theory is the constraint satisfaction problem:

Problem: CSP(I)
Input: a ['-formula ¢
Question: is ¢ satisfiable?

Theorem 2.3 ([Sch78, Bul06]). Let I' be a finite constraint language over
a domain with maximal three elements, then CSP(I") is complete for NP, or
decidable in polynomial time.

The dichotomy for two-element domains was proven in 1978 and is known
as Schaefer’s Theorem. The more recent result for constraint languages over
three-element domains from Bulatov has been proven in 2002 and strengthens a
conjecture by Feder and Vardi, saying that the constraint satisfaction problem
is in P or NP-complete for all finite constraint languages over arbitrary finite
domains [FV98].

2.3 Closure Properties

Two constraint formulas ¢ and 1 are equivalent (¢ = ) if they have exactly
the same solutions. We define three different closures for constraint languages:

Definition 2.4. Let I" be a constraint language over a domain D.
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e (T') is the set of all relations R over D, such that R = () or there exist
distinct variables x1,...,Zn, 41, ..., yx and a I' U {Eqp }-formula ¢ such
that

R(z1,...,x,) can be expressed by Jy; ... yrp.

That means every solution of ¢ satisfies R(x1,...,z,) and every solution
of R(xy,...,z,) can be extended to a solution of ¢. We call (I') the
co-clone generated by I' and say that I" is a base of (I).

e (I')4 is the set of all relations R over D, such that R = () or there exist
distinct variables x1, ..., z, and a I' U {Eqp }-formula ¢ such that

R(zy,...,x,) is equivalent to ¢.

We call <F)£ the weak system generated by I' and say that I" is a base of

(I3
e (I')3_ is the set of all relations R over D, such that R = {) or there exist
distinct variables xy,...,x, and a ['-formula ¢ such that

R(zy,...,x,) is equivalent to ¢.

We call <F)£, y the weak system without equality generated by I' and say
that I' is a base of (I')4 .

Often co-clones are referred to as relational clones and weak systems (with-
out equality) are sometimes called weak systems with 0 (and without identifi-
cation). Note that the # in the notation (.)4_, does not have the meaning
of inequality, but symbolizes the disallowance of equality-clauses. In the case
of one-element constraint languages I' = {R} we often write (R) instead of
({R}), etc.

It follows directly from the definitions that I' C (I')y, C (I)y C (I').
Further the defined closures have the properties stated in the next proposition.

Proposition 2.5. Let I'y, 'y be constraint languages over a domain D and @,
a I'1-formula. Then the following holds:

1. Ty C (T's) implies that there exists a T's-formula o that can be computed
in logarithmic space from i1, and that is satisfiable if and only if 1 is;

2. Iy C (To)y, implies that there exists a 'y U {Eqp}-formula oo that can
be computed in logarithmic space from @1, and that is equivalent to p1;

3.1, C <F2>ﬂ7,é implies that there exists a U's-formula o that can be com-
puted in logarithmic space from @1, and that is equivalent to ;.
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It follows immediately from part 1 of the previous proposition that, for
finite constraint languages I'y and Iy, it holds

[} C(Iy) implies CSP(I';) <8 CSP(Ty).

The following definitions lead to a strong connection between constraint
languages and sets of functions.

Let D be a domain. A k-ary partial D-valued function is a function f :
A — D with A C D¥ for a k > 1. We say f is not defined on D*\ A. If
A = DF, then f is a total D-valued function. We denote theset of all total D-
valued functions by OPp. When speaking of D-valued functions we normally
mean total D-valued functions. For the Boolean domain D = {0,1} we speak
of Boolean functions and partial Boolean functions.

Definition 2.6. Let R be an n-ary relation over a domain D, let A C D* for
some k > 1 and let f : A — D be a partial D-valued function. Then f is a
partial polymorphism of R (or R is invariant under f) if for all ¢y,...,tx € R,
such that (t1[i], ..., t[i]) € A for every i € {1,...,n}, it holds

(fL] - teld]), o f(taln], - tiln]) ) € R,

i.e., if R is closed under coordinate-wise application of f. If f is total, we say
f is a polymorphism of R.

The set of all polymorphisms of a relation R is denoted by Pol(R), and
the set of all partial polymorphisms by pPol(R). For a constraint language I',
we say f is a (partial) polymorphism of I, if f is a (partial) polymorphism of
each relation from I' and we set Pol(I') =4 (\pep Pol(R) and pPol(I') =g
Nger PPOl(R).

For a partial D-valued function f, we denote the set of all relations over
D that are invariant under f by Inv(f). Accordingly the set of all relations
invariant under a set F of partial D-valued functions, Inv(F) = (o Inv(f),
consists of all relations that are invariant under all functions from F.

We often apply functions coordinate wise to tuples, like in Definition 2.6.
For an n-ary D-valued partial function and tuples ¢i,...,t, € D¥ we set

f(tla--->tn) —def (f(tl[l]a"-atk[l])’"'af(tl[n]"'wtk[n]))

to simplify notation.

We define some D-valued functions: the function pr¥ : D¥ — D, defined by
pr¥(ay,...,ax) = a; for every (ay,...,a;) € DF, is the k-ary projection to the
i-th component; id =4 pri is the identity; for a € D the constant function
co - D — D, defined by ¢,(d) = a for all d € D.
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Let f,g1,..., g, be partial D-valued functions such that f is of arity n and
g1, - - -, gy are of arity k. Then the composition of f and (g1, ..., g,) is the k-ary
partial D-valued function

folgr, - ygn): A— D,

defined on
A={t € D*|g,...,gnare defined on ¢t and fis defined on (gi(t),...,ga(t))},

such that for every (aq,...,a;) € A holds

folg, - sgn)at,...,;ar) = flgi(ar,...,ag), ..., gn(as, ..., ax)).

For a function f: A — B and a subset A" of A, the function f|s : A’ — B
defined by f|a(a) = f(a) for every a € A’ is called the restriction of f to A’.

Definition 2.7. Let D be a domain.

1. A set of total D-valued functions, that contains all projections and is
closed under arbitrary composition, is called a clone over D. For a set F
of total D-valued functions, [F] denotes the smallest clone containing F.

2. A set of partial D-valued functions that contains all projections, is closed
under arbitrary composition, and is closed under restriction of functions,
is called a strong partial clone over D. For a set F of partial D-valued
functions, [F], denotes the smallest strong partial clone containing .

It holds for every constraint language I" that Pol(T") is a clone and pPol(I)
is a strong partial clone. Conversely, Inv(F) forms a co-clone if F is a set of
total D-valued functions, and a weak system if F is a set of partial D-valued
functions.

We say a set of D-valued (partial D-valued) functions F is a base of a clone
(strong partial clone) C if [F] = C ([F], = C).

The next two results show very strong connections between clones and
co-clones and between strong partial clones and weak systems. The Galois
correspondences stated in Proposition 2.8 follow directly from the definitions
of the operators Pol, pPol and Inv.

Proposition 2.8. Let D be a domain.

1. Pol and Inv form a Galois correspondence between the set of all D-valued
functions and the set of all relations over D, i.e., for sets of relations
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['1, Ty over D and sets of D-valued functions Fy, Fs it holds that

Iy C Ty = Pol(T'y) D Pol(Ty),
Fi C Fy = Inv(F) D Inv(F),

'y C Inv(Pol(I'y)),
Fi C Pol(Inv(Fy)).

2. pPol and Inv form a Galois correspondence between the set of all partial
D-valued functions and the set of all relations over D, i.e., for sets of
relations 'y, Ty over D and sets of partial D-valued functions Fy, Fo it
holds that

IMCly, = pPOl(Fl) D) pPOl(Fg),
F1 C F= Inv(F) 2 Inv(F),

[’y C Inv(pPol(T)),
F1 C pPol(Inv(Fy)).

Points 7a and 1b in the next theorem were proven independently by Geiger
[Gei68], and by Bodnarchuk, Kaluznin, Kotov and Romov [BKKR69]. Points
2a and 2b are from Romov [Rom81], but an implicit proof can be found in
[Gei68] as well.

Theorem 2.9 ([Gei68, BKKR69, Rom81]). Let D be a domain, I' a constraint
language over D, F a set of D-valued functions, and B a set of partial D-valued
functions. The following equations hold:

fa. Tnv(Pol(T")) = (T)
1b. Pol(Inv(F)) = [F]
2a. Tnv(pPol(T)) = ()
2b. pPol(Inv(B)) = [B]

p

It follows from the previous results that there is a one-to-one correspondence
between clones and co-clones and a one-to-one correspondence between strong
partial clones and weak systems. Each clone C corresponds uniquely to the
co-clone Inv(C) and each strong partial clone D to the weak system Inv(D).
The next corollary is a list of simple conclusions from the previous theorems.

Corollary 2.10. Let D be a domain, I'y and I'y constraint languages over D,
F1 and Fy sets of D-valued functions and By and By sets of partial D-valued
functions.
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1a. Pol(Ty) = Pol(Ty) if and only if (I'1) = ().

1b. Inv(F)) = Inv(F) if and only if [F1] = [F).

2a. pPol(T'y) = pPol(T's) if and only if (Ty)3 = (T2)s.
20. Inv(By) = Inv(By) if and only if [B], = [Ba], .

For each domain D the inclusion structure of all clones over D forms a
lattice, as well as the inclusion structures of all strong partial clones, co-clones
and weak systems over D. It holds that the lattice of all clones over D is dual
to the lattice of all co-clones D and the lattice of all strong partial clones over
D is dual to the lattice of weak systems over D.

The lattice of all clones over the Boolean domain is well known: in [Pos41]
Post identified all Boolean clones and found a finite base for each of them. In
Table 2.3 all Boolean clones and Post’s bases are listed.

We often express Boolean functions as propositional formulas: a proposi-

tional formula (x4, ..., x,) represents the n-ary function f, such that for all
ai,...,a, €{0,1} it holds f(aq,...,a,) =1 if and only if there is a satisfying
assignment [ for ¢ such that I(z1) = ay,...,I(z,) = a,. For example x V y

represents the function that gives 1 if and only if at least one of its arguments
are 1. Sometimes we denote Boolean functions by Boolean operators, for in-
stance we write only V instead of x V y, — instead of x — y, or — instead
of =(x) or T. The Boolean constant functions ¢y and ¢; we denote sometimes
with 0 and 1.

For n > 1 we define h,, : D"*' — D to be the n + l-ary function that gives
1 if and only if at least n of its arguments are 1, i.e., hy(aq,...,ap41) = 1 if
and only if ay + -+ + a,11 > n.

In the following we define some properties of Boolean functions. Let f :
{0,1}* — {0,1} a k-ary Boolean function. For a € {0,1} we say f is a-
reproducing, if f(a,...,a) = a. We say [ is a-separating if there exists an
i € {1,...,k} such that for every t € D* with f(t) = a it holds that t[i] = a.
For some m > 2 we call f a-separating of degree m, if for every A C D¥, such
that |A| = m and f(t) = a for all t € A, there exists an 7 € {1,...,k} such
that t[i] = a for all t € A. We say f is monotone if a; < by, ..., a < by implies
flay,...,ax) < f(by,...,bg). The k-ary Boolean function dual(f) is defined by
dual(f)(ay,...,ax) = f(ay,...,a,). If f =dual(f), then f is self-dual. Finally
f is linear if there is a set of indices I C {1,...,k}, such that either for all
a,...,ar € {0,1} it holds f(ai,...,a;) = 1 if and only if ). ; a; is even, or
for all ay,...,a, € {0,1} it holds f(ai,...,ax) = 1 if and only if )., a; is
odd.
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We denote the co-clone that corresponds to a Boolean clone C by IC =4
Inv(C). Figure 2.3 shows the lattice of all Boolean co-clones which is dual
to Post’s lattice of all Boolean clones. A list of finite or, in the not finitely
generated cases, uniform bases for the Boolean co-clones was was presented by
Boler et al. [BRSV05] and can be seen in Table 3.2 in Chapter 3.

For an n-ary Boolean relation R, we define

dval(R) =4 {(a1,...,a,) € {0,1}" | (a4,...,a,) € R}

to be the relation dual to R. For a set of relations I', we set dual(I') =,
{dual(R) | R € I'}. Note that dual(dual(I')) = I" and that a Boolean function
f is is a polymorphism of I" if and only if dual(f) is a polymorphism of dual(T").
The dual of a Boolean co-clone can be found in Figure 2.3 via the vertical
symmetry axis: it is the mirror-image of the original co-clone. For example
dual(IVl) = IEO

We now can state Schaefer’s Theorem in more detail.

Theorem 2.11 ([Sch78]). Let I' be a finite constraint language over {0,1}.
Then CSP(I") is NP-complete, if INg C (I"). Otherwise it holds CSP(I") € P.

The counting version of the constraint satisfiability problem is defined as:

Problem: #CSP(I)
Input: a [-formula ¢
Question: how many solutions does ¢ have?

Creignou and Hermann classified the complexity of #CSP(I") for every finite
Boolean constraint language IT.

Theorem 2.12 ([CH96)). Let I' be a finite constraint language over {0,1}. If
(I') C 1Ly, then CSP(I") € FP. Otherwise CSP(I") is #P-complete.

We say a Boolean constraint language I' is Schaefer, if IN ¢ (T'). That
means [' is Schaefer if and only if I' is a subset of one of the following co-
clones: 1V,, IE,, 1Dy, IL,. For many problems in the constraint context the
Schaefer property guarantees efficient solvability.
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Clone Definition Base

BF All Boolean functions {V,A, -}

Ro {f € BF | f is O-reproducing } {A, ®}

Ry {f € BF | f is 1-reproducing } {V, <}

Ra R1iNRo {V,z A (y < z)}
M {f € BF | f is monotone } {V,A,0,1}

Mo MnNRop {V,/\,O}

M MRy {V,A 1}

Mo MNR2 {\/, /\}

So° {f € BF | f is O-separating of degree m} {—,dual(hm)}
So {f € BF | f is O-separating } {—}

Sy Sg* N Ra {zV (y AZ),dual(hm)}
So2 So N Ra {zV (yAZ)}

Soh Sy' N M {dual(hm), 1}
So1 SoNM {x\/(y/\z),l}
ST Sg' NRa NM {z V (y A z),dual(hm)}
Soo SoNR2NM {zV(yAz)}

ST {f € BF | f is 1-separating of degree m} {z Ay, hm}

S1 {f € BF | f is 1-separating } {z A7}

ST ST' NRa {z A (yVZ),hm}
S12 S1 N Re {m/\ (y\/?)}

STy ST*NM {hm,0}

S11 S1NM {zA(yV z),0}
ST8 ST"NRaNM {x A(yVz),hm}
S10 SitNRaNM {:c/\(sz)}

D {f € BF | f is self-dual} {zyVvazV (gAZ)}
D1 DNRs {zy V 2z V yz}
Do DNM {zy Vyz Vzz}
L {f € BF | f is linear} {®,1}

Lo LNRg {EB}

L, LNR; {=)

Lo LNR {tdydz}

L3 LND {zoy®201}
\Y {f € BF | f is constant or an n—ary OR function} {Vv,0,1}

Vo {VHUNO) V0]

Vi {V}U[{1} {V,1}

Vo [V} vF

E {f € BF | f is constant or an n—ary AND function} {A,0, 1}

Eg {AHU{o} {A, 0}

Er MUl A1)

Eq {n} {n}

N UM U EAY;

N {3 {=}

I {0} U{1}] {:d, 0,1}

Iy {0} {ud, 0}

I; {1} {ud, 1}

I {id}] {id}

Table 2.1: Bases for all Boolean Clones
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Chapter 3

Weak Bases

The knowledge about the Boolean clones provided by Post in his seminal paper
[Pos41], has become an important tool in the constraint satisfaction context.
There is an easy proof for Schaefer’s Theorem (see Theorem 2.11) that uses
Post’s characterization of the Boolean clones given in Table 2.3 and the strong
connection between clones and co-clones stated in Proposition 2.8 and Theo-
rem 2.9.

The reason why we can rely on this connection when classifying the com-
plexity of CSP(I") for each finite constraint language I" is that the complexity of
CSP(I") depends only on the co-clone generated by I'. Proposition 2.5 implies
that, if two finite constraint languages I'y and I'y generate the same co-clone,
then I';-formulas can be transformed in satisfiability equivalent I's-formulas
and vice versa.

However, there are problems in the constraint satisfaction context for which
this transformation does not give a reduction. For example for non-Boolean
domains it is not clear whether the complexity of the problem EQUIV(T),
which is the question if two given I'-formulas are equivalent, depends only on
the co-clone (I'). Similarly CSP*(I"), the problem whether a given I'-formula
has a non-constant solution, is not known to be complexity-invariant under
the property of generating the same co-clone. In both cases the existential
quantifiers appearing in the definition of the co-clone closure are the obstacle.

It is obvious that the weak systems without equality are a more suitable
structure when looking at the equivalence problem, because the (>£ #—closure
allows to transform a I';-formula in an equivalent I'>-formula, if 'y and I'y
generate the same weak system without equality (see Proposition 2.5). For
CSP*(T") it can be shown that the complexity depends only on the weak system
generated by I'. Since weak systems and strong partial clones correspond to
each other in the same way as clones and co-clones do, one can use the theory
of strong partial clones to classify the complexity of CSP*(I'). But there is

21



22 Chapter 3. Weak Bases

a big drawback: the strong partial clones are not fully identified, not even
in the Boolean case. An aggravating factor is that the lattice of all Boolean
strong partial clones, and so the lattice of all Boolean weak systems, contains
an uncountable number of classes, whereas the number of Boolean clones is
countable.

In this chapter we identify some strong partial clones, which play a special
role for many classifications in the constraint satisfaction context. Every clone
C canonically corresponds to a set of strong partial clones. We will detect
and characterize the largest strong partial clone in this set. The intuition is
that this strong partial clone corresponds to the “easiest” weak system whose
polymorphisms are exactly C, therefore lower complexity bounds for this “easy”
weak system, transfer to all weak systems corresponding to C.

We show how to construct bases, which we call weak bases, for these kind of
weak systems and give for every Boolean co-clone a weak base that is minimal
in a certain sense. We also give a method to identify weak bases that generate
the “easiest” weak system without equality corresponding to a certain co-clone.

Later, in Chapters 4 and 5, we will see how the theory of weak bases can be
used as a tool to classify the complexity of problems in the constraint context.

3.1 Small Weak Systems

Since strong partial clones over D are closed under arbitrary composition and
contain all projections over D, their total functions form clones. For a clone C
we let

Z(C) =4ef {B | B strong partial clone such that BN OPp = C}

denote the set of all strong partial clones that, reduced to only their total
functions, are equal to C. The notation Z(C) stems from the fact that Z(C) is
an interval in the lattice of all strong partial clones over D.
Clearly [C] , is the smallest strong partial clone in Z(C). We will show that
Z(C) also has a largest element.
Let
Zu(C) =as | J B

BeIZ(C)

be the union of all partial clones whose total functions are exactly C. We will
give a characterization of Z,(C) and show that it again is a strong partial clone
from Z(C).

We need the following definition to characterize Z,(C).
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Definition 3.1. Let C be a clone over a domain D and f : E — D an n-ary
partial D-valued function. Then f is C-total, if for all m > 0 and for all m-ary
functions ¢y, ..., g, € C the composition f o (gi,...,g,) is either non-total or
from C.

That means in other words that f is C-total if and only if [CU{f}], €
Z(C). The next theorem shows that C-totality is preserved by all operations
involved in generating strong partial clones, that is by arbitrary composition
and restriction.

Theorem 3.2. Let C be a clone over a domain D and F a set of C-total
functions. Then the following holds:

1. every function from [F], is C-total,
2. the set of all C-total functions forms a strong partial clone.

Proof. 1. Since obviously all projections over D are C-total, it is sufficient
to prove that arbitrary composition and restriction of functions preserve
C-totality.

Let f,g1,...,9, be C-total partial D-valued functions such that f is of
arity n and ¢, ..., g, are of arity m for an m > 0. Let hqy,..., h,, € C be
k-ary functions. Then it holds:

(fo(gr,---sgn))o(hy, ... hy) =fol(gro(hy, ... hm), oy gno(hy, ... hy)).

We distinguish two cases:

Case 1: g;0 (hy,...,hy) € C for all i € {1,...,n}. Then it holds that
(folg,---y9n))o(hy,..., hy) is either from C or non-total, since f
is C-total.

Case 2: thereis ani € {1,...,n} such that g; o (hq,...,h,) ¢ C. Since
g; is C-total, it holds that the composition g; o (hq, ..., h,,) is non-
total. If g; o (hy,...,hn) is not defined for some v € D* then
(fol(gry---sgn))o(hi,..., hy) is not defined for v either. Therefore
(fo(g1,---,9n)) 0 (h1,...,hy) is non-total as well.

Thus fo(g,...,gn) is C-total.

Now let ¢} be a restriction of g;. If gj o (hy,...,hy,) is total, then it is
equal to g1 o (hy,...,hy,). Since g is C-total, g; also is C-total. It follows
that [F], contains only C-total functions.
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2. Tt follows directly from the above that the set of of all C-total functions
is closed under arbitrary composition and restriction, therefore it forms
a strong partial clone. O

The following theorem shows that Z,(C) consists of all C-total functions.
From this result we conclude that Z(C) indeed has a greatest element which is
the strong partial clone of all C-total functions.

Theorem 3.3. Let C be a clone over the domain D. Then Z,(C) is exactly the
strong partial clone of all C-total functions.

Proof. We start by proving that every function from Z,(C) is C-total. Let f be
from Z,(C) with arity n. That means there exists a strong partial clone B €
Z(C) such that f € B. Assume f is not C-total. Then there are ¢1,...,¢g, € C,
such that h =46 f o (g1,...,9,) € OPp \ C. Since B € Z(C), it holds that
C C B, and this implies o € B, which is a contradiction to h € OPp \ C.
Hence, f is C-total.

Now we show that every C-total function is from Z,(C). Let f be a C-
total function. Since obviously every function from C is C-total, it follows from
Theorem 3.2 that every function from [{f}UC], is C-total. None of the total
functions from OPp \ C is C-total, therefore [{ f} UC],NOPp = C. This means
[{fruc], € Z(C), thus f € Z,(C). O

So we know that Z,(C) is the greatest strong partial clone in Z(C). We
are now interested in the associated weak system Inv(Z,(C)). The following
definition is central to our approach of using strong partial clones to obtain
complexity classifications.

Definition 3.4. Let C be a clone over a domain D and let I" be a constraint
language over D. If (I'); = Inv(Zy(C)), we call I a weak base for the co-clone
IC.

The name weak base is motivated by the next corollary which shows that a
weak base I for a co-clone IC is a co-clone base of IC and generates the smallest
weak system of all co-clone bases of IC.

Corollary 3.5. Let C be a clone over D and I a weak base for IC. Then the
following holds:

1. (T')3 = Inv(Z,(C))
2. (I)=1C
8. If (I') = (I") for some constraint language I over D, then (I')3 C (I")4
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Proof. 1. Since pPol(I") = Z,(C), it holds Inv(pPol(I")) = Inv(Z,(C)). Due
to Theorem 2.9 it follows that Inv(pPol(I")) = (I')3, which proves this
point.

2. It holds that Pol(I") = Z,(C)NOPp = C, since pPol(I') = Z,(C). Because
of Theorem 2.9, it follows Inv(Pol(I")) = (T"), therefore (I") = IC.

3. Let I be a constraint language over D such that (I'V) = (I'). With Corol-
lary 2.10 it follows that Pol(I") = Pol(I") = C. Then pPol(I") € Z(C) and
therefore pPol(I) C Z,(C) = pPol(I'). Since pPol and Inv form a Ga-
lois correspondence as stated in Proposition 2.8, it holds Inv(pPol(I")) C
Inv(pPol(I")). Using Theorem 2.9 we conclude that (I'); C (I")3. O

This shows that Inv(Z,(C)) is the smallest weak system that is included in
IC but not in any co-clone which is a proper subset of IC.

Corollary 3.5 says that the relations from Inv(Z,(C)) can be expressed by
constraint formulas over I' U {Eq,} for every constraint language I" such that
Pol(I") = C. This property is essential for the complexity classifications we
show in Chapters 4 and 5.

The rest of this chapter is devoted to finding finite weak bases for IC. We
need the following definitions to construct weak bases: let R be a relation.
R(l, k) is the value at row [ and column k in the matrix representation of R.
Note that this is a unique notation because the rows in the matrix represen-
tation of R are ordered lexicographically. By R(l,—) we denote the I-th row
vector and by R(—, k) the k-th column vector in the matrix representation of
R.

The relation D-Cols,, is the |D|™-ary relation of size n, defined by

D-Cols, (I, k) =g D" (k1)

for all [ € {1,...,n} and k& € {1,...,|D|"}. That means the columns of
D-Cols,, are exactly the tuples from D™. If D is the Boolean domain, we often
write just Cols,.

Example 3.6. The columns of the matrix representation of Colsz are exactly
the binary numbers from 0 to 23 — 1 =T:

Cols; =

o O O

0
0
1

=)
_—_ o

1111
0011
0101

For a set F of D-valued functions the F-closure of a relation R over D,
denoted by F(R), is the relation Ngemy(r),rcsS, i.e., the minimal superset of
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R that is invariant under F. We say R is an F-core of F(R). For a single
partial function f we write f(R) instead of { f}(R) and speak of f-closures and
f-cores.

Example 3.7. We consider the Boolean relation R, defined by R(z,y,z) =
x VyVZ Due to [BRSVO05] (see Table 3.2 as well) R generates the Boolean
co-clone 1V, i.e., Pol(R) = V. It follows that V(R) = R.

We are looking for a minimal V-core of R. From Table 2.3 we know that
V = [{V, ¢y, c1}], therefore a relation S is a V-core of R if and only if it is a
{V, ¢g, c1 }-core of R. The matrix representation of R is

—_— === OO O
_ O O = = O
—_ o = O OO

It is easy to see that the first and the last row of R can be obtained by applaying
¢o and ¢; to some other row, for instance to the second one of R. With the
notation above this means c¢o(R(2,—)) = R(1,0) and ¢ (R(2,—)) = R(7,0).
Therefore

Ry =aes R\ {(0,0,0),(1,1,1)}

is a V-core of R.
Further it holds that R(2,—) V R(4,—) = R(6,—). So

Ry =45 R\ {(0,0,0),(1,1,1),(1,1,0)}

is another V-core of R.
Note that all remaining rows cannot be generated from other rows in this
way, therefore there is no smaller V-core for R, than R,.

Let s € N. For a clone C we say that s is a core-size of the co-clone IC if
there is a relation R such that (R) = IC and R has a C-core of size s. If s is
a core-size of IC and there is no r < s that is a core-size of IC, then s is the
minimal core-size of IC.

In Example 3.7 we showed that 4 is a core-size of the Boolean co-clone
IV. However, we will see that 4 is not the minimal core-size of IV in the next
section.

Note that not every co-clone has a core-size. If IC has no finite base, there is
no relation R such that (R) = IC. In this case we define the minimal core-size
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of IC to be co. If on the contrary IC is generated by a finite constraint language
[', then we can easily find a relation R that generates the same co-clone as I':
let R be the Cartesian product of all relations of I', then it can be proven that
(I') = (R). Therefore a co-clone has a finite core-size if and only if it has a
finite base.

The following lemma is a technical result we need to identify finite weak
bases. It says that if R and S are relations such that R is an F-core of S, then
every tuple from S can be generated by a single application of some function
f € F to the tuples of R.

Lemma 3.8. Let R be a relation over a domain D and F a set of D-valued
functions. Let s =4 |R| be the size of R. Then for every t € F(R) there is
an s-ary function f € [F| such that

t= f(R(1,-),....R(s,—)).

Proof. We prove the lemma by induction. If t € R, that means if t = R(i, —)
for some 1 < i < s, then choose f =4 prs.

Otherwise there is a function g € F such that t = g(t1,...,t) for some
ti,...,tx € F(R). Due to induction we know that there are s-ary func-
tions fi,...,fr € [F] such that for every 1 < i < k it holds that t; =
fi(R(1,=),..., R(s,—)). Set

f =def 9 © (fh"%fk)'
Then we have t = f(R(1,—),..., R(s,—)), which proves the lemma. ]

Now we show that we can construct weak bases from relations of the type
D-Colsg for certain s. The idea is, that the fact that such a relation contains
all tuples from D?® as columns, helps us to control partial functions.

Theorem 3.9. Let C be a clone over a domain D and let s € N be a core-size
of IC. Then C(D-Cols) is a weak base of IC.

Proof. To show that C(D-Cols;,) is a weak base of IC, we have to prove the
following equation:

(C(D-Colsy))y = Inv(Zy(C)).
According to Corollary 2.10 this is equivalent to
pPol(C(D-Colsy)) = Z,(C).

Let B =g4¢ pPol(C(D-Cols,)). Note that B is a strong partial clone. To
prove the theorem it is enough to show

B =17,(C).
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First we show that Z,(C) C B. Let f € Z,(C) be an n-ary partial function.
According to Theorem 3.3 we know that f is C-total. To prove that f is a
partial polymorphism of C(D-Cols) let ¢y, ...,t, be tuples from C(D-Colsy).
Due to Lemma 3.8 there exist s-ary functions hq,...,h, € C such that for
every 1 <4 < n it holds

t; = hi(D-Colss(1, —), ..., D-Colss(s, —)).
Let g =g4ef f o (h1,...,hy). Then it follows:

fltr, ... ty) = fo(hy,..., hy)(D-Colsg(1,—),..., D-Colss(s, —))
= g(D-Colss(1,—), ..., D-Colss(s, —)).

If g is total, then g is from C because f is C-total, and it follows f(tq,...,t,) €
C(D-Colsy). 1If g is not total, then g is not defined on at least one of the
columns of D-Colsg, because every tuple from D? is a column in D-Colsg. Then
g(D-Colsy(1, —), ..., D-Colsy(s, —)) is not defined and therefore f(¢y,...,t,) is
not defined either. Hence, f is a partial polymorphism of C(D-Colsy).

Now we prove B C Z,(C) by showing that B € Z(C). That means we show
that the total functions from B are exactly C. Clearly it holds C C B, so we
prove that every total function from B is a function from C.

Let f € B be a total function. Then f is a polymorphism of C(D-Cols).
Since s is a core-size of IC, there exists a relation S over D such that |S| = s
and (C(S)) = IC. So we have Pol(C(S5)) = C.

We show that f is a polymorphism of C(S). Let n be the arity of f
and ty,...,t, € C(S). According to Lemma 3.8 there exist s-ary functions
hi,...,h, € C such that for every 1 < i <n holds

t; = hi(S(1,—),...,5(s,—)).

Since hq,...,h, and f are polymorphisms of C(D-Colss) and the polymor-
phisms of a relation are closed under arbitrary composition, it follows that
g =daef fo(h1,...,hy) is a polymorphism of C(D-Cols) as well. This implies
that

t =aer g(D-Colss(1,—), ..., D-Cols,(s,—)) € C(D-Colsy).

We use Lemma 3.8 again: there exists an s ary function h € C such that
t = h(D-Cols4(1, —), ..., D-Colsy(s, —)).

Since every element of D? is a column of D-Cols,, it holds that ¢ = h. It
follows that g € C and therefore

flt1, . ty) =9g(S(,—),...,S(s,—)) € C(S).

Thus, C(S) is invariant under f and this implies that f € C. Hence, B C Z,(C),
which completes the proof. O]
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With the above theorem we can construct a weak base for every co-clone
for which we know a finite base, since finite bases give us core-sizes.

Example 3.10. We construct a weak base for the Boolean co-clone IN. Ac-
cording to Table 2.3, it holds that (Dup) = IN and [{—,¢1}] = N. Recall
that Dup = {0,1}° \ {(0,1,0),(1,0,1)}. One can verify that the relation
{(0,0,1),(0,1,1)} is an N-core of Dup, therefore 2 is a core-size of IN.
Theorem 3.9 says that N(Colsy) is a weak base for IN. It holds that

0011
COISQI(O 10 1).

If we close this relation under — and ¢;, we get

0000
00 11
0101
N(Colsy) = L 010
1 100
11 11

The second and the third row form Colsy, the last row is generated by c¢q,
and the first, the fourth and the fifth row result from the application of = to
the last row and the rows from Cols,.

The motivation for our interest in weak bases is that we want to use them
as a tool to classify the complexity of problems in the constraint satisfaction
context. However, often the more restricted closure (.)_, fits more naturally
to problems than the (.)s-closure. The problems examined in Chapter 4 and
Chapter 5 are examples for this phenomenon.

For some weak bases we can show that their properties with respect to
the (.)z-closure mentioned in Corollary 3.5, hold for the (.)3_-closure as well.
To be able to give a criterion for such weak bases we introduce the notion of
redundancy.

Let R be a relation over a domain D of arity n. We say R is =-redundant if
there are i,j € {1,...,n} such that i # j and R(—,i) = R(—,7). We say R is
T-redundant if there is an i € {1,...,n} such that for all (ay,...,a,) € R holds
that for every b € D we have (ai,...,a;_1,b,a;y1,...,a,) € R. In other words
R is =-redundant if the matrix representation of R has two equal columns and
R is T-redundant if there is a relation S such that R has exactly the same
columns as S x D. We say R is redundant if R is =-redundant or T-redundant
and R is irredundant if R is neither =-redundant nor T-redundant.

The following proposition shows that we do not need Eq,-clauses to express
irredundant functions.
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Proposition 3.11. Let I' be a constraint language over a domain D and let
R be an irredundant relation over D such that R € (I')3. Then it holds that
Re D)y

Proof. Since R € (I')y it holds that the clause R(zy,...,z,) is equivalent to
some constraint formula ¢ over I' U {Eqp} with Var(y) = {z1,...,2,}. We
show that we can remove all Eqj-clauses from ¢ without changing its set of
solutions.

Let Eqp(z;, ;) be a clause in ¢ for some 4,5 € {1,...,n}. If i # j, then
R(—,i) = R(—,j), which means R is =-redundant. Since this contradicts the
irredundancy of R it holds that i = j. Note that the clause then is satisfied
by all assignments to x;. If x; does not appear in any other clause of ¢, then
x; does not depend on the other variables of ¢, i.e., R is T-redundant in the
column R(—,%). Again this is a contradiction to the redundancy of R, therefore
we can assume that z; appears in some other clause in ¢. But then the clause
Eqp(x;, ;) does not restrict the set of solutions for ¢ and we can delete it from
 without changing its set of solutions.

Thus, ¢ = ¢/, where ¢’ contains exactly the clauses from ¢ that are no
equality clauses. Therefore R(xq,...,x,) is equivalent to the I'-formula ¢/,
which means R € (I')y . O

Let I" be a weak base for a co-clone IC. If every relation from I' is irredun-
dant, we call I an irredundant weak base of IC.

The previous proposition yields the next corollary saying that irredundant
weak bases have the same properties for the <)$ 4~closure as weak bases have
for the (.>59-Closure: they generate the smallest weak system without equality
of all constraint languages generating the same co-clone. Note the similarity
between the following corollary and point 3 in Corollary 3.5.

Corollary 3.12. Let C be a clone over a domain D and let I' be an irredundant
weak base for IC. Let T" be a constraint language over D such that (I'") = IC.
Then it holds (I')3 , C (I")4 .

Note that the weak bases that can be constructed with Theorem 3.9 are all
=-irredundant, because D-Cols, has no double columns. However, these weak
bases are not necessarily T-irredundant.

3.2 Boolean Weak Bases

Since for a core-size s the arity of D-Cols, is |D|*, our weak bases can become
very large quickly. To be able to work with weak bases it is therefore in our
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interest to find minimal core-sizes of co-clones. In this section we give the
minimal core-sizes for all Boolean co-clones.

The results from this section can be seen in Table 3.2. It shows for each
Boolean co-clone its minimal core-size. It also lists bases discovered by Bohler
et al. [BRSVO05] for the co-clones. Note that most of these bases are not weak
bases.

Theorem 3.13. The minimal core-sizes given in Table 3.2 for the Boolean
co-clones are correct.

Proof. Due to [BRSVO05] the eight co-clones ISg, ISgo, ISo1, ISe2, IS1, IS10, IS11,
and IS;5 do not have finite bases, therefore their minimal core-size is oco.

As an example for the other cases we prove that the minimal core-size of
IV is 2.

We start with showing that 2 is a core-size of the co-clone IV. Let R =g
Cols, ={(0,0,1,1),(0,1,0,1)}. We show that V(R) generates [V. The matrix
representation of V(R) is

V(R) =

— oo oo
=)
= =)
—_ = O

Since V C Pol(V(R)), it holds (V(R)) C IV according to Proposition 2.8. One
can verify that the following equivalence is true:

I, u, v, wR(t, x,y,v) A R(u,w, z,v) =xVyVZ.
Since the relation S defined by
S(x,y,2)=xVyVz

forms a base of IV (see Table 3.2) it holds that (V(R)) = IV. Thus, IV has 2
as a core-size.

Now assume that 1 is a core-size of IV. Then V(Cols;) is a weak base of
IV due to Theorem 3.9. In particular we have (V(Cols;)) = IV. But it holds
V(Cols;) = {(0,0),(0,1),(1,1)} = Imp and (Imp) = IM due to Table 3.2.
Hence, 1 is not a core-size of IV, so 2 is the minimal core-size of IV.

The minimal core-sizes for the other Boolean co-clones can be verified in
a similar way: to prove that the stated minimal core-size s for a co-clone IC
really is a core-size one shows that C(Cols;) is a co-clone base of IC. For the
minimality of s one shows that C(Colss_;) is not a co-clone base of IC, by
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Co-Clone Min. core-size Base

IBF 1 TEqr

IRo 1 {Co}

IR; 1 {C1}

IR> 1 {Co,C1}

IM 1 {Imp}

IMp 2 {Imp, Co }

IM; 2 {Imp, C1 }

Mo 3 {Imp, Co, C1 }

ISgY, m > 2 m {Or™}

ISo 00 {Or™ | m > 1}

ISgs, m > 2 m {Or™,Co}

ISo2 [e’e] {Orm | m > l} ] {Co}

ISgy, m > 2 m {Or™,Imp}

IS01 00 {Or™ | m > 1} U {Imp}
IS(Q)O 3 {Or2, Imp, Co}

ISgg, m >3 m {Or™, Imp, Co }

ISoo 00 {Or™ | m > 1} U {Imp, Co}
IST*, m > 2 m {dual(Or"™)}

IS 00 {dual(Or™) | m > 1}

ISy, m > 2 m {dual(Or™),C1}

IS12 S {dual(Or™) | m > 1} U{C1}
IST;, m > 2 m {dual(Or™),Imp}

IS11 00 {dual(Or™) | m > 1} U {Imp}
IS%O 3 {dual(OrQ)7 Imp, Cl}

ISTy, m >3 m {dual(Or"™),Imp, C1 }

ISi0 00 {dual(Or™) | m > 1} U {Imp, C1 }
D 1 0dd?}

1D, 2 0dd?,C1}

1D, 3 Odd?, Imp}

IL 2 Even4}

ILo 2 Even?, Cg ,{Even3}

IL; 2 Even?, C1 } ,{0dd®}

ILo 3 Even?, Co, C1},{Even®,C1}
1Ls 3 Even?, Odd2} 7{Odd‘l}

v 2 xVyVZ}

Vo 2 {xVyVzZ7zT}

Vi 3 {xVyVza}

Vs 3 {xVyVz T}

IE 2 {TVyVaz}

IEo 3 {TVyVaz,z}

IE; 2 {ZVyVzz}

IE, 3 {ZVyVzz,T}

IN 2 Dup}

IN, 3 Dup, Even?, Odd2} ,{Nae}
II 2 Even?, Imp}

IIp 2 Even?, Imp, Co

I, 2 Even?, Imp, C;

1P} 3 Even?, Imp, Co, C1 }, {1-in-3}

Table 3.1: Minimal core-sizes and bases for all Boolean co-clones
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proving that C(Colss_;) generates a co-clone smaller than IC. Since it is easy
to show that every co-clone which has r € N as a core-size, has r + 1 as a
core-size as well, this is sufficient to prove that s is the minimal core-size of
IC. O

The concept of weak bases we have developed is essential for the classifica-
tions in the next two chapters. It allows, even if the co-clone closure cannot be
shown to preserve the complexity of the particular problem, to use the co-clone
structure to obtain hardness results, by switching over from a co-clone IC to
the smallest corresponding weak system Inv(Z,(C)). But we have to be careful
in one point: if we have two co-clones IC and ID such that IC C ID, then it
does not necessarily hold that Inv(Z,(C)) C Inv(Z,(D)). For example we have
IR; C IRy, but the weak base {(0,1),(1,1)} of IR; is not in the weak system
generated by {(0,1)} which is a weak base for IRy. That this fact effects the
use of weak bases for classifications can be seen in Chapter 4.

It is an interesting task for future research to find out which pairs of co-
clones hand down their inclusion relation to their smallest weak systems. An-
other issue that arises is the inclusion structure of the weak systems corre-
sponding to the same co-clone.
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Chapter 4

Balanced Satisfiability

In this chapter we apply the tools from Chapter 3 to classify the complexity
of the balanced satisfiability problem which is an example for a global satisfia-
bility problem. In a global satisfiability problem we have additionally to local
constraints expressed by constraint clauses a global condition restricting the
solutions of a formula. In the case of balanced satisfiability we require the
solutions to set exactly on half of the variables to 1.

Let T be a constraint language over the Boolean domain {0,1} and let ¢
be a constraint formula over I'. A balanced assignment for ¢ is an assignment
I : Var(p) — D that assigns 0 to the same number of variables as 1, that
means it fullfills |{z € Var(y) | I(z) =0} | = |{z € Var(p) | I(x) =1}|. If I
additionally satisfies ¢ we call I a balanced solution of .

The balanced satisfiability problem for I'-formulas is defined as follows:

Problem: BAL-CSP(I")
Input: a [-formula ¢
Question: does ¢ have a balanced solution?

Additionally we look at the counting version of this problem, i.e., the ques-
tion how many balanced solutions a given I'-formula has.

Problem: #BAL-CSP(I)
Input: a [-formula ¢
Question: how many balanced solutions does ¢ have?

Partial results for the decision problem and an optimization version of bal-
anced satisfiability have been achieved by Bazgan and Karpinski [BK05]. The
aim of this chapter is to prove a full complexity classification for both prob-
lems, saying that for every finite Boolean constraint language BAL-CSP(T) is
in P or NP-complete and #BAL-CSP(I') is in FP or complete for #P.

35
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We start with stating canonical upper complexity bounds and observing
that the complexity of both problems we look at is invariant under the (.)y 4
closure. We then show the polynomial time results in Section 4.1. Our focus
lies on the hardness results in the later sections: in Section 4.2 we show that
both problems are NP-hard or #P-hard for some special one-element constraint
languages, which we need in many later proofs. Then we deal with general finite
constraint languages in the next two sections. All those hardness results follow
the same scheme: to show that for all constraint languages I'" generating a
fixed Boolean co-clone IC the problems BAL-CSP(I") and #BAL-CSP(I") are
hard for NP or #P, we prove the hardness for an irredundant weak base of
IC. For the proofs in Section 4.3 we do not need to construct an irredundant
weak bases explicitly and we can handle several co-clones at once, because
their irredundant weak bases share some properties. In Section 4.4 we work
with concrete irredundant weak bases and cover only one co-clone per proof.
Allthough the arguments are very similar their is no obvious way to unify
these proofs. We give the appearing constructions all in detail as an example
how to work with irredundant weak bases. These non-unifiable cases include
among others the non-Schaefer co-clones. The reason for their uncomfortable
behavior could lie in a fact mentioned in Chapter 3: inclusions of co-clones do
not necessarily transfer to the weaker closure operators.

4.1 Basic Facts and Easy Cases

First we state the obvious upper complexity bounds for BAL-CSP(I") and
#BAL-CSP(I).

Proposition 4.1. For every finite constraint language T' over {0,1} it holds
that BAL-CSP(T") € NP and #BAL-CSP(T") € #P.

Proof. Given a I'-formula ¢, an algorithm can easily verify if a guessed as-
signment for ¢ is a balanced solution for ¢. Therefore we can construct a
non-deterministic polynomial time Turing Machine ¢ that branches out for
every possible Boolean assignment to the variables of the input formula and

accepts in a branch if the according assignment is a balanced solution for ¢.
This proves BAL-CSP(I") € NP and #BAL-CSP(I") € #P. O

To make sure that we can use the tools developed in Chapter 3, we prove
that the computational complexity of BAL-CSP(I") depends only on the weak
system without equality generated by I'. The result follows directly from the
fact that two equivalent formulas have the same solutions.



4.1. Basic Facts and FEasy Cases 37

Proposition 4.2. Let 'y and Ty be finite constraint languages over {0,1}
such that Ty C (Ta)y . Then it holds #BAL-CSP(T) </ #BAL-CSP(T,)
and BAL-CSP(T';) </ BAL-CSP(T,).

Proof. Let ¢ be a constraint formula over I'y. According to Proposition 2.5
we can compute a I';>-formula ¢, that is equivalent to ¢, using only loga-
rithmic space. Since ¢ and ¢’ have the same set of solutions, they have the
same set of balanced solutions as well, therefore it holds #BAL-CSP(I';) S}Og
#BAL-CSP(T';) and in particular BAL-CSP(I';) <!°¢ BAL-CSP(Ty). O

Note that the above proof cannot be generalized canonically to work with
the weakend prerequisite I'y C (I's)4 or even I'y C (T'p) instead of I't € (I'2)y .
Therefore, at this point, we cannot apply the classical methods involving only
the co-clone closure. However, in the end of this chapter, we will see that the
proposition stays true with this modified prerequisites, i.e, that the complex-
ity of balanced satisfiability depends only on the co-clone generated by the
according constraint language.

A helpful property of balanced satisfiability is that we can exploit the sym-
metry in Post’s Lattice: the next proposition says that the complexity of our
problem is invariant under dualization.

Proposition 4.3. Let T be a finite constraint language over {0,1}, then it
holds #BAL-CSP(dual(T)) </ #BAL-CSP(T)

Proof. Let ¢ be a I'-formula and let ¢’ be the dual(I')-formula obtained by
replacing every clause R(z1,...,x,) from ¢ by dual(R)(z1,...,x,). It is easy
to see that an assignment [ : Var(¢) — {0,1} satisfies ¢ if and only if the
assignment [’ : Var(¢) — {0, 1}, defined by I'(x) = —I(x) for all x € Var(yp),
satisfies ¢'. Since [ is balanced if and only if I’ is, and since the replacement
of the clauses is a local operation that works in logarithmic space, this proves
the reduction stated in the proposition. O

We now show that BAL-CSP(I") and #BAL-CSP(I") are solvable in polyno-
mial time for finite Boolean constraint languages I, such that (I') C ID;. As an
intermediate problem we use a version of SUBSET-SUM, which is the question
whether, given a sequence of natural numbers k4, ..., k, and a natural number
S, there is a subsequence k;,,...,k; of ki,..., k,, such that the sum over its
elements is exactly S. This problem is well known to be NP-complete [Kar72].
However, if the numbers kq, ..., k, in the input are given in a unary represen-
tation, then we can solve the problem in polynomial time [GJ79]. We give the
formal definition for the counting version of this variant of SUBSET-SUM:
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Problem: #UNARY-SUBSET-SUM

Input: a sequence 1%, ... 1% for some n, kq,...,k, € N and a
natural number S.

Question: how many sets / C {1,...,n} exist, such that >, k; = S?

By 1¥ we denote the word of length k over the alphabet {1}, i.e., 1° is the
empty word and 1! =1, 12 = 11, 1® = 111, etc.

We show that we can solve #UNARY-SUBSET-SUM in polynomial time
in the next theorem. The algorithm in the proof is strongly based on a pseudo-
polynomial time algorithm for PARTITION from [GJ79].

Lemma 4.4. #UNARY-SUBSET-SUM € FP.

Proof. Let 1% ... 1*» for some n,ki,...,k, € N and S € N be an instance
for #UNARY-SUBSET-SUM. The following algorithm computes for every
0 <i<nand 0 < j < S the number of sets I C {1,...,i} such that
> icr ki = j and stores this information in a matrix 7". The algorithm fills the
matrix line by line and relies on earlyer entries when computing the current
one. The information we will looking for will be in 7'(n, S). This approach is
known as dynamic programming.

1: let T be an (n+ 1) x (S + 1)-matrix
2: 7(0,0) :=1

3: forj=1,...,5do

4: T(O,j) =0

5: end for

6: fori=1,...,ndo

7. forj=0,...,5do

8: if 7 < k; then

9: T(i,7) =T\ —1,7)

10: else

11: T(,j)=T>GE—-1,5)+TGE—1,j—k;)
12: end if

13: end for

14: end for

15: return 7'(n, S)

The algorithm fills a (n + 1) x (S + 1)-matrix and needs only polynomial
time for each entry, so the algorithm is polynomial in the length of the instance
which is O(ky +- - -+ k, +.5). Note that without using unary coding the length
of the input is O(log(ky - - - k,S)) and the running time of the above algorithm
is exponential in the size of the input. m
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The following result covers all polynomial time cases for our problems. In
the next section we will see that for all other cases we prove NP-hardness and
#P-hardness respectively.

Theorem 4.5. Let I" be a finite constraint language over {0, 1} such that (I') C
ID;. Then BAL-CSP(T") € P and #BAL-CSP(I") € FP

Proof. Due to [CKZ05] it holds that the constraint language
b =def {Co, Cl, EVE‘,HQ7 OddQ}

is a so called plain base for ID;, that means it has the following properties:
(¥) =1ID; and (I')3, C (¥)3_,. Therefore it follows from Proposition 4.2 that
#BAL-CSP(I) S}Og #BAL-CSP(X) and BAL-CSP(I") <los BAL-CSP(X) is
true. So, it is sufficient to show #BAL-CSP(X) € FP to prove the theorem.

Let ¢ be a constraint-formula over ¥. Since ¥ is Schaefer it follows from
Schaefer’s Theorem (see Theorem 2.11) that we can check in polynomial time
whether ¢ is satisfiable. If this is the case, we can partition Var(y) in classes
Xoy .oy, X, Yo, ..., Y, for some n € N| such that the following is true for every
v € Var(y):

e if C;(v) is a clause in ¢, then v € Xj;
o if Cy(v) is a clause in ¢, then v € Yy;
e if  has neither a Cy-clause nor a C;-clause, then Xy = Y, = 0;

o if v € X; (resp. v € Y;) for some 0 < i < n, then X; (resp. Y;) is
the set of all variables v’ of ¢ such that for every solution I for ¢ holds

I(v) = I(v");

o if v € X; (resp. v € Y;) for some 0 < i < n, then ¥; (resp. X;) is
the set of all variables v’ of ¢ such that for every solution I for ¢ holds
I(v) # I(V').

Note that we can construct this partition in polynomial time, because for two
variables v and v’ from Var(p) it holds that I(v) = I(v’) for each solution [
of ¢, if and only if v and v are connected by a path of clauses that includes
an even number of Odd? clauses. And it holds that I(v) # I(v') for each
solution I of ¢, if and only if v and v" are connected by a path of clauses that
includes an odd number of Odd? clauses. By a path of clauses we mean a
set of clauses {ci,..., ¢y}, such that for every 1 < i < m — 1 it holds that
Var(c;)NVar(c;1) # 0, or that ¢; and ¢; 1 are both C,-clauses for an a € {0, 1}.
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Assuming that we do not have a pair of empty classes (X;,Y;) for 1 <i <n,
it holds that the number of solutions for ¢ equals 2", because for every pair
(X;,Y;) with 1 <14 < n we can chose independently whether we set the variables
from X; to 1 and from Y; to 0 or the other way round. Note that the values
for the variables in X, and Y} are fixed.

Let k; =g | Xi| — |Yi| for every i € {1,...,n}. Without loss of generality
assume that k; > 0 for every ¢ € {1,...,n}, otherwise exchange X; with Y;.
Let I be a solution for ¢ and let I be the set of all indices i # 0 such that [
maps the variables from X; to 1, i.e.,

I* =4y {i|1<i<nand I(z)=1for all € X;}

Let K(I) be the number of variables v € Var(y) such that I(v) = 1. Then
it holds:

K(I) = | Xo] +Z|Yz‘\ + Zkz
=1

ielX

It follows that I is balanced if and only if

1 n
5 Var(@)l = D ¥l = [ Xo| = Y ki

i=1 ielX

Thus the number of balanced solutions for ¢ is exactly the number of sub-
sets IX C {1,...,n} such that IX satisfies the previous equation. Note that
S0 ki < | Var(e)], therefore the length of the string 1% is polynomial in the
length of ¢. Hence, since #UNARY-SUBSET-SUM is in FP due to Lemma 4.4,
we can compute the number of balanced solutions for ¢ in polynomial time.
Note that for some K € N we can compute the number of all solutions [/
for ¢, that map exactly K variables of ¢ to 1, in polynomial time as well. We
just have to replace 3| Var(¢)| in the last equation by K.
O

4.2 Hardness Results for Basic Relations

In this section we look at the three relations Imp, Or? and Odd® to be able
to use them later to obtain complexity results for more general constraint
languages.

Lemma 4.6. BAL-CSP(Imp) is NP-hard and #BAL-CSP(Imp) is #P-hard

under counting reductions.
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Proof. First we prove the NP-hardness of BAL-CSP(Imp). For that we make
a reduction from the following problem:

Problem: K-CLOSURE

Input: a directed graph G = (V, E) and k € N

Question: Is there a V' € V such that |V'| = k and for all (u,v) € E
it holds u € V' or v ¢ V'?7

Speaking more intuitively the question is whether there is a k-element
subset V' of V' such that no edge goes from V' \ V' to V'. Due to [GJ79]
K-CLOSURE is NP-complete.

We show K-CLOSURE <!°¢ BAL-CSP(Imp). Let G = (V,E) be a di-
rected graph and £ € N. Let n =4 |[V|. We construct a constraint for-
mula over {Imp} with variables X =4 V U{t1,... s, f1,..., fo—k}, where

ti,. . te, f1,. ., fa_k are all distinct variables and not from V. We set
© =def /\Impuv/\/\/\lmp:pt /\/\Impfz,
(u,v)EE i=lzeX i=1 zeX

Let V' C V such that |V’| = k and for every (u,v) € E it holds that u € V’
or v ¢ V'. It is easy to see that the assignment I : X — {0, 1} defined by

1(&) =y {o if 2 € V' U{fi,. ., far}

1 otherwise

is a balanced solution for ¢.

Now let I : X — {0,1} be a balanced solution for ¢. Assume I(t;) = 0
for an i € {1,...,k}. Then, because of the clauses A,y Imp(z,t;), it follows
that I(z) = 0 for every x € X. This contradicts the fact that I is balanced,
therefore it holds I(¢;) = 1 for every i € {1,...,k} and analogously it follows
I(f;) =0 for every i € {1,...,n — k}.

Because [ is balanced I maps k variables from V' to 0 and n — k variables
form V to 1. Let

Vv’ =def {IE V | ](l’) :O}.

Then we have |V'| = k. Let (u,v) € E and assume u ¢ V' and v € V'. That
means /(u) = 1 and I(v) = 0. Since Imp(u,v) is a clause from ¢ we have a
contradiction. Hence, V' satisfies all properties for a k-closure.

Since ¢ can be constructed in logarithmic space, it follows

K-CLOSURE <!°¢ BAL-CSP(Imp).

Thus, BAL-CSP(Imp) is NP-hard.
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Now we show that #BAL-CSP(Imp) is #P-hard by proving
#CSP(Imp) <\°® #BAL-CSP(Imp).

Let
© =ger Imp(a1, 1) A -+ - Almp(zy,, yn)-

Let k =4 | Var | and 2, ..., 2, be new and distinct variables. We set:

k—1

¢ =def N /\ Imp(2;, Zit1)-
i=1

Obviously every balanced solution for ¢’ can be restricted to a solution for (.

For the converse direction we show that every solution for ¢ can be ex-
tended in exactly one way to a balanced solution for ¢'. Let I : Var(yp) —
{0,1} be a solution for . Let ko =4 | {x € Var(p) | I(x) =0} | and ky =4
| {z € Var(¢) | I(x) = 1}|. If we want to extend I to a balanced solution for
¢, then we have to assign 0 to k; variables from {z,..., 2} and 1 to kg vari-
ables from {z1,..., zx}. In order to satisfy all clauses of the form Imp(z;, z;41)
we have to set I(z;) = 0if ¢ < ky and I(z;) = 1 otherwise.

Thus, there is a one-to-one correspondence between solutions for ¢ and
balanced solutions for ¢'. Since ¢’ can be constructed from ¢ in logarithmic
space, this proves the reduction #CSP(Imp) <’ #BAL-CSP(Imp). Due to
Theorem 2.12 it holds that #CSP(Imp) is #P-hard, therefore it follows #P-
hardness of #BAL-CSP(Imp). O

The NP-hardness for BAL-CSP(Or?) was proven in [BK05], we add the
#P-hardness for the counting problem.

Lemma 4.7. BAL-CSP(Or?) is NP-hard and #BAL-CSP(Or?) is #P-hard

under counting reductions.

Proof. Bazgan and Karpinski showed in [BK05] that BAL-CSP(dual(Or?)) is
NP-hard, therefore due to Proposition 4.3 it also holds that BAL-CSP(Or?) is
NP-hard.

For the #P-hardness of #BAL-CSP(Or?) we show the following reduction:

#CSP(Or?) <% #BAL-CSP(Or?).

Let ¢ be an Or’-formula. For every x € Var(p) let 2’ be a new variable. We

define

O =ger o N /\ Or?(z,2").
x€Var(p)
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Note that ¢’ can be constructed from ¢ in logarithmic space.

It is easy to see that a balanced assignment I : Var(¢') — {0, 1} satisfies
the subformula A\, oy, Or?(z,2') if and only if for every z € Var(yp) holds
I(x) # I(x'). Therefore every solution I : Var(p) — {0,1} for ¢ can be
extended to a balanced solution for ¢’ only in one way: by setting I(z’) #g.f
I(x) for every = € Var(y). Because obviously every balanced solution for ¢’
satisfies ¢, we have a one-to-one correspondence between solutions for ¢ and
balanced solutions for ¢'. Thus, #CSP(Or?) <|°® #BAL-CSP(Or?).

Since (Or?) = IS] (see Table 3.2), it holds that #CSP(Or?) is #P-hard due
to Theorem 2.12. This gives us #P-hardness for #BAL-CSP(Or?). O

Again, the NP-hardness for BAL-CSP(Odd?) was proven in [BK05]. Note
that in the proof for the #P-hardness of #BAL-CSP(Odd*) we reduce a non-
Schaefer to a Schaefer case.

Lemma 4.8. BAL-CSP(0dd?) is NP-hard and #BAL-CSP(0Odd?) is #P-hard

under counting reductions.

Proof. The NP-hardness of BAL-CSP(Odd®) was already proven in [BKO05].
For the #P-hardness of the counting problem it is sufficient to show that
#CSP(1-in-3) <|°® #BAL-CSP(0dd?), because #CSP(1-in-3) is hard for #P
due to Table 3.2 and the result from Creignou and Hermann stated in The-
orem 2.12. Note that, since CSP(1-in-3) is an NP-complete problem due to
Theorem 2.11, the following reduction is also an alternative proof for the NP-
hardness of BAL-CSP(Odd?).

Let .

O =def /\ 1-in-3(z;, i, 2i)
i=1

be a constraint formula over {1-in-3}. We construct an Odd*-formula using
additionally to the variables appearing in ¢ the following new and distinct
variables: a;,b;,¢;, d; for every 1 < i < n; %, f* for every 1 < i < k where
k =aer 2| Var(p)| + 4n; and o' for every v € ¢.

We set:

90, =def /\ {Oddg(xz‘, Yis Zz) A Oddg(div d;, di) A
i=1

Odd®(d;, z;, a;) A Odd*(d;, yi, b;) A Odd®(ds, 2, ¢;) }
k

AN OddP(E 1) A Odd3(E, £, f)
=1

A /\ Odd?(f*,v,v).

veVar(p)
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Note that | Var(y')| = 2| Var(p)|+4n+ 2k = 3k. Let I : Var(¢') — {0,1} be a
balanced solution for ¢’. We show that I is uniquely determined by its values
for Var(y). For every 1 <i < k, it holds that I(t') = 1, because Odd®(#, ¢/, t')
is a clause from ', and I(f%) = I(f'), because Odd*(#, f?, f!) is a clause

from ¢’. Now assume I(f') = 1. Then it follows I(f!) = --- = I(f*) =
I(t') = --- = I(t*) = 1. But since 2k > | Var(yp)| = 2k this contradicts the
prerequisite that I is balanced. Therefore we have

I/ == 1(/" =0,

With this the clauses Odd*(f!, v, ') give us I(v) # I(v') for every v € Var(yp).
So I is already balanced on Var(yp) U {v’' | v € Var(p)} and as well on the set
{tr, ..., ¢F f ..., f*}. Tt follows that I is also balanced on the rest of the

variables of ¢, i.e., on {ay,by,c1,dy, ..., an, by, Cp,dy}
Since we have the clause Odd®(d;, d;, d;) for every 1 < i < n, it holds that
I(dy)=---=1(d,) =1.

Therefore the clauses Odd®(d;, z;, a;), Odd*(d;, v, b;), and Odd?(d;, 2, ¢;), give
us I(x;) = I(a;), I(y;) = 1(b;), and I(z;) = I(¢;). Thus, for every variable from
¢’ its value under I is uniquely determined by I |var(,)-

We now show that I|vay(e) is a solution for ¢. Assume there is a clause
1-in-3(z;, y;, ;) in @ that is not satisfied by I|var(,). Since Odd?(z;, y;, %) is
a clause in ¢’ and Odd® = 1-in-3 U {(1,1,1)}, it holds that I(z;) = I(y;) =
I(z;) = 1. Due to the above it follows I(a;) = I(b;)) = I(¢;) = I(d;) = 1.
We showed above that I is balanced on {ai, by, c1,dy, ..., an, by, cp,dy}, that
means there exists a j € {1,...,n} such that I(a;) + 1(b;) + I(c;) + 1(d;) < 2,
otherwise we cannot compensate that I(a;) = I(b;) = I(¢;) = I(d;) = 1.
Because I(d;) = 1 and I(z;) = I(a;), I(y;) = I(b;), and I(z;) = I(c;) it
follows that I(x;) + I(y;) + I(z;) = 0, which is a contradiction to the fact
that Odd®(z;,y;, ;) is a clause from . Thus, every balanced solution for ¢’
restricted to Var(yp) is a solution for ¢.

Now let I : Var(yp) — {0, 1} be a solution for ¢. We prove that exactly one
extension of I to Var(y') is a balanced solution for ¢'. It holds I(x;) + I(y;) +
I(z;) = 1 for every i € {1,...,n}, because 1-in-3(z;, y;, z;) is a clause from ¢.
So, by setting

I(a;) =aer 1(zi),  1(bi) =aer 1(ys),

I(ci) =aer 1(zi),  1(di) =aer 1
we extend I such that it is balanced on {ay, by, c1,dy, ..., an, by, Cnydy b I we
extend [ further according to the above by setting

I(V") #aer 1(v),  I(ti) =aer 1,
I(fi) =der O
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for every v € ¢ and every 1 <i < k, we get a balanced solution for ¢’. Due to
the above this is the only extension of I to Var(¢') that is a balanced solution
for ¢'. Hence, there is a one-to-one correspondence between solutions of ¢ and
balanced solutions of ¢'.

Obviously ¢’ can be constructed from ¢ in logarithmic space, so we showed
#CSP(1-in-3) <, #BAL-CSP(0dd?), which completes the proof. O

4.3 Hardness Results with unified Proofs

Now we start to look at finite Boolean constraint languages. The first theorem
covers all constraint languages that generate IM, IV, IE, or II.

Theorem 4.9. Let I be a finite constraint language over {0, 1} such that (I') C
11 and () ¢ INy. Then BAL-CSP(T) is NP-hard and #BAL-CSP(T') is #P-

hard under counting reductions.

Proof. We show Imp € (I')4 _,, then the hardness for both, the decision and the
counting problem, follows from Lemma 4.6 and Proposition 4.2. Since (I') ¢
INy and since [-] = Ny (see Table 2.3), it holds that — is no polymorphism
of I'. That means there exists a relation R in I' such that — ¢ Pol(I'). Then
there is a t € R such that =t ¢ R. Since (I') C II, it holds that ¢y and ¢; are
polymorphisms of " and in particular of R, which means ¢y(t) = (0,...,0) € R
and ¢1(t) = (1,...,1) € R. Note that ¢t ¢ {(0,...,0),(1,...,1)}, otherwise
-t € R. The following equation is true:

Imp(zg, z1) = R(z41), - - -, Tefarity(R)])-

Hence, Imp € (R)3 C (I')3. Since Imp is irredundant, it follows due to Propo-
sition 3.11 that Imp € (I')4_. O

The next theorem deals with constraint languages that generate one of the
following co-clones: IM;y, IV, IE;, ISj;. In the proof we work with weak bases,
however we do not need to compute any concrete weak base and we see that
weak bases for the above co-clones share some properties.

Theorem 4.10. Let T' be a finite constraint language over {0,1} such that
IM; € (I') C II;. Then BAL-CSP(I") is NP-hard and #BAL-CSP(I") is #P-
hard under counting reductions.

Proof. Let T-Imp be the relation C; x Imp. We divide the proof in two parts:
in the first part we show T-Imp € (I')3 . Then we show BAL-CSP(Imp) <%
BAL-CSP(T-Imp) in the second part. The proposition then follows from
Lemma 4.6 and Proposition 4.2.
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We start with the first part. Let s be a core-size of (I') and let
R =4¢r Pol(I')(Colss).

According to Theorem 3.9 it holds that {R} is a weak base of (I') which
implies that (R)y C ()3 due to Corollary 3.5. It is enough to show that
T-Imp € (R)y, then, since T-Imp is irredundant, it follows T-Imp € (I')y_,
with Proposition 3.11.

We distinguish two cases: (I') C IV; and (T') € IV;.

Case 1: (I') CIV;. Let S be the Boolean relation defined by
S(t,z,y) = R(z,y,...,y,t,...,1).
S—— ——

2s—1_1 2s—1
We show S = T-Imp. Since (I') C IIj, it holds that ¢; € Pol(I") and

therefore (1,...,1) € R and (1,1,1) € S. Because V € V; C Pol(T") it
follows that the nested application of V to all tuples of Cols, is in R, i.e.,

(0,1,...,1) = Colss(1,—) V--- V Colss(s,—) € R.
This means (1,0,1) € S. Since
(0,...,0,1,...,1) = Cols,(1, —) € R,
S—— ——

2s—1 2s—1
it holds that (1,0,0) € S, hence T-Imp C S.
Note that Pol(R) contains only functions which are monotone and 1-
reproducing because Pol(R) € M; = M N Ry (see Table 2.3 and Fig-
ure 2.3). Since Colss(—,2°) = (1,...,1) and since all polymorphisms

of " are 1-reproducing, it follows R(—,2%) = (1,...,1) and therefore it
holds for all a,b € {0,1} that (0,a,b) ¢ S.

Finally assume (1,1,0) € S. Then

U =def (1,0,...,0,1,...,1) € R.
——— ——
2s—1_1 2s—1
With Lemma 3.8 it follows that there is an s-ary Boolean function g €
Pol(T") such that

g(Colsy(1,—), ..., Colss(s, —)) = u.

It holds that ¢ is not monotone because g(0,...,0) = u[l] = 1 and
g(0,...,0,1) = u[2] = 0. Since every function from Pol(I") is monotone,
this is a contradiction. Hence T-Imp = S and therefore T-Imp € (R)4 C

().
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Case 2: (I') ¢ IV;. In this case (I') = IE; (see Figure 2.3). Let S be the
Boolean relation defined by

S(t,z,y) = R(z,...,x,y,...,y,t).
1 1
25— 2s—1_1

We show S = T-Imp. With the same arguments as in the first case it
holds (1,1,1) € S. Because A € Ey, it follows that

(0,...,0,1) = Colsg(1,—) A--- A Colsy(s,—) € R,
which means (1,0,0) € S. Since

(0,...,0,1,...,1) = Cols,(1, —) € R,
S——
2s—1 2s—1

it holds that (1,0,1) € S, hence T-Imp C S.

Again all functions from Pol(I') are monotone and 1-reproducing. So,
using the same arguments as in the first case, we have for all a,b € {0,1}
that (0,a,b) ¢ S.

Finally assume (1,1,0) € S. Then

w =g (1,...,1,0,...,0,1) € R.
— N —

92s—1 2s—1_1

With Lemma 3.8 it follows that there is an s-ary Boolean function g €
Pol(T") such that

g(Colss(1, —), ..., Colss(s,—)) = u.

But g is not monotone because g(0,...,0) = u[l] = 1and g(1,...,1,0) =
u[2®—1] = 0. This contradicts that every function of Pol(I") is monotone,
therefore (1,1,0) ¢ S. Hence T-Imp = S and it follows T-Imp € (R)4 C

(I')3.

We showed that in both cases T-Imp € (I')4. Since T-Imp is irredundant it
follows with Proposition 3.11 that T-Imp € (F}il;é, so due to Proposition 4.2
it holds that #BAL-CSP(T-Imp) <,°® #BAL-CSP(T").

Now, in the second part of the proof, we show #BAL-CSP(Imp) ﬁog
#BAL-CSP(T-Imp). Let

© =def Imp(xla yl) JARERNA Imp(-rna yn)
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be some Imp-formula. We construct a T-Imp-formula ¢' depending on . Let
t and f be new (not from Var(y)) and distinct variables. We set:

90/ —def T_Imp(ta Z, yl) JANRIRVAN T_Imp(ta Ly yn) A /\ T_Imp<t7 f7 ':C)
x€Var(p)

Note that every solution for ¢’ must map ¢ to 1. Furthermore every balanced
solution for ¢’ must map f to 0 because otherwise 1 is assigned to all variables.
Since every balanced solution I : Var(yp) — {0, 1} for  extended by I(t) =g4e 1
and I(f) =45 0 is a balanced solution for ¢', and conversely every balanced
solution for ¢’ restricted to Var(y) is a balanced solution for ¢, it holds that
¢ has the same number of balanced solutions as ¢’. Therefore and because ¢’
can be computed in logarithmic space it follows that #BAL-CSP(Imp) S}Og
#BAL-CSP(T-Imp).

Combining the results from both parts we have

#BAL-CSP(Imp) <, #BAL-CSP(T-Imp) <,°® #BAL-CSP(I).

Due to Lemma 4.6, BAL-CSP(Imp) is NP-hard and #BAL-CSP(Imp) is #P-
hard, thus BAL-CSP(I") is NP-hard and #BAL-CSP(I") is #P-hard as well. [

We look at the co-clones IMs, IVy, IE,, and IS{j, for m > 2 next. The proof
for the NP- and #P-hardness is very similar to the previous proof.

Theorem 4.11. Let ' be a finite constraint language over {0,1} such that
IMy C (') C 1Vy. Then BAL-CSP(I") is NP-hard and #BAL-CSP(T") is #P-

hard under counting reductions.

Proof. For this proof we define the relation TF-Imp =45 C; x Cy x Imp.
Similarly to the proof of Theorem 4.10 we show that TF-Imp € (I‘>$Jé first,
and then prove that #BAL-CSP(Imp) <|°® #BAL-CSP(TF-Imp).

According to Proposition 2.8 and Figure 2.3 we have V, C Pol(I') C M, so
due to Table 2.3 it holds that V € Pol(I') and every function from Pol(T") is
monotone.

Let s > 2 be a core-size of (I'). Then R =45 Pol(I')(Cols,) is a weak base
for (I') according to Theorem 3.9. Let n =4 2°.

Let S be the Boolean relation defined by

S(t, fox,y) =aer R(foz, ... 2y, ... y,t, ..., 1).
—— —\— —
—1

w3

n
4

IE

We show S = TF-Imp. Since Cols,(1,—) € R, it holds that (1,0,0,0) € S and
since Cols,(1, —) V Cols,(2, —) € R it holds that (1,0,0,1) € S. Because
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(0,1,...,1) = Colsy(1,—) V- -+ V Cols,(s, —) € R,

we have that (1,0,1,1) € S. Thus TF-Imp C S.

Since we have that Pol(I') C Ry, it holds that all polymorphisms of I' are
both 0-reproducing and 1-reproducing. It follows that the first column of R
equals (0,...,0) and and the last column of R equals (1,...,1). Therefore it
remains to prove (1,0,1,0) ¢ S. Assume this is not the case. Then

U =g (0,1,...,1,0,...,0,1,...,1) € R.
—— ——
21
4

w3
w3

Due to Lemma 3.8 there is an s-ary Boolean function g € Pol(I") such that
g(Colsy(1, —), ..., Colsy(s,—)) = u.

It holds that ¢ is not monotone, because we have that ¢(0,...,0,1) = u[2] =1

and that g(0,1,...,1) = u[5] = 0. Since every function from M, is monotone

this is a contradiction. Hence TF-Imp = S and therefore TF-Imp € (R)3 C
(F)ﬂ. Note that TF-Imp is irredundant, therefore it follows from Proposi-
tion 3.11 that TF-Imp € (1">3977£. Thus, according to Proposition 4.2 it holds

#BAL-CSP(TF-Imp) <\°® #BAL-CSP(T).
Now we prove #BAL-CSP(Imp) <, #BAL-CSP(TF-Imp). Let

© =aer Imp(z1, 1) A -+ Almp(2, yn)

be some {Imp}-formula. We construct a {TF-Imp}-formula ¢’ depending on
p: let t and f be new and distinct variables. We set:

¢ =ger TE-Imp(t, f,21,y1) A -+ - A TF-Imp(¢, f, 2, yn)
Note that the following holds:
©' =@ ANCy(t) ACo(f).

It is easy to see that ¢ and ¢’ have the same number of balanced solutions.
Therefore and because ¢’ can be computed in logarithmic space it follows that
#BAL-CSP(Imp) <,* #BAL-CSP(TF-Imp). So together we have

#BAL-CSP(Imp) <,* #BAL-CSP(TF-Imp) <, #BAL-CSP(I").

Lemma 4.6 says that BAL-CSP(Imp) is NP-hard and #BAL-CSP(Imp) is
#P-hard, thus BAL-CSP(I") is NP-hard and #BAL-CSP(I') is #P-hard. [
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The following theorem covers the cases ISg" and ISg; for all m > 2.

Theorem 4.12. Let ' be a finite constraint language over {0,1} such that
(I'y = ISgs or (I') = ISy" for some natural number m > 2. Then BAL-CSP(T)
is NP-hard and #BAL-CSP(I") is #P-hard under counting reductions.

Proof. This proof follows the same lines as the proofs for Theorems 4.10 and
4.11.

Let T-Or =4 C; X Or? and TF-Or =aet C1 X Cp X Or?. First we look at
the cases (I') = IS and (I') = IS{; separately to show that T-Or € (T')y_, in
the first case and TF-Or € ('), in the second.

Then we prove NP-hardness for BAL-CSP(T-Or) and BAL-CSP(TF-Or)
and #P-hardness for #BAL-CSP(T-Or) and #BAL-CSP(TF-Or).

Let s be a core-size of (I') and R =4.; PolT'(Cols,). Then R is a weak base
of (I') due to Theorem 3.9.

Case 1: (I') = IS§" for some m > 2. We show T-Or € (I')4_.
Let S be the Boolean relation defined by

S(t,x,y) = R(x,...,x,y,...,y,t,... 1)
——— S — N —

2s—1 25—2 2s—2

Note that s > 2 according to Table 3.2. We show S = T-Or. Since
(I') C IIy, it holds that ¢; € Pol(I') and therefore (1,...,1) € R and
(1,1,1) € S. Because —e S{' it follows that

(1,...,1,0,...,0,1,...,1) = Colsg(1,—) — Cols,(2,—) € R,
—— —\— —
2s—1 2s—2 2s—2

which means (1,1,0) € S. Since Cols,(1, —) € R, it holds that (1,0,1) €
S, hence T-Or C S.
Note that {dual(h,,),—} is a base for S§' (see Table 2.3) and both
dual(h,,) and — are 1l-reproducing. Since Colss(—,2%) = (1,...,1), it
follows R(—,2%) = (1,...,1) and therefore it holds for all a,b € {0,1}
that (0,a,b) ¢ S.

Finally we show that (1,0,0) ¢ S: Assume (1,0,0) € S. Then according
to Lemma 3.8 there is some s-ary function g € Sg* such that

(0,...,0,0,...,0,1,...,1) = g(Cols4(1, —), ..., Colss(s, —)).
S—— e~ ——
2s—1 2s—2 25—2
That means g(Cols,(—,7)) = 1 if and only if 2571+ 2572 < § < 2" and
therefore we have g(ay,...,as) = a; A as. So it holds that

f =def 9 ° (1”%717737797%7 s 7p7:12)
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is the function represented by A and thus A € [{g}] C Si'. Since [{A}] =
E, it follows Eo C S, which is not true (see Figure 2.3). Hence, S =
T-Or and therefore T-Or € (R)3 C (I') .

Because T-Or is irredundant, it follows from Proposition 3.11 that T-Or €
(I')3- Proposition 4.2 implies #BAL-CSP(T-Or) <% #BAL-CSP(I).

Case 2: (I') = IS for some m > 2. We show TF-Or € (I'); . Let S be the
Boolean relation defined by

S(t, fox,y) = R(f,..., fox,....,x,y,...,y, t,... 1)
e — e e e —

2s—2 25—2 2s—2 25—2

We show S = TF-Or. Since Colss(1,—) € R and Colss(2,—) € R, it
holds that (1,0,0,1) € S and (1,0,1,0) € R. Note that V € Vo C Pol(I)
(see Figure 2.3). That means Cols,(1, —)V Colss(2, —) € R and therefore
(1,0,1,1) € S. Hence, TF-Or C S.

Since Sp; € Ry and Sg; € Ry every polymorphism of I' is O-reproducing
and 1-reproducing. Therefore the first column of R equals (0,...,0) and
the last column of R equals (1,...,1), that means all tuples from S have
the form (1,0, a,b) for some a,b € {0,1}.

Assume (1,0,0,0) € S. Then according to Proposition 3.11 there is some
s-ary function g € S{; such that

0,...,0,0,...,0,0,...,0,1,...,1) = g(Colss(1,—), ..., Colss(s, —)).
—_—— —\— —— —

25—2 25—2 2s5—2 2s5—2

In Case 1 we showed that then £y C Pol(I'), which again is contradiction.
Thus, S = TF-Or and therefore TF-Or € (R)4 C (I')3. Since TF-Or is
irredundant, it follows that TF-Or € (I'); . With Proposition 4.2 we

get #BAL-CSP(TF-Or) <,°® #BAL-CSP(T).

To complete the proof it is sufficient to show NP-hardness for the problems
BAL-CSP(T-Or) and BAL-CSP(TF-Or), and #P-hardness for the counting
versions #BAL-CSP(T-Or) and #BAL-CSP(TF-Or).

We first prove BAL-CSP(Or?) <6 BAL-CSP(T-Or) and afterwards show
#BAL-CSP(Or?) <|°® #BAL-CSP(TF-Or). For that let

Y= Orz(mlayl) ARRRAY Or2(xn>yn)

be an {Or?}-formula. We construct a {T-Or}-formula ¢’ and a {TF-Or}-
formula ¢” depending on ¢: let ¢ and f be new and distinct variables. We
set:

¢ =ger T-O1(t, z1,y1) A -+ - AN T-Or(t, z,, yn) A T-Or(t, ¢, f),



52 Chapter 4. Balanced Satisfiability

and

©" =gef TF-Or(t, f,x1,y1) A+ AN TF-Or(t, f, Ty, yn)

Note that ¢ and ¢” can be computed in logarithmic space. Obviously every
balanced solution I : Var(¢) — {0,1} for ¢ can be extended to a balanced
solution for ¢’ and ¢” by setting I(t) =45 1 and I(f) =4ef 0. For both ¢’ and
", this is the only satisfying extension of I that is balanced.

Now let I : Var(¢') — {0,1} be a balanced solution of ¢’. It is obvious
that I(t) = 1. If I(f) = 0, the restriction of I to Var(y) is a balanced solution
for ¢. If on the other hand I(f) = 1, then it holds that I assigns 0 to two
variables more of Var(¢) than 1. Let z € Var(p) be a variable mapped to
0 by I and let J : Var(p) — {0,1} defined by J(z) = 1 and for all x # z:
J(z) = I(x). Since every Or’-clause of ¢ is satisfied by I|yva(,) and because
of the monotonicity of Or?, the clauses are satisfied by J as well, so J is a
balanced solution for ¢. Thus ¢ has a balanced solution if and only if ¢’ has
one. Therefore we showed BAL-CSP(Or?) <!°¢ BAL-CSP(T-Or) which gives us
NP-hardness of BAL-CSP(T-Or) due to Lemma 4.7. Note that this reduction
is not parsimonious, we will show the #P-hardness of #BAL-CSP(T-Or) later.

Let I : Var(¢”) — {0,1} be a balanced solution of ¢”. Since I(0) = 0
and (1) = 1, it follows I|va(e) is a balanced solution for ¢. So ¢ has the
same number of balanced solutions as ¢” and we showed #BAL-CSP(Or?) <,
#BAL-CSP(TF-Or). Thus, due to Lemma 4.7 it holds that BAL-CSP(TF-Or)
is NP-hard and #BAL-CSP(TF-Or) is #P-hard.

For the #P-hardness of #BAL-CSP(T-Or) we show that #CSP(Or?) <8
#BAL-CSP(T-Or). Let

Y =def Or2(l‘17yl) JARERIAN sz(ffn,yn)

be an Or*-formula. Let f, t and v’ for every v € Var(y) be a new and distinct
variables. We define

¢ =ger T-Or(t, z1,y1) A+ - -AT-Or(t, T, yn) A /\ T-Or(t,v,v')AT-Or(t, t, f).

vEVar(yp)

The correctness of the reduction can be proven analogously to the correct-
ness of the reduction in the proof of Lemma 4.7. Since ¢’ can be constructed
from ¢ in logarithmic space, it holds #CSP(Or?) <\°® #BAL-CSP(T-Or).
With Lemma 4.7 it follows #BAL-CSP(T-Or) is hard for #P. This completes
the proof. n
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4.4 Hardness Results with Non-Unified Poofs

In this section we work in all proofs with concrete irredundant weak bases.
The minimal core-sizes provided in Table 3.2 allow us to work with relations
of a manageable arity. First we deal with the case where (I') = IDs.

Theorem 4.13. Let T be a finite constraint language over {0,1} such that
(I') = IDy. Then BAL-CSP(T") is NP-hard and #BAL-CSP(I") is #P-hard

under counting reductions.

Proof. Due to Table 2.3 it holds [hs] = Dy. Note that hy(a, b, c) is true if and
only if a+b+c > 2. Since 3 is a core-size of ID, (see Table 3.2), it follows from
Theorem 3.9 that R =4 ha(Colss) is a weak base of IDy. It can be verified
that

1
1
1

=

I
o O OO
_ o O O
O = O O
e )
OO O =
— O~
— = =

0

Note that the second row is generated by the coordinatewise application of hy to
the other three rows, which build Colss. Clearly, R is irredundant. According
to Corollary 3.12 it holds (R)3_, C ()3 .

We define Boolean relations S and T in the following way:

S(tafw%'ay) —def R(f7f>$7x>yay7tat)
and
T(tv favawaxay) —def R(fa f)vawvyaxvtat)'

It follows {5, T} C (R)y_, C (I')3_.. Therefore, according to Proposition 4.2,
it holds #BAL-CSP({S,T}) <, #BAL-CSP(I).

The following equivalences can be verified:
S(t, f,z,y) = Ci(t) A Co(f) A Odd*(z,y)

T(t, f,v,w,x,y) = Ci(t) A Co(f) ATmp(v, w) A Odd*(v, x) A Odd*(w, y)
We show that #BAL-CSP(Imp) <,°® #BAL-CSP({S,T}). Let

o =aer [\ Imp(as, ;)
=1
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be an Imp-formula. We construct a {5, T }-formula: let 2/, and 2” for every
z € Var(p) and t and f, be new and distinct variables. We set:

n

o = \T(t f, iy ahu)) NS foah 2y NS foul o).

=1

It holds that

¢ = A NImp(ai,y:) A\ 0dd*(z,2') AOdd* (2, 2") A Ci(t) A Co(f)

=1 zEP

Every balanced solution I : Var(¢') — {0,1} of ¢ is already balanced on
Var(¢') \ Var(y), because I(t) # I(f) and because the clauses of the form
Odd?(#, 2"") provide that for every z € ¢ it holds I(2') # I(2"). It follows that
I is balanced on Var(y) as well and therefore Iy, is a balanced solution for
®.

Conversely, every balanced solution I : Var(y) — {0,1} for ¢ can be ex-
tended to a balanced solution of ¢ by setting

I(t) =aer 1, I(f) =ae O,
I(2") #aer 1(z),  1(2") =4ef I(2) for every z € Var(yp).

Since every other extension of I to Var(y') does not satisfy ¢’, we have a
one-to-one correspondence between balanced solutions of ¢ and the balanced
solutions of ¢'. Hence,

#BAL-CSP(Imp) <, #BAL-CSP({S,T}) <|°® #BAL-CSP(T").

Due to Lemma 4.6 #BAL-CSP(Imp) is hard for #P and BAL-CSP(Imp)
is hard for NP. Therefore #BAL-CSP(I") is hard for #P and BAL-CSP(T") is
hard for NP. O

With the next four theorems we cover the cases IL, IL;, ILy and IL3. Note
that the hardness-results transfer to ILy due to Proposition 4.3, because 1Ly =
dual(IL;). The proofs of the following theorems are very similar, however they
differ in so many details that there does not seem to be a way to combine them.

Theorem 4.14. Let ' be a finite constraint language over {0,1} such that
(I') = IL. Then BAL-CSP(I") is NP-hard and #BAL-CSP(T") is #P-hard

under counting reductions.
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Proof. The minimal core-size of IL is 2 (see Table 3.2), therefore R =g
L(Cols,) is weak base of IL. It can be verified that

00 0O

00 11

01 01

0110 4
R = 100 1 = Even”.

1 010

1100

1 111

The second and the third row are from Colssy, the other ones result from the
application of functions from L to them.

Since Even? is obviously irredundant it follows from Corollary 3.12 that

Even' € (I'); . Therefore we know #BAL-CSP(Even') <\ #BAL-CSP(I)
due to Proposition 4.2.

We show #BAL-CSP(0Odd?®) <6 #BAL-CSP(Even*). Let

o =daer [\ Odd® (i, ;. 2)

i=1
be an Odd*-formula. Let k =45 | Var(¢)| and let ¢,ty,... t, f, fi,- .., fx be

new and distinct variables. We set:

n k
()0/ —def /\ EVGH4(t, Tiy Yi, Zi) A /\ Even4(t, t? tv tl) A Even4<f7 f7 f7 f’L)

i=1 i1

We prove that ¢’ has exactly twice as many balanced solutions as . First
note that the clauses Even®(t,¢,t, ;) and Even®(f, f, f, fi) for alli € {1,... k}
imply that every solution of ¢/ maps ti,...,t; to the same value as ¢t and
fi,. .., frx to the same value as f. Further, every balanced solution of ¢’ must
map f and t to different values, because otherwise this value would be assigned
to at least 2k + 2 variables, which is more than half of the variables of ¢.

Now let I : Var(¢) — {0,1} be a balanced solution of ¢. It can be verified
that we get a balanced solution for ¢’ by setting

I(f) =aer 1(f1) =def --- =aer L(fx) =aer 0 and
I(t) =def I(tl) =def -+ =def I(tk) =def 1.
This is the only extension of I to Var(¢') that is balanced and satisfies ¢,

because if we map ¢ to 0, then the I(¢) + I(z;) 4+ I(y;) + I(z;) would be odd for
every i € {1,...,n}.
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Finally let I : Var(¢') — {0,1} be a balanced solution for ¢. Since [
is already balanced on the new introduced variables, it holds that I is also
balanced on Var(y). For every 1 < i < n we know that [(t)+1(z;)+1(y;)+1(2;)
is even, therefore I(z;)+I(y;)+1(2;) is odd if and only if I(¢) = 0. That means
I1var(y) is a balanced solution for ¢ if and only if I(t) = 1.

Since = € Ny C L, it holds that I’, defined by I'(x) = —I(z), is a bal-
anced solution of ¢’ as well. That means exactly half of that balanced solu-
tions of ¢’ can be restricted to a balanced solution of ¢. Thus, ¢’ has ex-
actly twice as many balanced solutions as . Because ¢’ can be computed
in logarithmic space, it follows that we have a counting reduction between
#BAL-CSP(0dd?) and #BAL-CSP(Even®*). Since #BAL-CSP(Odd?) is #P-
hard and BAL-CSP(Odd?) is NP-hard due to Lemma 4.8, and since we showed
#BAL-CSP(Even?) <}°g #BAL-CSP(T") above, it holds that #BAL-CSP(T") is

#P-hard under counting reductions and BAL-CSP(I") is NP-hard. O

Theorem 4.15. Let I' be a finite constraint language over {0,1} such that
(I') = IL3. Then BAL-CSP(T") is NP-hard and #BAL-CSP(I") is #P-hard
under counting reductions.

Proof. The minimal core-size of IL3 is 3 due to Table 3.2, therefore it follows
from Theorem 3.9 that R =, L3(Colss) is a weak base for ILs. It can be
verified that

000011711
00110011
01010101

r_|lO01101001
10010110
10101010
11001100
11110000

Note that the first three tuples of R form Colsz. It holds that
Ry(w1, 9, T3, T4, T5, 6, T7, Tg) =

Even® (1, 19, 3, 14) AOdd? (21, 28) AOdd? (9, 17) AOdd? (23, 26) AOdd? (24, 25).

It can be seen that R is irredundant, therefore it follows from Corollary 3.12
that R € (I)y_. So we know #BAL-CSP(R) <°® #BAL-CSP(T') due to
Proposition 4.2.

In the proof of Theorem 4.14 we showed that BAL-CSP(Even*) is NP-hard
and #BAL-CSP(Even?) is #P-hard under counting reductions. Therefore it
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suffices to show #BAL-CSP(Even®*) <°* #BAL-CSP(R) to prove this theorem.
Let

n
¢ =aer [\ Even*(w;, z;, yi, %)
i=1
be an Even’-formula. Without loss of generality assume that k =g | Var(p)|
is at least 2. For every v € Var(p) let v!, ..., v* be new and distinct variables.
We set:
n
O =aef /\ R(w;, x5, Ys, 26, 25, yp o, wi) A - - A R(wi, 24, v, 26, 25,y ok wk).
i=1

Then the following equivalence holds:

¢ =pNn /\ Odd®(v,v') A+ -+ A Odd* (v, v%).

vEVar(p)

Let I : Var(y¢') — {0,1} be a balanced solution of ¢'. Clearly I|var() is
a solution of ¢. We show that [ |Var(¢) is balanced. Let [y be the number
of variables mapped to 0 and /; be the number of variables mapped to 1 by
I Var(g)- It holds for every v € Var(p) and for every 1 < i < k that I(v) # I(v")
in order to satisfy Odd®(v,v?). Therefore I maps [y + kI, variables to 0 and
l1 + kly variables to 1. Since I is balanced, it follows ly + kl; = ;1 + kly, which
implies [y = [; because k > 2. Hence, [ |Var(‘p) is a balanced solution for .

Obviously I is uniquely determined by I |var(,). Now let I : Var(y) — {0,1}
be a balanced solution for ¢. For every i € {1,...,k} and ever v € Var(yp)
we set I(v') #qer I(v). Clearly this extension satisfies ¢’ and with the above
equations it can be seen that it is balanced on Var(y').

Thus we have a one-to-one correspondence between balanced solutions from
¢ and balanced solutions from ¢'. Since ¢’ can be computed in logarithmic
space, it follows #BAL-CSP(Even?) S}Og #BAL-CSP(R), which completes the
proof. O]

Theorem 4.16. Let ' be a finite constraint language over {0,1} such that
(I') = ILy. Then BAL-CSP(I') is NP-hard and #BAL-CSP(I") is #P-hard

under counting reductions.

Proof. Since 2 is a core-size of IL,; due to Table 3.2 it follows with Theorem 3.9
that R =4, L1(Colsy) is a weak base for IL;. It can be verified that

0 0

_ o O =
—_ =

1
0
1

—_ O
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Note that the first two rows of R are the ones from Colsy. It is easy to see
that R = Odd? x C; and that R is irredundant. It follows from Corollary 3.12
that R € (I')3 . Therefore we know #BAL-CSP(R) <°® #BAL-CSP(T) due
to Proposition 4.2.
We show #BAL-CSP(0dd?) <!°¢ #BAL-CSP(R), then the theorem follows

with Lemma 4.8. Let .

/\ 0dd* (w4, yi, )

i=1
be an Odd*-formula. Let k =4, Var(¢) and let ¢y, ...t f, fi, ..., fx be new
and distinct variables. We set:

n k
¢ =aep \ R(xiys ziot) A\ Even® (fi, fistis )

i=1 11

The correctness of the reduction can be shown with similar arguments as
in the proof of Theorem 4.14. Note that here we get a parsimonious reduction
because the variable t must be mapped to 1 by every solution.

Since ¢’ can be constructed in logarithmic space, the proof is complete. [

Theorem 4.17. Let ' be a finite constraint language over {0,1} such that
(I') = ILy. Then BAL-CSP(T") is NP-hard and #BAL-CSP(I") is #P-hard

under counting reductions.

Proof. The minimal core-size of ILy is 3 (see Table 3.2), therefore R =4
Lo(Colss) is a weak base for 1Ly according to Theorem 3.9. It holds that

0000

1
1
= 0

o O O

_ o O =
O = O =
— = =

011
1 01
1 10 0
The first three tuples of R are the ones from Colss. It can be verified that the

following equivalence is true:
R(x1, 22,73, 74, 75,76, T7, T8) =

Odd? (g, 3, 14) A Odd? (x5, 27) A Odd? (23, 26) A Odd? (24, 25) A Co(1) A Cy(28)

It is easy to see that R is irredundant. So it follows from Corollary 3.12 that
R € (I')3_. Therefore we know #BAL-CSP(R) <% #BAL-CSP(T") due to
Proposition 4.2.

Lemma 4.8 says that BAL-CSP(Odd?) is NP-hard and #BAL-CSP(Odd?)
is #P-hard under parsimonious reductions. Therefore to prove this theorem it
suffices to show #BAL-CSP(0dd®) <\’ #BAL-CSP(R).
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Let
o =daer [\ Odd® (2,5, 2)

i=1
be an Odd’-formula. Without loss of generality assume that k =4 | Var(y)|
is at least 2. Let f, t and v!,...,v* for every v € Var(p) be new and distinct
variables. We set:

n
90, —def /\R(taxiayivziazilayilaxil7f) AR /\R(ta'xuyuzZ)Zf)yf)xfaf)
=1

Then the following equivalence holds:

¢ =@ ACo(f) ANCi(t) A /\ Odd*(v,v') A+ A Odd?(v, v")

veVar(p)

The correctness of this reduction can be proven with using similar arguments
as in the proof of Theorem 4.15.

Since ¢’ can be constructed in logarithmic space from ¢, it follows that
#BAL-CSP(0dd?) <,°® #BAL-CSP(R), which completes the proof. O

Finally we prove NP-hardness and #P-hardness for the non-Schaefer con-
straint languages. Note that the case II is already covered in Theorem 4.9 and
that Il is dual to II;. For the remaining four non-Schaefer co-clones the proofs
again are very similar, but not obviously unifiable.

Theorem 4.18. Let ' be a finite constraint language over {0,1} such that
(I') = I1y. Then BAL-CSP(I") is NP-complete and #BAL-CSP(I") is complete

for #P under counting reductions.

Proof. Due to Table 3.2, the minimal core-size of Iy is 3, therefore R =gy
I,(Colsy) is a weak base for II; according to Theorem 3.9. Because [id] = I
(see Table 2.3), it holds that R = Cols;. That means

R:

o O O

0
0
1

S = O

0
1
1

O O =

1 11
01 1
1 01
It can be verified that the following equivalence is true:

R(xb Lo, X3,T4,Ts5,Te, L7, Z‘g) El—in—?)((ﬁg, xs, ZL’5) A CO(I1> A Cl(l’g)
A Odd?(zq, 27) A Odd®(z3, z6) A Odd?* (24, x5)
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Since R is irredundant, it follows R € <F>ﬂ o from Corollary 3.12. Therefore
we have #BAL-CSP(R) <,°® #BAL-CSP(T") due to Proposition 4.2.

It can be seen that 1-in-3 generates the co-clone Il in Table 3.2, therefore it
follows from Schaefer’s Theorem (Theorem 2.11) that CSP(1-in-3) is NP-hard
and from Theorem 2.12 that #CSP(1-in-3) is hard for #P under parsimonious
reductions. Hence, showing #CSP(1-in-3) <|°® #BAL-CSP(R) completes the
proof. Let

o =aes [\ 1-in-3(x1, s, 21)
i=1
be a constraint formula over {1-in-3}. Let f, ¢t and v’ for every v € Var(p) be
new and distinct variables. We define an R-formula ¢':

n
SOI —def /\ R(fa Ly Yiy 21{7 Zi, y;; ‘7;27 t)
=1

According to the above it holds

o=pn N\ Odd’(v;,v)) A Colf) ACi(t).

vEVar(p)

Obviously every balanced solution of ¢ satisfies ¢ as well and every solution of
varphi can be extended uniquely to a balanced solution for ¢’. Since the formula
¢ can be constructed in logarithmic space it follows that #CSP(1-in-3) <8

#BAL-CSP(R). m

Theorem 4.19. Let I' be a finite constraint language over {0,1} such that
(I') = INy. Then BAL-CSP(I") is NP-complete and #BAL-CSP(I) is complete
for #P under counting reductions.

Proof. Due to Table 3.2, the minimal core-size of INy is 3, therefore R =g
Ny(Colss) is a weak base for INy according to Theorem 3.9. It holds that

00001111
001100711
r_|lO01O010101
10101010
11001100
11110000

It can be verified that R = ColssUdual(Colssz). Since R is irredundant, it follows
from Corollary 3.12 that R € (I'); . Therefore we have #BAL-CSP(R) <8
#BAL-CSP(I") due to Proposition 4.2.
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Due to Table 3.2 it holds that 1-in-3 generates the Il therefore it follows
from Schaefer’s Theorem (Theorem 2.11) that CSP(1-in-3) is NP-hard and
from Theorem 2.11 that #CSP(1-in-3) is hard for #P under parsimonious
reductions. Hence, showing #CSP(1-in-3) <16 #BAL-CSP(R) completes the
proof. Let

o =aes [\ 1-in-3(x1, i, 21)
i=1
be a constraint formula over {1-in-3}. Let f, ¢t and ¢’ for every v € Var(p) be
new and distinct variables. We define an R-formula ¢':

n
Y =gef /\ R(f, w4, Ys, 2, 2, Yi» T3, 1)

=1

We show that the number of balanced solutions for i is exactly twice the
number of solutions for ¢. Let ¢’ be the formula from ¢ in the proof of
Theorem 4.18. Note that a solution for @) maps f to 0 if and only if it is a
solution for ¢'. It maps f to 1 if and only if it is a solution for dual(y’).

Since the number of solutions for ¢ and balanced solutions for ¢’ is exactly
the same (see proof of Theorem 4.18), and since ¢’ has exactly the same number
of balanced solutions as dual(¢p), it holds that the number of balanced solutions
for ¢ is exactly twice the number of solutions for .

Since the formula ¢ can be constructed in logarithmic space it follows that
#CSP(1-in-3) <los #BAL-CSP(R). O

Theorem 4.20. Let T' be a finite constraint language over {0,1} such that
(I') = 1Iy. Then BAL-CSP(I") is NP-complete and #BAL-CSP(T") is complete
for #P under counting reductions.

Proof. Due to Table 3.2, the minimal core-size of Ily is 2, therefore R =gy
Ip(Colsy) is a weak base for Il according to Theorem 3.9. It holds that

0000
R=10011
0101

Since R is irredundant, it follows R € (I')y_, from Corollary 3.12. Therefore

we have #BAL-CSP(R) <, #BAL-CSP(T') due to Proposition 4.2.
Since (R) = Il and (C;) = IRy, it holds that

({R,C1}) = (I, UIR,) = IL.
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Therefore it follows Theorem 2.11 that CSP({R,C;}) is NP-hard and from
Theorem 2.12 that #CSP({R,C;}) is hard for #P under parsimonious re-
ductions. Hence, showing #CSP({R, C;}) <,°® #BAL-CSP(R) completes the
proof. Let

m

P =def /\ R(wy, zi, yiy i) A /\ Ci ()
i=1 i=1
be a constraint formula over {R,C;}. Let k =4 |Var(yp)| the number of

variables appearing in ¢ and let f, f1,..., fr,t,t1,...,t; and 2’ for every x €
Var(y) be new and distinct variables. We define an R-formula ¢’

@' =def /\ R(wy, zi, yi, ) N /\ R(f,x,a',t)
=1 z€Var(p)

k m

A /\R(fl7fl7t7tl> A /\R<f7 f7t7vi)

i=1

Note that | Var(y')| = 4k + 2. Let I : Var(¢') — {0, 1} be a balanced solution

for ¢'. The clauses of the form R(f;, fi,t,t;) give us that I(f;) =--- = I(fx) =
0 and I(t) = I(ty) = --- = I(tg). Since f appears in some of the clauses in
the first position, we have I(f) = 0. It follows I(t) = I(t;) = --- = I(tx) = 1,

otherwise I would map at least 2k + 2 variables to 0 which means that I would
not be balanced. Because of the clauses of the type R(f, f,t,v;), it holds that
I(vy) =+ =1(vy,) = I(t) = 1, therefore I satisfies .

From the clauses of the type R(f,x,2’,t) it follows that for all z € Var(y)
it holds I(x) # I(«'). That means I is uniquely determined by I|yvar(). So
for every solution of ¢ we can define at most one extension that is a balanced

solution for ¢.
Now let I : Var(y) — {0,1}. We extend I by defining:

[(f> —def I(fl) =def - -+ —def I(fk) =def 07
I(t) =def I(tl) =def -+ —def [(tk) =def 1, and
I(z") #g4ef I(x)  for every z € Var(yp).

Obviously this extension is balanced and, since for all i € 1,...,m we have
I(v;) = 1, it satisfies ¢/. Hence, the balanced solutions for ¢’ are exactly unique
extensions of solutions for . Since ¢’ can be constructed in logarithmic space,

we proved #CSP({R, C;}) <\°® #BAL-CSP(R). O

Theorem 4.21. Let ' be a finite constraint language over {0,1} such that
(I'y = IIy. Then BAL-CSP(I") is NP-complete and #BAL-CSP(I") is complete

for #P under counting reductions.
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Proof. Due to Table 3.2, the minimal core-size of IN is 2, therefore R =g
N(Colsy) is a weak base for Il according to Theorem 3.9. It holds that

0000

_ == O O
_— =0 = O
— O Rk O
_ o O = =

Since R is irredundant, it follows R € (I')y_, from Corollary 3.12. Therefore

we have #BAL-CSP(R) <,* #BAL-CSP(T') due to Proposition 4.2.
Since (R) = Il and (Cy, C;) = IRy, it holds that

<{R, Co, Cl}> - <IN U IR2> - IIQ

Therefore it follows from Theorem 2.11 that CSP({R, Cy, C;}) is NP-hard and
from Theorem 2.12 that #CSP({R, Cy, Cy}) is hard for #P under parsimo-
nious reductions. Hence, showing #CSP({R, Cy, C;}) <|°® #BAL-CSP(R)
completes the proof. Let

n mo m1
P =def /\ R(wy, zi, yiy i) A /\ Co(vi) A /\ Cr(ui)
i=1 i=1 i=1
be a constraint formula over {R, Cy,C1}. Let k =4 | Var(¢)| be the number
of variables occurring in ¢ and let f, f1,..., fx,t,t1,...,1x and 2’ for every
x € Var(p) be and distinct variables. We define an R-formula ¢':

@ =def /\R<wi;xi7yi7zi) A /\ R(f,z,2',t)

i=1 z€Var(p)

k
N \R(S. £ £ F) ARt E L t)

i=1

/\/\DR(f7faf>Ui) /\/\IR(t?t>tvul)
=1 =1

This construction is very similar to the one in the proof of Theorem 4.20.
The correctness of this reduction can be shown with analogous arguments.
Note that R is complementive, therefore we get here that the number of bal-
anced solutions for ¢’ is exactly twice the number of solutions for ¢. Since
¢’ can be constructed in logarithmic time, this gives #CSP({R, Cy, C,}) <los
#BAL-CSP(R). O



64 Chapter 4. Balanced Satisfiability

Our main theorem summarizes the previous results to state a complete
complexity classification for the balanced satisfiability problems. A graphical
overview of this dichotomy can be seen in Figure 4.4.

Theorem 4.22. Let I be a finite constraint language over {0,1}.

e BAL-CSP(I') is decidable in polynomial time if (I') C 1Dy, and in all
other cases BAL-CSP(I") is NP-complete.

o #BAL-CSP(I") is computable in polynomial time if (I'y C 1Dy, and in all
other cases #BAL-CSP(I") is #P-complete under counting reductions.

Proof. The upper complexity bounds follow from Proposition 4.1 and The-
orem 4.5. The lower bounds follow from Theorems 4.9-4.21 and Proposi-
tion 4.3. [

4.5 Exact Satisfiability

We have shown that weak bases can be used to obtain a full classification for
the balanced satisfiability problem and its counting version. It turns out, that
the complexity of these problems depends only on the co-clone generated by
the according constraint language, although in the first place we could only
prove that it depends only on the generated weak system without equality
(see Proposition 4.2). In some cases we had to work with concrete weak bases
(Section 4.4) and deal with every co-clone one-by-one, and in some cases we
could work with properties of weak bases and deal with several co-clones at
the same time (Section 4.3).

Note that the classification for balanced satisfiability also holds for the more
general problem of exact satisfiability, also known in the literature as K-ONES.

Problem: K-ONES(T)
Input: a I'-formula ¢, k € N
Question: does ¢ have a solution that maps exactly k variables to 1?7

Since every Boolean constraint formula ¢ has a balanced solution if and
only if ¢ has a solution with exactly 1| Var(y)| variables set to 1, it holds that
BAL-CSP(I") reduces trivially to K-ONES(I") for every Boolean constraint lan-
guage I'. The proof for Theorem 4.5, which covers all polynomial time cases
of balanced satisfiability, gives a polynomial time result for the exact satisfia-
bility as well. The results for #BAL-CSP(I") transfer to the counting variant
#K-ONES(T") of the exact satisfiability problem in the same way, therefore we
obtain the following classification.
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Corollary 4.23. Let ' be a finite constraint language over {0, 1}.

e K-ONES(TI") is decidable in polynomial time if (I') C 1Dy, and in all other
cases K-ONES(I") is NP-complete.

o #K-ONES(T') is computable in polynomial time if (I') C 1Dy, and in all
other cases #K-ONES(I") is #P-complete.



Chapter 5

Default Logic

As a second example for applications of weak bases we classify the complexity
of constraint problems in the context of propositional default logic. Default
logic is a nonmonotonic logic introduced by Reiter in [Rei80]. It allows to
model human behavior to complement incomplete information with default
assumptions. We give an often used example: if someone told us that there
was a bird in the garden, then we would intuitively think about a bird that can
fly. However, there are birds like ostriches and penguins, that cannot fly, and
nobody told us that the special bird in the garden is a flying bird. In default
logic we can express as a rule that we assume by default every bird to be able
to fly, as long as we do not know that the bird belongs to a race of non-flying
birds. Due to the ability to express such default assumptions, default logic is
important in artificial intelligence.

We look at three computational problems that arise in this context: the
first one is the question if a given set of facts and a given set of default rules
are consistent; the second is whether the default rules can be applied such that
an additionally given formula results as a consequence; and the last one is the
question whether a given formula results as a consequence, no matter in which
order the rules are applied. The last two questions are known as credulous
reasoning and skeptical reasoning.

The complexity of these three problems has been studied by different au-
thors. Gottlob showed that these problems are either complete for X5 or I1Y
[Got92]. Kautz and Selman [KS91] and Stillman [Sti90] proved NP- and coNP-
completeness and polynomial time results for various syntactical restrictions of
these problems.

We look at the above problems in the constraint satisfaction context, that
means we restrict all formulas appearing in the input to be constraint formulas
over a fixed Boolean constraint language I'. Using the tools developed in
Chapter 3 we achieve a full complexity classification for all three questions.

67
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5.1 Reiter’s Default Logic
A default d is an expression of the form

a: My, ...,M3,
/7 )

where o, 31,..., Bn,7 are propositional formulas. We call « the prerequisite,
B1, ..., Bm the justification, and v the consequence of d. Intuitively d is a rule
saying that if o is known and 4, .. ., 3,, are consistent with what we know, then
v is believed to be true. The rule mentioned in the example in the beginning
of the chapter can be expressed by a default of the form

x is bird : Mz can fly

x can fly

A default theory T is a pair (W, D), where W is a set of propositional
formulas and D a set of defaults. We refer to W as the knowledge base of T'.

The set of formulas that can be derived to be believed from a default theory
is formalized in the concept of extensions, which we define now. For a set .S of
propositional formulas we define Th(S) to be the deductive closure of S, i.e.,
the set of all formulas that are propositionally implied by S.

Definition 5.1. Let T'= (W, D) be a default theory. For a set S of proposi-
tional formulas let A(S) be the smallest set satisfying the following properties:

1. W C A(S)
2. Th(A(S)) = A(S)
3. I

CK:Mﬁl,...,Mﬁm
v

then v € A(S).

€D, acA(S), and =f,...,70, &9,

A set of propositional formulas E is an extension for T', if E is a fixpoint of A,
e, if A(F)=EFE.

Note that if S is inconsistent and deductively closed, it holds that A(S) =
Th(WW). Therefore T has an inconsistent extension if and only if the knowledge
base W is inconsistent. In this case Th(WW) is the only extension of 7'

The following theorem provides an alternative definition of extensions.
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Theorem 5.2 ([Rei80]). Let T' = (W, D) a default theory and E a set of
propositional formulas. Let Ey =W and

a:Mﬁl,...,Mﬂm

Ez+1:Th(EZ)U{’}/| GD,O./GEZ‘ and ﬁﬁl,...,_'ﬂm¢E}
for all i € N. Then it holds that E is an extension for T if and only if
E= UieN E;.

The previous theorem shows that E is the deductive closure of W and
the consequences added in the recursion. The next corollary formalizes this
statement. For a default theory T'= (W, D) with extension E the set

a: My, ...,M3,
gd(E,T) :def{ 517 b

ED|O&€E,_|ﬁ1,...,_|ﬂm¢E}

is called the set of generating defaults of E. For a set of defaults D, we denote
the set of all consequences appearing in D by cons(D).

Corollary 5.3 ([Rei80]). Let T = (W, D) be a default theory and let E be an
extension for T'. Then the following equation is true.

E = Th(W U cons(gd(E, T)))

That means every extension is uniquely characterized by its generating
defaults. So for finite default theories, i.e., default theories with a finite set of
defaults and a finite knowledge base, all extensions have a finite representation.
The size of this representation is bounded by the size of the given default theory
T, because the generating defaults of an extension are a subset of the defaults
inT.

The following three algorithmic questions have been investigated:

1. Given a default theory, does it have an extension? The existence of an
extension means that the rules formulated in the defaults of the theory
do not conflict in view of the underlying knowledge base.

2. Given a default theory T" and a formula ¢, does ¢ belong to some exten-
sion for T'7 This question is referred to as credulous or brave reasoning.
The underlying intuition is that it is possible to conclude ¢ from T' by
applying defaults from 7.

3. Given a default theory 7" and a formula ¢, does ¢ belong to every exten-
sion for 77 We speak of skeptical or cautious reasoning in this case. If ¢
is in every extension of 7', it means that the defaults from T force us to
conclude ¢.
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Georg Gottlob proved that the first two questions are X} -complete problems
and the third question is a II}-complete problem [Got92].

We take a closer look at these problems and investigate their complexities if
we allow constraint formulas over some finite Boolean constraint language only.
Let I" be a finite Boolean constraint language. A I'-default is an expression of

the form
a: MGy, ...,MG,
/7 )
where «, 01, . .., B,y are [-formulas. A T'-default theory is a tuple ' = (W, D)
where the knowledge base W is a set of I'- formulas, and D is a set of I'-defaults.

If the prerequisite « is a tautology, e.g. the empty conjunction of constraint
clauses, we write just

:MBy, ..., MB,,
v

Since every constraint formula over a Boolean constraint language is equivalent
to some propositional formula, we treat I'-formulas as propositional formulas
and ['-default theories as default theories.

Let E be an extension for some I'-default theory 7. Note that E contains
not only I'-formulas and that F can even contain formulas that are not equiv-
alent to any I'-formula. However, according to Corollary 5.3, E is uniquely
identified by its set of generating defaults which is a set of I'-defaults.

In this chapter we investigate the complexity of the following three problems
for every finite Boolean constraint language I.

Problem: EXT(I)
Input: a ['-default theory 7' = (W, D)
Question: does T have an extension?

Problem: CRED(I)
Input: a [-default theory T'= (W, D) and a I'-formula ¢
Question: does ¢ belong to some extension for 77

Problem: SCEPT(I")
Input: a [-default theory T'= (W, D) and a I'-formula ¢
Question: does ¢ belong to every extension for 77

The general upper complexity bounds for these problems follow directly
from Gottlob’s complexity results for unrestricted propositional default logic.

Proposition 5.4 (|Got92]). Let I' be a finite constraint language over {0,1}.
Then EXT(T) € ¥F, CRED(T) € XF, and SCEPT(T) € ITE.
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First we show, that for two constraint languages that generate the same
weak system without equality, each of the three problems above have the same
complexity.

Proposition 5.5. Let 'y and 'y be finite constraint languages over {0, 1} such
that Ty C <F2>$§’¢. Then EXT(T'}) <" EXT(T';), CRED(I';) <! CRED(I'y),
and SCEPT(T';) <9 SCEPT(I,).

Proof. Let T = (W, D) be a I'i-default theory and ¢ a I';-formula. Due to
Proposition 2.5, for every I';-formula we can construct an equivalent I's-formula
in logarithmic space. Let T" = (W', D’) be the I's-default theory that results
from T' by replacing every occurring I';-formula by an equivalent I's-formula
and let ¢’ be a I'p-formula that is equivalent to . Then T and T" differ only
in equivalent replacements, therefore they have exactly the same extensions
and since ¢ and ¢’ are equivalent, ¢’ is in some or respectively all of these
extensions if and only if ¢ is. This proves the three reductions stated in the
proposition. 0

In the end of this chapter we will see that the above proposition even
holds if we only stipulate that I'y C (I'z) instead of I't C (T's)4 . However,
there is no obvious way to generalize the above proof to give this stronger
version of Proposition 5.5. That the complexity for all three questions depends
only on the co-clone generated by the according constraint language will be a
consequence of our classification.

5.2 Existence of an Extension

We first classify the complexity of EXT(I') depending on the constraint lan-
guage I'. The classifications for the constraint problems in the context of
credulous and skeptical reasoning will be addressed afterwards.

With the first proposition we cover all cases, in which all formulas are 0-
valid or all formulas are 1-valid. A formula is 0-valid (1-valid) if it can be
satisfied by setting all variables to 0 (to 1). We show that in these cases
there exists a unique extension for every default theory. Considering that sets
of 0-valid formulas are allways consistent as well as sets of 1-valid formulas,
this result is not surprising. The proof relies on Reiter’s characterization of
extensions given in Theorem 5.2, which specifies a unique extension for every
default theory over a constraint language mentioned in the proposition.

Proposition 5.6. Let T" be a finite constraint language over {0,1} such that
(T') C Iy or (') CIIy. Then every I'-default theory has exactly one extension.
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Proof. Let (I') C IIy. Then every I'-formula ¢ is O-valid, i.e., the assignment
that maps every variable from ¢ to 0 is a solution for ¢. Let T = (W, D)
be a I'-default theory. Then, according to Corollary 5.3, it holds that every
extension is the deductive closure of a set of I'-formulas. Obviously the deduc-
tive closure of 0-valid formulas contains only 0-valid formulas, therefore as well
every extension of 7' contains only 0-valid formulas.

Now consider the construction of the set £; in Theorem 5.2. Since every
justification (8 of every I'-default from D is 0-valid it follows that —( is not
0-valid and therefore cannot appear in any extension of 7. That means F; does
not depend on the choice of the extension F for every ¢ € N. Since the union
Uien £ again contains only 0-valid formulas, it is the unique extension of 7T'.

For (T') C II; all I'-formulas are 1-valid and the proof works analogously to
the above. O

It turns out that these are the only easy cases in the sense that for all
other Boolean constraint languages I" than mentioned in the proposition, we
will show later that the problem EXT(T') is hard for NP or even for X}

We now prove that for Schaefer constraint languages our problem is included
in NP.

Proposition 5.7. Let I" be a finite constraint language over {0,1} such that
(I') CIE,, (I') C1V,, (I') C 1Dy, or (I') C ILy. Then EXT(T") € NP.

Proof. Note that a constraint language I' satisfying the prerequisites of the
proposition is Schaefer.

The following non-deterministic algorithm checks if a default theory has an
extension by first guessing a set of defaults D’ and then verifying that D’ is a
set of generating defaults of an extension:

input: a [-default theory 7' = (W, D)
guess a set D' C D of generating defaults
let w = /\g)EWUCons(D’) 4
for every default M € D' do
verify that ¢ F « and ¢ F —f; for every 1 <i <m
end for
for every default M e D\ D' do
verify that ¢ ¥ a or ¢ F —3; for some 1 <7 <m
end for

We first show that the algorithm verifies that the set D’ guessed in line 2
is a set of generating defaults of an extension for 7', i.e., we show that E =,
Th(W U cons(D’)) is an extension for 7" with generating defaults D’.
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Note that the formula ¢ defined in line 3 is a conjunction of I'-formulas and
therefore itself is a I-formula. It also holds £ = Th({¢}) and it holds ¢ € FE
if and only if ¥ F ¢ for every propositional formula ¢.

In lines 4-6 it is verified that all defaults M € D' satisfy the con-
ditions o € E and =04, ...,0,, ¢ E, which ensure that v € A(FE). Therefore
cons(D') € A(FE) and since W C A(E) and A(FE) is deductively closed, it
follows A(E) C E.

Lines 7-9 check that for all defaults M € D\ D’ at least one of the
conditions a € E and —f3;,...,70, ¢ E is not satisfied. That means these
defaults do not affect A(FE). So, because of the minimality of A(FE), it holds
that £ = A(F), which means F is an extension for 7" with generating defaults
D'

We now have a closer look on the running time of the algorithm. Note
that ¥ F ¢ is true if and only if ¢ is equivalent to ¥ A ¢ and ¢ F - is true
if and only if 1) A ¢ is not satisfiable. Since I' is Schaefer, we can decide in
polynomial time whether two I'-formulas are equivalent according to [BHRV02]
and whether a I'-formula is satisfiable in polynomial time according to [Sch78].
Hence, lines 5 and 8 can be implemented to perform in polynomial time, and
so the above algorithm is an non-deterministic polynomial time algorithm.

]

To complete the complexity classification for EXT(I"), we identify the NP-
and Y%-hard cases. The next lemma provides implementation results that are
helpful for our hardness results. In the proof we work with irredundant weak
bases that are introduced in Chapter 3.

Lemma 5.8. Let I be a finite constraint language over {0,1}. The following
18 true:

1. ZfIR,Q - <F>, then CO X C1 € <F>£,;£

2. if (T) € INy and () € IN, then Odd® € (I') .

Proof. 1. Let IRy C (T'). Let s be a core-size of (I'). Due to Theorem 3.9 it
holds that
R =4. Pol(I")(Colsy)

is a weak base for (I'). Note that according to Table 3.2 we have s > 1.
Let

=gqef R(z,....2,y,...,9).
© =def ( 1 Y 1?/)
25— 25—

We show that Cy x Cy(z,y) = ¢. Since Cy x C; = {(0,1)}, we have
to show that the assignment [ : {z,y} — {0,1} with I(z) =4 0 and
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I(y) =aer 1 is the only solution for ¢. Since Pol(I') C Ra, it holds that
every polymorphism is both O-reproducing and 1-reproducing. Consider
Cols,. Its leftmost column contains only Os and its rightmost column
contains only 1s. So if we apply Pol(I") these columns still contain only
0s or only 1s. Hence, R(—,1) = (0,...,0) and R(—,2%) = (1,...,1) and
every solution for ¢ maps x to 0 and y to 1.

It is easy to see, that I indeed is a solution of ¢, because
Colss(1,—) = (0,...,0,1,...,1).
i cn
25 25—

Thus, Cy x Cy(z,y) = ¢ which means Cy x C; € (R)3 C (I')3. Since
Cox Cy is irredundant, it follows Co x C; € (I')y_, due to Proposition 3.11.

. Let (I') CINy and (I') € IN. Let s be a core-size of (I') and let

R =45 Pol(I")(Colss).
Define S to be the 2-ary Boolean relation such that

S(z,y) = R(x,...,z,y,...,y).
—_—— S —
2s—1 2s—1
We show that S = Odd?. Note that = € Pol(T') because (I') C IN,. It
holds that

Colss(1,—) = (0,...,0,1,...,1).
H,l_/wl_/
25— 25—

Since Colsy; € R and = € Pol(I") is a polymorphism of R, it follows
that {(0,1),(1,0)} = Odd*> C S. Now assume (0,0) € S, which means
(0,...,0) € R. This implies that ¢y is a polymorphism of R. Since — is
a polymorphism of R as well, it then follows (I') C IN, which contradicts
the given prerequisites. So it holds (0,0) ¢ S and analogously it holds
(1,1) ¢ S. Thus, S = Odd>.

Therefore we have Odd? € (R)3 C (I')y, and since Odd? is irredundant,
it follows Odd* € (T')5_. O

We now prove that EXT(I") is NP-hard if I" generates a co-clone above IRs.

With the previous lemma the proposition easily follows from an NP-hardness
result from Kautz and Selman for default logics that are build only from literals
[KS91].

Proposition 5.9. Let I" be a finite constraint language over {0,1} such that
IRy C (I'). Then EXT(I) is NP-hard.
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Proof. Due to Lemma 5.8 it holds that Co x C; € (I')4 .. Since it follows from
Proposition 5.5 that EXT(Cy x C;) <96 EXT(I'), it is sufficient to show that
EXT(Cy x Cy) is NP-hard.

We use the following result from Kautz and Selman: It is NP-hard to
decide if a given default theory in which all formulas are conjunctions of literals
has an extension [KS91]. Note that T and L appearing in their notation
can be expressed by the empty conjunction of literals and by conjunction of
contradicting literals. Translated to our notation this result can be formulated
as EXT({Cy, Cy}) is NP-hard. Note that the result from Kautz and Selman
was proven for a more restricted type of default theories, where the defaults
are required to match a special form.

Let T = (W, D) be a default theory over {Cy,C;} and let f and ¢ be
variables not appearing in 7. To construct a {Cy x C;}-default theory ex-
change every clause Co(x) in T by Cy x Cy(z,t) and every clause Cy(z) in T
by Co x Ci(f,z). Additionally add the clause Cy x C;(f,t) to the knowledge
base W. It is easy to see, that the old default theory has an extension if and
only if the new one has one. So this reduction transfers the NP-hardness from
Kautz and Selman to EXT(Cy x C;), which completes the proof. O

Now we show NP-hardness for the cases IN,, IL3 and ID. However, the
result for INy is not optimal as we will see in Proposition 5.11.

Proposition 5.10. Let I' be a finite constraint language over {0, 1} such that
ID C (I') C INy. Then EXT(T) is NP-hard.

Proof. Due to Lemma 5.8 it holds Odd* € (I, therefore it follows with

Proposition 5.5 that EXT(0dd?) < EXT(I'). To complete the proof we
show that EXT(Odd?) is NP-hard.

Similarly as in the proof of Proposition 5.9, the NP-hardness of EXT(Odd?)
follows from the NP-hardness of EXT({Cy, C;}) which is proven in [KS91].

Let T'= (W, D) be a {Cy, C; }-default theory. Let ¢t and f be new variables
and for a {Cy, C; }-formula ¢ let ¢’ be the formula obtained from ¢ by replacing
every clause Co(x) by Odd?(z,t) and every clause C,(z) by Odd*(x, f). Let T”
be the default theory that is obtained by exchanging every formula ¢ in T" by
¢’ and adding the clause Odd?(f,t) to the knowledge base.

For {Cy, C;}-formulas ¢ and ¢ it holds that ¢ F @ if and only if ¢’ A
Odd?(t, f) E ¢’ and it holds that ¢ E =) if and only if ¢’ A Odd?(t, f) £ =/
That means a set F' C D is a set of generating defaults of an extension for T if
and only if the corresponding set F’ where every formula ¢ from F is replaced
by ¢’ is a set of generating defaults of an extension for 7".

Since T" can be constructed in logarithmic space, it follows

EXT({Co, C1}) <i¢ EXT(Odd?).
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]

The following two propositions prove X5 -hardness for the cases INy and II,.
The proofs are very similar and direct modifications of Gottlob’s hardness proof
for the question if some (non-restricted) default theory has an extension. In
both cases we reduce from the complement of QBF,(I"). The Problem QBF,(I")
is the question if a given quantified formula of the type Vi, ..., xx3y1, ..., y1p,
where ¢ is a constraint formula over I' with Var(y¢) = {z1, ..., 2k, v1,-. ., 0},
is valid. Hemaspaandra proved that QBF,(T") is complete for II}, if " is not
Schaefer [HemO04].

Proposition 5.11. Let T' be a finite constraint language over {0, 1} such that
(') = INy. Then EXT(T) is XY -hard.

Proof. Since (I') ¢ IN (see Figure 2.3), we know from Lemma 5.8 that Odd® €
(I')3- Therefore it holds (Tu {Odd2}>§g# = ()3 and it follows EXT(I' U

{0dd*}) <l¢ EXT(T) due to Proposition 5.5. So it is sufficient to prove
>F-hardness of EXT(I' U {Odd*}).
We show QBF,(T) <% EXT(I'U {Odd*}). Let

Y =gef V1, .., eI, .. Y1p

be an instance for QBF,(I"), i.e., ¢ is a [-formula and it holds that Var(y) =
{z1,.. . 2k, 01, ...,y }. Let 2, ..., 2}, 2z be distinct variables not appearing in
. We construct a default theory T'= (W, D) over I' U {Oddz} by setting:

W =g4ep {Odd(z;, 2;) | 1 <4 < k}

and

D=, { : MOAd? (z;, 541) 1<i<k— 1}
o Odd2 (Zl'i, l’i+1> -

{ : MOdd? (;, )
Odd®(z;, 2}, ,)

M
US ——=——= Ld
Odd?(z, z)
The idea behind this construction is the following: we use the the variables
x} to express —z;. The defaults in the first two sets simulate assignments to the
V-quantified variables x1,...,x; by forcing each possible extension to contain

for any two variables z; and x; either x; = z; or x; # z;. The last default
guarantees that —y is valid in each extension, because it has a non-consistent

|1§z’§k—1}
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consequence. Note that this construction is similar to the construction from
Gottlob in the ¥F-hardness proof for the question if a default theory has an
extension [Got92].

We prove that T has an extension if and only if ¢ is not valid. First assume
that T" has an extension F. Since W is consistent, F is consistent as well.
Consider the default

: My
Odd?(z, 2)

If ~¢ ¢ E, then the default implies Odd*(z, z) € E, which contradicts the con-
sistency of E. This means —p € E. Since the F-quantified variables v, ...,y
do not appear in T" otherwise than in the justification of the considered default,
it holds that satisfying assignments for all formulas in £ do not depend on the
variables v, ..., y;. It follows that there exists an assignment to the variables
x1,...,Z such that every extension to Var(y) satisfies —¢. Thus, ¢ is not
valid.

For the other direction let 1 be not valid. Then there is an assignment [ to
x1,..., Tk, such that every extension of I to Var(yp) satisfies ~¢. We construct
an extension for 7T". Let

eD.

So =daer {0dd* (s, 2},,) |1 <i<k—1and I(z;) = I(zi41)}
and
St =ger {0dd*(z;, 2141) | 1 < i <k —1and I(z;) # (1)} -

We prove that £ =4 Th(IW U SyU S;) is an extension for T, i.e., we prove
that A(E) = E. First note that E is consistent. Since for every ¢ € Sy U S
there is a default % € D, it follows £ C A(FE).

Assume E C A(FE). Then there is some default d € D such that its
consequence vy is not in E and its justification is consistent with FE, which

implies v € A(E). If d is of the form % for some 7 € {1,...,k},

then Odd*(z;,2.,,) € E. Since Odd*(x;11,7},,) € W C E, it holds that the
justification § = Odd?(z;, ;1) is not consistent to E in this case. Analogously

. 20 o
the justification is not consistent to F, if d is of the form MO (w7 11)

0dd? (ziy2) )
So, d is the default W%. Let J be an assignment that satisfies every
formula from WUS,US;. Obviously it holds either that J|¢, . .. = I, or that
Jta1,..0y = 1" which is defined by I'(x) = =I(x). Recall that every extension
of I to Var(yp) satisfies =p. Since I' C INs, it holds that ¢ is complementive
therefore —¢ is complementive as well and every extension of I’ to Var(yp)
satisfies - as well. Hence, = € FE, so the justification of D is not consistent

to E.
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Thus we showed that E = A(FE), i.e that F is an extension of 7. It
is easy to see that T can be constructed in logarithmic space, so we proved
QBF,(T) <l¢ EXT(I' U {0dd?}). Since (') = IN,, it holds that QBF,(T) is
[1Y-complete due to [Hem04], which completes the proof. O

To complete the classification we cover the case of the largest Boolean co-
clone IIy in the next proposition. The proof is only a slight modification from
Gottlob’s proof for ¥:¥-hardness of the problem whether a default theory has
an extension.

Proposition 5.12. Let I' be a finite constraint language over {0, 1} such that
(T) = . Then EXT(T) is X% -complete.

Proof. This proof is similar to the proof of Proposition 5.11. Since according
to Lemma 5.8 it holds Co, C; € (I')4, and since QBF,(I') is [1Y-complete for

(T) = II, [Hem04], it is enough to show QBF,(T) <% EXT(I'U {Cy x Cy}).
Let

Y =gef V1, ..., eI, ... Y1p
be an instance for QBF,(I'), i.e., ¢ is a constraint formula over I' such that

Var(¢) = {x1,..., %k, y1,--.,y}. Let f and ¢ be two different variables not
appearing in ¢. We construct a 'U{Cy x C; }-default T' = (W, D) by defining:

W =ger {Co x Cy(f, 1)},

. MC() X Cl(ZEZ,t) .
= <1< k-
D def{ Co % Cr (1) [1<i<k-1

{ . MCO X Cl(f, ZL‘Z)
CO X Cl(f7 l’z)

U{ : My }
CO X Cl(t, t)
The variables t and f simulate the constants 0 and 1. The defaults in the first
two sets simulate assignments for the variables x1, ..., x; and the last default
makes sure that every extension contains —p.

It holds that T has an extension if and only if ) is not valid. We omit the

proof for this because it works analogously to the proof of Proposition 5.11.
Since T' can be constructed in logarithmic space, this completes the proof. [

|1§i§k}

Now we summarize the results of this section in the following trichotomy
theorem:
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Theorem 5.13. Let I' be a finite contraint language over {0,1}. Then the
following holds:

o I[fIN, C(I'), then EXT(T) is X5 -complete.
e Otherwise, if IRy C (') or ID C (I'), then EXT(I") is NP-complete.

e In all other cases EXT(T) is decidable in polynomial time.

5.3 Credulous and Skeptical Reasoning

It is easy to see that credulous reasoning cannot be easier than the question
if there exists an extension at all: since the knowledge base W of a default
theory T'= (W, D) is a subset of every extension of 7', it holds that 7" has an
extension if and only 7" has an extension that contains /\ oew ¢ This proves
the next proposition.

Proposition 5.14. Let ' be a finite constraint language over {0,1}. Then
EXT(I) < CRED(I).

In Proposition 5.6 we showed that in the case of 0-valid or 1-valid constraint
languages there always exists a unique extension. Therefore for such constraint
languages credulous reasoning and skeptical reasoning are the same questions.
We show that both problems are in P for constraint languages that additionally
are Schaefer, and coNP-complete for constraint languages that additionally are
non-Schaefer.

Proposition 5.15. Let ' be a finite constraint language over {0, 1} such that
(T') C 1y or (') C1IIy. Then the following holds:

o [fIN C(I'), then CRED(I") and SCEPT(I") are coNP-complete.
e Otherwise CRED(T") and SCEPT(I") are in P.

Proof. In this proof we assume (I') C IIy, for (I') C II; the result follows
analogously.

Since (I') C Il every I'-default theory T" has a unique extension E(7') due
to Proposition 5.6. So, a formula is in some extension of 7" if and only if it is
in every extension of 7', which means CRED(I") = SCEPT(I').

There are two cases to consider:

Case 1: IN ¢ (T'). In this case it holds (I') C IV, (I') C IE, (I') C ILg, or
(I') C 1Dy, i.e., I' is Schaefer.
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We give a polynomial time algorithm that, given a I'-default theory T
and a I" formula ¢, constructs the extension of 7" and checks whether ¢
belongs to it. The algorithm accepts if this is not the case, and rejects
otherwise. The reason why we give an algorithm that decides CRED(I")
rather than CRED(I") is that we want to use it in the next case to prove
a coNP-result.

input a I'-default theory T'= (W, D), a I'-formula ¢
let £ :=W
let £/ := 10
while £ # F’ do
E =F
for all @MoLMin 1) do

E:=FEU{y}
end if
end for
: end while
. if £ F ¢ then
reject
: else

accept
. end if

e e e e e e

Lines 2-11 implement the construction in Theorem 5.2. Since E(T") con-
tains only 0-valid formulas, for every justification ( the condition that
-6 ¢ E(T) is true. So it is easy to see, that, if we execute lines 5-10, and
if we have Th(F) = Th(E;) for the set E; from Theorem 5.2 before the
execution, it holds Th(E) = Th(E;;,) after the execution. Since we start
with £ = W, it holds that Th(E) = E(T) after executing lines 2-11.

Thus, the algorithm checks in line 12, whether ¢ € E(T') and rejects if
this is the case and accepts otherwise.

Note that, for some set S of formulas and a formula ) it holds that S F v
if and only if the conjunction of all formulas from S implies . Since I'
is Schaefer, the implication problem for I'-formulas is solvable in poly-
nomial time (this follows from [BHRV02] and can be found explicitly in
[SSO7b]). Hence, the above algorithm decides CRED(I") and SCEPT(I)

in polynomial time.

Case 2: IN C (I'). Note that in this case the implication problem for I'-formulas
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is complete for coNP [SS07b], therefore the above algorithm does not
prove decidability in polynomial time for CRED(I") and SCEPT(T).

The coNP-hardness of CRED(I") and SCEPT(I") follows easily from the
coNP-completeness of the implication problem for I'-formulas, because if
¢ and ¥ are I'-formulas, then it holds ¢ F ¢ if and only if v is in the
unique extension of T' = ({¢},0).

To show that CRED(I") and SCEPT(I") are in coNP we modify the above
algorithm to get a non-deterministic algorithm that accepts if and only
if o ¢ E(T). We replace line 7 by:

7a: guess an assignment [ that satisfies every formula in £’
7b: if I satisfies a then

And we replace line 12 by:

12a: guess an assignment [ that satisfies every formula in £
12b: if [ satisfies ¢ then

The guessed assignments are meant to be assignments for all variables
appearing in 7" and ¢. First note that we now have a non-deterministic
algorithm that runs in polynomial time, since for testing if an assignment
satisfies a I'-formula we just have to test if the assignment satisfies every
clause of the formula.

We now prove that the algorithm is correct. First we look at the new lines
7a and 7b. If E' E «, then every assignment [ satisfying every formula
in E, satisfies o as well, therefore 7 is added to F in line 8. If E' ¥ «,
then there exists an assignment that satisfies every formula from E’ but
not a. If the algorithm guesses this assignment, then ~ is not added to
E in line 8, otherwise it is added. That means, if the algorithm guesses
in each iteration an assignment that is a counterexample for £’ F « if
there is one, then it adds exactly the same to E as the polynomial time
algorithm without modification. So, the assignments I can be guessed
such that Th(FE) = E(T) after the execution of the while loop. If, for
some non-deterministic choice, E' £ o does not hold and the algorithm
does not guess a counter-example, then v is added even if it might not
be in the extension F(T). In this case we have E(T) C Th(FE).

Now assume ¢ ¢ E(T). If the algorithm guesses such that Th(E) = E(T)
after the execution of the while loop, then there is a satisfying assignment
satisfying all formulas from FE. that satisfies not . Thus, guessing this
in line 12a the algorithm accepts.
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For the converse direction let ¢ € E(T). According to the above it
holds, for every possible guess of I in every iteration of the while loop,
that F(T) C Th(FE) after the execution of the while loop. Therefore
¢ € Th(FE) and every possible assignment / the algorithm can choose in
line 12a satisfies , which means the algorithm rejects.

Hence, the outlined algorithm decides CRED(I") and SCEPT(I") in non-
deterministic polynomial time. Therefore CRED(I') and SCEPT(I") are
in coNP. [

In the cases where we showed NP-completeness for EXT(I"), we get NP-
and coNP-completeness for CRED(I") and SCEPT(I") with similar proofs.

Proposition 5.16. Let I' be a finite constraint language over {0,1} such that
I' is Schaefer and such that IRy C (I') and ID C (I'). Then CRED(I") is
NP-complete and SCEPT(I") is coNP-complete.

Proof. To see that CRED(I") € NP consider the algorithm given in the Proof
of Proposition 5.7. Give the algorithm a I'-formula x as additional input and
add the following line in the end:

10: verify that ¢ F x

All verifications of the algorithm have a positive result if and only if the algo-

rithm guesses the generating defaults of an extension that contains y. Since I is

Schaefer, the new verification can be done in polynomial time in the same way

as the other verifications in the algorithm. This shows that CRED(I") € NP.
Adding instead the line

10: verify that ¢ ¥ x

gives an NP-algorithm for SCEPT(T"), which implies that SCEPT(I") € coNP.

The NP-hardness of CRED(I")-follows from Propositions 5.9, 5.10 and 5.14.
For the coNP-hardness we use a result from Kautz and Selman which can
be formulated as: SCEPT({Cy, C;}) is coNP-hard [KS91]. Reductions very

similar to those in the proofs for Propositions 5.9 and 5.10 transfer the coNP-

hardness of SCEPT({Cy, C,}) to SCEPT(I'). O

Finally we show YY- and ITY-completeness results for constraint languages
generating INg or II;. Again the arguments in the proof are very similar to those

used for the corresponding cases in the previous section (see Propositions 5.11
and 5.12).

Proposition 5.17. Let T' be a finite constraint language over {0, 1} such that
IN, C (T'). Then CRED(T) is XF -complete and SCEPT(T) is I1 -complete.
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Proof. The upper complexity bounds follow from Proposition 5.4. The ¥F-
hardness of CRED(T")-follows from Propositions 5.11, 5.12 and 5.14.

The IIY-hardness of SCEPT(I") can be proven by a slight modification of
Gottlob’s proof for the coNP-hardness of skeptical reasoning. We make a re-
duction from QBF,(T") similar to the reductions in Propositions 5.11 and 5.12.
Let

Y =gef V1, .., TpIY1, .. P
be an instance for QBF,(I"), i.e., ¢ is a [-formula and it holds that Var(y) =
{z1,.. ., Zp, Y1, - i} Let 2, ... 2, t, f be distinct variables not appearing
in .
If (I') = INy we construct the default theory T'= (W, D) by setting:

W1 =def {Odd(l’z,‘f;) ‘ 1 S 7 S k}

and

D —, { : MOddZ(xi,l’iJrl) | 1<i<lh— 1}
o Odd2<l‘“ $i+1) -

{ : MOdd?(;, 7, ,)
Odd*(wi, 24,)

M
A=)
¥
For (I') = Il we construct the default theory T'= (W, D) by defining:

W =4es {Co x Ci(f, 1)},

. MCO X Cl(xz,t) .
= <1<
b def{ COXCl(xi,t) |1_Z_k

U{ : MCO X Cl(f, ZL’Z)
CO X Cl(f, ZEZ)

U { : Mgp}
¥
It holds that v is valid if and only if ¢ belongs to each extension for 7.
The proof uses similar arguments as the proof for Proposition 5.11, therefore
we omit it here.
Since for (I') = IN, we have Odd* € (I3, and for (I') = Il we have

Co x C1 € (I')4 ., it holds QBF,(T') <los SCEPT(I"). With the IT}-hardness of
QBF,(T") from [Hem04], it follows that SCEPT(I") is hard for coNP. O

|1§i§k—1}
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We combine the results of this section in the following two theorems. Note
that the first theorem classifies the complexity of CRED(I") in four different
complexity classes, whereas in the classification for SCEPT(I") there are only
three different complexity classes involved. For a graphical overview of these
classifications see Figure 5.3.

Theorem 5.18. Let I' be a finite constraint language over {0,1}. Then the
following holds:

e I[fIN, C (I'), then CRED(T) is ¥¥'-complete.

o Otherwise, if IRy C (I") or ID C (I'), then CRED(I") is NP-complete.
o Otherwise, if IN C ('), then CRED(I") is coNP-complete.

e [n all other cases CRED(I") is decidable in polynomial time.

Theorem 5.19. Let T' be a finite constraint language over {0,1}. Then the
following holds:

e I[fIN, C (I'), then SCEPT(T) is II% -complete.
e Otherwise, if IRy C (') or ID C (T'), then SCEPT(I") is coNP-complete.
e In all other cases SCEPT(I") is decidable in polynomial time.

We achieved full classifications for the three problems EXT(I"), CRED(T")
and SCEPT(T") using the weak base method. These classification remain true
if we allow the constraint formulas to have existential quantified variables (in
this case we speak of conjunctive queries) as was proven in [CHSO07].

It is worth noticing that the constraint languages generating one of the
Boolean co-clones IN, II, IIy, and II; are the only cases, where the complexity
of EXT(I") is not the same as the complexity CRED(I") and where the com-
plexity of SCEPT(T") is not dual to the complexity of CRED(I"). Note that
the corresponding cases for credulous and skeptical reasoning are incorrect in

[CHS07).
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Chapter 6

The Enumeration Problem

Up to now we studied the complexity of different decision and counting prob-
lems for constraint formulas. In this chapter we look at a the enumeration
problem for constraint formulas, which is the problem to enumerate all solu-
tions of a given constraint formula. This problem is of great relevance, because
in practice we are not only interested in knowing whether a formula is satisfi-
able, we also want to know which solutions the formula has. For example when
the formula represents a database query, the solutions represent the matching
entries.

In contrast to counting and decision problems, for enumerating problems
neither complexity classes nor notions for reductions have been established. We
use the notion of polynomial delay to express efficient enumerability. Roughly
speaking, polynomial delay means we have to wait only polynomial time for the
next solution to be printed. Another difference to Chapters 4 and 5, where we
only look at the Boolean domains, is that we consider the enumeration problem
for constraint languages over arbitrary domains. Although one can show that
the existence of efficient enumeration algorithms for I'-formulas depends only
on the weak system generated by I', both the lack of established complexity
notions and leaving the Boolean domain make it difficult to apply the tools
from Chapter 3, because we do not know the structure of the strong partial
clones over arbitrary domains.

In fact for the Boolean domain Creignou and Hébrard showed that effi-
cient enumeration algorithms for I' formulas exist, if and only if the constraint
satisfaction problem for constraint formulas over I' U {Cy, C;} is solvable in
polynomial time [CH97]. The algorithm that works in these cases is of a sim-
ple type and was generalized to arbitrary domains by Cohen [Coh04]. To our
knowledge this elementary algorithm captures all known efficiently enumerable
constraint languages to date. We prove that there are more sophisticated al-
gorithms that allow to enumerate solutions efficiently in cases where the well

87
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known algorithm is not efficient. But we will see that these algorithms are
limited, when we want to enumerate solutions in a given order.

After presenting basic definitions and previous results in Section 6.1, we give
a template for new enumeration algorithms in Section 6.2. Then, in Section 6.3,
we give criteria to identify cases where the new algorithms work efficiently.
Especially the results in Section 6.3 are very technical, therefore we explain all
constructions with an example over the three-element domain.

In Section 6.4 we show that we can efficiently enumerate solutions in a
highly customizable order exactly in the cases where the elementary algorithm
mentioned above yields efficient enumerability. Finally we consider a fragment
of all constraint languages over the three-element domain and identify all its
efficiently enumerable cases in Section 6.5.

6.1 Previous Results

How can we measure the complexity of the task to enumerate all solutions
of a given formula? Since in general number of solutions for a formula ¢ is
exponential in the number of variables appearing in ¢, the time needed to print
all solutions does not provide the information if this is an easy task or not. To
capture the difficulty of finding the solutions we use the notion of polynomial
delay introduced by Johnson, Papadimitriou and Yannakakis [JPY8S].

For a constraint language I an enumeration algorithm is an algorithm that,
given a I'-formula ¢ as input, puts out every solution of ¢ exactly once.

Definition 6.1. An algorithm has polynomial delay, if the computing time
before the first output, between every two consecutive outputs, and after the
last output until halting is each bounded by a fixed polynomial in the length
of the input.

If there is an enumeration algorithm with polynomial delay for I', we say
that I' is efficiently enumerable. Using a polynomial delay enumeration algo-
rithm we have to wait only polynomial time for either the first solution or, if
none exists, the halting of the algorithm, therefore it is trivial that CSP(T") € P,
if I' is efficiently enumerable..

We consider a very simple enumerating scheme suggested by Valiant in
[Val79b]. Given a formula ¢ over the domain D with Varp = {z1,...,2,} we
do the following: for every a € D we check whether ¢ AC, () is satisfiable and
if this is the case we recursively enumerate all solutions I of ¢[z;/a], extended
by I(z,) = a.

This approach leads to an enumeration algorithm with polynomial delay,
if the satisfiability tests can be done in polynomial time, which yields to the
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following theorem from Cohen. For a constraint language I' over a domain D
we define I't =4 ' {C, | a € D}.

Theorem 6.2 ([Coh04]). Let T' be a finite constraint language. If CSP(I'T) is
in P, then T is efficiently enumerable.

Creignou and Hébrard showed in [CH97] that if we only look at Boolean
constraint languages, then the previous theorem captures all efficient cases.
Note that, supposing P # NP, a Boolean constraint language I' is Schaefer if

and only if CSP(I'") € P.

Theorem 6.3 ([CHI7]). Let T be a finite constraint language over {0,1}. Then
' is efficiently enumerable if and only if CSP(T'T) € P.

We will see that, when considering other domains than the Boolean, there
are are efficiently enumerable constraint languages I', such that CSP(I'") is NP-
complete and we will develop criteria to identify such constraint languages. To
give an intuition for our techniques, we use the following example to explain
the constructions in this chapter.

Example 6.4. Let I}, be the constraint language over the domain {1, 2,3},
that contains only the following relation.

1000
1001
1010

Rea=a [1 100
2.0 0 2
2.0 20
2.2 0 0

We show that II', = {R.., Cy, C1,Cs} is NP-complete. Since CSP(1-in-3) is
NP-complete due to Schaefer’s Theorem (see Theorem 2.11), it suffices to show
CSP(1-in-3) <& CSP(TY,). Let

© =gef 1-in-3(x1,y1, 21) A -+ A 1-in-3(Zn, Y, 20)

and
QOI —def Rex(“a Z1,Y1, Zl) JARERWAN Rex(va Tny Yn, Zn) A CQ(U)a

where v is a new variable. It is easy to see that ¢ has a solution if and only if
¢’ has one.

Hence CSP(I},) is NP-complete. So it seems that the algorithm outlined
above cannot be implemented with polynomial delay (unless P = NP) and
Theorem 6.2 does not give us that I}, is efficiently enumerable. However, in
the course of this chapter, we will present an efficient enumeration algorithm

for I,,.
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Although I, will be a counter-example for the converse direction in The-
orem 6.2, we will show in section 6.4 that we can generalize Theorem 6.3 to
larger domains, by providing an even stronger notion of efficient enumerability,
that is equivalent to CSP(I'") € P.

6.2 Partial Enumerability

The main idea when enumerating the solutions of a I',-formula ¢ is to divide
the problem in two tasks: the first one is to find all “pre-solutions” for ¢
which map every variable either to 0 or to {1,2}. The second task is to refine
this “pre-solutions” to “real” solutions by specifying which of the variables
associated with {1, 2} take the value 1 and which of them take the value 2. An
advantage of this approach is, that for finding the “pre-solutions” we do not
distinguish between 1 and 2, and for refining the “pre-solutions” we only need
to consider the values 1 and 2. So we splitted the problem of enumerating the
solutions for a formula over a three-valued domain in two Boolean enumeration
tasks. This allows us to apply the classification from Creignou and Hébrard
for the Boolean case stated in Theorem 6.3. We need the next definitions to
formalize this idea.

Let D be a domain, and E a partition of D. We denote by ~g the equiva-
lence relation corresponding to E and by f¥ : D — E the function that maps
every element to its equivalence class.

We say a partition E’ of D is a refinement of F if for a,b € D holds that
a ~g bimplies a ~g b, i.e., if f¥ (a) C f¥(a) for every a € D. In this case we
write B/ < E.

Let I' be a constraint language over D, let ¢ be a I'-formula and let ' < FE
be partitions of D. Let I : Var(¢) — E and I’ : Var(¢) — E’ be assignments
of E and E’ to Var(p). If for all z € Var(y) we have I'(x) C I(z), then we
say I’ is compatible with I. If ¢ has a solution J : Var(¢) — D, such that for
all x € Var(yp) it holds J(x) € I(z), then I is a partial E-solution for ¢ and
we say J is compatible with I. The set of all partial E-slutions or ¢ is denoted
with Sol” ().

The discrete partition of D, where we have exactly one partition for each
element, we denote by D% =,.; {{a} | a € D}.

Definition 6.5. Let I" be a constraint language over a domain D and let E;
and Fs be partitions of D, such that E5 is a refinement of F;.

o [' is efficiently Ei-enumerable, if there exists an algorithm which has
polynomial delay and which, given a I-formula ¢, enumerates Sol” (y).
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o ['is efficiently E; — FEs-enumerable, if there exists an algorithm which
has polynomial delay and which, given a ['-formula ¢ and an assign-
ment [: Var(p) — FEj, enumerates all partial Es-solutions for ¢ that are
compatible with 1.

o I is efficiently By — D-enumerable, if T is efficiently B, — D%sc-
enumerable.

Note that partial D%*°-solutions correspond directly to “real” solutions,
therefore I is efficiently D%*°-enumerable if and only if I is efficiently enumer-
able.

In the following theorem we show how we can obtain efficient enumeration
algorithms by combining efficient algorithms that enumerate partial solutions
for different partitions of the domain.

Theorem 6.6. Let I' be a constraint language over a domain D, and let F;
and FEy be partitions of D such that Fy < Ey. If T is efficiently E1-enumerable
and efficiently By — Es-enumerable, then T is efficiently Es-enumerable.

Proof. Let A be an algorithm that, given a I'-formula ¢, enumerates Sol” ()
with polynomial delay, and let B be an algorithm that, given a I'-formula ¢ and
an assignment [ : Var(¢) — Ej, enumerates all partial Fy-solutions compatible
to I with polynomial delay. Note that both algorithms exist because I is
efficiently Ei-enumerable and efficiently Fy — Es-enumerable.

We modify A: let ¢ be the input of A. Every time A wants to print a
partial Ej-solution I, we call instead B on ¢ and I.

Obviously the new algorithm has polynomial delay, because both algorithms
A and B have polynomial delay, and for each of the solutions I € Sol®(y),
there is a compatible partial Fs-solution for ¢ which is put out by B.

Since all printing is done by B, it holds that every output is a partial Fs-
solution. Note that for two different partial Fi-solutions I, I’ there is no partial
E5 solution compatible with both I and I’, therefore no output is printed twice.

Finally every partial Fs-solution for ¢ is printed out, because every partial
Es-solution [ is compatible with the partial Fj-solution J, which is defined
uniquely by J(a) D I(a) for every a € D. Thus, it follows that I" is efficiently
FEs-enumerable. ]

For the constraint language I, from Example 6.4 we consider the partition
E = {{0},{1,2}}. The “pre-solutions” we spoke of in the beginning of this
section correspond to partial E-solutions. In the next section we will see that
[, is efficiently E-enumerable and efficiently £ — {0, 1, 2}-enumerable. So,
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according to the previous theorem we can build an efficient enumeration algo-
rithm for I' by nesting the efficient algorithms that exist due to the efficient E-
and E — {0, 1, 2}-enumerability of I,,.

The following corollary follows directly from Theorem 6.6.

Corollary 6.7. Let I' be a constraint language over a domain D and let
E, < --- < Ey be partitions of D such that T' s efficiently Ey-enumerable
and efficiently E; — E;1-enumerable for every i € {1,... .k —1}. Then T is
efficiently enumerable.

6.3 Criteria

In this section we develop criteria for partial enumerability. We construct
constraint languages at which we have to look if we want to know if a given
constraint language is efficiently E- or E; — Es-enumerable.

Let D and D’ be domains, let I' be a constraint language over D and
let f: D — D' be a unary function. For a relation R from I', we define
Ri =aer {(f(a1),..., f(an)) | (a1,...,a,) € R} and further we define I'y =
{Rf | R e F}

Let E be a partition of a domain D. A function g : D — D is a representa-
tion function for E if for all a,b € D it holds that a ~g b implies g(a) = g(b),
and that g(a) € f¥(a). That means g maps every element from D to a unique
representative of its equivalence class with respect to ~p.

We now are ready to present our criterion for efficient E-enumerability.
Note that for a partition £ of D and a constraint language I' over D, it holds
that I'y= is a relation over the domain L.

Theorem 6.8. Let I' be a finite constraint language over a domain D and let
E be a partition of D such that there exists a representation function for E
which 1s a polymorphism of I'. Then the following is equivalent:

1. T is efficiently E-enumerable,
2. Tye is efficiently enumerable.

Proof. Let ¢ be a I'-formula and let ¢" be the I'ye-formula that has a clause
R¢p(x1,...,2y,) if and only if ¢ has the clause R(xy,...,x,). That means ¢’
can be obtained from ¢ in polynomial time by, for every R € I', replacing each
R-clause by an Rye-clause with the same variables, and vice versa.

We show that Sol” () = Sol('), then the theorem follows because we can
enumerate the partial E-solutions of ¢ by enumerating the solutions of ¢’ and
the other way round.
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Let I : Var(¢) — E be an assignmet of E to the variables of I". ' We show
that I is a partial E-solution for ¢ if and only if I is a solution for ¢'.

First assume that [ is a partial E-solution for ¢. This means there is a
solution J : Var(¢) — D for ¢ such that for every a € D we have J(a) € I(a).
Let Rye(x1,...,2,) be a clause in ¢'. Then (J(z1),...,J(x,)) € R, because
R(z1,...,x,) is a clause in ¢. Due to the definition of Rz, it follows

(fEI (@), - [P (I (@) € Rye.

Since f¥ maps every element of D to its equivalence class, it holds f¥o J = I.
Therefore we have that [ is a solution of ¢'.

Now we assume that [ is a solution for ¢. Let R(x1,...,x,) a clause from ¢.
Since Rye(x1,...,x,) is a clause in ¢’ it holds that (I(zy),...,I(z,)) € Rye.
Due to the construction of R;r, it follows that there exists a tuple (ay, ..., a,) €
R such that

(far),. . f(an)) = (I(z1), .. I (20)).

Due to the prerequisites, there exists a g € Pol(I') which is a representa-
tion function for E. We define an assignment J : Var(¢) — D by set-
ting for every x € Var(y): J(z) =4 ¢(a) if and only if a € I(x). Note
that J is well defined because g is a representation function for E. It fol-
lows that (J(x1),...,J(x,)) = (g9(a1),...,9(a,)). Since g € Pol(T') we have
(J(x1),...,J(x,)) € R, therefore J is a solution for ¢. Due to the construction
of J it holds for every a € D that J(a) € I(a) is true. Hence [ is a partial
E-solution for ¢.

Thus it holds Sol” () = Sol(¢'), which completes the proof. O

We consider the constraint language I, from Example 6.4 again. If we
choose the partition £ = {{0},{1,2}}, then fo; : {0,1,2} — {0,1,2}, de-
fined fo1(2) =4 1 and foi(a) =4 a for a € {0,1}, is a representation
function for E. It can easily be verified that fo 1 € Pol(I},), therefore it fol-
lows from Theorem 6.8 that It is efficiently E-enumerable if and only if Ii, ;=
is efficiently enumerable. It holds that Ii, ;= = {Rem fE} and

{1.2} {0} {op {0}
! (1,2} {0} {12} {0}
{1,2y {12} {o} {0}

To get a Booelan relation we identify {0} with 0 and {1,2} with 1:
1 0 0

RexfE -

— =
_ o O O

0
1
0

o O =
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It can be seen that A is a polymorphism of this relation, therefore it holds
that I}, ;= is Schaefer and can be enumerated efficiently due to Theorem 6.3.
Hence, I, is efficiently F-enumerable.

We need the next definition to be able to state the criterion for efficient
E, — FEs-enumerability. For an n-ary relation R over a domain D and for
a set of indices I C {1,...,n} we define the projection of R to I to be the
relation Ry =g4er {(@i,-..,a;,) | (@1,...,a,) € R}, where I = {iy,... i} and
1 <<

Definition 6.9. Let D be a domain and F; and Es partitions of D such that
B, < E;.

1. For an n-ary relation R over D and a tuple v € R we define:
By —Ey _ E _ (E
R =ae {f () [te Randv = f 1<t)}{¢e{1,...,n}|v[i]ngz}

2. For a constraint language I' over D we define:

FE1—>E2 =def {RUEl_)EQ | Rel andv e RfEl}

Observe that I'*1 =2 is a constraint language over the domain F.

Theorem 6.10. Let I' be a finite constraint language over a domain D, and
let E5 < Ey be partitions of D, such that there exists a representation function
for Ey which is a polymorphism of I'. Then the following is equivalent:

1. T is efficiently £y — Es-enumerable,
2. TE1=E2 s efficiently enumerable.

Proof. Let TP1=F2 be efficiently enumerable. We show that I' is efficiently
FEy — Ej-enumerable. We need to show that there is an algorithm that takes
a I-formula ¢ and an assignment [ : Var(p) — E; of Ej-to the variables of
@, and that enumerates all partial Fs-solutions for ¢ that are compatible to
I with polynomial delay. The algorithm works as follows: first we check for
every clause R(z1, ..., 2y,) in @ if (I(z1),...,1(z,)) € Ry, . If there is a clause
for which this is not the case, we halt, because it follows that no solution for
 is compatible to I, and therefore no partial Es-solution of ¢ is either.

Otherwise we construct the I'**~F2_formula 1 that has for every clause
R(z;, ..., ,) from ¢ the corresponding clause RE1=F2(z;, ... x; ), where v =
(I1i(z1), ..., L1(zy)) and {iy,... i} = {i € {1,...,n} | [i(z;) ¢ Ey} such that
11 < --- < . Clearly this construction can be done in polynomial time.
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Now we use a polynomial delay enumeration algorithm for I'**~%2 to enu-
merate the solutions for ¢). Before printing a solution J : Var(¢)) — E, for ¢,
we extend it to Var(y) by setting J(z) =4 I(z) for every x € Var(p) \ Var(y).

Since I'P1~F2 ig efficiently enumerable, this algorithm can be implemented
to work with polynomial delay. We show the correctness of the algorithm in
the end of the proof.

Let I' be efficiently E; — Es-enumerable. We show that there is an algo-
rithm that enumerates all solutions of a given I'*'~F2_formula 1 with poly-
nomial delay. First we check if for every variable x € Var(y) the following
holds: if x appears twice in 9, lets say x is the i-th variable in an R-clause
and the j-th variable in an S-clause for some not necessarily distinct relations
R, S € TP~z then the set R of all values in the i-th column of R and the set
S7 of all values in the j-th column of S are not disjoint. If that is not the case,
then it is obvious that 1) is not satisfiable, which means we let the algorithm
halt.

Otherwise we construct a I'-formula ¢ and an assignment [ : Var(y) — E;

in the following way: for every clause RE*=F2(z, ... x;) with R € T, v €
Ryey,and {iy, ... 0} = {i € {1,...,n} | v[i] ¢ Ea} such that i; < --- < i, we
add the clause R(z,...,x,) to ¥, where every variable z; with v[i] € F; is a

new variable. Additionally we set I(x;) =4¢f v[j]. Note that I is well defined,
because we made sure that all columns of relations that correspond to the same
variable are not disjoint. Due to the construction of RE1=F2 this implies that
the corresponding values in the tuple v are equal. This construction is reverse
to the one in the first part of the proof and can be performed in polynomial
time.

Now we enumerate all partial Es-solutions J for ¢ that are compatible to
I. For every enumerated J we print the restriction J ’Var(w) to the variables
of ¢. Since I' is efficiently E; — FEs-enumerable, the algorithm works with
polynomial delay.

To show the correctness of both exhibited algorithms, it suffices to prove
that every partial Fs-solution of ¢ which is compatible with I can be restricted
to a solution of ¢, and every solution of 1) can be extended to exactly one partial
FEs-solution of ¢ compatible with I.

First let J : Var(¢) — Es be a partial Ey-solution for ¢ that is compatible
with I. Then there exists a solution J’ for ¢ such that J'(z) € J(x) C I(z) for
every x € Var(y). That means it holds for every clause R(xy,...,z,) from ¢
and the corresponding clause RF*™F2(z;, ... x; ) from 1 that

(J(21),..., J(2,)) € {f(t) |t € Rand v = 7 (t)}.

Note that v = (I(x1),...,I(x,)). It follows that (J(z;,),...,J(x;,)) € RE1—E2,
therefore J restricted to Var(¢) is a solution for .
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For the other direction let J : Var(y)) — Es be a solution for ¢). We define
J': Var(p) — Ey by J'(z) = J(x) for « € Var(¢p) and J'(z) = I(x) otherwise
(note that I(z) € E, in these cases and therefore J’ is the only extension of
J compatible with I). Then for every clause R(z,...,z,) from ¢ and the
corresponding clause REV7F2(x; ... x; ) from 1) it holds that

(J,(xil)7 T J/(xlk)) = (J(IL’“), SRR J<xlk)) S Rfl_)EQ'

It follows that (J'(z1),...,J (z,)) € {f*2(t) |t €R and v = f#1(t)} and J' is
compatible to I. Let t be a tuple from R such that f22(t)=(J'(z1), ..., J' (zn)).
Let g be the representation function for E, which is an element of Pol(F). Then
we know that g(t) € R. Therefore the assignment K : Var(¢) — D defined
by K(z) =4 g(a) if a € J'(z) is a solution for ¢ that is compatible with J'.
Hence J’ is a partial Fy-solution for ¢ that is compatible with I. That proves
the correctness of the two algorithms above. O

We use the previous theorem to show that I, from Example 6.4 is effi-
ciently E — D-enumerable for D = {0,1,2}, and E = {{0},{1,2}}. First we
construct the constraint language TP, We have seen above that

{1,2},{0},{0},{0}),

{1,2},{0},{0},{1,2}),
{1,2},{0},{1,2},{0}),
{1,2},{1,2},{0},{0})

are all tuples from R, je. Therefore L., 27" consists of the following relations:

(
(
(
(

Revy " = {(1,0,0,0)}, = {()}

Rwi_)D = {(1 0, O 1)7 (27070’ 2)}{1,4} {(17 1)’ (272)}
Remfs_)D = {(1 0,1, 0)? (27 0,2, O>}{1,3} = {(17 1)7 (27 2)}
RemiHD - {(171’0 0)7(27270’0)}{172} = {(171)’(272)}

If we identify the value 2 with 0, then I,,” D is invariant under A, therefore
[.,E7P is Schaefer. Due to Theorem 6.3 it holds that I.,Z~% is efficiently
enumerable and then it follows from Theorem 6.10 that I, is efficiently £ — D-
enumerable.

We showed above that T, is efficiently F-enumerable, therefore it follows
from Theorem 6.6 that T, is efficiently enumerable. Since CSP(TY,) is NP-
complete, we obtain the following corollary.

Corollary 6.11. There exists an efficiently enumerable constraint language I’
over the three-element domain such that CSP(I'") is NP-complete.
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6.4 Lexicographical Orderings

It can be seen easily that the algorithm outlined in Section 6.1 orders its output
by grouping together all solutions that map x; to the same value.

We define a stronger notion of efficient enumerability in which we require
to print the solutions in a given order.

A wariable E-lexicographical enumeration algorithm for T' is an algorithm
which takes a I'-formula ¢, a linear order <var(,) on Var(y), and for every = €
Var(p) a linear order <, on E as input and enumerates all partial E-solutions
of ¢ in the following linear order: if I : Var(y) — Ey and I’ : Var(p) — Es
are partial Ey-solutions for ¢, then [ is printed before I’ if and only if there
is some o € Var(yp) such that for all y € Var(yp) with y <var(e) 2 it holds that
I(y) =I'(y) and I(z) <, I'(x).

That means the algorithm prints the solutions in a lexicographical order,
where each variable x has its own sorting criterion <,. In the context of
databases it is very natural to demand the output of a query to be ordered by
different criteria for different columns. For example we would like to order the
movies of the last year descending in the number of awards and, in the case of
ties, assending in the number of tickets sold.

We say that I is efficiently variable lexicographical (E-lexicographical) enu-
merable if I has a variable D%*“-lexicographical (E-lexicographical) enumera-
tion algorithm with polynomial delay.

The next theorem shows, that a constraint language is efficiently variable
lexicographical enumerable if and only if a modification of the algorithm out-
lined in Section 6.1 works. Note that every class of a partition F of D can be
seen as unary relation over D.

Theorem 6.12. Let I' be a constraint language over a domain D and let E be
a partition on D. Then I is efficiently variable E-lexicographical enumerable
if and only if CSP(I'U E) is in P.

Proof. Let E = {Dy, ..., Dy}, and first assume that CSP(I'U E) is decidable in
polynomial time. Let ¢ be a I'-formula, let <yar(,) be a linear order on Var(y)
and let <, be a linear order on F for every x € Var(y). We give an algorithm
that takes a [-formula ¢, the above orders, and a {Dy, ..., Dy }-formula ¢ with
Var¢) C Var ¢ as input and generates all partial solutions of ¢ A1) in the correct
order with polynomial delay. To enumerate all partial solutions of ¢, apply the
algorithm on ¢ and the empty formula .

1: procedure Generate
2: input a I'-formula ¢, an E-formula ¢ with Var(y)) C Var(p), and linear
orders <vyar(p) on Var(yp) and <, on E for all z € Var(y)
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if o A ¢ SAT then
halt
end if
if Var(y) = Var(y)) then
Print the partial assignment uniquely defined by ¢
halt
end if
10: Let x be the <yay(y)-smallest variable in Var(y) \ Var(1))
11: Let D;, <z Dy, <z --- <y D;,
12: for j=1toj =k do
13:  Generate(p, ¥ A D; (), <var(p), <o for all x € Var(y))
14: end for

This algorithm is a generalization of the algorithms in the proof of Theo-
rem 9 in [Coh04] and in Section 3 of [CH97]. It works with polynomial delay,
since the satisfiability test used in the algorithm can be performed in polyno-
mial time by our prerequisites.

Now assume that I" has a variable E-lexicographical enumeration algorithm,
and let ¢ be a I' U F-formula. For 1 <1 < k let

Xi =qef {x € Var(p) | Di(z) is a clause in ¢}

be the set of all variables that appear in a D;-clause. Further let X := Ule X;
be the set of variables that are constrained by some D; from F.

Now, define <var(y) to be a linear order on Var(y) such that for all x € X
and y € Var(yp) \ X, it holds that & <va(e) y. For each € X;, define the order
<, in such a way that D; is the smallest element of E with respect to <,. Let
¢’ be the I'-formula obtained from ¢ by deleting all E-clauses. Now, enumerate
the solutions of ¢ according to the order as defined above. By construction of
the order, the formula ¢ is satisfiable if and only if the first partial solution I
returned by the algorithm satisfies the . This gives a polynomial-time decision
procedure for CSP(I' U E). O

Observe that I' U D%s¢ equals I'*, therefore the previous theorem directly
leads to the following corollary, which generalizes Theorem 6.3 from Creignou
and Hébrard to non-Boolean domains.

Corollary 6.13. Let I' be a constraint language over a domain D. Then I' is
efficiently variable lexicographical enumerable if and only if CSP(T'") € P.
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6.5 Towards a Dichotomy for Three-Element
Domains

It is a long-term goal to find a characterization that separates all constraint
languages that are efficiently enumerable from those that cannot be enumerated
in an efficient way. One challenging aspect in this ambition is, that it is not
sufficient to consider only the co-clones to achieve a full classification. Since
equivalent formulas have the same set of solutions, it is obvious that the (.)4 4"
closure provides efficient enumerability and it is not hard to show that the
(-)3-closure also has this property. But, in contrast to the question if a formula
has a balanced solution and the problems in the context of default reasoning
studied in Chapters 4 and 5, there are constraint languages generating the
same co-clone, such that one is efficiently enumerable and the other is not (if
P # NP). An example for those constraint languages over a three-element
domain can be found in [SS06a].

However, we look at a fragment of all constraint languages over the three-
element domain and identify all of its efficiently enumerable cases. For this
classification we need the following definitions and the subsequent lemma.

Let D be a domain an D’ a subset of D. A function f : D" — D is
conservative on D' if for all ay,...,a, € D" it holds f(aq,...,a,) € D'

For a domain D and a,b € D, we define f, ., : D — D to be the function
that fulfills f(a) = b and f(x) = for all z € D \ {a}.

Lemma 6.14. Let I" be a relation over the domain D = {a,b,c}, and let
E = {{a,b},{c}} be a partition of D, such that all polymorphisms of " are
conservative on the classes in E. Then

{a, 0} x Cp x Ce € (T)g, or {a,b} xC. € Ty,

Proof. To implement the relations we define the following I'-formula which uses
variables from {z,, zy, z.}:

L AW A C ) §

Rel' teR

where for every R € I" we denote by ng the arity of R.

Before we prove the lemma we show that f : D — D is a polymorphism
of I' if and only Iy : Var(¢) — D defined by I(z,) = f(a) for each a € D is
a solution for . Let f be a polymorphism of R. By construction of ¢, it is
obvious that I,4, is a solution of ¢. Since f € Pol(I'), we know that f([;4) is a
solution of ¢ as well. Now for @ € D, it holds that f([;y)(zs) = f(Liu(xa)) =

fla), ie., f(Liq) = I satisfies .
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For the converse, assume that I; is a solution of ¢. Let R € I' and let
t € R. We show that f(t) € R. Since Iy satisfies o, we know that I, satisfies
the clause R(xy1), ..., Tepng))s 10, (Lp(zep))s - - -5 Lp(@4pny))) € R. Obviously, it
holds (I¢(w41))s - -+ I(@4pnn)) = f(t), therefore f is a polymorphism of T'.

To prove the lemma we distinguish two cases:

Case 1: f,, & Pol(I'). We prove that {a,b} x C} x C. € (I')3_, by showing
that I : {x4, xp, 2.} — {a,b,c} is a solution of ¢ if and only if I(z,) €
{a,b}, I(xp) = b, and I(x.) = c. First, let I be a solution for ¢. Because
all polymorphisms of ' are conservative on {a,b} and on {c} we know,
according to the above, that that I(z.) = ¢, and I(z,),I(x;) € {a,b}.
Assume that I(x,) # b, i.e., I(z) = a. If I(z,) = a, then, due to the
above, it holds that f,_., is a polymorphism of I', which is a contradiction
to our assumption. For the other case, if I(x,) = b, then we know
that f’ is a polymorphism of I', where f’ is defined by f'(a) =4 b,
f'(b) =aes a, and f'(c) =qer c. Since f,p € Pol(I'), we conclude that
10 forb = fo—a € Pol(T'), which again is a contradiction.

Now, let I(z,) € {a,b}, I(xp) = b, and I(x.) = c. It is obvious that
I(x,) = a implies that I is a solution for ¢: this follows from the above,
because id is always a polymorphism. Therefore, assume that (z,) = b.
Then I corresponds to the function f,_.;, which is a polymorphism of T'.
Due to the above it follows that I is a solution for ¢.

Case 2: f, ., € Pol(R). We consider the formula 1 which is obtained from
¢ by identifying the variables x, and ;. Then Var(¢) = {z, z.}, where
x = x, = . We show that {a,b} x C. € (I')3_, by proving that I :
{z,z.} — {a,b,c} is a solution for ¢ if and only if I(z) € {a,b} and
I(z.) =c.

First, let I be a solution for ). Due to the construction of v, it follows
from the above, that f defined by f(a) =4er f(b) =aer 1(x), f(€) =gef C 18
a polymorphism of T'. Since all polymorphisms are conservative on {a, b}
and on {c}, it follows that I(z) € {a, b}, and I(x.) = c.

Now, assume I(z) € {a,b} and I(x.) = c. Since f,—;, € Pol(R), it follows
from the above, that I; defined by I1(z.) =aer ¢, [1(x) =daef 11(T) =gef b
is a solution for ¢. Therefore, I; restricted to {z,z.} is a solution for .
The second possible assignment fulfilling the requirements is I, defined
by Io(x) =4 a, Io(x.) =4ef ¢. We extend I to an assignment for ¢ by
setting Io(z,) =aer L2(2p) =def @ This is a solution of ¢, because f,_., is
a polymorphism of I'. Hence, {a,b} x C. € (I)4_. O

The following proposition follows directly from [BK.J0O].
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Proposition 6.15 ([BKJ00]). Let I' be a constraint language over a domain
D. If every unary polymorphism of T is a permutation on D, then CSP(T") € P
if and only if CSP(I'") € P.

We can identify all efficiently enumerable constraint language over a three-
element domain D, whose polymorphisms are conservative on the classes of
some non-trivial partition of D. The classification is a corollary of the results
in this chapter.

Corollary 6.16. Let I' be a relation over the domain {a,b,c}, and let E =
{{a,b},{c}} be a partition of D, such that all polymorphisms of T are conser-
vative on the classes in E. Then the following holds:

o If fap & Pol(I') and fr—a ¢ Pol(T'), then I is efficiently enumerable if
and only if CSP(I") € P.

o Otherwise, T' is efficiently enumerable if and only if T¥=P" is Schaefer,
and I'ye is Schaefer (or P = NP ).

Proof. First, assume that f, ., and f,_, are not polymorphisms of I". Let
f : D — D be a polymorphism of I'. Since f is conservative on {a,b} and on
{c}, it holds that f(c) = c and f(a), f(b) € {a,b}. It follows that f(a) # f(b),
otherwise f would be equal to either f, ., or f,_.,. Therefore f is a permutation
on D and due to Proposition 6.15 we know, that CSP(I') € P if and only if
CSP(I'") € P. Then it follows with Theorem 6.2 that CSP(I") € P implies
that T is efficiently enumerable. Conversely, if I' is efficiently enumerable, then
CSP(T") is obviously in P.

Now, assume that, without loss of generality, f,_, € Pol(R). Note that f, .,
is a representation function for E. If I'* 7" is Schaefer, and Iz is Schaefer,
then both, I'*~? and I'ye are efficiently enumerable according to Theorem 6.3.
It follows from Theorem 6.10 that I' is efficiently £ — D-enumerable, and
from Theorem 6.8 that I' is efficiently F-enumerable. Then I' is efficiently
enumerable due to Theorem 6.6.

If on the other hand T is efficiently enumerable, then CSP(T") € P. Since
every polymorphism of I' is conservative on the classes of E, and since the
constraint language FE is invariant exactly under the the functions that are
conservative on the classes of F, it follows from Proposition 2.8 that (I' U E) =
(I"). Therefore it holds that CSP(I'U E') € P and, according to Theorem 6.12,
[ is efficiently E-enumerable. Since f, ., is a representation function for FE
we know from Theorem 6.8 that I'ys is efficiently enumerable. Then, unless
P = NP, it holds due to Theorem 6.3 that I';s is Schaefer.

We now show that '~ is Schaefer. It is sufficient to show that I is
efficiently £ — D-enumerable, then the result follows from Theorem 6.10 and
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Theorem 6.3. Let ¢ be a I'-formula and I : Var(p) — E an assignment of
E to Var(yp). We enumerate all solutions for ¢ that are compatible I in the
following way: if I maps every variable to ¢, then we test if [ is a solution
for ¢ and print [ if this is the case; then we halt, because I cannot be refined
further. Otherwise we use Lemma 6.14. If

S —a {a,b} x Gy x C, € (T, |

there is according to Corollary 2.10 a I'-formula g such that ¥g(z,y,2) =
S(x,y,z). We enumerate all solutions of the following I'-formula:

O =ar o N N Us@a, ) A\ Vsl m,x0),

I(z)=c I(z)={a,b}

where z;, and z. are new variables and x4, € Var(p), such that I(z.) = {a, b}.
Since J(xp) = b and J(x.) = ¢ for all solutions J of ¢', there is a one-to-one
correspondence between solutions of ¢ compatible with I and solutions of ¢'.
For every enumerated solution J of ¢’ we print J|var(e). If {a,b} x C. € (I')4 ”
we can construct a similar I'-formula and proceed in the same way. Since I is
efficiently enumerable this algorithm works with polynomial delay. Hence, I is
efficiently £ — D-enumerable. O]

We presented new enumeration algorithms and gave criteria to detect con-
straint languages for which they can applied efficiently. Our example shows
that these algorithms cover more cases than previously known from [Coh04].
In [SS06a] we give another algorithm that enumerates the efficiently only for
very special constraint languages. The concept of partial enumerability allows
to combine this and other efficient algorithms to new ones.

We achieved a dichotomy for constraint languages over the three-element
domain that are conservative in a certain sense. The next step toward a full
classification for the three-element domain, is to develop methods for achieving
negative complexity results. Another topic for future research is to formulate
the criteria given in Section 6.3 in terms of partial polymorphisms and strong
partial clones.
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