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Abstract

This master thesis depicts the advantages of Neil Tennant’s Core Logic over other

deduction systems considering computational aspects. Being a relevance logic,

which usually are undecidable even in the propositional case, one of its features is

the PSPACE-completeness of its propositional decision problem. This work proves

its membership in PSPACE by reducing Propositional Core Logic to Propositional

Intuitionistic Logic, whereas the given PSPACE-hardness proof is based on the

model of Statman’s PSPACE-hardness proof for Propositional Intuitionistic Logic.

Therefore, Core Logic is not more complex than non-relevant Intuitionistic Logic.

Further, the relevance notion developed by Tennant is strictly proof-theoretical

and therefore verifiable by a computer. Accordingly, this paper will answer the

question in what way automated proof finding could benefit from this relevance

property that provides an effective kind of variable sharing, while still allowing

moderate computational complexity of the deduction system.

Zusammenfassung

Die vorliegende Arbeit beschreibt, inwiefern das von Neil Tennant entwickelte

Relevanz-Logiksystem Core Logic vorteilhaft für computergestützte Anwendun-

gen ist. Eine Eigenschaft, die Core Logic von anderen Relevanzlogiken abhebt, ist

die PSPACE-Vollständigkeit seines aussagenlogischen Entscheidungsproblems, de-

ren Beweis das Hauptresultat dieser Arbeit darstellt. Die PSPACE-Mitgliedschaft

wird gezeigt, indem Propositional Core Logic auf Propositional Intuitionistic Lo-

gic reduziert wird, während der PSPACE-Schwere-Beweis in Anlehnung an Stat-

mans PSPACE-Schwere-Beweis für Propositional Intuitionistic Logic erfolgt. So-

mit weist Core Logic keine höhere Komplexität auf als nichtrelevante Intuitionis-

tische Logik. Darüber hinaus ist das von Tennant entwickelte Relevance Property

rein beweistheoretisch und damit maschinell überprüfbar. Abschließend wird so-

mit die Frage beantwortet, inwiefern computergestütztes logisches Schließen von

Tennants Relevanzbegriff profitieren kann, der eine effektive Form des Variable

Sharing erfordert und dennoch die moderate Komplexität des Beweissystems zu-

lässt.
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1 Introduction

Motivation

Logic is the mathematical and philosophical science dealing with the structure of valid

inference.

A logical system provides a transformation from complex human reasoning to se-

quences of simple inferences restricted by a finite set of rules. This requires a semantic

concept justifying both correctness and soundness of such a system.

Classical Logic is the logical system satisfying the most common understanding of logic.

Its underlying semantics require bivalence and extensionality of all objects. It is well

known and widely accepted. Many logicians call it the one right logic. Still, there

are the ones who prefer different systems. They do not agree with certain principles

Classical Logic is built on.

Prominent among them are the Intuitionists. They challenge the Principle of Bivalence,

the assumption that every sentence must be either true or false. This leads to rejecting

the Law of Excluded Middle. Also the classical semantics of truth valuation cannot be

applied. Intuitionists speak of provability instead. A well known semantic concept for

this system was developed by Kripke in [Kri63]. It formalizes the approach of growing

knowledge by using nodes as states of mind.

Another movement comes from the Relevantists. Their concern is the classical Explo-

sion Principle (from falsehood/contradiction anything follows) that leads to the so

called First Lewis Paradox making any sentence ψ derivable from an arbitrary contra-

diction ϕ,¬ϕ. It is paradoxical because ψ is not necessarily connected to ϕ. So, a
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1 Introduction

Relevantist would question the validity of assuming that the absurdity of ϕ,¬ϕ actu-

ally entails an arbitrary sentence ψ. Relevance Logics avoid this paradox by ensuring

some variable sharing between premises and conclusion; this usually makes their de-

cision problems intractable.

Others, the pluralists, even state that there is no such thing as the one right logic. They

argue that there are various applications with different requirements that could not

all be satisfied by one single logical system.

Core Logic is a logical system developed by Neil Tennant to relevantize Intuitionistic

Logic. He stresses that his system preserves relevance from premises to conclusion

without increasing the computational complexity compared to Intuitionistic Logic. An-

other features is that its classicized extension, Classical Core Logic, relevantizes Clas-

sical Logic in a corresponding way. It establishes the relevant core of logic. That is

why Tennant calls it a core logic. The present thesis provides a closer look at Tennant’s

claim.

1.1 Overview

This work starts with a short outline of three established logical systems in Section

1.2. Firstly, Intuitionistic Logic will be described. Its main feature is the rejection

of the Law of Excluded Middle resulting in not considering the sentence α ∨ ¬α an

axiom (Subsection 1.2.1). Secondly, we will have a look at the system of Minimal

Logic, which is obtained by rejecting the self-evidence of the intuitionistic (hence also

classical) axiom ¬α → (α → β) (Subsection 1.2.2). Thirdly, the Relevance Logic R

will be examined, which is one among many Relevance Logics, due to the ambiguity

of the concept of relevance. It contains the Law of Excluded Middle but restricts the

entailment relation by rejecting Disjunctive Syllogism ((α ∨ β) ∧ ¬α)→ β as well as

the validity of ¬α→ (α→ β) and ¬α→ (α→¬β) (Subsection 1.2.3).

Subsequently, we will introduce the main characteristics of Core Logic in Chapter 2.

In Section 2.1, we will determine Tennant’s notion of relevance and what structural

preconditions he formulates for Core Logic. In Section 2.2, the reader will find a list

2



1.1 Overview

of the propositional calculus rules for Core Logic in natural deduction presentation in

comparison with the Minimal Calculus rules. Section 2.4 demonstrates how we can

inductively extract a proof in the deductive system for Core Logic from a given proof

in the Intuitionistic Calculus. Section 2.5 establishes several basic properties of deduc-

tion in Core Logic, followed by Chapter 3 in which the proof of PSPACE-completeness

of Propositional Core Logic will be presented. In Chapter 4, we will discuss the ad-

vantages of Core Logic in comparison with other non-classical logics considering auto-

mated reasoning before a brief summary and some recommendations for further work

will be given in Chapter 5.
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1 Introduction

1.2 Systems of Non-Classical Logic

Non-classical logics have been developed whenever Classical Logic could not meet the

demands of specific territories of reasoning. Some of them extend Classical Logic by

adding operators, others restrict it by rejecting certain principles.

The present Section deals with three well known systems of non-classical logic that

arose from different camps in the debate over a logical reform.

1.2.1 Intuitionistic Logic

Intuitionism is a philosophical trend concerning the Law of Excluded Middle, which

states that every possible sentence either is true or false. Intuitionists gladly accept

the Law of Non-Contradiction that states no object can both be and not-be something

at the same time but they endorse the possibility for a proposition not being and not

not-being provable at the same time. This is where the semantics differ. Intuitionists

do not speak of mere truth. Their interest aims at provability that always requires a

constructive proof as evidence. There actually are mathematical sentences for which

no proof or disproof exists and, according to Gödel’s First Incompleteness Theorem

(see, e.g., [Raa18]), this is necessarily the case. So, if one evaluates provability of

a sentence as being able to present a constructive proof of it, rejecting the Law of

Excluded Middle is the indispensable consequence.

The natural deduction system for Intuitionistic Logic I contains all rules of Minimal

Logic that will be given in Section 2.2 complemented by the absurdity rule Ex Falso

Quodlibet (EFQ). This rule in combination with the ¬E rule as stated below represents

the equivalence class of contradictory sentences in the sense that if one contradiction

is provable, then all contradictory sentences are provable because they are equivalent.

All non-contradictory sentences ϕ are obviously provable from ϕ ∧ ¬ϕ. This makes

every sentence provable from any contradiction.

4



1.2 Systems of Non-Classical Logic

(¬E) ¬ϕ

···
ϕ

⊥
(EFQ)

···
⊥
ϕ

To obtain the whole canon of Classical Logic C, the Intuitionistic Calculus has to be com-

plemented by one of the four equivalent classical rules of negation ([Ten17, p. 23]).

Dilemma (Dil)

� (i)
ϕ
···
ψ

� (i)
¬ϕ
···
ψ

(i)
ψ

or Classical Reductio (CR)

◊ (i)
¬ϕ
···
⊥

(i)
ϕ

or Double Negation Elimination (DNE)

···
¬¬ϕ
ϕ
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or the Law of Excluded Middle (LEM) ϕ ∨¬ϕ .

The boxes next to some of the discharge lines indicate that the discharge of the respec-

tive assumption is obligatory. The diamond marks a discharge as permissible, meaning

that the rule can be used without discharging any assumptions. This liberty results in

Classical Reductio being an application of EFQ: The conclusion can be drawn from any

contradiction.

1.2.2 Minimal Logic

Minimal Logic M was developed by Ingebrigt Johansson and first published in [Joh37].
His aim was to establish an intuitionistic calculus that would avoid the paradoxes in-

duced by applications of the sentence ¬α→ (α→ β) which is an axiom in Intuition-

istic Logic as it is in Classical Logic. It can be proved by using the absurdity rule Ex

Falso Quodlibet (EFQ).

(1)
α

(2)
¬α

¬E
⊥

EFQ
β

→I(1)
α→ β

→I(2)
¬α→ (α→ β) .

Accordingly, EFQ is not available for Minimal Logic.

Minimal Logic furnishes no more than introduction and elimination rules for the con-

nectives and is contained in Intuitionistic Logic. This is what makes it minimal and

considerable as a kind of relevant core logic. Yet, Minimal Logic allows irrelevance.

6



1.2 Systems of Non-Classical Logic

Johansson eschews EFQ but the ¬I rule does not require a discharge of assumptions.

This makes any negation deducible from absurdity. The proof looks like this:

α ¬α
¬E

⊥
¬I

¬β ,

with the inference of ¬β being an application of ¬I. This rule, like EFQ, allows the

premises to be irrelevant for the conclusion. This is clearly not wanted in a relevance

logic. Tennant points out another aspect, that rules out Minimal Logic as a potential

core logic: Classicizing Minimal Logic—no matter which one of the classical rules

of negation one would add—inevitably results in allowing the full canon of Classical

Logic including EFQ [Ten17, p. 32 f.]. Core Logic, in contrast, has a classical extension

C+ that classicizes it by adding one of the (relevantized) classical rules of negation and

still meets Tennant’s relevance condition stated in 2.1.4.

1.2.3 Relevance Logic

Relevance logicians state that for an inference to be valid it is necessary that the

premises are somehow relevant to the conclusion. This means that for example the

inference “The moon is made of cheese. Therefore, all lions are cats.” should not be

valid because the substance the moon is made of cannot be relevant to the biological

classification of mammals. This notion of relevance is of course a semantical one.

The most common proof-theoretical and therefore structural criterion for a logic to

be a relevance logic is the variable sharing principle. This means there needs to be

a propositional atom that appears in the antecedent as well as in the consequent of

an implication. Still, this property is only a necessary condition [Mar14]. There are

inferences that satisfy the variable sharing property but still fail to be valid in relevance

logics, for example (α∧¬α) ` (α∧ β).

7
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By requiring the variable sharing, Relevance Logicians invalidate the classical rule Ex

Falso Sequitur Quodlibet (EFQ). This rejection of the equivalence of contradictions is

what makes Relevance Logics paraconsistent (“beside the consistent”), meaning that

occasional inconsistencies do not entail triviality. Still, it is not necessarily the case that

a relevance logic permits true contradictions; this would make it dialethic [Ten05].

Accordingly, there are several systems of Relevance Logic but Tennant particularly

references to the Relevance Logic R developed by Anderson and Belnap in [AB75]
when making his argument for Core Logic as an advance regarding relevance in logic

[Ten17, p. 24f].

The system R is usually presented in a Hilbert-style axiom system (e.g., [Mar14]).

Axiom Name of the Axiom

α→ α (Identity)

(α∧ β)→ β (∧E)

(α∧ β)→ α (∧E)

α→ (α∨ β) (∨I)

β → (α∨ β) (∨I)

(α→ β)→ ((β → γ)→ (α→ γ)) (Suffixing)

α→ ((α→ β)→ β) (Assertion)

(α→ (α→ β))→ (α→ β) (Contraction)

((α→ β)∧ (α→ γ))→ (α→ (β ∧ γ)) (∧I)

((α∨ β)→ γ)↔ ((α→ γ)∧ (β → γ)) (∨E)

(α∧ (β ∨ γ))→ ((α∧ β)∨ (α∧ γ)) (Distribution)

(α→¬β)→ (β →¬α) (Contraposition)

¬¬α→ α (Double Negation Elimination)

Additionally, only two rules of inference are necessary.

8



1.2 Systems of Non-Classical Logic

ϕ ψ
(Adjunction)

ϕ ∧ψ and
ϕ ϕ→ψ

(Detachment)
ψ .

For the reason that all other logical systems in this work are presented by giving a list

of natural deduction rules, we will give such a representation of R below, which was

taken from [Ten05].

If we look at ∨E above or at the elimination rule for ∨ in the rule presentation below,

we can see how Disjunctive Syllogism fails in R. Without using the absurdity rule EFQ,

there is no option to infer an overall conclusion from only one disjunct if the other one

leads to absurdity. This is a genuine disadvantage of this system. In [Ten17, p. 115],
Tennant stresses the value of Disjunctive Syllogism for mathematics. In his point of

view, a core logic could not do without it. This is why he relaxed the ∨E rule in his

system to allow the logician to turn towards the other disjunct once the first led to

absurdity.

9
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Introduction Elimination

¬

� (i)
ϕ
···
⊥

(i)
¬ϕ

¬ϕ

···
ϕ

⊥

∧

∆
···
ϕ

∆
···
ψ

ϕ ∧ψ
ϕ ∧ψ

(i)
ϕ ,
� (i)
ψ

···
θ

θ

∨

···
ϕ

ϕ ∨ψ

···
ψ

ϕ ∨ψ ϕ ∨ψ

∆,
� (i)
ϕ
···
θ

∆,
� (i)
ψ
···
θ
(i)

θ

→

� (i)
ϕ
···
ψ

(i)
ϕ→ψ

ϕ→ψ

···
ϕ

� (i)
ψ
···
θ
(i)

θ

10



1.2 Systems of Non-Classical Logic

Distributivity
Classical

Reductio

ϕ ∧ (ψ∨ θ )
(ϕ ∧ψ)∨ (ϕ ∧ θ )

� (i)
¬ϕ
···
⊥

(i)
ϕ
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2 Core Logic

Core Logic (C) is a logical system developed by Neil Tennant over the previous four

decades. The first publication dealing with his notion of relevance and the transitivity

of the deducibility relation was [Ten78]. Subsequently, Tennant treated the suitability

of his Intuitionistic Relevance Logic IR for automated reasoning in Autologic [Ten92].
In a proceeding work, the system was renamed Core Logic C [Ten12].

One main feature of Core Logic is that it relevantizes Classical Logic in the same way

as it does Intuitionistic Logic. This is why Tennant named it Core Logic; because it fits

in the center of the most common logical systems being their relevant core.

Core Logic is the minimal inviolable core of logic without any part of which

one would not be able to establish the rationality of belief-revision. ([Ten17,

p. 48])

Relevantizing in Tennant’s notion is achieved by adjusting certain logical rules by gen-

eralizing them and getting rid of the absurdity rule. Furthermore, in the natural de-

duction setting all major premises for elimination (MPE) must stand proud, meaning

they cannot have any proof work above them. In the sequent calculus, which is avail-

able for Core Logic as well, one has to get rid of the structural rules Thinning and Cut.

These limitations also lead to a welcome isomorphism between sequent proofs and

natural deductions, which is not going to be elucidated further in the present paper.

Tennant’s maxim is to modify the definition of the deducibility relation rather than

redefining entailment as other relevance logicians suggest. This leads to a restriction

of the Deduction Theorem as will be explained in Subsection 2.1.1.

13



2 Core Logic

2.1 Relevance in Core Logic

Tennant stresses the importance of eschewing the so called First Lewis Paradoxes

(i.e., A,¬A` B and A,¬A` ¬B) to preserve relevance in reasoning [Ten05].

Especially in automated theorem proving it is crucial to avert curious inferences pro-

duced by applications of EFQ. It is a known problem with databases that inconsisten-

cies appear caused by mistakes or multiple sourcing. Tennant suggests to value the

inference of inconsistency as much as the inference of the sought-after conclusion.

The deducibility relation can be denoted as a sequent as developed by Gentzen in

[Gen35]. In the present work we will write the premises as comma separated con-

juncts ∆ followed by a colon and the single sentence conclusion ϕ.

The Compactness Theorem in its usual interpretation allows us to subset down on

the left side of the colon. This means that, if the question is whether a conclusion

follows from a (possibly infinite) set of premises, then we search for a derivation of

the conclusion from some finite subset of the set of premises. Tennant argues that, in

fact, it should be possible to subset down on both sides, that is allowing the conclusion

to be ϕ or ⊥, where ⊥ is to be read as an abbreviation for ;. If there is nothing else to

be had from a set of premises, then we should take the knowledge of its inconsistency

as epistemic gain [Ten05, p. 11].
Definition 2.1. ∆ : Γ is a subsequent of ∆′ : Γ ′ (abbreviated ∆ : Γ v ∆′ : Γ ′) if and

only if ∆ ⊆∆′ and Γ ⊆ Γ ′.

This assumption leads to redefining the decision problem for an input sequent ∆ : ϕ,

as being positively settled by a proof of any subsequent of ∆ : ϕ, explicitly including

Γ :⊥ with Γ ⊆∆ [Ten92, p. 189].

2.1.1 The Deduction Theorem

Tennant’s main cause of developing a new logical system can be recapitulated by the

following quote:

14



2.1 Relevance in Core Logic

The case is straightforward. We wish to avoid the positive and negative forms

of the First Lewis Paradox: ‘A,¬A, so B’; and ‘A,¬A so ¬B’. Nothing could be

simpler by way of motivation. Avoid those, and everything falls into place[...].
([Ten17, p.13])

And yet he does not aim at invalidating ¬α→ (α→ β) and ¬α→ (α→ ¬β), as An-

derson and Belnap did, but at reflecting upon the deducibility relation independently

from the object-linguistic conditional.

The Deduction Theorem as stated in Classical Logic is as follows:

∆,ϕ `C ψ⇔∆ `C ϕ→ψ.

Tennant accepts the material conditional as a connective and does not challenge its

truth table. It is valid in Core Logic to infer ϕ → ψ from the contradictoriness of

ϕ. Of course, there is a connection between premises and conclusion via ϕ. But at

the point that ϕ is detached from the conclusion, the inference forfeits relevance. For

example, ¬ϕ `C ϕ→ψ is a valid inference, yet ¬ϕ,ϕ 0C ψ. Consequently, to obtain

what Tennant calls relevance “at the level of the turnstile”(see, e.g., [Ten17, p. 15]), the

“⇐”-direction of the Deduction Theorem is not valid in Core Logic. If, on the other

hand, ϕ is not contradictory, we can be assured that either ϕ or some other member

of the set of premises is relevant to ψ and adding ϕ to the set of premises would not

violate the requirement of relevance. So, from this meta-perspective, the reverse De-

duction Theorem can be regarded admissible for non-contradictory antecedents only

[Ten17, p. 46].

2.1.2 Disjunctive Syllogism

As mentioned in 1.2.3, Anderson and Belnap banned Disjunctive Syllogism in their Rel-

evance Logic R. This, according to Tennant, makes R not appropriate for mathematical

reasoning. It is crucial for mathematicians to infer whatever one disjunct entails if the

other disjunct leads to absurdity. Yet Disjunctive Syllogism is one of the two properties

of logical systems that allow the First Lewis Paradox to be provable. Tennant states

this proof as follows:

15



2 Core Logic

Suppose A. Then by (∨I) we have A∨ B . Now suppose ¬A. By Disjunctive

Syllogism, we have B. Hence, by Unrestricted Transitivity of Deduction, we

have B following from A,¬A. ([Ten17, p. 264])

Or formal:

A : A∨ B ¬A, A∨ B : B
Cut

A,¬A : B

So, the situation is as follows: Disjunctive Syllogism and Unrestricted Transitivity of

Deducibility lead to unwanted results; therefore, we must give up Disjunctive Syllo-

gism or Unrestricted Transitivity of Deducibility. Now, Tennant argues, it would be

quite ironic to give up Disjunctive Syllogism, employing this same principle in ones

argument. So, we cannot give up Disjunctive Syllogism; hence, we must give up Un-

restricted Transitivity of Deducibility. [Ten17, p. 265]

2.1.3 Thinning and Cut

As follows from the argument made in Subsection 2.1.2, Core Logic does not contain

Cut as a rule within the system. Still, Tennant formulates a restricted epistemically

gainful version of Cut illustrating the restricted transitivity of Core-deducibility.

Γ `C ϕ ϕ,∆ `C ψ
Cut

Γ ,∆ `C ψ

Γ `C ϕ ϕ,∆ `C ψ
Restricted Cut

Σ `C ψ′
,

with Γ and ∆ sets of premises, ϕ and ψ single sentences and Σ ⊆ Γ ∪∆ and ψ′ ⊆ψ.

So, the lack of the rule of Cut in C is a consequence of the restriction of transitivity. Yet

it is possible to combine two proofs by a normalization process that restructures the

combined proof to meet the requirements of the Core normal form (see Definition 2.5).

16



2.1 Relevance in Core Logic

If the union of the premise sets Γ and ∆ is inconsistent, this will be revealed; the

conclusion of the normalized resulting proof will be ⊥ (see [Ten12]).

The other structural rule that C does not furnish is the Thinning Rule. In the Classical

Sequent Calculus, there is Thinning on the Right (TR) and Thinning on the Left (TL).

Γ `C ϕ
(TR)

Γ `C ϕ,ψ

Γ `C ϕ
(TL)

Γ ,ψ `C ϕ

Tennant allows in his sequent calculus for Core Logic the conclusion to be a singleton

at most which rules out Thinning on the Right. Thinning on the Left jeopardizes

the required guaranteed consistency of the set of premises. Hence, thinnings are not

admissible for Core Logic [Ten17, p. 45].

2.1.4 The Relevance Condition

The relevance condition introduced by Tennant in [Ten92] and reviewed in [Ten17]
is a variable sharing property that holds for Core Logic as well as for Classical Core

Logic.

The common variable sharing principle requires only one propositional variable to oc-

cur on both sides of the entailment relation (e.g., [Rea88, p. 121]). Tennant, on the

other hand, constructs a concept of relevance that requires all premises to be rele-

vant to the conclusion. This is achieved by defining chains of connected sentences

called ./-components. These are graphs of premises connected among themselves

with two sentences being connected if and only if they share a variable with opposite

signs. The relevance property requires at least one of the sentences from each of these

./-components to share a propositional variable of equal sign with the conclusion. Be-

low, we will give the formal definition of this relevance property (see [Ten17, p. 266

ff.]).

Definition 2.2. An atom is a propositional variable.

17



2 Core Logic

Remark: ⊥ is not an atom. ⊥ never occurs as a subformula; it is merely a punctuation

device in proofs, used in order to register absurdity.

Definition 2.3. We use the expression χ �+ θ to mean that the subsentence occur-

rence χ is a positive one within the sentence θ . Likewise, χ �− θ means that the

subsentence occurrence χ is a negative one within the sentence θ . The co-inductive

definition of these relations is as follows.

(1) Every sentence is a positive subsentence occurrence in itself

(2) All positive [resp., negative] subsentence occurrences in ϕ are negative [resp.,

positive] subsentence occurrences in ¬ϕ.

(3) All positive [resp., negative] subsentence occurrences in ϕ and ψ are positive

[resp., negative] subsentence occurrences in (ϕ ∧ψ).

(4) All positive [resp., negative] subsentence occurrences in ϕ and ψ are positive

[resp., negative] subsentence occurrences in (ϕ ∨ψ).

(5) All positive [resp., negative] subsentence occurrences in ψ are positive [resp.,

negative] subsentence occurrences in (ϕ→ψ).

(6) All positive [resp., negative] subsentence occurrences in ϕ are negative [resp.,

positive] subsentence occurrences in (ϕ→ψ).

(7) If χ �+ θ then this can be shown by clauses (1)–(6)

(8) If χ �− θ then this can be shown by clauses (1)–(6)

ϕ ≈
A
ψ≡d f the atom A has occurrences of the same parity in ϕ and inψ; that is, either

(A�+ ϕ and A�+ ψ) or (A�− ϕ and A�− ψ).

ϕ ≈ψ≡d f for some atom A we have ϕ ≈
A
ψ.

ϕ ≈∆ ≡d f for some ψ in ∆, we have ϕ ≈ψ; that is, some atom has the same parity

(positive or negative, at some occurrence) in ϕ as it has at some occurrence in some

member of ∆.

ϕ ./
A
ψ ≡d f the atom A has occurrences of opposite parities in ϕ and in ψ; that is,

either (A�+ ϕ and A�− ψ) or (A�− ϕ and A�+ ψ).
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2.1 Relevance in Core Logic

ϕ ./ ψ≡d f for some atom A we have ϕ ./
A
ψ.

±ϕ ≡d f ϕ ./ ψ.

A sequence ϕ1, ...,ϕn (n> 1) of pairwise distinct sentences is a ./-path connecting ϕ1

to ϕn in ∆≡d f for 1≤ i ≤ n, ϕi is in ∆, and for 1≤ i < n, ϕi ./ ϕi+1.

ϕ and ψ are ./-connected in ∆ (in symbols: ϕ./ψ) ≡d f if ϕ 6= ψ, then there is a

./-path connecting ϕ to ψ in ∆.

A set ∆ of formulas is ./-connected ≡d f for all ϕ, ψ in ∆, if ϕ 6=ψ, then ϕ./ψ.

A ./-component of ∆ is a non-empty, inclusion-maximal ./-connected subset of ∆

(where the ./-connections are established via members of ∆).

ϕ Ê∆≡d f for every ./-component Γ of ∆, ϕ ≈ Γ .

Remark: We cannot have ⊥Ê∆ since ⊥ is not a sentence.

Suppose ∆ 6= ;. Then

]∆≡d f

⎧⎪⎨⎪⎩
if ∆ is a singleton, say {δ}, then ±δ;

and

if ∆ is not a singleton, then ∆ is ./ -connected.

.

We shall say that a set ∆ of premises is relevantly connected both within itself and to

a conclusion ϕ (in symbols: R(∆,ϕ)) just in case exactly one of the following three

conditions is satisfied:

1. ∆ is non-empty, ϕ is ⊥, and ]∆.

2. ∆ is non-empty, ϕ is not ⊥, and ϕ Ê∆.

3. ∆ is empty, ϕ is not ⊥, and ±ϕ.

To sum up the aforementioned criteria for Tennant’s relevance property, we say that a

deduction ∆ ` ϕ is relevant if only if one of the following cases applies:

1. Ifϕ is⊥, either all sentences in∆ are ./-connected or∆ is a singleton containing

a positive and a negative occurrence of some atom A.
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2 Core Logic

2. If ∆ is not empty and ϕ is not ⊥, all ./-components Γ of ∆ contain an atom A

that has the same parity in Γ as it has in ϕ.

3. If ∆ is empty, ϕ is a singleton containing a positive and a negative occurrence

of some atom A.

Tennant claims his relevance property to be the “most exigent such property formulated

thus far” [Ten17, p. 279]. Because of the inclusion of R in C+, it also holds for R and

its subsystems.

A noteworthy fact is that Tennant limits the necessity for relevance to the deducibility

relation, allowing the truth table of the conditional to stay unaffected. This will be

apparent in the following definition of the Core rules in Section 2.2.

2.2 Core Rules

The below list gives an overview of the deduction rules of Core Logic in comparison

to the well known rules of the Minimal Calculus of Minimal Logic. As the reader will

notice, Tennant makes very little changes to obtain the Core rules from the Minimal

rules. It is worth mentioning that these changes do not compromise the established

meanings of the logical operators.

Definition 2.4. An elimination of the dominant connective of a sentence is in parallel-

ized form if and only if the elimination of the dominant connectives of its subsentences

are made in its subproofs.

This means that all elimination work that could be applied on subformulas of the Ma-

jor Premise for Elimination (MPE) is done in the elimination’s subproofs. The proof

is built bottom-up, starting with a formula ϕ, and—instead of just eliminating the

dominant connective to infer a subformula ψ—the respective subformula ψ is made

the assumption of a subproof. The elimination with MPE ϕ discharges ψ and con-

cludes with the conclusion of the elimination with MPEψ. An example is given below

contrasting the parallelized form with the common serial form.
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2.2 Core Rules

Parallel Serial

(A→ C)∧ B

(1)
A→ C

···
A

(2)
C
···
D
→E(2)

D
∧E(1)

D

(A→ C)∧ B
∧E

A→ C

···
A
→E

C
···
D

Apparently, in the left proof tree the inner elimination (→E) is placed in a subproof

above the outer elimination (∧E). Furthermore, the→E contains a subproof of D from

C representing additional proof steps applied on C concluding with D. This structure

forces the elimination of the dominant connective to be the bottom-most elimination

step. In the serial form, on the other hand, the elimination of the dominant connective

is the top-most elimination step as is depicted in the right proof tree.

Definition 2.5. We say a proof is in Core normal form if it meets the following require-

ments.

1. All major premises for elimination (MPE) stand proud, i.e., they are not the

conclusion of preceding proof work.

2. All eliminations are in parallelized form.

Note that the discharge rules distinguish between obligatory and permitted discharges.

A box in front of an inference line marks an obligatory discharge meaning that the

assumption actually has to be used for the inference. A diamond in contrast labels a

permitted (also referred to as vacuous) discharge, allowing the rule to be applied even

if the premise has not been used to reach the conclusion.

The admissibility of vacuous discharge makes Minimal (hence Intuitionistic and Clas-

sical) ¬I actually an application of EFQ. The same applies to Intuitionistic and Classical

→I in the case of a contradictory antecedent. This is why Tennant restricts those rules

as to be only applicable if the assumption actually has been used. Regarding the ∧E
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2 Core Logic

rule, the box means that at least one of the conjuncts must have been made an as-

sumption of the subproof.

The conclusion θ/⊥ of the Core rule ∨E is to be read as either θ or ⊥ while the overall

∨E concludes with ⊥ if and only if all of its subproofs end with ⊥.
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2.2 Core Rules

Minimal Logic Core Logic

(¬ I)

◊ (i)
ϕ
···
⊥

(i)
¬ϕ

� (i)
ϕ
···
⊥

(i)
¬ϕ

(¬ E) ¬ϕ

···
ϕ

⊥
¬ϕ

···
ϕ

⊥

(∧ I)

···
ϕ

···
ψ

ϕ ∧ψ

···
ϕ

···
ψ

ϕ ∧ψ

(∧ E)
ϕ ∧ψ

(i)
ϕ ,
� (i)
ψ

···
θ

θ

ϕ ∧ψ

(i)
ϕ ,
� (i)
ψ

···
θ

θ
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2 Core Logic

Minimal Logic Core Logic

(∨ I)

···
ϕ

ϕ ∨ψ

···
ψ

ϕ ∨ψ

···
ϕ

ϕ ∨ψ

···
ψ

ϕ ∨ψ

(∨ E)
ϕ ∨ψ

� (i)
ϕ
···
θ

� (i)
ψ
···
θ
(i)

θ

ϕ ∨ψ

� (i)
ϕ
···
θ/⊥

� (i)
ψ
···
θ/⊥

(i)
θ/⊥

(→ I)

◊ (i)
ϕ
···
ψ

(i)
ϕ→ψ

◊ (i)
ϕ
···
ψ

(i)
ϕ→ψ

� (i)
ϕ
···
⊥

(i)
ϕ→ψ

(→ E)
ϕ→ψ

···
ϕ

� (i)
ψ
···
θ
(i)

θ

ϕ→ψ

···
ϕ

� (i)
ψ
···
θ
(i)

θ
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2.3 Inclusion Between Logical Systems

2.3 Inclusion Between Logical Systems

The aforementioned systems can be separated by the theorems that they prove. Figure

2.1 gives an overview of the inclusions among those systems.

It is worth mentioning that the only theorem that separates Core Logic (resp. Classical

Core Logic) from Intuitionistic Logic (resp. Classical Logic), the system it relevantizes,

is the First Lewis Paradox.

C+ ∪ I= C

C+ I

R C M

R∩ I

α,¬α : β

: α∨¬α
¬¬α : α

¬α : α→ β
α∨ β ,¬α : β

β : α→ β

: α∨¬α
¬¬α : α

α,¬α : β

¬α : α→ β
α∨ β ,¬α : β

α,¬α : ¬β
β : α→ β

: α∨¬α
¬¬α : α

¬α : α→ β
α∨ β ,¬α : β

β : α→ β
α,¬α : β

Figure 2.1: Inclusions of logical systems described in this thesis
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2 Core Logic

2.4 Obtaining Core Proofs from Intuitionistic Proofs

An important quality of Core Logic is what Tennant calls the Extraction Theorem (2.6).

It states that a Core proof can be extracted from an Intuitionistic proof.

Remark: Core Logic is based on a different Completeness Theorem. The common

requirement for a proof system S to be complete is as follows:

∆ � ϕ⇒∆′ `S ϕ with finite ∆′ ⊆∆.

Tennant’s notion of completeness is the following:

∆ � ϕ ⇒ ∆′ `S ϕ
′ with finite ∆′ ⊆ ∆ and ϕ′ ⊆ ϕ. Where the conclusion ϕ is a

singleton and ϕ′ is either ϕ or ⊥ ([Ten17, p. 6 f.]).

Theorem 2.6. There is an algorithm E such that for any (normal) intuitionistic proof Π

of ∆ :ψ, E with input Π returns a Core proof of some subsequent of ∆ :ψ.

This means that any Intuitionistic proof ofψ from a set of premises∆ can be converted

into a Core proof of ψ or of ⊥ from some subset of ∆.

To obtain a Core proof from an Intuitionistic proof we assume the I-proof to be in Core

normal form (see Definition 2.5). This is the form in which Tennant introduces not

only the Core rules, but also the rules of the Minimal Calculus in [Ten92] and [Ten17].

There is another important feature of our formulation of the rules for M and

for IR [C]. Major premisses for elimination ‘stand proud’ in our proof trees;

they never stand as conclusions of any rules. ([Ten92, p. 41])

Now we extract the Core proof from the intuitionistic proof by scanning it for applica-

tions of the absurdity rule and find relevant deductions of the wanted conclusion or

of ⊥ from a subset of the used set of premises.

Proof. By induction on the proof complexity of the intuitionistic proof Π.

Base case: α : α is trivial.

Induction hypothesis: The Extraction Theorem holds for all proofs less complex than

Π.
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2.4 Obtaining Core Proofs from Intuitionistic Proofs

Induction step: The only rules that need to be examined are ∨E, ¬I and→I. All other

rules are the same in Core Logic as in Intuitionistic Logic. Applications of EFQ are cut

off and marked with ⊥. So, we have three cases to be considered depending on the

rule last applied in Π.

1. ∨E: The intuitionistic proof is of the following form.

α∨ β

� (i)
α
···
γ

� (i)
β
···
γ
(i)

γ

By induction hypothesis, the subproofs of γ from each disjunct can be converted

to Core proofs of γ or ⊥. So, the overall conclusion by Core rules is γ if at least

one of the Core subproofs leads to γ, or is ⊥ if both Core subproofs lead to ⊥.

2. ¬I: If the conclusion is ¬α and α has actually been discharged in the I-proof

we can infer ¬α in Core. Otherwise if absurdity was derived from the set of

premises with no use of α we infer ⊥.

3. →I: The intuitionistic proof tree is of the following form.

∆,
◊ (i)
α

···
β

(i)
α→ β

By induction hypothesis the subproof of β from ∆ ∪ {α} can be converted to a

corresponding Core proof of either β or ⊥ from some subset Γ of ∆∪ {α}.

a) If the conclusion of the Core subproof is β , by Core rules we infer α→ β .
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2 Core Logic

b) If the conclusion of the Core subproof is ⊥, by Core rules we infer α→ β
if α is in Γ (i.e., α has been used to get to the contradiction), or, if the

discharge in the I-proof was vacuous, we infer ⊥.

The extraction process can be done in a straightforward way by searching for applica-

tions of the absurdity rule, including applications of ¬I and→I with vacuous discharge.

The latter two involve checking if the discharge requirements for Core Logic are met,

which takes at most a search through all undischarged assumptions. This cannot ex-

ceed the length of the intuitionistic proof Π. Checking an application of ∨-elimination

takes at most a search through its minor premises. No more than one of these searches

has to be done for each step of Π. So the complexity of extraction is quadratic in the

length of Π. [Ten92, p. 189 f.]
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2.4 Obtaining Core Proofs from Intuitionistic Proofs

Algorithm 2.1: Extract Core proof from intuitionistic proof
Data: An intuitionistic proof in natural deduction tree representation
Result: The corresponding Core proof

1 post order search the whole tree
2 if curNode == ⊥ then
3 if curRule == ¬I then
4 // positive: (¬ x) 7→ x
5 if NOT (positive(curNode.parent) is discharged in this step) then
6 curNode.parent := ⊥;

7 if curRule ==→I then
8 // antecedent: (x → y) 7→ x
9 if NOT (antecedent(curNode.parent) is discharged in this step) then

10 curNode.parent := ⊥;

11 if curRule == ∨E then
12 /* check if at least one of the minor premises leads

to the conclusion; the major premise cannot be ⊥
because it has no proof work above it */

13 if At least two siblings of curNode != ⊥ then
14 continue;

15 curNode.parent := ⊥;

16 if curNode.parent == NIL then
17 // the root
18 continue;

19 else
20 // EFQ
21 curNode.parent := ⊥;

22 end;
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2 Core Logic

2.5 Basic Proof-Theoretic Properties of Core Logic

Lemma 2.7. If a propositional sentence ϕ is classically provable from a set of premises

Γ , then either ¬¬ϕ or ⊥ is Core deducible from ∆ with ∆ ⊆ Γ .

Proof. We know by Glivenko’s Theorem that for propositional logic Γ `C ϕ⇔ Γ `I ¬¬ϕ.

Now Lemma 2.7 is obvious by the Extraction Theorem 2.6.

Corollary 2.8. If Γ is a consistent set (i.e., ⊥ is not deducible from Γ ), then ¬¬ϕ is

deducible from Γ in Core Logic if and only if ϕ is deducible from Γ in Classical Logic.

Lemma 2.9. If (ϕ→ψ) is Core deducible from Γ , then either ψ or ⊥ is Core deducible

from Γ ∪ {ϕ}.

Proof. Trivial by cases of the Core rule→I.

Corollary 2.10. If ⊥ cannot be deduced from Γ ∪ {ϕ} (i.e., Γ ∪ {ϕ} is consistent) and

(ϕ→ψ) is Core deducible from Γ , then ψ is Core deducible from Γ ∪ {ϕ}.
Lemma 2.11. If θ is Core deducible from Γ ∪ {(ϕ ∨ψ)} and neither ϕ nor ψ are con-

tradictory, then θ is Core deducible from Γ ∪ {ϕ} and also from Γ ∪ {ψ}.

Proof. In Core Logic ∨-elimination allows one disjunct to entail absurdity to preserve

Disjunctive Syllogism without using EFQ. So we have three possible cases on the right

side of the following implication:

Γ ∪ {(ϕ ∨ψ)} `C C ⇒

1. Γ ∪ {ϕ} `C θand Γ ∪ {ψ} `C θ or

2. Γ ∪ {ϕ} `C θ and Γ ∪ {ψ} `C ⊥ or

3. Γ ∪ {ϕ} `C ⊥ and Γ ∪ {ψ} `C C .

So, if ⊥ cannot be deduced from either Γ ∪{ϕ} or from Γ ∪{ψ}, the first possibility is

necessarily the case.

Lemma 2.12. If θ is Core deducible from Γ ∪{ϕ} and from Γ ∪{ψ}, it is Core deducible

from Γ ∪ {(ϕ ∨ψ)}.
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Proof. Trivial by inspection of the ∨E rule of Core Logic.

Lemma 2.13. If Γ contains no formula containing ∨, then

Γ `C ϕ ∨ψ⇒ Γ `C ϕ or Γ `C ψ. (2.1)

Proof. By induction on the length of proof.

Base cases: ϕ `C ϕ ∨ψ and ψ `C ϕ ∨ψ. To infer ϕ or ψ all we have to do is cut off

the proof.

Induction Hypothesis: The Lemma 2.13 holds for all proofs less complex than the one

considered.

Induction Step: The rule applied can only be ∨I or one of the elimination rules ∨E, ∧E

or→E.

1. ∨I: ϕ or ψ need to be available as a premise. So to infer ϕ or ψ we need to cut

off the ∨I.

2. ∨E: In Core Logic all major premises for elimination stand proud and therefore

this particular MPE of our ∨E would have to be in Γ . But Γ does not contain any

occurrence of ∨. Contradiction.

3. ∧E: If the disjunction is the conclusion of an application of∧E it has to be inferred

directly from one of the conjuncts. This means that one of the conjuncts either

has ϕ ∨ψ as a subformula, which is assumed not to be the case, or leads to it

using ∨I in one of its subproofs on either ϕ or ψ. So, ϕ or ψ can be inferred by

substituting all occurrences of ϕ ∨ψ with the respective.

4. →E: If the disjunction is the conclusion of a →E, it has to be inferred directly

from the consequent of the implication. This means that it either has ϕ ∨ψ as

a subformula, which is assumed not to be the case, or leads to it using ∨I in one

of its subproofs on either ϕ or ψ. So, ϕ or ψ can be inferred by substituting all

occurrences of ϕ ∨ψ with the respective.
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In Section 2.4, we saw that if there is a proof of the sequent Γ : ϕ in Intuitionistic Logic,

then there is a corresponding Core proof of some subsequent of it. Tennant claims that

the decision problem of Core Logic is not more complex than the one of Intuitionistic

Logic. He also states that Classical Core Logic is not more complex than Classical Logic

[Ten92]. We will give a reduction from Core Logic to Intuitionistic Logic in Section 3.1

that can analogously be applied as a reduction from Classical Core to Classical Logic.

In [Göd33] Gödel gives a translation from Intuitionistic Propositional Logic into the

Modal Logic S4. The equivalence of the two systems was shown in [MT48] by McKin-

sey and Tarski. Ladner proved the decision problem for the modal logic S4 to be in

PSPACE [Lad77]. PSPACE-hardness of Intuitionistic Propositional Logic was shown

by Richard Statman in [Sta79]. In the Section 3.2, we will adapt the latter proof to

Core Logic and reproduce it in a slightly more straightforward way.

3.1 Reduction to Propositional Intuitionistic Logic

For the reduction it is crucial to bear in mind that the decision problem for Core Logic

is defined as follows:

Definition 3.1. The decision problem of Core Logic: Given a set of premises Γ and a

single sentence ϕ. Is there a Core proof of ∆ : ϕ or of ∆ :⊥ with ∆ ⊆ Γ?
Theorem 3.2. The decision problem of Propositional Core Logic is in PSPACE.

Proof. By giving a polynomial time algorithm with oracle access to the decision proplem

of Intuitionistic Propositional Logic. The input is a sequent of the form Γ : ϕ. If the
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3 Complexity of Core Logic

answer to the oracle-question Γ : ⊥? is positive, then the problem, too, is positively

settled. Otherwise, the output is the answer to the question Γ : ϕ?.

3.2 Reduction from TQBF

To prove PSPACE-hardness we show a reduction from the PSPACE-complete problem

TQBF (see [Sto76]) to Propositional Core Logic. TQBF refers to the problem of eval-

uation of quantified Boolean formulas (QBF). Let A be a QBF in prenex normal form

A= Qn xn...Q1 x1B0 with Q i ∈ {∃,∀} and B0 quantifier-free. We will construct a propo-

sitional sentence A∗ that can be derived from A in polynomial time and is provable in

Propositional Intuitionistic Logic (I) if and only if A is true.

We define formulas Bk+1 for k = 0...n− 1 as Bk+1 =Qk+1 xk+1Bk.

The sentence A+, which is defined below, will be an intermediate step that translates

the Boolean quantifiers into Core disjunctions. Its size is exponential in the length of

A. Later on, we will build a sentence A∗ in polynomial time from A and show that it is

Core provable if and only if A+ is Core provable. Define A+ as follows:

A+ = B+n
B+0 = ¬¬B0

B+k+1 = (xk+1 ∨¬xk+1)→ B+k if Qk+1 = ∀

and

Bk+1 = (xk+1→ B+k )∨ (¬xk+1→ B+k ) if Qk+1 = ∃.

For every xk bound by the ∃-Quantifier Qk = ∃ j there is a function f j returning an eval-

uation of xk that verifies A depending on the evaluation of all ∀-quantified variables

that have xk within their scope (see, e.g., [Haz02]). So we have f j(In, ..., Ik+1) = Ik

where Ii ∈ {0, 1} is an evaluation of x i.

Lemma 3.3. A QBF A, in prenex normal form as described above, is true if and only if

there is a verifying tree T, with all its nodes representing satisfying assignments of A, that

is of the following form:
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3.2 Reduction from TQBF

1. The root is ;.

2. All leaves Θ satisfy B0.

3. If Θ is a node with height k in T and Qk = ∃ j, then its child node is (Θ, f j(Θ)).

4. If Θ is a node with height k in T and Qk = ∀, then its child nodes are (Θ, 0) and

(Θ, 1).

Proof. “⇒”: By induction on the height k.

Base case: A is true, hence the root ; is a satisfying assignment.

Induction hypothesis: All nodes with height > k are satisfying assignments of A.

Induction step: By induction hypothesis, Θ is a satisfying assignment. We have two

cases.

1. If Qk = ∃ j, then f j(Θ) returns an assignment for the quantified variable xk that

satisfies A. So (Θ, f j(Θ)) is a satisfying assignment for A.

2. If Qk = ∀, then both assignments 0 and 1 for the quantified variable xk satisfy A.

So (Θ, 0) and (Θ, 1) are satisfying assignments for A.

Accordingly, all leaves (thus complete assignments), satisfy A, so they satisfy B0.

“⇐”: By induction on the height k.

Base case: If there is a verifying tree of the above form, then all leaves satisfy B0.

Induction hypothesis: All nodes Θk of height ≤ k are satisfying assignments for Bk.

Induction step: By induction hypothesis, Θk is a satisfying assignment for Bk. We have

two cases.

1. If Qk+1 = ∃ j, then Θk is a satisfying assignment for Bk, so Bk+1 is true.

2. If Qk+1 = ∀, then, by construction, for each node Θk+1 we have two nodes

(Θk+1, 0) and (Θk+1, 1) both satisfying Bk, so Bk+1 is true.

Accordingly, Bn (i.e., A) is true.

Lemma 3.4. The QBF sentence A is true if and only if A+ is Core provable.

35



3 Complexity of Core Logic

In the given proof the following results are used. The Equations 3.1 to 3.4 were proved

in Section 2.5 whereas Equation 3.5 represents an application of ∨I in Core Logic.

If Γ 0C ⊥, then Γ `C ϕ⇔ Γ `C ¬¬ϕ. (3.1)

If Γ ∪ {ϕ} 0C ⊥, then Γ `C ϕ→ψ⇔ Γ ∪ {ϕ} `C ψ (3.2)

with the “⇐”-direction of Equation 3.2 being an application of the Core rule→I.

If Γ ∪ {ϕ} 0C ⊥ and Γ ∪ {ψ} 0C ⊥, then

Γ ∪ {ϕ ∨ψ} `C θ⇔ Γ ∪ {ϕ} `C θ and Γ ∪ {ψ} `C θ . (3.3)

If Γ does not contain ∨ , then Γ `C ϕ ∨ψ⇒ Γ `C ϕ or Γ `C ψ. (3.4)

Γ `C ϕ or Γ `C ψ⇒ Γ `C ϕ ∨ψ. (3.5)

Proof. “⇒”: Let A= Qn xn...Q1 x1B0 be true. Then, by Lemma 3.3, there is a verifying

tree T1. The nodes are tuples (bn, ..., bk) with bi ∈ {0,1} encoding satisfying assign-

ments for xn, ..., xk. Each child node extends the assignment of its parent node by one

bit.

We will write li for the literals x i and ¬x i. Let li be x i if the ith bit of Θ is 1 and let li

be ¬x i if the ith bit of Θ is 0.

Claim. If Θ is a node with height k in T1, then there is a proof of {ln, ..., lk+1} `C B+k .

Proof of claim. By induction on the structure of T1.

Base: All leaves are total assignments of B0 that make B0 true. Hence, B0 is a classical

consequence of {ln, ..., l1}. Every satisfiable set of formulas is consistent. Therefore,

by Equation 3.1 {ln, ..., l1} `C ¬¬B0 with ¬¬B0 = B+0 .

Induction hypothesis: The above claim holds for all children of the considered node.

Induction step: Consider a node Θ of height k.

1. If Qk = ∃ j, node Θ has only one child (Θ, f j(Θ)).
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IH
⇒ {ln, ..., lk} `C B+k−1

3.2
⇒ {ln, ..., lk+1} `C lk→ B+k−1

3.5
⇒ {ln, ..., lk+1} `C (xk→ B+k−1)∨ (¬xk→ B+k−1)

with (xk→ B+k−1)∨ (¬xk→ B+k−1) = B+k if Qk = ∃ by construction of A+

⇒ {ln, ..., lk+1} `C B+k

2. If Qk = ∀, node Θ has two children (Θ, 0) and (Θ, 1) .

IH
⇒ {ln, ..., xk} `C B+k−1 and {ln, ...,¬xk} `C B+k−1

3.3
⇒ {ln, ..., lk+1} ∪ {(xk ∨¬xk)} `C B+k−1

3.2
⇒ {ln, ..., lk+1} `C (xk ∨¬xk)→ B+k−1

With (xk ∨¬xk)→ B+k−1 = B+k if Qk = ∀ by construction of A+

⇒ {ln, ..., lk+1} `C B+k

The root of the tree is ; and its height is n therefore `C B+n , hence `C A+, is true.

“⇐”: Let `C A+ be true. We construct a tree T2 from A+ and show that it is a verifying

tree for A. This will be done by applying the Equations (3.2), (3.3) and (3.5) on

{ln, ..., lk+1} `C B+k to infer {ln, ..., lk+1, lk} `C B+k−1 for k = n...0 and take the set of

premises of the resulting sequents as our child nodes. Neither xk nor ¬xk occurs in

{ln, ..., lk+1}. Therefore, {ln, ..., lk+1} ∪ xk and {ln, ..., lk+1} ∪ xk are consistent sets and

the equations hold.

Construct T2 as follows:

We have Ii = 1 if li = x i and Ii = 0 if li = ¬x i.

1. The root is ;.

2. If (In, ..., Ik+1) is a node in T2, we have two cases:
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a) If Qk = ∀, then B+k = (xk ∨¬xk)→ B+k−1. We can infer

{ln, ..., lk+1} `C (xk ∨¬xk)→ B+k−1

3.2
⇒ {ln, ..., lk+1} ∪ {(xk ∨¬xk)} `C B+k−1

3.3
⇒ {ln, ..., lk+1, xk} `C B+k−1 and {ln, ..., lk+1,¬xk} `C B+k−1

and take (In, ..., Ik+1, 0) and (In, ..., Ik+1, 1) as child nodes of (In, ..., Ik+1).

b) If Qk = ∃, we have {ln, ..., lk+1} `C (xk → B+k−1) ∨ (¬xk → B+k−1). By Equa-

tion (3.4), there must be a proof from {ln, ..., lk+1} of one of the disjuncts.

So if {ln, ..., lk+1} `C (lk→ B+k−1) is true we infer

3.2
⇒ {ln, ..., lk+1, lk} `C B+k−1

and take (In, ..., Ik+1, Ik) as single child node of (In, ..., Ik+1).

Claim. If (In, ..., Ik) occurs in T2, then it is a satisfying assignment for Bk.

Proof of claim. By induction on k.

Base: (In, ..., I1) is a leaf of T2 hence {ln, ..., l1} `C B+0 . With B+0 = ¬¬B0 Equation (3.1)

gives us {ln, ..., l1} `C B0. So the assignment (In, ..., I1) satisfies A.

Induction hypothesis: The above claim holds for all Bi with 0≤ i ≤ k.

Induction step: There are two cases

1. If Qk+1 = ∃: (In, ..., Ik+2) appears in T2, then it has a child (In, ..., Ik+1). That,

by induction hypothesis, is a satisfying assignment for Bk. Hence ∃xk+1Bk with

assignment (In, ..., Ik+2). Thus, (In, ..., Ik+2) satisfies Bk+1.

2. If Qk+1 = ∀: (In, ..., Ik+2) appears in T2, then it has two children (In, ..., Ik+2, 0)
and (In, ..., Ik+2, 1). These, by induction hypothesis, are both satisfying assign-

ments for Bk. Hence ∀xk+1Bk with assignment (In, ..., Ik+2). Thus, (In, ..., Ik+2)
satisfies Bk+1.

Hence, all nodes (In, ..., Ik+1) are satisfying assignments for Bk.
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3.2 Reduction from TQBF

In particular, ; satisfies Bn. So T2 is a verifying tree for A as in Lemma 3.3, hence by

Lemma 3.3 A is true.

Because A+ cannot be obtained from A in polynomial time, we build A∗ from A as

follows:

Define new variables y0, ...yn.

A∗ = B∗0→ (B
∗
1→ (...(B

∗
n→ yn))),

B∗0 = ¬¬B0↔ y0,

B∗k+1 = ((xk+1 ∨¬xk+1)→ yk)↔ yk+1 if Qk+1 = ∀

and

B∗k+1 = ((xk+1→ yk)∨ (¬xk+1→ yk))↔ yk+1 if Qk+1 = ∃

Lemma 3.5. A+ is provable in C if and only if A∗ is provable in C.

Proof. Suppose `C A+ is true.

Claim. {B∗0, ..., B∗n} `C yk↔ B+k

Proof of claim. By induction on k.

Base: It is easy to see that B∗0 = B+0 ↔ y0. Therefore, {B∗0, ..., B∗n} `C y0↔ B+0 .

Induction hypothesis: The above claim holds for all yi ↔ B+i with i ≤ k.

Induction step: Assume {B∗0, ..., B∗n}. We have the two following cases:

1. If Qk = ∃, then B∗k+1 = ((xk+1→ yk)∨ (¬xk+1→ yk))

IH
⇒ B∗k+1 = (

B+k+1⏞  ⏟  
(xk+1→ B+k )∨ (¬xk+1→ B+k ))↔ yk+1

⇒ B∗k+1 = B+k+1↔ yk+1.
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3 Complexity of Core Logic

2. If Qk = ∀, then B∗k+1 = ((xk+1 ∨¬xk+1)→ yk)↔ yk+1

IH
⇒ B∗k+1 = (

B+k+1⏞  ⏟  
(xk+1 ∨¬xk+1)→ B+k )↔ yk+1

⇒ B∗k+1 = B+k+1↔ yk+1.

Thus, {B∗0, ..., B∗n} `C yn ↔ B+n . B+n is provable, so {B∗0, ..., B∗n} `C yn. Hence, by Equa-

tion (3.2) `C A∗.

Now suppose A∗ is Core provable. Then, there is a natural deduction proof of yn from

{B∗0, ..., B∗n}. Replace any occurrence of yk for 0≤ k ≤ n with B+k . The result is a proof

of B+n from {(B+0 ↔ B+0 ), ..., (B+n ↔ B+n )}. Since A+ = B+n we have a proof of A+ from

{(B+0 ↔ B+0 ), ..., (B+n ↔ B+n )}, which is obviously Core provable from ;. So, `C A+ is

true.

Theorem 3.6. Core Logic is PSPACE-hard.

Proof. A∗ is a polynomial time reduction from TQBF to Propositional Core Logic. TQBF

is PSPACE-complete, so Propositional Core Logic is PSPACE-hard.

Theorem 3.7. Core Logic is PSPACE-complete.

Proof. Core Logic is in PSPACE by Theorem 3.2 and PSPACE-hard by Theorem 3.6.

Therefore, it is PSPACE-complete.
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4 Core Logic in Automated Reasoning

If scientists aim to use machines to help them reason formally, it seems obvious that

proofs that make use of EFQ in an uncontrolled manner will not necessarily end up

with satisfying results. This leads to the realization that relevance in reasoning is not

only a philosophical matter but that it is of practical value in automated reasoning.

One benefit of Core Logic, compared to Intuitionistic Logic, is that it focuses on mak-

ing proof finding workable for machines that will not distinguish between reasonable,

hence acceptable, and arbitrary, hence not acceptable, situations to apply EFQ. One

example of such a reasonable EFQ application (in the Intuitionistic Calculus) is Dis-

junctive Syllogism. Intuitionistic Logic requires to infer the wanted conclusion from

the absurdity of one disjunct to continue with the other one. Of course this is some-

thing a human reasoner would not notice for they would know why they made use of

EFQ; yet for a machine it makes no difference. Core Logic allows reasoners not to pay

the absurd case any further attention by simply turning to the consistent case; still,

they will get to the same conclusion.

Core Logic does not change the relation of consequence. If there is a proofΠ of⊥ from

a set of premises Γ , the answer to the question whether some sentence ϕ follows from

Γ is positive; even in Core Logic. There simply is no concealment of the manner how

this answer is reached. In other words: The automated proof finder based on Core

rules would return the proof of Γ : ⊥ and the user, a human logician, could feel free

to add a step of EFQ to infer ϕ. This makes the Core result at least just as expressive

as any result a proof finder based on the Intuitionistic Calculus would output. It is

conceivably even better because logicians know about the irrelevance; they added it

all by themselves. As a matter of fact, all Tennant has done, albeit in a thorough way, is

to restrict how proofs are constructed properly to eschew hidden fallacies of relevance
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4 Core Logic in Automated Reasoning

within them. In that way, an automated, hence strictly structural, proof finder is forced

to stay on topic. This should reassure any hypothetical user of automated proof search.

In Section 2.4, we saw that it is possible to find a Core proof for an arbitrary Intuition-

istic proof. So, Tennant managed to reformulate the rules of the established calculi in

a way that the rule of EFQ is not needed for the completeness of the deduction system.

Even ϕ,¬ϕ �ψ is not rejected by this claim because it has a subsequent ϕ,¬ϕ `C ⊥
that is provable in Core Logic.

Minimal Logic in Automated Reasoning As mentioned in Subsection 1.2.2, Min-

imal Logic does not make use of EFQ and its propositional fragment is in PSPACE,

as is Propositional Intuitionistic Logic. Still, if the logical system that a proof search

algorithm executes is supposed to uncover inconsistencies to eschew irrelevances, Min-

imal Logic cannot be the system of choice considering automated proof search. The

reason is the lack of restriction regarding the discharge rules, which involves the pos-

sibility to infer an arbitrary negation from a contradiction. There is no benefit com-

pared with other logical systems that make use of EFQ regarding the irrelevance that

could be created. Also, in contrast to Core Logic, Minimal Logic does not proof Dis-

junctive Syllogism, which is a well accepted logical principle often used in mathemat-

ical reasoning.

Relevance Logic in Automated Reasoning As we have seen, relevance in compu-

tational reasoning can be valuable to get adequate results. The Relevance Logic R

approaches this issue by relevantizing the conditional. This changes the well accepted

truth table of this connective and requires new semantics to go with it. Core Logic, on

the other hand, offers a propositional calculus that does not change the meanings of

the connectives but restricts the deducibility relation.

The Core logician relevantizes, however, at the ‘level of the turnstile’, and not

by dramatically altering the logical behavior of the object language condi-

tional→. ([Ten17, p. 263])

This is the reason why Propositional Core Logic is decidable. All intuitionistic the-

orems are Core theorems and vice versa [Ten17, p. 263]. In contrast, Propositional
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Relevance Logic as formulated by Anderson and Belnap has a decision problem that is

not decidable (see [Urq84]) and its decidable fragment has a decision problem that is

at best ESPACE-hard (see [Urq90]), with ESPACE being the class of decision problems

that are solvable by a deterministic Turing machine in SPACE(2O(n)). So R cannot be

of any practical importance in automated reasoning.
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5 Conclusion

Core Logic is not a significantly different logical system. It is a slight modification of

the established system Minimal Logic. Core Logic (resp. Classical Core Logic) enables

Intuitionists (resp. Classicists) to infer—from a consistent set of premises—anything

that is deducible in the respective non-relevant system. The transitivity of deducibility

is ensured for consistent combinations of sets of premises, whereas if the set of com-

bined premises allows the derivation of ⊥, the ⊥ will mark the preceding deduction

as a dead end. No truth lies in it and its persuasion would be fruitless. This seems rea-

sonable regarding the way a human mind would probably revise the assumptions that

were made in the first place, if they prove inconsistent, instead of inferring whatever

one pleases and continuing with the proof.

Tennant gives a set of inference rules that do not change the generally accepted mean-

ings of logical operators but still adjust the deducibility relation. He forces relevance

by restricting the discharge rules and relaxing the rules of ∨E and→I. The latter modi-

fications are needed to eschew the necessity of EFQ. His efforts lead to a relevance

property as described in Section 2.1.

Consequently, the decision problem for Core Logic has been defined differently than

for Intuitionistic or Classical Logic. Core logicians do not search for a proof of some

given sentence ϕ but for a proof of some subset of {ϕ} to preserve relevance and

become aware of any inconsistency in their assumptions. As discussed in Section 4,

this does not affect the relation of semantical consequence.

In the Chapter 3, we saw that the theorem proving problem for Core Logic is not more

complex than the theorem proving problem for Intuitionistic Logic. Moreover, the

fact that a proof search could be aborted once a deduction of absurdity is encountered

seems quite reassuring that proof search algorithms could actually be faster in practice.
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5 Conclusion

Our main result is the affirmation of PSPACE-completeness for Core Logic. We saw

how Statman’s PSPACE-hardness proof for Propositional Intuitionistic Logic applies

to Core Logic. So, we conclude that the computational complexity is not affected for

the worse but unfortunately, neither for the better by relevantizing Intuitionistic Logic

in Tennant’s notion.

The main achievement of Tennant can be summarized as defining rules that output just

as expressive results as the established ones without making use of EFQ and still not

increasing the computational complexity. Regarding automated proof finding, Core

Logic could be a practicable possibility to implement paraconsistency in complex sys-

tems that are likely to produce inconsistencies. It is practicable because of the moder-

ate computational complexity, compared to other relevance logics, in the propositional

case.

In a subsequent work, an examination of the actual practicability of (Classical) Core

Logic could confirm Tennant’s hope of even faster proof finding than with present proof

finders [Ten92, p. 8]. Since Artificial Intelligence techniques make use of automated

theorem proving, it would be of great interest for computer scientists to inspect the

applicability of Core Logic for these fields. This should result in determining what

impact Core Logic could actually make in contemporary and future technologies.
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