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Abstract

In this thesis we will investigate circumscription logic, which was firstly introduced in

[McC80]. We investigate the logic from a new point of view. Circumscription is a logic

that is used to formalize common sense assumptions. The basic idea in that is to falsify

everything – e.g. in a propositional formula – that is possible to falsify. From this, one

builds a knowledge base that cirumscibes the investigated problem. The new approach of

this thesis is to show that the reasoning in this logic is fixed parameter tractable (FPT).

For this reason we apply Courcelle’s theorem on it. In our case Courcelle’s theorem is

basically used as a tool in order to show that if a Circumscription is MSO definable it is

fixed parameter tractable. We will recapitulate the property of FPT problems. In order

to show that circumscription is MSO definable, we introduce new variables to express

the knowledge base, the formula, and the input variables.
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CHAPTER 1

Introduction

1.1 Circumscription

Circumscription is a non-monotone logic and it was firstly introduced by McCarthy in

[McC80]. Initially this logic was invented as a first order variant and later formalized

in other variants. In this thesis we consider a propositional variant of circumscription.

It is used to model the idea of general assumptions, i.e., when making a statement

everything that is not stated explicitly is not true. Originally McCarthy used this logic

to formalize, e.g., the missionaries dilemma. It is an example, where on the two sides of

a river are three missionaries and three cannibals, respectively. There is a boat that can

carry at most two persons and in case the missionaries are outnumbered in any place,

they will be killed by the cannibals. The goal here is to make them change the riverside

without getting one of the missionaries killed. The circumscription is a way to fix the

rules: everything that is not explicitly stated is not true, which is called the closed world

assumption. One might get an idea to cross the river over the bridge but it is not the

solution to the problem, because of the closed world assumption, since the bridge is not

explicitly stated in the rules it does not exist.

In order to illustrate how circumscription works we show one further example. Con-

sider you have three stackable glasses and four coins. The task is to put the coins into

the glasses such that in every glass there are at least two coins. One would firstly think

that this is impossible. But here is where circumscription comes in play. While ex-

plaining those rules to another person, one might get questions considering solutions
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using more than four coins because of the assumed impossibility. But in the sense of

Circumscription using, e.g., additional coins this is not a solution and in fact this is not

allowed in the game. Note, that circumscription does not give a solution to the game,

but formalizes the exclusiveness of the allowed rules in the game. Here the solution to

the game is rather putting one coin into the first glass. Then stacking the second glass

into the first and putting another coin into glass number two. The second coin now is

inside glass number two and at the same time in glass number one. At least stacking

the last glass into the other two and put the remaining two coins inside.

This example shows that the basic idea behind circumscribing a propositional formula

is to set every literal false that does not have to be set to true necessarily. From this we

gain a set of literals that are set true. That means that circumscribing models can be

expressed by the sets of propositional literals.

For example let us consider the formula

ϕ “ px1 Ñ x2q ^ px3 _ x4q.

One set of variables that can be set to true in order to satisfy ϕ is M1 “ tx1, x2, x3, x4u.

For Circumscription we try to find the minimal ones. M2 “ tx1, x2, x3u and M3 “

tx1, x2, x4u are subsets of M1 but the sets M4 “ tx3u and M5 “ tx4u both are minimal

sets. From this we can construct a formula ψ “  px3 Ø x4q that is satisfied by all

models that also models ϕ, thus the formula ψ is a circumscribing formula for ϕ.

In nowadays Circumscription logic has become one of the most developed and well

studied formalisms for non-monotone reasoning.

1.2 Application of Courcelle’s Theorem onto Circumscription

In order to show the property of fixed parameter tractability, we use Courcelle’s the-

orem that has initially been introduced in [Cou90]. Courcelle’s theorems based upon

Bodleander’s theorem. A more detailed insight and a historical outline is given in Chap-

ter 3.2.2.1.

The theorem states that when given a graph G and ϕ is an MSO formula (that means

a formula that describes graph properties while quantifying over nodes, not over edges)

then checking whether the condition expressed in ϕ holds or not is fixed parameter

tractable (FPT), whereas the parameter is the tree width.

In this thesis we investigate circumscription logic, thus in order to apply Courcelle’s

theorem on it, we show in Chapter 4 how Circumscription logic is encoded in order to
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apply Courcelle’s theorem on it.

The thesis is organized as follows. In Chapter 2 we will introduce all the preliminaries

needed in logic that are used in this thesis. We also give a short overview on tree

decomposition and further give some examples to illustrate logical preliminaries, FPT,

and Circumscription. In Chapter 3 we give the basic notion of parameterized complexity.

Chapter 3.2.2.1 the Courcelle, Elberfeld et. al. theorem is introduced. Finally, Chapter 4

contents our main result, namely the application of Courcelle’s theorem in order to show

that the reasoning problem of Circumscription is fixed parameter tractable.
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CHAPTER 2

Preliminaries in Logic

2.1 Propositional Logic

Before we get to the main scope of the diploma thesis we need to learn, respectively,

repeat some basics.

First we start to define the term “language” with respect to logic, therefore it is required

to know about the alphabet Σ. [Bey09]

Definition 2.1 (Alphabet, word, and language). A alphabet Σ is a set of symbols. A

finite string of the symbols s1, . . . , sk P Σ is called a word, where k P N. The language L
is a subset of all the words over Σ, called Σ˚, i.e., L Ď Σ˚.

Example 2.2. Let Σ “ t0, . . . , 9,“,`,´, ¨, {u, so now we able to describe the language

of arithmetic Larithm, with the words like 3 ` 4 “ 7. But it should be noted that the

words like 1 “ 7 and `´ “ 12{7 are still elements of Σ but not of Larithm. Therefore it

holds Larithm Ă Σ˚.

Now we are going to define Σ for propositional logic.

Definition 2.3 (Alphabet for PL). The alphabet for the propositional logic ΣPL consists

of

(i) set of propositional variables Var “ tx1, x2, x3, . . . u,

(ii) set of constants t0, 1u,
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(iii) set of connectives t_,^, ,Ñ,Øu and

(iv) brace symbols (,),

i.e., ΣPL “
´

V ar, t0, 1u, t_,^, ,Ñ,Øu, p, q
¯

.

In the propositional logic holds the principal of bivalence. That means we have only

two truth values namely ttrue, falseu or rather t0, 1u. This represents an idealized wold-

view, but offers a good starting basis. Propositional logic belongs to monotone logic, i.e.,

a proved valid argument remains valid, even if we add additional premise. But before we

consider nonmonotonic logic, we need to learn the semantics of the propositional logic

first.

Definition 2.4 (Set of propositional formulae). The set of propositional formulae over

ΣPL we will denote as PL, it holds PL Ď Σ˚PL and is constructed recursively as follows

(i) each x P Var and the constants t0, 1u are elements in PL,

(ii) are θ, φ P PL so holds

•  φ P PL,

• pθ ^ φq P PL,

• pθ _ φq P PL,

• pθ Ñ φq P PL,

• pθ Ø φq P PL

(iii) the following priority order (from strong to weak) holds

(1)  , then

(2) ^, then

(3) _, then

(4) Ñ and Ø.

Heretofore we are able to express formulae φ P PL. Often it is required to investigate

only some parts of the formula, which is defined as follows.

Definition 2.5 (Subset of propositional formulae). The set subpφq of all parts of the

propositional formula φ is recursively defined as follows

(i) subp0q “ t0u and subp1q “ t1u,
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(ii) for x P V ar holds subpxq “ txu,

(iii) for φ P PL holds subp φq “ t φu Y subpφq,

(iv) for θ, φ P PL and ˝ P t^,_,Ñ,Øu holds

subpθ ˝ φq “ tθ ˝ φu Y subpθq Y subpφq.

So we learned the syntax of the propositional logic, now we need to deal with the

semantics, thus the interpretation of the symbols, respectively the syntax.

Definition 2.6 (Assignment). A propositional assignment α is a mapping

α : Var Ñ t0, 1u.

A assignment α is extendable to a mapping

α
1

: PLÑ t0, 1u

as follows

(i) α
1

pxq “ αpxq for x P Var.

(ii) α
1

p0q “ 0 and α
1

p1q “ 1.

(iii) α
1

p φq “ 1´ α
1

pφq for φ P PL.

(iv) α
1

pφ^ θq “ α
1

pφqα
1

pθq for φ, θ P PL.

(v) α
1

pφ_ θq “ maxtα
1

pφq, α
1

pθqu for φ, θ P PL.

(vi) are φ, θ P PL and the connector ˝ P t ,^,_,Ñ,Øu so we get the following truth-

table for α
1

pφ ˝ θq :

α
1

pφq α
1

pθq α
1

p φq α
1

pφ^ θq α
1

pφ_ θq α
1

pφÑ θq α
1

pφØ θq

0 0 1 0 0 1 1

0 1 1 0 1 1 0

1 0 0 0 1 0 0

1 1 0 1 1 1 1

Definition 2.7 (Assignment for a formula). We call α assignment for a formula φ, if α

is a mapping

α : Varpφq Ñ t0, 1u,

where α is expandable to a common assignment, by defining α for Var zVarpφq arbitrarily.
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Definition 2.8 (Satisfying assignment). For the formula φ is α a satisfying assignment,

if it holds that α
1

“ 1, so we will write

α |ù φ,

and call α a model for the formula φ. Is Φ a set of formulae, we will also write

α |ù Φ,

if α |ù φ,@φ P Φ holds.

Monadic Second Order (MSO) Logic plays a central role in this diploma thesis. There-

fore it is required to specify the syntax for First Order Logic as well as for Second Order

Logic.

2.2 First Order Logic

Definition 2.9 (Alphabet of First Order Logic). The alphabet for first order logic ΣFO

consists of

(i) set of variables VarFO “ tx1, x2, x3, . . . u,

(ii) set of constants CFO “ tc1, c2, c3, . . . u,

(iii) set of functions FFO “ tf
a1
1 , fa2

2 , fa3
3 , . . . u, where ai is the arty of the function fi,

(iv) set of relations (predicates) RFO “ tR
a1
1 , R

a2
2 , R

a3
3 , . . . u, where ai is the arty of the

function Ri,

(v) set of connectives t ,_,^,Ñ,Øu,

(vi) set of quantifiers tD,@u,

(vii) set of punctuation tp, qu,

i.e.,

ΣFO “
´

V arFO, CFO, FFO,RFO, t ,_,^,Ñu, tD,@u, tp, qu
¯

.

Definition 2.10 (Term). We define the set of Terms TFO inductively as follows

(i) CFO Ď TFO,
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(ii) VarFO Ď TFO, and

(iii) if f P FFO and t1, . . . , tn P T , then fpt1, . . . , tnq P TFO, where n is the arity of f ,

n “ aritypfq.

No other strings are terms.

Hence we will follow the notation of Immermann [Imm99].

Definition 2.11 (Syntax of FO). We define the set of formulae of first-order logic FO
inductively as follows.

(i) Rn P RFO and t1, . . . , tn P T , then Rpt1, . . . , tnq P FO,

(ii) if φ P FO, then p φq P FO,

(iii) if φ, θ P FO, then φ ˝ θ P FO for each ˝ P t_,^,Ñ,Øu and

(iv) if x P VarFO and φ P FO, then p@φpxqq P FO and pDφpxqq P FO.

And no other strings are elements of FO.

So now we are in the position to built some strings of formulae. But in order to

construe such strings, we need to have the semantics considering that we required two

more definitions.

Definition 2.12 (Vocabulary). Vocabulary is a tuple of relation symbols Ri of arity ai,

constant symbols ci, and function symbols fi of arity ki.

τ “ xRa1
1 , . . . , R

ak
k , c1, . . . , cs, f

k1
1 , . . . , fktt y

Definition 2.13 (Structure). A structure with vocabulary τ is a tuple,

A “ x|A| , RA
1 , . . . , R

A
k , c

A
1 , . . . , c

A
s , f

A
1 , . . . , f

A
t y

The universe |A| is a nonempty set. It holds RA
i Ď |A|

ai , which means for each relation

Ri of arty ai in vocabulary τ , the structure A has a relation RA
i of arty ai defined on the

universe A. Similar it holds for each constant cj in τ , the structure A has a specified el-

ement of its universe cAj P |A| and each function fAi : |A|ki Ñ |A| is a total, where fi P τ .

9
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Definition 2.14 (Semantics of FO). Let A be a structure of vocabulary τ . For an ar-

bitrary τ -formula φ and a relation symbol Rn P RFO we define the satisfaction relation

|ù as follows

A |ù J ô always,

A |ù K ô never,

A |ù Dxφpxq ô there is a value a P |A| such that A |ù φpx{aq,

A |ù  φ ô A |ù φ,

A |ù φ^ θ ô A |ù φ and A |ù θ,

A |ù Rpt1, . . . , tnq ô RAptA1 , . . . , t
A
n q is true,

A |ù tk “ tm ô tAk equals tAm,

where k,m, n P N and t1, . . . , tn are τ -terms.

Definition 2.15 (Free and Bound Variables). Let φ P FO. We define the set of of free

variables of φ, denoted VarFO,freepφq, as follows

(i) if φ “ Rpt1, . . . , taritypRqq, then VarFO,freepφq “ tx | x appears in ti for some

0 ă i ď aritypRqu,

(ii) if φ “ p θq, then VarFO,freepφq “ V arFO,freepθq,

(iii) if φ “ pθ Ñ ϕq, then VarFO,freepφq “ V arFO,freepθq Y V arFO,freepϕq and

(iv) if φ “ @θpxq, then VarFO,freepφq “ V arFO,freepθq ´ txu.

Other variables that occur in φ are called bound.

Example 2.16. For n P N, consider the logical structure

An “ xt0, 1, . . . , n´ 1u,TimesAn , 0, 1y

of vocabulary

τ “ xR3, 0, 1y,

where Times is the arithmetical relation, that means for i, j, k ă n holds,

An |ù Timespi, j, kq ô i ¨ j “ k.

Now we want to construct FO formulae in LFOpτq that represent the following arith-

metic relations,

10
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• Divpx, yq, meaning that y is a multiple of x.

• Primepxq, meaning that x is a prime number.

First we start with the division

DivFOpx, yq :“ Dz
´

Timespx, y, zq
¯

.

And PrimeFOpxq we will define as follows

PrimeFOpyq :“ @x
´

DivFOpx, yq Ñ
`

x “ 0_ x “ 1_ x “ y
˘

¯

.

All quantified variables are called bound. In the case of DivFOpx, yq are x, y free i.e.,

x, y P VarFO,freepDivq. The variable z is quantified with an extensional quantor, so z is

a bound variable. In the case of PrimeFOpyq x is bound and y is free.

2.3 Second Order Logic

Compared to the languages in First Order Logic, we are able to quantify over subsets of

the universe |A| of the structure A. In the following we will define the syntax and the

semantics of the Second Order Logic.

Definition 2.17 (Syntax of SO). We define the set of formulae of Second Order Logic

SO inductively as follows.

(i) Rn P RSO and t1, . . . , tn P TSO, then Rpt1, . . . , tnq P SO,

(ii) if φ P SO, then p φq P SO,

(iii) if φ, θ P SO, then φ ˝ θ P SO for each ˝ P t_,^,Ñ,Øu,

(iv) if x P VarSO and φ P SO, then p@φpxqq P SO and pDφpxqq P SO and

(v) if X Ď VarSO and φ P SO, then @XpφpXqq P SO and DXpφpxqq P SO.

And no other strings are elements of SO.

Definition 2.18 (Semantics of SO). Let A be a structure of vocabulary τ . For an ar-

bitrary τ -formula φ and a relation symbol Rn P RSO we extend the satisfaction relation

|ù for FO as follows

A |ù DXφpXq ô there is a R Ď |A|n such that A |ù φpRq, n P N.

11
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2.3.1 MSO

Monadic Second Order Logic is a restricted form of Second Order Logic. We only allow

the quantification of unary relations, where all variables are either first order variables

or second order variables (set of variables). A large class of graph problems can be

expressed by MSO, such as colorability. For further information about MSO, one can

consider any standard book in logic. Here we give an example how the MSO works.

Example 2.19. Given a vocabulary τ “ pV G, EGq with the set of vertexes V and

a set of edges E of the instance graph G. Now we can specify the decision problem

3colorgraph in MSO as follows:

3colorgraph :“DC1DC2DC3

@x@y
´

`

C1pxq _ C2pxq _ C3

˘

^
`

 pC1pxq ^ C2pxqq ^  pC1pxq ^ C3pxqq

^  pC2pxq ^ C3pxqq
˘

^ Epx, yq Ñ  
`

 pC1pxq ^ C1pyqq

^  pC2pxq ^ C2pyqq ^  pC3pxq ^ C3pyqq
˘

¯

.

That means the instance of the decision problem 3colorgraph is positive iff the

graph can be colored in three colors C1, C2, C3 and each vertex of the graph is necessary

colored in one and only one of three colors further the adjacent vertexes x and y do not

have the same color.

12
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Parametrized Complexity

In this section we introduce the basics of parametrized complexity. The idea of param-

eterized complexity is to make use of the structure of the input to get some practical

tractability. We will restrict a parameter from the input which effects the complex-

ity at most. We will follow the notation of Rod Downey [Dow12] and [FG06] for our

investigations.

3.1 FPT

Fixed Parameter Tractable problems deal with the issue on NP-complete prob-

lems, for which instance the NP-complete problem is still efficient solvable and which

parameter constrains the runtime most. For example several graph problems can be

solved with small tree width quickly. For further consideration we require the following

essential definitions.

Definition 3.1 (Parameterization). Let Σ be a finite alphabet. A parameterization of

Σ˚ is a mapping

κ : Σ˚ Ñ N

that is polynomial time computable.

Definition 3.2 (Parametrized Problem). Let Σ be a finite alphabet. A parameter-

ized problem over Σ is a pair pQ, κq consisting of a set Q Ď Σ˚ of strings over Σ and

parameterization κ of Σ˚.

13
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Definition 3.3 (FPT-Algorithm). Let Σ be a finite alphabet and κ : Σ˚ Ñ N a param-

eterization. An algorithm A with input alphabet Σ is an fpt-algorithm with respect to κ

if there is a computable function f : N Ñ N and a polynomial p P N0rXs such that for

every x P Σ˚, the running time of A on input x is at most

f
`

κpxq
˘

¨ pp|x|q

where |x| is the length of a string x P Σ˚.

Definition 3.4 (Fixed-Parameter Tractable). Let Σ be a finite alphabet and κ : Σ˚ Ñ N
a parameterization. A parametrized problem pQ, κq is fixed-parameter tractable it there

is a fpt-algorithm with respect to κ that decides Q.

FPT denotes the class of all fixed-parameter tractable problems.

In order to find an FPT-algorithm there exist technical tools like

• Kernelization, and

• Tree Width, and the outcome of this is

• Courcelle’s theorem

These technical tools will be discussed in the following sections. The most interesting

tool will be the extended Courcelle’s theorem in the section of tree width. As the main

task of this diploma thesis we use the Courcelle’s theorem to show the fixed parameter

tractability of reasoning in Circumscription.

3.2 Technical Tools for FPT-Algorithms

Given a NP-complete problem, the following technical tools are used to show the fixed

parameter tractability of this problem. As an example we consider a known issue Ver-

texCover, which one is known to be NP-complete.

Let G “ pV,Eq be a graph with the set of vertices V and the set of edges E. The subset

of vertices V
1

Ď V is called avertex cover, if for each edge pu, vq P E holds v P V
1

or

u P V
1

. So we define the VertexCover problem as follows

VertexCover :“ txG, ky | G has a vertex cover ď k verticesu.

We will show that VertexCover P NP. Therefore we give a verification algorithm. The

instance of the verification algorithm is an undirected graph G “ pV,Eq with the set of

14
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vertices V and E the set of edges and the maximum value k of vertices in the subset

V
1

Ď V of vertex cover. In the first step we check whether V
1

is a subset of V if it is not

the case then we reject as the vertex cover can not be involved of the instant graph G.

Subsequently we test if the subset of vertices exceeds the maximum value k. Then we

verify every edge of the graph G, whether the adjacent vertices u or v are in the subset

V
1

.

Algorithm 1: Verification of VertexCover

Input: G, k, V
1

1 if V
1

Ę V then

2 reject

3 end

4 if k ă |V
1

| then

5 reject

6 end

7 for pu, vq P E do

8 if not pu P V or v P V
1

q then

9 reject

10 end

11 end

12 accept

The runtime of this verification algorithm is Op|E| ¨ |V |q and thus polynomial. There-

fore it holds VertexCover P NP.

a

b

c

d

e

Figure 3.1: Example of vertex cover

In figure 3.6 we see a graph with the vertex cover subset V
1

“ ta, b, du. Please note

that even the minimal vertex cover is not distinct. We can choose V
1

“ tb, d, eu for the

vertex cover as well.
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Unfortunately not all NP-complete problems are fixed parameter tractable, like the

Clique problem, which is known to be Wr1s-complete [FG06].

3.2.1 Kernelization

Kernelization is a polynomial time many one reduction. It is used to design an efficient

algorithm to get fixed parameter tractability. The input is modified in the preprocessing

stage by mapping the original input to a smaller parameterized input so called “kernel”.

Certainly the output of the algorithm should be the same as of the original problem.

Definition 3.5 (Kernalization). A kernalization K of a parameterized problem pQ, κq

over the alphabet Σ is polynomial if there is a polynomial ppXq P N0rXs such that

|Kpxq| ď p
`

κpxq
˘

, @x P Σ˚.

But not every problem in FPT has a polynomial time kernelization. J. Flum and M.

Grohe [FG06] give the following nice example for it.

Example 3.6. Let Q P Σ˚ be a problem that is exptime-complete and hence not in

ptime and let

κ : Σ˚ Ñ Σ˚

be defined by

κpxq :“ rlog log |x|s.

Then pQ, κq is fixed parameter tractable, but if pQ, κq had a polynomial kernelization,

then Q would be decidable in polynomial time.

Above we discussed the original problem of Vertex-Cover. In 1993 S. Buss gave

the first kernelization of the parameterized p -Vertex-Cover problem that is known as

“Buss’ Kernalization”.

Proposition 3.7. p -Vertex-Cover has a polynomial kernelization. More precisely,

there is a kernalization of p -Vertex-Cover that, given an instance pG, kq of p -Vertex-

Cover with G “ pV,Eq, computes in time Opk ` }G}q an instance pG
1

, k
1

q such that

k
1

ď k,

and either pG
1

, k
1

q “ pG´, 1q is the trivial “no”-instance where the graph G´ consists of

two disjoint edges, or G
1

“ pV
1

, E
1

q such that

|V
1

| ď 2pk
1

q2 and |E
1

| ď pk
1

q2.
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Proof. Let G “ pV,Eq be a graph and k P N. The kernelizetion is based on the following

two observations

(i) If v P V with degpvq ą k, then v is contained in in every vertex cover of G of at

most k elements.

(ii) If degpGq ď k and G has a vertex cover of k elements, then G has at most k2 edges.

For v P V , let G´v denote the graph obtained from graph G by deleting v and all edges

incident to v.

Note that if degpvq ą k, then G has a vertex cover of k elements if and only if G´ v has

a vertex cover of k ´ 1 elements.

Algorithm 2: Buss’ Kernelization

1 ReducepG, kq
2 if k “ 0 then
3 if G has no edges then
4 return pG`, 1q
5 end
6 else
7 return pG´, 1q
8 end

9 end
10 else
11 if G has a vertex v with degpvq ą k then
12 return ReducepG´ v, k ´ 1q
13 end
14 else
15 if G has at most k2 edges then
16 return pG, kq
17 end
18 else
19 returnpG´, 1q.
20 end

21 end

22 end

Starting from the instance pG, kq of p -Vertex-Cover the two observations made

above are ensured in the Buss algorithm at line 11 and 15. So we get with the subfunction

ReducepG´ v, k´ 1q at line 12 the equivalent instance pG
1

, k
1

q to the original instance

pG, kq. It is either a graph G´ consisting of two disjoint edges or a graph G
1

which has
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at most pk
1

q2 edges and therefore at most 2 ¨ pk
1

q2 connected vertices. In view of the

strict cardinality of k1 we can remove at most n
1

´ k
1

isolated vertices from G
1

, where n
1

is the number of vertices in G
1

.

Now we consider the implementation of Reduce. for this purpose, the degree of all

vertices must be calculated first. In the new created list Li, with i P r0, |V | ´ 1s we save

all vertices of degree i. Here we have a linear running time. After removing one vertex

of degree ą k the list Li has to be updated. The runtime here is depend on the degree

of the removed vertex, thus Opdegpvqq. Every vertex can be deleted only once, so we get

the over all running time Op|E|q for the update operation.

The following corollary shows that the running time of proposition 3.7 can be reduced,

if the kernelization is used as a preprocessing algorithm for a bound search tree algorithm.

Corollary 3.8. p -Vertex-Cover can be solved in time Opn `m ` 2k ¨ k2q, where k

denotes the parameter, n the number of vertices of the input graph and m the number

of edges of the input graph.

In this subsection we learned a well known technique to create a fixed parameter

tractable algorithm, the kernelization. We showed how to use the kernelization on ex-

ample of VertexCover.

3.2.2 Tree Width

Rudolf Halin was the first one who introduced tree width in 1976. Tree width is a

parameter to measure the graphs, trees or similar structures. It is known that many NP-

hard tree-likeliness of decision and optimization problems are fixed parameter tractable

if they are parametrized by the tree width. In 1990 Bruno Courcelle set a milestone in

this area. He gives a powerful theorem, which says that every NP-hard MSO definable

problem that is parametrized by tree width is fixed parameter tractable. Courcelle’s

theorem will be discussed in Subsection 3.2.2.1.

We start with three formal definitions of “Tree Decomposition”, “Width of a Tree

Decomposition” and “Tree Width” and subsequently we outline these definitions with

an example.

Definition 3.9 (Tree Decomposition). A tree decomposition of a graph G “ pV,Eq is a

tree T together with a collection of subset Tx (called bags) of V labeled by the vertices

x of T such that following holds

(i)
Ť

xPT Tx “ V ,
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(ii) @pu, vq P E there is some x such that tu, vu Ď Tx, and

(iii) if y is a vertex on the unique path in T from x to z then Tx X Tz Ď Ty.

Definition 3.10 (Width of a Tree Decomposition). The width of a tree decomposition

is the maximum value of |Tx|´1 taken over all vertices x of the tree T ’s decompositions.

Definition 3.11 (Tree Width). The tree width of a graph G is the minimum tree width

of all tree decompositions of G.

Below we consider an example of tree decomposition from a graph G and a tree width

of 2.

a

b c

d f

g

h

y

i

jk

l

m

x

n

Figure 3.2: Graph G

Given a graph of the figure 3.2. We make use of the definition 3.9 with the rules

(i)
Ť

xPT Tx “ V ,

(ii) @pu, vq P E there is some x such that tu, vu Ď Tx, and

(iii) if y is a vertex on the unique path in T from x to z then Tx X Tz Ď Ty,
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abc

bmn

mnx

ml

bw

lkw

cgh

chf

hfi

fij

ghy

Figure 3.3: Tree decomposition of graph G.

so we get following tree of the Figure 3.3.

Note that the negative tree width of ´1 is also possible, if we have an empty graph.

Analogously, we get the tree width 0 of a graph with only one vertex and no edges.

The minimal tree width 1 we can get with acyclic graphs only. The cyclic graph has

a minimal tree width 2. Therefore in our example above we reached the minimal tree

width.

To illustrate that the cycle graph can not have a tree width 1, consider following

example.

Example 3.12. We start with an acyclic graph G and the minimal width of 1. After-

wards we will add an additional edge to make the graph G cyclic and show that the tree

width 1 is no longer sufficient. This is shown in Figure 3.4.

So now we modify our graph by adding an edge between the vertex b and d shown in

Figure 3.5.

The modified graph is cycled now at vertices b, c and d. So now we require a bigger

bag at the root in the tree decomposition, to ensure that all tree vertices b, c and d are

connected with each other.

Now it is straightforward to generalize the definitions of tree decomposition and tree

width for arbitrary relational structures, in order to get finally know the Courcelle’s
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a

b

c

d

e

paq

bc

ab cd

de

pb)

Figure 3.4: paq Graph G, pbq Tree decomposition of G.

a

b

c

d

e

paq

bcd

ab de

pb)

Figure 3.5: paq Cyclic graph G
1

, pbq Tree decomposition of G
1

.
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theorem and the application of it. In the following we will denote a tree as T “ pT, F q
with a set of nodes T and a set of edges F .

Definition 3.13 (Tree Decomposition). A tree decomposition of a τ -structure A is a

pair

pT , pBtqtPT q,

where T “ pT, F q is a tree and pBtqtPT is a family of subsets of the universe A of the

τ -structure A such that following holds:

(i) @a P A, the set tx P T | a P Btu is non empty and connected in T .

(ii) For every relation symbol R P τ and every tuple pa1, . . . , arq P R
A, where

r :“ artypRq, there is a t P T such that a1, . . . , ar P Bt.

Similarly, we adjust the terms of decomposition width and tree width for arbitrary

relational structures.

Definition 3.14 (Decomposition Width). The width of the decomposition pT , pBtqtPT q
is the number

maxt|B| | t P T u ´ 1.

Definition 3.15 (Tree Width). The tree width twpAq of the τ -structure A is the mini-

mum of the tree decomposition of τ -structure A.

In order to get more sense for the definitions listed above for arbitrary relational

structures, we consider following example.

Example 3.16. First we define the vocabulary τ as follows

τ :“ tX,Y u,

where X is binary and Y ternary. Now we define the τ -structure A as

A :“ tA,XA, Y Au,

where

A :“ ta, b, c, du,

XA :“ tpa, bq, pb, cq, pc, dq, pd, equ, and

Y A :“ tpb, c, dq, pb, d, cq, pc, b, dq, pd, b, cq, pc, d, bq, pd, c, bqu.
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a

b

c

d

e

Figure 3.6: Graph GA of a structure A.

So now we get a known figure, namely the following

Note, that the tree decomposition is not unique. So the decomposition of Example 3.12

is valid as well as the following one

cd

cb

ab

de

Figure 3.7: Tree Decomposition of the graph GA.

So now all of the preconditions are met to deal with Courcelle’s theorem. We know

the syntax and the semantics of monadic second order logic, we can deal with the tree

width of arbitrary prepositional structure. Therefore in the next chapter we will discuss

Courcelle’s theorem, which shows that “monadic second order” definable problems are

in linear time fixed parameter tractable for graphs of a fixed tree width.

3.2.2.1 Theorem by Courcelle Elberfeld et al.

Courcelle’s theorem is based upon Bodleander’s theorem which states that for all k

there exists a linear time decision-algorithm which checks whether the input graph G

has a tree width of k and in this case computes the tree decomposition of tree width k.

Courcelle advanced the statement of Bodleander, he showed that for all MSO-formula

φ and for all k there exists an linear time decision-algorithm, which checks whether a
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given logical structure A of tree width at most k satisfies φ. In the year 2010 Michael

Eberfeld, Andreas Jakoby and Till Tantau proved that Courcelle’s theorem works with

logarithmic space as well as in linear time. In this chapter we follow the notation of

[EJT10] and [FG06].

Theorem 3.17 (Bodleander’s Theorem). There is a polynomial p and an algorithm that,

given a graph G “ pV,Eq, computes a tree decomposition of G of width k :“kwpGq in

time at most

2ppkq¨n,

where n :“ |V |.

Theorem 3.18. Let Q be a decision problem, and x be an input. Q is MSO-definable

iff there exists an MSO-formula φQ and a function x ÞÑ Ax s.t. it holds that x P Q if

and only if Ax |ù φQ.

Theorem 3.19 (Courcelle 1990, Elberfeld Jakoby Tantau 2010). Let Q be an MSO-

definable decision problem, and let Ax be a structure associated with an instance x.

Further let k P N s.t. the tree width of Ax is bounded by k. Then Q is solvable in time

O
´

fpkq ¨ |x|
¯

and space O
´

log
`

fpkq
˘

` log |x|
¯

.

To discuss the whole proof of the theorem above is beyond the scope of this diploma

thesis. In the following we give the proof idea of Courcelle’s theorem. For more infor-

mation we refer the reader to [EJT10].

Even for the proof idea we require some further information. First we need to define

a labeling of a tree and afterwards we will get know an additional lemma.

Definition 3.20 (Labeling of a Tree). Let τ “ tR1, . . . , Rmu, where, for i P rms,

the relation Ri is ri-ary. Let A be a τ -structure and D “ pT , pbtqtPT q an ordered

tree decomposition (every tree decomposition whose bags are all nonempty immediately

yields an ordered tree decomposition) of A of width k. The labeling λ of the tree T “
pT, F q is defined then as follows.

We want the label λptq to encode the isomorphism type of the substructure of A induced

by the bag b
t

and the interaction of b
t

with the bag of the parent of t. We let

λptq :“ pλ1ptq, . . . , λm`2ptqq,
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a

b

c

d

e

paq

t1

tc du

t2

tb cu

t3 ta bu

t4

td eu

pb)

Figure 3.8: paq graph G, pbq tree decomposition of G.

where

λiptq :“ tpj1, . . . , jriq P rk ` 1sri | pbtj1 , . . . , b
t
jri
q P RA

i u, for 1 ď i ď m,

λm`1 :“ tpi, jq P rk ` 1s2 | bti “ btju,

λm`2ptq :“

$

&

%

tpi, jq P rk ` 1s2 | bti “ bsju, for the parants of t if t is not the root of T ,

H, if t is a root of T .

We let

T pA,Dq :“ pT, F, λq.

Note that the alphabet of T pA,Dq is

Σpτ, kq :“ Powprk ` 1sr1q ˆ ¨ ¨ ¨ ˆ Powprk ` 1srmq ˆ Powprk ` 1s2q ˆ Powprk ` 1s2q,

where PowpXq denotes the power set of X.

Example 3.21. Consider Example 3.16 again with vocabulary τ “ pX,Y q, where X is

binary and Y ternary, and the structure A :“ tA,XA, Y Au where

A :“ta, b, c, du,

XA :“tpa, bq, pb, cq, pc, dq, pd, equ,

Y A :“tpb, c, dq, pb, d, cq, pc, b, dq, pd, b, cq, pc, d, bq, pd, c, bqu.

Recall the tree decomposition has a tree width k :“ twpAq “ 1. The alphabet of the
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tree T pA,Dq is defined as

Σpτ, kq :“ Powprk ` 1sr1q ˆ ¨ ¨ ¨ ˆ Powprk ` 1srmq ˆ Powprk ` 1s2q ˆ Powprk ` 1s2q.

In our case is the first relation X of arity 2 and second relation Y of arity 3. Thus the

alphabet is

ΣptX,Y u, 2q :“ Powpr2s2q ˆ Powpr2s3q ˆ Powpr2s2q ˆ Powpr2s2q.

To give an example of a label λptq in T pA,Dq to encode the decomposition tree D, we

consider the leaf t4 with a bag b
t4
“ td, eu and get

λpt4q “
´

tp1, 2qu,H, tp1, 1q, p2, 2qu, tp1, 2qu
¯

.

Lemma 3.22. Given a τ -structure A of width ď k, an ordered small tree decomposition

D of A of width ď k the corresponding Σpτ, kq-labeled tree T pA,Dq can be computed

in time

fpk, τq ¨ |A|

for a suitable computable function f .

Algorithm 3: Courcelle

Input: pA, φq
1 if vocabulary τphi of φ is not contained in the vocabulary of A then
2 reject
3 end
4 begin

5 Let A1

be the τφ-reduct of A.

6 Compute an ordered tree decomposition D “ pT , pb̄tqtPT q of A1

7 of width twpA1

q and the labeled tree T pA1

,Dq.
8 Compute the formula φ˚.

9 end

10 if T pA1

,Dq |ù φ˚ then
11 accept
12 end
13 else
14 reject
15 end

Algorithm 3 then decides A |ù φ. The algorithm is divided into two essential steps.
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In the first step we consider T pA,Dq a labeled tree and every tree decomposition

D “ pT , pBtqtPT q of a structure A. Recall, tree decomposition is not unique, there-

fore we need to follow all alternatives. The labeled tree T pA,Dq must have all the

information to reconstruct the structure A. The substructure of A with the set of ver-

tices Bt is encoded by labeling a node t, additionally it gives the information about the

intersection of the bags of the decomposition.

In the second part the Courcelle algorithm translates the MSO-formulae over a struc-

ture A into MSO-formulae over the labeled tree T pA,Dq and decides whether A1

|ù φ˚.

In the following we will investigate the running time of the Courcelle algorithm.

The running time of the instruction at the line 1 and 5 is Op}A}q. For the further

analyzation we will denote

n :“ |A| “ |A1

|,

k :“ twpAq the tree width of the structure A, and

` :“ |φ|

Line 3 is computable by Bodleander’s theorem 3.17 and Lemma 3.22 in time

f
1

1pk
1

, τφq ¨ n for a suitable computable function f1, where k1 “ kwpA1q.

It holds

f
1

1pk
1

, τφq ¨ n ď f1pk, τφq ¨ n

with a suitable function f1, while the size of τφ is bounded by k
1

ď k and `. At line 8

φ˚ is computable in time f2pk, `q, as is depends only on φ and k
1

. Analogous we denote

`˚ :“ |φ˚|. It can be shown [FG06] that the check at line 10 is computable in time

fp`˚q ¨ }T pA1

,Dq}. Overall we obtain the required time bound of Op}A}q ` fpk, `q ¨ |A|.

Before we get to the complex application of Courcelle’s theorem in the next chapter,

we consider one simple example of the application first.

Example 3.23. In the section of monadic second order logic we learned that the the

problem 3colorgraph is MSO-definable. It is easy to expand the problem 3color-

graph to any number of colors , thus to problem α-Colorgraph.
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α-Colorgraph :“ DC1 . . . DCα @x@y
´

ł

1ďiďα

Cipxq ^
ľ

1ďiăjďα

 
`

Cipxq ^ Cjpxq
˘

^
ľ

1ďiăjďα

Epx, yq Ñ  
`

Cipxq ^ Cipyq
˘

¯

.

Now we want to show the parametrized problem of α-Colorgraph is fixed parameter

tractable. So let the instance be a graph G and number of colors α P N. We parameterize

the problem by the tree width of the graph G. The decision problem is now the α

colorability of the graph G.

Note that every not empty graph G with a tree width at most w, has a vertex degree

at most w as well. It follows that the graph G with twpGq “ k is α-colorable @k`1 ď α.

So the fpt-algorithm for our parameterized problem is:

Algorithm 4: FPT algorithm for parametrized α-Colorgraph problem

Input: pG,αq
1 begin
2 Compute the tree width of the graph k :“twpGq
3 (for example with Bodleander’s Algorithm).

4 end
5 if k ` 1 ď α then
6 accept
7 end
8 else
9 if G does not satisfies the MSO-sentence of α-Colorgraph

10 (use Courcelle’s algorithm 3) then
11 reject
12 end

13 end

So line 9 immediately decides with Courcelle’s algorithm whether the instant graph

G is α-colorable.

In this chapter we learned the class FPT and the technical tools to get a fpt-algorithm.

In the next chapter we will learn more complex application of the Courcelle’s theorem.

We will show that the problems given in propositional Circumscription are fixed param-

eter tractable by using Courcelle’s theorem.

28



CHAPTER 4

Application of Courcelle’s Theorem

4.1 Circumscription

4.1.1 Basic Propositional Circumscription

The guideline in propositional Circumscription is the compliance of the minimal models

to obtain as few exceptions as possible. A minimal model is a set Mmin, that contains

variables which are necessariely assigned to true. The central idea is that the variables

which can be falsified must be assigned to false. In basic propositional Circumscription

the positive assignment of propositional formulae are partially ordered according to the

coordinate wise partial order ď on Boolean vectors, which obeys the order 0 ď 1 on

t0, 1u. In the following we follow the notation of McCarthy [McC80] and [Tho10].

Definition 4.1 (Ordering). Let Mα and Mβ be two models of a given formula ϕ, if Mα

and Mβ assign the same value to the variables x P ϕ, then we write Mαpxq ď Mβpxq,

respectively, Mα ď Mβ (if there exists a variable x P ϕ such that Mαpxq ‰ Mβpxq, we

write Mα ăMβ).

Definition 4.2 (Minimal model Mmin). Let Mα and Mβ be two models of a formula

ϕ, then a minimal model Mmin of ϕ is a satisfying model Mα such that there exists no

satisfying model Mβ, where Mβ ăMα holds.

Definition 4.3 (Circumscriptive models and inference). Let B and B
1

be be finite sets

of Boolean functions. An assignment σ is a circumscriptive model of the B-formula ϕ
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(written: σ |ùcirc ϕ) if σ is a minimal model of ϕ.

A B
1

-formula ψ can be circumscriptively inferred from ϕ (written: ϕ |ùcirc ψ) if ψ holds

in all minimal models of ϕ.

Lets consider the decision probleme CircInf(B), with a given formula φ and a set

Γ Ď LpBq. Now we need to decide whether a formula can be inferred from the Circum-

scription of a given knowledge base. We define this problem as the inference problem

for B-formulae in propositional Circumscription.

Problem: CircInf(B)

Input: A B-formula φ, a finite set Γ Ď LpBq
Question: Does Γ |ùcirc φ hold?

Michael Thomas has shown in [Tho10] the following theorem

Theorem 4.4. Let B be a finite set of Boolean functions such that rBs “ BF, where the

clone BF is based on tx^ y, xu, thus defines all Boolean functions. Then CircInfpBq

is Πp
2-complete.

Example 4.5.

φ “ x1 ^ px2 _ x3q _ px2 ^ x4q “ px1 ^ x2q _ px1 ^ x3q _ px2 ^ x4q

Trivially the model M0 “ tx1, . . . , x4u satisfies the function φ. That means if we assign

all variables x1, . . . , x4 to true, φ gets true as well. But the model M0 is not minimal. We

take a closer look at φ. Variables that are not possible to be falsified are connected with

a Boolean conjunction. The variables which are connected with a Boolean disjunction

must be assigned to false. Therefore we have three minimal models: M1 “ tx1, x2u,

M2 “ tx1, x3u, M3 “ tx2, x4u.

Now the formula φ can be circumscribed as follows:

χ “  
´

px1^x2q Ø px1^x3q

¯

^ 

´

px1^x2q Ø px2^x4q

¯

^ 

´

px1^x3q Ø px2^x4q

¯

.

Hence, overall φ |ùcirc χ holds.

4.2 MSO Encoding of basic propositional Circumscription

In this section we will express the propositional circumscriptive inference problem in

monadic second order logic. We follow as antetype the paper “On the parameterized
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complexity of default logic and autoepistemic logic” [MSTV12] for this chapter.

Let B be a fix and finite set of Boolean functions. We define the vocabulary τB as

follows

τB :“ tconst1f | f P B, aritypfq “ 0u Y tconn2
f,i | f P B, 1 ď i ď aritypfqu.

Let Γ be a set of propositional B formulae and

τB,PL :“ τB Y tvar1, repr1
Γ, repr1

φu.

The τB,PL structure AΓ,φ is associated with the set Γ and a formula φ such that the

universe of AΓ,φ contains subformulae of Γ and φ and the following holds:

(i) var1pxq holds iff x represents a variable,

(ii) repr1
Γpxq holds iff x represents a formula in Γ,

(iii) repr1
φpxq holds iff x represents a formula φ,

(iv) constpxq1f holds iff x represents the constant f , and

(v) conn2
f,ipx, yq holds iff x represents the i-th argument of f at the root of the formula

tree y.

Lemma 4.6. Let B be set of Boolean functions. Then there exists an MSO-formula

θsat over τB,PL such that for any set of formulae Γ Ď LpBq over connectives in B there

exists a structure AΓ,φ such that

Γ is satisfiable iff AΓ,φ |ù θcirc.

Proof. To proof the lemma we need to specify the MSO formulae.

θpre :“ @x
´

 varpxq Ñ
ł

fPB,

aritypfq“0

constf pxq ‘
ł

fPB

ľ

1ďiďaritypfq

Dypconnf,ipy, xq

^ @zpconnf,ipz, xq Ñ z “ yq
˘

¯

.
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θstrucΓ :“ θpre ^ @x
´

 reprΓpxq Ñ Dy
`

 varpyq ^
ł

fPB,

1ďiďaritypfq

connf,ipx, yq
˘

¯

.

θstrucφ :“ θpre ^ @x
´

 reprφpxq Ñ Dy
`

 varpyq ^
ł

fPB,

1ďiďaritypfq

connf,ipx, yq
˘

¯

.

The structure is satisfiable, iff for all x holds, if x is not a variable then it is a function

with well defined successor, where x is either a formula or a subformula of f .

Let n be defined as the maximum value of the arity of f , n :“ maxtaritypfq | f P Bu.

In the following we build the MSO formula for the assignment of any given modell M .

θassignpMq :“ @x@y1 ¨ ¨ ¨ @yn
ľ

fPB

´

ľ

aritypfq“0

constf pxq Ñ
`

Mpxq Ø f
˘

^

ľ

1ďiďaritypfq

connf,ipyi, xq Ñ
`

Mpxq Ø fpvy1 PMw, . . . , vyaritypfq PMwq
˘

¯

,

where vx PMw is true iff x PM holds and false otherwise.

The assignment of a given formula M must holds that all constanst and arguments have

a satisfiable assignment for the model M .

Finally for the satisfiability formulae of a given model M holds that there is a valid

structure and a valid assignment of the model M , where all individuals represent formu-

lae from Γ and respectively formula φ , and are defined as

θsatΓpMq :“ θstrucΓ ^
´

θassignpMq ^ @x
`

reprΓpxq ÑMpxq
˘

¯

,

θsatφpMq :“ θstrucφ ^
´

θassignpMq ^ @x
`

reprφpxq ÑMpxq
˘

¯

.

Now we describe the minimal model in the MSO language, which states that the set

Mmin is irreducible. We cannot find and remove one variable x in the minimal model of
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φ, such that Mmin still satisfies φ

φminimalpMminq :“ @Mmin Dx
´

Mminpxq ^ φremovedpxq
¯

where

φremovedpMminq :“ DM
1

min

´

 M
1

minpxq^@y
`

Mminpyq^x ‰ y ÑM
1

minpyq
˘

^φsatΓpM
1

minq

¯

All of this points to the fact that Γ |ùcirc φ iff there exist a structure AΓ,φ such that

AΓ,φ |ù θcirc, where

θcirc :“ @M
´

`

θsatΓpMq ^ φminimalpMq
˘

Ñ θsatφpMq
¯

and satisfies the lemma.

4.3 MSO Encoding of a Trichotomy of Propositional

Circumscription

Compared to basic Circumscription the variables of a propositional formula ϕ are par-

titioned in three disjoined subsets pP,Q,Zq now. In this chapter we follow the notation

of Gustav Nordh [Nor04] as well as the notation of Arnaud Durand, Miki Herman, and

Gustav Nordh [DHN12]. The partitioned subsets are defined as follows

• P is the set of variables that are to minimize,

• Q is the set of variables that must maintain a fixed value, in order to let the

minimal models be comparable, and

• Z is the set of variables allowed to vary,

The partial order on satisfying models will be defined as follows.

Definition 4.7 (ďpP,Q,Zq Ordering). Let Mα and Mβ be two models of a given formula

ϕ, then Mα ďpP,Q,Zq Mβ if Mα and Mβ assign the same value to the variables in Q and for

every p P P , Mαppq ďMβppq (if there exists a variable p P P such that Mαppq ‰Mβppq,

we write Mα ăpP,Q,Zq Mβ).
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Definition 4.8 (Minimal model MpP,Q,Zqmin). Let Mα and Mβ be two models of a

formula ϕ, then a minimal model MpP,Q,Zqmin of ϕ is a satisfying model Mα such that

there exists no satisfying model Mβ, where Mβ ăpP,Q,Zq Mα holds.

Problem: CircInfpBqpP,Q,Zq

Input : A B-formula φ, a set Γ Ď LpBq, and

a partition pP,Q,Zq of the propositions

Question: Does Γ |ùcirc
pP,Q,Zq φ hold?

As well as for basic propositional Circumscription the complexity of CircInfpBqpP,Q,Zq

is given in [Tho10].

Theorem 4.9. Let B be a finite set of Boolean functions such that rBs “ BF, where the

clone BF is based on tx^y, xu, thus defines all Boolean functions. Then CircInfpBqpP,Q,Zq

is Πp
2-complete.

Now we give the MSO-Encoding of the disjoined subsets partition pP,Q,Zq

of formula ϕ:

ϕpart :“ DPDQDZ@x
´

P pxq Ñ  
`

Zpxq _Qpxq
˘

^

Qpxq Ñ  
`

P pxq _ Zpxq
˘

¯

^

Zpxq Ñ  
`

P pxq _Qpxq
˘

^

@x
´

varpxq Ñ
`

P pxq _Qpxq _ Zpxq
˘

¯

.

Additionally MSO-encodings are required for the set of variables that are to minimize

as well as for the set of variables that must maintain a fixed value. We start with the

set P . It must hold that Mmin Ď P and Mmin is a valid minimal model, so it follows

ϕP :“ @Mmin

´

@x
`

Mminpxq ^ φminimalpMminq Ñ P pxq
˘

¯

.

The variables in Q must maintain a fix value P t0, 1u, so we define

ϕQ :“ @Mmin0@Mmin1

´

@x
`

Qpxq Ñ
`

Mmin0pxq ØMmin1pxq
˘˘

^

φminimalpMmin0q ^ φminimalpMmin1q

¯

.

The set Z needs no further consideration, as the variables are allows to vary here.
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Compared to basic Circumscription we need to add ϕP , ϕQ and ϕpart in the imple-

mentation now

θsatpP,Q,Zq
:“ θsat ^ ϕP ^ ϕQ ^ ϕpart.

Example 4.10. In order to compare we take the same formula as in basic Circumscrip-

tion. So consider the input

φ “ px1 ^ x2q _ px1 ^ x3q _ px2 ^ x4q,

with

P “ tx1, x3u, Q “ tx2u, Z “ tx4u.

In this case we can falsify x1 as well as x3, hence the first and the second Boolean and-

operator we conclude to be false. Overall we get only one minimal model M1 “ tx2, x4u

and φ can be circumscribed as follows

px1 ^ x2q _ px1 ^ x3q _ px2 ^ x4q |ù
circ
pP,Q,Zq x2 ^ x4.

Example 4.11. Now we extend our formula φ with an additional clause

φ “ px1 ^ x2q _ px1 ^ x3q _ px2 ^ x4q _ px2 ^ x5q,

with

P “ tx1, x3u, Q “ tx2u, Z “ tx4, x5u.

We can falsify x1 as well as x3 in this case again, hence the first and the second Boolean

conjunction are going to be false. But now we get two minimal models M1 “ tx2, x4u

and M2 “ tx2, x5u. Note x2 should be fixed, therefore M1 contains x2 as well as M2, so

φ can be circumscribed as follows

px1 ^ x2q _ px1 ^ x3q _ px2 ^ x4q |ù
circ
pP,Q,Zq  

´

px2 ^ x4q Ø px2 ^ x5q

¯

.

Using Courcelle’s theorem we can show the following result now.

Theorem 4.12. Let B be a set of Boolean functions. Then it holds CircInfpBqpP,Q,Zq

is fixed parameter tractable.

Proof. With Lemma 4.6 we have shown that we have a monadic second order definable

satisfiability formula over the structure AΓ,φ for the CircInfpBqpP,Q,Zq problem. Thus,

with Courcelle’s theorem 3.19 holds CircInfpBqpP,Q,Zq is fixed parameter tractable.
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Note that the theorem 4.12 especially holds for the CircInfpBq problem, as in this

case the sets Q and Z are empty.
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Conclusion

In this thesis we have shown that the inference problem of Circumscription is fixed

parameter tractable. One main challenge here was to formalize the inference problem

of Circumscription in a way that Courcelle’s theorem can be applied. We used the fact

shown by Courcelle that a given problem is fixed parameter tractable in case it is MSO

definable and parametrized by the tree width.

The problem by using Courcelle’s theorem is to find the tree decomposition. The tree

decomposition algorithm runs in Op235¨k3
¨ |x|q for fixed tree width k and for an instance

x. Thus by the large exponent constant factor the algorithm is not practical, as shown

in the tutorial by Downey [Dow12]. It remains open whether there exists an efficiently

computable tree decomposition. However, the running time in this diploma thesis is of

a minor importance, as we are interested in the theoretical aspect only.

For the inference problem of Circumscription we give a complete result for arbitrary

sets of Boolean functions similar to [MSTV12] for Default logic and Autoepistemic logic.

We leave it as an open question whether there are lower bounds analogous for the

Circumscription inference problem, like they were given in [MSTV12] for Default logic

and Autoepistemic logic.
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