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1 Introduction

Modal logic is a popular way to describe and check various properties of a system in
example like a integrated circuit. The mostly used modal logic, for this purpose, is
the computational tree logic (CTL). But complex systems often have dependencies
between their properties/variables and to express these dependencies is very difficult in
CTL. To model these dependence between properties, in first-order logic, the concept of
functional dependence was introduced by Väänänen in [Vää07]. Functional dependence
means that a property pn depends on p1, . . . , pn−1, if a function f exists which defines
pn by f(p1, . . . , pn−1), this is denoted by dep(p1, . . . , pn−1; pn).
To decide if a property depends on other properties we need the concept of teams, because
each member of a team has its own property values. A property pn only depends on
properties p1, . . . , pn−1 relative to a team T , if and only if pn = f(p1, . . . , pn holds on
every team member. We can interpret a team as states or points of time of our system. In
the following example we a have system with four properties p1, . . . , p4 and we measure
the values of these properties to three different points of time.

Time p1 p2 p3 p4

0 0 1 0 0
1 0 0 1 1
3 1 1 0 0

Table 1.1: Snapshot’s of a system with four properties

In this example we easily can see that the property p3 only depends on the property p2

or p4, but property p1 has no effect to p3.
Modal dependence logic (MDL) integrates these concepts of dependence into modal logic
and was introduced by Väänänen in [Vää08]. In modal dependence logic a team is a set
of worlds of a Kripke model, and property values are the labelings of those worlds.
In this master thesis we will study an extension of MDL the modal team logic (MTL).In
MDL classic semantical negation isn’t allowed, this causes that we cannot express that
a dependence of properties doesn’t hold, but in MTL this operation is allowed.
In [EL11] Ebbing and Lohmann study the model checking problem of modal dependence
logic. The main result is, that model checking in modal dependence logic is NP-complete.
In this thesis we will also study the model checking problem of modal team logic to com-
pare the results and look at how the classical syntactical negation effects the complexity.
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2 Preliminaries

Before we classify the complexity of the MTL model checking problem, we will define
modal team logic analogous to modal logic ([BdRV01]) with the concept of dependence
and the classic syntactical negation. Furthermore we define the polynomial hierarchy so
that we can classify the MTL model checking Problem above of NP.

2.1 Modal Team Logic

2.1.1 Syntax

Let Var be a set of atomic propositions and p ∈ Var, then the set of MTL formulas is
defined by the following grammar:

ϕ =
def
> | ⊥ | p | (p) | dep(p1, . . . pn−1; pn) | ¬dep(p1, . . . pn−1; pn) |

θ1 ∧ θ2 | θ1 6 θ2 | θ1 ∨ θ2 | ∼θ | �θ | ♦θ

Definition 2.1.1 (Negation depth).
The negation depth deg∼(θ) is inductively defined as:

deg∼(p) =
def

deg∼(p) =
def

0 , p ∈ Var

deg∼(θ1 ∗ θ2) =
def

max(deg∼(θ1),deg∼(θ2)) , ∗ ∈ {∧,6,∨}

deg∼(Λθ) =
def

deg∼(θ) ,Λ ∈ {�,♦}

deg∼(∼θ) =
def

1 + deg∼(θ)

In some cases, we denote the allowed negation depth k of an MTL Logic, with the
operator ∼k.

2.1.2 Semantics

In modal logic the validation of a formula is checked in a world of a Kripke model.
Validation on MTL formulas is defined similar, but MTL extends the validation in a
world with the concept of teams. A specific MTL formula is checked in a set of worlds
on a Kripke model.
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2 Preliminaries

Definition 2.1.2 (Kripke model).
A Kripke model is a tuple M = (W,R, π) where W is a non-empty set of worlds, π a
labeling function on those worlds (π : W 7→ P(Var)) and R a binary relation between
worlds.

Definition 2.1.3 (Team).
A team T is a subset of worlds W of a Kripke model M = (W,R, π).

For any team T of a Kripke model M = (W,R, π) the set of successor worlds is defined
as follows:

R(T ) = {w ∈W | ∃w′ ∈ T, s.t. w′Rw}

Now the set of successor teams is defined as follows:

〈T 〉R = {T ′ | T ′ ⊆ R(T ) and ∀w ∈ T, there is w′ ∈ T ′ with (w,w′) ∈ R}

Definition 2.1.4 (Truth evaluation).
The truth of a MTL formula on a team T and a Kripke model M = (W,R, π), denoted
as M, T |= ϕ, is defined as follows:

M, T |= > always holds,
M, T |= ⊥ iff T = ∅,
M, T |= p iff p ∈ π(w) for all w ∈ T ,
M, T |= p iff p 6∈ π(w) for all w ∈ T ,
M, T |= dep(p1, . . . pn−1; pn) iff for all w1, w2 ∈ T with

π(w1) ∩ {p1, . . . , pn−1} = π(w2) ∩ {p1, . . . , pn−1} :
pn ∈ π(w1) iff pn ∈ π(w2),

M, T |= ¬dep(p1, . . . pn−1; pn) iff T = ∅,
M, T |= ∼θ iff M, T 6|= θ for T 6= ∅,
M, T |= θ1 ∧ θ2 iff M, T |= θ1 and M, T |= θ2,
M, T |= θ1 6 θ2 iff M, T |= θ1 or M, T |= θ2,
M, T |= θ1 ∨ θ2 iff there exists sets T1, T2 with T = T1 ∪ T2, s.t.

M, T |= θ1 and M, T |= θ1,
M, T |= ♦θ iff there exists a set T ′ ∈ 〈T 〉, s.t.

M, T ′ |= θ,
M, T |= �θ iff M, {w′|∃w ∈ T with (w,w′) ∈ R} |= θ
M, ∅ |= θ always holds.

Definition 2.1.5 (Negation normal form).
Let ψ be a propositional logic formula. Then ψ is in negation normal form, if negation
only occurs at atomic propositions.

Corollary 2.1.6.
Every propositional logic formula ψ can be transformed into a formula ψ′ which is in
negation normal form.
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2.2 Model Checking

2.2 Model Checking

Definition 2.2.1 (Model-Checking).
Given a Kripke model M = (W,R, π) and a MTL formula ψ. Then the set of all
satisfying initial teams is defined as:

Mα = {T ∈P(W ) | M, T |= ψ}.

Model checking is now defined as the question if a team T over W is in the model checking
set of M and ψ.

Example 2.2.2 (Model-Checking). To illustrate model checking in modal team logic
we want to create a Kripke model about the situation how rainbows can occur. This is
done by the Kripke model M which is shown in figure 2.1.

1

sun
¬rain
¬rainbow
¬sprinkler

2

sun
¬rain
¬rainbow
¬sprinkler

3

sun
rain
rainbow
¬sprinkler

4

sun
¬rain

rainbow
sprinkler

Figure 2.1: Kripke model for the rainbow example

Now if we check the following formula in world 1 on the Kripke model M, it holds that
it always holds that the rainbow only depends on the sun and if its raining.

M, {1} |= �dep(sun, rain; rainbow)

But if we check the formula on the Team {1, 3} we see that this isn’t always the case,
because in world 4 a rainbow occurs, because the sprinkler is active instead of the rain.

M, {1, 3} 6|= �dep(sun, rain; rainbow)

We can describe this, as that we can find a successor team of {1,3} where the dependence
doesn’t hold.

M, {1, 3} |= ♦∼dep(sun, rain; rainbow)

This is possible, because the dependence doesn’t hold on the successor team {2, 4}.
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2 Preliminaries

2.3 Modal Dependence Logic

Definition 2.3.1 (Modal dependence Logic MDL).
Modal dependence logic is similarly defined as modal team logic, but the semantical nega-
tion operator ∼ isn’t in the operator set of MDL.

Definition 2.3.2 (Modal intuitionistic dependence Logic MIDL).
Modal intuitionistic dependence Logic is an extension of MDL . MIDL extends MDL by
the intuitionistic implication operator →.
Let ϕ = ϕ1 → ϕ2 be a MIDL implication formula, then ϕ is valid on the Kripke model
M and the team T , if and only if for all subsets T ′ of T the following holds:

M, T ′ 6|= ϕ1 or M, T ′ |= ϕ2

2.4 Polynomial Hierarchy

Let k ∈ N. Then the classes of the polynomial hierarchy are defined as:

Σp
0 = Πp

0 = ∆p
0 =
def

P

Σp
k+1 =

def
NPΣp

k

Πp
k+1 =

def
{A | A ∈ Σp

k+1}

∆p
k+1 =

def
PΣp

k

PH =
def

⋃
k≥0

Σp
k ∪Πp

k ∪∆p
k

Furthermore we can restrict the number of oracle questions which a turing machine can
ask. This is denoted by adding [f(n)] to the oracle’s class. For example PNP [1] is a
polynomial time turing machine, which can ask exactly one oracle question to a NP
turing machine.

From these definitions we can easily derive some inclusion relations between these
classes. Figure 2.2 illustrates these inclusion relations.

Σp
k ∪Πp

k ⊆ ∆p
k+1 ⊆ Σp

k+1 ∪Πp
k+1

Problem (Quantified Boolean formula (QBF))
The quantified Boolean formulas are inductively defined as follows:

IB: 0, 1, x ∈ Var are QBF formulas.

IS: • ϕ ∈ QBF⇒ ¬ϕ ∈ QBF

• ϕ1, ϕ2 ∈ QBF⇒ (ϕ1 ∧ ϕ2) and (ϕ1 ∨ ϕ2) ∈ QBF
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2.4 Polynomial Hierarchy

• ϕ ∈ QBF, x ∈ Var⇒ ∃xϕ and ∀xϕ ∈ QBF

Theorem 2.4.1 (([Sto77])).
QBF is PSPACE-complete under ≤pm reductions.

Definition 2.4.2 (QBFk).
Let k ≥ 1, then QBFkis defined as:

QBFk =
def
{ψ | ψ is fully quantified and formed like

∃x11∃x12 . . . ∃x1i1∀x21∀x22 . . . ∀x2i2 . . .axk1axk2 . . .axkikψ
′

where ψ′ is a propositional logic formula and ψ ≡ 1 holds.}

Theorem 2.4.3 (([Wra77])).
QBFkis Σp

k-complete under ≤pm reductions.

P = Σp
0 = Πp

0 = ∆p
0

Σp
1 = NP coNP= Πp

1

PNP [1]

∆P
1

Σp
2 Πp

2

∆p
2

PH

PSPACE

Figure 2.2: Polynomial hierarchy
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3 Properties of MTL

In this chapter we study how the presence of the semantical negation ”∼” influences the
expressivity of MTL with respect to MDL. Furthermore with the concept of validation
on teams, the question arises how the teams are closed under special closure properties.

3.1 Operators

MTL is more expressive compared to modal dependence logic (MDL), because with the
∼ operator universal quantification can be expressed. In the following some of these
universal quantification operators will be defined.

Definition 3.1.1 (∆ Operator).
∆ is a unary modal operator defined as:

∆ϕ =
def
∼♦∼ϕ

The ∆ operator expresses an universal quantification on successor teams. ∆ϕ is only
satisfied on a Kripke modelM and a team T if and only if for all successor Teams T ′ it
holds that M, T ′ |= ϕ.

Definition 3.1.2 (7 Operator).
7 is a binary operator defined as:

ϕ1 7 ϕ2 =
def
∼(∼ϕ1 ∨ ∼ϕ2)

Corollary 3.1.3 (Simulation of MIDL).
Let ϕ be a MIDL formula, then there exists an equivalent MTL formula.

Proof. LetM = (W,R, π) be a Kripke model and T ⊆W a team. Only the implication
operator has to be simulated by a MTL formula , because all other MIDL operators are
existing in MTL. Let ϕ = ϕ1 → ϕ2 be a MIDL implication formula, then ϕ is valid on
the Kripke modelM and the team T , if and only if for all subsets T ′ of T the following
holds:

M, T ′ 6|= ϕ1 or M, T ′ |= ϕ2
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3 Properties of MTL

This formula can be expressed with MTL as follows:

M, T |= ∼((ϕ1 ∧ ∼ϕ2) ∨ >) ⇔ ∀T1, T2 with T1 ∪ T2 = T it holds that

M, T1 6|= (ϕ1 ∧ ∼ϕ2) or M, T2 6|= >︸ ︷︷ ︸
always false

⇔ ∀T1, T2 with T1 ∪ T2 = T it holds that

M, T1 6|= (ϕ1 ∧ ∼ϕ2)

⇔ ∀T1 ⊆ T it holds that

M, T1 6|= ϕ1 or M, T1 |= ϕ2

⇔M, T |= ϕ1 → ϕ2

�

Definition 3.1.4 (→ Operator).
→ is a binary operator defined as:

ϕ1 → ϕ2 =
def
∼((ϕ1 ∧ ∼ϕ2) ∨ >)

With the → operator an universal quantification on teams can be expressed. On these
teams, the operator is similary defined as for propositional implication. ϕ1 → ϕ2 is
satisfied by a Kripke model M and a team T if and only if for all sub teams T ′ it holds
that M, T ′ 6|= ϕ1 or M, T ′, |= ϕ2

Lemma 3.1.5 (� is self-dual).
Let ϕ a MTL formula, then �ϕ is equivalent to ∼�∼ϕ.

Proof. Let θ = ∼�∼ϕ. θ is satisfied by an Kripke model M and a team T iff

M, T 6|= �∼ϕ
⇔ M, R(T ) 6|= ∼ϕ
⇔ M, R(T ) |= ϕ
⇔ M, T |= �ϕ

�

3.2 Closure properties

Definition 3.2.1 (Downwards closure).
A modal logic has the downwards closure property if for any formula ϕ with M, T |= ϕ
and for all T ′ ⊆ T it holds that M, T ′ |= ϕ

Definition 3.2.2 (Upwards closure).
A modal logic has the upwards closure property if for any formula ϕ withM, T |= ϕ and
for all T ′ ⊆W it holds that M, T ∪ T ′ |= ϕ

14



3.2 Closure properties

Definition 3.2.3 (Union Closure).
A modal logic has the union closure property if for any formula ϕ with M, T1 |= ϕ and
M, T2 |= ϕ, it holds that M, T1 ∪ T2 |= ϕ

Definition 3.2.4 (Intersection Closure).
A modal logic has the intersection closure property if for any formula ϕ with M, T1 |= ϕ
and M, T2 |= ϕ, it holds that M, T1 ∩ T2 |= ϕ

Lemma 3.2.5.
MTL doesn’t have the upwards closure property.

Proof. Let M = (W,R, π) as shown in figure 3.1. Now by contradiction we will show
that MTL doesn’t has the upwards closure property. For team T1 = {w0, w1} it holds
that

M, T1 |= ∼�(∼p ∧ ∼p).

Now with w2 ∈W and T = T1 ∪ {w2} it holds that

M, T |= �(∼p ∧ ∼p).

�

w0 w1 w2

w3p w4 p

T1 T

Figure 3.1: Counter example for upwards closure

Lemma 3.2.6.
MTL doesn’t have the downwards closure property.

Proof. Let M = (W,R, π) as shown in figure 3.2.
For team T = {w1, w2} it holds that

M, T |= ∼p ∧ ∼p.

By contradiction we assume, that the downward closure property holds. Then the teams
T1 = {w1}, T2 = {w2} have to satisfy ∼p ∧ ∼p. But T1 satisfies p, which leads to
contradiction with

M, T1 |= ∼p ∧ ∼p.

�
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3 Properties of MTL

w1

p

w2
p

T1

T2

T

Figure 3.2: Counter example for downwards and union closure

Lemma 3.2.7.
MTL doesn’t have the union closure property.

Proof. Let M = (W,R, π) as shown in figure 3.2. For T1 = w1 and T2 = w2 it holds
that

M, T1 |= dep(p), M, T2 |= dep(p).

Contrary for T = T1 ∪ T2 = {w1, w2} it holds that

M, T 6|= dep(p).

�

Lemma 3.2.8.
MTL doesn’t have the intersection closure property.

Proof. Let M = (W,R, π) as shown in figure 3.3. For teams T1 = {w0, w1} and
T2 = {w0, w2} it holds that

M, T1 |= ∼p ∧ ∼p

M, T2 |= ∼p ∧ ∼p

If we assume that MTL has the intersection closure property the following must hold:

M, T1 ∩ T2 |= ∼p ∧ ∼p

But with T = T1 ∩ T2 = {w0} the following holds

M, T 6|= ∼p ∧ ∼p,

which leads to a contradiction. �

Lemma 3.2.9 (Downwards closure of ∆ operator).
If ϕ has the downwards closure property, then the formula θ = ∆ϕ has the downwards
closure property.

16



3.2 Closure properties

w0

p

w1 p

w2

p
T2

T1

T

Figure 3.3: Counter example for intersection closure

Proof. Let θ = ∆ϕ a MTL formula and M a Kripke model. By contradiction we
assume that ϕ has the downwards closure property and θ doesn’t.
By definition ∆ϕ is satisfied on team T if and only if for all T ′ ∈ 〈T 〉, it holds that T ′

satisfies ϕ.
If ∆ϕ isn’t downwards closed then for T ∗ ⊆ T there exists an U ∈ 〈T ∗〉 with

M, U 6|= ϕ.

With T ∗ ⊆ T it holds that every U ∈ 〈T ∗〉 is a subset of an element in 〈T 〉. Furthermore
with M, T ′ |= ϕ and the downwards closure of ϕ it holds for every subset T ′′ of T ′ that

M, T ′′ |= ϕ.

Now there can’t exist such an U ∈ 〈T ∗〉, which doesn’t satisfy ϕ. But this is an contra-
diction to the assumption that ∆ϕ is not downwards closed. �

Corollary 3.2.10.
Let ϕ be a downwards closed MTL formula, then ∆ϕ is equivalent to �ϕ.

Proof. ∆ϕ is satisfied on team T , if and only if ∀T ′ ∈ 〈T 〉

M, T ′ |= ϕ.

By the downwards closure property it fulfills to show that ∆ϕ is satisfied by the biggest
team in 〈T 〉, which is R(T ). By definition 2.1.4 the assumption holds.

M, R(T ) |= ϕ

�
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4 Complexity of Model Checking

To classify the complexity of MTL-model checking, we study subsets of all MTL oper-
ators. In Table 4.1 all model checking results are shown, where Theorem 4.3.1 is the
main result of this chapter.

With +,− the presence or absence of an operator is denoted and ∗ means that the
operator isn’t important for this special complexity result.

� ♦ ∧ ∨ 6 · ∼ ∼k dep Complexity Proof

∗ + + ∗ ∗ ∗ + ∗ ∗ PSPACE-Complete Theorem 4.3.1
∗ ∗ + + ∗ ∗ + ∗ ∗ PSPACE-Complete Theorem 4.3.3
∗ + + ∗ ∗ ∗ − + + Σp

k+1-Complete Corollary 4.4.1

∗ + − − − ∗ + ∗ + PNP [1]-Complete Theorem 4.4.3
∗ − − + − ∗ + ∗ − P Corollary 4.4.4
∗ + − − − ∗ + ∗ − P Corollary 4.4.5
− − − + − ∗ + − ∗ open open

Table 4.1: Complexity results for model checking

4.1 Boolean formula transformations

In this section, we introduce two techniques to reduce the canonical Boolean formula
evaluation pattern to the modal team logic model checking problem. In the reductions
of the next chapter, this reductions are needed to encode a Boolean assignment into a
Kripke structure and a team.

Definition 4.1.1 (f∼ transformation).
For every propositional logic formula ϕ in negation normal form, the transformation
f∼(ϕ) is inductively defined as:

p 7→ ∼p1 ∧ p0,

p 7→ p1 ∧ ∼p0,

θ1 ∨ θ2 7→ f∼(θ1) 6 f∼(θ2),

θ1 ∧ θ2 7→ f∼(θ1) ∧ f∼(θ2).

Lemma 4.1.2.
Let ψ be a 3CNF Boolean formula in negation normal form, and M = (W,R, π) be a
Kripke model and T be a team with the following properties:
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4 Complexity of Model Checking

1. {w1, w1, w2, w2, . . . , wn, wn} ⊆W ,

2. p1
i ∈ π(wi), p

1
i 6∈ π(w) for 1 ≤ i ≤ n and w ∈W \ {wi},

p0
i ∈ π(wi), p

0
i 6∈ π(w) for 1 ≤ i ≤ n and w ∈W \ {wi},

3.
⋃

1≤i,j,k≤n
i 6=k

{(wi, xj), (wi, xk), (wi, xj), (wi, xk)} ⊆ R,

4. wi ∈ T or wi ∈ T , but not wi, wi ∈ T for 1 ≤ i ≤ n.

Then the following holds:

∃α ∈ {0, 1}n : α |= ψ ⇔ ∃M ∃T ⊆W :M, T |= f∼(ψ)

Proof. Let ψ be a 3CNF formula.
”⇒”

Let α be a satisfying variable assignment for ψ. Then we construct a Kripke model M
as requiered. To satisfy M, T |= f∼(ψ) the team T is constructed as follows:

T =

{
T ∪ {wi} , if α(xi) = 1

T ∪ {wi} , if α(xi) = 0

Now we have to show that it holds that if p is satisfied then f∼(p) is satisfied and for p
analogous.

• Let α(xi) = 1. Then T and M have to satisfy M, T |= ∼p1
i ∧ p0

i . By construction
it holds that wi ∈ T and p1

i ∈ π(wi), which implies that ∼p1
i is satisfied. The other

part of the formula is satisfied, because it holds that wi 6∈ T and wi is the only
world in M with p0

i ∈ π(wi).

• α(xi) = 0 follows from the same argument as for α(xi) = 1, but the following
formula has to be satisfied p1

i ∧ ∼p0
i instead.

”⇐”

Let M, T |= f∼(ψ) and M, T satisfy the required properties. A satisfying variable
assignment α is constructed as follows:

α(xi) = 1 , iff wi ∈ T,
α(xi) = 0 , iff wi ∈ T.

Now we show that if M, T |= f∼(ψ) holds, then α |= ψ holds.

• Let M, T |= ∼p1
i ∧ p0

i . This can only be the case if wi ∈ T and wi 6∈ T , because
∼p1

i requires wi to be in T and with M, T |= p0
i it follows that wi cannot be in T .

Then it holds that α(xi) = 1.

20



4.1 Boolean formula transformations

• The case M, T |= p1
i ∧ ∼p0

i is analogous to the other case. �

Definition 4.1.3 (f♦ transformation).
For every propositional logic formula ϕ in negation normal form, the transformation
f♦(ϕ) is inductively defined as:

p 7→ ♦p1,

p 7→ ♦p0,

θ1 ∨ θ2 7→ f♦(θ1) 6 f♦(θ2),

θ1 ∧ θ2 7→ f♦(θ1) ∧ f♦(θ2).

Lemma 4.1.4.
Let ψ be a 3CNF Boolean formula in negation normal form, and M = (W,R, π) be a
Kripke model and T be a team with the following properties:

1. {w1, w1, w2, w2, . . . , wn, wn, x1, x1, x2, x2, . . . , xn, xn} ⊆W ,

2. p1
i ∈ π(xi), p

1
i 6∈ π(x) for 1 ≤ i ≤ n and w ∈W \ {xi},

p0
i ∈ π(xi), p

0
i 6∈ π(w) for 1 ≤ i ≤ n and w ∈W \ {xi},

3. xi ∈ T or xi ∈ T , bot not xi, xi ∈ T for 1 ≤ i ≤ n.

Then the following holds:

∃α ∈ {0, 1}n : α |= ψ ⇔ ∃M ∃T ⊆W :M, T |= f♦(ψ)

Proof. Let ψ be a 3CNF formula.
”⇒”

Let α be a satisfying variable assignment for ψ, then we construct a Kripke model M
as requiered. To satisfy M, T |= f♦(ψ) team T is constructed as follows:

T =

{
T ∪ {wi} , if α(xi) = 1

T ∪ {wi} , if α(xi) = 0
, i = 1, . . . , n

Now we have to show that it holds that if p is satisfied then f♦(p) is satisfied, for p
analogously.

• Let α(xi) = 1. Then T and M have to satisfy M, T |= ♦p1
i . With respect to

the variable assignment α it holds that wi ∈ T and wi 6∈ T . This implies, by
construction of M,that all w ∈ T are connected with xi. With p1

i ∈ π(xi) it
follows that M, T |= ♦p1

i . It also holds that M, T 6|= ♦p1
i , because not all w ∈ W

are connected to xi ((wi, xi) 6∈ R).
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4 Complexity of Model Checking

• α(xi) = 0 follows for the same reason as for α(xi) = 1, but ♦p0
i has to be satisfied

♦p0
i instead.

”⇐”

Let M, T |= f♦(ψ) and M, T satisfying the required properties. A satisfying variable
assignment α is constructed as follows:

α(xi) = 1 , iff wi ∈ T,
α(xi) = 0 , iff wi ∈ T.

Now we show that if M, T |= f♦(ψ) holds, then α |= ψ holds.

• Let M, T |= ♦p1
i . This implies, that all w ∈ T are connected to xi, because xi is

the only world labeled with p1
i . This can only be the case if wi ∈ T ans wi 6∈ T .

Then it holds that α(xi) = 1.

• Let M, T |= ♦p0
i . With the same argumentation as from above it follows that

α(xi) = 0. �

.
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4.2 MTL-MC is in PSPACE

4.2 MTL-MC is in PSPACE

In this section we show that MTL-MC is in PSPACE by the recursive top down algorithm
mtl-mc (1). The algorithm mtl-mc checks if the formula ψ is satisfied with the team T
on the Kripke model M.

Input : Kripke model M, team T and MTL formula ψ
Output: true if and only if M, T |= ψ

1 if ϕ = ψ1 ∨ ψ2 then
2 existence guess T1, T2 with T1 ∪ T2 = T
3 return mtl-mc(M,T1,ψ1) and mtl-mc(M,T2,ψ2)

4 else if ϕ = ψ1 ∧ ψ2 then
5 return mtl-mc(M,T ,ψ1) and mtl-mc(M,T ,ψ2)
6 else if ϕ = ∼ψ then
7 return not mtl-mc(M,T ,ψ)
8 else if ϕ = �ψ then
9 return mtl-mc(M,R[T],ψ))

10 else if ϕ = ♦ψ then
11 existence guess T ′ ∈ 〈T〉
12 return mtl-mc(M,T ′,ψ)

13 else if ϕ = dep(p1, . . . pn−1, pn) then
14 for 1 ≤ i ≤ |T | do
15 Save for wi ∈W : (p1, . . . pn−1, pn)
16 for i ≤ j ≤ |T | do
17 if (p′1, . . . p

′
n−1) = (p1, . . . , p

′
n−1) then

18 if p′n 6= pn then return false

19 else if ϕ = p then
20 foreach wi ∈ T do
21 if p 6∈ π(wi) then return false

22 return true

23 else if ϕ = p then
24 foreach wi ∈ T do
25 if p ∈ π(wi) then return false

26 return true

Algorithm 1: MTL-MC is in PSPACE

This algorithm runs in polynomial space, which can be seen in Line 9 and 14, because
in these lines we allocate more space. In line 9 the construction of the successor team is
done in polynomial space, because in the worst case all worlds in M are in this team,
but the Kripke model is part of the input. The same reason can be used in line 14,
because we only allocate polynomial space for each world.
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4 Complexity of Model Checking

4.3 MTL-MC is PSPACE-hard

Theorem 4.3.1 (MTL-MC({♦,∧,∼}) is PSPACE-hard).
Proof. Let ψ = ∃x1∀x2 . . . ∃xnϕ be a 3CNF-QBF instance, where w.l.o.g. n is assumed
to be even.

The corresponding MTL-MC({♦,∧,∼}) instance is defined as (M, T,Θ) where.

• M = (W,R, π) where

W =

n⋃
i=1

{dji}1≤j≤n ∪

n⋃
i=1

{wji , w
j
i}0≤j≤n−i ∪

n⋃
i=1

{wi, wi}

R =

n⋃
i=1

{(dji , d
j+1
i )}1≤j<i ∪

n⋃
i=1

{(dii, w0
i ), (d

i
i, w

0
i )} ∪

n⋃
i=1

{(wji , w
j+1
i ), (wji , w

j+1
i )}1≤j<n−i ∪

n⋃
i=1

{(wn−1
i , wj), (w

n−1
i , wj)}1≤j≤n ∪

π(dji ) = ∅ , for 1 ≤ j ≤ i ≤ n
π(wi) = π(wji ) = {p1

i } , for 1 ≤ i ≤ n , 0 ≤ j ≤ n− i
π(wi) = π(wji ) = {p0

i } , for 1 ≤ i ≤ n , 0 ≤ j ≤ n− i

• T = {d0
i }1≤i≤n

• Θ = δ1

δi :=

{
♦((p1

i 6 p0
i ) ∧ δi+1 , iff i is odd

∆((∼p1
i ∧ ∼p0

i ) 6 δi+1 , iff i is even

δn :=f♦(ψ)

To illustrate the structure of the generated Kripke model, figure 4.1 shows an example
Kripke model generated by the formula ψ = ∃x1∀x2ψ

′, where ψ′ is a arbitrary proposi-
tional formula.
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4.3 MTL-MC is PSPACE-hard

d0
0

w0
0

w0
0

w1
0

w1
0

w0

w0

d0
1 d1

1

w0
1

w0
1

w1

w1

Figure 4.1: Kripke structure for ∃x1∀x2

To proof the correctness we will show, that for any 3CNF-QBF formula ψ = ∃x1∀x2 . . . ∃xnϕ
it holds that

ψ ∈ 3CNF-QBF iff M, T |= Θ

”⇒”

Let ψ be an 3CNF-QBF formula with satisfying assignment tree α. We use this assign-
ment to solve existential quantifications in the formula Θ.

i is odd: ♦(p1
i 6 p0

i ) ∧ δi+1:
To satisfiy δi we have to choose if we extend T by the world {wi} or by {wi}.
If we choose wi then ∼p0

i is satisfied, wi analogous. We solve this existential
quantification problem with respect to the variable assignment α in the following
way:

T =

{
T ∪ {wi} ,iff α(xi) = 1

T ∪ {wi} ,iff α(xi) = 0

i is even: ∆(∼p1
i ∧ ∼p0

i ) 6 δi+1):
By definition of the universal quantification ∆-operator we have to check that δ∀
is satisfied by following teams:

1. T ∪ {wi, wi}
We don’t want that this case has to satisfy δi+1, because this isn’t a correct
variable assignment over xi. Therefore we catch this case with the sub formula
(∼p1

i ∧∼p0
i ). This sub formula is satisfied, because ∼p1

i requires that it holds
that wi ∈ T and ∼p1

i requires that it holds that wi ∈ T .

2. T ∪ {wi} and T ∪ {wi}
These cases are correct variable assignments over xi and we wan’t that δi
is only satisfied if δi+1 is satisfied by both teams. This is ensured, because
T ∪ {wi} and T ∪ {wi} cannot satisfy (∼p1

i ∧ ∼p0
i ), because, as mentioned

above, a team is required which contains both, wi and wi.
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4 Complexity of Model Checking

Now by construction of M and T ′ we can use Lemma 4.1.4 and it directly follows that:

M, T ′ |= f♦(ψ)

”⇐”

Now we have to show that there exists a variable assignment tree α |= ψ if M, T |=
Θ. M, T |= Θ implies that there exists a set of teams where each member T ′ fulfills
M, T ′ |= f♦(ψ). If we can show that T ′ fullfills the properties of Lemma 4.1.4 then we
directly get an satisfying variable assigment α. Therefore we show that the cases of the
formula Θ generates correct teams T ′.

i is odd: ♦(p1
i 6 p0

i ) ∧ δi+1:

1. T ′ ∪ {wi} or T ′ ∪ {wi}:
These cases are correct variable assignments over xi and they can satisfy δi
by p0 and satisfying δi+1.

2. T ′ ∪ {wi, wi}:
This case is no correct variable assignment and we have to ensure δi cannot
be satisfied. Because of wi ∈ T ′ p1 cannot by satisfied and wi ∈ T ′ prevent
p0 of satisfying the sub formula.

i is even: ∆(∼p1
i ∧ ∼p0

i ) 6 δi+1):
The correctness of the universal quantification case is already shown above.

Now it follows directly by Lemma 4.1.4 that M, T ′ |= f♦(ψ) holds. �

Example 4.3.2. Let ϕ = ∃x1∀x2∃x3(x1 ∨ x3 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) be a 3CNF-QBF
formula. This formula is satisfiable with x1 = 1 and x3 = 0. The corresponding Kripke
model M = (W,R, π) is defined as follows:
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−4 −4
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2
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p1
2

4− −4

−4 −4

Figure 4.2: Example Kripke model

From the 3CNF-QBF reduction in Lemma 4.3.1 it follows, that the following formula
has to be verified on M:
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4.3 MTL-MC is PSPACE-hard

ϕ = ♦(p1 6 p′1) ∧
∆(∼p2 ∧ ∼p′2) 6
♦(p3 6 p′3) ∧
(f♦(x1) ∨ f♦(x3) ∨ f♦(x2)) ∧ (f♦(x1) ∨ f♦(x2) ∨ f♦(x3))

We start with T = {w1, w1, w2, w2, w3, w3} as the initial team. To existentially guess x1

we have to choose that w1 remains in the team and w1 left the team. This is achieved as
in proof 4.3.1 with the sub formula ”♦(p1 6 p′1) ∧ δ”. Now we have to universally check
the variable x2. That means, that now two team instances have to be verified. One team
which includes w2 and not w2, the other team analogously. We set the last variable x3,
which is an existential guess, to false. The development of the start team is shown in
Figure 4.3:

{w1, w1, w2, w2, w3, w3}

{w1, w2, w2, w3, w3}

{w1, w2, w3, w3} {w1, w2, w3, w3}

{w1, w2, w3} {w1, w2, w3}

acc acc

∃x1

∀x2

∃x3

Figure 4.3: Team development

Now we have to check that the modelM and both end teams satisfy following formula:

f♦(ψ) = (f♦(x1) ∨ f♦(x3) ∨ f♦(x2)) ∧ (f♦(x1) ∨ f♦(x2) ∨ f♦(x3))

We have two teams, which have to satisfy the formula.

1. The first team is {w1, w2, w3}. It is easy to see that the variable assignment
α = {x1 = 1, x2 = 2, x3 = 0} satisfies the formula ψ. Now we have to check that
the team also satisfies f♦(ψ). The first clause is satisfied by f♦(x1) = ♦p1, because
w1 ∈ T and therefore all w ∈ T are connected to xi. The second clause is satisfied
by f♦(x3) with an analogous argument.

2. Now we have to check the second team {w1, w2, w3}, which differs from the first
team only in the x2 position. Now we can use the same satisfying argumentation,
because in the first case we didn’t use the variable x2 to satisfy f♦(ψ).
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4 Complexity of Model Checking

Theorem 4.3.3 (MTL-MC({∨,∧,∼}) is PSPACE-hard).
Proof. Let ψ = ∃x1∀x2 . . . ∃xnϕ be a 3CNF-QBF instance, then ψ ∈ QBF ⇔ f(ψ) ∈
MTL-MC({∨,∧,∼}) The corresponding MTL-MC({∨,∧,∼}) reduction function is de-
fined as f(ψ) 7→ (M, T,Θ), where

• M = (W,R, π) where

W = {xi, xi} 1 ≤ i ≤ n,
R = ∅
pi ∈ π(xi) 1 ≤ i ≤ n,
p1
i ∈ π(xi) 1 ≤ i ≤ n,
p0
i ∈ π(xi) 1 ≤ i ≤ n,
ri ∈ π(xi), π(xi) 1 ≤ i ≤ n,

• T =
⋃

1≤i≤n{xi, xi},

• Θ = δ1

δi :=

{
ϕ∀ 7 δi+1 , iff i is even

ϕ∃ ∨ δi+1 , iff i is odd

δn :=f∼(ψ)

ϕ∀ has to catch all teams, which contains x and x or neither x nor x.

ϕ∀ := (∼p1 ∧ ∼p0) 6∼r

ϕ∃ has to separate x and x such that the final team does’t contain both.

ϕ∃ = p1 6 p0

To proof the correctness we show now, that for any 3CNF-QBF formula ψ = ∃x1∀x2 . . . ∃xnϕ
it holds that

ψ ∈ 3CNF-QBF iff M, T |= Θ

”⇒”

Let ψ be a 3CNF-QBF formula with satisfying assignment tree α. To show thatM, T |=
δ holds, we alternate through the quantifications in ϕ∃, ϕ∀ with respect to the variable
assignment α.

i is odd: To satisfy δi = (p1 6 p0) ∨ δi+1 with the team T (wi, wi ∈ T ), by definition,
we have to split T into T1, T2 with T1 ∪ T2 = T and T1 |= p1

i 6 p0
i and T2 |= δ∀.

With respect to the variable assignment α, we choose T1 = {wi} if α(xi) = 1 and
T2 = T \ {wi}. We choose wi analogously if α(xi) = 0.
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4.3 MTL-MC is PSPACE-hard

i is even: To satisfy δi, in the even case, with team T , we have to satisfy T1 |= (∼p1∧∼p0)
or T2 |= δi+1 for all subteams T1 ∪ T2 = T . Now we will show, that only δi has to
be satisfied if T1 = {wi} or T1 = {wi}, because then T2 encodes a partially correct
variable assignment.

1. Let wi, wi ∈ T1 then M, T1 |= ((∼p1
i ∧ ∼p0

i ) holds, because of wi ∈ T1 and
π(p1

i ) = {wi}, ∼p1
i is satisfied on T1. ∼p0

i is also satisfied on T1, because
wi ∈ T1 and π(p0

i ) = {wi}.

2. Let wi 6∈ T and wi 6∈ T , thenM, T1 |= ∼ri, because wi, wi are the only worlds
labeled with ri.

3. Let wi ∈ T or wi ∈ T and |T | > 1. Then M, T1 |= ∼ri, because of |T | > 1
there exists, by definition of π, a element v ∈ T with v 6∈ π(ri).

4. Let wi ∈ T or wi ∈ T and |T | = 1. Then M, T1 6|= ((∼p1
i ∧ ∼p0

i ) 6 ∼ri).
In this case we have chosen a correct variable assignment and M, T2 has to
satisfy δi+1.

Now by Lemma 4.1.2 it holds that M, T ′ |= f∼(ψ), because by construction M and T
fulfill the required properties.

”⇐”

Now we have to show that from M, T |= Θ it follows that a variable assignment tree α
exists with α |= ψ. Now we want to use Lemma 4.1.2 again but therefore we will show
that for M.T ′ |= f∼(ψ), our generated team T ′ fulfills the properties required by the
transformation. This is shown by the correctness of the cases of Θ formula.

is is odd: By definition the following has to be satisfied:

M, T1 |= p1
i 6 p0

i and M,T2 |= δ∀ with T = T1 ∪ T2.

There are only two possibilities to satisfyM, T1 |= p1
i 6p0

i . Either wi ∈ T1, wi 6∈ T1

or wi ∈ T1, wi 6∈ T1, because wi is the only world with p1
i ∈ π(wi), wi analogously.

This implies that T2 is always formed like T \ {wi} or T \ {wi}. In both cases T2

fulfills the properties required by the transformation.

i is even: The correctness of the universal quantification case is already shown in the
argumentation above.

Now it directly follows from Lemma 4.1.2 that there exists a variable assignment α with
α |= ψ. �

Example 4.3.4. Let ϕ = ∃x1∀x2∃x3(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x1) be a 3CNF-QBF
formula. The Kripke model M and the starting team T are as defined in Figure 4.4.
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4 Complexity of Model Checking

Satisfying variable assignment for ϕ are α = {x2 = 0, x3 = 0} or α = {x2 = 1, x3 = 1}.
Now we show that the formula Θ can be satisfied with these variable assignments.

Θ = (p1
1 6 p0

1) ∨
((∼p1

2 ∧ ∼p0
2) 6 r2) 7

(p1
3 6 p0

3) ∨
(f∼(p1

1) 6 f∼(p1
2) 6 f∼(p0

3)) ∧ (f∼(p0
2) 6 f∼(p1

3) 6 f∼(p0
1))

x1

p1
1, r1

x1

p0
1, r1

x3

p1
3, r3

x3

p0
3, r3

x2

p1
2, r2

x2

p0
2, r2

x4

p1
4, r4

x4

p0
4, r4

T

Figure 4.4: Model checking example for operator set {∨,∧,∼}

The initial team T is set as T := {w1, w1, w2, w2, w3, w3}. In the first step of the
construction of Θ we have to existentially guess the variable x1. We choose that x1 has
to be true in the variable assignment and so the team {w1, w2, w2, w3, w3} has to satisfy
the right part of the split junction. The next step is an universal guess and as shown
in the proof above, we now have to check the two teams T1 = {w1, w2, w3, w3} and
T2 = {w1, w2, w3, w3}. The last step is similar to the first and we choose the variable x3

to be false in the team T1 and true in the other team. The last thing to check is, that
the now constructed teams satisfy the formula f∼(ϕ). Exemplarily we do this for the
variable x2 with the first team. In our team x2 is set to false (w2 ∈ T1, w2 6∈ T1) and
this satisfies the second clause at f∼(p2) = p1

2 ∧ ∼p0
2, because p1

2 checks that w2 6∈ T1

and ∼p0
2 checks that w2 ∈ T1.

4.4 Model Checking Operator Fragments

Corollary 4.4.1 (MTL-MC({♦,∧,∼k}) is Σp
k+1-hard).

Proof. QBFk ≤
p
m MTL-MC({♦,∧,∼k})

Let ϕ = ∃x11 . . . ∃x1j1∀x21 . . . ∀x2j2 . . .Λxk1 . . .Λxkjnψ, Λ ∈ {∃,∀}, j1, . . . jn ∈ N be a
QBFk formula. In this reduction we use nearly the same reduction like in Lemma 4.3.1,
where the depth of ∼ is not bounded.

We only have to allow that quantification over multiple variables can be expressed in one
alternation. Therefore we define the extended model M = (W,R, π) and the reduction
formula Θ as:
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4.4 Model Checking Operator Fragments

• M = (W,R, π)

W =
n⋃
i=1

ji⋃
l=1

{dji,l}1≤j≤n ∪

n⋃
i=1

ji⋃
l=1

{wji,l, w
j
i,l}0≤j≤n−i ∪

n⋃
i=1

ji⋃
l=1

{wi,l, wi,l},

R =

n⋃
i=1

{(dji,l, d
j+1
i,l )}1≤j<i ∪

n⋃
i=1

ji⋃
l=1

{(dii,l, w0
i,l), (d

i
i,l, w

0
i,l)} ∪

n⋃
i=1

ji⋃
l=1

{(wji,l, w
j+1
i,l ), (wji,l, w

j+1
i,l )}1≤j<n−i ∪

n⋃
i=1

ji⋃
l=1

{(wn−1
i,l , wj), (w

n−1
i,l , wj)}1≤j≤n ∪,

π(dji,l) = ∅ , for 1 ≤ j ≤ i ≤ n, 1 ≤ l ≤ ji
π(wi,l) = π(wji,l) = {p1

i,l} , for 1 ≤ i ≤ n , 0 ≤ j ≤ n− i, 1 ≤ l ≤ ji
π(wi) = π(wji,l) = {p0

i,l} , for 1 ≤ i ≤ n , 0 ≤ j ≤ n− i, 1 ≤ l ≤ jit.

• T = {d0
i,l}1≤i≤n

• Θ = δ1

δi :=

{
♦(

∧ji
l=1(p1

i,l 6 p0
i,l) ∧ δi+1 , iff i is odd

∆(
∧ji
l=1(∼p1

i,l ∧ ∼p0
i,l) 6 δi+1 , iff i is even

δn :=f♦(ψ)
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0,0

w0
0,0
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Figure 4.5: Kripke structure for ∃x1x2∀x3

The corresponding Kripke model to the formula ψ = ∃x1, x2∀x3ψ
′ is shown in figure 4.5.

This example illustrates how multiple variables are quantified in only one quantification
step. For simplicity reasons the connections between the variables and the world labels
are not shown.
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The proof of the reductions correctness is analogous to the proof in Lemma 4.3.1. It
remains to show that the maximum of the reductions negation depth is k.

deg∼(♦(

ji∧
l=1

(p1
i,l 6 p0

i,l) ∧ δi+1) = 0

deg∼(∆(

ji∧
l=1

(∼p1
i,l ∧ ∼p0

i,l) 6 δi+1) =

{
1 + deg∼(δi+1) , iff δi+1 = δn

2 + deg∼(δi+1) , otherwise

deg∼(f♦(ψ)) = 0

In the case δi+1 = δn the negation depth of ∆((∼p1
k ∧ ∼p0

k) 6 δi+1 is 1 + deg∼(δi+1),
because another last quantification change isn’t required. �

Example 4.4.2. In this exmaple we want to check the negation depth of the formula
corresponding to ψ = ∃x1∀x2∃x3(x1 ∨ x2 ∨ x3).

♦((p1
1 6 p0

1) ∧∆((∼p1
2 ∧ ∼p0

2) 6 ♦((p1
3 6 p0

3) ∧ (♦p1 6 ♦p2 6 ♦p3))))

As mentioned in the proof from above, the negation depth has to be 2. As the first step
we convert, by definition of ∆, ∆ψ to ∼♦∼ψ

♦((p1
1 6 p0

1) ∧ ∼♦∼((∼p1
2 ∧ ∼p0

2) 6 ♦((p1
3 6 p0

3) ∧ (♦p1 6 ♦p2 6 ♦p3))))

In the last step the second negation is moved deeper insider the formula, to eliminate the
one negation.

♦((p1
1 6 p0

1) ∧ ∼♦((p1
2 6 p0

2) ∧ ∼♦((p1
3 6 p0

3) ∧ (♦p1 6 ♦p2 6 ♦p3))))

Now it is easy to see that the negation depth of this formula is 2.

Theorem 4.4.3 (MTL-MC({♦,∼, dep}) is PNP [1]-complete).
Let ϕ be a MTLformula over {♦,∼, dep}. Then the model checking problem MTL-MC({♦,∼, dep})
is in PNP [1].

Proof. Let ϕ be a formula over {♦,∼, dep} and k1, . . . , kn ∈ N. Then the formula is
always either of the form ϕ = ∼ψ or ϕ = ψ, where

ψ = ♦k1∆k2 . . .∆knλ, λ ∈ {p, p, dep}, p ∈ Var.

Then it follows from Lemma 3.2.9, that ∆ψ′ can be replaced by �ψ′.

ψ = ♦k1�k2 . . .�knλ, λ ∈ {p, p, dep}, p ∈ Var

Now we construct a PMDL-MC(♦,�,dep,p)[1] turing machine M , which solves the problem.
At first TM M writes the formula ψ on the oracle tape. Then the turing machine returns
the negation of the oracle’s answer.
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From MDL-MC(♦,�, dep, p), which is NP-complete ([EL11]), it follows that
MTL-MC({♦,∼, dep}) is in PNP [1].

Now we have to show that MTL-MC({♦,∼, dep}) is PNP [1] hard. Let A ∈ PNP [1], the
corresponding Turing-Machine MA generally works as shown in figure 4.6.
Now we have to show that A ≤pm MTL-MC({♦,∼, dep}). In the polynomial many-
one reduction, we can simulate the polynomial part of the Machine. Left is the oracle
question and four possible acceptance behaviors of MA shown in figure 4.7.

input x

f ∈ SAT

acc/rej acc/rej

1 0

Figure 4.6: PNP [1] machine

input x

f ∈ SAT

acc rej
1 0

(a) f ∈ SAT

input x

f ∈ SAT

accrej
1 0

(b) f ∈ SAT

input x

f ∈ SAT

accacc
1 0

(c) Accept always

input x

f ∈ SAT

rejrej
1 0

(d) Reject always

Figure 4.7: Cases in PNP [1]

SAT is represented in MTL-MC({♦,∼, dep}) in the same way like in [EL11], but we have
to adjust our formula to represent the four acceptance cases.
Let f be the 3CNF oracle question and g(f) = 〈M, T, ϕ〉 the reduction function.
The Kripke structure M = (W,R, π) is defined as follows:

W := {c1, . . . , cn, s1, . . . , sm, s1, . . . , sm}

R ⊇

{
{(ci, sj)} , if xj occurs in Ci

{(ci, sj)} , if xj occurs in Ci
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4 Complexity of Model Checking

π(si) ⊇ {pi, q}

π(si) ⊇ {pi}

The initial team is defined by the worlds, which representing the clauses of f .

T := {c1, . . . , cn}

ϕ =


♦dep(p1, . . . , pm, q) , f ∈ SAT

∼♦dep(p1, . . . , pm, q) , f ∈ SAT

> , accept always

⊥ , reject always

The correctness follows directly from the MDL-MC({♦,∼, dep}) correctness proof in
[EL11] and the definition of ∼. �

Corollary 4.4.4 (MTL-MC({∧,∼}) is in P).
Proof. For this proof we construct an algorithm 2 that runs polynomial time.

Input : Kripke model M, team T and MTL formula ψ
Output: true if and only if M, T |= ψ

1 if ϕ = ψ1 6 ψ2 then
2 return mtl-mc(M,T ,ψ1) or mtl-mc(M,T ,ψ2)
3 else if ϕ = ψ1 ∧ ψ2 then
4 return mtl-mc(M,T ,ψ1) and mtl-mc(M,T ,ψ2)
5 else if ϕ = p then
6 for s ∈ T do
7 if p 6∈ π(s) then return false

8 return true

9 else if ϕ = p then
10 for s ∈ T do
11 if p ∈ π(s) then return false

12 return true

13 else if ϕ = ∼p then
14 return not mtl-mc(M,T ,p)
15 else if ϕ = ∼p then
16 return not mtl-mc(M,T ,p)
17

Algorithm 2: Model checking algorithm with operators ∧ and ∼

It is easy to see that algorithm 2 runs in polynomial time, because we only extend the
ordinary propositional logic algorithm with two new cases, which negate the result of
the original cases. �
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4.4 Model Checking Operator Fragments

Corollary 4.4.5 (MTL-MC({♦,∼}) is in P).
Proof. Let ϕ be a formula over {♦,∼} and k1, . . . , kn ∈ N. Then the formula is always
of the form ϕ = ∼ψ or ϕ = ψ, where

ψ = ♦k1�k2 . . .�knλ, λ ∈ {p, p}

The same argument is used in proof 4.4.3. By [EL11] we can check ψ in polynomial time
with MDL-MC(♦,�, p).
Therefore we construct a oracle turing machine M with an oracle for MDL-MC(♦,�, p),
which runs in polynomial time and solves ϕ ∈ MTL-MC({♦,∼}). At first M writes
the formula ψ on the oracle tape. Then the turing machine returns the negation of the
oracles answer. �
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5 Conclusion

We have shown in chapter 3 that MTL in general is not closed under the closure prop-
erties we looked at. But in Theorem 3.2.9 we have seen, that some parts of MTL are
downwards closed, there is a possibility for further research. In example the concept of
coherence, which Kontinen studied in [Kon10] would be an interesting property.
In chapter 4 we have shown that the MTL model checking problem is PSPACE-complete,
but there is still an open case. It is not known in which complexity class the operator
fragment {∨,∼} is located. Furthermore the complexity could depend of the Kripke
model’s type. We could restrict the structure such that only S4, S5, . . . structures are
possible.
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