
Master’s Thesis

Complexity of Temporal Logics

Arne Meier

2007-11-09

Gottfried Wilhelm Leibniz Universität Hannover
Fakultät für Elektrotechnik und Informatik

Institut für Theoretische Informatik





Danksagung

Zunächst möchte ich mich sehr herzlich bei meinen Eltern bedanken, die mir während
des gesamten Studiums in allen Bereichen zur Seite standen, mich unterstützten und
in meinem Tun bekräftigten. Ohne Euch und Euren Rat hätte ich nicht Informatik
studieren können! Vielen Dank.

Besonderer Dank geht auch an meine Freundin Julia, die mir in allen Belangen liebevoll
geholfen hat und in jeder Prüfung alle Daumen drückte. Vielen Dank mein Engel.

Desweiteren möchte ich mich noch bei meinem zukünftigen Doktorvater Heribert
Vollmer für die Betreuung bei dieser Abschlussarbeit bedanken.

Abschließend geht mein Dank an meine Mitstudenten und Weggefährten während des
Studiums. Vielen Dank für Eure Erklärungen und das gemeinsame Lernen während des
Semesters und während der Prüfungszeit. Insbesondere möchte ich hierbei Sebastian,
Dennis, Daniel, Thilo und Moritz danken. Ich hoffe wir bleiben weiterhin im Kontakt!

i



Abstract. In 2000, Emerson and Jutla finally showed 2-EXPTIME-completeness for
the Satisfiability problem for the temporal logic CTL?. We investigate fragments of this
logic, that are restricted to the single temporal operator neXt and both path operators.
With a straight reduction from QBF-3SAT we are able to state PSPACE-hardness
for this restricted logic. A similar proof for CTL and a PSPACE-algorithm leads to
PSPACE-completeness for CTL restricted in the same way. With the help of Post’s
Lattice, we determine the computational complexity of these logics for a huge part of the
lattice. On the one hand we discover PSPACE-hard (resp. PSPACE-complete) results,
and on the other hand results for L.

ii



Contents

1 Introduction 1

2 Preliminaries 7
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Formal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Propositional Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Temporal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Modal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Turing Machines and Complexity Classes . . . . . . . . . . . . . . . . . 15
2.4 Clones and Post’s Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Decision Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Complexity of Computation Tree Logic 23
3.1 Computation Tree Logic? . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Results for PSPACE . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Results for P and L . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Computation Tree Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.1 Results for PSPACE . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Results for P and L . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Computation Tree Logic+ . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Conclusion and further work 49
4.1 What further research should be done? . . . . . . . . . . . . . . . . . . . 50

Bibliography 51

iii



Contents

iv



List of Tables

1.1 Complexity of the problems Satisfiability and Model-Checking for temporal
logics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Complexity results Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Overview of relevant complexity classes in this thesis . . . . . . . . . . . . . 16
2.2 List of all relevant Boolean clones with bases. . . . . . . . . . . . . . . . . . . 20
2.3 Relevant decision problems for this thesis . . . . . . . . . . . . . . . . . . . . 21

3.1 Complexity results overview for CTL?-SAT . . . . . . . . . . . . . . . . . . . 46
3.2 Complexity results overview for CTL?-SAT({A,E,X}) . . . . . . . . . . . . 46
3.3 Complexity results overview for CTL-SAT . . . . . . . . . . . . . . . . . . . 46
3.4 Complexity results overview for CTL-SAT({AX,EX}) . . . . . . . . . . . . 46
3.5 Complexity results overview for CTL+-SAT . . . . . . . . . . . . . . . . . . . 46
3.6 Complexity results overview for CTL+-SAT({A,E,X}) . . . . . . . . . . . . 46
3.7 Complexity results Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

v



List of Tables

vi



List of Figures

1.1 Kripke structure for a traffic light . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Model-Checking problem for temporal logic . . . . . . . . . . . . . . . . . . . 3
1.3 Satisfiability problem for temporal logic . . . . . . . . . . . . . . . . . . . . . 3
1.4 Quantified 3SAT problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Most used CTL operators in Chapter 3 . . . . . . . . . . . . . . . . . . . . . 13
2.2 A Kripke structure for Example 1 . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Schematic of a Turing machine . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Post’s Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Kripke structure for Example 6 . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 PSPACE-hard fragments for CTL?-SAT({A,E,X}) . . . . . . . . . . . . . . 34
3.3 Kripke structure M for Theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 PSPACE-hard fragments for CTL?-SAT({A,E,X}), and clones in L . . . . . 38
3.5 Example for the case EG in Theorem 11. . . . . . . . . . . . . . . . . . . . . 43
3.6 PSPACE-complete fragments for CTL-SAT({AX,EX}), and clones in L for

CTL-SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



List of Figures

viii



List of Algorithms

3.1 StateCheck(T ,F , T̃ , F̃ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 CTL-AEX-Sat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

ix



List of Algorithms

x



1 Introduction

In this introduction we will describe the field of temporal logics and the structure of
Post’s lattice in a more elaborative way, as it is essential for this master’s thesis and it
is not a well known area in computational complexity theory.

In 1977, Pnueli introduced linear temporal logic (LTL) in [Pnu77] for the specification
and verification of reactive systems (e.g., a computer system, system properties or a
hardware architecture) which yields importance in computer science. As temporal logics
are quite more complicated than propositional logic, we will motivate the benefit that
is gained by them. Because of the results in the 1930s in recursion theory by Goedel,
Church, Kleene, Turing and Post (for more informations concerning these theories,
confer [Dav04] by Martin Davis), we know that programs like a specification-checker,
an endless-loop-detector or a code-optimizer cannot exist. This is a cruel fact since
otherwise we could write programs that remove all bugs in our written code. Thus the
motivation is to analyze this irrevocable situation and make restrictions to the given
system (i.e., algorithm) for getting some partial results.

As mentioned in [CGP99], the first step in verifying the correctness of a system is
specifying the properties that the system should have. The common used model to
describe such a system is the Kripke structure, that is a form of a finite state machine.
It consists of four different parts. First we have a finite set of states S that describe the
different conditions of a reactive system. Reactive Systems normally do not terminate,
in fact, they interact very frequently with their environment through many inputs.
Thus we cannot determine a function-like input-output behavior (else we could use
verification methodologies like the Hoare logic or the inductive method of Floyd; see
additional informations in [GMH81] and [Hoa69]): for such a system we investigate the
behavior over time. For that we must be able to specify the transitions between the
states. This is the second component of a Kripke structure: a total, binary relation R
over the set of given states. Thus, for every state s ∈ S we have at least one defined
successor state s′ ∈ S with R(s, s′). Now we can describe a kind of computation of a
given reactive system in terms of its transitions. Each single state describes a snapshot
of a reactive system. If we consider such a specific moment, we can investigate some
kind of properties (where the set of all used atomic propositions is combined in the set
AP) that hold. The fourth and last component is a function P that labels each state
with a set of properties which are true in this state. Now we can model reactive systems
in a Kripke structure M = (S,R,AP, P ).

If we want to verify the correctness of such a Kripke structure we need a formalism
to describe a given specification. Hence we will take a more closer look at the temporal
logics. As well known from propositional first order logic we have the Boolean functions
and, or and not (resp., ∧,∨,¬). We use these Boolean connectors to express formulas
consisting of atomic propositions in a specific state. At the moment, we cannot describe
anything beyond a single state, but we want to investigate the behavior of time in a

1



1 Introduction

Figure 1.1: Kripke structure for a traffic light

given system (as mentioned above). Therefor, we must be able to specify that some
property holds in all reachable states or some error value never holds. To describe such
properties through a temporal logic formula, we need two temporal operators (X,U)
and one path quantifier (E). The remaining two temporal operators (G,F) and one path
quantifier (A) can be expressed through combinations of the former. At first, we need
to remark that the properties are usually specified over an infinite path of transitions in
the branching Kripke structure. Next, we will give some native linguistic meanings of
these operators and quantifiers. If we want a property to hold in the second state of
a given path, we use the neXt operator. Eventually holding properties are described
by the Future operator. Now we can model Global properties that always hold, and a
path on which in every preceding state the first property holds Until the second holds.
Finally we can state wether there Exists a path that fulfills the given formula or on All
possible paths the formula must hold.

Finally, we are able to define LTL-formulas. In short, we can combine the upper
operators only in a way like Aϕ, where ϕ is only composed of temporal and Boolean
operators, but no As or Es. To familiarize the reader with Kripke structures and
temporal logic formulas we want to give a very easy example in Figure 1.1. Formally
the definition of this Kripke structure is

M = ({s1, s2, s3}, {(s1, s2), (s2, s3), (s3, s1)}, {�,�,�}, P}),

where P (s1) = �, P (s2) = � and P (s3) = �. M is a very simple model for a typical
traffic light.

Concerning traffic lights, the red and the green light should not be active in the same
moment. A LTL-formula which describes that fact would be

ϕ := AG¬(� ∧�),

and is read “On all paths the property � and � do not hold globally the same time”
(which means in every state on each path).

Thus ϕ is fulfilled by the given Kripke structure M in the states s1, . . . , s3, as in
no state on the infinite path π = s1, s2, s3, s1, . . . the propositions � and � hold
simultaneous – we write M, s1 |= ϕ. Without using the A-quantifier, we can say: “on
all possible paths π starting at s1 in the Kripke structure M , it holds G¬(� ∧�)”.

The question we answered right now is the well-known Model-Checking problem you
see in figure 1.2

2



Input: Kripke structure M = (S,R,AP, P ), temporal logic formula ϕ
Question: is there a state s ∈ S such that M, s |= ϕ?

Figure 1.2: Model-Checking problem for temporal logic

Input: temporal logic formula ϕ
Question: is there a Kripke structure M = (S,R,AP, P ) and a state s ∈ S

such that M, s |= ϕ?

Figure 1.3: Satisfiability problem for temporal logic

Model-Checking is important for software development. Gerard Holzmann reveived
the ACM Software System Award in the year 2001 for his model-checking system SPIN
as “it has made advanced theoretical verification methods applicable to large and highly
complex software systems” (for further informations read [Hol91] and [HP96] or consider
the Website of the ACM1).

Unfortunately, the LTL-Model-Checking problem is PSPACE-complete as proven by
Sistla and Clark in 1985 (see [SC85]). That is quite harder than we know from the problem
of Satisfiability of propositional formulas SAT which is NP-complete (see [Coo71]). Thus
we do not have an algorithm for LTL-Model-Checking that runs in polynomial time, if
PSPACE 6= P. Adjusting SAT to the temporal world, we get the Satisfiability problem
for temporal logics you can see in Figure 1.3.

Fortunately, LTL-Satisfiability is not harder than LTL-Model-Checking – it stays
PSPACE-complete. This is not the common consequence as we will see for the next
temporal logic.

Computation Tree Logic (CTL) was first used by Clark and Emerson in [CE81] (and
in a slightly different form by Quielle and Sifakis in [QS82]). The main difference to
LTL is, that we can now nest the path quantifiers in any arbitrary way. But there is
another restriction: before every temporal operator we need a single path quantifier
(e.g., AXf or EGAXg). The Model-Checking problem for CTL is very easy: it can be
done in time linear in the size of the model and the length of the formula – and it is
complete for the class P (see [CES86]). For CTL, the gap between the Model-Checking
and Satisfiability problem is very huge. If we concern the Satisfiability problem for
CTL-formulas, we become EXPTIME-complete which has been proven, in 1979/1980
independently, by Fischer and Ladner in [FL79] and by Pratt in [Pra80].

Finally, we make a last step over to the most powerful logic where none restrictions
occur. Computation Tree Logic? combines the temporal logics LTL and CTL in one
model and therefore is called informally the full branching time logic.

One year after Sistla and Clarke showed the PSPACE-completeness for LTL-Model-
Checking, they expanded their result to CTL?-Model-Checking in [CES86]. Now a line
of reductions exists, starting at the Satisfiability problem for quantified Boolean formulas
(QBF) to LTL-Model-Shecking and LTL-Satisfiability over to CTL?-Model-Checking.
The main question was, if the Satisfiability problem is PSPACE-complete, too. But
four years later in 1990, Emerson showed in [Eme90] that CTL-Satisfiability is already

1http://awards.acm.org/software system

3



1 Introduction

temporal logic Satisfiability Model-Checking
CTL EXPTIME-complete P-complete
LTL PSPACE-complete PSPACE-complete

CTL? 2-EXPTIME-complete PSPACE-complete

Table 1.1: Complexity of the problems Satisfiability and Model-Checking for temporal
logics.

EXPTIME-complete. Emersons argumentation based on the concept of a bit different
Turing Machine (Alternating Turing Machines). CTL?-Satisfiability was shown to be
2-EXPTIME-hard by Vardi and Stockmeyer in [VS85]. The containment in 2-EXPTIME
was shown by Emerson and Jutla in [EJ00], which yields its 2-EXPTIME-completeness.
As a short overview, the complexity situation of temporal logics is shown in Table 1.1.

The main intent of this thesis is to investigate fragments of the computation tree logics.
We will make constraints, like disallowing specific Boolean functions, and analyze the
complexity of the resulting logics. Our aim is to achieve a classification that is as complete
as possible. Dealing with restrictions will help to get a better understanding for hardness
and completeness results in complexity theory, and it will provide a more complete
classification of the temporal logics than currently available. Analyzing fragments of a
logic helps getting a more detailed point of view concerning its complexity-structure.

In 1979, Lewis was the first who applied such restrictions in a systematic way
in [Lew79]. He established a dichotomy in Satisfiability for propositional logic (NP-
completeness versus solvability in P). Another example is the discovered trichotomy in
modal Satisfiability by Bauland et al in [BHSS06]. Later we will see that these results
have a great impact on our studies about temporal logic fragments.

When talking about restrictions of Boolean functions the concept of clones must be
introduced. A clone is a set of Boolean functions that is closed under superposition (i.e.,
it contains all projection functions and is closed under permutation, identification of
variables, and arbitrary composition). One such clone is, e.g.,

E := {f | f is a n-ary and -function or a constant function},

whose base is {∧, 0, 1}. As E is closed under superposition, we can combine the logical
and in any arbitrary way. Thus we get a n-ary function.

The complete classification regarding the restrictions of Boolean operators follows
in the structure of Post’s Lattice [Pos41]. Within this hierarchy Post showed which
clones arise from combinations of other clones. When analyzing the complexity of logics
restricted to a specific clone, you can use this structure to achieve upper and lower
bounds of complexity. For more informations and definitions regarding Post’s Lattice
take a look at Chapter 2 and at Figure 2.4 on page 19.

In Chapter 3 we will only investigate the Satisfiability problem as its 2-EXPTIME
(resp. EXPTIME) complexity is much more intractable than the inclusion in PSPACE
for the Model-Checking problem (resp. containment in P for CTL). We will restrict the
temporal logics CTL, CTL? and CTL+ (which will later be defined) to the temporal

4



Input: quantified Boolean formula ϕ in 3CNF
Question: ϕ ≡ 1?

Figure 1.4: Quantified 3SAT problem

operator X. This restrictions results from a straight reduction starting at the Satisfiability
problem of quantified Boolean formulas, respectively the version restricted to 3CNF
(conjunctive normal form with three literals per clause), which can be seen in Figure
1.4. Hereby we show PSPACE-hardness for the three restricted CTL-versions which is
one of our main results in this thesis. Additionally, we are able to state this hardness
result for even formulas with only one single atomic proposition.

Concerning the restricted computation tree logic, we show containment in PSPACE
which yields a completeness result for PSPACE. For these hardness results, we achieve
a lower bound at the clone S1. Referring to formulas restricted to D and R1, we show
that everything below these clones can easily decided in L, as all such formulas are
trivially satisfiable and we only need to check syntactical correctness of a given formula.
Finally, we achieve containment in L for CTL restricted to the clone N.

In Table 1.2 we show a summarized view of our achieved results in this thesis.
Regarding the abbreviatory notation, “>” means “above” and “<” means “below” in
the structure of Post’s Lattice. The fields denoted with “?” are questions that are left
open. All other not mentioned cases are also left open.

BF or > S1 < R1 or < D < N
CTL?-SAT 2-EXPTIME-complete in L ?

CTL?-SAT({A,E,X}) PSPACE-hard in L ?
CTL-SAT EXPTIME-complete in L in L

CTL-SAT({AX,EX}) PSPACE-complete in L in L
CTL+-SAT 2-EXPTIME-complete in L ?

CTL+-SAT({A,E,X}) PSPACE-hard in L ?

Table 1.2: Complexity results Overview

5



1 Introduction

6



2 Preliminaries

In this chapter we will define all necessary mathematical notations, complexity classes,
propositional and temporal logics, and we will give a brief introduction into the theory
of clones and techniques with respect to Post’s Lattice.

2.1 Notation

Let N denote the set of natural numbers, i.e., N = {0, 1, 2, . . . } and N+ = N\{0}. We
use ε as the empty word. When talking about a formal language L, we define L over
the alphabet Σ = {0, 1}. Any other non-single alphabet can be used through the usual
reasons. Thus Σ? is equal to N, as we can sort Σ? in length-lexicographical order and
get natural numbers in binary representation (where the first element is ε).

Let S = {s1, s2, . . . , sn} be a set of n ∈ N elements. Then we call 2S the power set
of S, i.e., 2S = {∅, {s1}, {s2}, . . . , {sn}, {s1, s2}, {s1, s3}, . . . , {s1, sn}, . . . , {s1, . . . , sn}},
or shorter 2S = {x | x ⊆ S}. If A is a set over an alphabet Σ, then AC := Σ?\A is the
complement of A (instead AC we write A, too). With |S| we denote the cardinality of
S. Analogously we denote with |s| the length of a given string s = s1 . . . sn.

Through this thesis we use a couple of standard mathematical abbreviations. Whenever
we want to express the opposite of =, we write 6= and in the same manner for ∈, we
write /∈. That is, we use “/” to denote the denial. With � we denote the end of a
proof, with � the end of a proof idea, and with 2 the end of a definition, observation,
proposition, lemma or example. Mostly we write “iff” or sometimes “⇔” instead of “if
and only if”, or use “. . .⇒ . . . ” to abbreviate a sentence “If . . . , then . . . ”.

2.2 Formal Logic

In the next three subsections we will introduce the three logical concepts that are
essential for this thesis. At first, we will give an introduction to the propositional logic.
Then, we will define the concepts of temporal logics, and finally, we will define some
basics in modal logic, that will help to understand similarities within proofs in both
fields of temporal and modal logic, as many of our proofs will have their roots in the
modal world.

2.2.1 Propositional Logic

We assume the reader is familiar with the well-known Boolean functions and (∧), or
(∨) and implication (→), which we call sentential connectives, too. A propositional
variable is defined over its two possible logical values true or false (resp., 1 or 0). In
this thesis, we usually denote a propositional variable with the characters x, y, z or
q. A literal is a propositional variable x or its negation, which we denote with ¬x or

7



2 Preliminaries

x. A formula is a combination of literals through sentential connectives. Usually, we
assume without loss of generality a formula to contain the variables x1, x2, . . . , xn for
n ∈ N (else we rename the variables to achieve such a form). Therefor we denote with
Vn := {xi | 1 ≤ i ≤ n, n ∈ N} the set of n variables, and denote with Fn the set of all
propositional formulas with n ∈ N variables. If we do not need to refer to the number of
variables, we omit writing Fn and use F instead. A clause C is a disjunction of literals,
i.e., C = l1 ∨ · · · ∨ ln for n ∈ N and usually we assume li 6= lj for 1 ≤ i, j ≤ n. We
define a formula ϕ that is in conjunctive normal form (CNF) as a conjunction of clauses:
ϕ := C1 ∧ · · · ∧ Cm for m ∈ N. In the same way we proceed for 3CNF and k-CNF, as a
CNF-formula with k ∈ N literals per clause.

An assignment for a given formula ϕ is a total function θ : Vn → {0, 1} that allocates
logical values to variables. The set of all assignments for a formula ϕ with n variables is
denoted with Θn := {θ | θ : Vn → {0, 1}}.

Now we define the semantic of the assignment function θ.

Definition 1 (Evaluation function) Let n ∈ N, ϕ ∈ Fn and θ ∈ Θn be an assign-
ment. We define θ̂ : Fn → {0, 1} inductively by:

1. If x ∈ Vn, then θ̂(x) = θ(x).

2. Let ϕ,ψ ∈ F be formulas, then

θ̂(ϕ ∧ ψ) =

{
1, if θ̂(ϕ) = 1 and θ̂(ψ) = 1
0, otherwise,

θ̂(ϕ ∨ ψ) =

{
1, if θ̂(ϕ) = 1 or θ̂(ψ) = 1
0, otherwise,

θ̂(¬ϕ) =

{
1, if θ̂(ϕ) = 0
0, otherwise.

Thus θ̂(ϕ) denotes the logical value of ϕ. Usually, we omit writing θ̂ and use θ instead.2

Definition 2 (Model property) Let n ∈ N, ϕ ∈ Fn and θ ∈ Θn. If θ̂(ϕ) = 1, we call
θ a model of ϕ (or ϕ is satisfied by θ) and write θ |= ϕ. If θ̂(ϕ) = 0, we write θ 6|= ϕ. 2

Finally we observe a property that associates a formula ϕ with another formula ψ
concerning the model property.

Definition 3 (Logical Equivalence) Let n ∈ N and ϕ,ψ ∈ Fn. If for each θ ∈ Θn

we have θ̂(ϕ) = θ̂(ψ), we call ϕ logical equivalent to ψ and write ϕ ≡ ψ. 2

Many proofs for our complexity results are based on reductions (we will define
them later in Section 2.3), which are, according to this, a central part in our thesis.
Therefor, we need to introduce a special form of propositional logic, that is quantified
Boolean formulas. In Chapter 3, we will start our reductions beginning at the problem
QBF-3SAT.

8



2.2 Formal Logic

Definition 4 (Quantified Boolean Formulas) A quantified Boolean formula (qBf)
is defined inductively as follows:

• 1 and 0 are qBfs.

• If x is a propositional variable, then x is a qBf.

• If ϕ1, ϕ2 are qBfs, then ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2 are qBfs.

• If ϕ is a qBf and x is a propositional variable in ϕ, then ∃xϕ and ∀xϕ are qBfs.

The semantics of the first three cases is as in normal propositional logic. The last case’s
semantic is defined by

• ∃xϕ ≡ ϕ(0) ∨ ϕ(1) and

• ∀xϕ ≡ ϕ(0) ∧ ϕ(1),

where ϕ(i) is the formula ϕ, where all appearances of the variable x have been replaced
by the logical value i, i ∈ {0, 1}. 2

Without any loss of generality, we assume all given qBfs are in prenex normal form,
where all quantifiers are at the beginning of the formula:

∃x1∀x2 . . . QxnF (x1, . . . , xn),

and F is quantifier-free (i.e., neither ∃ nor ∀ appears in F ).
Usually, we consider a qBf fully quantified, i.e., each variable is in the scope of some

quantifier.
With these definitions, we can make an observation that shows the complexity of the

quantified Boolean formulas.

Observation 1 Every given qBf ϕ is equivalent to a propositional logic formula ψ, but
its notation is a very abbreviated form of ψ (which is equal to either true or false). The
length |ψ| is exponential in size of the number of quantifiers in ϕ:

∃x1∀x2 . . . QxnF (x1, . . . , xn) ≡ ψ,

where ψ is a formula of length exponential in n, which can be easily shown by induction
over n. 2

If we consider the Satisfiability problem for qBf-formulas, then we investigate the
following similarity to SAT:

ϕ ∈ SAT iff ∃x1 . . . ∃xnϕ ≡ 1,

for ϕ ∈ Fn, n ∈ N. This is quite interesting, as the other side is equal to the set of
formulas which are tautologies (i.e., given a formula ϕ ∈ Fn and for every assignment
θ ∈ Θn, it holds θ |= ϕ):

ϕ ∈ TAUT iff ∀x1 . . . ∀xnϕ ≡ 1.

For a more elaborative introduction to propositional logic with many good examples
and exercises we refer the reader to the textbook [End01].

9



2 Preliminaries

2.2.2 Temporal Logic

In this subsection we will explain all preliminaries around temporal logics, as Kripke
structures and the four examined logics in Chapter 3. For further informations and
examples we refer the reader to the common textbook [CGP99], that had some influence
on our definitions.

First we will start with the structure used to model the system that has to be analyzed.

Definition 5 (Kripke Structure) A Kripke Structure is a four-tupel M = (S,R,
AP, P ) where

• S = {s1, s2, . . . , sn} is a finite set of states for n ∈ N,

• R ⊆ S × S is a total transition relation, such that for every s ∈ S there exists a
s′ ∈ S with (s, s′) ∈ R,

• AP is the set of atomic propositions, and

• P : S → 2AP is a label function that labels a set of atomic propositions to each
single state. 2

An example for such a Kripke structure is given in Figure 1.1 on page 2.

Observation 2 A Kripke structure and a deterministic finite state machine have two
similarities: a finite set of states and a total transition relation. By contrast, in Kripke
structures we have additional properties that can hold in a specific state. 2

In temporal logics we construct formulas, that make statements about infinite paths
in Kripke structures. Such paths are defined in the following definition.

Definition 6 Let M = (S,R,AP, P ) be a Kripke structure. Then an infinite sequence
of states π is a path (in M), i.e., π := s0, s1, s2, . . . if for every i ≥ 0, it holds (si, si+1) ∈
R.

We use πi to denote the suffix of π starting at the i-th state si and π(i) to denote
the i-th state in π. 2

Now we will turn towards the temporal operators that have been motivated in the
introduction. At first, we will give some informal meanings of these operators. Afterwards
in Definition 11, we will formally define them by its semantics.

• X means “next” and requires that a property holds in the second state of a given
path.

• F means “future” or “eventually” and requires that a property holds in some state
of a given path.

• G means “globally” and requires that a property holds in every single state of a
given path.

• U means “until” and requires two properties, where ϕUψ means, that ϕ holds
until a state in which ψ holds.

10



2.2 Formal Logic

We need to remark, that in literature, sometimes the temporal operator R is defined as
the dual operator to U. As we never use R in the appearing formulas in Chapter 3, we
omit the definition.

Observation 3 For the operator U it is possible, that the first property never holds.2

Now after getting a look at the temporal operators, we will give native linguistic
meanings for the two used path quantifiers:

• A means “all” and requires a property to hold in each state for every possible
path starting at a given state.

• E means “exists” and requires a property to hold in each state for a possible path
starting at a given state.

As we now understand how the temporal operators and path quantifiers “work”, we
can make an observation that summarizes the smallest class of operators, quantifiers
and Boolean functions that can express everything.

Observation 4 It suffices to use the operators X,U and E, and the sentential connec-
tives ∨ and ¬ to express the remaining ones:

• ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ)

• Fϕ ≡ trueUϕ

• Gϕ ≡ ¬F(¬ϕ)

• Aϕ ≡ ¬E(¬ϕ) 2

Temporal logic formulas consist of two different types. On the one hand there are path
formulas that hold along a specific path. On the other hand there are state formulas
that hold in a specific state. Now we will define both types.

Definition 7 (State Formulas) Let AP be the set of atomic propositions. Then state
formulas are usually defined inductively as follows:

• If x ∈ AP, then x is a state formula.

• If ϕ and ψ are state formulas, then ¬ϕ,ϕ∧ψ,ϕ∨ψ and ϕ→ ψ are state formulas.

• IF ϕ is a path formula, then Eϕ and Aϕ are state formulas. 2

Definition 8 (Path Formulas) Let AP be the set of atomic propositions. Then path
formulas are usually defined inductively as follows:

• If ϕ is a state formula, then ϕ is a path formula.

• If ϕ and ψ are path formulas, then ¬ϕ,ϕ∧ψ,ϕ∨ψ,ϕ→ ψ,Xϕ,Fϕ,Gϕ and ϕUψ
are path formulas. 2

11



2 Preliminaries

Finally we are able to define the full branching time logic, that is CTL?.

Definition 9 (Computation Tree Logic CTL?) CTL? is the set of all state formu-
las, as defined above. 2

Now there exist two relevant subsets of CTL?: on the one hand we have the branching
time logic CTL, and on the other hand we have the linear time logic LTL. As the Linear
Time Logic LTL is not investigated in our thesis, we omit the definition.

Definition 10 (Computation Tree Logic CTL) CTL is built from the eight opera-
tors

• AX and EX

• AF and EF,

• AG and EG,

• AU and EU.

Thus CTL-formulas consist of the Boolean sentential connectives and these eight temporal
operators with preceding path quantifier. 2

As above, we can make a similar observation concerning the smallest class of needed
operators.

Observation 5 Each of the eight operators can be expressed in terms of the three
operators EX,EG and EU:

• AXϕ = ¬EX(¬ϕ)

• EFϕ = E(trueUϕ)

• AGϕ = ¬EF(¬ϕ)

• AFϕ = ¬EG(¬ϕ)

• A(ϕUψ) = ¬E (¬ψU(¬ϕ ∧ ¬ψ)) ∧ ¬EG¬ψ 2

The two operators that are used most in this thesis are illustrated in Figure 2.1. At
the moment, the models property is defined for the semantics of the propositional logic
world (see Definition 2). Thus we need to extend this definition for the temporal world,
which can be seen in the next definition.

Definition 11 (Temporal model property) Let ϕ1, ϕ2 be state formulas and ψ1, ψ2

be path formulas. Let M = (S,R,AP, P ) be a Kripke structure, π be a path in M and
s ∈ S be a state. Let x ∈ AP be an atomic proposition. Then we define the relation |=
(for the temporal world) inductively as follows:

12



2.2 Formal Logic

s0 s0

ϕ

M, s0 |= EXϕ

ϕϕ

M, s0 |= AXϕ

Figure 2.1: Most used CTL operators in Chapter 3

M, s |= x ⇔ x ∈ P (s)
M, s |= ¬ϕ1 ⇔ M, s 6|= ϕ1

M, s |= ϕ1 ∨ ϕ2 ⇔ M, s |= ϕ1 or M, s |= ϕ2

M, s |= ϕ1 ∧ ϕ2 ⇔ M, s |= ϕ1 and M, s |= ϕ2

M, s |= Eψ1 ⇔ there exists a path π from s such that M,π |= ψ1

M, s |= Aψ1 ⇔ for every path π starting at s, it holds M,π |= ψ1

M,π |= ϕ1 ⇔ s is the first state of π and M, s |= ϕ1

M,π |= ¬ψ1 ⇔ M,π 6|= ψ1

M,π |= ψ1 ∨ ψ2 ⇔ M,π |= ψ1 or M,π |= ψ2

M,π |= ψ1 ∧ ψ2 ⇔ M,π |= ψ1 and M,π |= ψ2

M,π |= Xψ1 ⇔ M,π1 |= ψ1

M,π |= Fψ1 ⇔ there exists a k ≥ 0 such that M,πk |= ψ1

M,π |= Gψ1 ⇔ for all i ≥ 0, it holds M,πi |= ψ1

M,π |= ψ1Uψ2 ⇔ there exists a k ≥ 0 such that M,πk |= ψ2

and for all 0 ≤ j < k, it holds M,πj |= ψ1

Definition 12 (Satisfiability) Let ϕ be an arbitrary temporal path or state formula.
Then ϕ is satisfiable iff there is a Kripke structure M = (S,R,AP, P ) and a state s ∈ S,
such that M, s |= ϕ. 2

Last, we will define the Computation Tree Logic CTL+, which was investigated by
Johannsen and Lange in [JL03].

Definition 13 (Computation Tree Logic CTL+) Let AP be the set of atomic pro-
positions.

• A CTL+-state-formula ϕ is a single atomic proposition x ∈ AP, ϕ ∨ ϕ, ¬ϕ, or
Eψ, where ψ is a CTL+-path-formula.

• A CTL+-path-formula ψ is a single atomic proposition x ∈ AP, ψ ∨ ψ, ¬ψ, Xϕ,
or ϕUϕ, where ϕ is a CTL+-state-formula.

The set CTL+is defined as the CTL+-state-formulas.
Remark: Informally, path formulas can only occur as subformulas of state formulas.

We cannot use consecutively the temporal quantifiers without a path quantifier between

13



2 Preliminaries

s4

S = {s1, s2, s3, s4},

AP = {�,�} and

R = {(s1, s2), (s1, s2), (s3, s3), (s2, s4), (s4, s2)},

P (s1) = �, P (s3) = �, P (s2) = �, P (s4) = �.

s1

s3s2
M = (S,R,AP , P ) with

Figure 2.2: A Kripke structure for Example 1

them (as possible in CTL?). The main difference to CTL? lies in the definition of state
formulas: every state formula is also a path formula. 2

In the following, we give some examples for the defined temporal logics from above.

Example 1 Referring to the Kripke structure shown in Figure 2.2, we will give some
formulas that are fulfilled in M .

First, we will consider CTL?-formulas: M, s1 |= EG�, M, s2 |= A� and M,π |=
�U� for π = (s1, s2, s4, s2, s4, . . . ).

Then, we observe these satisfiable CTL-formulas: M, s1 |= AX(� ∨�) and M, s1 |=
EG(¬� ∧ (AG�)).

Last, we give two examples for a satisfied CTL+-formulas: M, s1 |= � ∨ E((X�) ∨
(�U�)) and M, s1 |= � ∧E((X�) ∧ (�U�)). 2

Finally, we can observe the following relation between the temporal logics:

Observation 6 CTL( CTL+( CTL?. 2

Proof Through the definition of the formulas the direction from left to right is clear.
Now we show the other direction: Let x ∈ AP be an atomic proposition, then XX¬x ∈
CTL?, but XX¬x /∈ CTL+, and clearly XX¬x /∈ CTL. Let ϕ := Ex be a formula,
then ϕ ∈ CTL+, but ϕ /∈ CTL. �

2.2.3 Modal Logic

As we will see in Chapter 3, some proofs will be similar to results in modal logic. Thus
we will give a very short introduction into the theory of modal logics, that will help to
understand these analogies. For a more elaborate introduction in this theory, we refer
to the common textbook [BdRV01].

We start defining the basic modal language using a set of propositional variables
V = {x1, . . . , xn} for n ∈ N and the unary modal operator 3.

Definition 14 (Modal Language) We define the modal language through the syntax
of its formulas. A so-called well-formed formula ϕ is either a single propositional variable
x ∈ V , its negation ¬ϕ, the modal constant falsum ⊥ (“bottom”, that is the same as

14



2.3 Turing Machines and Complexity Classes

the logical false), a disjunction of two modal formulas ϕ∨ϕ, or a modal formula prefixed
by diamond 3ϕ.

The diamond operator’s opposite is the dual operator 2 (“box”), which is defined
by the expression 2ϕ := ¬3¬ϕ. Moreover there are the classical abbreviations for
∧,→,↔ and the modal constant true > = ¬⊥ (“top”). 2

In the following we will determine the more “philosophic” meanings of the operators 2

and 3:

• 3ϕ is read “it is possible that the case ϕ holds”,

• 2ϕ’s meaning is the opposite, that is “it is not possible that not the case ϕ holds”.
Much clearer is “it is necessary that the case ϕ holds”.

Transferring these definitions to Kripke structures that are also defined in the same
way in modal logic, we get the following semantics of the model property and extend
the Definition 11 of the propositional logic model property

Definition 15 Let M = (S,R,AP, P ) be a Kripke structure, ϕ,ψ be modal formulas
and s ∈ S be a state in M . Then the model property M, s |= ϕ is inductively defined
as follows:

• M,ϕ |= x iff x ∈ P (v).

• M,ϕ |= ⊥ never.

• The meanings of ¬ϕ,ϕ ∧ ψ,ϕ ∨ ψ,ϕ→ ψ as usual.

• M,v |= 3ϕ, iff there is a s′ with (s, s′) ∈ R and M, s′ |= ϕ.

• M,v |= 2ϕ iff for all s′, such that (s, s′) ∈ R, it holds M, s′ |= ϕ. 2

Now we can make an observation concerning the similarities between modal logic and
temporal logic, that is important for Chapter 3.

Observation 7 In the following, we show equivalences between operators in temporal
logic and modal logic that rise from the semantics anchored in the Kripke structures:

• 3 matches EX and

• 2 is similar to AX. 2

2.3 Turing Machines and Complexity Classes

Working with decision problems in complexity theory requires an appropriate machine
model to be able to classify these complexity degrees. This model will be a usual Turing
machine, which will be defined below.

A deterministic Turing machine is a 7-tupel M = (S,Σ,Γ, δ, s0,�, F ), where

15



2 Preliminaries

...d... a b c a

read/-writehead

band cell

infinite band

monitor (state)

finite

2 =̂ blank

...2 2 2 2...

Figure 2.3: Schematic of a Turing machine

• S := {s0, s1, . . . , sn} is the finite set of states, for n ∈ N,

• Σ is the finite input alphabet,

• Γ ⊃ Σ is the finite tape alphabet,

• δ : S × Γ→ S × Γ× {L,R,N} is the transition relation,

• � ∈ Γ\Σ is the blank symbol and

• F ⊆ S is the set of accepting states.

The behavior of Turing machines is defined as usual. In Figure 2.3 the typical elements
of a Turing machine are shown. For further informations concerning Turing machines
please consider the textbook [Sch01]. Analogously, we define nondeterministic Turing
machines. We assume the reader is familiar with the concept of the O- and o-notation
(“big-oh” and “little-oh”; for additional information see [Sip07, pp. 252]).

Next, we show in Table 2.1 a summarization of the relevant complexity classes in this
thesis.

Table 2.1: Overview of relevant complexity classes in this thesis

TIME(t) All sets that can be computed by some deterministic Turing ma-
chine M that is time-bounded by the function t : N→ N, that is,
on input x the machine M needs at most c · t(|x|) + d steps until
its computation finishes, for constant c, d ∈ N.

NTIME(t) All sets that can be computed by some nondeterministic Turing
machine M that is time-bounded by the function t : N→ N, that
is, on input x the machine M needs at most c · t(|x|) +d steps until
its computation finishes, for constant c, d ∈ N.

continued on next page

16



2.3 Turing Machines and Complexity Classes

continued from previous page

SPACE(s) All sets that can be computed by some deterministic Turing ma-
chine M that is space-bounded by the function s : N→ N, that is,
on input x the machine M needs at most c · s(|x|) + d cells on its
working tape until its computation finishes, for constant c, d ∈ N.

L All sets that can be computed by some deterministic Turing ma-
chine in logarithmic space; equals SPACE(log(n)).

P All sets that can be computed by some deterministic Turing ma-
chine in polynomial time; equals TIME

(
nO(1)

)
.

NP All sets that can be computed by some nondeterministic Turing
machine in polynomial time; equals NTIME

(
nO(1)

)
.

PSPACE All sets that can be computed by some deterministic Turing ma-
chine in polynomial space; equals SPACE

(
nO(1)

)
.

EXPTIME All sets that can be computed by some deterministic Turing ma-
chine in exponential time; equals TIME

(
2n
O(1)
)

.
2-EXPTIME All sets that can be computed by some deterministic Turing ma-

chine in double exponential time; equals TIME
(

22nO(1)
)

.

After defining the complexity classes, we need to introduce another important concept
in complexity theory: reductions. With reductions, we are able to prove a similarity
between formal languages and decision problems, that is, being contained in the same
complexity class. For example, given a formal language L1 ⊆ Σ? with L1 ∈ P and
another formal language L2 ⊆ Γ?. If we can show, that a function f : Γ? → Σ? exists,
and f is a total function, which is computable in polynomial time, then we achieve
L2 ∈ P, too. In the following, we will strengthen these facts in a definition.

Definition 16 (Polynomial Time Many-One Reduction ≤p
m) Let L1 ⊆ Σ?, and

L2 ⊆ Γ? be two formal languages. L1 is called in polynomial time m-reducible to B, if
there exists a function f : Σ? → Γ? with the following two properties:

• A Turing machine M exists, that computes the output f(x) ∈ Γ? for the given
input x ∈ Σ? in polynomial time.

• For all x ∈ Σ?, it holds x ∈ L1⇔f(x) ∈ L2

We call f a polynomial reduction from L1 to L2, and write L1 ≤p
m L2. 2

As usual for reductions, ≤p
m is reflexive and transitive. Combining the definition of

reductions and complexity classes, we can define two properties of formal languages,
that make a result literally complete.

Definition 17 (Hardness and Completeness) Let C be a complexity class and let
≤ be a reduction. Let L1 be a formal language.

(i) L1 is C-hard, if for all L ∈ C it holds: L ≤ L1.

(ii) L1 is called to be C-complete under ≤, if L1 is C-hard and L1 ∈ C. 2

17



2 Preliminaries

Example 2 Let L ∈ NP be a formal language and for all languages L′ ∈ NP it holds
L′ ≤p

m L. Then we call L a NP-complete language.
Let A be a formal language that is PSPACE-complete. Let A′ /∈ PSPACE be a formal

language and A ≤p
m A′. Then A′ is PSPACE-hard. 2

Completeness is important, as it extends a single statement to a representative of
a whole complexity class. If C is a complexity class, and we show for a set L its
C-completeness, then we can pull the argumentation about the whole class C down
to the single set L. Every result for L is now a result for every member in C. Thus
completeness-results are the favorites of a theoretical computer scientist.

2.4 Clones and Post’s Lattice

In this section we will introduce the mathematical part of Post’s Lattice (for further
informations we refer the reader to [Pip97, Chapter 1]), that are clones. First we will
start to extend the definitions about Boolean functions made in Section 2.2.1.

A n-ary Boolean function is a function f : {0, 1}n → {0, 1}. For example, 0-ary
Boolean functions are the constant functions c0 = 0 and c1 = 1, 1-ary Boolean functions
are id(x) = x (the identity) and not(x) = ¬x, and 2-ary Boolean functions are and, or,
xor (⊕ ), eq (↔) and imp (→).

Let Bn denote the set of all n-ary Boolean functions. Let B be a set of Boolean
functions. The clone [B] of B is the smalltest set of Boolean functions, such that

• B ⊆ [B],

• Ink ∈ [B], for Ink (x1, . . . , xn) = xk and 1 ≤ k ≤ n, and

• if g1, . . . , gm ∈ Bn ∩ [B], f ∈ Bn ∩ [B], then

h(x1, . . . , xn) = f(g1(x1, . . . , xn), g2(x1, . . . xn), . . . , gm(x1, . . . , xn)) ∈ [B],

for n,m ∈ N.

For every finite B0 ⊆ B with [B0] = B, we call B0 a base (or basis) for B. The whole
lattice is shown in Figure 2.4, and a list of all relevant Boolean clones with bases is
shown in Table 2.2.

Example 3 ([BCRV03]) Let B be a set of Boolean functions. Then f ∈ [B] if and
only if f ∈ B ∪ {id} or another function g ∈ [B] and α1, . . . , αn for n ∈ N, that are
either variables or functions from [B] exist, such that f = g(α1, . . . , αn). 2

At first, we define some necessary concepts that are needed for the clones.

Definition 18 ([BCRV03]) A Boolean function f is called

• 1-reproducing if f(1, . . . , 1) = 1,

• self-dual if for all a1, . . . , an ∈ {0, 1} we have f(a1, . . . , an) = ¬f(a1, . . . , an),

• monotonic if for all α, β ∈ {0, 1}n holds: If α ≤ β then f(α) ≤ f(β).

18



2.4 Clones and Post’s Lattice

R1 R0

BF

R2

M

M1 M0

M2

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

I

I1 I0

I2

N2

N

BF

R1 R0

R2

M

M1 M0

M2

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

N2

N

I

I1 I0

I2

Figure 2.4: Post’s Lattice (graphic by Steffen Reith [Rei])

19



2 Preliminaries

Let T ⊆ {0, 1}n. We call T 1-separating if an i ∈ {1, . . . , n} exists such that for all
(b1, . . . , bn) ∈ T holds bi = 1. A function f is called 1-separating of level k if every
T ⊆ f−1(1) with |T | = k is 1-separating. 2

In the following Table 2.2 we give a overview of the relevant clones in this thesis.

Class Definition Base(s)
BF all Boolean functions {∧,¬}
R1 {f ∈ BF | f is 1-reproducing} {∨, x⊕ y⊕ 1}
M {f ∈ BF | f is monotonic} {∧,∨, 0, 1}
M0 M ∩ R0 {∧,∨, 0}
S1 {f ∈ BF | f is 1-separating} {x ∧ y}
S11 S1 ∩M {x ∧ (y ∨ z), 0}
D {f | f is self-dual} {xy ∨ xz ∨ yz}
E2 [{∧}] {∧}
N [{¬}] ∪ [{0}] ∪ [{1}] {¬, 1}, {¬, 0}

Table 2.2: List of all relevant Boolean clones with bases.

For a complete list we refer the reader to [Pip97] or [BCRV03]. In the next example,
we can see how to prove, that for a given function g the containment in another clone
holds, that is g ∈ [{f}].

Example 4 ([BCRV03]) Let f(x, y) := x ∧ y be a Boolean function. To prove, that
the function and(x, y) is in the clone of {f}, we have to find a composition of f ’s that
is equal to and(x, y). As

f(x, f(x, y)) = x ∧ (x ∧ y) = x ∧ (x ∨ y) = (x ∧ x)︸ ︷︷ ︸
≡0

∨(x ∧ y) = and(x, y),

we have shown that containment. For another way to solve that question is to take a
look at Figure 2.4 and Table 2.2. There, we see {f} is the base of the clone S1. As E2

has the base {and} and E2 is a subset of S1, it follows and ∈ S1 = [{f}]. 2

As we now see, Post’s lattice is a strong tool for working with problems, that have a
restricted use of Boolean functions. It helps making statements about restricted sets of
used Boolean functions, and makes it easier to argue about adjacent clones (within the
lattice). If we can achieve a result for a specific clone, then we are able to expand this
result to a “lower” or “upper” for its complexity degree within the lattice. Thus the
result includes all subclones. In Chapter 3, the benefit we get from this structure will
be much clearer to the reader.

2.5 Decision Problems

A decision problem is a subset of the natural numbers N. We define the decision problem
in terms of the set of inputs for which the problem returns yes. The problem is to decide
whether a given number is in the set. Any formal language that can be modeled by
using Gödel numbers is equivalent to a decision problem.

20



2.5 Decision Problems

Example 5 We define the set of prime numbers: PRIME := {x | x is prime}, and the
set of all words written in lower case that are a palindrome: PALINDROME := {u ∈
Σ? | u = uR}, where Σ = {a, b, c, . . . , z} and the operator ·R : Σ? → Σ? mirrors the
given input. PRIME and PALINDROME are decision problems. 2

Decision problems in first order logic and temporal logic are essential for theoretical
computer science. The first set proven to be NP-complete was in fact the Satisfiability
problem SAT in propositional logic (see [Coo71]). Now, we want to give a short list of such
relevant problems in our thesis shown in Table 2.3. Regarding the abbreviatory notation,
“SAT” stands for “Satisfiability”, “MC” denotes the “Model-Checking” problem, and
L ∈ {CTL,CTL+,CTL?,LTL}.

Table 2.3: Relevant decision problems for this thesis

problem input and question
SAT Input : a propositional logic formula ϕ

Question: Is ϕ satisfiable, i.e., exists an assignment θ such that
θ |= ϕ?

3SAT Input : a propositional logic formula ϕ in 3CNF
Question: Is ϕ satisfiable?

QBF Input : a quantified Boolean formula ϕ
Question: ϕ ≡ 1?

QBF-3SAT Input : a quantified Boolean formula ϕ in 3CNF
Question: ϕ ≡ 1?

L-SAT Input : a temporal logic formula ϕ ∈ L
Question: Exists a Kripke structure M = (S,R,AP, P ) and a
state s ∈ S, such that M, s |= ϕ?

L-SAT(A,B) Input : a temporal logic formula ϕ ∈ L, restricted to the temporal
operators and/or quantifiers in the set A and restricted to the
sentential connectives in B.
Question: Exists a Kripke structure M = (S,R,AP, P ) and a
state s ∈ S, such that M, s |= ϕ?

L-MC Input : a temporal logic formula ϕ ∈ L and a Kripke structure
M = (S,R,AP, P )
Question: Exists a state s ∈ S, such that M, s |= ϕ?

L-MC(A,B) Input : a temporal logic formula ϕ ∈ L, restricted to the tem-
poral operators and/or quantifiers in the set A and restricted
to the sentential connectives in B and a Kripke structure M =
(S,R,AP, P ).
Question: Exists a state s ∈ S, such that M, s |= ϕ?

When talking about the satisfiability problem concerning the temporal logic L, and we
want to restrict either the temporal operators (and/or path quantifiers) or the sentential
connectives, then we usually omit the unrestricted set and just write L-SAT(C) for the
restricted class C.

21



2 Preliminaries

22



3 Complexity of Computation Tree Logic

In this chapter we will initially determine the complexity of the temporal logic CTL?

– to be more precise the complexity of the Satisfiability problem of CTL?. As we
know from [SC85] CTL?-MC is PSPACE-complete, which was proven through a two-
steps-reduction from LTL-MC and LTL-SAT. First, we want to analyze fragments of
CTL?-SAT. The whole set was shown to be 2-EXPTIME-hard by Vardi and Stockmeyer
in [VS85]. The containment in 2-EXPTIME was shown by Emerson and Jutla in [EJ00],
which yields its 2-EXPTIME-completeness.

The most common known representative of PSPACE is QBF, that we will use to show
that some fragments of CTL?-SAT are PSPACE-hard. In [Sto77, pp. 12] Stockmeyer
proves the PSPACE-completeness of QBF-3SAT.

3.1 Computation Tree Logic?

For CTL? we determine two kinds of results. First, we have results that yield PSPACE-
hardness for the clones BF and S1, if we restrict the operators to A,E and X. Furthermore
we show, that CTL?-SAT is also 2-EXPTIME-complete for CTL? restricted to the clone
S1 (and all temporal and path operators). Second, we have the restricted parts of R1

and D that can be decided in polynomial time and even in logarithmic space (restricted
to the operators A,E and X).

3.1.1 Results for PSPACE

Formulas for QBF-3SAT have a decent form: we have a block of quantifiers that specify
which assignments must fulfill the set of clauses. A set of clauses is fulfilled by a given
assignment, if every single clause is fulfilled by the assignment. A single clause evaluates
to true iff one of its literals evaluates to true. If you want to visualize this fact for
a given QBF-formula, you usually model the set of all possible assignments through
a complete binary tree: the root represents the first variable to which a 0 in the left
subtree and a 1 in the right subtree is assigned. The two children represent the second
variable and so on. At last we can see that to every leaf there is exactly one assignment,
which is generated by the path to the leaf starting at the root of the tree. Therefore, we
can attach the set of clauses fulfilled by the assignment to every leaf. This binary tree
can be modeled by a Kripke structure and the properties we described above, can be
expressed by temporal logic formula. In the following theorem, we show how this can
be done.

Theorem 1 QBF-3SAT ≤p
m CTL?-SAT. 2

Proof idea Consider a formula ϕ ∈ QBF-3SAT with variables x1, . . . , xn and clauses
C1, . . . , Cm. ϕ is a closed QBF of the form

∃x1∀x2∃x3 . . . ∃xn−1∀xnF

23



3 Complexity of Computation Tree Logic

with F in 3CNF. Then ϕ is satisfiable iff all m clauses can be satisfied regarding to
its quantifiers. With that in mind we take a look at the complete binary tree that
corresponds to all possible assignments for x1, . . . , xn. The quantifiers specify on which
paths in the tree there must be satisfying assignments – with that, they specify which
assignments (the leafs in the tree) must fulfill F .

Additionally, we use the fact that the quantifiers ∀ and ∃ correspond in the temporal
world to A and E.

To get a better understanding for the following proof, we encourage the reader to
jump to Example 6 on page 27, at first.

Proof The proof is inspired by [Sch02, p. 41, Satz 2.16].
Let ϕ ∈ QBF-3SAT be defined as above. Now we construct a formula F ∈ CTL? of

polynomial length with F ∈ CTL?-SAT if and only if ϕ ∈ QBF-3SAT – in other words,
a structure M = (S,R,AP, P ) exists (which has the form of the complete binary tree)
and a state s ∈ S with M, s |= F if and only if ϕ ≡ 1.

We use the following abbreviated notations:

(AX)iψ =

{
ψ, if i = 0
AX(AX)i−1ψ, otherwise

and (AX)(i)ψ = ψ ∧AXψ ∧ · · · ∧ (AX)iψ.

Let

Di = (AX)(n)(qi → (q0 ∧ · · · ∧ qi−1 ∧ qi+1 ∧ · · · ∧ qn)) for all i = 0, . . . , n

Bi = qi →
(
EX

(
qi+1 ∧ xi+1 ∧ C(xi+1)

)
∧EX

(
qi+1 ∧ xi+1 ∧ C(xi+1)

))
,

Si =
((
xi ∧ C(xi)

)
→ AX

(
xi ∧ C(xi)

))
∧

∧
((
xi ∧ C(xi)

)
→ AX

(
xi ∧ C(xi)

))
,

for all i = 0, . . . , n− 1 and C : Vn → F where

C(x) :=
∧
x∈Cj

Cj , where 1 ≤ j ≤ m.

Di makes sure that in each state of the Kripke structure there is only one qi true. Bi
enforces the branching in each state of the level i to two following states in level i+ 1.
Those states shall have complementary assignments with respect to the variable xi+1.
Additionally in each state the clauses corresponding to the literal exist. Si passes each
variable and each clause that exists in the state at level i to the next two following
states in level i+ 1.

24



3.1 Computation Tree Logic?

The whole formula F can be assembled in the following way:

F = q0 ∧
∧ D0 ∧ D1 ∧ . . . ∧ Dn ∧
∧ B0 ∧ AXB1 ∧ (AX)2B2 ∧ (AX)3B3 ∧ . . . ∧ (AX)n−1Bn−1 ∧

∧ AXS1 ∧ (AX)2S1 ∧ (AX)3S1 ∧ . . . ∧ (AX)n−1S1 ∧
∧ (AX)2S2 ∧ (AX)3S2 ∧ . . . ∧ (AX)n−1S2 ∧

...
∧ (AX)n−1Sn−1 ∧

∧ (EXAX)
n
2 (C1 ∧ · · · ∧ Cm).

Claim ϕ ∈ QBF-3SAT iff F ∈ CTL?-SAT. 2

Proof (of Claim)

”⇒“: Let ϕ ∈ QBF-3SAT with variables x1, . . . , xn and clauses C1, . . . , Cm. Now
ϕ is satisfiable if all assignments of the variables concerning the block of quantifiers
fulfill ϕ. That is true if all m clauses are true under all those assignments. F forces
all Kripke structures M = (S,R,AP, P ) to be of the form of a complete binary tree in
which the root node is a state s ∈ S with P (s) 3 q0. Running through the levels to the
bottom of the tree, you see which clauses are fulfilled by whichever literal. Each leaf
of the tree corresponds to exactly one assignment. Because of F ’s structure, each leaf
contains all fulfilled clauses by the assignment. The last term

(EXAX)
n
2 (C1 ∧ · · · ∧ Cm)

in F makes sure that each leaf, that corresponds to a must-fulfilling assignment, has to
contain all m clauses. As such a Kripke structure exists, F is in CTL?-SAT.

”⇐“: Let F ∈ CTL?-SAT be defined as above. Let M be the fulfilling Kripke
structure. Because of F ∈ CTL?-SAT the term

(EXAX)
n
2 (C1 ∧ · · · ∧ Cm)

is true in M . Thus each of those specified states contains C1, . . . , Cm. In particular,
those states contain for each variable xi either the literal xi or ¬xi. From that we can
verify that each of those assignments fulfills ϕ: let L be the set of leafs that are specified
by (EXAX)

n
2 , let λ ∈ L be one arbitrary leaf and let l1, . . . , ln be the literals contained

in λ. Because M, s |= F and P (s) 3 q0 we know that C1, . . . , Cm ∈ λ, too. Hence
C1 ∧ · · · ∧ Cm will be fulfilled by the following assignment:

θ(xi) =

{
1, if li = xi

0, otherwise

for i = 1, . . . , n. We can do this now for each λi ∈ L, and can obtain all related
assignments which are models for C1 ∧ · · · ∧ Cm. Thus ϕ ∈ QBF-3SAT. �

25



3 Complexity of Computation Tree Logic

Finally, we need to show that the reduction from above can be computed in polynomial
time:

|Di| ∈ O(n3), |Bi| ∈ O(m), |Si| ∈ O(m)
|F| = (n · |Di|)+

+ (n · |Bi|+O(n2))+
+ (n · |S1|+ n · (n− 1))+
+ ((n− 1) · |S2|+ n · (n− 1)− 2)+
+ ((n− 2) · |S3|+ n · (n− 1)− 2− 4)+
...
+ (|Sn−1|+ n · (n− 1)− 2− 4− · · · − (n− 2))

Thus |F| ∈ O(|ϕ|4). To compute the reduction 〈ϕ〉 7→ 〈F〉, we first need to analyze the
number of variables and clauses in the given qBf. Then, we construct the CTL?-formula
F . Consequently, we need to analyze the fulfilled clauses in F for each possible literal
(that can be done in TIME(O(n · |F |))). The size of F and the needed computations are
bounded by polynomials, and hence can be computed in polynomial time. Furthermore,
the reduction function is total, and altogether QBF-3SAT is polynomial m-reducible to
CTL?-SAT, and we have QBF-3SAT ≤p

m CTL?-SAT. �

Now, we can observe the following fact: let ϕ be a closed QBF-formula, where

ϕ = Q1x1Q2x2 . . . QnxnF,

and F is in CNF, and Qi ∈ {∀, ∃}, 1 ≤ i ≤ n. Then we need to adjust the part
(EXAX)

n
2 (C1 ∧ · · · ∧ Cm) of the formula F in the following:

Q1Q2 . . .Qn(C1 ∧ · · · ∧ Cm),

where

Qi =

{
EX , if Q1 = ∃
AX , otherwise.

With this adjustment we have a working reduction for arbitrary QBF-3SAT-formulas
with an arbitrary block of quantifiers.

Summarizing the proven theorem, we have a straight reduction from the PSPACE-
complete QBF-3SAT to CTL?-SAT, but not really to the whole set. Looking at the
used Boolean functions, temporal operators and path quantifiers, we see that some parts
of this logic are not used. This reduction leads to the fragment which is restricted to
the operators A, E and X, and all Boolean functions (as ∧ and ¬ occur, which are a
basis for the clone BF).

As we started at QBF-3SAT, we found the first PSPACE-hard fragment for the
Satisfiability problem in the logic CTL?: CTL?-SAT({A,E,X},BF).

To illustrate the proof to Theorem 1, we want to give a short example and show
therewith how to apply the stated reduction correctly.

26



3.1 Computation Tree Logic?

Example 6 Let ϕ := ∃x1∀x2∃x3∀x4

(
(x1 ∨ x2 ∨¬x3) ∧ (x4 ∨ ¬x1 ∨ x2)

)
, which is true,

as

∃x1∀x2∃x3∀x4

(
(x1 ∨ x2 ∨ ¬x3) ∧ (x4 ∨ ¬x1 ∨ x2)

)
≡ ∃x1∀x2∃x3

(
(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2)

)
∧

∃x1∀x2∃x3(x1 ∨ x2 ∨ ¬x3)

≡
(
∃x1∀x2(¬x1 ∨ x2) ∨ ∃x1∀x2

(
(x1 ∨ x2) ∧ (¬x1 ∨ x2)

))
∧(

∃x1∀x2(1) ∨ ∃x1∀x2(x1 ∨ x2)︸ ︷︷ ︸
≡1

)
≡
(
∃x1(¬x1) ∧ ∃x1(1)︸ ︷︷ ︸

≡1

)
∨
(
∃x1(x1 ∧ ¬x1) ∧ ∃x1(1)︸ ︷︷ ︸

≡0

)
≡ (1 ∨ 0) ≡ 1

Now we construct the formula F through the method given by Theorem 1.

F = q0 ∧D0 ∧D1 ∧D2 ∧D3 ∧D4∧
∧B0 ∧AXB1 ∧AXAXB2 ∧AXAXAXB3∧
∧AXS1 ∧AXAXS1 ∧AXAXAXS1∧
∧AXAXS2 ∧AXAXAXS2 ∧AXAXAXS3∧
∧EXAXEXAX(C1 ∧ C2)

= q0 ∧ (AX)(4)(q0 → (q1 ∧ q2 ∧ q3 ∧ q4))∧ (3.1)

∧ (AX)(4)(q1 → (q0 ∧ q2 ∧ q3 ∧ q4)) ∧ (AX)(4)(q2 → (q0 ∧ q1 ∧ q3 ∧ q4))∧ (3.2)

∧ (AX)(4)(q3 → (q0 ∧ q1 ∧ q2 ∧ q4)) ∧ (AX)(4)(q4 → (q0 ∧ q1 ∧ q2 ∧ q3))∧ (3.3)

∧
(
q0 →

(
EX(q1 ∧ x1 ∧ C1) ∧EX(q1 ∧ x1 ∧ C2)

))
∧ (3.4)

∧AX
(
q1 →

(
EX(q2 ∧ x2 ∧ C1 ∧ C2) ∧EX(q2 ∧ x2)

))
∧ (3.5)

∧ (AX)2
(
q2 →

(
EX(q3 ∧ x3) ∧EX(q3 ∧ x3 ∧ C1)

))
∧ (3.6)

∧ (AX)3
(
q3 →

(
EX(q4 ∧ x4 ∧ C2) ∧EX(q4 ∧ x4)

))
∧ (3.7)

∧AX
((

(x1 ∧ C1)→ AX(x1 ∧ C1)
)
∧
(
(x1 ∧ C2)→ AX(x1 ∧ C2)

))
∧ (3.8)

∧ (AX)2
((

(x1 ∧ C1)→ AX(x1 ∧ C1)
)
∧
(
(x1 ∧ C2)→ AX(x1 ∧ C2)

))
∧ (3.9)

∧ (AX)3
((

(x1 ∧ C1)→ AX(x1 ∧ C1)
)
∧
(
(x1 ∧ C2)→ AX(x1 ∧ C2)

))
∧ (3.10)

∧ (AX)2
((

(x2 ∧ C1 ∧ C2)→ AX(x2 ∧ C1 ∧ C2)
)
∧
(
(x2)→ AX(x2)

))
∧ (3.11)

∧ (AX)3
((

(x2 ∧ C1 ∧ C2)→ AX(x2 ∧ C1 ∧ C2)
)
∧
(
(x2)→ AX(x2)

))
∧ (3.12)

∧ (EXAX)2(C1 ∧ C2) (3.13)

Line (3.1) to (3.3) force for each level, that q1, . . . q4 cannot hold simultaneously, and
q0 holds in the “first” state at level 0. (3.4) to (3.7) built the “binary tree” and (3.8)
to (3.12) ensure the binding of the literals and fulfilled clauses to the associated states.
Finally, (3.13) forces all clauses to be true in the appropriate state (specified by the
quantification). In Figure 3.1 on page 29, we show one fulfilling Kripke structure. The

27



3 Complexity of Computation Tree Logic

thick arrows emphasize the fulfilling paths through the structure. As we need to fulfill
(EXAX)2(C1 ∧ C2) for achieving satisfiability, we chose the following path:

• first we chose the x1-way,

• then we must fulfill in both ways, whether x2 or x2 is chosen,

• there we can chose x3, and we will always get a satisfying result (whether x4 or
x4 is used).

We have to remark, that the given Kripke structure in Figure 3.1 is simplified. Of
course, there must be a successor for each “q4”-state, what we can achieve by using
a loop to itself without any loss of generality. Then, the atomic propositions are not
complete for the “q2”- and “q3”-states – the atomic propositions from the predecessor-
state must be carried over. Applying these changes, we have M, q0 |= F . 2

In the following corollary we state the previously mentioned hardness result.

Corollary 1 CTL?-SAT({A,E,X},BF) is PSPACE-hard. 2

Regarding Post’s Lattice and the problem CTL?-SAT({A,E,X}), we have shown
PSPACE-hardness for the clone BF. In our next step, we want to analyze whether this
hardness result can be carried over to clones below BF. The easiest way to prove that
is in stating a ≤p

m-reduction from CTL?-SAT({A,E,X},BF) to CTL?-SAT({A,E,X},
B), where B is the “new examined” clone below BF.

Theorem 2 CTL?-SAT({A,E,X},BF) ≤p
m CTL?-SAT({A,E,X}, {x ∧ y, 1}). 2

Proof To prove this theorem we show that each function in the base {∧,¬} can
be represented with functions of the base {x ∧ y, 1}, and these substitutions are of
polynomial length. For ¬ we use the function

f¬(x) := 1 ∧ x,

and for ∧ we use the function

f∧(x, y) := x ∧ (f¬(y)).

Those substitutions are only of constant length and they do not change the satisfiability.
Thus CTL?-SAT({A,E,X}, {∧,¬}) ≤p

m CTL?-SAT({A,E,X}, {x ∧ y, 1}). �

The reduction from the previous theorem yields PSPACE-hardness for that basis of
Boolean functions.

Corollary 2 CTL?-SAT({A,E,X}, {x ∧ y, 1}) is PSPACE-hard. 2

In the following theorem, we investigate PSPACE-hardness for the clone S1 with its
basis {x ∧ y}. We will use a very central knack, that will appear in several later proofs
again.

Theorem 3 CTL?-SAT({A,E,X}, {x ∧ y, 1}) ≤p
m CTL?-SAT({A,E,X}, {x ∧ y}). 2

28



3.1 Computation Tree Logic?

x1, x2, x3, x4, C1, C2

x4

x4

x4, C2

x4, C2

x4

x4

x4, C2

q0

q1

q2

q3

q4

q4

q4

q3

q4

q4

q4

q3

q2

q3

q4

q4

q4

q3

q2

q4

q4

q3

q4

q4

q4

q4

q4

q3

q3

q2

q1

x3

x1, C2

x3

x3, C1

x3

x3, C1

x4

x4, C2

x4, C2

x4

x3, C1

x4

x4

x4, C2

x4, C2

x3

x3, C1
x2

x1, C1

x2, C1, C2

x2

x2, C1, C2

x1, x2, x3, x4, C1, C2

x1, x2, x3, x4, C1, C2

x1, x2, x3, x4, C2

x1, x2, x3, x4, C2

x1, x2, x3, x4, C1, C2

x1, x2, x3, x4, C1, C2

x1, x2, x3, x4, C1, C2

x1, x2, x3, x4, C1, C2

x1, x2, x3, x4, C1, C2

x1, x2, x3, x4, C1, C2

x1, x2, x3, x4, C1, C2

x1, x2, x3, x4, C1

x1, x2, x3, x4, C1

x1, x2, x3, x4, C1, C2

x1, x2, x3, x4, C1, C2

x4, C2

Figure 3.1: Kripke structure for Example 6

29



3 Complexity of Computation Tree Logic

Proof We follow the argumentation of the proof to Theorem 3.8 in [BHSS06].
Let ϕ ∈ CTL?-SAT({A,E,X}, {x ∧ y, 1}). Let the function d : Fn → N compute the

depth of a given CTL?-formula, which means the number nested Xs (that depth can
be computed in polynomial time in |ϕ|). Now replace every occurence of 1 with a new
variable t and force t to be true in every relevant state of the depending Kripke structure
by adding the term of conjunctions

d(ϕ)∧
i=0

(AX)it.

This is a conjunction of linear many terms (since d(ϕ) ≤ |ϕ|). Now, we only need
to express the ∧’s with the function f∧ used in the proof to Theorem 2 and get a
satisfiability-equivalent formula ϕ′ ∈ CTL?-SAT({A,E,X}, {x ∧ y}). This reduction
is total and can be computed in polynomial time. Thus we have stated the desired
reduction. �

Corollary 3 Let B be a set of Boolean functions and S1 ⊆ [B]. Then CTL?-SAT({A,
E,X}, B) is PSPACE-hard and CTL?-SAT(B) is 2-EXPTIME-complete. 2

Proof For CTL?-SAT({A,E,X}, B) we can use the reduction from Theorem 3, since
{x∧y} is the base of S1. For CTL?-SAT(B), we reduce the same way as above and can
keep its 2-EXPTIME-completeness. �

Our last step for PSPACE-hard fragments will concern the clone S11, but we will not
be able to improve the lower complexity bound for CTL?-SAT({A,E,X}). Instead we
will state a theorem that results from [Hal95], where Halpern proves an equivalent fact
in the modal world.

Theorem 4 CTL?-SAT({A,E,X},BF) for formulas with only a single atomic propo-
sition is PSPACE-hard. 2

Proof Let A = Q1p1 . . . QmpmA
′ be a given qBf, where Qi ∈ {∃,∀},m ∈ N, and A′

is a propositional formula with variables are among p1, . . . , pm. We will now construct
a formula ψA that is satisfiable in a Kripke structure M iff A is true. We follow the
construction in our Theorem 2, and force the structure to look like a tree of truth
assignments. Again, each of the leaves of the tree encodes a distinct truth assignment
to the variables, and for the case that A is satisfiable, all necessary assignments should
be contained in this tree.

We now need the atomic propositions p1, . . . , pm and d0, . . . , dm+1, where the di
denote the depth i in the tree of truth assignments. Let

depth :=
m+1∧
i=1

(di ⇒ di−1)

be the formula, that simulates the relations between the di’s.
The following formula determined forces the truth value of pi is determined by depth

i, and carries the value of pi over to the proceeding states:

30



3.1 Computation Tree Logic?

determined :=
m∧
i=1

(di ⇒ ((pi ⇒ AX(di ⇒ pi)) ∧ (¬pi ⇒ AX(di ⇒ ¬pi)))).

Finally let branchingA simulate the quantification of A: if Qi+1 is ∀, then each node
s at depth i has two successors of depth i + 1 (one at which pi+1 is true and one at
which pi+1 is false), against what if Qi+1 is ∃, then s has at least one successor of depth
i+ 1. Then branchingA is{

((di ∧ ¬di+1)⇒ (EX(di+1 ∧ ¬di+2 ∧ pi+1) ∧EX(di+1 ∧ ¬di+2 ∧ ¬pi+1))) , if Qi+1 = ∀
((di ∧ ¬di+1)⇒ EX(di+1 ∧ ¬di+2)) , if Qi+1 = ∃.

Last, we can construct our final formula

ψ := d0 ∧ ¬d1 ∧
m∧
i=0

(AX)i(depth ∧ determined ∧ branchingA ∧ (dm ⇒ A′)).

In the same way as in Theorem 2, it can be shown that ψ is satisfiable in a Kripke
structure M if and only if A is true.

Next, we want to modify this reduction to a single atomic proposition. Let

qj := EX(¬p ∧ (EX)jp),

for j ≥ 1. Let M = (S,R,AP, P ) be a fulfilling Kripke structure. We see qj is true at
a given state s if there is a path s0, s1, . . . , sj , where s0 = s, (si, si+1) ∈ R, M, s1 |= ¬p,
and M, sj |= p. As written in [Hal95] all those formulas q1, q2, . . . are completely
independent, and thus we can replace p1, . . . , pm, d0, . . . dm+1 in ψ by q1, q2, . . . , q2m+2.
The resulting formula is satisfiable iff A is true, and the stated theorem applies. �

The next step for showing PSPACE-hardness for the clone S11 and the problem
CTL?-SAT, is finding a ≤p

m-reduction over to the clone M0. Speaking about the modal
world, this can be done as shown in [Hem05, Theorem 6.7], with proving PSPACE-
hardness for formulas without atomic propositions. It is not possible to adjust this proof
to the temporal world, because Kripke structures have a total transition relation and
the knack in [Hem05, Theorem 6.7] relies on that point (where the relation must not be
total). As for CTL?-SAT({A,E,X},BF) we cannot follow that step, and hence we are
not able to state a ≤p

m-reduction from CTL?({A,E,X},BF)-formulas without atomic
propositions to CTL?({A,E,X},M0)-formulas (which would be the way in modal world).
Therefor we must leave this gap between CTL?-SAT({A,E,X},BF) for formulas with
one atomic proposition and CTL?({A,E,X},M0). If a reduction to M0 from BF exists,
then we are able to state PSPACE-hardness for S11, too. But first, we show that
CTL?-SAT({A,E,X},BF) for formulas with no atomic propositions can be decided in
P.

Theorem 5 CTL?-SAT({A,E,X},BF) without atomic propositions is in P. 2

31



3 Complexity of Computation Tree Logic

Proof Let ϕ ∈ CTL?({A,E,X},BF) be an arbitrary temporal formula. We show that
by a case-by-case induction ϕ can be evaluated as propositional logic formula without
variables.

1) ϕ := X0: There exists no Kripke structure M = (S,R,AP, P ) and an infinite path
π with M,π |= ϕ, because always M,π1 6|= 0 (logic false is never satisfied in a state).

2) ϕ := X1: Every Kripke structure M and every infinite path π fulfills ϕ, because
M,πi |= 1 (logic true is satisfied in any state).

3) ϕ := EX0 or ϕ := AX0: Because of the same reasons as for 1) logic false is never
satisfied in a state.

4) ϕ := EX1 or ϕ := AX1: Because of the same reasons as for 2) logic true is always
satisfied in any state.

Hence we only need to take care about each 0-1-expression in the particular state.
For that we only need to handle each expression stepwise which should be true in the
same state. This can be done in the same way as for evaluating a complete logical
expression over the Boolean functions in BF and the constants 1 and 0. In other
words, we only evaluate a propositional logic formula with an assignment applied to it
(and do that stepwise). Obviously this can be done in polynomial time. Thus CTL?-
SAT({A,E,X},BF) without atomic propositions is in P. �

In the following we will give some examples to illustrate the proof for the previous
theorem.

Example 7 With “=” we denote an equal transformation (like known from the propo-
sitional logic, e.g., 0 ∨ 1 = 1).

(a) EX((EXX0) ∨ (EX1)) ∨ (EXEXX1) = EX(0 ∨ 1) ∨ 1 = EX(1) ∨ 1 which is
satisfiable in any Kripke structure.

(b) There exists no satisfying Kripke structure for A0 ∧ ψ, where ψ is an arbitrary
formula without atomic propositions in CTL?({A,E,X},BF). 2

If it can be shown, that we can also prove PSPACE-hardness, then we are able to state
the collapse of the polynomial time hierarchy.

Corollary 4 If CTL?-SAT({A,E,X},BF) without atomic propositions is PSPACE-
hard, then P = PSPACE. 2

Proof Let CTL?-SAT({A,E,X},BF) without atomic propositions be PSPACE-hard.
As shown in Theorem 5, CTL?-SAT({A,E,X},BF) is in P. With its PSPACE-hardness
we are able to reduce all problems in PSPACE within polynomial time to the prob-
lem CTL?-SAT({A,E,X},BF) without atomic propositions, and decide it through the
stated P-algorithm. Hence all problems in PSPACE can be solved in polynomial time,
and thus P = PSPACE. �

32



3.1 Computation Tree Logic?

Now we show that a ≤p
m-reduction from M0 to S11 exists. This can be helpful to show

a possible PSPACE-hardness for S11 with arguing about M0.

Theorem 6 CTL?-SAT({A,E,X}, {∧,∨, 0}) ≤p
m CTL?-SAT({A,E,X},S11). 2

Proof Let ϕ ∈ CTL?-SAT({A,E,X}, {∧,∨, 0}). As in Theorem 2 we need to express
the base {∧,∨, 0} with the base of S11 = {x ∧ (y ∨ z), 0}. But at first, we do this with
[S11 ∪ {1}] = M :

f∧(x, y) := x ∧ (y ∨ 0)
f∨(x, y) := 1 ∧ (x ∨ y)

and for 0 we do not need any substitution as 0 ∈ S11. By now, the given functions are
in [S11 ∪{1}] = M. To achieve S11 we use the same knack as in the proof to Theorem 3
and replace each occurrence of 1 with a new variable t which is set to true in all states
by adding the same conjunction

d(ϕ)∧
i=0

(AX)it.

As stated in the proof to Theorem 3 the given reduction can be computed in polynomial
time. Therefore the theorem applies. �

Recapitulating the shown results for CTL?-SAT({A,E,X}), we have PSPACE-hardness
for the clones BF,R0 to S1, and showed the problem for S11 is of the same degree
as M0. Then we stated in Theorem 5 that for each CTL?-SAT({A,E,X})-formula
without any atomic propositions, it can be decided in polynomial time whether a
fulfilling Kripke structure exists or not. The PSPACE-hard results are illustrated with
red colored circles in Figure 3.2.

Furthermore, we were able to pull the 2-EXPTIME-completeness bound for CTL?-SAT
down to the clone S1.

3.1.2 Results for P and L

In this subsection, we investigate formulas for CTL?, that will only be restricted to
Boolean functions – all temporal operators and path quantifiers will stay available.
In the next theorem we will examine the complexity of CTL? restricted to Boolean
functions of the clone R1.

Theorem 7 Let B be a finite set of Boolean functions such that [B] ⊆ R1. Then
CTL?-SAT(B) is in P. 2

Proof Let ϕ ∈ CTL? be a formula restricted to the Boolean functions of R1 =
[{∨, x⊕ y⊕ 1}], and let AP be the set of atomic propositions. We will show that a
Kripke structure M which is a model for ϕ exists for every such formula. We define
M = (S,R,AP, P ) as follows:

S := {s}
R := {(s, s)}

P (s) := AP.

33



3 Complexity of Computation Tree Logic

R1 R0

BF

R2

M

M1 M0

M2

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

I

I1 I0

I2

N2

N

BF

R1 R0

R2

M

M1 M0

M2

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

N2

N

I

I1 I0

I2

PSPACE-hard

Figure 3.2: PSPACE-hard fragments for CTL?-SAT({A,E,X})

34



3.1 Computation Tree Logic?

s

P (s) = AP

Figure 3.3: Kripke structure M for Theorem 7

M is visualized in Figure 3.3. Now we prove by induction on the length of ϕ that
M, s |= ϕ.

Initial Step. ϕ = x and x ∈ AP is an atomic proposition. Then M, s |= ϕ is true,
because x ∈ P (s).

Inductive Steps. Let ϕ,ψ ∈ CTL?(R1) be formulas, let x be a new atomic proposition.
Let u = (s, s, . . . ) be a path in M . Then

• ϕ ∨ x is true because each atomic proposition of ϕ is in P (s) and x ∈ P (s), too,

• the same holds for ϕ⊕x⊕ 1, because ϕ⊕x ≡ 0 and 0⊕ 1 ≡ 1,

• M,u |= Xϕ is always true, because the atomic propositions of ϕ are in P (s) and
(s, s) ∈ R,

• M,u |= ϕUψ is always true, because for any k ≥ 0 the following holds in a trivial
way (atomic propositions of ϕ,ψ are in P (s))

M,uk |= ψ and for each 0 ≤ j < k : M,uj |= ϕ,

• M,u |= Fϕ is always true, because all atomic propositions from ϕ are in P (s),

• M,u |= Gϕ is always true, because ϕ holds in each state on the path u,

• M, s |= Aϕ is always true, because of the s-loop and

• M, s |= Eϕ is true, as M,u |= ϕ.

Thus every arbitrary formula ϕ ∈ CTL?(R1) is also in CTL?-SAT which can be decided
in polynomial time. According to the precondition [B] is a subset of R1. Hence we only
need to check whether we have 1-reproducing functions or not, which can be done in
polynomial time. Hence we have proven the stated theorem. �

Corollary 5 Let B be a finite set of Boolean functions such that [B] ⊆ R1. Then
CTL?-SAT(B) is in L. 2

Proof As stated in Theorem 7 all CTL?(R1)-formulas, and all CTL?(B)-formulas with
[B] ⊆ R1 are satisfiable. Hence we only need to check the syntactical correctness of the
formula, which can be done in L. �

As we can see now, the question whether a given temporal logic formula in CTL?

restricted to functions of clone R1 (or any other clone below R1) is satisfiable, is very
easy to decide, i.e., in logarithmic space. As R1 is nearly on the top of Post’s Lattice (it

35



3 Complexity of Computation Tree Logic

is one of the clones that are directly below the clone of all Boolean functions BF), a
very huge part of the lattice is included in R1, and hence as easy to decide.

Further, we will show a similar result for the clone D. Besides, the proof for the
theorem has its roots in the world of modal logic.

Theorem 8 Let B be a finite set of Boolean functions such that [B] ⊆ D. Then
CTL?-SAT(B) is in P. 2

Proof idea We follow the proof of Lemma 3.13 in [BHSS06].
As D contains all self-dual functions (f(a1, . . . , an) = ¬f(a1, . . . , an)), we can easy

find a Kripke structure that is a model for a given formula ϕ ∈ CTL?(D). As in
Theorem 7, the main idea is to work with a Kripke structure that consists of a single
state with only a looping edge to itself. First, we start labeling all atomic propositions
to the single state. If we do not get satisfiability by now, we just remove all propositions
from the state. Since ϕ only contains self-dual functions the now obtained labeling in
the Kripke structure transforms to a satisfying model.

Proof Let M = (S,R, P ) be the Kripke structure of the proof of Theorem 7. Thus
P (s) = AP. Let M = (S,R, P ) the same Kripke structure but P (s) = ∅. We prove by
induction on the length of ϕ that M, s |= ϕ iff M, s 6|= ϕ.

Initial Step. Let ϕ = x for a single atomic proposition x. Then M, s |= ϕ because
x ∈ P (s), and hence M, s 6|= ϕ and M, s |= ϕ.

Inductive Steps. Let M, q |= ϕ and let u = (s, s, . . . ) be a path in M and M ,
respectively. Let M, s |= ψ. Then

• Aϕ,Eϕ,Xϕ ∈ CTL?-SAT(D), since by induction ϕ is satisfied in M, s iff ϕ is
false in M, s.

• M,u |= ϕUψ because for any k ≥ 0 the following holds due to the s-loop:

M,uk |= ψ and for each 0 ≤ j < k : M,uj |= ϕ

iff

M,uk 6|= ψ and for each 0 ≤ j < k : M,uj 6|= ϕ.

• Fϕ,Gϕ ∈ CTL?-SAT(D) because either all atomic propositions are in P (s) (thus
they are satisfied in M, s) or none (therefore they are satisfied in M, s).

• Now let ψ = g(ϕ1, . . . , ϕn) for g ∈ D and ϕ1, . . . , ϕn ∈ CTL?-SAT(D). Since
g ∈ D it holds that M, s |= g(ϕ1, . . . , ϕn) iff M, s |= ¬g(¬ϕ1, . . . ,¬ϕn). By
induction, M, s |= ¬g(¬ϕ1, . . . ,¬ϕn) is equivalent toM, s |= ¬g(ϕ1, . . . , ϕn) which
is the same as M, s 6|= g(ϕ1, . . . , ϕn).

Thus we just need to check whether M, s |= ϕ or M, s |= ϕ for a given CTL?(D)-formula
to obtain a satisfying structure. This test can be done in polynomial time.

As mentioned in the Theorem 7, our precondition states [B] is a subset of D, and
with that, we have shown the containment in P. �

Corollary 6 Let B be a finite set of Boolean functions such that [B] ⊆ D. Then
CTL?-SAT(B) is in L. 2

36



3.2 Computation Tree Logic

Proof Every formula ϕ ∈ CTL?(D), and in particular every formula in CTL?(B) with
[B] ⊆ D is satisfiable as we see in the proof by induction in Theorem 8. Thus we only
need to check the correct syntax of ϕ which is in L. �

In conclusion of this subsection, we have shown that huge parts of Post’s Lattice are
very easy to decide regarding the temporal logic CTL?, because R1 is on the top of the
lattice and has many subclone-elements.

This is very interesting, as for R0 we got a PSPACE-hardness result in contrast to
L for R1. Concerning the previous section, we complete the illustration of our results
of Figure 3.2 in the new Figure 3.4 on page 38, where the green circles denote the
complexity degree L.

3.2 Computation Tree Logic

In this section we examine the more restricted branching time logic CTL. We will
transfer the results from Section 3.1 to this logic and expand them to a completeness
result. First, we start with a section about the PSPACE-results, and will prove the
containment in PSPACE for the logic restricted to the CTL-quantifiers AX and EX.
Later on, we observe similar results to the Section 3.1.2 for the classes P and L in our
second subsection.

3.2.1 Results for PSPACE

Theorem 9 CTL-SAT({AX,EX},BF) is in PSPACE. 2

Proof To prove this theorem we will state an algorithm whose needed space is bounded
by a polynomial. Therefore, we adapt the algorithm K-World from [Lad77, Theorem
5.1] to the temporal world.

At first we will define a recursive procedure StateCheck (see Algorithm 3.1 one
page 39) which operates with the four parameters T ,F , T̃ and F̃ that will evolve
into sets of atomic propositions. The procedure will return true if a Kripke structure
(S,R,AP, P ) and a state s ∈ S exist, such that

M, s |=
∧
ϕ∈T

ϕ ∧
∧
ϕ∈F

¬ϕ ∧
∧
ϕ∈T̃

AXϕ ∧
∧
ϕ∈F̃

¬AXϕ

is true. Informally, all atomic propositions in T have to be true in the specific state s
and all atomic propositions in F have to be false in s. Then each accessible state s′

from s (hence (s, s′) ∈ R) must fulfill the members from T̃ and a reachable state exists
that does not include the propositions in F̃ .

We assume without any loss of generality the formula does not contain any E’s
(¬A¬f ≡ Ef) or ∨’s (g ∨ f ≡ ¬(¬g ∧ ¬f)). Thus we only need to check the AX- and
∧-case.

The main idea of Algorithm 3.1 on page 39 is a level-based search for contradictory
propositions. The sets T and F must be disjunct, and the same for the global sets
T̃ and F̃ . First, the algorithm starts to extract the atomic propositions for a given

37



3 Complexity of Computation Tree Logic

R1 R0

BF

R2

M

M1 M0

M2

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

I

I1 I0

I2

N2

N

BF

R1 R0

R2

M

M1 M0

M2

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

N2

N

I

I1 I0

I2

PSPACE-hard

solvable in L

Figure 3.4: PSPACE-hard fragments for CTL?-SAT({A,E,X}), and clones in L

38



3.2 Computation Tree Logic

Algorithm 3.1 StateCheck(T ,F , T̃ , F̃ )
1: if T ∪F 6⊆ AP then
2: Choose α ∈ {T ∪F}\AP
3: if α = ¬β and α ∈ T then
4: return StateCheck(T \{α},F ∪ {β}, T̃ , F̃ );
5: else if α = ¬β and α ∈ F then
6: return StateCheck(T ∪ {β},F\{α}, T̃ , F̃ );
7: else if α = β ∧ γ and α ∈ T then
8: return StateCheck((T ∪ {β, γ})\{α},F , T̃ , F̃ );
9: else if α = β ∧ γ and α ∈ F then

10: return StateCheck(T , (F ∪ {β})\{α}, T̃ , F̃ )∨
StateCheck(T , (F ∪ {γ})\{α}, T̃ , F̃ );

11: else if α = AXβ and α ∈ T then
12: return StateCheck(T \{α},F , T̃ ∪ β, F̃ );
13: else if α = AXβ and α ∈ F then
14: return StateCheck(T ,F\{α}, T̃ , F̃ ∪ β);
15: end if
16: end if
17: if T ∪F ⊆ AP then
18: if T ∩F 6= ∅ then
19: return false;
20: else
21: return

∧
β∈F̃ StateCheck(T̃ , {β}, ∅, ∅)

22: end if
23: end if

39



3 Complexity of Computation Tree Logic

formula and puts the received propositions in their respective sets. Stepwise until all
propositions are checked for the actual state, the global propositions are inspected as
if they belong to one single state. If there are none contradictions, then a fulfilling
Kripke structure exists for the investigated formula ϕ ∈ CTL({AX,EX},BF) and the
algorithm returns true.

The underlying test of satisfiability is the following procedure-call, described in Al-
gorithm 3.2.

Algorithm 3.2 CTL-AEX-Sat

Require: ϕ ∈ CTL({A,E,X},BF);
1: value← StateCheck({ϕ}, ∅, ∅, ∅);
2: return value;

Finally, we determine the space complexity of the Algorithm 3.1. In each recursive
call we need to carry over the elements of each set. Therefore we use pointers for each
subformula – this can be implemented by special type of marks for each of the four
subsets. Thus the storage in each recursive step is bounded by O(n) related to the
given input length of |ϕ| = n.

Thereafter, we need to examine the depth of the recursion. Let S be a finite set of
formulas and define |S | =

∑
α∈S |α|. Now, we will prove by induction over |ϕ| = n

that the depth of the recursion is bounded by 2 · n.
Initial step. Let |ϕ| = 1. Now T ∪F ⊆ AP and let the first recursive call be denoted

by the upper single quotation ”
′“. Then |T ′|+ |F ′|+ |T̃ ′|+ |F̃ ′| = 1 ≤ 2.

Inductive Steps. Assume the result for all numbers < n. Then we have to examine
two cases.

(i) T ∪F 6= ∅: Then, in each possible recursive call |T ′| + |F ′| + |T̃ ′| + |F̃ ′| < n
(at least) since in every call the concerning subformula decreases by at least 1 (in
lines 1–16).

(ii) T ∪ F = ∅: Thus we can only be in line 21 for a recursive call. Since always
F ′ 6= ∅ we can follow case (i).

Altogether we have a reduction of |α| = |T | + |F | + |T̃ | + |F̃ | every two calls by at
least 1. Thus the algorithm StateCheck has a recursion depth of ≤ 2 · |α| ≤ 2 ·n. Hence
the space complexity is SPACE(O(n2)) ∈ PSPACE. �

Now we will examine the results from the Section 3.1. In the following corollary, we
summarize the relevant ones for PSPACE.

Corollary 7 Let B be a set of Boolean functions and let S1 ⊆ [B]. Then CTL-SAT(
{A,E,X}, B) is PSPACE-hard. 2

Proof The reductions in Theorem 3 on page 30 are only substitutions within the used
Boolean functions. Thus we can use them for CTL, too, and will stay in this logic. �

Finally, we will expand the obtained and adapted results to a completeness result for
PSPACE.

40



3.2 Computation Tree Logic

Corollary 8 Let B be a set of Boolean functions and let S1 ⊆ [B]. Then CTL-SAT(
{A,E,X}, B) is PSPACE-complete. 2

Proof In Corollary 7, we have shown the containment in PSPACE, and in Theorem 9,
we have shown the hardness for PSPACE. These facts together, we have a completeness
result for PSPACE. �

Corollary 9 Let B be a set of Boolean functions such that S1 ⊆ [B]. Then CTL-SAT(
B) is EXPTIME-complete. 2

Proof We use the same reduction as in Theorem 2. �

In conclusion, we could show for CTL-SAT its containment in PSPACE and hence
could state a completeness result for the class PSPACE. Herewith, this followed for
every clone above S1.

3.2.2 Results for P and L

Finally, we transfer the L-results from the Section 3.1 to the CTL-case and summarize
the relevant ones in the following corollary.

Corollary 10 Let B be a set of Boolean functions.

(1) Let [B] ⊆ R1. Then CTL-SAT(B) is in L.

(2) Let [B] ⊆ D. Then CTL-SAT(B) is in L. 2

Proof All CTL-formulas with only functions of R1 or D are satisfiable in the same
way as or CTL?. �

Thereafter, we determine the complexity for the clones N and I restricted to the
operators AX and EX.

Theorem 10 Let B be a set of Boolean functions such that [B] ⊆ N. Then CTL-SAT(
{AX,EX}, B) is in L. 2

Proof idea In the following proof, we will consider formulas restricted to the base
{¬, 0, 1}, as we can easily reduce it to the base {¬, 0} or {¬, 1}, which are bases of N.

Such formulas have a certain look: starting with arbitrary combinations of AX’s and
EXs, they contain either a single literal or a single constant. In the first case, we can
always construct a Kripke structure that is a model for the formula, as we can add or
remove the label of the belonging variable. In the second case, we have to examine the
two different cases “1” and “0”. For “1” we can built such a fulfilling structure. As the
transistion relation in Kripke structures must be total, we always need a successor for
a specific state. Hence we cannot construct a fulfilling structure for the case “0” – even
not for the case we have the operator AX within the preceding block of quantifiers.

Hence we only need to analyze a given formula for these characteristics, to know
whether a Kripke structure exists or not, i.e., whether ϕ ∈ CTL-SAT or not.

41



3 Complexity of Computation Tree Logic

Proof Let ϕ ∈ CTL({AX,EX}, {¬, 1, 0}) be a temporal CTL-formula restricted to
the operators AX,EX and sentential connectives of {¬, 1, 0}. As we only have unary
functions in this base, we can transform ϕ to

ϕ′ := O1O2 . . . Okλ,

where Oi ∈ {AX,EX} for 1 ≤ i ≤ k, k ∈ N and λ ∈ {0, 1, x,¬x} for an atomic
proposition x.

If λ ∈ {1, x,¬x} for an atomic proposition x, we will show by induction over the
number of preceding operators Oi, that a Kripke structure M = (S,R,AP, P ) and a
state s ∈ S exist, such that M, s |= ϕ′.

Initial Step. k = 0: If λ = x, thenM has only one state s0 ∈ S,AP = {x}, (s0, s0) ∈ R
and P (s0) = x. Thus M, s0 |= ϕ′. If λ = ¬x, then we use P (s0) = ∅ instead.
Again, it holds M, s0 |= ϕ′. If λ = 1 then obviously M, s0 |= ϕ′. Thus the formula
ϕ′ ∈ CTL-SAT({AX,EX}, {¬, 1, 0}).

Inductive Steps. n → n + 1: Assume M, s |= ϕ′ with n preceding operators and for
a state s0. Then we obtain a Kripke structure M ′ from M by adding (s′, s0) to R and
adding s′ to S. Thus M ′, s′ |= EXϕ′ and M ′, s′ |= AXϕ′.

Hence the new formula is in CTL-SAT({AX,EX}, {¬, 1, 0}), and therefore the in-
ductive proposition holds.

As M, s 6|= false for any Kripke structure M = (S,R,AP, P ) and any state s ∈ S,
the formula ϕ′ is not satisfiable if and only if λ = 0.

Thus we only need to check syntactical correctness (which can be done in L) and
transform a given formula ϕ into the form from above (which can be done in L, as we
only need to move the negations inwards) to check whether ϕ ∈ CTL-SAT({AX,EX},
{¬, 1, 0}) or not. Subsuming, this can be done in logarithmic space. As the base
{¬, 1, 0} can be easily reduced to N, hence the stated theorem applies. �

In the following theorem we will show, that we get a similar result if we do not make
any restrictions to the CTL-operators.

Theorem 11 Let B be a set of Boolean functions and let [B] ⊆ N. Then CTL-SAT(B)
is in L. 2

Proof We will expand the proof by induction for Theorem 10 to prove this theorem.
The main idea for the CTL-operators containing U, is to use the Kripke structure for
the second formula, as it is not necessary to satisfy the first U-parameter.

Let ϕ,ψ ∈ CTL(N) with n preceding Operators, M and M ′ be Kripke structures and
s, s′ be states, such that M, s |= ϕ and M ′, s′ |= ψ. Now we will show the remaining
inductive steps:

• M̃, s̃ |= AFϕ for the Kripke structure M̃ = (S̃, R̃,AP, P ) with S̃ := S ∪ {s̃} and
R̃ := R ∪ {(s̃, s)} with s̃ /∈ S as a new state not contained in S.

• M, s |= EFϕ as M, s |= ϕ.

• For AGϕ and EGϕ we can modify M to M̂ , such that M̂, s |= EGϕ and M̂, s |=
AGϕ. For that we only need to “copy” M |S|-times and add an edge (r, s) for each

42



3.2 Computation Tree Logic

and π(1) = s

s
s

M̂, s |= EGϕ

M, s |= ϕ

Figure 3.5: Example for the case EG in Theorem 11.

state r ∈ S to the state s in each copy of M . Hence we get a global satisfiability
in all states for ϕ. In Figure 3.5 we show an illustrating example.

• M ′, s′ |= E(ϕUψ) as we do not need to satisfy ϕ.

• M̃, s̃ |= A(ϕUψ) with the Kripke structure M̃ ′ constructed through M ′ in the
same way as above.

If a CTL-operator containing U appears in a given formula ϕ ∈ CTL(B), then we
need to check for the expression ψ1Uψ2 whether ψ2 = O1 . . . Okλ. If λ ∈ {1, x,¬x} for
an atomic proposition x, then ψ1Uψ2 is satisfiable, else not. To do this for a complete
given formula, we need to start at the innermost nested EU and carry the satisfiability
result over only pairwise for each EU-step.

Thus, for all CTL-operators, we only need to check for λ ∈ {0, 1, x,¬x} as in Theorem
10. If an U-operator appears, then we need to determine λ in the second formula-
parameter. As we only need to search within the formula for specific expressions, which
can be done in logarithmic space, we have proven the stated theorem for the clone N.
The same holds for every clone [B] ⊆ N, as we only need to check for unary functions.�

To conclude our results from above, we showed a wider result than for CTL?-SAT
with classifying the “unary Boolean functions” clone N. The other results for CTL?-SAT
can be carried over to CTL-SAT. An illustration for these results can be found in Figure
3.6, where the red circles mark the PSPACE-complete sets and the green ones denote
the sets solvable in L.

43



3 Complexity of Computation Tree Logic

R1 R0

BF

R2

M

M1 M0

M2

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

I

I1 I0

I2

N2

N

BF

R1 R0

R2

M

M1 M0

M2

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

N2

N

I

I1 I0

I2

PSPACE-complete

solvable in L

Figure 3.6: PSPACE-complete fragments for CTL-SAT({AX,EX}), and clones in L
for CTL-SAT

44



3.3 Computation Tree Logic+

3.3 Computation Tree Logic+

In the end, we consider the branching time logic CTL+ which in [JL03] is described
as “allowing boolean combinations of path formulas inside a path quantifier but no
nesting of them”. In short words, the main difference to CTL? is, that we cannot use
consecutively the temporal quantifiers without a path quantifier between them (e.g.
XXϕ). Unlike for CTL, we can construct formulas as E(Xϕ ∨Xψ). Its complexity is
of the same degree as CTL?, i.e., CTL+ is 2-EXPTIME-complete.

In the following corollary, we will see which results of Section 3.1 can be transfered to
this logic.

Corollary 11 Let B be a set of Boolean functions.

(1) CTL+-SAT({A,E,X},BF) is PSPACE-hard.

(2) Let S1 ⊆ [B]. Then CTL+-SAT({A,E,X}, B) is PSPACE-hard.

(3) Let [B] ⊆ R1. Then CTL+-SAT(B) is in L.

(4) Let [B] ⊆ D. Then CTL+-SAT(B) is in L. 2

Proof (1) We can use the same reduction as in Theorem 1 because the obtained
formula F is a CTL+-formula.

(2) As proven for CTL?-SAT({A,E,X}, B) in Theorem 3, then we can use the same
reduction since we just express the boolean functions of BF with the base of S1.
Hence the new formula will still be in CTL+.

(3)+(4) Similar to the proof for Corollary 10. �

Corollary 12 Let B be a set of Boolean functions. Let S1 ⊆ [B]. Then CTL+-SAT(B)
is 2-EXPTIME-complete. 2

Proof We use the fact of [JL03] that CTL+-SAT is 2-EXPTIME-complete. As in the
proof of Corollary 11 we can use the same reductions and pull the upper bound down
to S1. �

3.4 Overview

In this section we will subsume the stated complexity results to get an outline about
what is left. Altogether regarding CTL?-SAT and CTL+-SAT, we could not state
similar results to CTL-SAT with respect to the clone N and below. For the problems
CTL?({A,E,X}) and CTL+({A,E,X}), we leave the complexity-question open for the
clones M and M0, S2

11 to S11, V and V0, L and L0, E and E0, N, and I. Regarding
CTL-SAT({AX,EX}), we have no result for M and M0, S2

11 to S11, V and V0, L and
L0, E and E0.

45



3 Complexity of Computation Tree Logic

function class (propositional operators) complexity
below R1 or below D in L (always satisfiable)
above S1 2-EXPTIME-complete
BF(all Boolean functions) 2-EXPTIME-complete

Table 3.1: Complexity results overview for CTL?-SAT

function class (propositional operators) complexity
below R1 or below D in L (always satisfiable)
above S1 PSPACE-hard
BF(all Boolean functions) PSPACE-hard

Table 3.2: Complexity results overview for CTL?-SAT({A,E,X})

function class (propositional operators) complexity
below N in L
below R1 or below D in L (always satisfiable)
above S1 EXPTIME-complete
BF(all Boolean functions) EXPTIME-complete

Table 3.3: Complexity results overview for CTL-SAT

function class (propositional operators) complexity
below N in L
below R1 or below D in L (always satisfiable)
above S1 PSPACE-complete
BF(all Boolean functions) PSPACE-complete

Table 3.4: Complexity results overview for CTL-SAT({AX,EX})

function class (propositional operators) complexity
below R1 or below D in L (always satisfiable)
above S1 2-EXPTIME-complete
BF(all Boolean functions) 2-EXPTIME-complete

Table 3.5: Complexity results overview for CTL+-SAT

function class (propositional operators) complexity
below R1 or below D in L (always satisfiable)
above S1 PSPACE-hard
BF(all Boolean functions) PSPACE-hard

Table 3.6: Complexity results overview for CTL+-SAT({A,E,X})

46



3.4 Overview

BF or > S1 < R1 or < D < N
CTL?-SAT 2-EXPTIME-complete in L ?

CTL?-SAT({A,E,X}) PSPACE-hard in L ?
CTL-SAT EXPTIME-complete in L in L

CTL-SAT({AX,EX}) PSPACE-complete in L in L
CTL+-SAT 2-EXPTIME-complete in L ?

CTL+-SAT({A,E,X}) PSPACE-hard in L ?

Table 3.7: Complexity results Overview

47



3 Complexity of Computation Tree Logic

48



4 Conclusion and further work

Motivated by the straight ≤p
m-reduction from QBF to the Model-Checking problem in

CTL?, we first wanted to state a ≤p
m-reduction from QBF to the Satisfiability problem

for a fragment of CTL?, which we did in Theorem 1, and started this reduction at
QBF-3SAT.

Hereupon we set our main goal of this thesis to achieve a mostly complete com-
plexity classification for the temporal logics CTL, CTL?, and CTL+, with respect to
the structure of Post’s Lattice and the Satisfiability problem (whether there exists a
Kripke structure and a state, which fulfill a given temporal formula).

As written above, we got a PSPACE-hard fragment for the investigated logics, where
we initially made restrictions to the only temporal operator neXt, and were able to
state a straight reduction from the well-known problem of quantified Boolean formulas
(restricted to 3CNF) to the Satisfiability problem for the logic CTL?({A,E,X}). This
hardness result for PSPACE was the origin of our further considerations. Afterwards, we
started to make restrictions to the used Boolean functions, and analyzed several clones
in the lattice. We built up a chain of reductions from result to result, and finally reached
the lower bound for PSPACE-hardness at S1, as we show in Theorem 3. We also showed
that decreasing the number of atomic propositions down to one single proposition in
a CTL?({A,E,X},BF)-formula still keeps PSPACE-hardness. The step over to none
atomic propositions leads to containment in P, see Theorem 5.

Furthermore, we could show that the reduction is valid for the logics CTL+ and CTL,
as well. Hence we can carry over the made hardness-results.

Then we stated in Theorem 6 the ≤p
m-reduction from M0 to S11 for closing the gap to

PSPACE-hardness as much as possible.
The next strong result is made for a huge set of clones (i.e., below R1 and below D):

they are all solvable by an algorithm that is only bounded by logarithmic space, which
is a very satisfying result. Moreover for the restricted CTL-logic, we show that for the
clones N and I (which are not contained in R1 or D), both restricted logics are solvable
in logarithmic space, too (see Theorem 10). Actually, we could show this complexity
for the non-restricted problem CTL-SAT, too (cp. Theorem 11). Finally, we composed
an algorithm which solves the problem CTL-SAT({AX,EX}) in PSPACE, and hence
stated a completeness result for that logic fragment in Theorem 9.

The most interesting fact we discovered, is the analogy between modal logic and the
temporal logics restricted to the operator X. Many results in the modal world have
a similar proof for this special temporal case – just few things must be adjusted (i.e.,
the cases for temporal operators). This analogy helps understanding the complexity
structure of temporal logics from a different point of view. The reason for the connection
between these two logics is the correspondence between Kripke structures in temporal
world and frames in modal world, as well as the correspondence between the operators
3/2 and AX/EX. Because of that, sometimes it is not very easy to state results for

49



4 Conclusion and further work

the logics CTL? and CTL+, as the path quantifiers are not necessary connected to the
temporal operator neXt. Especially for the possible completeness case: for CTL (where
we have the operators AX and EX), we adjusted the known algorithm for the modal
case, but were not able to state a similar result for the “non-operator-connected” logics.
Here it is hard to check for the existence of a fulfilling Kripke structure, because we
could fork in the structure with many adjoined As and must not affect only the next
states. Hence we cannot use the Algorithm 3.1 for these logics.

4.1 What further research should be done?

Consider the parts left open, we need to classify the problems CTL?-SAT({A,E,X})
and CTL+-SAT({A,E,X}) restricted to the following clones:

• M, M0 (the clones with the monotonic functions),

• S2
11 to S11 (the clones with the 1-seperating functions),

• V,V0 (the clones with the logical or),

• L,L0 (the clones with the logical exclusive-or),

• E,E0 (the clones with the logical and),

• N, and I (the clone with the negation, and the clone with identity).

The first two items are maybe the next logical step in finding an evidence for PSPACE-
hardness down to S11. To achieve such a result, a reduction to the clone M must be
found, which can be easily reduced to M0 and with our Theorem 6 to S11 for keeping
the same complexity degree.

We assume the complexity of the last four items is in the best case similar to its
“surrounding” clones, also decidable in logarithmic space. At least there should be
containment in P. We take the results for similar modal problems (cp. [BHSS06, pp. 6])
and our results for CTL-SAT as a strong evidence, but leave these problems open for
further research.

Another very interesting step leads to the questions about a PSPACE-algorithm for
the PSPACE-hard fragments of CTL?-SAT and CTL+-SAT to achieve a completeness
result, as we did for CTL-SAT. With respect to CTL-SAT, we need to classify the same
clones as for CTL?-SAT except N and I.

Finally, similar research can be done for the Model-Checking Problem and the
investigated logics, as well.

The main goal of classifying complexity degrees should be in getting a better un-
derstanding about the connections to other areas in theoretical computer science and
mathematics. These connections help to apply new techniques from other areas to solve
open problems from a new point of view, and that is a strong tool.

50



Bibliography

[BCRV03] Böhler, E., N. Creignou, S. Reith and H. Vollmer: Playing with
Boolean Blocks, Part I: Post’s Lattice with Applications to Complexity Theory.
SIGACT News, 34(4):38–52, 2003.

[BdRV01] Blackburn, P., M. de Rijke and Y. Venema: Modal logic. Cambridge
University Press, 2001.

[BHSS06] Bauland, M., E. Hemaspaandra, H. Schnoor and I. Schnoor: Gener-
alized Modal Satisfiability. 23rd Annual Symposium on Theoretical Aspects
of Computer Science, pages 500–511, February 2006.

[CE81] Clarke, E. M. and E. A. Emerson: Desing and synthesis of synchroni-
sation skeletons using branching time temporal logic. In Logic of Programs,
volume 131 of Lecture Notes in Computer Science, pages 52–71. Springer-
Verlag, 1981.

[CES86] Clarke, E. M., E. A. Emerson and A. P. Sistla: Automatic verification
of finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems, 8(2):244–263, April
1986.

[CGP99] Clarke, E. M., O. Grumberg and D. A. Peled: Model Checking. MIT
Press, 1999.

[Coo71] Cook, S. C.: The complexity of theorem-proving procedures. Third ACM
Symposium on Theory of Computing, ACM, New York, pages 151–158, 1971.

[Dav04] Davis, M.: The Undecidable: Basic Papers on Undecidable Propositions,
Unsolvable Problems and Computable Functions. Dover Publications, Incor-
porated, 2004.

[EJ00] Emerson, E. A. and C. S. Jutla: The complexity of tree automata and
logics of programs. SIAM Journal on Computing, 29(1):132–158, February
2000.

[Eme90] Emerson, E. A.: Temporal and modal logic. Handbook of theoretical
computer science (vol. B): formal models and semantics, pages 995–1072,
1990.

[End01] Enderton, H. B.: A Mathematical Introduction to Logic. Hartcourt/Aca-
demic Press, second edition edition, 2001.

[FL79] Fischer, M.J. and R.E. Ladner: Propositional dynamic logic of regular
programs. Journal of Computer and Systems Sciences, 18:194–211, 1979.

51



Bibliography

[GMH81] Gannon, J., P. McMullin and R. Hamlet: Data Abstraction Implemen-
tation, Specification, and Testing. IEEE Trans. on Programming Languages
and Systems, 3(3):211–223, July 1981.

[Hal95] Halpern, J. Y.: The effect of bounding the number of primitive proposi-
tions and the depth of nesting on the complexity of modal logic. Artificial
Intelligence, 75(2):361–372, 1995.

[Hem01] Hemaspaandra, E.: The Complexity of Poor Man’s Logic. Journal of Logic
and Computation, 11(4):609–622, 2001. Corrected version: [Hem05].

[Hem05] Hemaspaandra, E.: The Complexity of Poor Man’s Logic. CoRR,
cs.LO/9911014, 1999, 2005. Revised 2005, Correct version for: [Hem01].

[Hoa69] Hoare, C. A. R.: An axiomatic basis for computer programming. Communc.
ACM, 12(10):576–580, 1969.

[Hol91] Holzmann, G. J.: Design and validation of computer protocols. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1991.

[HP96] Holzmann, G. J. and D. Peled: The State of SPIN. In CAV ’96: Pro-
ceedings of the 8th International Conference on Computer Aided Verification,
pages 385–389, London, UK, 1996. Springer-Verlag.

[JL03] Johannsen, J. and M. Lange: CTL+ is Complete for Double Exponential
Time. In Baeten, J. C. M., J. K. Lenstra, J. Parrow and G. J.
Woeginger (editors): Proc. 30th Int. Coll. on Automata, Logics and Pro-
gramming, ICALP’03, volume 2719 of Lecture Notes in Computer Science,
pages 767–775, Eindhoven, NL, 2003. Springer-Verlag.

[Lad77] Ladner, R. E.: The Computational Complexity of Provability in Systems
of Modal Propositional Logic. SIAM Journal on Computing, 6(3):467–480,
1977.

[Lew79] Lewis, H.: Satisfiability problems for propositional calculi. Mathematical
Systems Theory, 13:45–53, 1979.

[Pip97] Pippenger, Nicholas: Theories of Computability. Cambridge University
Press, May 1997.

[Pnu77] Pnueli, A.: The temporal logic of programs. IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 46–57, 1977.

[Pos41] Post, E.: The two-valued iterative systems of mathematical logic. Annals of
Mathematical Studies, 5:1–122, 1941.

[Pra80] Pratt, V. R.: A near-optimal method for reasoning about action. Journal
of Computer and System Sciences, 20(2):231–254, 1980.

52



Bibliography

[QS82] Queille, J.-P. and J. Sifakis: Specification and verification of concurrent
systems in CESAR. In Proceedings 5th International Symposium on Pro-
gramming, volume 137 of Lecture Notes in Computer Science, pages 337–351.
Springer-Verlag, 1982.

[Rei] Reith, S.: Steffen Reith. Website. Available online at
http://www.informatik.fh-wiesbaden.de/~reith/.

[SC85] Sistla, A. P. and E. M. Clarke: The complexity of propositional linear
temporal logic. Journal of the ACM, 32:733–749, 1985.

[Sch01] Schöning, U.: Theretische Informatik – kurzgefasst. Spektrum Akademis-
cher Verlag, 4. Auflage edition, 2001.

[Sch02] Schneider, T.: Komplexität modaler Logiken. Diplomarbeit, Friedrich-
Schiller-Universität Jena, September 2002.

[Sip07] Sipser, M.: Introduction to the Theory of Computation. International
Thomson Publishing, 2 edition, 2007.

[Sto77] Stockmeyer, L.: The polynomial-time hierarchy. Theoretical Computer
Science, 3:1–22, 1977.

[VS85] Vardi, M. Y. and L. Stockmeyer: Improved upper and lower bounds
for modal logics of programs. In STOC ’85: Proceedings of the seventeenth
annual ACM symposium on Theory of computing, pages 240—251, New York,
NY, USA, 1985. ACM Press.

53



Bibliography

54



Declaration

All the work contained within this thesis, except where otherwise acknowledged, was
solely the effort of the author. At no stage was any collaboration entered into with any
other party.

55


