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1 Introduction

1 Introduction

The public key encryption cryptography started in 1978, as the first step was

done by Ron Rivest, Adi Shamir and Leonard Adleman, who described RSA

algorithm for public-key cryptography. RSA is a multiplicative homomorphic

encryption scheme - i.e., it is possible to compute a ciphertext that is the en-

cryption of a product of the genuine plaintexts [1], [2], [3].

For a long time there was the desire for fully homomorphic encryption scheme.

The fully homomorphic encryption scheme is far more powerful, it provides

the opportunity to perform any efficient computable calculation on encrypted

data, without knowing the content. However it was not sure, if the fully ho-

momorphic encryption scheme was even possible [3], [4], [5].

Since then there were published many papers about partially homomorphic

cryptosystems, like ElGamal [6], Goldwasser-Micali [7], or Boneh-Goh-Nissim

cryptosystem [8]. But the breakthrough was done by Crain Gentry, as he an-

nounced fully homomorphic encryption using ideal lattices on June 2009 [9].

The potential applications for fully homomorphic encryption scheme could

be for example improved spam identification in encrypted emails [10]. Fur-

thermore fully homomorphic encryption makes possible to work on a strictly

confidential project in a team, without involving the staff in the content [3].

The aim of this work is to provide an insight into the construction of a fully

homomorphic encryption scheme E presented by Crain Gentry. The fully ho-

momorphic encryption scheme will be constructed step by step, and starts

with nearly homomorphic encryption scheme. Later on the ideal lattices will

be used to obtain self-embedding, bootstrappable homomorphic scheme, in or-

der to “refresh” the ciphertext and reduce the noise parameter and afterwards

to convert into fully homomorphic encryption.
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2 Basic Definitions

Fully homomorphic encryption scheme will be establish stepwise. First it is

required to give an overview of conventional public-key encryption scheme E ,

which is based on the following algorithms:

• (sk,pk)←KeyGenE(λ)

• ψi ← EncryptE(pk, πi)

• DecryptE(sk,ψ)→ π

KeyGenE : is randomized algorithm that generates both the public key pk

and secrete key sk, based on security parameter λ. The public key defines a

plaintext space P and ciphertext space C.

EncryptE : is also a randomize algorithm that uses the valid public key and

the plaintext πi ∈ P for computing associated ciphertext ψi ∈ C.

DecryptE : outputs the original plaintext π with the aid of secrete key sk and

ciphertext ψ.

The computational complexity of those algorithms should not exceeds λO(1).

To construct a homomorphic encryption scheme E , is an additional efficient

and possibly randomized algorithm ψ ←EvaluateE(pk,C,Ψ) required. With

a circuit C from permitted set CE of circuits, and a tuple of ciphertexts Ψ =

〈ψ1, . . . , ψt〉 for the input wires of C.

Obviously, the information after the encryption should be not adulterated.

The correctness is defined as follows:
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2 Basic Definitions

Definition 1 (Correctness of Homomorphic Encryption).

We say that a homomorphic encryption scheme E is correct for circuits in

CE if, for any key-pair (sk,pk) outputs by GenKeyE(λ), any circuit C ∈ CE ,

any plaintexts π1, . . . , πt and any ciphertexts Ψ = 〈ψ1, . . . , ψt〉 with ψi ←

EncryptE(pk, πi), it is the case that:

if

ψ ← EvaluateE (pk, C,Ψ),

then

DecryptE(sk, ψ)→ C(π1, . . . , πt)

except with negligible probability over the random coins in EvaluateE .

The definition of the correctness enables to give an formal definition of the

homomorphic and fully homomorphic encryption scheme E .

Definition 2 (Homomorphic Encryption).

E is homomorphic for circuits in CE if E is correct for CE and DecryptE can

be expressed as a circuit DE of size poly(λ).

Definition 3 (Fully Homomorphic Encryption).

E is fully homomorphic if it is homomorphic for all circuits.

Definition 4 (Leveled Fully Homomorphic Encryption).

A family of schemes
{
E(d) : d ∈ Z+

}
is leveled fully homomorphic if they all

use the same decryption circuit, E(d) is homomorphic for all circuits of depth at

most d (that use some specified set of gates Γ), and the computational complex-

ity of E(d)’s algorithms is polynomial in λ, d, and (in the case of EvaluateE(d))

the size of C.
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3 Bootstrappable Encryption - Step 1

To realize a bootstrappable encryption, is one of the principal purposes to reach

the fully homomorphic encryption scheme. Such quality enables to “refresh”

the ciphertext recurrently and therefore to reduce the noise parameter. But

first it is required to give an formal definition of bootstrappable encryption.

Definition 5 (Bootstrappable Encryption).

Let CE be a set of circuits with respect to which E is homomorphic. And let

Γ be a set of gates with inputs and output in plaintext space P including the

trivial gate (input and output are the same). We say that E is bootstrappable

with respect to Γ if DE(Γ) ⊆ CE . Where DE is the decryption circuit of E.

To realize the bootstrappability, the scheme E must be able compactly evaluate

the augmented decryption circuit DE . Which is defined as follows:

Definition 6 (Augmented Decryption Circuit).

Let DE be E’s decryption circuit, which takes a secret key and ciphertext as

input, each formatted as an element of P l(λ), where P is the plaintext space.

Let Γ be a set of gates with input and output in P, which includes the trivial

gate. We call a circuit composed of multiple copies of DE connected by a single

g gate (the number of copies equals the number of inputs to g) a “g-augmented

decryption circuit”. We denote the set of g-augmented decryption circuits, g ∈

Γ, by DE(Γ).

As soon as E can handle the augmented decryption, it can be used to construct

an efficient scheme, that computes circuits of arbitrary depth. To present this

construction, the following theorem is required.

Theorem 1. Let E be bootstrappable with respect to a set of gates Γ. Then the

family
{
E(d)

}
is leveled fully homomorphic (for circuits with gates in Γ).

This theorem states that the scheme E works correctly for circuits of depth

d · m, where each gate g ∈ Γ is an arbitrary circuit of depth m. Now it is
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possible to give an formal definition of a leveled fully homomorphic encryption

scheme E(d) =(KeyGenE(d) , EncryptE(d) , EvaluateE(d) , DecryptE(d)) which

consists of four algorithms. Where E(d) is bootstrappable with respect to the

gates g ∈ Γ and E(d) evaluates all circuits of depth d with gates in Γ.

For simplifying the description of Evaluate, the secret keys are given in reverse

order.

KeyGenE(d)(λ, d) takes as input the security parameter λ and d ∈ Z+. For

l = l(λ) as in definition 6, it sets

(ski,pki)
R←− KeyGenE(λ) for i ∈ [0, d]

skij
R←− EncryptE(pki−1,skij) for i ∈ [1, d] , j ∈ [1, l]

Where ski1, . . . ,skil is the representation of ski as elements of P. It outputs the

secret key sk(d) ← sk0 and the public key pk(d) ←
(
〈pki〉 ,

〈
skij
〉)
. At which

skij is an encryption of the j-th bit of the i-th secret key ski. Let E(δ) refer

to the sub-system that uses sk(δ) ← sk0 and pk(δ) ←
(
〈pki〉i∈[0,δ] ,

〈
skij
〉
i∈[1,δ]

)
for δ ≤ d.

EncryptE(d)(pk
(d), π) takes as input a public key pk(d) and a plaintext π ∈ P.

It outputs a ciphertext ψ R←− EncryptE(pkd, π).

DecryptE(d)(sk
(d), ψ) takes as input a secret key sk(d) and a ciphertext ψ

(which should be an encryption under pk0). It outputs DecryptE(sk0, ψ).

EvaluateE(d)(pk
(δ), Cδ,Ψδ). Takes as input a public key pk(δ), a circuit Cδ of

depth at most δ with gates in Γ, and a tuple of input ciphertexts Ψδ (where

each input ciphertext should be under pkδ). With the assumption that each

wire Cδ connects gates at consecutive levels; if not, add trivial gates to make

it so. If δ = 0, it outputs Ψ0 and terminates. Otherwise, it does the following:

• Sets (C†
δ−1,Ψ

†
δ−1) ← AugmentE(δ)(pk

(δ), Cδ, Ψδ).

• Sets (Cδ−1, Ψδ−1) ← ReduceE(δ−1)(pk(δ−1), C†
δ−1, Ψ†

δ−1).

• Runs EvaluateE(δ−1)(pk(δ−1), Cδ−1,Ψδ−1).
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AugmentE(δ)(pk
(δ), Cδ, Ψδ). Takes as input a public key pk(δ), a circuit Cδ

of depth at most δ with gates in Γ, and a tuple of input ciphertexts Ψδ (where

each input ciphertext should be under pkδ). It augments Cδ with DE ; call

the resulting circuit C†
δ−1. Let Ψ†

δ−1 be the tuple of ciphertexts formed by

replacing each input ciphertext ψ ∈ Ψδ by the tuple
〈〈
skδj

〉
,
〈
ψj
〉〉
, where

ψj ← WeakEncryptE(δ−1)(pk(δ−1), ψj) (where image of WeakEncrypt is

always a subset of the image of Encrypt) and the ψ’s from the properly for-

matted representation of ψ as elements of P. It outputs (C†
δ−1, Ψ†

δ−1).

Reduce(δ)
E (pk(δ), Cδ, Ψδ) Takes as input a public key pk(δ), a tuple of in-

put ciphertexts Ψ†
δ (where each input ciphertext should be in the image of

EncryptE(δ)) and a circuit C†
δ ∈ DE(Γ, δ + 1). It sets Cδ to be the sub-circuit

of C†
δ consisting of the first δ levels. It sets Ψδ to be the induced input ci-

phertexts of Cδ, where the ciphertext ψ(w)
δ associated to wire w at level δ is

set to EvaluateE(pkδ, C
(w)
δ , Ψ

(w)
δ ) where C(w)

δ is the sub-circuit of C†
δ with

output wire w, and Ψ
(w)
δ are the input ciphertexts for C(w)

δ . It outputs (Cδ, Ψδ).

The presented scheme evaluates gates g ∈ Γ that are augmented by the decryp-

tion circuit only. The next step is to create a scheme that is bootstrappable

with respect to the universal set of gates g ∈ Γ.
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4 Initial Construction - Step 2

The aim of this section is to maximize the “evaluative capacity”. The security of

the earlier homomorphic encryption schemes is based on the “Ideal Membership

Problem”, like “Polly Cracker” scheme by the Fellows and Koblitz [11]. But

the problem is that the homomorphic operations like multiplication, expand

the ciphertext-size potentially exponentially in the depth. The new approach

is now to base the security on an “Ideal Coset Problem” (ICP). The ICP will

first defined in term of rings and ideals, which are used to minimize the circuit

complexity.

Definition 7 (Ideal Coset Problem (ICP)).

Fix ring R, basis of the ideal I BI , algorithm IdealGen, and an algorithm

Samp1 that efficiently samples R. The challenger sets b R←− {0, 1} and (Bsk
J ,

Bpk
J ) R←− IdealGen(R, BI). If b = 0, it sets r R←− Samp1(R) and t ← r

mod Bpk
J . If b = 1, it samples t uniformly from R mod Bpk

J . The problem:

guess b given (t, Bpk
J ).

So the ICP requires a decision whether t is uniform modulo J , or whether it

was chosen according to a known “clumpier” distribution induced by Samp1.

The initial scheme E uses a fixed ring R, which is adjusted related to the secu-

rity parameter λ, a fixed basis BI of an ideal I ⊂ R, and an algorithm (Bsk
J ,

Bpk
J ) R←− IdealGen(R, BI) with the output of a secret basis Bsk

J and a public

basis Bpk
J , where J is a variable ideal but relatively prime to the ideal I. It

is sufficient, if the secret basis Bsk
J defines a lattice L(BskJ ) for a possibly frac-

tional ideal that contains J , rather then being exactly J . The assumption for

the initial scheme E is, if t∈ R and BM is a Basis for ideal M ⊂ R, then the

value t mod BM is unique and can be computed efficiently. The algorithm

Samp(BM , x) samples from the coset x+I.

KeyGen(R, BI). Takes as input a ring R and basis BI of an ideal I. It
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sets (Bsk
J , Bpk

J ) R←− IdealGen(R, BI). The plaintext space P is (a subset of)

R mod BI . The public key pk includes R, BI , B
pk
J , and Samp. The secret

key sk also includes BskJ .

Encrypt(pk, π). Takes as input the public key pk and plaintext π ∈ P. It

sets ψ′ ← Samp(BI , π) and outputs ψ ← ψ′ mod Bpk
J .

Decrypt(sk, ψ). Takes as input the secret key sk and a ciphertext ψ. It out-

puts π ← (ψ mod BskJ ) mod BI .

Evaluate(pk, C, Ψ). Takes as input the public key pk, a circuit C in some

permitted set CE of circuits composed of AddBI and MultBI gates and a set

of input ciphertexts Ψ. It invokes Add and Mult, given below, in the proper

sequence to compute the output ciphertext ψ. (If desired, one could use dif-

ferent arithmetic gates.)

Add(pk, ψ1, ψ2). Outputs ψ1 + ψ2 mod Bpk
J .

Mult(pk, ψ1, ψ2). Outputs ψ1 × ψ2 mod Bpk
J .

It is possible to proof that the abstract scheme E works correct for a certain

set of circuit, called "permitted circuits", which are defined as follows:

Definition 8 (Permitted circuits).

Let C′E={C : ∀(x1, . . . , xt) ∈ Xt
Enc, g(C)(x1, . . . , xt) ∈ XDec}

Where XEnc is:

Definition 9 (XEnc and XDec).

Let XEnc be the image of Samp. Notice that all ciphertexts output by En-

crypt are in XEnc + J . Let XDec equal R mod Bsk
J , the set of distinguished

representatives of cosets of J wrt the secret basis Bsk
J .

And g(C) is:
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Definition 10 (Generalized Circuit).

Let C be a mod- BI circuit. We say generalized circuit g(C) of C is the

circuit formed by replacing C’s AddBI MultBI operations with addition ’+’

and multiplication ’×’ in the ring R.

The aim is now to maximize the set of permitted circuits. For this purpose the

mathematical knowledge is assumed. To respond to the mathematical issue

goes beyond the scope of this work. Only the central term of “Lattice” is

defined to understand the following argument.

Definition 11 (Lattice).

An n-dimensional lattice of rank k ≤ n is L=L(B)= {Bc : c ∈ Zk}, B ∈ Rn×k

Where the k columns b1, . . . , bk ∈ Rn of the basis are linearly independent. All

lattices in this work are full rank - i.e., k = n. The Hermite normal form of

a lattice L HNF(L) qualifies for being a public key, by the reason of HNF(L)

is identical with an upper triangular basis that can be efficiently computable

from any other basis of L.

Definition 12 (Ideal Lattice).

Let R = Z[x]/ (f (x)) be a ring, where f(x) is a monic polynomial of degree n.

The ideal (v) generated by v directly corresponds to the lattice generated by the

column vectors

{
vi ← v× xi mod f(x) : i ∈ [0, n− 1]

}
.

We call this the rotation basis of the ideal lattice (v).

The main reason to prefer ideal lattices instead of ideals over general rings, is

that lattices provides the opportunity of a clean analysis of XEnc and XDec in

terms of Euclidean length. The implementation of the abstract scheme E using

a polynomial rings R = Z[x]\(f(x)) where f(x) ∈ Z[x] is a monic polynomial

of degree n, and a ideal lattice, the sets XEnc and XDec become subsets of Zn.

These two sets XEnc and XDec can also be defined geometrically as follows:
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Definition 13 (rEnc and rDec).

Let rEnc be the smallest value such that XEnc ⊆ B(rEnc), where B(r) is the

ball of the radius r. Let rDec be the largest value such that XDec ⊇ B(rDec).

Now it is possible to re-define the set of permitted circuits C′E as follows:

Definition 14 (Permitted Circuits).

CE = {C : ∀(x1, . . . , xt) ∈ B(rEnc)
t, g(C)(x1, . . . , xt) ∈ B(rDec)}.

So XEnc and XDec are replaced by B(rEnc) and B(rDec), therefore applies CE ⊆

C′E . Limiting the set of permitted Circuits CE relieve the the complexity of the

decryption algorithm. For fixed rEnc and rDec it is possible to bound CE further,

via using the Euclidean length for generalized circuit ‖g(C)(x1, . . . , xt)‖. In

terms of ‖u‖ and ‖v‖, for addition the Euclidean length is bounded by using the

triangle inequality ‖u + v‖ ≤ ‖u‖+‖v‖, where u, v∈ R. For the multiplication

it is possible to proof the following, ‖u× v‖ ≤ γMult(R)·‖u‖·‖v‖, where γMult

is an expansion factor which depends only on the ring R. The next theorem

reveal the depth, what the scheme E can handles.

Theorem 2. Suppose rE ≤ 1 and that circuit C’s additive fan-in is γMult(R),

multiplicative fan-in is 2, and depth is at most

log logD − log log (γMult(R) · rE)

Then, C(x1, . . . , xt) ∈ B(rD) for all x1, . . . , xt ∈ B(rE).

So E correctly evaluates a circuit C up to a depth of log logD − log log (γMult(R) · rE).

In order to maximize the depth of the circuit C, γMult(R) and rEnc should be

minimized and rDec should be maximized.

In the process rDec
rEnc

is bounded by the semantic security. Therefore rDec <

λ1(J), than later it will be the shortest non zero vector in J . Furthermore

rDec depends on the secret basis, than it defines the radius of the largest

sphere that is circumscribed by Bsk
J . Thereby is P(Bsk

J ) is an parallelepiped

that is to maximize.
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Theorem 3. Let B be a lattice basis and B ∗ = (B−1)T . Let r be the radius of

the largest sphere, centered at 0, circumscribed by P(B) (permitting tangential

overlap). Then, r = 1/(2 · ‖B∗‖). In particular:

rDec = 1/

(
2 ·

∥∥∥∥∥
((

Bsk
J

)−1
)T∥∥∥∥∥

)
Suppose ‖t‖ < r; then each coefficient of B−1 · t has magnitude at most 1/2.

Regarding rEnc, so λ1(J)/rEnc should not exceeds 2n. Otherwise the lattice

reduction techniques allow to recover the J-vector closet to t, which breaks

the ICP. So it is agreed that rEnc should be polynomial in n. The same applies

for γMult. Also γMult should be polynomial in n, what the following theorem

states:

Theorem 4. Let R = Z[x]/f(x) and suppose f(x) = xn − h(x) where h(x)

has degree at most n − (n − 1)/k for k ≥ 2. Then, γMult(R) ≤
√

2n ·(
1 + 2n ·

(√
(k − 1)n ‖f‖

)k)
.

In further two tweaks will be presented. The first one reduce the secret key size

and therefore reduce the computational complexity of the decryption circuit,

to enables the bootstrappability . It computes from BI and Bsk
J a short vector

vskJ ∈ J−1 and redefine decryption to output π = ψ−bvskJ ×ψe mod BI . And

redefine the set of permitted circuits CE as follows:

Definition 15 (Permitted Circuits).

CE = {C : ∀(x1, . . . , xt) ∈ B(rEnc)
t, g(C)(x1, . . . , xt) ∈ B(rDec/n

2.5 · ‖f‖ ·

‖BI‖)}.

Furthermore the first tweak makes the already shallow decryption circuit less

wide. The permitted distance of ciphertexts from lattice J needs to be reduce.

But it does not affect the maximum evaluation depth very much when |f | and

‖BI‖ are only polynomial in n, and rDec/rEnc is superpolynomial (as it will

need to be to make the scheme bootstrappable.)

Now it is possible to formulate the following lemma:
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Lemma 1. Let Bsk
J be an initial secret basis that decrypts correctly for pa-

rameter rDec. From Bsk
J and BI , we can compute in polynomial time a vector

vskJ ∈ J−1 such that the rotation basis of 1/vskJ circumscribes a ball of radius at

least rDec/(n2.5 · ‖f‖ · ‖BI‖). In particular, if ψ is a valid ciphertext according

Tweak 1, in the sense that it equals π + i+ j for plaintext π, i ∈ I, j ∈ J and

π + i ∈ B(rDec/n
2.5 · ‖f‖ · ‖BI‖), then π = ψ − (vskJ )−1 × bvskJ × ψe mod BI .

For our particular value of vskJ ∈ J−1, it will also hold that π = ψ − bvskJ × ψe

mod BI .

The second tweak redefines CE again by replacing B(rDec) with B(rDec/2),

in order to place the ciphertext vectors closer to the lattice J to reduce the

restrictions on the correctness of the decryption. After the second tweak the

following lemma can be formulated:

Lemma 2. If ψ is a valid ciphertext after Tweak 2, then each coefficient of

(Bsk2
J )−1 · ψ is within 1/4 of an integer.

So the new maximum evaluation depth of the scheme E after the second tweak

is

log log(rDec/2)− log log(γMult(R) · rEnc),

which is less then the original amount of by only a sub-constant additive factor.

Overall the depth of the tweaked decryption circuit was reduced for enabling

bootstrapping. However, it will be ascertained after a closer examination of

decryption complexity that the bootstrapping is not possible.

During the decryption is

(ψ −Bsk1
J · bBsk2

J · ψe) mod BI

to compute. Where ψ ∈ Zn,Bsk1
J ∈ Zn×n,Bsk2

J ∈ Qn×n, and BI is a basis

of an ideal I of R = Z[x]/(f(x)). After the second tweak the coefficients of

Bsk2
J · ψ are all within 1/4 of an integer. And after the first tweak is Bsk1

J the
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identity matrix and Bsk2
J is a rotation matrix. The computation of

(ψ −Bsk1
J · bBsk2

J · ψe) mod BI

is splitted into three steps as follows:

Step 1: Generate n vectors x1, . . . , xn with sum Bsk2
J · ψ.

Step 2: From the n vectors x1, . . . , xn generate integer vectors y1, . . . , yn+1 with

sum b
∑

xie.

Step 3: Compute π ← ψ −Bsk1
J · (

∑
yi) mod BI .

The problem here is the second step by adding x1, . . . , xn ∈ [0, 1) binary num-

bers, each one with the precision of k. To compute this numbers is an constant

fan-in boolen circuit of the depth Ω(log n + log k) required. After recursive

using of the "3-for-2" trick [12], the circuit depth is reduced to c · log3/2 ·n.

But for the last two numbers is a circuit depth of Ω(log k) required, because

the least significant bit of the addend could impair the most significant bit

of the sum. The second tweak gives the promise that the sum is very close

to an integer. This integer is sufficient for the further calculation and can be

computed in c · log3/2 ·n+O(log log n) depth. Nonetheless the term c · log3/2 is

to high to permit the bootstrappability, than the bootstrappable scheme can

handles the depth of O(log n) only. So it is possible to formulate the following

lemma:

Lemma 3. For i ∈ [1, t], let ai = (. . . , ai,1, ai,0, ai,−1, . . . ) be a real number

given in binary representation mod BI with the promise that
∑

i ai mod 1 ∈

[−1/4, 1/4]. There is a mod-BI circuit C for generating “t+1” integers z1, . . . , zt+1

(also represented binary) whose sum is b
∑

i aie, such that if the generalized cir-

cuit g(C)’s inputs are in B(rin), then its outputs are in B(rout) for:

rout ≤
(
γMult (R) · n · ‖BI‖ · (1 + γMult (R) · rin)t · t

)polylog(t)
For ‖BI‖ ≤ rin, t ≤ n, and γMult(R) = nΩ(1), we have:

rout ≤ (γMult(R) · rin)t·polylog(t).
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So adding terms represented in general “base-I” is to expensive to permit the

bootstrappability. Therefore is squashing the decryption circuit required.

14



5 Squashing the Decryption Circuit - Step 3

5 Squashing the Decryption Circuit - Step 3

Let E∗ be the encryption scheme described in section 4 include the first and

second tweak. The circuit complexity of decryption scheme E∗ is too high.

The problem is to add n numbers. In the following the transformation of the

scheme E∗ will be presented, where Decrypt adds only sub-linear quantity of

numbers, thus to low the the complexity of the decryption circuit. This has

no influence of the set of permitted circuits. The idea is now to place a hint

about the E∗ secret key inside the transformed scheme E public key. Of cause,

has this hint an affect of the security, as more information about the secret

key is revealed. First this transformation is described abstract and will filled

with details later.

The original decryption will be splitted into two phases. The first one is com-

putationally intensive preprocessing phase, without using the secret key, where

encrypter pretreat its own initial ciphertext to leave less work for the decrypter

to do. The second one is computationally lightweight with using the secret key,

performed by decrypter.

The transformation of the initial encryption scheme E∗ uses two new algo-

rithms, SplitKeyE andExpandCTE , where E is the abstract modified scheme.

KeyGenE(λ). Runs (pk∗, sk∗) R←−KeyGenE∗(λ) and (sk, τ ) R←− SplitKeyE(sk∗,

pk∗). The secret key is sk. The public key pk is (pk∗, τ). Where τ is a secret

key dependent tag.

EncryptE(pk, π). Runs ψ∗ ← EncryptE∗(pk∗, π). It then sets ψ to include

ψ∗ and the output of ExpandCTE(pk, ψ∗). (ExpandCTE makes heavy use

of τ .)

DecryptE(sk, ψ). Uses sk and expanded ciphertext to decrypt more efficiently.

DecryptE(sk, ψ) should work whenever DecryptE∗(sk∗, ψ∗) works.
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AddE(pk, ψ1, ψ2). Extracts (ψ∗1, ψ∗1) from (ψ1, ψ2), computes ψ∗ ←AddE∗(pk∗,

ψ∗1, ψ∗2) and sets ψ to include ψ∗ and the output of ExpandCTE(pk, ψ∗).

MultE(pk, ψ1, ψ2) is analogous to AddE(pk, ψ1, ψ2).

The security of the transformation depends on the “SplitKey Distinguished

Problem”, which is defined as follows:

Definition 16 (SplitKey Distinguished Problem).

The challenger sets (sk∗, pk∗) R←− KeyGenE∗ and b R←− {0, 1}. If b = 0, it

sets (sk, τ) R←− SplitKey(sk∗, pk∗). If b = 1, it sets (sk, τ) R←− SplitKey(⊥,

pk∗), where ⊥ is a special symbol. The problem: guess b given(τ , sk∗, pk∗).

Now it is possible to formulate the following theorem about the security of the

transformation:

Theorem 5. Suppose that there is an algorithm A that breaks the semantic

security of E above with advantage ε. Then, there exist algorithms B0 and B1,

running in about the same time as A, such that either B0’s advantage against

the SplitKey Distinguishing Problem or B1’s advantage against the semantic

security of E∗ is at least ε/3.

In the following, the transformation is described in detail. As a reminder:

π = ψ − bvsk∗J × ψe mod BI

is the decryption output of the scheme E∗ after the first tweak, where vsk∗J is

the secret key vector, an element of a fractional ideal J−1. Now it is required to

give a hint about this secret key vector vsk∗J . This hint will be a set of vectors

that has a secret sparse subset of vectors whose sum is vsk∗J . Concretely it will

holds: ∑
i∈S

ti = vsk
∗

J mod I.

Where t1, . . . , tγsetsize(n)) ∈ J−1 a set of vectors τ , where γsetsize(n) is polyno-

mial in n. And S ⊂ {1, . . . , γsetsize(n)} is a subset of indices. The new secret

16
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key sk is a 0/1-matrix encoding the subset S. The new SplitKey distinguish-

ing problem is now: given vsk∗J and τ decide whether there is actually a sparse

subset whose sum is vsk∗J mod I, or whether there is a sparse subset whose

sum is 0 mod I.

In the ExpandCT operation, the encrypter edit the initial ciphertext ψ∗, by

computing all of the products ci ← ti×ψ∗ mod BI and including them to ψ.

The decrypter extracts ci with i ∈ S and uses the decryption equation:

π = ψ − b
∑
i∈S

cie mod BI .

The central point is that summing up γsetsize(n) values requires much less

depth then log(n).

Now it is the time to give a formal version of the transformation. Which

makes the scheme E bootstrappable, as it will shown afterwards. Let (sk∗,

pk∗) be an E∗ key pair. Let γsetsize(n) and γsubsetsize(n) be functions, where

the former is ω(n) and poly(n) and the latter is ω(1) and o(n). Here are the

concrete instantiations of SplitKeyE , ExpandCTE , and DecryptE used to

construct E .

SplitKeyE(sk†, pk∗). Takes as input sk†, which may be either sk∗ or ⊥. If

the former, it extracts the vector vsk∗J from sk∗; if the latter, it sets vsk∗J ← 0.

It outputs (sk, τ), where:

• τ is a set of γsetsize(n) vectors t1, . . . , tγsetsize(n)that are uniformly random

in J−1 mod BI , except there exists a subset S ⊆ {1, . . . γsetsize(n)} of

cardinality γsubsetsize(n) such that:

∑
i∈S

ti ∈ vsk
∗

J + I

.

• sk is a matrix γsubsetsize(n)× γsetsize(n) matrix M of 0’s and 1’s, where

Mij = 1 iff j is the ith member of S.

17
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ExpandCTE(pk, ψ∗). Outputs ci ← ti × ψ∗ mod BI for i ∈ [1, γsetsize(n)].

DecryptE(sk, ψ). Takes as input the secret key sk and a ciphertext ψ. It

performs the following steps:

Step 0: Set the vectors wij ←Mij · cj

Step 1: Set the vectors xi ←
∑γsetsize(n)

j=1 wij

Step 2: From x1, . . . ,xγsubsetsize(n), generate integer vectors y1, . . . ,yγsubsetsize(n)+1

with sum b
∑

xie.

Step 3: Compute π ← ψ∗ −
∑

yi mod BI .

The scheme E is formulated, now it is required to proof the bootstrappability

of this scheme. This is the aim of the next section.

18
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6 Bootstrapping for the Decryption Circuit Achieved

In the following the certain steps of DecryptE will be analyzed and afterwards

a theorem about the bootstrappability of the scheme E will be formulated.

The Step 0, to set the vectors wij ←Mij · cj , requires a constant depth.

The Step 1, to set the vectors xi ←
∑γsetsize(n)

j=1 wij , requires also a constant

depth, because the set {wij : j ∈ [1, . . . , γsetsize(n)]} has only one nonzero vec-

tor, therefore no expensive carry operations are required.

Step 2 and Step 3 are already discussed in section 4. Finally the following

theorem can be formulated.

Theorem 6. The scheme E is bootstrappable when

γsubsetsize(n) · logc1 γsubsetsize(n) ≤
(

log(rDec/m)

2c2 · log(γMult(R) · rEnc)

)
where logc1 γsubsetsize(n) is the polylog term arising in Lemma 3, m arises from

the redefinition of CE in the Tweaks (m = 2 when just Tweak 2 is used), and c2

is a constant representing the depth needed in a circuit having AddBI gates with

γMult(R) = nΩ(1) fan-in and MultBI gates with constant fan-in to sequentially

perform DecryptE Steps 0, 1, and 3, and a NAND gate.
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7 Conclusion

This work is a compendium of the thesis from Craig Gentry “ A Fully Homo-

morphic Encryption Scheme”. In contrast to his antecessors he constructed a

fully homomorphic encryption scheme which can handle a arbitrary depth of

circuit. His fundamental idea was to use ideal lattices to reduce the circuit

complexity. Afterwards the scheme was modified, by squashing the decryption

circuit, to make the encryption scheme bootstrappable. But even after the

squashing the decryption circuit, a constant factor of the depth make a huge

difference in the performance and security of the scheme. Craig Gentry focus

his work on the semantic security. To construct a CCA1-secure (“lunchtime

attacks”) fully homomorphic encryption scheme, just like to make the fully

homomorphic encryption scheme practical, is still an open problem.
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