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1 Introduction

The complexity of problems related to Boolean functions has been of special interest
throughout the history of complexity theory. Many problems of this kind are standard
examples for certain complexity classes - the first problem ever to be proven NP-complete
was the satisfiability problem for Boolean formulas.

In the twenties of the last century, Emil Post studied sets B of Boolean functions
closed under the closure operator superposition, which means the class of Boolean func-
tions which can be expressed by formulas using only functions from B as connectives.
He identified every set of Boolean functions closed under this operator, determined the
complete inclusion structure of these sets and gave a finite base for every closed set. These
sets of Boolean functions are now called Post’s lattice.

The complexity of problems related to Boolean functions, like the satisfiability prob-
lem, is depending on the set of connectives used in the examined Boolean formulas. In
1979, Lewis showed that the satisfiability problem is either NP-complete or polynomial-
time solvable, depending on which connectives are allowed in the formula ([Lew79]). Stef-
fen Reith studied the complexity of many problems related to Post’s lattice in [Rei01].
He proved coNP-completeness for many problems which we can use in this thesis to show
completeness for our problems.

A more general problem than satisfiability is the question if a given Boolean formula
describes a function from any of the closed classed Post identified. In this thesis we
examine the computational complexity of the following problem: Given classes A and B
from Post’s lattice, how difficult is it to decide if a given formula using only connectives
from B describes a function from A? For nearly every combination, we show this problem
is polynomial-time solvable or coNP-complete. We will also see these results are identical
for Boolean formulas and Boolean circuits.

We build up on the results presented in [Böh], in which the difficulty of deciding
a similar problem was discussed, which serves as an upper complexity bound for our
problem.

1.1 Boolean functions and Circuits

A standard way of representing Boolean functions is to write them as Boolean formulas.
Most people working in computer science are familiar with formulas like x ∨ (y ∧ z).
Usually, only ∨,∧ and negation are used in formulas, as in fact, every Boolean function
can be represented using only these three connectives. In this thesis, we examine more
general Boolean formulas, using arbitrary functions as connectives. Intuitively, it is clear
what a Boolean formula over the base {→,¬} is. Formally, Boolean formulas are defined
as a special case of Boolean circuits. Our definition is based on the one in [Vol99].
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Definition Let B be a finite set of Boolean functions. A B-circuit with input-variables
x1, . . . , xn is a tuple C = (V, E, α, β, o) where (V, E) is a finite directed acyclic graph,
α : E → N is an injective function, β : V → B ∪ {x1, . . . , xn} is a function, and o ∈ V ,
such that

- If v ∈ V has in-degree 0, then β(v) ∈ {x1, . . . , xn} or β(v) is a 0-ary function (i.e. a
constant) from B.

- If v ∈ V has in-degree k > 0, then β(v) is a k-ary function from B.

Nodes v ∈ V are called gates in C, β(v) is the gate-type of v. o ∈ V is the output-gate
of C. The function α is needed to define the order of arguments for non-commutative
functions like →. We will now define the function fC : {0, 1}n → {0, 1} calculated by the
circuit C, by inductively defining a function valv : {0, 1}n → {0, 1} for every gate v in C:

Let α1, . . . , αn ∈ {0, 1}.

- If v ∈ V has in-degree 0, and if β(v) = xi for i ∈ {1, . . . , n}, then valv(α1, . . . , αn) :=
αi.

- If v ∈ V has in-degree 0, and if β(v) = c for some 0-ary (constant) function c from
B, then valv(α1, . . . , αn) := c.

- Let v ∈ V have in-degree k > 0, and let v1, . . . , vk be the predecessor gates of v such
that α((v1, v)) < · · · < α((vk, v)). Let β(v) =: f ∈ B a k-ary function. Then let
valv(α1, . . . , αn) := f(valv1(α1, . . . , αn), . . . , valvk

(α1, . . . , αn)).

Let fC := valo. fC is the function computed by the Boolean circuit C. A Boolean
formula is a Boolean circuit where each gate has out-degree ≤ 1.

The size of a Boolean circuit C is the number of gates: |C| := |V |.
In this text, we will also use standard propositional formulas like f1 → f2 to describe

Boolean formulas. The construction of the corresponding circuit is obvious. We write ↔
for equivalence in Boolean formulas, and ⇔ for equivalence in the meta-language. We
write f ≡ g, for Boolean formulas f and g, if the formulas are identical as a Boolean
circuit. We write f = g, if for all input tuples, f and g evaluate to the same value, that
is if ff = fg, e.g. we write x1 ∨ (x2 ∧ x1) = x1 instead of fx1∨(x2∧x1) = fx1 .

As for a formula or circuit C with different input variables, it is not always obvious
what we mean with fC(α1, . . . , αn) we introduce the following notation: For a circuit C
with input variables s1, . . . , sn for some symbols si, and for values α1, . . . , αn from {0, 1},
we write C(s1 = α1, s2 = α2, . . . , sn = αn) for the value of the function fC when given
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the tuple (α1, . . . , αn) as argument in the order which assigns the binary value αi to the
input gate si. If the variables are the set {x1, . . . , xn}, we simply write C(v1, . . . , vn) for
C(x1 = v1, . . . , xn = vn), or, for a tuple −→α = (α1, . . . , αn),∈ {0, 1}n, we write C(−→α ) for
C(x1 = α1, . . . , xn = αn). If the input variables for C are the set {x1, . . . , xn, s1, . . . , sk},
then for a tuple −→α = (α1, . . . , αn) ∈ {0, 1}n and values β1, . . . , βk ∈ {0, 1}, we write
C(−→x = −→α , s1 = β1, . . . , sk = βk) for C(x1 = α1, . . . , xn = αn, s1 = β1, . . . , sk = βk).

We say a set A of Boolean functions is a closed class if A contains the identity and is
closed under the following operations(definition taken from [Rei01]):

- Substitution: Let fn and gm be Boolean functions. then we define hn+m−1 as
h(α1, . . . , αn−1, β1, . . . , βm) := f(α1, . . . , αn−1, g(β1, . . . , βm)) for all α1, . . . , αn−1,
β1, . . . , βm ∈ {0, 1}.

- Permutation of variables : Let fn be a Boolean function and Π: {1, . . . , n} →
{1, . . . , n} be a permutation. Then we define g(α1, . . . , αn) := f(αΠ(1), . . . , αΠ(n))
for all α1, . . . , αn ∈ {0, 1}.

- Identification of the last variables: Let fn be a Boolean function. Then we define
gn−1 as g(α1, . . . , αn−1) := f(α1, . . . , αn−1, αn−1) for all α1, . . . , αn ∈ {0, 1}. Identi-
fication of arbitrary variables can be achieved by combining this with permutation
of variables.

- Introduction of a fictive variable: Let fn be a Boolean function. Then we define
gn+1 as g(α1, . . . , αn+1) := f(α1, . . . , αn) for all α1, . . . , αn+1 ∈ {0, 1}.

The set of these operations is called superposition. For a set B of Boolean functions,
let [B] denote the smallest set A of Boolean functions such that B ⊆ A and A is a closed
class. We say B is a base of [B]. Basically, [B] is the set of all Boolean functions which
can be calculated with B-circuits or B-formulas. The usual closure properties hold, i.e.
B ⊆ [B],B1 ⊆ B2 implies [B1] ⊆ [B2] and [[B]] = [B].

Emil Post showed in [Pos41] that the list of closed classes shown in Table 1 is complete,
and the inclusion structure for these classes is shown in Figure 1. As any set of sets closed
under a closure operator, Post’s classes form a lattice. There are five maximal closed
classes below BF: R0, R1, M, L and D.

Definition Let n ∈ N, f, g be Boolean functions of arity n, A ⊆ {0, 1}n, α ∈ {0, 1},
m ∈ N, m ≥ 2.

- dual(f) is the function dual(f)(α1, . . . , αn) := ¬f(α1, . . . , αn).
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- For a set B of Boolean functions, let dual(B) := {dual(f)|f ∈ B}.

A is called

- α-separating, if there exists an i such that for all (α1, . . . , αn) ∈ A, αi = α.

f is called

- monotonic, if for all (α1, . . . , αn) and (β1, . . . , βn) with αi ≤ βi for all 1 ≤ i ≤ n
holds f(α1, . . . , αn) ≤ f(β1, . . . , βn).

- self-dual if dual(f) = f

- α-reproducing, if f(α, . . . , α) = α).

- α-separating, if f−1({α}) is α-separating

- α-separating of degree m, if every subset S ⊆ f−1({α}) with |S| = m is α-separating

We say

- f ≤ g, if for all (α1, . . . , αn) ∈ {0, 1}n, f(α1, . . . , αn) ≤ g(α1, . . . , αn) holds.

- For a tuple −→α = (α1, . . . , αn) ∈ {0, 1}n, let −→α := (α1, . . . , αn).

Finally, let hm(x1, . . . , xm+1) :=
m+1∨
i=1

x1 ∧ x2 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xm+1. This function

is 1-separating of degree m, but not 1-separating of degree m + 1.

Definition

- Let P denote the set of closed classes in Post’s lattice.

- Let B ∈ P a class from Post’s lattice. By base(B) we denote the base for B given
in table 1.

- For B ∈ P , we often say B-circuit as an abbreviation for base(B)-circuit, and B-
formula as a short form for base(B)-formula. So, a B-circuit is a circuit using only
elements from the base of B as gates.

- For a class A ∈ P , let M(A) := {C|C is a Boolean circuit such that fC ∈ A}.
Observe that for classes A1, A2, trivially A1 ⊆ A2 ⇔M(A1) ⊆M(A2) holds.

- For a set A of Boolean functions and a class B from P , let
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M(A � B) := {f |f is a B-formula and f ∈M(A)}
MC(A � B) := {C|C is a B-circuit and C ∈M(A)}

We will call M(A � B) the A-membership problem for B-formulas and MC(A �
B) the A-membership problem for B-circuits.

- For classes A, B ∈ P, let M(AoB) := {C|C is a {∧,∨,¬}-circuit and C ∈ M(A)}
for circuits guaranteed to be in B. This means the decision algorithm only has to
answer the question ”Is fC in A?” correctly for circuits with fC ∈ B (for a formal
definition, see [Böh]). M(AoB) is called the membership problem for B-circuits with
promise A.

- For a circuit C, we say xi is a relevant variable if there are α1, . . . , αi−1, αi+1, . . . , αn

such that

C(x1 = α1, . . . , ai−1 = αi−1, xi = 0, xi+1 = αi+1, . . . , xn = αn) 6=
C(x1 = α1, . . . , ai−1 = αi−1, xi = 1, xi+1 = αi+1, . . . , xn = αn).

For a B-formula f , f ∈ M(A � B) holds if and only if there is a A-formula g with
f = g. In this thesis, we will examine the computational complexity of deciding the
A-membership problem for B-formulas for all combinations A, B ∈ P . We will not try to
find an actual A-formula describing a given function, we just determine if such a formula
exists. For the demonstrated algorithms, we will make some assumptions about the input
of the algorithm for convenience. For once, we will always assume the input formula
is a correct B-formula. To check this can obviously be done in polynomial time before
starting the actual algorithm. We will also assume the variables in a given input formula
are x1, . . . , xn for some n ∈ N. If other variables are used, we can simply rename the
occurring variables.

Since a formula is just a special case of a Boolean circuit, it is obvious that M(A �
B) ≤p

m MC(A � B) holds for all classes A, B. Thus, we will show polynomial-time
results for the circuit problem, and coNP-completeness for the formula problem. With
this, it follows M(A � B) ≡p

m MC(A � B) for all classes A, B ∈ P for which we can
decide the complexity. If we look closer at the complexity than just the difference be-
tween polynomial-time solvable and coNP-complete, there most likely will be a difference
between circuits and formulas for our membership problems, as in [Rei01], it was shown
the complexity of the circuit value problem is different from the formula value problem -
in this thesis, we only use the fact that both are solvable in polynomial time.
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Proposition 1 Let A, B ∈ P. Then

1. M(A � B) = M(A ∩B � B)

2. MC(A � B) = MC(A ∩B � B)

3. M(B � B) is in P

The consequence of Proposition 1 is that we only have to consider M(A � B) for
classes A, B such that A $ B holds.

In [Böh], Böhler examined the complexity of M(AoB) for classes A, B from P . Our
problem MC(A � B) seems easier than that one on first sight, since we do not only
have the information a certain formula or circuit describes a function from a class B,
but we also have the representation as a B-circuit. However, we must consider that
the expansion of a given B-circuit into a {∨,∧,¬}-circuit describing the same function
cannot always easily be done in polynomial time - for example, a circuit calculating the
function x1 ⊕ x2 ⊕ · · · ⊕ xn cannot be expressed as {∨,∧.¬}-formula in a straightforward
way without the result growing exponentially in size with regard to n. Thus, we cannot
take M(AoB) for granted as an upper bound for our problem. However, in the proofs for
polynomial-time results, Böhler used only the fact that the value of a Boolean circuit can
be calculated in polynomial time, and this holds for our case as well. Therefore, at least
for the polynomial-time results, MC(A � B) ≤p

m M(AoB) holds.

The membership problem for BF-formulas, meaning formulas containing ∨,∧ and ¬
as connectives, is coNP-complete in nearly every case, as the following theorem shows.
The theorem was proven by Klaus Wagner, the proof can be found in [Böh].

Theorem 2 M(A � BF) is coNP-complete for every closed class of Boolean functions
A such that A /∈ {∅, R0, R1, R2, BF}. M(A � BF) ∈ P for A ∈ {∅, R0, R1, R2, BF}.

Since there are a lot of combinations A, B for which M(A � B) can be examined, we
need methods for reducing the number of combinations we actually have to look at. With
help of the lattice structure Post proved for his classes, it is easy to see we only have to
examine a subset of the possible combinations. In the following paragraphs we present
definitions and elementary, yet useful results.
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Name Definition Base
BF All Boolean functions {∨,∧,¬}
R0 {f ∈ BF | f is 0-reproducing } {∧,⊕}
R1 {f ∈ BF | f is 1-reproducing } {∨,↔}
R2 R1 ∩ R0 {∨, x ∧ (y ↔ z)}
M {f ∈ BF | f is monotonic } {∨,∧, 0, 1}
M1 M ∩ R1 {∨,∧, 1}
M0 M ∩ R0 {∨,∧, 0}
M2 M ∩ R2 {∨,∧}
Sn
0 {f ∈ BF | f is 0-separating of degree n} {→, dual(hn)}

S0 {f ∈ BF | f is 0-separating } {→}
Sn
1 {f ∈ BF | f is 1-separating of degree n} {x ∧ y, hn}

S1 {f ∈ BF | f is 1-separating } {x ∧ y}
Sn
02 Sn

0 ∩ R2 {x ∨ (y ∧ z), dual(hn)}
S02 S0 ∩ R2 {x ∨ (y ∧ z)}
Sn
01 Sn

0 ∩M {dual(hn), 1}
S01 S0 ∩M {x ∨ (y ∧ z), 1}
Sn
00 Sn

0 ∩ R2 ∩M {x ∨ (y ∧ z), dual(hn)}
S00 S0 ∩ R2 ∩M {x ∨ (y ∧ z)}
Sn
12 Sn

1 ∩ R2 {x ∧ (y ∨ z), hn}
S12 S1 ∩ R2 {x ∧ (y ∨ z)}
Sn
11 Sn

1 ∩M {hn, 0}
S11 S1 ∩M {x ∧ (y ∨ z), 0}
Sn
10 Sn

1 ∩ R2 ∩M {x ∧ (y ∨ z), hn}
S10 S1 ∩ R2 ∩M {x ∧ (y ∨ z)}
D {f |f is self-dual} {xy ∨ xz ∨ (y ∧ z)}
D1 D ∩ R2 {xy ∨ xz ∨ yz}
D2 D ∩M {xy ∨ yz ∨ xz}
L {f |f is linear} {⊕, 1}
L0 L ∩ R0 {⊕}
L1 L ∩ R1 {↔}
L2 L ∩ R {x⊕ y ⊕ z}
L3 L ∩D {x⊕ y ⊕ z ⊕ 1}
V {f | There is a formula of the form c0 ∨ c1x1 ∨ · · · ∨ cnxn {∨, 1, 0}

such that ci are constants for 1 ≤ i ≤ n that describes f}
V0 [{∨}] ∪ {0} {∨, 0}
V1 [{∨}] ∪ {1} {∨, 1}
V2 [{∨}] {∨}
E {f | There is a formula of the form c0 ∧ (c1 ∨ x1) ∧ · · · ∧ (cn ∨ xn) {∧, 1, 0}

such that ci are constants for 1 ≤ i ≤ n that describes f}
E0 [{∧}] ∪ {0} {∧, 0}
E1 [{∧}] ∪ {1} {∧, 1}
E2 [{∧}] {∧}
N [{¬}] ∪ {0} ∪ {1} {¬, 1}
N2 [{¬}] {¬}
I [{id}] ∪ {0} ∪ {1} {id, 0, 1}
I0 [{id}] ∪ {0} {id, 0}
I1 [{id}] ∪ {1} {id, 1}
I2 [{id}] {id}

Table 1: List of all closed classes of Boolean functions with bases

(hn(x1, . . . , xn+1) :=
n+1∨
i=1

x1 ∧ x2 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xn+1)
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Figure 1: Graph of all closed classes of Boolean functions
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The following lemma is taken from [Rei01]:

Lemma 3

1. Let g be a Boolean function such that g(x1, . . . , xn) =
f(f1(x

1
1, . . . , x

1
m1

), . . . , fl(x
l
1, . . . , x

l
ml

)), For the dual function of g it holds that dual(g)
= dual(f)(dual(f1), . . . , dual(fl)).

2. If B is a finite set of Boolean functions, then [dual(B)] = dual([B]).

3. Every closed class is dual to its mirror class (via the symmetry axis in the lattice).

4. Let A be a closed class. Then dual(A) is a closed class, too.

Lemma 4 (Duality principle) Let A, B ∈ P such that dual(base(B)) = base(dual(B)).
Then M(A � B) ≡p

m M(dual(A) � dual(B)).

Proof Let f be a B-formula. Let g :≡ dual(f). g can be computed easily in polynomial
time, since with Lemma 3 we know we just have to exchange every gate in the formula f
with a gate for the dual function. Since dual(base(B)) = base(dual(B)), the result is a
dual(B)-formula.

Now we see f ∈M(A) ⇔ dual(g) ∈M(A) ⇔ g ∈M(dual(A)) holds. Thus, M(A �
B) ≤p

m M(dual(A) � dual(B)). For symmetry reasons, M(dual(A) � dual(B)) ≤p
m

M(A � B) holds as well (since with dual(dual(f)) = f , we have dual(base(B)) =
base(B)). 2

This lemma reduces the number of combinations A, B for which we have to examine
M(A � B): Since for any class from Post’s lattice which is not self-dual (that means a
class B such that dual(B) 6= B), the premise of Lemma 4 is met, the lemma implies that
we only have to consider membership problems for B-formulas, where B is on one fixed
side of the lattice. In this thesis, we will analyse formulas from classes of the left side of
Post’s lattice. Moreover, for a self-dual class B on the symmetry axis of the lattice for
which base(B) = dual(base(B)) holds, we only have to consider M(A � B) for classes
A on the left side of the lattice as well. This holds for any of the self-dual classes except
for R2 (the dual function of ∨ is ∧, and ∧ is not an element of base(R2)).

Proposition 5 Let B, A1, A2 be classes from P, K ∈ {P, coNP} (or any complexity class
closed under intersection and unification) such that M(A1 � B),M(A2 � B) ∈ K.
Then M(A1 ∩ A2 � B),M(A1 ∪ A2 � B) ∈ K (Note A1 ∪ A2 is not necessarily a class
from Post’s lattice, but A1 ∩ A2 is).
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To show some membership problem M(A � B) is coNP-complete, formally we have
to construct some B-formula in many cases. The following lemma enables us to express
the reduction function over any base, as long as the function can be expressed with a
formula of a certain class. This also helps us to give a single reduction for membership
problems M(A � B1) and M(A � B2) with B1 ⊆ B2. We cannot convert any given
B1-formula into an equivalent B2-formula easily, but with this lemma we can do this in
the most important cases.

Lemma 6 Let B be some class from Post’s lattice, f a fixed function from B, g1, . . . , gn

B-formulas. Then there exists a B-formula h such that h = f(g1, . . . , gn), and there is
a polynomial-time algorithm that calculates h when given g1, . . . , gn. h is of polynomial
length in |g1|+ · · ·+ |gn|.

Proof Since f ∈ B, there exists a fixed B-formula f ′ such that f ′(α1, . . . , αn) =
f(α1, . . . , αn) for all α1, . . . , αn ∈ {0, 1}. The algorithm only needs to replace every
xi-gate with the formula gi to obtain the formula h. Since f ′ is a B-formula, and all gi are
B-formulas, the result h is a B-formula as well. Obviously, |h| ≤ |f ′| ·max(|g1|, . . . , |gn|)
holds, and the algorithm runs in polynomial time. 2

1.2 Known complexity results

Here we will list problems known to be coNP-complete from [ReiWag99] and [Rei01].
These will be used in our reductions.

Definition Let B be a set of Boolean functions. Then

EQF (B) := {(g, h) | g and h are B-formulas and g = h}

is the equivalence problem for B-formulas.

Definition Let B be a set of Boolean functions. Then

TAUTF (B) := {f | f is a B-formula and f = 1 holds}

is the tautology problem for B-formulas.

The following theorems are from [Rei01] and [ReiWag99]:

10



Theorem 7 Let B be a finite set of Boolean functions, S10 ⊆ [B] or S00 ⊆ [B] or D2 ⊆
[B]. Then EQF (B) is coNP-complete.

Theorem 8 Let B be a finite set of Boolean functions, S0 ⊆ [B]. Then TAUTF (B) is
coNP-complete.

2 Upper bounds

In this section, we will show upper bounds for our membership problems. In general,
M(A � B) is always in coNP, as we will see in the next theorem. We will also show most
membership problems for M -formulas are easy to solve, and all membership problems for
L-formulas are solvable in polynomial time.

Theorem 9 Let A, B ∈ P. Then MC(A � B) ∈ coNP.

Proof We show the complement of M(A � B) is in NP: To show C /∈M(A � B), for
a given circuit C, it is sufficient to give a counter-example of small size (note that for any
class B and any B-circuit C, the value of fC(α1, . . . , αn) can be computed in polynomial
time):

I2 For each i ∈ {1, . . . , n}, give a tuples (αi
1, . . . , α

i
n) such that C(αi

1, . . . , α
i
n) 6= αi

i

Sk
0 Give k input tuples which evaluate to 0 but do not have a common 0

S0 Observe it is enough to give n input tuples to show C /∈ M(S0): If C /∈ M(S0), then
there exists some finite set A ⊆ {0, 1}n such that for all −→x ∈ A, C(−→x ) = 0 but the
elements of A do not have a common 0. Thus it is sufficient to choose a n-element
subset A′ of A such that for every position i ∈ {1, . . . , n} there is some −→x ∈ A′ such
that the i-th component of −→x is 1.

M A counter-example of two input tuples exists if the function is not monotonic: In this
case we have −→x1 and −→x2 such that −→x1 ≤ −→x2 and C(−→x1) > C(−→x2).

R0, R1 This problem even is in P: To test whether C is in R0, just verify that C(0, . . . , 0) =
0 holds. For R1, check whether C(1, . . . , 1) = 1.

D It is sufficient to give one tuple −→α such that C(−→α ) 6= dual(C)(−→α ).

L For one variable xi, give a proof that it is a relevant variable (this can be achieved with
two tuples), then give two tuples which show changing the assignment of xi does
not change the value of C.
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N2 For each i ∈ {1, . . . , n}, give a tuple (αi
1, . . . , α

i
n) such that C(αi

1, . . . , α
i
n) = αi

i.
Further, give counter-examples to prove C /∈ I2 ⊆ N2.

V2 Let W := {i | 1 ≤ i ≤ n C(x1 = 0, . . . , xi−1 = 0, xi = 1, xi+1 = 0, . . . , xn = 0) = 1}.
Observe we have C ∈ M(V2) if and only if C =

∨
i∈W

xi: Obviously, if C =
∨
i∈W

xi,

then C can be written over the basis {∨}, and thus C ∈ M(V2). Now assume

C ∈ M(V2). Then C =
∨

i∈W ′

xi for some set W ′ ⊆ {1, . . . , n} holds. Obviously,

W ⊆ W ′, since for any i ∈ W , xi → C holds. On the other hand, for any i ∈ W ′,
we have C(x1 = 0, . . . , xi−1 = 0, x1 = 1, xi+1 = 0, . . . , xn = 0) = 1 holds, and
therefore i ∈ W . Thus, W = W ′ holds, and so it is sufficient to give one counter-

example for the equivalence C =
∨
i∈W

xi to show that C /∈ V2.

Obviously, these counter-examples can be verified in polynomial time by an algorithm.
For classes of the form A1 ∩ A2 or A1 ∪ A2, the theorem follows with proposition 5. For
the class I1, we give a tuple for which C does not evaluate to the constant 1 in addition to
the examples for proving C is not an identify. For the classes on the right side of Post’s
lattice, the theorem follows with Lemma 4. 2

2.1 Subclasses of L

In this section we show that for a circuit describing a linear function, all membership
problems in Post’s lattice are easy to solve. The reason for this is that it is easy to
determine the set of relevant variables for a linear function - knowing these, we have all
the information we need, since this leaves only 2 possibilities for the linear function in
question. Note we only need to show MC(A � L′) ∈ P for all pairs A, L′ such that
A ⊆ L′ $ L, due to Proposition 1.

Proposition 10 Let C be a Boolean circuit, C ∈ M(L). Then there exists a L-formula
f , such that fC = ff , |f | is linear with regard to |C|. There exists an algorithm which,
given C, calculates f in time O(|C|O(1)).

Proof It is easy to see xi is a relevant variable for C if and only if

C(x1 = 0, . . . , xi−1 = 0, xi = 0, xi+1 = 0, . . . , xn = 0) 6=

(x1 = 0, . . . , xi−1 = 0, xi = 1, xi+1 = 0, . . . , xn = 0).
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So it is easy to determine the set of relevant variables for C. Now, the formula f ′ is of
the form c⊕xi1 ⊕ · · ·⊕xik with xi1 , . . . , xik being the pairwise different relevant variables
for C, and c = C(0, . . . , 0). 2

Theorem 11 Let A ⊆ L′ ⊆ L be classes from P. Then MC(A � L′) ∈ P.

Proof Let C be a L′-circuit, and f the corresponding L-formula constructed in Propo-
sition 10. Obviously, f ∈M(A) ⇔ C ∈MC(A � L′) holds, since they describe the same
function.

To test if f ∈ M(L0),M(L1) or M(L2), we just have to calculate f(0, . . . , 0) and
f(1, . . . , 1). We show f ∈ M(L3) if and only if the number of relevant variables in f is
odd:

Let f ∈M(L3). Assume the number of relevant variables is even, let the variables be
x1, . . . , x2k. Then we have

f(x1 = 0, . . . , x2k = 0) = c⊕ 0⊕ · · · ⊕ 0 = c
¬f(x1 = 1, . . . , x2k = 1) = ¬(c⊕ 1⊕ 1⊕ · · · ⊕ 1︸ ︷︷ ︸

=0,since 2k even.

) = ¬c.

Thus, f is not self-dual, and so f /∈M(L3).

Now, let the relevant variables for f be x1, . . . , x2k+1 for some k ∈ N. Let α1, . . . , α2k+1 ∈
{0, 1}. Then we have

f(x1 = α1, . . . , x2k+1 = α2k+1) = c⊕ α1 ⊕ 1⊕ α2 ⊕ 1⊕ · · · ⊕ α2k+1 ⊕ 1
= c⊕ α1 ⊕ α2 ⊕ · · · ⊕ α2k+1 ⊕ 1⊕ 1 · · · ⊕ 1︸ ︷︷ ︸

=1(2k+1 odd)

= ¬(c⊕ α1 ⊕ α2 ⊕ · · · ⊕ α2k+1

= ¬f(x1 = α1, . . . , x2k+1 = α2k+1).

Thus, f = dual(f), and since f ∈ M(L), we have f ∈ M(L3). Since counting the
relevant variables in f can be done in polynomial time, we have MC(L3 � L′) ∈ P .

To see whether f ∈ M(N) or f ∈ M(I), observe this is true if and only if f ≡ 1⊕ xi

or f ≡ 0⊕xi for some i, which is trivial to verify. Thus, MC(N � L′),MC(I � L′) ∈ P .
With proposition 5, this implies MC(A � L′) ∈ P for A ∈ {N2, I0, I1, I2}. Thus, we have
MC(A � L′) ∈ P for all cases. 2
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2.2 Subclasses of M

For circuits describing monotonic functions, a lot of membership problems are easy to
solve as well, since with calculating function values for two input tuples, we can get a lot
of information about other input tuples without the need to calculate them directly. The
proof to the following theorem is based on the proof for a similar proposition in [Böh].

Theorem 12 Let M ′ ⊆ M and A from P such that A ⊆ S01, A ⊆ S11, A ⊆ V or A ⊆ E.
Then MC(A � M ′) ∈ P.

Proof Let C be a M ′-circuit. Note the only properties we use in this proof are that C
describes a monotonic function, and that fC is computable in polynomial time.

Case 1 A = I2. Observe for an input variable xi, C = xi holds if and only if

0 = C(x1 = 0, . . . , xi−1 = 0, xi = 0, xi+1 = 0, . . . , xn = 0)
= C(x1 = 1, . . . , xi−1 = 1, xi = 0, xi+1 = 1, . . . , xn = 1) and

1 = C(x1 = 0, . . . , xi−1 = 0, xi = 1, xi+1 = 0, . . . , xn = 0)
= C(x1 = 1, . . . , xi−1 = 1, xi = 1, xi+1 = 1, . . . , xn = 1).

Thus, for every input variable, at most 4 values of fC must be calculated.

Case 2 A = V2. Let W := {i|1 ≤ i ≤ n,C(xi = 0, . . . , xi−1 = 0, xi = 1, xi+1 =
0, . . . , xn = 0) = 1}. Since fC is monotonic, xi → C holds for all i ∈ W . If
W = ∅, we know C /∈ M(V2). If W 6= ∅, we know C ∈ M(V2) if and only

if C =
∨
i∈W

xi. Without loss of generality, let W = {1, . . . , k} (rename variables if

necessary). Observe we have C ∈M(V2) if and only if C(x1 = 0, . . . , xk = 0, xk+1 =
1, . . . , xn = 1) = 0, since in this case we have C → x1 ∨ · · · ∨ xk.

Case 3 A = S01. For C ∈M(M), we have
C ∈M(S01) ⇔ C ∈M(S0)

⇔ ∃i such that C(α1, . . . , αn) = 0 ⇒ αi = 0
⇔ ∃i such that αi = 1 ⇒ C(α1, . . . , αn) = 1
⇔ ∃i such that

C(x1 = 0, . . . , xi−1 = 0, xi = 1, xi+1 = 0, . . . , xn = 0) = 1
(since fC is monotonic)

To verify this last condition, we just need to compute n values of fC , which can be
done in polynomial time.

14



Case 4 A = E2 or A = S11: This follows from the cases V2 and S01: We have C ∈
M(E2) ⇔ dual(C) ∈ M(V2) and C ∈ M(S11) ⇔ dual(C) ∈ M(S01), both cases
can be tested in polynomial time, since dual(C) is a monotonic circuit as well.

The remaining classes I0, I1, I, V0, V1, E0, E1, V, S00 and S10 follow from the above with
Proposition 5 and Theorem 2. 2

3 R1-and R2-formulas

We will now examine R1-and R2-formulas. The information a certain Boolean function is
from one of these classes does not give us much information - we just know the value of
the function for one or two input tuples. We will show in this section the knowledge of the
representation of a Boolean function as a R1- or R2-formula does not give us a significant
advantage either, membership problems for these formulas are not easier than those for
general Boolean formulas. Note the results for R0 formulas follow with Lemma 4.

For R2-formulas, we can basically prove coNP-completeness for all relevant member-
ship problems using only one reduction. However, since the base for R2 does not meet
the condition for Lemma 4, this is the one case where we actually have to look at both
sides of Post’s lattice.

Lemma 13 Let A ∈ P such that A ⊆ S2
0 or A ⊆ M or A ⊆ D, B ∈ {R1, R2}. Then

M(A � B) is coNP-complete.

Proof We show EQF (B) ≤p
m M(A � B). The proposition follows with Theorem 7.

Let f1, f2 be B-formulas, and h a B-formula such that h /∈M(A). Let y be a new variable,
and

g :≡

{
y ∧ (f1 ↔ f2), if f1(0, . . . , 0) = f2(0, . . . , 0)

h, otherwise.

For B = R2, g is a B-formula, with help of Lemma 6, we can construct an equivalent
R1-formula, since x ∧ (y ↔ z) ∈M(R2). We claim f1 = f2 ⇔ g ∈M(A).

Let f1 = f2. Then g = y ∧ (1) = y ∈M(I2) ⊆M(A).

Let f1 6= f2.

Case 1 Let f1(0, . . . , 0) 6= f2(0, . . . , 0). Then g ≡ h /∈M(A).
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Case 2 Let f1(0, . . . , 0) = f2(0, . . . , 0). Let α1, . . . , αn ∈ {0, 1} such that, without loss of
generality,

f1(α1, . . . , αn) = 0

f2(α1, . . . , αn) = 1.

Since f1, f2 ∈M(R1), we know f1(1, . . . , 1) = f2(1, . . . , 1) = 1. Thus,

g(x1 = 1, . . . , xn = 1, y = 0) = 0 ∧ (1 ↔ 1) = 0

g(x1 = α1, . . . , xn = αn, y = 1) = 1 ∧ (0 ↔ 1) = 0

but the two input tuples do not have a common 0. Thus, g is not 0-separating of
degree 2, g /∈M(S2

0). Further, we see, since f1(0, . . . , 0) = f2(0, . . . , 0):

g(x1 = 0, . . . , xn = 0, y = 1) = 1 ∧ (0 ↔ 0) = 1

g(x1 = α1, . . . , xn = αn, y = 1) = 1 ∧ (0 ↔ 1) = 0

and so, g /∈M(M). Last, we know

¬g(x1 = α1, . . . , xn = αn, y = 0) = ¬(0 ∧ (g1 ↔ g2)) = ¬0 = 1

so g is not self-dual, g /∈M(D). Thus, we know g /∈M(A).

2

To show the coNP-completeness for A-membership problems with A ⊆ S2
1, we can just

”dualize” the proof of the first part of the preceding lemma to handle the right side of
the lattice as well:

Lemma 14 Let A ∈ P such that A ⊆ S2
1, B ∈ {R2, R1} Then M(A � B) is coNP-

complete.
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Proof We show EQF (B) ≤p
m M(A � B). The proposition follows with Theorem 7.

Let f1, f2 be B-formulas. With Lemma 6, construct a B-formula g := y ∨ (f1 6= f2) (note
y ∨ (x 6= z ∈M(R2) ⊆M(B)). We claim f1 = f2 ⇔ g ∈M(A).

Let f1 = f2. Then g = y ∨ (f1 6= f2) = y ∨ 0 = y ∈M(I2) ⊆M(A).

Let f1 6= f2. Let α1, . . . , αn ∈ {0, 1} such that, without loss of generality,

f1(α1, . . . , αn) = 0

f2(α1, . . . , αn) = 1.

We see

g(x1 = 0, . . . , xn = 0, y = 1) = 1 ∨ (f1 6= f2) = 1

g(x1 = α1, . . . , xn = αn, y = 0) = 0 ∨ (0 6= 1) = 1

but the two input tuples do not have a common 1. Thus, g is not 1-separating of
degree 2, g /∈M(S2

1) ⊇M(A). 2

The only cases left are membership problems for classes below L. Since R2 ∩ L = I2,
and this case was shown to be coNP-complete in the previous lemma, we only have to
look at R1-formulas here:

Lemma 15 Let A ∈ P such that A ⊆ L. Then M(A � R1) is coNP-complete.

Proof We show TAUTF (R1) ≤p
m M(A � R1). The proposition follows with Theorem

8. Let f be any R1-formula. Let g :≡ y ∨ (f ↔ y) for some new variable y. We claim
f ∈ TAUT ⇔ g ∈M(A).

Let f ∈ TAUT. Then g = y ∨ (1 ↔ y) = y ∈M(I2) ⊆M(A).

Let f /∈ TAUT. Let α1, . . . , αn such that f(α1, . . . , αn) = 0. Since f ∈ M(R1), we
know f(1, . . . , 1) = 1. Thus,

g(x1 = 1, . . . , xn = 1, y = 0) = 0 ∨ (1 ↔ 0) = 0

g(x1 = 1, . . . , xn = 1, y = 1) = 1 ∨ (1 ↔ 1) = 1

therefore we know y is a relevant variable for g. We see

g(x1 = α1, . . . , xn = αn, y = 0) = 0 ∨ (0 ↔ 0) = 1
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g(x1 = α1, . . . , xn = αn, y = 1) = 1 ∨ (1 ↔ 0) = 1

Thus, the changing of the value for y does not change the value of the formula g,
although y is a relevant variable for g. Therefore, g /∈M(L). 2

4 0-separating formulas

4.1 Basic properties

In this section, we examine classes of formulas which are 0-separating of some degree
k ∈ N. The bases for these classes contain the dual(hk) function, so we will start our
discussion of these formulas with a look at this function.

Lemma 16 Let k ∈ N and α1, . . . , αk+1 ∈ {0, 1}. Then (dual(hk))(α1, . . . , αk+1) = 1 if
and only if there exist i, j such that 1 ≤ i, j ≤ k + 1, i 6= j and αi = αj = 1.

Proof

(dual(hk))(α1, . . . , αk+1) = 1

⇔ ¬hk(α1, . . . , αk+1) = 1

⇔ hk(α1, . . . , αk+1) = 0

⇔
k+1∨
i=1

α1 · · · · · αi−1 · αi+1 . . . αk+1 = 0

⇔ For any subset A of {1, . . . , k + 1} with |A| = k holds: ∃j ∈ A with αj = 0

⇔ For any subset A of {1, . . . , k + 1} with |A| = k holds: ∃j ∈ A with αj = 1

Let (dual(hk))(α1, . . . , αk+1) = 1. Obviously, from the above follows there is some
i ∈ {1, . . . , k + 1} such that αi = 1. Assume αj = 0 for all j 6= i. Then let A :=
{1, . . . , k + 1} \ {i}. |A| = k, but for all j ∈ A, αj = 0 holds, which is a contradiction to
the above.

Now, let i 6= j such that αi = αj = 1. Then obviously, every subset A of {1, . . . , k+1}
with |A| = k contains i or j. Thus, (dual(hk))(α1, . . . , αn) = 1. 2
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Remark: A set A ⊆ {0, 1}n is 0-separating if and only if
∨
−→α∈A

−→α 6= −→
1 .

The following lemma is trivial, but useful:

Lemma 17 Let f, g Boolean functions, m ∈ N such that f ≤ g. Then

1. f ∈ Sm
0 ⇒ g ∈ Sm

0 .

2. f ∈ S0 ⇒ g ∈ S0.

Proof

1. Let −→x1, . . . ,
−→xm ∈ {0, 1}n such that g(−→xi ) = 0 for all i ∈ {1, . . . ,m}. Then f(−→xi ) = 0,

since f ≤ g. Thus, −→x1 ∨ · · · ∨ −→xm 6= −→
1 , and g ∈ Sm

0 holds.

2. This follows directly from part 1, since S0 =
⋂
m≥2

Sm
0 .

2

The following proposition is needed in some reductions:

Lemma 18 Let f ′(x1, . . . , xn) = f(x1, . . . , xn) ∧ (x1 ∨ · · · ∨ xn) and k ∈ N, k ≥ 2.

1. f ∈ Sk
0 ⇔ f ′ ∈ Sk

0.

2. f ∈ S0 ⇔ f ′ ∈ S0.

Proof

1. Let f ′ ∈ Sk
0. Since f ′ ≤ f , the proposition follows with Lemma 17.

Let f ′ /∈ Sk
0. Let −→α1, . . . ,

−→αk such that f ′(−→α1) = f ′(−→α2) = . . . = f ′(−→αk) = 0 and
−→α1 ∨ · · · ∨ −→αk =

−→
1 .

Let B := {−→α1, . . . ,
−→αk}\{(0, . . . , 0)}. Note 1 ≤ |B| ≤ k and

∨
−→α∈B

−→α = −→α1∨· · ·∨−→αk =
−→
1 . For all

−→
β ∈ B holds 0 = f ′(

−→
β ) = f(β1, . . . , βn)∧ (β1∨· · ·∨βn) = f(β1, . . . , βn).

Thus, f /∈ S
|B|
0 ⊇ Sk

0 .

2. This follows directly from part 1, since S0 =
⋂
m≥2

Sm
0 .

2
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4.2 S0, S02, S
k
0 and Sk

02-formulas

In this section we will discuss membership problems for formulas representing 0-separating
functions which are not necessarily monotonic.

Lemma 19 Let B ∈ P, S02 ⊆ B ⊆ R1 and A ⊆ M. Then M(A � B) is coNP-complete.

Proof We show EQF (B) ≤p
m M(A � B). The result follows from Theorem 7. Let f1, f2

be B-formulas. Let g :≡ (y ∨ (f1 ⊕ f2)). Note y ∨ (x1 ⊕ x2) is a function from S02 ⊆ B,
and therefore, a B-formula equivalent to g exists and is polynomial-time constructable
due to Lemma 6.

We claim f1 = f2 ⇔ g ∈M(A).

Let f1 = f2. Then g = (y ∨ (f1 ⊕ f1)) = y ∈M(I2) ⊆M(A).

Let (α1, . . . , αn) ∈ {0, 1}n such that β := f1(α1, . . . , αn) 6= f2(α1, . . . , αn) =: γ. Then
we have (since f1, f2 ∈M(B) ⊆M(R1)):

g(x1 = α1, . . . , xn = αn, y = 0) = 0 ∨ (β ⊕ γ) = 1

g(x1 = 1, . . . , xn = 1, y = 0) = 0 ∨ (1⊕ 1) = 0

thus, g /∈M(M) ⊇M(A). 2

Lemma 20 Let A ∈ P such that V2 ⊆ A ⊆ Sk
0. Then M(A � Sm

0 ) is coNP-complete for
k > m ≥ 2.

Proof We show TAUTF (Sm
0 ) ≤p

m M(A � Sm
0 ). The lemma follows with Theorem 8.

Let f any Sm
0 -formula. Let g :≡ dual(hm)(f, y1, . . . , ym) for new variables y1, . . . , ym. We

claim f ∈ TAUT ⇔ g ∈M(A).

Let f ∈ TAUT. Then g ≡ (dual(hn))(1, y1, . . . , ym) = y1∨· · ·∨ym ∈M(V2) ⊆M(A).

Let f /∈ TAUT. Let α1, . . . , αn such that f(α1, . . . , αn) = 0. Then we have (with
gn := dual(hn)):

g(−→x =−→α , y1=1, y2=0, y3=0, . . . , ym−1=0, ym=0) = gn(0, 1, 0, 0, . . . , 0, 0) = 0

g(−→x =−→α , y1=0, y2=1, y3=0, . . . , ym−1=0, ym=0) = gn(0, 0, 1, 0, . . . , 0, 0) = 0

. . .
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g(−→x =−→α , y1=0, y2=0, y3=0, . . . , ym−1=0, ym=1) = gn(0, 0, 0, 0, . . . , 0, 1) = 0

g(−→x =
−→
1 , y1 =0, y2 =0, y3 =0, . . . , ym−1 =0, ym =0) = gn(1, 0, 0, 0, . . . , 0, 0) = 0 (since

g ∈M(R1).

These are m + 1 input tuples for which g′ evaluates to 0, but the input tuples do not
have a common 0. Thus, g /∈M(Sm+1

0 ) ⊇M(Sk
0) ⊇M(A). 2

The classes Sk
0 and Sk

02 are very similar, since the only condition a function from Sk
0 has

to fulfill to be in Sk
02 is just the behaviour for one input tuple. So, deciding membership

problems for these two classes should not differ much in complexity. In the following
lemma, we construct a Sk

02-formula which describes ”nearly the same function” as a given
Sk

0 formula.

Lemma 21 Let m ≥ 2, S02 ⊆ A ⊆ Sm+1
02 . Then M(A � Sm

02) is coNP-complete.
M(D2 � S2

02) is coNP-complete.

Proof We show M(A � Sm
0 ) ≤p

m M(A � Sm
02) and M(D2 � S2

0) ≤p
m M(D2 � S2

02).
The lemma follows with the two previous lemmas. Let f be a Sm

0 -formula, i.e. a formula
containing only →- and dual(hn)-gates. For n ∈ N, we construct formulas zn as follows:

- z1 :≡ x1 ∨ (x1 ∧ x1)

- zi+1 :≡ xi+1 ∨ (zi ∧ xi+1)

It is obvious that zn = x1 ∨ · · · ∨ xi and |zn| is linear in n. Now, we replace every
occurring →-gate in f as follows: Instead of f1 → f2 for input gates f1, f2, we introduce
a gate f2 ∨ (zn ∧ f1) with a new copy of the zn circuit (note x∨ (y ∧ z) is a base function
for Sm

02). We call the resulting formula f ′.

We show |f ′| = O(|f |2): There can at most be |f | →-gates in f . For every of these
gates, we introduce a new sub-circuit of size O(n) (recall that n ≤ |f |) plus one x∨(y∧z)-
gate. Thus, the resulting formula f ′ is of size O(|f |2).

We claim:
For all (α1, . . . , αn) ∈ {0, 1}n, f ′(α1, . . . , αn) = f(α1, . . . , αn) ∧ (α1 ∨ · · · ∨ αn).
Let (α1, . . . , αn) ∈ {0, 1}n.

Case 1: (α1, . . . , αn) = (0, . . . , 0). Since f ′ is a Sm
02-formula by construction and Sm

02 ⊆ R0,
we see f ′(0, . . . , 0) = 0 = f(0, . . . , 0) ∧ (0 ∨ · · · ∨ 0) holds.
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Case 2: Let α1 ∨ · · · ∨ αn = 1. We claim in this case f(α1, . . . , αn) = f ′(α1, . . . , αn).
Obviously it is sufficient to show the value at every replaced gate in the new formula
is the same as the value of the f1 → f2 gate in the original formula. For any gate
f1 → f2, we have f2 ∨ (zn ∧ f1)(α1, . . . , αn) = f2 ∨ (1 ∧ f1)(α1, . . . , αn) = (f1 →
f2)(α1, . . . , αn). Therefore, we have f ′(α1, . . . , αn) = f(α1, . . . , αn) = (f ∧(x1∨· · ·∨
xn))(α1, . . . , αn).

Thus, the circuit for f ′ calculates the same Boolean function as f ∧ (x1, . . . , xn).

Now we see f ∈ M(A) ⇔ f ′ ∈ M(A) with Lemma 18 for S02 ⊆ A ⊆ Sm+1
02 (note for

f ∈ M(Sm
02), f ∈ M(Sk

0) ⇔ f ∈ M(Sk
02) holds). For M(D2 � S2

02), we use the following
reduction (with f ′ as constructed above):

Let h some S2
02-formula such that h /∈M(D2).

Let g :≡

{
f ′, if f(0, . . . , 0) = 0

h, if f(0, . . . , 0) = 1.

We claim f ∈M(D2) ⇔ g ∈M(D2).

Let f ∈ M(D2). Since f ∈ M(S2
0) ⊆ M(R1), we know f(1, . . . , 1) = 1. Since

f ∈M(D2), this implies f(0, . . . , 0) = 0. Thus, g ≡ f ′ = f ∧(x1∨· · ·∨xn) = f ∈M(D2).

Let f /∈M(D2).

Case 1 f(0, . . . , 0) = 0. Then, as above, g = f , and thus g /∈M(D2).

Case 2 f(0, . . . , 0) = 1. Then g ≡ h /∈M(D2).

2

4.3 S00-, Sk
00-, S01-, Sk

01-formulas and open problems

In this section we will discuss membership problems for formulas from classes below S2
01.

A lot of membership problems for these formulas are easy, because S2
01 ⊆ M, and we have

seen in Theorem 12 that for classes A, B such that A ⊆ S01 and B ⊆ M, M(A � B) is
polynomial-time solvable.

For k > m, we cannot decide the complexity of M(Sk
01 � Sm

01) or M(Sk
00 � Sm

00).
However, we can show a relationship between these:

Lemma 22 Let k > m ≥ 2. Then M(Sk
01 � Sm

01) ≤p
m M(Sk

00 � Sm
00).
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Proof Let f a Sm
01-formula. Construct Sm

00-formulas zn as follows (note x ∨ (y ∧ z) is a
base function for Sm

00):

- z1 :≡ x1 ∨ (x1 ∧ x1)

- zi+1 :≡ zi ∨ (xi+1 ∧ xi+1)

It is obvious zn = (x1 ∨ · · · ∨ xn), and |zn| is linear in n. Now, replace every occurring
1-gate in f with zn, and call the result f ’. Similar to the proof for Lemma 21, we can
show f ′ = f ∧ (x1 ∨ · · · ∨ xn). (This is obvious, since for any (α1, . . . , αn) ∈ {0, 1}n

with α1 ∨ · · · ∨ αn = 1, the resulting formula describes the same function as f , since the
replacement for 1 always evaluates to true. Since f ’ is a S00-formula by construction,
f ′(0, . . . , 0) = 0. Formally, this can be proven similarly to Lemma 21.)

Now the proposition follows with Lemma 18. 2

An other open problem is M(Sk
0 � M) for k ≥ 3. Again, we can state a relationship.

The proof for the following lemma is based on a proof from Böhler’s work. The actual
reduction used is the same, our case is just more complicated technically, since we have
to construct a Sm

00-formula of polynomial length instead of just showing the function is a
member of Sm

00.

Lemma 23 Let k > m ≥ 2. M(Sk
0 � M2) ≤p

m M(Sk
0 � Sm

00).

Proof Let f a M2, that is a {∨,∧}-formula. First, construct formulas zn as in Lemma
22, such that zn = x1 ∨ · · · ∨ xn, and |zn| = O(n) = O(|f |).

Let y1, . . . , ym+1 new variables, gm := dual(hm). Replace every gate

- f1 ∨ f2 with f1 ∨ (f2 ∧ zn)

- f1 ∧ f2 with gm(y1, . . . , ym+1) ∨ (f1 ∧ f2)

(note x ∨ (y ∧ z) is a base function for Sm
00.) Call the result f ′′, and let f ′ :≡

gm(y1, . . . , ym+1) ∨ (f ′′ ∧ f ′′). From the above follows the length of f ′ is polynomial
in |f |.

We claim f ′ = f ∨ gm. Let (α1, . . . , αn, β1, . . . , βm+1) ∈ {0, 1}n+m+1.

Case 1 gm(
−→
β ) = 1. Then f ′(−→x = −→α ,−→y =

−→
β ) = 1 = (f ∨ gm)(−→x = −→α ,−→y =

−→
β ).
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Case 2 gm(
−→
β ) = 0. In this case we have to prove f ′′(−→x = −→α ,−→y =

−→
β ) = f(−→x = −→α ).

If −→α =
−→
0 , then, since f ∈ M(M2) ⊆ M(R0) and f ′′ is a Sm

00-formula, we have

f(−→x = −→α ) = f ′(−→x = −→α ,−→y =
−→
β ) = 0. Thus we can assume −→α 6= −→

0 , therefore we
have zn(−→α ) = 1. We show the equality f = f ′′ for every gate in the circuit. Let v
be a gate in f . We show the value at v and the value at the replacement gate for v
in f ′′ are identical for the input α1, . . . , αn.

Case a v is a f1 ∨ f2-gate. Then we have f1 ∨ (f2 ∧ zn) = f1 ∨ (f2 ∧ 1) = f1 ∨ f2

(for the assignment −→x = −→α ,−→y =
−→
β ).

Case b v is a ∧-gate. Since gm(
−→
β ) = 0, obviously f1 ∧ f2 = gm ∨ f1 ∧ f2 holds.

Thus, we have f ′ = f ∨ gm(y1, . . . , ym+1). We claim f ∈M(Sk
0) ⇔ f ′ ∈M(Sk

0).

Let f ∈M(Sk
0). Since f ≤ f ′, the proposition follows with Lemma 17.

Let f /∈ M(Sk
0). Let −→α1, . . . ,

−→αk such that f(−→x = −→αi) = 0 for 1 ≤ i ≤ k and
−→α1 ∨ · · · ∨ −→αk = 1. Now, let

−→γi :=


(0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
m−i+1

), if i ≤ m + 1

(0, . . . , 0︸ ︷︷ ︸
m+1

), otherwise.

Note that since k > m, for every i ∈ {1, . . . ,m+1}, there is a γj with the i-th position

of γj being 1. Thus, f ′(−→x = −→α ,−→y = −→γi ) = 0 for all 1 ≤ i ≤ k, and −→α1 ∨ · · · ∨ −→αk =
−→
1 ,

and −→γ1 ∨ · · · ∨ −→γk =
−→
1 . Thus, f ′ /∈M(Sk

0).
2

Lemma 24 M(D2 � S2
01) ≤p

m M(D2 � S2
00).

Proof Let f a S2
01-formula. Like in the proof to Lemma 22, construct a S2

00-formula f ′

in polynomial time such that f ′ = f ∧ (x1 ∨ · · · ∨ xn). Now, we use the same reduction as
in the corresponding proposition for S2

0 and S2
02:

Let h some S2
02-formula such that h /∈M(D2).

Let g :≡

{
f ′, if f(0, . . . , 0) = 0

h, if f(0, . . . , 0) = 1.

We claim f ∈M(D2) ⇔ g ∈M(D2).
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Let f ∈ M(D2). Since f ∈ M(S2
0) ⊆ M(R1), we know f(1, . . . , 1) = 1. Since

f ∈M(D2), we have f(0, . . . , 0) = 0. Thus, g ≡ f ′ = f ∧ (x1 ∨ · · · ∨ xn) = f ∈M(D2).

Let f /∈M(D2).

Case 1 f(0, . . . , 0) = 0 Then, as above, g = f , and thus g /∈M(D2).

Case 2 f(0, . . . , 0) = 1 Then g ≡ h /∈M(D2).

2

So we have seen deciding membership problems for Sk
01-formulas is not harder than for

Sk
00-formulas. It seems plausible to assume the reverse is also true, since Sk

00 is a subset
of Sk

01, but there does not seem to be a straightforward way to convert Sk
00-formulas into

equivalent Sk
01-formulas in polynomial time. To do this canonically, we have to find some

Sk
01-formula for x ∨ (y ∧ z) with each of the variables x, y, z occurring only once.

5 Formulas representing monotonic functions

In this section, we will examine membership problems for M-, M1- and M2-formulas.
The results follow directly from a ”dualization” of a proof for the the corresponding
proposition for 1-separating functions in Böhler’s work. Note that since for M ′ ∈ {M, M2},
M ′ = dual(M ′) and base(M ′) = dual(base(M ′)) holds. Therefore, we only need to
consider subclasses of M and M2 on the left side of Post’s lattice due to Lemma 4.

Lemma 25 Let A ∈ P, D2 ⊆ A ⊆ S2
00. Then M(A � M2) is coNP-complete.

Proof We show EQF ({∧,∨}) ≤p
m M(A � M2). The lemma follows with Theorem 7.

Let f1, f2 be {∧,∨}-formulas. Let g(x1, . . . , xn, y, z) :≡ (y∨f1)∧(z∨dual(f2))∧(y∨z).
Since for a M2-formula calculating the dual function is just exchanging every ∨ with a ∧
and vice versa, this can be expressed as a M2-formula in polynomial time. Observe the
following equations hold:
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g(−→x = −→α , y = 1, z = 0) = 1 ∧ dual(f2)(
−→α ) ∧ 1

= dual(f2)(
−→α )

g(−→x = −→α , y = 0, z = 1) = f1(
−→α ) ∧ 1 ∧ 1

= f1(
−→α )

dual(g)(−→x = −→α , y = 1, z = 0) = ¬(0 ∨ f1(
−→α )) ∧ (1 ∨ dual(f2)(

−→α )) ∧ (0 ∨ 1)

= ¬f1(
−→α )

= dual(f1)(
−→α )

dual(g)(−→x = −→α , y = 0, z = 1) = ¬(1 ∨ f1(
−→α )) ∧ (0 ∨ dual(f2)(

−→α )) ∧ (1 ∨ 0)

= ¬dual(f2)(
−→α )

= f2(
−→α )

g(−→x = −→α , y = 0, z = 0) = 0
g(−→x = −→α , y = 1, z = 1) = 1

We claim f1 = f2 ⇔ g ∈M(A).

Let f1 = f2. Then dual(f1) = dual(f2), and from the above equations follows dual(g) =
g. Since g ∈M(M), we have g ∈M(M ∩D) = M(D2) ⊆M(A).

Now, without loss of generality, let −→α such that f1(
−→α ) = 0, f2(

−→α ) = 1. Then we have

g(−→x = −→α , y = 0, z = 1) = f1(
−→α ) = 0

g(−→x = −→α , y = 1, z = 0) = dual(f2)(
−→α ) = ¬f2(

−→α ) = 0

but obviously the two input tuples do not have a common 0, thus g /∈ M(S2
0) ⊇

M(A). 2

Corollary 26 The following problems are coNP-complete: M(D2 � M1), M(D2 � M),
M(S2

00 � M2), M(S2
00 � M1), M(S2

00 � M), M(S2
01 � M1), M(S2

01 � M).

Proof The first four cases are trivial, since the bases for M1, M2 are supersets of the
base for M2. The remaining two cases follow from M(S2

00 � M2) = M(S2
01 � M2) ≤p

m

M(S2
01 � M1) ≤p

m M(S2
01 � M). 2

6 Formulas representing self-dual functions

We will now consider D- and D1-formulas. Note M(A � D2) is in P for any class A from
P .

Lemma 27 Let A ⊆ M, B ∈ {D, D1}. Then M(A � B) is coNP-complete.
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Proof We show EQF (B) ≤p
m M(A � B). The result follows with Theorem 7. Let

f1, f2 be B-formulas. Since L2 ⊆ B, with Lemma 6, we can construct a B-formula g in
polynomial time, such that g = f1 ⊕ f2 ⊕ y. We claim f1 = f2 if and only if g ∈M(A).

Let f1 = f2. Then g = y ∈M(I2) ⊆M(A).

Let α1, . . . , αn ∈ {0, 1} such that f1(α1, . . . , αn) 6= f2(α1, . . . , αn). Then we have

g(x1 = α1, . . . , xn = αn, y = 0) = f1(α1, . . . , αn)⊕ f2(α1, . . . , αn)⊕ 0 = 1

g(x1 = α1, . . . , xn = αn, y = 1) = f1(α1, . . . , αn)⊕ f2(α1, . . . , αn)⊕ 1 = 0

thus, g /∈M(M) ⊇M(A). 2

Lemma 28 Let A, B ∈ P such that A ⊆ L and B ∈ {D, D1}. Then M(A � B) is
coNP-complete.

Proof We show EQF (B) ≤p
m M(A � B). The proposition follows with Theorem 7.

Let h be some B-formula such that h /∈ M(A). Now, let f1, f2 be any B-formulas.
If f1(0, . . . , 0) 6= f2(0, . . . , 0), then let g :≡ h. Otherwise, let g :≡ yf1 ∨ yf2 ∨ f1f2.
This can be expressed as a B-formula in polynomial time with Lemma 6. We claim
f1 = f2 ⇔ g ∈M(A).

Let f1 = f2. Then g = yf1 ∨ yf1 ∨ f1f1 = y ∈M(I2) ⊆M(A).

Let f1 6= f2.

Case 1: f1(0, . . . , 0) 6= f2(0, . . . , 0). Then g ≡ h /∈M(A).

Case 2: f1(0, . . . , 0) = f2(0, . . . , 0) =: β. Let α1, . . . , αn ∈ {0, 1} such that, without loss
of generality,

f1(α1, . . . , αn) = 0

f2(α1, . . . , αn) = 1

(Otherwise, since f1 and f2 are self-dual, choose α1, . . . , αn.) Now we have:

g(x1 = 0, . . . , xn = 0, y) = yβ ∨ yβ ∨ ββ = y

Thus, y is a relevant variable for g. Assume g ∈ M(A) ⊆ M(L). Then, since y is
relevant for g, the negation of y’s value would negate the value of g as well. But we
have
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g(x1 = α1, . . . , xn = αn, y = 0) = (0 ∧ 0) ∨ (0 ∧ 0) ∨ (0 ∧ 1) = 0

f(x1 = α1, . . . , xn = αn, y = 1) = (1 ∧ 0) ∨ (1 ∧ 0) ∨ (0 ∧ 1) = 0

so, g /∈M(L) ⊇M(A).

2

7 Conclusions and generalizations

In all cases we were able to solve, it has been shown the membership problem for B-
formulas is as hard to solve as the membership problem for {∨,∧,¬} circuits with promise
B. This is surprising, since this means the knowledge of the actual representation of a
Boolean function as a B-formula does not give us any significant advantage over knowing
the described function is from the class B.

Although we always focused on a single fixed base for every class, most of the results
can easily be generalized for arbitrary bases, since Lemma 6 can be stated for any base.
Thus, we can use the same reductions we used for our proofs for coNP-completeness.
There are only two kinds of proofs dependant on explicit bases: The proofs for membership
problems for Sk

0x-formulas (Lemma 21 and Lemma 22) - in those proofs, we transformed
a circuit into another, which only works under the given bases. The other case is the
coNP-completeness result for M-formulas (Lemma 25), where we used the fact that for a
given M2-formula f , dual(f) is a M2-formula as well.

All polynomial-time proofs only used the fact that the value of a Boolean circuit can
always be calculated in polynomial time, and thus are also independent of the base chosen.

We were not able to decide the complexity of M(Sk
01 � M) for k > 3. It seems

plausible to assume these problems are coNP-complete, since this is the case for k = 2,
and there seems to be no reason why this should be more difficult than the general case.
If this problem is in fact coNP-complete, we know M(Sk

00 � Sm
00) is coNP-complete as

well for k > m, and it seems plausible to assume M(Sk
01 � Sm

01) cannot be easier than
M(Sk

00 � Sm
00). So the main question here remains that of the complexity of M(Sk

01 � M)
for k > 3.

The other open problem is M(D2 � B) for B ∈ {S2
00, S

2
01}. Since M(AoB) and

M(A � B) are of the same complexity for all known cases and M(D2oS2
00

) is coNP-
complete, these problems are most likely coNP-complete as well. Looking a Böhler’s
proof, the straightforward way to show M(D2 � S2

00) is coNP-complete would be to
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construct, for a given S2
00-formula f a S2

00-formula which is equivalent to f ∨ dual(f).
Such a formula surely exists, since f ∨ dual(f) is in S2

00 again, but it is not clear how to
do this in polynomial time and length.

8 Collection of results

In this concluding section, we give an overview of our results. For the following, let
k,m ∈ N such that k > m ≥ 2. Since membership problems for B-formulas with B ⊆ V,
B ⊆ L, B ⊆ D2 or B ⊆ E are always polynomial-time solvable, these results are not
repeated here. For subclasses from L, this follows from Theorem 11, for classes below V,
this is a consequence from Theorem 12. When some result is referred to as ”trivial”, this
means it is of the form M(A � B) for A ∈ {B ∩R0, B ∩R1, B ∩R2}, and therefore only
one or two values of the B-circuit must be calculated to decide the membership problem.

cNPc is used as an abbreviation for ”coNP-complete” in this table.
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Problem Comp Source
M(Sm

02 � R2) cNPc Lemma 13
M(S02 � R2) cNPc Lemma 13
M(Sm

00 � R2) cNPc Lemma 13
M(S00 � R2) cNPc Lemma 13
M(Sm

12 � R2) cNPc Lemma 14
M(S12 � R2) cNPc Lemma 14
M(Sm

10 � R2) cNPc Lemma 14
M(S10 � R2) cNPc Lemma 14
M(M2 � R2) cNPc Lemma 13
M(D1 � R2) cNPc Lemma 13
M(D2 � R2) cNPc Lemma 13
M(L2 � R2) cNPc Lemma 13
M(I2 � R2) cNPc Lemma 13
M(V2 � R2) cNPc Lemma 13
M(E2 � R2) cNPc Lemma 13
M(Sm

02 � R1) cNPc Lemma 13
M(S02 � R1) cNPc Lemma 13
M(Sm

01 � R1) cNPc Lemma 13
M(S01 � R1) cNPc Lemma 13
M(S00 � R1) cNPc Lemma 13
M(Sm

00 � R1) cNPc Lemma 13
M(Sm

12 � R1) cNPc Lemma 14
M(Sm

10 � R1) cNPc Lemma 14
M(S10 � R1) cNPc Lemma 14
M(S12 � R1) cNPc Lemma 14
M(M2 � R1) cNPc Lemma 13
M(D1 � R1) cNPc Lemma 13
M(D2 � R1) cNPc Lemma 13
M(I2 � R1) cNPc Lemma 13
M(V2 � R1) cNPc Lemma 13
M(L2 � R1) cNPc Lemma 15
M(L1 � R1) cNPc Lemma 15
M(E2 � R1) cNPc Lemma 14
M(Sm

0 � R1) cNPc Lemma 13
M(Sm

02 � R1) cNPc Lemma 13
M(S0 � R1) coNPc Lemma 13
M(S02 � R1) cNPc Lemma 13
M(V1 � R1) cNPc Lemma 13
M(I1 � R1) cNPc Lemma 13
M(M1 � R1) cNPc Lemma 13
M(E1 � R1) cNPc Lemma 13

M(Sk
00 � Sm

0 ) cNPc Lemma 20
M(S00 � Sm

0 ) cNPc Lemma 20
M(Sm

02 � Sm
0 ) P trivial

M(Sm
01 � Sm

0 ) cNPc Lemma 19
M(Sm

00 � Sm
0 ) cNPc Lemma 19

M(Sk
02 � Sm

02) cNPc Lemma 21
M(Sm

00 � Sm
02) cNPc Lemma 19

M(Sk
00 � Sm

02) cNPc Lemma 19
M(S00 � Sm

02) cNPc Lemma 19
M(S01 � Sm

02) cNPc Lemma 19
M(S01 � Sm

02) cNPc Lemma 21
M(V1 � Sm

02) cNPc Lemma 19
M(V2 � Sm

02) cNPc Lemma 19
M(I1 � Sm

02) cNPc Lemma 19
M(I2 � Sm

02) cNPc Lemma 19

Problem Comp Source
M(V1 � Sm

0 ) cNPc Lemma 20
M(V2 � Sm

0 ) cNPc Lemma 20
M(I1 � Sm

0 ) cNPc Lemma 19
M(I2 � Sm

0 ) cNPc Lemma 19

M(Sk
0 � Sm

0 ) cNPc Lemma 20
M(S0 � Sm

0 ) cNPc Lemma 20

M(Sk
02 � Sm

0 ) cNPc Lemma 20
M(S02 � Sm

0 ) cNPc Lemma 20

M(Sk
01 � Sm

0 ) cNPc Lemma 20
M(S01 � Sm

0 ) cNPc Lemma 20
M(D2 � D1) cNPc Lemma 27
M(L2 � D1) cNPc Lemma 28
M(I2 � D1) cNPc Lemma 27
M(D1 � D) P trivial
M(D2 � D) cNPc Lemma 27
M(L2 � D) cNPc Lemma 28
M(I2 � D) cNPc Lemma 27
M(L3 � D) cNPc Lemma 28
M(N2 � D) cNPc Lemma 28

M(S2
00 � M2) cNPc Lemma 25

M(S00 � M2) P Theorem 12
M(V2 � M2) P Theorem 12
M(I2 � M2) P Theorem 12
M(D2 � M2) cNPc Lemma 25
M(M2 � M1) P trivial
M(S00 � M1) P Theorem 12
M(V2 � M1) P Theorem 12
M(I2 � M1) P Theorem 12
M(D2 � M1) cNPc Corollary 26
M(E1 � M1) P Theorem 12
M(E2 � M1) P Theorem 12
M(I1 � M1) P Theorem 12
M(S01 � M1) P Theorem 12
M(V1 � M1) P Theorem 12

M(S2
00 � M1) cNPc Corollary 26

M(S2
01 � M1) cNPc Corollary 26

M(M1 � M) P trivial
M(M2 � M) P trivial
M(S00 � M) P Theorem 12

M(S2
01 � M) cNPc Corollary 26

M(V2 � M) P Theorem 12
M(I2 � M) P Theorem 12
M(D2 � M) cNPc Corollary 26
M(E1 � M) P Theorem 12
M(E2 � M) P Theorem 12
M(I1 � M) P Theorem 12
M(S01 � M) P Theorem 12
M(V1 � M) P Theorem 12
M(E � M) P Theorem 12
M(E0 � M) P Theorem 12
M(V � M) P Theorem 12
M(V1 � M) P Theorem 12
M(V0 � M) P Theorem 12
M(I � M) P Theorem 12
M(I0 � M) P Theorem 12

M(S2
00 � M) cNPc Corollary 26
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The complexity of M(A � B) for selected combinations (k > m > 2):

A\B BF R1 M M2 S2
0 Sm

0 S0 S2
01 Sm

01 S01 D D2 L V
BF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
R1 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
R2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
M • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
M1 • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
M2 • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
S2

0 • • • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
Sk

0 • • ? ? • • ◦ ? ? ◦ • ◦ ◦ ◦
S0 • • ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦
S2

01 • • • • • • • ◦ ◦ ◦ • ◦ ◦ ◦
Sk

01 • • ? ? • • • ? ? ◦ • ◦ ◦ ◦
S01 • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
D • • • • • • • ? ◦ ◦ ◦ ◦ ◦ ◦
D1 • • • • • • • ? ◦ ◦ ◦ ◦ ◦ ◦
D2 • • • • • • • ? ◦ ◦ • ◦ ◦ ◦
L • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
L0 • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
L1 • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
L2 • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
L3 • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
V • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
V2 • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
N • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
I • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
I2 • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦

◦ polynomial time solvable, • coNP-complete, ? unknown
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