
On the Complexity of
Modal Logic Variants
and their Fragments

Von der Fakultät für
Elektrotechnik und Informatik der

Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades
Doktor der Naturwissenschaften

Dr. rer. nat.

genehmigte Dissertation

von
M. Sc. Arne Meier

geboren am 06.05.1982 in Hannover

2011

Referent: Heribert Vollmer, Gottfried Wilhelm Leibniz Universität Hannover
Korreferent: Martin Mundhenk, Friedrich-Schiller-Universität Jena

Tag der Promotion: 14.11.2011

Für Julia

v

Mathematical reasoning may be regarded rather schematically as the exercise of a combination
of two facilities, which we may call intuition and ingenuity.

(Alan Turing)

vii

Danksagung

Zu allererst möchte ich meinem Doktorvater Heribert Vollmer für die großartige Unter-
stützung beim Verfassen dieser Arbeit danken. Ein weiterer Dank gebührt ihm dafür, dass
ohne ihn ich wohl niemals die theoretische Informatik und das wissenschaftliche Arbeiten
an sich lieben gelernt hätte. Des Weiteren möchte ich mich bei Martin Mundhenk für die
vielen Besuche in Jena bedanken, die besonders die Teile zur temporalen Logik in dieser
Arbeit stark geprägt haben.

Weiteren Dank schulde ich meinem Kollegen Michael Thomas, mit dem ich drei Jahre
ein Büro geteilt habe, und viele Gespräche mit ihm mir sehr geholfen haben. Außerdem
danke ich ihm für die gemeinsame Forschung, die mir persönlich viel gebracht hat. Daniel
Zaum und Peter Lohmann möchte ich sehr für das Lesen meiner Arbeit und den damit
verbundenen Anregungen danken, sowie Daniel für die Hilfe bei der Umschlaggestaltung.
Vielen Dank auch an Johannes Ebbing für die Gespräche über die Logik ECTL.

Außerdem möchte ich Thomas Schneider für seine Ratschläge in Bezug auf das wissen-
schaftliche Arbeiten und insbesondere für die gemeinsame Forschung an den Beschrei-
bungslogiken danken.

An besonderer Stelle danke ich von tiefstem Herzen meinen Eltern Inge und Heinz
dafür, dass sie mir nicht nur ein Studium in der Informatik ermöglicht haben, sondern
auch dafür, dass sie immer zu mir gestanden und mich unterstütz haben. Ohne diese Hilfe
wäre es mir niemals möglich gewesen in diesem Fach auch zu promovieren und überhaupt
so weit zu kommen!

Natürlich danke ich besonders meiner Frau, Julia, welche mir immer Verständnis
entgegen gebracht hat, nicht nur wenn ich wieder an der Arbeit geschrieben habe, sondern
auch jedes mal, wenn ich beruflich unterwegs war. (Vielen)ω Dank für Deine Liebe, die
mir sehr hilft und mich antreibt.

ix

Acknowledgements

First and foremost I want to thank my supervisor Heribert Vollmer for his great assistance
at writing this thesis. Without him I probably would not have started to contract a passion
to theoretical computer science or to science itself. Also I would like to thank Martin
Mundhenk for my visits in Jena which influenced especially the parts about temporal logic
in this thesis.

Further thanks I owe to my colleague Michael Thomas with whom I shared an office
for three years. Many talks and answers to my questions helped a lot. Also the research
together have been enjoyed by myself very much. Additionally I want to thank Daniel
Zaum and Peter Lohman for reading my thesis and the therewith connected suggestions;
in particular I want to thank Daniel for designing the cover. Thank you, Johannes Ebbing,
for the talks about the logic ECTL.

Besides I wish to thank Thomas Schneider for his advice about how to write proofs and
also about the joint work on the description logics.

At this point, I want to thank my parents Inge and Heinz from the bottom of my
heart for making studies in computer science possible for me and also for being always
supportive. Without that much help I would have never been able to take a doctoral degree
in computer science.

Of course I thank my wife, Julia, who always was patient and sympathetic where I
needed it when I worked on this thesis or whenever I was underway from work. Thank
you (very)ω much for your love which helps very much and is my impulse.

xi

Zusammenfassung

Die komplett automatische Verifikation von Computer Programmen ist ein sehr entschei-
dender Schritt im Rahmen der Entwicklung von Software. In diesem Kontext wurden
Temporale Logiken erfunden, die eine Erweiterung der Modallogik darstellen, welche
selbst eine Erweiterung der gewöhnlichen Aussagenlogik ist. Aus diesem Grund kann
man sie Modallogik-Varianten nennen.

Der erste Teil dieser Arbeit wird die beiden Temporalen Logiken CTL und CTL? mit
Bezug auf ihr Model Checking- und Erfüllbarkeits-Problem untersuchen. Wir werden die
Komplexität von Fragmenten dieser Probleme im Sinne von Einschränkungen bezüglich
erlaubter Operatoren und Boole’scher Funktionen analysieren. Hierbei werden wir für das
Erfüllbarkeitsproblem sehen, inwiefern die Operator-Fragmente eine Trichotomie bilden,
und die Boole’schen Fragmente in vier verschiedene Komplexitätsgrade zerfallen. Das
Model Checking-Problem für CTL teilen wir in ein monotones, eins nur mit atomarer
Negation, und ein positives Fragment. Überraschenderweise werden wir sehen, dass diese
Fragmente sich äquivalent bezüglich ihrer Komplexität verhalten. Darüberhinaus werden
wir die Fragmente im obigen Sinne mit Bezug auf die obigen Probleme einiger sehr
bekannter Erweiterungen von CTL klassifizieren.

Im zweiten Teil werden wir uns mit sogenannten Beschreibungslogiken beschäftigen.
Diese Modallogik-Erweiterungen spielen eine wichtige Rolle im Bereich des Semantic
Web, der Datenbanksysteme, und in der Künstlichen Intelligenz. Diese Logiken werden
unter anderem dazu verwendet, um große Datenmengen zu beschreiben und auf ihnen
zu operieren. Neben den typischen Erfüllbarkeits-Problemen werden wir mit einem
speziell an diesen Typ von Logiken angepassten Implikations-Problem arbeiten, welches
Subsumption genannt wird. Wir werden außerdem sehen, dass alle diese Logiken zwei sehr
mächtige Boole’sche Konzepte innehaben, nämlich Implikation und Konjunktion, welche
maßgeblich die Komplexität der Probleme beeinflussen. Hierdurch wird das Verbieten
von großen Mengen Boole’scher Funktionen die eigentliche Komplexität dieser Probleme
nicht erheblich vermindern.

Schlagworte: Beschreibungslogik, Komplexität, Modale Logik, Post’scher Verband, Tem-
porale Logik.

xiii

Abstract

The automatic verification of computer programs is an important step in software engi-
neering. In this regard temporal logics have been invented as an extension of modal logic
which itself is an extension of propositional logic. Therefore, one may call them modal
logic variants.

The first part of this thesis will investigate the two temporal logics CTL and CTL?

with respect to their model checking and satisfiability problem. We will analyze the
complexity of fragments of these problems by means of operator and Boolean function
restrictions. There we will see for the satisfiability problem, how the operator fragments
form a trichotomy and the Boolean fragments form a quartering. The model checking
problem for CTL is divided into three types: monotone, atomic negation, and positive
fragments. Surprisingly, we will see that these three fragments are computationally equiva-
lent. Furthermore, several prominent extensions of CTL will be visited and classified with
respect to their Boolean and operator fragments.

In the second part we will concentrate on description logics which are modal logic
extensions settled in the area of semantic web, databases, and artificial intelligence. These
types of logics are used to express, and work on, large sets of data. Besides the usual
satisfiability problems, we will work with some special kind of implication problem,
which is called subsumption. We will see that these logics combine two very strong
Boolean concepts, namely implication and conjunction, such that restricting large sets of
Boolean functions do not reduce the complexity of the problems significantly.

Keywords: computational complexity, description logic, modal logic, Post’s lattice, tem-
poral logic.

Contents

1 Introduction 1
1.1 Modal Logic . 2

1.1.1 Temporal Logic . 3
1.1.2 Description Logic . 3
1.1.3 Post’s Lattice . 5

1.2 Results . 5
1.3 Publications . 6

2 Preliminaries 9
2.1 Complexity Theory . 10
2.2 Boolean Clones . 13
2.3 Modal Logic . 17

2.3.1 Temporal Logic . 18
2.3.2 Description Logic . 23

2.4 Complete Problems . 26

3 Temporal Logic 29
3.1 Satisfiability in CTL and CTL? . 29

3.1.1 Restricting the Boolean connectives . 29
3.1.2 Restricting the CTL-operators . 32
3.1.3 Satisfiability for fragments of CTL? . 41
3.1.4 About the Affine Cases . 43
3.1.5 Fragments of Extensions of CTL: Fairness, Succinctness, and LTL+ 45
3.1.6 Conclusion . 49

3.2 Model Checking in CTL and CTL? . 50
3.2.1 Model Checking CTL and CTLpos . 53
3.2.2 Model Checking Extensions of CTL 61
3.2.3 Model Checking CTL? . 68
3.2.4 Conclusion . 72

4 Description Logic 75
4.1 TBox and Ontology Satisfiability . 75

4.1.1 Both quantifiers . 79
4.1.2 Restricted quantifiers . 82
4.1.3 Conclusion . 93

4.2 Subsumption . 93
4.2.1 Conclusion . 103

xvi Contents

5 Concluding Remarks 107

Bibliography 111

Index 121

Lebenslauf 125

List of Figures

2.1 Complexity class inclusion diagram . 12
2.2 Post’s lattice of all Boolean clones. 16
2.3 The lattice induced by all CTL- and all CTL?-operators 21

3.1 General Kripke Structure for ϕ ∈CTL-SAT({AF},BF) 33
3.2 Part of a nested tree-like structure used in the proof of Theorem 3.4. 34
3.3 Quasi-model for ϕ = EG(p ∨¬q)∧AF(EG(q)) . 35
3.4 The relevant part of the lattice induced by all ECTL-operators. 47
3.5 Example showing AFAG p 6≡AG

∞
p . 49

3.6 Overview of the complexity of CTL-SAT(T ,BF), CTL?-SAT(T ,BF), and
CTL+-SAT(T ,BF), i.e., without any restrictions to the Boolean functions. . . 50

3.7 The complexity of CTL-SAT, CTL+-SAT, and CTL?-SAT, without restric-
tions on the temporal operators. 51

3.8 Kripke structure constructed for CTLmon-MC({EG}) 57
3.9 Kripke structure for CTL+pos-MC({E,G}) . 65
3.10 Post’s lattice restricted to clones with both constants. 68
3.11 Complexity of CTLpos-MC(T),CTLmon-MC(T),CTLa.n.-MC(T) for all sets T

of CTL-operators . 73

4.1 Post’s lattice showing the complexity of SUBSQ(B) for all non-empty sets
;(Q ⊆ {∃,∀} and all Boolean clones [B]. 105

4.2 Post’s lattice showing the complexity for SUBS;(B) and all Boolean clones [B]. 106

List of Tables

2.1 A list of Boolean clones with definitions and bases. 15

3.1 Complexity overview for CTL?-MC(T ,B) for all T with |T | ≤ 2. 69

4.1 Complexity overview for TSATQ(B) and ?SATind
Q (B) 94

Chapter 1

Introduction

Computational complexity is an area of theoretical computer science in which one aims
to classify a given problem with respect to its worst case complexity measured in required
computation time and space. Here a completeness result is the most satisfying answer as,
informally, it states that the problem’s complexity is fully classified. Now such a result
may prove that the problem will always stay intractable and therefore forbids the existence
of a polynomial time algorithm. One of the possible approaches to overcome this fact is
the restriction of the problem with the hope of getting a faster algorithm for the fragment
of this problem.

Now suppose you want to visit r of your relatives in one big journey. As you are free
from work for only one week you are interested whether there exists an efficient route in
at most one week duration and how it would look like. Thus we consider two different
kind of questions. On the one hand there is a decision problem to which we can answer
with simply yes or no. On the other hand we want to compute one optimal solution.
Without doubt, knowing an optimal solution implies answering the decision problem.
Vice versa, it is not clear if this is possible. Visualizing our situation in a graph of nodes
(one for each relative and one for you) having edges between every pair of nodes, and edge
labels with a distance or travel duration. The naïve approach computes all routes and
selects one of the best. The computational effort of this algorithm measured in runtime is
limited by the factorial of r , that is, in r O(r) many steps. Having about twenty relatives
and computing one billion routes in one second would still need approximately 2 · 108

years to finish the computation. Further, more computation power would not lower the
waiting time significantly as the problem exhibits exponential runtime. Thus we either
need to find a better algorithm which uses some intelligent approach in deducing one
of the desired routes or we simplify the problem by making several restrictions1. This
could be forcing the triangle inequality to hold, disallowing asymmetric paths, or, e.g.,
forbidding several connections between some nodes (possibly one cannot directly travel
from city x to city y). These approaches may involve understanding which parts of the
problem make it inherently hard to solve.

Another promising approach is a transfer to propositional logic which enlarges the
field of possible applicable algorithms. The most prominent open problem in theoretical
computer science is the P-NP-problem which essentially is the question whether there
exists an algorithm running in polynomial time solving the question from above, or

1Other approaches that will not be discussed in detail are approximation algorithms (see, for instance, [ACG+99]),
or randomized algorithms which have an error property connected to wrong answers (see [MR95] for more
information about this topic).

2 Chapter 1 Introduction

equivalently, deciding the satisfiability of a propositional formula. At present such an
algorithm is not known to exist. But propositional logic has been proven itself to be a very
powerful tool for encoding several difficult problems into the satisfiability problem SAT.
By this property many different algorithms have been exhibited. Another very interesting
property of the problem SAT is that one can efficiently verify solutions of instances, that
is, given assignments to the variables one can check in polynomial time if this is indeed
a correct solution. This fact is the main property of problems in the class NP (which
stands for nondeterministic polynomial time). Further, SAT has received great attention
because a polynomial time algorithm for SAT implies polynomial time algorithms for
every problem of the class NP [Coo71b, Lev73]. Therefore several restrictions of SAT
have been investigated where k-SAT comprises one surprising characteristic. If we restrict
propositional formulae to conjunctive normal form, i.e., any formula can be written as
conjunctions of disjunctive clauses containing only k literals (which are variables or their
negations), then for k = 2 the problem becomes tractable whereas for k = 3 it is intractable
unless P equals NP.

Furthermore, an approach used by H. Lewis in 1979 is the origin of an auspicious
technique for understanding the hardness of a problem involving propositional logic
[Lew79]: H. Lewis used a tool investigated by E. Post 1941 [Pos41], which is a lattice of
all Boolean functions wherefore it is also called Post’s lattice. The main application of this
tool is to fragment any problem which inherently uses propositional connectives into all
parts by means of any possible set of Boolean functions. Thereby H. Lewis was able to
connect the intractability (unless P=NP) of SAT to some specific Boolean function, i.e.,
the negation of the implication function9. Thus whenever a formula is composed of
Boolean functions that are in some way able to express9, one works with an instance of
the intractable version of SAT. Consequently if we would be able to write a propositional
formula for the travel problem from above avoiding9 (and functions that can express9
as well) then we would have a polynomial time algorithm for our recent case (unless the
constructed formula is of super-polynomial size). Unfortunately it is not known whether
such a formula exists as this would answer the P-NP-question as well.

The motivation of this thesis strictly encompasses this question. Which functions make
a decision problem hard to solve? Why does the tractability of some problem depend on
the availability of some Boolean function or operator? Here we will investigate several
powerful extensions of propositional logic which are closely connected to modal logic.

1.1 Modal Logic

The connection of propositional logic to computer programs requires an adequate model
where Kripke structures have been proven of great use. These structures are essentially
directed node-labeled graphs simulating the behavior of a computer program in the means
of different program states. Informally, modal logic is the extension of propositional logic
by a new operator ◊ enabling formulae to express transitions between program states.
1918, modal logic has been firstly introduced by C. I. Lewis [Lew18] and has become very
popular since the 1960s [Kri63, HC68] and until now [Gol06, BvW06]. Furthermore a

1.1 Modal Logic 3

complete study with respect to the Boolean fragments of modal logic has been done by
Hemaspaandra et al. [HSS08] recently.

1.1.1 Temporal Logic

Enriching modal logic with concepts to interact more densely with computer programs
leads to the field of temporal logics which have been introduced by A. N. Prior in 1957
who has been called "the founding father of temporal logic" by the Danish Centre for
Philosophy and Science Studies [Pri57, Pri67, Aal11]. From 1971 to 1986 significant effort
by Pnueli, Emerson, Halpern, and Clarke resulted in the definition of the linear time logic
LTL and the computation tree logics CTL? and CTL [Pnu77, CE81, QS82, EH86]. These
logics have been invented to be of great benefit in the process of software engineering for
verifying non-terminating programs. Describing specifications through formulae results
in an evaluation of the written programs which are modeled by the Kripke structures as
explained above. In the course of time, temporal logics emerged as being useful with major
relevance for practical experience [VS85a]. In this context the model checking problem
and the satisfiability problem of these logics are of great interest. For the model checking
problem one asks if a given formula is satisfied in a given world of a given Kripke structure.
Thus essentially the question whether a computer program fulfills its specification. For
the satisfiability problem the question is whether a Kripke structure (containing a world)
exists which satisfies a given formula. Hence we occupy with the question if there exists
a computer program fulfilling this specification. In other words we ask some kind of
consistency question with respect to a specification modeled by a temporal logic formula.

These two problems with respect to the three logics have been completely classified
with respect to their complexity and without making any restrictions to the problems in
[FL79, VS85a, CES86, Eme90, EJ00]. A comparison of these results bare a tremendous
gap between model checking and satisfiability of CTL: a polynomial time model checking
algorithm (and also hardness for P) is accompanied by an exponential time algorithm
for satisfiability with the proof that there can be no better one. For the other two
temporal logics the gap between the complexity of satisfiability and model checking is
similar huge but both problems are intractable unless P = PSPACE. Model checking
in both logics is complete for polynomial space whereas satisfiability remains PSPACE-
complete for LTL and jumps up to double exponential time for CTL?. Whilst for LTL the
classification of all Boolean and modal operator fragments has been achieved by Bauland
et al. [BMS+11, BSS+09], the fragments of the computation tree logics are still open and
will be investigated in Chapter 3.

1.1.2 Description Logic

The concept of databases influenced the development of description logics significantly.
The origin of research has been considered to have started with the work of Brachman
and Levesque in 1984 [BL84], whilst some principles of these logics go back to semantic
networks and the KL-ONE system [BS85]. An extensive introduction to this field of
logics has been written by Baader et al. [BCM+03]. Description logics (DLs) are usually

4 Chapter 1 Introduction

defined as extension of the logicAL however some smaller fragments ofAL recently
received attention in the research community, namely theFL - and EL -family [Baa03,
Bra04a, BBL05a, BBL08]. DLs are widely used in the semantic web in terms of the web
ontology language OWL 2 [MPSP09]. Several terms from the web ontology language are
synonyms of terms in the family of description logics and connect these two areas very
closely. Further, DLs are used in the codification of medical knowledge by ontologies
whose definition is explained below.

Regarding the connection to databases the two main formalisms in DLs are terminology
and assertional boxes which are abbreviated by the terms TBox and ABox. The union of
both is referred to as an ontology. An ABox is essentially a relational database with its
pairs whereas the TBox expresses constraints for the database in form of rules (axioms,
or without restrictions, general concept inclusions GCI). These rules are pairs of formulae
which are composed of the functions and u, or t, and not ¬ as well as the role quantifiers
which can be existential ∃R or universal ∀R for some role R. The different kinds of used
symbols for expressing the Boolean functions base on the origin of the logics which was
disjoined from modal logic as described above. However, the connection to first order
logic is immediate but DLs have more efficient decision problems. With respect to the
ability to express arbitrary Boolean functionsALC can be considered as best suitable
for the use with Post’s lattice due to the availability of ∧, ∨, and ¬ in this logic. The
remarkable part for the decision problem with respect to TBoxes is the following. A TBox
T is said to be consistent for the corresponding model if and only if every axiom in T
is consistent with every world in the model. By virtue of this definition this problem is
already complete for exponential time [BBL05a, Hof05] and thus prohibits the existence
of a polynomial time algorithm.

More formally the decision problems of interest for DLs are

• the satisfiability problem of TBoxes,

• the concept satisfiability problem with respect to a given TBox,

• the satisfiability problem of an ontology, and

• the subsumption problem with respect to a given TBox.

The latter problem is a special kind of the implication problem in the sense of description
logics. Further, a method similar to logical deduction which is called structural comparison
has been deployed but not proven itself to always state correct results. Lacking the
completeness it has been shown to be weaker than logical subsumption recently [NB03].
Thus subsumption can be seen as one of the central problems in the area of DLs.

The unrestricted versions of the aforementioned decision problems have been classi-
fied previously by their correspondence to propositional dynamic logics [Pra78, VW86,
DM00]. To the best of the author’s knowledge a complete classification of these problems
with respect to all possible Boolean functions has not been done yet and will be the topic
of Chapter 4. Especially the study of less commonly used operators as the negation of
implication9 or the binary exclusive-or ⊕ will give an insight to the influence of Boolean
functions on tractability.

1.2 Results 5

The classification of all Boolean function and operator fragments of the concept satis-
fiability problem for the description logicALC immediately follows from the work
of Hemaspaandra et al. [HSS08] due to the equivalence to modal logic. They obtained a
trichotomy which comprises of complexity degrees from contained in P, through coNP-
complete to PSPACE-complete fragments.

1.1.3 Post’s Lattice

As motivated above, our approach is to follow Lewis’ technique for getting the most fine
granulated and complete classification with respect to all possible Boolean functions and
operators for each of the decision problems which have been mentioned above. Previously
this approach has been followed extensively in the areas of constraint satisfaction [Bau07,
Sch07, Sch08], nonmonotonic logics [BMTV09a, Tho09, CMTV10, Tho10], modal and
propositional logics [Rei01, HSS08, BMTV09b], abduction, and argumentation [CST10,
CSTW10]. These studies have one goal in common. They want to understand which
Boolean functions play the role of9 in the therein studied extended propositional logics.
This is the main goal in this thesis as well.

More formally let B be a finite set of Boolean functions. Then we define the clone [B] of
B as the set of all Boolean functions which can be constructed by arbitrary composition and
projection of functions from B . B is called a base of [B] in this context. Post constructed
the infinite lattice comprising of all possible clones and proved the existence of a finite
base for each of these clones. Usually one aims to achieve a complete classification with
respect to Post’s lattice. Therefore one needs to overcome the infinity within the lattice by
stating matching upper and lower bounds ranging from both ends of the infinite chains
in the lattice (see Figure 2.2 on page 16). By definition of the lattice those results state
completeness results for any decision problem fragment with respect to each clone within
the infinite chain.

1.2 Results

In the first part of Chapter 3 we visit the satisfiability problem of CTL and classify the
temporal operator and Boolean fragments. There we show how they form a trichotomy
ranging through NP-, PSPACE-, and EXP-complete cases (see Figure 3.6 on page 50)
whereas the Boolean fragments, without respect to the temporal operators, lead to TC0-,
NC1-, and EXP-complete cases (see Figure 3.7 on page 51). Section 3.1.4 aims to describe the
problems occurring when working with affine cases which resisted getting fully classified
for this decision problem in temporal logic. Furthermore, we will visit extensions of
the temporal logics CTL and CTL?, particularly, (i) CTL+ which behaves similarly as
CTL-SAT (and we also classify in parallel the fragment LTL+) and (ii) the fairness extension
ECTL where all relevant operator fragments are either PSPACE- or EXP-complete.

The second part of this chapter covers the research on the model checking problems
of CTL, CTL?, and the same extensions as above. As the model checking problem for
CTL is tractable, and in fact P-complete, we will follow an approach by Sistla and Clarke:
we investigate three different kinds of fragments in terms of allowed negation symbols,

6 Chapter 1 Introduction

starting with monotone, atomic negations only, and positive fragments (for an explicit
definition see page 52). The latter one are fragments where operators (not Boolean
functions) may not occur in the scope of a negation. Surprisingly, we will show that
these three problems are actually computationally equivalent (see Theorem 3.24), and are
NC1-complete if no temporal operator is available, LOGCFL-complete if either we have
a non-empty subset of {EX,EF} or {AX,AG}, and P-complete otherwise. Hence, most
fragments of the CTL model checking problem are inherently sequential (see Figure 3.11
on page 73). Thus there is no way to develop parallel algorithms for these cases. While
ECTL behaves analogously to CTL, the other extensions exhibit different properties, and
their classifications range through six different complexity classes (see Theorem 3.27 and
Corollary 3.28). As a starting point for further research, we will achieve a classification for
all operator/quantifier fragments of cardinality at most two. We will show how fragments
which are easy for this problem, use some CTL-algorithms, and how intractable cases
depict parallels to the model checking problem of LTL, in Theorem 3.29.

Finally in Chapter 4 we turn towards the area of description logics, an extension which
is widely used by the semantic web community. There we visit all fragments with respect
to the possible subsets of the quantifiers ∃ and ∀, and all Boolean clones. Given a single
terminologyT using both quantifiers, we will see how the connected satisfiability problem
is either EXP-complete or trivial, i.e., always having satisfiable terminologies. The latter
holds if and only if only c -reproducing functions for c ∈ {>,⊥} are used in T . Allowing
only one quantifier turns the fragments which use conjunctions or disjunctions tractable,
i.e., P-complete. Without any quantifiers we reach NLOGSPACE-completeness for the
fragments using only unary functions. The classification for the decision problems asking
about the satisfiability of a concept with respect to a terminology behaves similarly but
with two exceptions. First, the ⊥-reproducing cases are not trivial any longer. Secondly,
the lower complexity bounds can be improved to hold without using the constant >. An
overview of the results is depicted in Table 4.1 on page 94.

Lastly, in Section 4.2 we classify the implication problem adjusted to description logics,
which is the subsumption problem with respect to all quantifier sets and Boolean function
sets. There we will show that whenever we are able to express one of the constants
besides having access to all quantifiers, the complexity of the fragment remains EXP-
complete. By the use of only one quantifier the problem becomes tractable (P-complete) if
either conjunctions or disjunctions are allowed—depending on which quantifier is existent.
Disallowing quantifiers in general leads to a similar classification as previously has been
achieved by Beyersdorff et al. for the propositional implication problem [BMTV09b]
with a slight exception for the affine cases involving the function exclusive-or ⊕. The
complete arrangement in Post’s lattice is visualized in Figures 4.1 and 4.2 on pages 105 and
106.

1.3 Publications

Sections 3.1.1 to 3.1.3 have been previously published in [MMTV09] but the proof of
Theorem 3.4 (1.) is new. Sections 3.1.4 and 3.1.5 contain unpublished results about the

1.3 Publications 7

affine cases and extensions. Section 3.2 contains published results from [BMM+11] but
Section 3.2.3 contains unpublished results about fragments of the model checking problem
for CTL?. Section 4.1 has been published in [MS11a, MS11b]. Section 4.2 contains new
and unpublished results.

Chapter 2

Preliminaries

We assume that the reader is familiar with the standard mathematical notions of functions,
the Landau notation (also known as Big Oh notation), sets, and propositional logic. For
introductory literature we refer the reader to the standard works [End01, Sip05, HMU00].
Whenever we define some expression α as β in this thesis we will write α =

def
β in order to

denote this fact.

In this work we define 0 as a natural number and denote the set of natural numbers
with Î, i.e., Î= {0,1, . . .}. A lattice (L,≤) is a partially ordered set in which for any two
elements a, b ∈ L there exists a unique supremum denoted by its join a ∪ b and an unique
infimum denoted by its meet a ∩ b . Such lattices can be visualized via Hasse diagrams as in
Figures 2.2 and 2.3.

A Boolean function f is defined over the set {>,⊥}, where> and⊥ are abbreviations for
the truth values true and false. Thus an n-ary Boolean function is defined as f : {>,⊥}n →
{>,⊥} for n ∈ Î. For n = 0 we have 0-ary Boolean functions, i.e., the constant functions
> and ⊥. Further we will make use of the functions not ¬, and ∧, or ∨, implication→,
equivalence↔, and exclusive-or ⊕; we will write x9y for the negation of the implication
which is defined as x9y =

def
¬(x→ y) = x ∧¬y.

Let PL denote the set of all propositional formulae which are defined inductively
beginning with the constants >,⊥, variables, and finally through arbitrary compositions
of these concepts with Boolean functions. For the lack of space we sometimes will write x
instead of ¬x for a propositional variable x. For any propositional variable x define the
literals (of x) as ¬x and x. LetF be some class of formulae. If φ ∈ F is an F -formula
then we denote with φ|[α1/β1 ,...,αn/βn]

the formula that is generated by substituting all αi

in φ by βi for n ∈ Î where αi ,βi are some strings for 1≤ i ≤ n. Additionally we say ϕ is
in negation normal form iff negation symbols ¬ occur only in front of variables. Further,
given a formula ϕ ∈ PL let Vars(ϕ) denote the set of variables contained in ϕ. Also, we
use the notion ϕ(x1, . . . , xn) to denote that Vars(ϕ) = {x1, . . . , xn}. Furthermore, given
a formula ϕ ∈ PL we denote with SF(ϕ) the set of all sub-formulae of ϕ including ϕ
itself. Given a propositional formula ϕ(x1, . . . , xn), for n ∈ Î, then an assignment is a total
function θ : {x1, . . . , xn} → {>,⊥} that assigns truth values to each variable in ϕ. Using
the signs θ̂ we naturally extend this type of function to work with complex propositional
formulae instead of only variables. Therefore we define the function θ̂ : PL→ {>,⊥}

10 Chapter 2 Preliminaries

inductively as follows where ϕ,ϕ1, . . . ,ϕn ∈ PL:

θ̂(x) =
def
θ(x) for all x ∈Vars(ϕ),

θ̂(f (ϕ1, . . . ,ϕn)) =
def

f (θ̂(ϕ1), . . . , θ̂(ϕn)),

for n ∈ Î and some n-ary Boolean function f .

2.1 Complexity Theory

A language L is a subset of Σ? for a finite alphabet Σ, and as it suffices to use a binary
alphabet for every language L we can conclude L⊆ Î.

In order to define the complexy classes occuring in Chapters 3 and 4, we will make use
of the standard model for computation, i.e., Turing machines which we will abbreviate
with TM (cf. [Sip05, HMU00, Pap94] for a more elaborative introduction to complexity
theory). Let f : Î→ Î be a function. Then we denote with DTIME(f) (resp., DSPACE(f))
the set of all decision problems (or languages) that can be solved by a deterministic Turing
machine in time O(f (n)), resp., space O(f (n)). In the same way we use for the nonde-
terministic case NTIME(f) and NSPACE(f). Hence we can define the usual complexity
classes

LOGSPACE =
def

DSPACE(log(n)),

P =
def

DTIME(nO(1)),

NP =
def

NTIME(nO(1)), and

PSPACE=NPSPACE =
def

NSPACE(nO(1)),

where the latter was proven by Savitch in [Sav70]. Counting the number of accepting
paths in a computation tree is the quintessence for the class ⊕LOGSPACE which is defined
as the class of decision problems solvable by an NLOGSPACE machine s.t. the answer
is yes iff the number of accepting paths is odd. Furthermore we need to define classes
above PH and PSPACE (unless LOGSPACE = P). For k ∈ Î let expk (n) denote the
kth iteration of the exponential function. The complexity class EXP is then defined
as DTIME(2nO(1)) = DTIME(exp1(n

O(1))), and one exponential jump farther we define
EEXP =

def
DTIME(exp2(n

O(1))).

An oracle Turing Machine M is a nondeterministic Turing Machine with three special
states z+, z−, z?, and an additional oracle band to interact with the predefined oracle B , for
a language B . During the computation M may write a word w on the oracle band and
change to state z?. One step later M enters the state z+ iff w ∈ B , and z− iff w /∈ B , and
deletes the oracle band afterwards. If C is a complexity class and B an oracle, then we
denote with C B the set of all oracle Turing machines that operate in the class C and have

2.1 Complexity Theory 11

access to the oracle B . In this manner we define for two complexity classes C ,D

C D =
def

⋃

L∈D

C L.

In the following definition we make use of these Turing Machines to define the polynomial
hierarchy PH.

Definition 2.1 (Polynomial time hierarchy).
Let k ∈ Î. Then

ΣP

0 =Π
P

0 =∆
P

0 =def P,

ΣP

k+1 =def NP
ΣP

k , ∆P

k+1 =def P
ΣP

k , ΠP

k+1 =def
¦

coA |A∈ΣP

k+1

©

,

PH =
def

⋃

k∈Î

ΣP

k ∪Π
P

k ∪∆
P

k ,

where coA=
def
Γ? \A, for A⊆ Γ?.

Through this definition one can show that ΣP
k ∪Π

P
k ⊆∆

P
k+1 ⊆Σ

P
k+1 ∪Π

P
k+1 holds which

is visualized in Figure 2.1.
For some results in Chapter 3 that are connected to promise1 problems, or model

checking we achieved complexity results for classes deep inside of P. Let LOGCFL denote
the class of decision problems that are logspace-reducible2 to context-free languages. There
is also another characterization by a circuit complexity class called SAC1, i.e., AC1 with
either bounded and-, or or-gates (cf. [Joh90]; for a formal definition of SAC1 , see [Vol99,
Chapter 4.3]).

Circuits. In the following we will define requiried notions from circuit complexity.
See also [Vol99] for basic definitions we assume the reader to be familiar with. The
relevant classes of this thesis will make use of the bounded baseB0 = {∧2,∨2,¬}, and the
unbounded baseB1 = {¬, (∧n)n∈Î, (∨n)n∈Î}:

NCi =
def

SIZE-DEPTHB0
(nO(1), (log n)i),

ACi =
def

SIZE-DEPTHB1
(nO(1), (log n)i),

TCi =
def

SIZE-DEPTHB1∪{MAJ}(n
O(1), (log n)i),

where SIZE-DEPTHB (s(n), d (n)) is the class of all sets A⊆ {0,1}? for which there is a
circuit family C over basisB of size O(s(n)), depth O(d (n)) that accepts A, and MAJ

1A promise problem P is a decision problem with the promise that the input x is syntactically correct, i.e., the
membership of x concerning P does not depend on the syntactical structure of x.

2A logspace reduction, ≤log
m in symbols, is a usual reduction that can be computed by a deterministic Turing

machine in LOGSPACE.

12 Chapter 2 Preliminaries

ΠR1ΣR1

AC0

TC0

NC1

LOGSPACE

NLOGSPACE

LOGCFL

⊕LOGSPACE

=∆P
0 =Σ

P
0 =Π

P
0 = P

∆P
1

ΣP
1NP= ΠP

1 = coNP

∆P
2

ΣP
2NPNP = ΠP

2 = coNPNP

PH

PSPACE

EXP

EEXP

(
(

((

in
tr

ac
ta

bl
e

tr
ac

ta
bl

e

Figure 2.1: Complexity class inclusion diagram. Known strict inclusion are denoted via
(.

2.2 Boolean Clones 13

are gates for the language MAJ =
def
{w ∈ {0,1}? | |w|1 ≥ |w|0} which is TC0-complete under

≤cd.
Unless otherwise stated, we are usually working with ≤cd reductions in this thesis.

Definition 2.2 (Constant depth reductions).
A language A is constant-depth reducible to B, written A≤cd B, if there is a logtime-uniform
AC0-circuit family with oracle gates for B that decides membership in A.

Here, logtime-uniform means there is a deterministic TM that can check the structure of
the circuit familiy C in time O(log n) where n is the size of C .

Classes inside AC0. The structure of words for some language is the only relevant part
for their membership behavior. Consider, e.g., the set of all words which contain at least
one 1, hence, the language {w ⊆ {0,1}? | |w|1 ≥ 1}. Thus it suffices to check for a given
input x = x1 x2 . . . xn with xi ∈ {0,1} whether there is an 1≤ i ≤ n s.t. xi = 1. Hence in
order to obtain such an i it is sufficient to guess nondeterministically such a position i in
x, and accept iff xi = 1.

In this regard a logarithmic time hierarchy can be established wherefore we will now
define the complexity class ΣR1 according to proviso (R) in [RV97] as a nondeterministic
Turing machine M with a special index tape for giving ‘random access’ to the input word
x, where everytime M enters the query state q? for accessing bit i it is charged 1 time unit
for this query and this query may only used once w.l.o.g. at the end of the computation—
analogously ΠR1 is defined as the ’co-class’ of ΣR1 .

Theorem 3.3 on page 31 addresses complexity issues in ΣR1 , resp., ΠR1 , where ≤cd-
reducibility is of no use since AC0 forms their 0-degree, and ΣR1 ∪Π

R
1 ⊆ AC0. Instead, we

will make use of the dlt-projection reducibility (A≤dlt
proj B) as introduced in [RV97]. We

note that TC0 and NC1 are closed under ≤cd, and ΣR1 and ΠR1 are closed under ≤dlt
proj.

2.2 Boolean Clones

Since there are infinitely many finite sets of Boolean functions, we introduce some algebraic
tools to classify the complexity of the infinitely many arising satisfiability problems. A set
B of Boolean functions is called a clone if it is closed under superposition, which means
that B contains all projections and is closed under arbitrary composition [Pip97]. For a
set B of Boolean functions we denote with [B] the smallest clone containing B and call B
a base for [B]. In [Pos41], Post classified the lattice of all clones and found a finite base for
each clone (see Figure 2.2). In order to introduce clones, we define the following properties
of Boolean functions, where f is an n-ary Boolean function, and c ∈ {>,⊥}.

• f is c-reproducing if f (c , . . . , c) = c .

• f is monotone if a1 ≤ b1, . . . ,an ≤ bn implies

f (a1, . . . ,an)≤ f (b1, . . . , bn).

14 Chapter 2 Preliminaries

• f is c-separating if there exists an i ∈ {1, . . . , n} such that

f (a1, . . . ,an) = 1 implies ai = c .

• f is c-separating of degree n if all A⊆ f −1(c) with |A|= n are c -separating.

• f is self-dual if f ≡ dual(f), where

dual(f)(x1, . . . , xn) = ¬ f (¬x1, . . . ,¬xn).

• f is linear (or affine) if f (x1, . . . , xn)≡ x1⊕ · · ·⊕ xn ⊕ c .

The list of all clones are shown in Table 2.1, where id is the identity function (i.e., id(x) = x
for all x of the respective domain), and T n+1

n =
def

∨n
i=0(x0 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xn) is a

threshold function requiring n bits out of n+ 1 set to >.
In this context we extend the definition of PL to PL(B) for a set of Boolean functions

B s.t. PL(B) is the set of all propositional formulae with connectives from [B] only.
Similarly we define a B -formula ϕ to contain connectives from [B] only.

Whilst working with Post’s lattice in the context of, e.g., a decision problem Γ for
propositional logic, or more general, a problem where formulae with Boolean connectives
appear one must be careful because of possible blow ups that occur if one want to express a
given Boolean function f via some other functions g1, . . . , gk , k ∈ Î. In this respect such a
problem can occur whenever one wants to show a reduction from Γ(B) to Γ(B ′) for two sets
of Boolean functions B and B ′ sucht that B ⊆ [B ′], and there exist no short-representation
for a function f ∈ B with functions in [B ′].

Example 2.3. Consider two sets of Boolean functions, B = {⊕} and B ′ = {∧,¬}. For writing
the function ⊕ in B with connectives from B ′ we obtain x ⊕ y ≡¬

�

¬(x ∧¬y)∧¬(¬x ∧ y)
�

.
Now let φ ∈ PL(B) with φ= x1 ⊕ (x2 ⊕ (· · · ⊕ xn) · · ·) be a formula that has to be written
with connectives of B ′. Then we obtain a formula φ′ ∈ PL(B ′) with |φ′| ∈O(2|φ|).

For this reason we establish a lemma for the most used clones in the lattice which
utilizes important properties from [Lew79] and [Sch10].

Lemma 2.4 ([Sch10, Lemma 4]).
Let B be a finite set of Boolean functions sucht that ⊥,>∈ B.

(1.) If V ⊆ [B] ⊆M (E ⊆ [B] ⊆M, resp.), then B efficiently implements ∨ (resp. ∧), i.e.,
there exists a B-formula f (x, y) such that f represents x ∧ y (x ∨ y, resp.) and each of
the variables x and y occurs exactly once in f (x, y).

(2.) If [B] = L, then B efficiently implements ⊕.

(3.) If N ⊆ [B], then B efficiently implements ¬ via some formula f . If [B] ⊆ L, then f
can be chosen in such a way that the variable x occurs in f as the last symbol.

(4.) If [B] = BF, then B efficiently implements ∨ and ∧.

2.2 Boolean Clones 15

Class Definition Base
BF All Boolean functions {x ∧ y,¬x}
R0

�

f | f is ⊥-reproducing
	

{x ∧ y, x ⊕ y}
R1

�

f | f is >-reproducing
	

{x ∨ y, x↔ y}
R2 R0 ∩R1 {∨, x ∧ (y↔ z)}
M { f | f is monotone} {x ∨ y, x ∧ y,⊥,>}
M0 M∩R0 {x ∨ y, x ∧ y,⊥}
M1 M∩R1 {x ∨ y, x ∧ y,>}
M2 M∩R2 {x ∨ y, x ∧ y}
S0 { f | f is ⊥-separating} {x→ y}
S1 { f | f is >-separating} {x9y}
Sn

0

�

f | f is ⊥-separating of degree n
	

¦

x→ y,dual(T n+1
n)

©

Sn
1

�

f | f is >-separating of degree n
	

¦

x9y,T n+1
n

©

S00 S0 ∩R2 ∩M {x ∨ (y ∧ z)}
Sn

00 Sn
0 ∩R2 ∩M

¦

x ∨ (y ∧ z),dual(T n+1
n)

©

S01 S0 ∩M {x ∨ (y ∧ z),>}
Sn

01 Sn
0 ∩M

¦

dual(T n+1
n),>

©

S02 S0 ∩R2 {x ∨ (y9z)}
Sn

02 Sn
0 ∩R2

¦

x ∨ (y9z),dual(T n+1
n)

©

S10 S1 ∩R2 ∩M {x ∧ (y ∨ z)}
Sn

10 Sn
1 ∩R2 ∩M

¦

x ∧ (y ∨ z),T n+1
n

©

S11 S1 ∩M {x ∧ (y ∨ z),⊥}
Sn

11 Sn
1 ∩M

¦

T n+1
n ,⊥

©

S12 S1 ∩R2 {x ∧ (y→ z)}
Sn

12 Sn
1 ∩R2

¦

x ∧ (y→ z),T n+1
n

©

D
�

f | f is self-dual
	

{(x9y)∨ (x9z)∨ (y9z)}
D1 D∩R2 {(x9y)∨ (x9z)∨ (y9z)}
D2 D∩M {(x9y)∨ (x9z)∨ (y9z)}
L

�

f | f is linear
	

{x ⊕ y,>}
L0 L∩R0 {x ⊕ y}
L1 L∩R1 {x↔ y}
L2 L∩R2 {x ⊕ y ⊕ z}
L3 L∩D {x ⊕ y ⊕ z ⊕>}
V

�

f | f is a disjunction or constant
	

{x ∨ y,⊥,>}
V0 M0 ∩V {x ∨ y,⊥}
V1 M1 ∩V {x ∨ y,>}
V2 M2 ∩V {x ∨ y}
E { f | f is a conjunction or constant} {x ∧ y,⊥,>}
E0 M0 ∩E {x ∧ y,⊥}
E1 M1 ∩E {x ∧ y,>}
E2 M2 ∩E {x ∧ y}
N

�

f | f depends on at most one variable
	

{¬x,⊥,>}
N2 L3 ∩N {¬x}
I { f | f is a projection or a constant} {id,⊥,>}
I0 R0 ∩ I {id,⊥}
I1 R1 ∩ I {id,>}
I2 R2 ∩ I {id}

Table 2.1: A list of Boolean clones with definitions and bases.

16 Chapter 2 Preliminaries

BF

R1 R0

R2

M

M1 M0

M2 S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

BF

R1 R0

R2

M

M1 M0

M2 S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

Figure 2.2: Post’s lattice of all Boolean clones.

2.3 Modal Logic 17

2.3 Modal Logic

Modal logic can be dated back to very early formal approaches of Aristoteles. If proposi-
tional logic is the logic that talks about one state (world, individual), then the extension
of propositional logic, which is called modal logic, overcomes this lack of expressivity.
Therefore one new operator ◊ is introduced which models this fact. Thus the syntax of
modal logic is defined by the following grammar:

ϕ ::=> | x | ¬ϕ | (ϕ ∧ϕ) | ◊ϕ,

where x is an atomic proposition which is an element of the set PROP that are denoted with
uncapitalized letters as x, y, z, p, q . As usual it holds that ⊥ =

def
¬>, and �ϕ is interpreted

as ¬◊¬ϕ. The set of all modal formulae is denoted with ML. Further let ML(B) be the
set of all modal formulae that only use connectives from the clone [B] of set of Boolean
functions B , and ML(B ,Q) be the set of all ML(B)-formulae that only use modalities
fromQ ⊆ {�,◊}. Before being able to define their semantics, we need to define Kripke
structures which are the transition system of choice.

Definition 2.5 (Kripke structure).
A Kripke structure is a quadruple

K= (W ,R ,η,PROP),

where W is a set of worlds, R = {R1, R2, . . . , Rn} is a set of transition relations, and
η : PROP→P(W) is a labeling function that associates atomic propositions to sets of worlds
to denote in which worlds they are labeled.

Remark 2.6. Definition 2.5 extends the grammar from above. Whenever we write ◊i , resp.,
�i we refer to the transition relation Ri ∈R for a given Kripke structure K. Additionally,
whenever PROP is either not relevant or if the situation makes a definition obvious we usually
omit an explicit statement.

Finally the semantics of modal formulae are defined with respect to Kripke structures
as follows.
Definition 2.7 (Semantics).
Let ϕ,ψ ∈ML be some modal formulae, K= (W ,R ,η,PROP) be a Kripke structure, and
w, w ′ ∈W . Then

K, w |=> always holds,
K, w |= x iff x ∈ PROP and w ∈ η(x),
K, w |= ¬ϕ iff K, w 6|= ϕ,
K, w |= (ϕ ∧ψ) iff K, w |= ϕ and K, w |=ψ, and
K, w |= ◊iϕ iff K, w ′ |= ϕ and (w, w ′) ∈ Ri for Ri ∈R .

We say a ML(B ,Q) formula ϕ is satisfiable iff there is a Kripke structure K= (W ,R ,η,
PROP) s.t. K, w |= ϕ for some w ∈W .

A frame is a class of structures with a certain property. The two relevant frames for this
thesis with their properties and their respective names are

18 Chapter 2 Preliminaries

Fall the set of all frames.

Ftotal the set of all total frames, i.e., for K= (W ,R ,η), and all w ∈W and all Ri ∈R there
is a w ′ s.t. (w, w ′) ∈ Ri (each world has for each transition relation a successor).

Of course there are other frames which are investigated in the literature, e.g., transitive,
or total transitive frames. In this thesis we employ only to the two defined above because
they simulate the behavior of computing systems the best. Now we will take a closer
look at an example that illustrates the expressiveness of a very specific frame class which
combines two very fundamental properties of frames.

Example 2.8. For the frame class of all transitive3 and irreflexive4 structures one can easily
construct a formula whose satisfying structures require infinite many states. Therefore consider
the formula ϕ = ◊>∧�◊> which says, informally, that every world has a successor. Both
conjuncts are important to express this property because without ◊> we could construct a
world without any successor which also fulfills the semantics of the �-preceded formula. Thus
for any Kripke structure K= (W ,R ,η,PROP) with K |= ϕ it holds that |W |=∞.

The most prominent decision problem for this logic is of course the satisfiability
problem

Problem (ML-SATQ(B))
Input: an ML(B ,Q)-formula ϕ.
Question: is φ satisfiable?

which has been proven to be PSPACE-complete in 1977 by Ladner:

Theorem 2.9 ([Lad77]).
ML-SAT{�,◊}(BF) is PSPACE-complete.

For ease of notion we will omit the braces from now on and will write ML-SAT�◊(B)
instead of ML-SAT{�,◊}(B). For more information about modal logics and their properties
we refer the reader to [BdV01].

2.3.1 Temporal Logic

Temporal logic has a huge influence to computer science, in particular in the areas of
artificial intelligence and program verification, but also in a broad field of other sciences
such as physics, ethics and philosophy [Pri67, Pnu77, Krö87, Gal87, ØH95].

There are several different extensions to temporal logics available starting with hybridiza-
tions [KWLS09, Web09a] or probabilistic versions [HJ94, RKNP04]. In this thesis we
concentrate on the temporal logic that is the most close to modal logic, which is the com-
putation tree logic CTL?. In this area of modal logic one can model several different kinds
of computational behavior, e.g., properties that must hold on some computation path
invariantly, sometimes, or eventually. Now let PROP be a finite set of atomic propositions.

3if (u, v), (v, w) ∈ E then also (u, w) ∈ E
4(v, v) /∈ E for all v ∈V

2.3 Modal Logic 19

The symbols used are the atomic propositions in PROP, the constant symbols > and ⊥,
the Boolean connectives ∧ and ¬, and the temporal operator symbols X, U, and A. A is
also called a path quantifier, temporal operators aside from path quantifiers are also called
pure temporal operators.

The atomic propositions, > and ⊥ are called atomic formulae. There exist two other
kinds of formulae, state formulae and path formulae. Each atomic formula is a state
formula. Let ϕ,ψ be state formulae and χ ,π be path formulae. Then ¬ϕ, (ϕ ∧ψ), Aχ
are state formulae, and ϕ, ¬χ , (χ ∧ π), Xχ , and [χUπ] are path formulae. The set
of CTL?-formulae consists of all path formulae χ , and is equivalently defined via the
grammar

ϕ ::=> | ⊥ | p | ¬ϕ | (ϕ ∧ϕ) |Aχ ,

χ ::= ϕ | ¬χ | (χ ∧χ) |Xχ | [χUχ],

where p is an atomic proposition. In this definition ϕ describe state formulae and χ path
formulae. We define CTL?(T ,B) to be the set of CTL?-formulae using Boolean connectives
in B and temporal operators in T only. For ease of notation, we will also write CTL?(T ,B)
if B is a clone and identify B with an arbitrary finite base for B . If unary or associative
functions occur then the braces ’(’ and ’)’ may be omitted. Further, observe that for
complexity classes above and including PSPACE, the choice of this base is irrelevant as
for any Boolean function f appearing, one can substitute the use of f recursively by its
respective clause of the truth-table constructed disjunctive normal form representation.

In temporal logic we often refer to models instead of Kripke structures (which is literally
the same), and usually write M = (S,{R} , l) for such a model, where l is the labeling
function which corresponds to η in the modal world for Kripke structures K= (W , R,η).
Often, l is defined as a function l : S → P(PROP) and therefore maps states to sets of
propositions contrary to ηmapping propositions to sets of states. The models in temporal
logic are always defined over the frame Ftotal. Hence, as such models generally consist
of only one transition relation R, we commonly just write M = (S, R, l) and omit the
{} braces. A path x is an infinite sequence x = (x0, x1, . . .) ∈ Sω such that (xi , xi+1) ∈ R
for all i ≥ 0. For a path x = (x0, x1, . . .) we denote by x i the path (xi , xi+1, . . .). Let
M = (S, R, l) be a model, s ∈ S be a state, and x = (x0, x1, . . .) ∈ Sω be a path. The truth of
a CTL?-formula w.r.t. M is inductively defined using the following semantics.

Definition 2.10 (Semantics of CTL?).
Let ϕ,ψ,χ ,π ∈ CTL? for state formulae ϕ,ψ, path formulae χ ,π, and an infinite path
x = (x1, x2, . . .).

M , s |=> always holds,
M , s |=⊥ never holds,
M , s |= p iff p ∈ PROP and p ∈ l (s),
M , s |= ¬ϕ iff M , s 6|= ϕ,
M , s |= (ϕ ∧ψ) iff M , s |= ϕ and M , s |=ψ,
M , s |=Aχ iff for all paths x = (s , x2, x3, . . .) holds M , x |= χ ,
M , x |= ϕ iff M , x1 |= ϕ,

20 Chapter 2 Preliminaries

M , x |= ¬χ iff M , x 6|= χ ,
M , x |= (χ ∧π) iff M , x |= χ and M , x |=π,
M , x |=Xχ iff M , x2 |= χ ,
M , x |= [χUπ] iff M , xk |=π for some k ∈ Î, and

M , x i |= χ for all 1≤ i < k.

All remaining Boolean functions f can be defined in terms of the connectives ¬ and ∧.
The other temporal operators are defined as usual: Eϕ ≡¬A¬ϕ,Fϕ ≡>Uϕ,Gϕ ≡¬F¬ϕ,
where E is again also called a path quantifier. A formula ϕ is hence said to be satisfied by
model M if there exists an x ∈ Sω such that M , x |= ϕ (written as M |= ϕ). Further, ϕ is
said to be satisfiable if there exists a model M that satisfies ϕ.

Problem (CTL?-SAT(T, B))
Input: a CTL?(T ,B)-formula ϕ.
Question: is there a model M = (S, R, l) s.t. there exists a state s ∈ S with M , s |= ϕ?

Theorem 2.11 ([VS85a, VS85b, EJ00]).
CTL?-SAT(ALL,BF) is EEXP-complete under ≤cd-reductions.

Talking about the existence of a satisfying model for a given formula is joined with asking
whether a given model satisfies a given formula, i.e., the model checking problem.

Problem (CTL?-MC(T, B))
Input: a CTL?(T ,B)-formula ϕ, a model M = (S, R, l).
Question: is there a state s ∈ S s.t. M , s |= ϕ?

Theorem 2.12 ([CES86]).
CTL?-MC(ALL,BF) is PSPACE-complete under ≤cd-reductions.

A CTL-formula is a CTL?-formula in which each path quantifier is followed by exactly
one pure temporal operator and each pure temporal operator is preceded by exactly one
path quantifier. Here, we define a CTL-operator as every combination of a path quantifier
and a pure temporal operator. The set of CTL-formulae forms a strict subset of the set of
CTL?-formulae which is illustrated through the following example.

Example 2.13. E(G p ∧X¬p) is a CTL?-formula which is not satisfiable. Further it is not
expressible with a CTL-formula. Also, this formula shows that the path quantifier E is not
distributive, as the formula EG p ∧EX¬p is satisfied via the model

p

as in an infinite path looping the first node satisfies EG p and the succeeding state fulfills ¬p.

Remark 2.14. Let B be a finite set of Boolean functions and let ϕ ∈ML(B) be some modal
formula. Then there exists a connection to temporal logic in the following way. It holds that
ϕ ∈ML-SAT(B) if and only if ϕ′ ∈CTL-SAT({AX,EX},B), where ϕ′ =

def
ϕ|[�/AX,◊/EX].

2.3 Modal Logic 21

;

AXAF AG

AU EU

AX,AF AF,AG AX,AG

AX,AF,AG

AX,AU AX,EU

AG,AU

AF,EU

AX,AF,EU

LTL

;

F X A

U X,F A,F A,X

X,U A,U A,X,F

A,X,U

Figure 2.3: The lattice induced by all CTL- (left) and all CTL?-operators (right). Each
node is labeled with a minimal set of operators without any restrictions on the
Boolean connectives.

Pairs of path quantifiers and pure temporal operators are also referred to as CTL-
operators.

Remark 2.15. The following equivalences among CTL-operators hold:

EXϕ ≡¬AX¬ϕ, EFϕ ≡ E[>Uϕ],
AFϕ ≡A[>Uϕ], AGϕ ≡¬EF¬ϕ,

EGϕ ≡¬AF¬ϕ, and A[ψUχ]≡AFχ ∧¬E[¬χU(¬ψ∧¬χ)].

Hence, in presence of all Boolean connectives, {AX,AF,EU} is a minimal set of CTL-operators
for CTL, whereas {AX,AG,AU} is not [Lar95].

In Figure 2.3 one can see how the CTL- and CTL?-operators form a lattice.
Alike CTL?-SAT, we define CTL(T ,B) to be the set of all CTL-formulae using Boolean

connectives in B and CTL-operators in T , and define CTL-SAT(T ,B) to be the problem
of deciding whether a given CTL(T ,B)-formula is satisfiable. The corresponding decision
problems for this strictly more restricted logic are

Problem (CTL-SAT(T, B))
Input: a CTL(T ,B) formula ϕ.
Question: Is there a model M = (S, R, l) s.t. there exists a state s ∈ S with M , s |= ϕ?

and

Problem (CTL-MC(T, B))
Input: a CTL(T ,B) formula ϕ, a model M = (S, R, l).

22 Chapter 2 Preliminaries

Question: Is there a state s ∈ S s.t. M , s |= ϕ?

Theorem 2.16 ([FL79, Pra80]).
CTL-SAT(ALL,BF) is EXP-complete under ≤log

m .

Theorem 2.17 ([CES86, Sch02]).
CTL-MC(ALL,BF) is P-complete under ≤log

m .

The disability of expressing fairness properties is a lack of CTL which has been overcome
by introducing ECTL in [EH86]. Therefore a new temporal operator F

∞
is introduced for

a model M = (S, R, l), a path x = (x1, x2, . . .), and a path formula χ as

M , x |= F
∞
χ iff M , x |=GFχ ,

where G
∞
ψ ≡ FGψ denotes the analogously defined dual operator. Another fragment

of CTL? which has been defined in [EH86] is the logic CTL+ which is an extension of
CTL that allows Boolean combinations (without nesting) of temporal operators in path
formulae under the scope of a path quantifier. From the point of expressiveness the logics
are the same whereas a translation between these logics leads to an exponential blow up
in the size of the given formula [EH85, Wil99, AI03]. One can easily observe that CTL?

with fairness constraints, i.e., the logic ECTL? equals CTL? due to the equivalence of F
∞

with GF. In the same way as before we define their respective decision problems.

Theorem 2.18 (follows from Theorem 2.16 and [Eme90]).
ECTL-SAT(ALL,BF) is EXP-complete under ≤log

m .

Theorem 2.19 ([Sch02]).
ECTL-MC(ALL,BF) is P-complete under ≤log

m .

Theorem 2.20 ([VS85a, EJ00]).
ECTL+-SAT(ALL,BF) is EEXP-complete under ≤log

m .

Theorem 2.21 ([LMS01]).
ECTL+-MC(ALL,BF) is∆P

2 -complete under ≤log
m .

Theorem 2.22 ([JL03]).
CTL+-SAT(ALL,BF) is EEXP-complete under ≤log

m .

Theorem 2.23 ([LMS01]).
CTL+-MC(ALL,BF) is∆P

2 -complete under ≤log
m .

Example 2.24. In the fragment of CTL with only AX and AF as allowed operators besides
all Boolean functions one can construct a binary counter that enforces paths of exponential

2.3 Modal Logic 23

length in every satisfying model. Consider the set Φ =
def
{qi | 1≤ i ≤ n} as atomic propositions

in the given formula ϕcnt which is defined as

ϕcnt =
def

n
∧

i=1

¬qi ∧EG

 n
∧

i=1

�

�

i
∧

k=1

qk →AX
i
∧

j=1

¬q j

�

�

∧

∧
�

n
∧

k=i+1

(qk →AXqk)∧ (¬qk →AX¬qk)
�

�

∧

∧
�

�

n
∧

i=1

qi

�

→AX
�

n
∧

i=1

¬qi

�

�

!

,

where empty conjunctions are assumed to be >. Starting in a state where none proposition
is true the formula enforces in the first big conjunction to flip all bits until and including
the i -th bit whereas all more significant bits remain their value. This clearly models the
behavior of a counter whence every satisfying model comprehends of an exponential long path
rippling through all binary numbers. Substituting the conclusion in the last implication with
a contradiction, e.g., saying ¬q1 holds in this state, then constructing a model in the naïve way
bears this conflict only after exponential many steps. Observe that this kind of construction
with solely AF instead of AX is not possible.

2.3.2 Description Logic

There are many different types of description logics which are applied in the areas of
the semantic web, object-oriented representations, but also at type systems and medical
ontologies [BCM+03]. Thus any such logical derivative is trimmed for its recent purpose.
Some of these logics exhibit tractable algorithms for several decision problems and there-
fore find practical application, e.g., EL ++ which admits sound and complete reasoning in
polynomial time [BBL05a, BBL05b, BBL08].

In the area of description logics there are several different names for concepts that are
also available in modal logic, i.e., individuals for worlds/nominals, concepts for unary
relations, roles for binary relations/modalities, concept descriptions for formulae. For
that reason we will keep these naturalized notions and names whenever we are in the
scope of the description logics. In fact, this correspondence to the multimodal logic over
the frame class Fall(cf. [HM92]) has been pointed out by Schild already [Sch91]. As
these equivalence of some description logics to modal logic has been discovered several
years after the first definitions definitions in the 1970s the use of u and t have been
become the de facto standard symbols corresponding to conjunction and disjunction in
the sense of set operations. For this reason we will stick to these symbols in order to avoid
misunderstandings. For all remaining Boolean connectives, e.g., ⊕,→,9, we will use the
same symbols.

Our approach in finding a description logic which interacts closest with Post’s lattice
leads to the description logicALC whose operators comply to the Boolean standard

24 Chapter 2 Preliminaries

base of BF. Usually the definition of a description logic starts with the set NC of atomic
concepts, the universal concept >, the empty concept ⊥ , and the set NR of all roles. The
syntax for all concept descriptions inALC are usually inductively defined as

C ::=A | > | ⊥ | ¬C |C uC | ∃R.C ,

where A∈NC, and R ∈NR. In order to work with Boolean clones we adjust this definition
to

C ::=A | > | ⊥ | ◦ f (C , . . . ,C) | ∃R.C ,

where A and R are as from above, but ◦ f is the operator which corresponds to the Boolean
function f . In the following we will define the semantics of this logic in the same notation.

Definition 2.25 (ALC semantics).
An interpretation I = (∆I , ·I) is a finite, not empty set∆I of individuals and a mapping
·I which assigns

• atomic concepts from NC and individuals from NI to P(∆I), and

• roles from NR to P(∆I ×∆I).

This interpretation I is extended to arbitrary concepts via

◦ f (C1, . . . ,Cm)
I =

def

n

x ∈∆I
�

�

� f (||x ∈CI1 ||, . . . , ||x ∈CIn ||) = 1
o

,

where ||x ∈CIj ||= 1 if x ∈CIj and ||x ∈CIj ||= 0 if x /∈CIj , and

(∃R.C)I =
def

n

x ∈∆I
�

�

�

n

y ∈CI
�

�

� (x, y) ∈ RI
o

6= ;
o

.

Further, let B be a finite set of Boolean functions andQ ⊆ {∃,∀} be a set of quantifiers.
Then, define ConQ(B) as the set of concepts which only use quantifiers from Q and
operators that correspond to Boolean functions from [B]. The satisfiability problem for
concept expressions is defined as follows:

Problem (CSATQ(B))
Input: a concept description C ∈ ConQ(B).
Question: is there an interpretation I s.t. CI 6= ;?

One can easily observe that the connection to modal logic is immediate because
CSATQ(B) ≡log

m ML-SATQ′ (B) holds via f where Q ⊆ {∀,∃} ,Q ′ = {�,◊}, and the
reduction function f : DL→ML is defined inductively as follows

f (C) =
def

xC , f (>) =
def
>, f (⊥) =

def
⊥,

f (◦g (C1, . . . ,Cn)) =
def

g (f (C1), . . . , f (Cn)),

f (∀R.C) =
def
�R f (C), f (∃R.C) =

def
◊R f (C)

2.3 Modal Logic 25

for any atomic concept C , and any operator ◦g which corresponds to the Boolean function
g .

Thus the complexity classification for all quantifier- and function-fragments immediately
arises out of the work of Hemaspaandra et al.:

Theorem 2.26 ([HSS08]).
Let B be a finite set of Boolean operators.

(1.) If S11 ⊆ [B], then CSAT∃∀(B) is PSPACE-complete.

(2.) If [B] ∈ {E,E0}, then CSAT∃∀(B) is coNP-complete.

(3.) If [B]⊆ R1, then CSAT∃∀(B) is trivial.

(4.) Otherwise CSAT∃∀(B) ∈ P.

(5.) If S1 ⊆ [B], then CSAT∃(B) and CSAT∀(B) are PSPACE-complete.

(6.) If [B]⊆ R1, then CSAT∃(B) and CSAT∀(B) are trivial.

(7.) Otherwise CSAT∃(B) ∈ P and CSAT∀(B) ∈ P.

Definition 2.27 (GCI, TBox, ABox, Ontology).
Let C , D be concepts and R be a role. Then we define a general concept inclusion (GCI) as
an axiom of the form C vD. Further we will write C ≡D abbreviating C vD and D vC .
A TBox is a finite set of GCIs without restrictions. An ABox is a finite set of axioms of the
form C (x) or R(x, y). Lastly, the union of a TBox and an ABox is called an ontology.

Let B be a finite set of Boolean functions andQ be a set of quantifiers. With TQ(B) and
OQ(B) we denote the set of all TBoxes and ontologies using operators corresponding to
functions in [B] and quantifiers fromQ.

For two given concepts C , D we say an interpretation I satisfies an axiom C vD, in
symbols I |= C v D, if CI ⊆ DI . Furthermore, given a concept C and a role R, we
say I satisfies C (x) or R(x, y) if xI ∈CI or (xI , yI) ∈ RI . Finally, an interpretation I
satisfies a TBox (ABox, ontology) if it satisfies every axiom therein. It is then also called a
model of this set of axioms. Now we are ready to define the appropriate decision problems:

Problem (TSATQ(B))
Input: a TBox T ∈TQ(B).
Question: is there an interpretation I which is a model for T ?

Problem (TCSATQ(B))
Input: a TBox T ∈TQ(B) and a concept C ∈ ConQ(B).
Question: is there an interpretation I which is a model for T and CI 6= ;?

Problem (OSATQ(B))
Input: an ontology O ∈OQ(B).

26 Chapter 2 Preliminaries

Question: is there an interpretation I which is a model for O ?

Problem (OCSATQ(B))
Input: an ontology O ∈OQ(B) and a concept C ∈ ConQ(B).
Question: is there an interpretation I which is a model for O and CI 6= ;?

By abusing the notation we will always write TSAT∃∀(B) instead of TSAT{∃,∀}(B) and
similarly use this shortcut for all quantifier subsets of {∃,∀}.

Theorem 2.28 ([Pra78, VW86, DM00, FL79, Gia95]).
OCSAT∃∀(BF) is EXP-complete.

Now it is easy to see, that OCSATQ(B) ≡cd OSATQ(B) as a concept C is satisfiable
iff the ontology {C (a)} is satisfiable for a fresh chosen individual a. This leads to an
interreducibility independent from B andQ in the following way:

TSATQ(B)≤cd TCSATQ(B)≤cd OCSATQ(B)≡cd OSATQ(B).

Besides these more general satisfiability problems a counterpart to the propositional
implication problem plays an import role in the area of description logics, namely, sub-
sumption. Therefore one says a concept C is subsumed by another concept D , i.e., C vD
if and only if for all interpretations I it holds that CI ⊆ DI . Usually we investigate
this property with respect to a given terminology T . If T is a terminology and C , D are
concepts, then C vT D holds iff for all interpretations I it holds that I |= T implies
CI vDI .

Problem (Subsumption SUBSQ(B))
Input: Given C , D ∈NCQ(B) and T ⊆TQ(B).
Question: does C vT D hold?

Due to being interreducible to TCSAT∃∀(BF) (see Lemma 4.39 on page 95) the following
theorem can be achieved.

Theorem 2.29.
SUBS∃∀(BF) is EXP-complete under ≤cd.

2.4 Complete Problems

For several results in this thesis other decision problems play an important role in order
to state respecting upper or lower complexity bounds. In this paragraph these problems
will be defined.

Problem (GAP)
Input: a directed graph G = (V , E), two vertices s , t ∈V .
Question: is there a path from s to t in G?

Theorem 2.30 ([Sav70]).
GAP is NLOGSPACE-complete under ≤log

m .

2.4 Complete Problems 27

Yet the problem GAP becomes LOGSPACE-complete if we have symmetric edges or
undirected edges wherefore it is denoted by UGAP.

Problem (UGAP)
Input: an undirected graph G = (V , E), two vertices s , t ∈V .
Question: is there a path from s to t in G?

Theorem 2.31 ([LP82, Rei05]).
UGAP is LOGSPACE-complete under ≤log

m .

The majority problem not only plays an important role through the definition of the
circuit complexity class TC0 introduced on page 11, it also provides itself useful as a
problem to state reductions shown in Theorem 3.2 on page 30.

Problem (MAJ)
Input: a string w ∈ {0,1}?.
Question: does w contain more than or equal many ones as zeros, i.e., does |w|1 ≥ |w|0

hold?

Theorem 2.32 ([CSV84]).
MAJ is TC0-complete under ≤cd.

The very easy question whether a given string of ones and zeros contains an even
number of ones characterizes AC0[2] by definition of adding MOD2-gates to AC0 and
therefore is a strict super class of AC0. The problem is used in the context of promise
problems in Theorem 3.3 on page 31.

Problem (PARITY)
Input: a string w ∈ {0,1}?.
Question: does w contain an even number of ones, i.e., does |w|1 ≡ 0 mod 2 hold?

Theorem 2.33 ([Smo87]).
PARITY is AC0[2]-complete under ≤cd.

Quantified Boolean formulae are an extension of propositional logic by two quantifiers
∃ and ∀ in the following way. If ϕ ∈ PL is a propositional formula, then it is also
a quantified Boolean formula. Let denote with QBF the set of all quantified Boolean
formulae. If ϕ,ψ ∈ QBF then ∃xϕ,∀xψ ∈ QBF, where ∃xϕ ≡ ϕ|[x/>] ∨ ϕ|[x/⊥] and
∀xϕ ≡ ϕ|[x/>] ∧ϕ|[x/⊥]. Let ϕ be a quantified Boolean formula. Then we say that ϕ is a
closed quantified Boolean formula if all variables in Vars(ϕ) are quantified.

Problem (QBF-VAL)
Input: a closed quantified Boolean formula ϕ.
Question: does ϕ ≡> hold?

Problem (QBF-3VAL)
Input: a closed quantified Boolean formula ϕ ≡ ∃x1∀x2 . . .Qn xn F , where F is in 3CNF,

and Qn ≡ ∃ if n is odd and otherwise Qn ≡∀.

28 Chapter 2 Preliminaries

Question: does ϕ ≡> hold?

Theorem 2.34 ([Sto77]).
QBF-VAL and QBF-3VAL are PSPACE-complete under ≤cd.

Chapter 3

Temporal Logic

3.1 Satisfiability in CTL and CTL?

In this section we consider the complexity of the satisfiability problem for arbitrary frag-
ments CTL(T ,B) of CTL. Surprisingly, if B cannot express the negation of implication,
then the complexity of CTL-SAT(T ,B) is independent of T , and it drops down to and
in some cases even below NC1. If B suffices to express the negation of implication, then
the complexity of CTL-SAT(T ,B) depends only on T which is shown in Section 3.1.1.
In Section 3.1.2 we consider the fragments with complexity dependent on T and show
completeness of satisfiability for NP, PSPACE, and EXP.

3.1.1 Restricting the Boolean connectives

We separate the fragments CTL(T ,B) into two groups: one for which the complexity of
satisfiability only depends on B , and one for which it only depends on T .

Theorem 3.1.
Let T denote a set of CTL-operators and let B be a finite set of Boolean functions such that
[B] /∈ {L,L0}. Then CTL-SAT(T ,B) is

(1.) equivalent to CTL-SAT(T ,BF) if S1 ⊆ [B],

(2.) in NC1 otherwise.

Proof. For (1.), note that BF = [S1 ∪ {>}] = [B ∪ {>}] proves this equivalence if we
are able to simulate > in all sets of Boolean functions B satisfying [B]⊇ S1. A method
allowing for such an expression has been presented in [Lew79] and is often referred to as
’Lewis knack’. In this technique one substitutes any constant > by a fresh variable t and
finally adds to each subformula the conjunct ∧t . From E0 ⊆ S1 we know that ∧ ∈ [B]
is available for S1 ⊆ [B]. Therefore t is treated similarly to > in any model. Observe
that Lemma 2.4 ensures that we have access to a short representation of ∧ circumventing
possible blow-ups.

For (2.), we have to distinguish four cases. We start with S11 ⊆ [B]⊆M (case (2a)). Since
[B] does not contain negation, ϕ ∈ CTL-SAT(T ,B) iff the model M = ({s},{(s , s)}, l)
with l (s) = PROP satisfies ϕ (note that CTL models are required to have total transition
relations). Evaluating ϕ under M can be simulated by substituting each atomic proposition

30 Chapter 3 Temporal Logic

in ϕ with >, replacing each CTL-operator O(·) with id(·), and evaluating this proposition-
free formula like a propositional formula. As evaluation of propositional S11-formulae is
NC1-complete [Sch10], the claim follows.

The following cases locate the satisfiability problem even in TC0. First, consider the
cases [B] ⊆ R1 and [B] ⊆ D (case (2b)). An induction on the formula structure shows
that all formulae are trivially satisfiable by the model M = ({s},{(s , s)}, l) with either
l (s) = PROP or l (s) = ;. For R1-formulae we use the first labeling, and for D-formulae it
depends on the occurring self-dual functions. Second (case (2c)), consider [B]⊆N. After
moving the negation symbols inside, we can w.l.o.g. assume that

ϕ ≡O11 · · ·O1k1
P1

h

ψUO21 · · ·O2k2
P2

�

· · ·UO`1 · · ·O`k`
P`[· · ·Uψ

′] · · ·
�

i

,

where ψ ∈ CTL(T ,B), ψ′ ∈ CTL(T \ {AU,EU},B), Oi j ∈ T \ {AU,EU} for `, k ∈ Î,
1 ≤ j ≤ k, 1 ≤ i ≤ ` and P1, . . . ,P` ∈ {A,E}. Observe that ψ′ is equal to a literal after
counting the preceding negations. Hence we only need to count the number of preceding
negations of ψ′ modulo 2 in order to construct a ’looping’ model which immediately
satisfies ψ′ (or return false if ψ′ ≡⊥). For the remaining clones (case (2d)), either [B]⊆ V

or [B] ⊆ E. Hence, we can substitute the propositions with > and only need to guess
nondeterministically the position of a > (case [B] ⊆ V), or ensure absence of ⊥ (case
[B]⊆ E) leading to ΣR1 and ΠR1 which are both subsets of NC1. �

An analysis of the following proof yields completeness results for NC1 and below.

Theorem 3.2.
Let T denote a set of CTL-operators and let B be a finite set of Boolean functions such that
[B] /∈ {L,L0} and S1 6⊆ [B]. Then CTL-SAT(T ,B) is

(1.) NC1-complete under ≤cd-reductions if S11 ⊆ [B]⊆M, and

(2.) TC0-complete under ≤cd-reductions in all other cases.

Proof. The proof of NC1-completeness, respectively, membership in TC0 is already con-
tained in case (2a) resp. the cases (2b)–(2d) in the proof of Theorem 3.1.

Now we turn towards (2.). Syntactical correctness of the input depends on the encoding
and proper nesting of the parentheses. As any sensible encoding can be verified in AC0, it
remains to check that the number of opening parentheses is greater or equal to the number
of closing parentheses for any (decoded) prefix of the input and that the number of opening
and closing parentheses matches. This can clearly be done in TC0. As for the TC0-hardness,
we consider the majority problem MAJ =

def

�

w ∈ {0,1}? | |w|1 ≥ |w|0
	

, which is complete

for TC0 under ≤cd-reductions. Given w ∈ {0,1}n , it holds that |w|1 ≥ |w|0 iff there is a k
s.t. 0 ≤ k ≤ n : |w|1 = |w0k |0. Hence, w ∈MAJ iff

∨

0≤k≤n |1
n w0n+k |1 = |1n w0n+k |0 is

satisfiable. Moreover, if w ∈MAJ it holds that |u|1 ≥ |u|0 for every prefix u of 1n w0n+k ,
where k = |w|1 − |w|0. For ` satisfying |1n w0n+`|1 = |1n w0n+`|0, 1n w0n+` can thus

3.1 Satisfiability in CTL and CTL? 31

be interpreted as a balanced string of parentheses. Let p ∈ PROP, and ⊗ be a binary
projection function x1⊗ x2 =

def
x1. Regardless how B is defined we always have access to

such a function. Now it is not hard to construct a homomorphism h mapping {0,1}? to
{(,), p,⊗}? such that 1n w0n+` ∈MAJ iff h(1n w0n+`) is a syntactically correct CTL(T ,B)
formula. Therefore define

h(wi) =
def

(, if wi = wi+1 = 1 or wi = 1, i = n
(p, if 1= wi 6= wi+1 = 0
), if wi = wi+1 = 0 or wi = 0, i = n
)⊗, if 0= wi 6= wi+1 = 1,

for w = w1w2 . . . wn and 1≤ i ≤ n. Then w ∈MAJ iff
∨

0≤k≤n h(1n w0n+k) ∈CTL(T ,B).
From this it is clear how to construct an AC0 circuit with oracle gates for CTL(T ,B) to
decide MAJ, and hence MAJ≤cd CTL(T ,B) follows. �

Thus, the hard part for checking satisfiability for these specific type of formulae is
strictly connected to the syntactical correctness of the input. In order to classify the com-
plexity of CTL-SAT(T ,B) beyond this point, we restrict our attention to, now promised,
syntactically correct formulae: Let CTL-SATP (T ,B) denote the promise problem of de-
ciding whether a given syntactically correct CTL(T ,B)-formula is satisfiable. This can be
used to refine Theorem 3.2 for subclasses of TC0.
Theorem 3.3.
Let T denote a set of CTL-operators and let B /∈ {L,L0} and S1 6⊆ [B] be a finite set of Boolean
functions such that CTL-SAT(T ,B) is TC0-complete.

Then CTL-SATP (T ,B) is

(1.) in TC0 if T ∩{AU,EU} 6= ; and [B] ∈ {V,V0,E,E0,N},

(2.) ΣR1 -complete if T ∩{AU,EU}= ; and [B] ∈ {V,V0},

(3.) ΠR1 -complete if T ∩{AU,EU}= ; and [B] ∈ {E,E0},

(4.) AC0[2]-complete if T ∩{AU,EU}= ; and [B] =N, and

(5.) trivial in all other cases,

with respect to ≤dlt
proj-reductions.

Proof. For (1.), one has to determine the relevant parts of the formula first. This requires
counting the parentheses, therefore the problem remains in TC0.

The cases (2.) and (3.) can be solved analogously to [Sch10, Lemma 9], that is, by
guessing the position of a satisfying > (or a falsifying ⊥, resp.) after substituting all
propositions with>. Hardness is obtained via a reduction from the language {0,1}?1{0,1}?
(or {0}?, resp.).

For (4.), syntactically correct formulae in CTL(T ,N) can be checked for satisfiability
by just counting the preceding negations modulo 2. Hardness for this case arises from a
reduction from PARITY= {w ∈ {0,1}? | |w|1 ≡ 1 mod 2}.

Lastly, in any other case, all CTL(T ,B)-formulae are trivially satisfiable. �

32 Chapter 3 Temporal Logic

3.1.2 Restricting the CTL-operators

We continue to determine the complexity of CTL-SAT(T ,BF) for S1 ⊆ [B] and an arbi-
trary set T of CTL-operators (case (1.) in Theorem 3.1). It turns out that each fragment’s
satisfiability problem is complete for NP, PSPACE, or EXP.

Theorem 3.4.
Let T be a set of CTL-operators. Then CTL-SAT(T ,BF) is

(1.) NP-complete under ≤cd-reductions if T ⊆ {AF},

(2.) PSPACE-complete under ≤cd-reductions
if {AG} ⊆ T ⊆ {AG,AF} or {AX} ⊆ T ⊆ {AX,AF}, and

(3.) EXP-complete under ≤cd-reductions in all other cases.

Proof. We will prove (1.) to (3.) in the following three lemmata. �

Lemma 3.5.
Let T ⊆ {AF} be a set of CTL-operators. Then CTL-SAT(T ,BF) is NP-complete under
≤cd-reductions.

Proof. The NP-hardness of CTL-SAT(;,BF) is immediate from the NP-hardness of SAT
under ≤cd-reductions [Coo71b]. Considering the upper bound, i.e., the membership of
CTL-SAT({AF},BF) in NP follows from a small model property:

Claim. ϕ ∈CTL({AF},BF) is satisfiable iff ϕ is satisfiable by a polynomial-sized model.

Proof of Claim. The following proof is a modification that strongly builds on the in-
sights in a proof in [Eme90, Theorem 6.14, Small Model Theorem for CTL, pp. 1034].
There, Emerson shows that an arbitrary satisfiable CTL formula can be satisfied in a
canonical model of at most exponential size in the length of the formula. The construction
consists of unfurling a usual model into an infinite computation tree model which can be
transformed into a pseudo-Hintikka structure (a structure which contains subformulae
as labels satisfying the eventualities imposed by formulae containing F’s or U’s) and uses
dag-like1 structures. This pseudo-Hintikka structure can on his part be transformed into
a tableau-like matrix structure containing for each Hintikka-set a dag-structure on the
horizontal level and vertically for each eventuality one dag. As there are exponential
many Hintikka-sets for given ϕ and linear many eventualities in ϕ this leads finally to a
exponential sized model for ϕ.

For our case where only AF and EG operators are allowed we will now describe how
to shrink the exponential sized model to the desired polynomial size. For every path in
the structure depicted in Figure 3.1 any AF-preceded subformula of ϕ is already satisfied.
Therefore deleting dags in the structure retroactively until the last branching does not
change the satisfiability of these formulae. Now observe that for any of the possible
linear many different EG-preceded subformulae EGψ of ϕ exactly m different dags in

1’dag’ is the abbreviation of directed acyclic graph.

3.1 Satisfiability in CTL and CTL? 33

s1

e1
s2

s2

e1
s1 sN

. . .

sN

e1

s1

e2

s2

e2
. . .

sN

e2

:. :. :.

s1

em
s2

s2

em
. . .

sN

em
s2

Figure 3.1: Constructed structure from [Eme90, Thm. 6.14, p.1036]. Dotted arrows
indicate node replacement. The red line denotes the path of an EG-prefixed
formula.

the infinite path through the structure are traversed, as the matrix-like structure has size
N ×m, where m is the number of eventualities in ϕ hence bounded by |SF(ϕ)|. Thus at
most O(|ϕ| ·m) different dags are needed in order to satisfy ϕ and the remaining dags can
be deleted. In our case the size each dag is in fact polynomial in |ϕ| (and not exponential as
in the original proof) because the q -rank (which denotes the length of the fulfilling path)
of each subformulae is 0 and only EF- or EU-formulae have a q -rank > 0. Altogether that
means we have a model of size O(|ϕ|2 ·m) which is clearly polynomial. a

Thus it holds that ϕ ∈CTL({AF},BF) is satisfiable iff ϕ is satisfiable in a model of size
≤ |ϕ|O(1). As the model checking problem CTL-MC is in P (see Theorem 2.17), guessing
such a model M and checking whether M |= ϕ can be performed nondeterministically in
polynomial time. �

For the second claim of Theorem 3.4 we will show how to express quantified Boolean
formulae and how to modify Ladner’s algorithm for deciding satisfiability of modal
formulae.

Lemma 3.6.
Let T be a set of CTL-operators s.t. {AG} ⊆ T ⊆ {AG,AF} or {AX} ⊆ T ⊆ {AX,AF}.
Then CTL-SAT(T ,BF) is PSPACE-complete under ≤cd-reductions.

Proof. Now it suffices to show PSPACE-hardness for T = {AG},{AX}, and membership
in PSPACE for T = {AF,AG},{AX,AF}. The hardness result for T = {AX} is shown by
Ladner in [Lad77, Theorem 3.1] as CTL({AX},BF) is nothing but plain modal logic.

34 Chapter 3 Temporal Logic

q0

q0, q1

q0

q0, q1, q2

q0, q1

q0, q1

q0, q1, q2, q3

q0, q1, q2

q0, q1, q2

q0, q1

Figure 3.2: Part of a nested tree-like structure used in the proof of Theorem 3.4.

Now we show the PSPACE-hardness for T = {AG} by giving straightforward modi-
fication of the Ladner-reduction from the validity problem for quantified Boolean for-
mulae QBF-VAL. Let λ be a quantified Boolean formula that is w.l.o.g. of the form
λ= ∃x1∀x2 · · ·axn(C1 ∧ · · · ∧Cm), where the Ci s are disjunctions of literals, and a= ∃ if
n is odd, and a= ∀ otherwise. We define the reduction f by λ 7→ ϕtree ∧ϕcla ∧ϕλ, where
ϕtree, ϕcla and ϕλ are defined as follows: ϕtree enforces the existence of properly nested
tree-like2 structures (Ts)s∈{0,1}? such that for all s ∈ {0,1}?, s = s1 · · · sn ,

(a) the root of Ts satisfies ¬qn+1 ∧
∧

1≤i≤n AGqi ,

(b) Ts0 and Ts1 are disjoint, properly nested tree-like structures of Ts achieved by the
formula

¬qn+1 ∧

∧

1≤i≤n

qi

→
�

EFAG(qn+1 ∧ xn+1)∧EFAG(qn+1 ∧¬xn+1)
�

, and

(c) in Ts , si = 1 (si = 0) implies that proposition xi (resp. xi) holds globally.

An example for a nested tree-like structure is depicted in Figure 3.2. Next, ϕcla enforces
the labelling of the clauses of λ into (Ts)s∈{0,1}? by requiring that globally xi → C j if
xi ∈ C j and x i → C j if ¬xi ∈ C j , for all Ts with |s | ≥ i . Also the existence of a label
of at least one literal per clause in a state is required by a labeled clause proposition C j .
Finally, we define ϕλ to ensure the existence of a tree-like substructure of Tε, whose
leaves fulfill all clauses and that is build according to the quantification in λ. That is,
ϕλ = EF(q1 ∧AG(q2 ∧EF · · ·`(qn ∧ (C1 ∧ · · · ∧Cm)) · · ·)), where ` = EF if n is odd, and
`=AG otherwise. It is easy to verify that f is polynomial-time computable and that λ is
satisfiable iff f (λ) = ϕtree ∧ϕcla ∧ϕλ is satisfiable.

2We say a model M = (S, R, l) is tree-like iff for the graph (S, R) for each s ∈ S there is at most one predecessor.

3.1 Satisfiability in CTL and CTL? 35

s1

EG(p ∨¬q)∧AF(EG(q))
AF(EG(q))
EG(p ∨¬q)

p ∨¬q
p, q

s2

AF(EG(q))
EG(q)

q

s3
EG(p ∨¬q)

p ∨¬q
¬qs4

EG(p ∨¬q)
p ∨¬q
¬q

Figure 3.3: Quasi-model for ϕ = EG(p ∨¬q)∧AF(EG(q))

Now consider T = {AF,AG}. To show membership in PSPACE, we present a method
inspired by the algorithm showing that provability in the modal logic K is in PSPACE

[Lad77]. The algorithm is based on the notion of quasi models:
Let ϕ ∈CTL({AF,AG,EF,EG},BF) be in negation normal form, a quasi model for ϕ is

defined as a model M = (S, R, l) with labels l : S→P(CTL({AF,AG},BF)) such that

• for all s ∈ S, l (s) is a minimal set satisfying

(a) ψ∧χ ∈ l (s) implies ψ ∈ l (s) and χ ∈ l (s), and

(b) ψ∨χ ∈ l (s) implies ψ ∈ l (s) or χ ∈ l (s),

• ϕ ∈ l (s) for some s ∈ S,

• for all s ∈ S, O ∈ {AF,EF,AG,EG} and each Oψ ∈ l (s), M satisfies the constraints
imposed by Oψ starting in s , i.e., ψ is in l (xi) for all/some paths x = (x1, x2, x3, . . .),
x1 = s , and all/some 1≤ i ∈ Î, and

• there is no s ∈ S, ϕ ∈CTL s.t. ϕ,¬ϕ are labeled in s .

Note that the labels of quasi models bear resemblance to Hintikka sets (cf. [BdV01,
Definition 6.24]) but differ in that they are allowed to contain ⊥. We say a quasi model
is consistent iff none of the properties from above are violated. It clearly holds that ϕ is
satisfiable iff there exists a consistent quasi model for ϕ. To reduce the search space, we
introduce the notion of minimality for quasi models. Say that a quasi model M = (S, R, l)
for some formula ϕ is minimal if no states or transitions can be deleted such that the
resulting structure is still a quasi model for ϕ. We point out that the minimal quasi models
for ϕ may differ in the number of states and transitions. In Figure 3.3 a quasi-model for
ϕ = EG(p ∨¬q)∧AF(EG(¬q)) is depicted. Observe that this model is not minimal as
one can delete the edge (s2, s3) and still have a quasi-model for ϕ.

The algorithm is based on the following observation:

36 Chapter 3 Temporal Logic

Claim. ϕ ∈CTL({AF,AG},BF) is unsatisfiable iff, for all minimal quasi models for ϕ, there
is a path holding an inconsistent labeling in a state on a prefix of linear length.

Proof of Claim. Using contraposition, the direction from right to left is obvious: it
suffices to show that there exists a minimal quasi model for ϕ with consistent labels if ϕ is
satisfiable. This follows from supplementing the labels of the models satisfying ϕ with the
locally satisfied subformulae.

For the direction from left to right, let ϕ ∈ CTL({AF,AG},BF) be an unsatisfiable
formula, w.l.o.g. in negation normal form. Observe that ϕ may contain EG- as well as
EF-operators now. Define #T(ψ) as the number of pure temporal operators in the formula
ψ. We prove, by induction on #T(ϕ), that for all minimal quasi models M = (S, R, l)
there is a path x = (x1, x2, . . .) with ϕ ∈ l (x1) such that l (xk) is inconsistent for some
1≤ k ≤ #T(ϕ)+ 1:

For a formula ψ, a quasi model M = (S, R, l) for ψ and a path x ∈ Sω, let L(x) =
⋃

i>0 l (xi) be the set of all quasi labels on x, and let cψ(M , x) = |L(x)| be the number of
distinct quasi labels on x and let cψ =max{cψ(M , x) | x ∈ Sω and M is a minimal quasi
model for ψ}. cψ is the maximum number of distinct quasi labels on all paths over all
minimal quasi models for ψ. We will thus show that cϕ ≤ #T(ϕ) + 1. This implies that
among the inconsistent quasi-models there is one containing a contradiction on a path
prefix of linear length.

If #T(ψ) = 0 then ψ is unsatisfiable iff it is unsatisfiable in all models with a single
state already. Hence, ψ ∈ l (s) implies the inconsistency of l (s) for every quasi model
M = (S, R, l).

For the inductive step, let ψ,χ ∈CTL({AF,AG},BF) and assume that cψ ≤ #T(ψ) +
1, cχ ≤ #T(χ) + 1. Further say that for models M = (S, R, l) and M ′ = (S ′, R′, l ′), M ′

embeds M if there exists a function h : S → S ′ such that l (s) ⊆ l ′(h(s)) and (s1, s2) ∈ R
implies (h(s1), h(s2)) ∈ (R′)?, where (R′)? denotes the reflexive and transitive closure of R′.
The following cases have to be distinguished:

ψ∨χ : Each minimal quasi model Mq for ψ ∨ χ is the extension of a minimal quasi
model for either ψ or χ with ψ∨χ added to the labels of any state containing ψ
(or χ , respectively). Hence, cψ∨χ = min{cψ, cχ } = min{#T(ψ) + 1,#T(χ) + 1} ≤
#T(ψ∨χ)+ 1.

ψ∧χ : Let M = (S, R, l) be a minimal quasi model for ψ ∧ χ , let s0 ∈ S be such that
ψ∧χ ∈ l (s0). Therefore ψ,χ ∈ l (s0) and thus there are minimal quasi models Mψ,
Mχ such that Mψ and Mχ are embedded into M (any non-minimal quasi model for
ψ or χ itself embeds a minimal model by definition). As Mψ and Mχ are minimal
quasi models, any path x in either of the models satisfies cψ(Mψ, x) ≤ cψ (resp.
cχ (Mχ , x) ≤ cχ). Hence cψ∧χ ≤ cψ+ cχ − 1, since any path x = (x1, x2, . . .) longer
than #T(ψ) + #T(χ) + 1 would include a quasi-label from l (xk) (for some k ∈ Î)
such that neither Mψ nor Mχ include l (xk); a contradiction to the minimality of M .
Hence, cψ∧χ ≤ cψ+ cχ + 1≤ #T(ψ∧χ)+ 1.

3.1 Satisfiability in CTL and CTL? 37

AGψ, EGψ: Let M = (S, R, l) be a minimal quasi model for AGψ (resp. EGψ). There
further exists a minimal quasi model Mψ = (Sψ, Rψ, lψ) embedded into M via h.
Let Γ denote the smallest quasi label containing AGψ (resp. EGψ). For a path
x = (x1, x2, . . .) ∈ Sω

ψ
, let h(x) =

def
(h(x1), h(x2), . . .) ∈ Sω. Then, for any path x =

(x1, x2, . . .) ∈ Sω
ψ

, the set of quasi labels L(h(x)) in M is a superset of
⋃

i>0 lψ(xi)∪Γ.

If L(h(x)) is a strict superset of
⋃

i>0 lψ(xi) ∪ Γ, then there is a k ∈ Î such that
l (h(xk)) = lψ(xk)∪Γ∪∆ for some∆ 6= ;. Still Mψ is a quasi model forψ and thus, for
all subformulae χ of ψ, χ ∈ l (h(xk)) implies χ ∈ lψ(xk). Hence, all labels lψ(xk)∪
Γ∪∆ can be replaced by lψ(xk)∪Γ and we obtain that L(h(x)) =

⋃

i>0 lψ(h(xi))∪Γ.
Therefore, cAGψ(M , h(x)) = |{lψ(x)∪Γ | x ∈ Sω

ψ
}|= cψ(Mψ, x)+ 1≤ cψ.

Due to the minimality of M , each path x ∈ Sω starting in a state s with AGψ ∈ l (s)
(resp. EGψ ∈ l (s)) is the image of a path in an embedded minimal quasi-model.
Hence, cAGψ = max{cAGψ(M , x) | x ∈ Sω and M is a minimal quasi model for
AGψ}=max{cψ(Mψ, x) | x ∈ Sω

ψ
and Mψ is a minimal quasi model for ψ} ≤ cψ ≤

#T(AGψ)+ 1 (resp. cEGψ ≤ cψ).

AFψ, EFψ: Again, each minimal quasi model M for AFψ (resp. EFψ) is the extension
of a minimal quasi model for ψ, with AFψ (resp. EFψ) added to the quasi label
of all states containing ψ. Hence, cAFψ = cψ = #T(ψ) + 1 ≤ #T(AFψ) + 1 (resp.
cEFψ ≤ #T(EFψ)+ 1).

Hence, every minimal quasi model for ϕ includes an inconsistent quasi label on a path of
length ≤ #T(ϕ)+ 1. a

The method given in Algorithms 3.1 and 3.2 performs a nondeterministic depth-first
search for contradictions on the set of minimal quasi models for ϕ. The first parameter d
stems from the proof of the claim from above (temporal depth of the input formula plus
one) and is therefore linear in |ϕ|. The remaining six parameters are all subsets of formulae
in SF(ϕ), that should be either globally true on all paths (TAG), eventually false on a path
(FAG), eventually true on all paths (TAF), globally false on a path (FAF), true or false in
the current state (T resp. F). The space bound derives from the linear length of path
prefixes to be investigated.

For T = {AX,AF}, we will present a proof sketch. A straightforward modification
of the former algorithm is not possible, since the X operator allows for the construc-
tion of “counters” such that contradictions may firstly occur in exponential depth. This
fact is shown in Example 2.24 on page 22. Yet, CTL({AX,AF},BF)-formulae may im-
pose at most linearly many temporal constraints. Using the fixpoint-characterisation
EGϕ ≡ ϕ ∧EXEGϕ, we derive an algorithm for formulae ϕ ∈CTL({AX,AF},BF) in a
two-step approach: first verify that ϕ with all EG operators ignored is satisfiable, then
test each of the EG-prefixed subformulae for satisfiability separately. The first step is
completely analogous to the above; the second step follows from the fact that an EG-
prefixed subformula is satisfiable iff it is satisfied on an ultimately periodic path which
is a path containing an infinitely many often occurring suffix. Therefore we need to

38 Chapter 3 Temporal Logic

Algorithm 3.1: The function determining satisfiability of a CTL({AF,AG},BF)-
formula.

satisfiable : d ,T ,F ,TAG,FAG,TAF,FAF

1 if T ∪F * PROP∪{⊥,>} then
2 decomposeBF(d ,T ,F ,TAG,FAG,TAF,FAF);
3 else /* T ∪F ⊆ PROP∪{⊥,>} */
4 if T ∩F 6= ; or >∈F or ⊥∈T then return false;
5 else if d = 0 then return true;
6 else
7 t ← true;
8 foreach α ∈FAG do /* check whether α can eventually be falsified (on

some path) */
9 nondeterministically guess ;(β⊆TAF ∪{α};

10 t ← t ∧ satisfiable(d − 1,β∪TAG,;,TAG,{α} \β,TAF \β,;);
11 foreach α ∈FAF do /* check whether α is invariantly falsified (on

some path) */
12 nondeterministically guess ;(β⊆TAF;
13 t ← t ∧ satisfiable(d − 1,{α} ∪β∪TAG,;,TAG,;,TAF \β,{α});
14 return t ;

check whether for a subformula EGψ ∈ SF(ϕ) the respecting eventualities imposed by
AX- and AF-subformulae can be satisfied concurrently. Mapping each EGψ to a separate
infinite path whose prefix is loop-free and afterwards satisfying ψ for consistent quasi
labels enables us to iteratively verify the consistency of the given ϕ without needing several
recursive calls leading to exponential space. Despite the possibility of exponentially large
paths using dynamic programming to construct the respecting sets in the tableau-like
algorithm merges into an algorithm using polynomial space. �

Finally we will construct a generic reduction from a special kind of Turing machines in
order to state the desired lower bound for the class EXP.
Lemma 3.7.
Let T be a set of CTL-operators s.t. {AX,AG} ⊆ T , {EU} ⊆ T , or {AU} ⊆ T . Then
CTL-SAT(T ,BF) is EXP-complete under ≤cd-reductions.

Proof. The membership of CTL-SAT({AX,AU,EU},BF) in EXP is due to Theorem 2.16.
Hardness for EXP is obtained from reducing the word problem for polynomial-space
alternating3 Turing machines to CTL-SAT(T ,BF) for T = {AX,AG}, T = {EU}, and
T = {AU}. The hardness of the remaining fragments follows (cf. Figure 2.3).

First consider the case T = {AX,AG}. Let Σ be some fix alphabet, w = w0 · · ·wn−1 ∈Σ?
be the input of length |w| = n and let M = (Q,Σ,Γ,δ, q0,�) be an alternating Turing
machine (ATM) working in space nk , k ∈ Î. Further denote by Q =Q∃]Q∀]Qacc]Qrej

the sets of existential, universal, accepting and rejecting states of M . We assume w.l.o.g.
3Observe that alternating polynomial-space is equal to deterministic exponential time by [CKS81].

3.1 Satisfiability in CTL and CTL? 39

Algorithm 3.2: The decomposition subfunction determining satisfiability of a
CTL({AF,AG},BF)-formula.

decomposeBF : d ,T ,F ,TAG,FAG,TAF,FAF
1 randomly choose an α ∈ (T ∪F) \PROP;
2 if α= ¬β and α ∈ T then
3 return satisfiable(d ,T \ {α},F ∪{β},TAG,FAG,TAF,FAF);
4 else if α= ¬β and α ∈F then
5 return satisfiable(d ,T ∪{β},F \{α},TAG,FAG,TAF,FAF);
6 else if α=β∧ γ and α ∈ T then
7 return satisfiable(d ,(T ∪{β,γ}) \ {α},F ,TAG,FAG,TAF,FAF);
8 else if α=β∧ γ and α ∈F then
9 nondeterministically guess δ ∈ {β,γ};

10 return satisfiable(d ,T ,(F ∪{δ}) \ {α},TAG,FAG,TAF,FAF);
11 else if α=AGβ and α ∈ T then
12 return satisfiable(d ,(T ∪{β}) \ {α},F ,TAG ∪{β},FAG,TAF,FAF);
13 else if α=AGβ and α ∈F then
14 b ← nondeterministically guess whetherβ is false in this state;
15 if b then return satisfiable(d ,T ,(F ∪{β}) \ {α},TAG,FAG,TAF,FAF);
16 else return satisfiable(d ,T ,F \{α},TAG,FAG ∪{β},TAF,FAF);
17 else if α=AFβ and α ∈ T then
18 b ← nondeterministically guess whetherβ is true in this state;
19 if b then return satisfiable(d ,(T ∪{β}) \ {α},F ,TAG,FAG,TAF,FAF);
20 else return satisfiable(d ,T \ {α},F ,TAG,FAG,TAF ∪{β},FAF);
21 else if α=AFβ and α ∈F then
22 return satisfiable(d ,T ,(F ∪{β}) \ {α},TAG,FAG,TAF,FAF ∪{β});

40 Chapter 3 Temporal Logic

that all ATMs halt after a finite number of steps and that δ(q , c) 6= ; iff q ∈Q∀ ∪Q∃, for
all c ∈ Γ. As M is space-bounded by nk , M may only visit 2nk + 1 different tape cells. We
can hence describe each configuration of M as a string of length 2nk+1 that is constructed
by padding with� to the left and to the right, such that all reachable tape cells are included.
Such a padded configuration will be called situation. We define the reduction function f
to map M , w 7→ ϕ ∈CTL({AX,AG},BF) such that ϕ forces a satisfying model to encode
a proof tree of situations of an accepting computation of M on input w.

We determine the set of atomic propositions PROP for ϕ and then construct the
formula ϕ as ϕ =

def
ϕinit ∧

∧3
i=1 AGϕi ∧AGϕδ to be defined below. Let PROP= PROPS ∪

PROPT ∪PROPP be a set of atomic propositions, where PROPS = {sq | q ∈Q} are called
state propositions, PROPT = {ti ,a | −nk ≤ i ≤ nk ,a ∈ Σ} are called tape propositions, and
PROPP = {pi | −nk ≤ i ≤ nk} are called position propositions.

In the following the formulae ϕ1 and ϕ2 ensure that in each state of a model for ϕ
exactly one state proposition sq , exactly one position proposition pi and exactly one tape
proposition ti ,a per i ∈ [−nk , nk] holds. From now on we use I to denote the intervall
[−nk , nk]. The formula ϕ3 states that, for i ∈ I , the tape propositions (i.e., the contents of
the tape) must not change between connected states in M unless the position proposition
pi denotes it. These formulae are defined as

ϕ1 =
def

∧

q∈Q

�

sq →
∧

q ′∈Q,
q ′ 6=q

¬sq ′

�

∧
∧

i∈I ,
a∈Σ

�

ti ,a →
∧

a′∈Σ,
a′ 6=a

¬ti ,a′

�

∧
∧

i∈I

�

pi →
∧

i ′∈I ,
i ′ 6=i

¬pi ′

�

,

ϕ2 =
def

∨

q∈Q

sq ∧
∨

i∈I

pi ∧
∧

i∈I

∨

a∈Σ

ti ,a , and

ϕ3 =
def

∧

i∈I

�

pi →
∧

i ′∈I ,
i ′ 6=i ,
a∈Σ

�

(ti ′ ,a →AXti ′ ,a)∧ (¬ti ′ ,a →AX¬ti ′ ,a

�

�

.

Next, the formula ϕinit states that N , s |= ϕinit, for a model N = (S, R, l) and a state
s ∈ S, only if s encodes the starting situation of M :

ϕinit =
def

sq0
∧ p0 ∧

∧

i∈[−nk ,−1]

ti ,� ∧
∧

i∈[0,n−1]

ti ,wi
∧
∧

i∈[n,nk]

ti ,�.

Finally we need to encode the transition function δ into a formula. Therefore we just
need to take care of the tape proposition which corresponds to the position proposition

3.1 Satisfiability in CTL and CTL? 41

and change them accordingly to the δ-steps. The formula is defined as

ϕδ =
def

∧

q∈Q∃ ,
a∈Σ,
i∈I

�

sq ∧ pi ∧ ti ,a →
∨

(q ′ ,a′ ,X)∈δ(q ,a)

EX
�

sq ′ ∧ pi+x ∧ ti ,a′
�

�

∧

∧

q∈Q∀ ,
a∈Σ,
i∈I

�

sq ∧ pi ∧ ti ,a →
∧

(q ′ ,a′ ,X)∈δ(q ,a)

EX
�

sq ′ ∧ pi+x ∧ ti ,a′
�

�

∧
∧

q∈Qrej

�

sq →⊥
�

,

with x = 1 if X = R, x = 0 if X =N , and x =−1 if X = L. That is, ϕδ encodes the transi-
tion relation δ of M . Note that the part AG

∧

q∈Qrej
(sq →⊥) eventually refutes rejecting

computation trees. It is straightforward to check that M accepts w iff ϕ is satisfiable. Since
EXψ≡¬AX¬ψ, it follows that ϕ can be expressed in CTL({AX,AG},BF), and therefore
CTL-SAT({AX,AG},BF) is EXP-hard.

For the cases T = {EU}, we modify the above reduction as follows. We replace
the expressions EX

�

sq ′ ∧ pi+x ∧ ti ,a′
�

in ϕδ with E
�

(sq ∧ pi ∧ ti ,a)U(sq ′ ∧ pi+x ∧ ti ,a′)
�

.
Analogously, the AX-operators in ϕ3 are replaced using AU-expression and then rewritten
using the fact that A[ψUχ] and ¬E[¬χU(¬ψ∧¬χ)] are equivalent if χ will eventually
occur. Lastly, AGψ is replaced with ¬E[>U¬ψ].

For the case T = {AU}, we require an additional proposition h denoting the end of
the computation of the ATM M on every path. We thus introduce a corresponding
formula ϕ4 =

def
AF
�

πterm ∧ ¬h ∧AFh
�

∧A[¬hUπterm] with πterm =
def

∨

q∈Qacc∪Qrej
sq that

enforces our intuition of h in a satisfying model of the resulting formulae. Consequently,
replace AGψ with A[ψUh]. In particular, EXψ can now be replaced with AFh ∧EFψ≡
AFh ∧ ¬A[¬ψUh]. Finally, ϕ3 states that, on all paths, the contents of all tape cells
remains unchanged until either the head moves onto the cell or πterm holds. �

Now we have seen how the complexity of satisfiability for CTL is trichotomous ranging
from NP-, over PSPACE-, to EXP-complete cases. The main ideas have been a small model
property for the first cases, an extended modal satisfiability test and the ability to express
QBF-VAL formulae for the PSPACE-complete cases, and thirdly a reduction from the
word problem for alternating polynomial space Turing machines.

3.1.3 Satisfiability for fragments of CTL?

Turning towards the logic CTL? which allows arbitrary nesting of path quantifiers and
temporal operators we can therefore observe an increasing of the complexity in general.
One can use several proof ideas from the previous sections to classify fragments of this
strictly more expressive logic, that is, we can use Theorems 3.1 and 3.2 in order to
classify the Boolean fragments again independently from the temporal operators and path
quantifiers for the logic CTL?.

Theorem 3.8.
Let T denote a set of temporal operators and let B be a finite set of Boolean functions such that
[B] /∈ {L,L0}. Then CTL?-SAT(T ,B) is

42 Chapter 3 Temporal Logic

(1.) equivalent to CTL?-SAT(T ,BF) if S1 ⊆ [B],

(2.) NC1-complete under ≤cd-reductions if S11 ⊆ [B]⊆M, and

(3.) TC0-complete for all other cases.

It remains to consider CTL?-SAT(T ,BF) for arbitrary temporal operators. As for CTL,
there are three cases. Other than for CTL, the hardest cases are EEXP-complete.

Theorem 3.9.
Let T denote a set of temporal operators. Then CTL?-SAT(T ,BF) is

(1.) NP-complete under ≤cd if T = ;,{A},{F},{X},

(2.) PSPACE-complete under ≤cd if T = {U},{X,F},{X,U},{A,X},{A,F},

(3.) EEXP-complete under ≤cd in all other cases.

Proof. For (1.), NP-hardness follows directly by the NP-completeness of SAT [Coo71b,
Lev73]. Any formula ϕ ∈ CTL?({A},BF) is satisfiable if and only if the formula ob-
tained from ϕ by deleting all appearances of A is satisfiable (by definition of semantics).
For the remaining two cases observe that the equivalence of CTL?-SAT({X},BF) and
LTL-SAT({X},BF), resp., CTL?-SAT({F},BF) and LTL-SAT({F},BF) is directly achieved
by the definition of LTL. As both of the LTL-SAT-problems are NP-complete [BSS+09]
the theorem applies.

As for (2.), we have that CTL?-SAT(T ,BF) is equivalent to LTL-SAT(T ,BF) for the sets
T = {U},{X,F},{X,U} which are PSPACE-complete [BSS+09]. The remaining two cases
{A,X} and {A,F} can be proven similarly as for the CTL-cases.

Finally, for (3.), we modify the proof given by Vardi showing that CTL?-SAT restricted
to {A,X,U} and BF is EEXP-hard [VS85b]. In his proof he reduces the word problem for
exponential-space alternating Turing machines to the problem CTL?-SAT({A,X,U},BF)
whereas stating hardness under logarithmic-space reductions only, his proof actually
yields a ≤cd-reduction. There, a construction consisting of a formula r ∧AGg is used, r
describing properties of the root in the model and g characterizing some invariant that
needs to hold at every state. At this, a formula simulating a counter visualizes every step of
the computation and within the root Vardi makes use of the U operator in a subformula
called init only. Yet in that context, we may delete the subformulae X(S = �UC = 0)
and I ∧X(I UC = 0) and add the conjunct GI ∧G

�

S = �→ X(S = �∨C = 0)
�

to the
formula init. The modified reduction remains correct, for existence of a path encoding the
initial configuration of an ATM is assured. This proves hardness for T = {A,X,F}.

For T = {A,U}, elemination of X essentially leads to the relaxation of the one-to-one
correspondence of tape cells and states in a model of the resulting formula. First, we need
to construct a counter without the X operator: Let the propositions c0, . . . , cn encode
the bits of the counter C =

∑n
i=0 ci 2

i and let C = x, x ∈ Î, abbreviate the subformula
∧

i∈J ci ∧
∧

i /∈J ¬ci , where J = {i | bit i in x is on}. Then the following formula ensures

3.1 Satisfiability in CTL and CTL? 43

that the counter C is monotonically increasing:

n
∧

i=0

¬ci ∧A

 n
∧

i=0

�

�

¬ci ∧
i−1
∧

k=0

ck →
h

¬ci ∧
i−1
∧

k=0

ck Uci ∧
i−1
∧

k=0

¬ck

i�

∧

n
∧

k=i+1

�

ck →
h

ck U
k
∧

l=0

¬cl

i�

∧
n
∧

k=i+1

�

¬ck →
h

¬ck U
k
∧

l=0

cl

i�

�

!

.

Next, we associate with each tape cell the set of states having the same counter value C .
Thus, the init formula will be translated to

E
�

�

C = 0→ S = (q0, y1)∧ I
�

∧
n−1
∧

i=1

�

C = i → S = yi+1 ∧ I
�

∧

∧
�

C ≥ n→ [S =�∧ I UC = 0]
�

�

.

Observe that in the formula from above the usage of ’=’ is just a shortcut and abbreviates
some corresponding formulae in Vardis proof. Finally, the formula A(¬badpath→ check)
that requires a model of ϕ f to encode correct transitions between configurations is trans-
lated analogously. The EEXP-hardness of the remaining fragments follows. The member-
ship result for EEXP follows from Theorem 2.11. �

3.1.4 About the Affine Cases

The use of Post’s lattice as a tool for classifying fragments of various decision problems for
arbitrary extensions of propositional logic has been proven adjuvant. Though it seems
that the affine functions which consist of a standard base containing the exclusive-or
function ⊕, are somewhat harder to classify for completeness results than any of the other
clones. In [BMS+11, CSTW10, CST10, Tho09, BSS+09, MMS+09, HSS08, Rei01] several
fragments corresponding to the affine functions are either left open or lack matching lower
bounds for membership results (whereas the last one got matching bounds for several
L-cases in some decision problems, too), and in [Tho10] four affine cases are left open for
translations between some fragments of nonmonotonic logics. Apart from that there are
only few papers that fully classify (read, with matching upper and lower bounds) these
affine cases, namely [BMTV09a, BMTV09b]—whereas only the latter explicitly states
reductions using affine functions within its technical parts. Thus there is quite some kind
of black box surrounding these clones wherefore wondering about their hardness seems
evident. Sifting through the landscape of complexity theory for other problems involving
or connecting to affine functions which do not emerge from a fragmental analysis by
Post’s lattice bears the following candidates for stating reductions in order to classify such
affine clone fragments:

• PARITY =
def
{w ∈ {0,1}? | |w|1 ≡ 0 mod 2}, see Theorem 2.33 on pg. 27,

44 Chapter 3 Temporal Logic

• MAJ =
def
{w ∈ {0,1}? | |w|1 ≥ |w|0}, see Theorem 2.32 on pg. 27,

• solving equations over the field Ú2 is ⊕LOGSPACE-complete under ≤AC0

m -reductions
[BDHM92],

• GOAP =
def
{G, s , t | G = (V , E) is a dag whose vertices have outdegree 0 or 2, s , t ∈

V , the number of all paths from s to t is odd}, which is⊕LOGSPACE-complete un-
der ≤cd-reductions [Rei01],

• 1-in-3-SAT =
def

n

∧n
i=1

∨3
j=1 li j ∈ 3CNF | li j are literals,∃θ s.t.θ |= ϕ and ∀1≤ i ≤ n

∃!1≤ j ≤ 3 : θ(li j) =>
©

, which is NP-complete w.r.t. ≤cd-reductions [GJ79, p.
221], and

• NAE-SAT =
def

n

∧n
i=1

∨3
j=1 li j ∈ 3CNF | li j are literals,∃θ s.t.θ |= ϕ and ∀1≤ i ≤ n

∃1≤ j 6= k ≤ 3 : θ(li j) 6= θ(li k)
©

, which is NP -complete w.r.t. ≤cd-reductions (see
[Pap94]).

Concerning the aforementioned publications the decision problems from above are the
usual suspects used for classifying the respective fragments in some logic. Usually one
main inconvenience is the lack of conjunction in the clone in order to encode the needed
properties. Another difficult circumstance is a more informal aspect which is hard to
assess, i.e., ⊕ being counterintuitive to the usual logical reasoning. Typically in order
to satisfy a formula satisfying subparts (i.e., subformulae) cannot lead to false for the
recent evaluation which can be in particular the case for affine functions. Therefore it
is very hard to estimate the outcome when constructing some satisfying model due to
the interaction between any subformulae. This is also a reason attempting to solve this
somehow semantical problem by working through syntactical arguments becomes a valid
and promising approach [HSS08, Theorem 3.19]. Using this technique permits us to state
better upper bounds for some fragments for CTL- and CTL?-formulae which are shown
in Theorems 3.10 and 3.11.

Theorem 3.10.
Let B be a finite set of Boolean functions with [B]⊆ L. Then

(1.) CTL-SAT({AX},B) is in P,

(2.) CTL-SAT({AG,AX},B) is in NP.

Proof. (1.) At first rewrite an input formula ϕ ∈CTL({AX},B) s.t. ϕ consists only of
EX-operators and no AX-operator by substituting AXψ with (EX(ψ⊕>))⊕> for each
occurrence in ϕ. Observe that this is not problematic for > /∈ [B] as we aim to construct
a circuit in the following. Now let the substitution of the AXs be denoted by ϕ′. In the
next step construct from ϕ′ the corresponding modal formula ϕml =

def
ϕ′|[EX/◊], and then

the corresponding modal Boolean circuit Cϕml
for the frame classF =KD. Finally run

3.1 Satisfiability in CTL and CTL? 45

the algorithm ⊕-SAT with input Cϕml
from [HSS08]. Each of those steps clearly runs in

polynomial time.
(2.) Similar to (1.) replace all AGψ’s with (EF(ψ⊕>))⊕> and let denote this change by

ϕ′. In the next step for each EFψ ∈ SF(ϕ′) guess nondeterministically an 0≤ i ≤ |ϕ′| and
replace EFψ by EXiψ where EX0ψ =

def
ψ and otherwise with the i -times concatenation

of EX. A straightforward inductive argument proves that guessing until the linear depth
reached suffices. Then proceed as in (1.) which leads to an NP-algorithm. Finally the case
{AG,AX} Follows from a combination of (1.) and the construction for {AG}. �

Theorem 3.11.
Let B be a finite set of Boolean functions with [B] = L. Then

(1.) CTL?-SAT({A},B) is ⊕LOGSPACE-complete w.r.t. ≤cd-reductions. This also holds for
[B] = L0.

(2.) CTL?-SAT({X},B) is in P.

Proof. (1.) This problem is equivalent to SAT(L) (resp., SAT(L0)) and therefore also
⊕LOGSPACE-complete w.r.t. ≤cd-reductions [Rei01].

(2.) A straightforward modification of the algorithm ⊕-SAT from [HSS08]. �

3.1.5 Fragments of Extensions of CTL: Fairness, Succinctness, and LTL+

As introduced in Chapter 2 two popular extensions of CTL are, on the one hand, ECTL
with the ability to express fairness constraints through the operators F

∞
and G

∞
and, on the

other hand CTL+, permitting Boolean combinations of temporal operators which is as
expressive as CTL but the former being much more succinct.

The classification of almost all fragments of CTL-SAT(T ,B) and CTL?-SAT(T ,B) for
any set of Boolean functions B and any set of temporal operators and path quantifiers
T entails the question whether any of the results transfer to these extensions at all. As
CTL(T ,B) ⊂ CTL+(T ,B),ECTL(T ,B) ⊂ CTL?(T ,B) the respecting lower and upper
bounds apply to CTL+-SAT(T ,B) and ECTL-SAT(T ,B).

Corollary 3.12.
Let B be a finite set of Boolean functions s.t. [B] /∈ {L,L0}. Then CTL+-SAT(T ,B) is

(1.) equivalent to CTL+-SAT(T ,BF) if S1 ⊆ [B],

(2.) NC1-complete under ≤cd-reductions if S11 ⊆ [B]⊆M, and

(3.) TC0-complete for all other cases.

This result is immediately obtained by applying Theorems 3.2, 3.3 and 3.8. We continue
with the fragments induced by sets of temporal operators and path quantifiers.

Theorem 3.13.
Let T be a set of temporal operators and path quantifiers. Then CTL+-SAT(T ,BF) is

46 Chapter 3 Temporal Logic

(1.) NP-complete if T = ;,{A},{X},{F},{X,F},{U},{X,U},

(2.) PSPACE-complete if T = {A,F},{A,X}, and

(3.) EEXP-complete otherwise.

Proof. All non-LTL cases in (1.) and (2.), and the cases containing U in (3.) follow directly
from Theorems 3.4 and 3.9 where for {A,U} the modifications in the proof already consist
of CTL+-formulae.

Observe that the LTL upper bounds immediately transfer to our respecting cases due
to CTL+ being a more restricted LTL-case. Hence for T = {X},{F} both lead to NP-
completeness due to the trivial lower bound by SAT. Thereby only the upper bounds
for {X,F},{U},{X,U} remain to be classified. Satisfiability for CTL+({X,F},BF) is easier
than for CTL? (i.e., in NP). Let ψ ∈CTL+, and let the function h be inductively defined as

h(p) =
def

p1, for p ∈ PROP,

h(pi) =
def

pi+1 for p ∈ PROP, i ∈ Î

h(Oψ) =
def

Oh(ψ) for ψ ∈CTL+,O ∈ {X,F,G,U},

h(f (ψ)) =
def

f (h(ψ)) for ψ ∈CTL+, f ∈ BF.

Further let h i (α) denote the i -times concatenation of h, i.e., h i (α) =
i times

︷ ︸︸ ︷

h(h(· · · h(α) · · ·)).
Now let ϕ ∈CTL+({X,F},BF) and inductively construct the mapped formula ϕ′ by the
following rules:

• for each Xψ ∈ SF(ϕ): replace Xψ with h(ψ),

• for each Gψ ∈ SF(ϕ): replace Gψ with ψ∧
∧#T(ϕ)

i=1 h i (ψ),

• for each Fψ ∈ SF(ϕ): replace Fψ with
�

ψ∨
∨#T(ϕ)

i=1 h i (ψ)
�

to ϕ.

Now one can easily show that ϕ ∈CTL+-SAT({X,F},BF) iff ϕ′ ∈ SAT by observing the
lack of temporal operators in each of the ψs from above. The sufficient linear depth stems
from the same argumentation as for the CTL-cases.

If one proceeds and allows U as temporal operator one can extend this reduction to
SAT with the following rule

• for each ψUχ ∈ SF(ϕ): replace ψUχ with

χ ∨

#T(ϕ)
∨

i=1

ψ∧ h i (χ)∧

i−1
∧

j=1

h j (ψ)

.

3.1 Satisfiability in CTL and CTL? 47

AG
∞

AF
∞

AF,AG
∞

AF,AF
∞

AX,AG
∞

AG
∞

,AF
∞

AX,AF
∞

AG,AG
∞

AG,AF
∞

AF,AX,AG
∞

AG,AX,AF
∞

AF,AF
∞

,AG
∞

AG,AF
∞

,AG
∞

AX,AF,AF
∞

AX,AG,AG
∞AF,AG,AG

∞
AF,AG,AF

∞

AX,AF
∞

,AG
∞

AX,AF,AF
∞

,AG
∞

AF,AG,AX,AG
∞

AF,AG,AX,AF
∞

AF,AG,AF
∞

,AG
∞

EXP-complete
PSPACE-complete

Figure 3.4: The relevant part of the lattice induced by all ECTL-operators. Each node
is labelled with a minimal set of operators without any restrictions on the
Boolean connectives.

Thus differently to CTL? the satisfiability problem for the logic LTL+ which is defined
as LTL without nesting of temporal operators (analogously to CTL+) always stays NP-
complete regardless of which temporal operators are allowed beyond all Boolean functions.

For the remaining case T = {A,X,F} in (3.) we need to remove the nesting of the
temporal operators in the formulae init and badpath in order to get the valid EEXP lower
bound. We achieve this validity for CTL+ by setting the formula init to

E
�

�

C = 0→ S = (q0, y1)∧ I
�

∧
n−1
∧

i=1

(C = i → S = yi+1 ∧ I)∧

�

C ≥ n→ [S =�∧G
�

C 6= 0→ (I ∨C = 0)
�

∧F(C = 0)]
�

�

,

and finally the badpath rules can be adjusted similar to the construction of the counter
with an CTL({AX,EG},BF)-formula as in Example 2.24. �

An overview how the results with respect to the temporal operators arrange in a lattice
for CTL+ is depicted in Figure 3.6.

Now we consider fragments containing the fairness operators F
∞

and G
∞

. The fragments
that need to be classified are depicted in Figure 3.4. The complexity degrees for the
remaining fragments directly follow from the lower and upper bounds of the fragments
shown in this figure and the ones shown in Figure 3.6 for CTL.

48 Chapter 3 Temporal Logic

Theorem 3.14.
Let T be a set of ECTL operators. Then ECTL-SAT(T ,BF) is

(1.) PSPACE-complete if {AG} ⊆ T ⊆ {AF,AG,AF
∞

,AG
∞
}.

(2.) PSPACE-complete if {AX} ⊆ T ⊆ {AX,AF,AF
∞

,AG
∞
}.

(3.) PSPACE-complete if {AG
∞
} ⊆ T ⊆ {AF,AF

∞
,AG

∞
}.

(4.) PSPACE-complete if {AF
∞
} ⊆ T ⊆ {AF,AF

∞
}.

Otherwise for any remaining case if {AG
∞
} ⊆ T or {AF

∞
} ⊆ T , then ECTL-SAT(T ,BF) is

EXP-complete.

Proof. For (1.) observe that CTL?-SAT({A,F},BF) ∈ PSPACE by Theorem 3.9. This lets
us use the equivalences AF

∞
ϕ =AGFϕ, AG

∞
ϕ =AFGϕ, EF

∞
ϕ = EGFϕ, and EG

∞
ϕ = EFGϕ

to run the CTL?-SAT-algorithm instead. The lower bound is shown in Theorem 3.4 (2.).
The case (2.) needs a little bit more work. Observe that EG

∞
ϕ ≡ EFGϕ ≡ EFEGϕ and

therefore also AF
∞
ϕ ≡AGFϕ ≡AGAFϕ holds. Thus we can just replace any occurrence of

these AF
∞

- and EG
∞

-preceded subformulae with the respective CTL-operator representation
and proceed with Algorithms 3.1 and 3.2. Hence we only need to extend the algorithms
for the cases AG

∞
and EF

∞
, because here, the equivalence for the opposite cases cannot be

applied as visualized in Figure 3.5 which also follows from [Eme90, Fig.3]. To satisfy
subformulae of the kind EF

∞
ϕ in some state s of some Kripke structure K requires an

infinite path π=π1π2 . . . such that (i) π1 = s , (ii) there exists an index k ≥ 1 such that πk
stands for the point where the loop starts, and (iii) there exists at least one state k ≤ j with
ϕ ∈ l (π j). Thus the algorithm only needs to guess these two meaningful states for EF

∞
ϕ

and verifies between leaving πk and reentering π j that there was a state where ϕ is satisfied.

For the opposite kind namely the subformulae AG
∞
ϕ one can substitute these formulae

with ¬EF
∞
¬ϕ and just use the same algorithm as before in order to verify unsatisfiability.

As PSPACE is closed under complement we achieve the desired upper bound result. Now
we need to combine these insights with the fixpoint characterization technique from
Lemma 3.6 on page 33 (for the case T = {AX,AF}) and achieve a PSPACE-algorithm
stating the desired upper bound.

For (3.) we need to modify the reduction from Theorem 3.4 (2.). Therefore we replace
each EF-operator with EF

∞
and each AG-operator with AG

∞
on page 34. Observe that these

substitutions only slightly change the resulting Kripke structure for the satisfying case in
a way where all worlds containing qn become reflexive. This change is triggered by the
EF
∞

-operators that require a global path.
For (4.) we proceed as for (3.) and substitute each AG operator with AF

∞
, and EF

operator with EG
∞

changing the satisfying tree-like structure only in the leaf-states to be
reflexive. �

3.1 Satisfiability in CTL and CTL? 49

p p p

Figure 3.5: Example showing that AFAG p and AG
∞

p are not equivalent.

Finally we deduce a similar corollary expressing the results for the Boolean fragments
of ECTL which again uses the Lewis knack and the argumentation as in Theorems 3.1
and 3.2.

Corollary 3.15.
Let B be a finite set of Boolean functions s.t. [B] /∈ {L,L0}. Then ECTL-SAT(T ,B) is

(1.) equivalent to ECTL-SAT(T ,BF) if S1 ⊆ [B],

(2.) NC1-complete under ≤cd-reductions if S11 ⊆ [B]⊆M, and

(3.) TC0-complete for all other cases.

3.1.6 Conclusion

Considering all possible combinations of temporal operators and Boolean functions we
classified almost all fragments emerging from this perspective—only the affine cases resisted
getting fully classified again (cf. Section 3.1.4). The decision problem CTL-SAT(T ,BF) is,
on the one hand, a trichotomy for all its temporal operator fragments ranging from NP-, to
PSPACE-, and to EXP-completeness; where AX and AG alone lead to PSPACE-complete
cases and both together to an EXP-complete fragment as shown in Figure 3.6. On the
other hand, studying the Boolean fragments for this decision problem we classified the
complexity as a trichotomy from EXP-complete cases from S1 up to BF (cf. Figure 3.7),
NC1-complete fragments for the monotone and 1-separating cases between S11 and M, and
TC0-completeness for all other clones in the lattice, whereby each of the three latter cases
is independent from the allowed temporal operators.

In 1983, Ben-Ari, Pnueli, and Manna introduced the first concept of branching time
logics with their logic UB and also proposed the logics CTL+ and UB+ which are defined
by Boolean combination of paths (cf. [BAPM83]). Weber remarks in [Web09b] that
the precise complexity of the satisfiability problem for the logic UB+ is still unknown.
Through our classification we give the answer to this question: UB+-SAT is equal to
CTL+-SAT({A,F,X},BF) which is EEXP-complete by Theorem 3.13.

Nevertheless, the classification for the more expressive logic CTL? and its satisfiability
problem processed almost similar to the one for CTL whereas the therewith connected
highest complexity degree is EEXP-completeness. One part of the result encompasses the
classification of the linear time temporal logic LTL which had been classified previously
by Bauland et al. (cf. [BSS+09]). We accentuate again that the results for the Boolean
fragments are also independent from the allowed temporal operators and path quantifiers.

50 Chapter 3 Temporal Logic

;

AXAF AG

AU EU

AX,AF AF,AG AX,AG

AX,AF,AG

AX,AU AX,EU

AG,AU

AF,EU

AX,AF,EU(a)

LTL

;

F X A

U X,F A,F A,X

X,U A,U A,X,F

A,X,U(b)

LTL+

;

F X A

U X,F A,F A,X

X,U A,U A,X,F

A,X,U(c)

NP-c. PSPACE-c. EXP-c. EEXP-c.

Figure 3.6: The complexity of (a) CTL-SAT(T ,BF), (b) CTL?-SAT(T ,BF), and (c)
CTL+-SAT(T ,BF), i.e., without any restrictions to the Boolean functions.

Moreover in Section 3.1.5 we investigated the extension CTL+ and achieved a trichotomy
for the temporal fragments whereas for the Boolean fragments the logic behaves as CTL?.
Within we gave results for all operator fragments of the emerging logic LTL+ which stayed
always NP-complete due to its lack of nested temporal operators.

Furthermore we classified the extension ECTL into PSPACE- and EXP-complete frag-
ments where the rule for determining the complexity for ECTL-SAT(T ,B) is the following:
if S1 ⊆ [B], then ECTL-SAT(T ,B) is PSPACE-complete unless T contains a combination
of CTL-operators for which CTL-SAT(T ,B) is already EXP-complete (for this rule we
assume that T contains at least one real ECTL-operator), otherwise the problem is EXP-
complete as well. For the remaining cases we are always inside NC1 if [B] /∈ {L0,L}.

Thus the next step would be closing the gaps for the affine functions as motivated in
Section 3.1.4 comprising the possible combinations of L,L0 together with all temporal op-
erators. Moreover a universal study of optimization possibilities for algorithms influenced
by this classification into temporal SAT-solving would be of great interest.

Another further step includes the cases for the operator R which is the duality to U.

3.2 Model Checking in CTL and CTL?

Fragments of the model checking problem has been studied previously in the context
of linear temporal logic, LTL, by Sistla and Clarke [SC85] and Markey [Mar04]. They
introduced the restricted use of negation, interaction of future and past operators, and
separated tractable from intractable cases. The path model checking problem in LTL, i.e.,

3.2 Model Checking in CTL and CTL? 51

BF

R1 R0

R2

M

M1 M0

M2 S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

BF

R1 R0

R2

M

M1 M0

M2 S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

CTL?-SAT,CTL+-SAT

EEXP-complete

in EEXP

NC1-complete

TC0-complete

CTL-SAT

EXP-complete

in EXP

NC1-complete

TC0-complete

Figure 3.7: The complexity of CTL-SAT, CTL+-SAT, and CTL?-SAT, without restrictions
on the temporal operators.

52 Chapter 3 Temporal Logic

the problem given a nonempty finite path π in a Kripke structure and a formula ϕ asking
whether π |= ϕ does hold is investigated in [KF09]. There, Kuhtz and Finkbeiner exhibit
an AC1(LOGDCFL) algorithm for this problem.

From Theorem 2.17 we know that the model checking problem for the logic CTL is
complete for the complexity class P. One of our main motivations was to identify the
border between tractability and intractability by means of clones within Post’s lattice.
Now as the model checking problem CTL-MC is tractable, it hence does not fit into this
approach. A question connected to tractable complexity classes involves the search of par-
allel algorithms. Completeness for the class P prohibits such fast parallel algorithms which
are settled inside the class NC [Vol99]. Further the typical model checking algorithms
involve the basis {∧,∨,¬} of BF as described in [CGP99]. Therefore we will not follow
the classification approach of Post’s lattice for the model checking problem and stick to
the one of Sistla et al. which seems in first place more viable in the context of the search of
parallel algorithms. We define the following fragments of CTL(T) and CTL+(T):

• CTLpos(T) and CTL+pos(T) (positive)
CTL- or temporal operators may not occur in the scope of a negation.

• CTLa.n.(T) and CTL+a.n.(T) (atomic negation)
Negations appear only directly in front of atomic propositions.

• CTLmon(T) and CTL+mon(T) (monotone)
No negations allowed.

In the original notation of Sistla and Clarke they used eL(T) for CTLa.n.(T) and L+(T)
for CTLpos(T). At first we will consider the fragments of CTL and later in Section 3.2.2
we will classify the extensions of CTL with respect to the model checking problem.

Studying the interreducibility of these fragments, we obtain the following relations
between model checking for fragments of CTL with restricted negation:

Lemma 3.16.
For every set T of CTL-operators, it holds that

CTLmon-MC(T)≤cd CTLa.n.-MC(T)≤cd CTLpos-MC(T).

Furthermore, atomic negation can be eluded for model checking, that is, it holds that

CTLa.n.-MC(T)≤cd CTLmon-MC(T).

Proof. The first two reductions are immediate by using the identity function as reduction
function. For the second proposition, let K= (W , R,η) be a Kripke structure and let ϕ
be a CTLa.n.(T)-formula using the propositions p1, . . . , pn . Every negation in ϕ appears
directly in front of an atomic proposition. We obtain ϕ′ by replacing every negative literal
¬pi with a fresh atomic proposition qi . Further the labeling function needs to be modified.
Therefore we define K′ = (W , R,η′), where η′(w) = η(w)∪ {qi | pi /∈ η(w), 1 ≤ i ≤ n}.
Observe that this construction correctly interacts with contradictory subformulae like
p1 ∧¬p1. It is easy to see that it holds that K, w |= ϕ iff K′, w |= ϕ′ for all w ∈W . The
mapping (K, w,ϕ) 7→ (K′, w,ϕ′) can be performed by an AC0-circuit. �

3.2 Model Checking in CTL and CTL? 53

For giving the full picture of the classification it is vital to express the positive fragments
by only monotone fragments. This reducibility, i.e., CTLpos-MC(T)≤cdCTLmon-MC(T)
will be proven in the Section The Power of Negation on page 60.

3.2.1 Model Checking CTL and CTLpos

In this section we will present our main results on the complexity of model checking
for CTL and CTLpos. Model checking for CTL in general was proven to be P-complete
(see Theorem 2.17). By showing that only one temporal operator is sufficient to obtain
P-hardness, we improve the lower bound of this result.

Theorem 3.17.
For each nonempty set T of CTL-operators, CTL-MC(T) is P-complete. If T = ;, then
CTL-MC(T) is NC1-complete.

Now, considering only formulae from CTLpos the situation changes and the complexity
of model checking exhibits a dichotomous behavior.

Theorem 3.18.
Let T be any set of CTL-operators. Then CTLpos-MC(T) is

(1.) NC1-complete if T = ;,

(2.) LOGCFL-complete if ;(T ⊆ {EX,EF} or ;(T ⊆ {AX,AG}, and

(3.) P-complete otherwise.

We split the proofs of Theorems 3.17 and 3.18 into the upper and lower bounds in the
following two subsections.

Upper Bounds

As previously described model checking for CTL is known to be solvable in P. While
this upper bound also applies to CTLpos-MC(T) (for every T), we improve it for positive
CTL-formulae using only EX and EF, or only AX and AG.

Proposition 3.19.
Let T be a set of CTL-operators such that T ⊆ {EX,EF} or T ⊆ {AX,AG}. Then the problem
CTLpos-MC(T) is in LOGCFL.

Proof. First consider the case T ⊆ {EX,EF}. We claim that Algorithm 3.3 runs on a
LOGCFL machine and recursively decides whether the Kripke structure K = (W , R,η)
satisfies the CTLpos(T)-formula ϕ in state w0 ∈W . The algorithm uses a stack S which
stores pairs (ϕ, w) ∈CTLpos(T)×W and R? denotes the transitive closure of R (which
can be computed by a LOGCFL-machine through a binary counter).

Algorithm 3.3 always terminates because each subformula of ϕ is pushed to the stack
S at most once. For correctness, an induction on the structure of formulae shows that

54 Chapter 3 Temporal Logic

Algorithm 3.3: LOGCFL-algorithm for Proposition 3.19.
Input : a Kripke structure K= (W , R,η), w0 ∈W , ϕ ∈CTLpos(T)
Output : true if and only if K, w0 |= ϕ

1 push(S, (ϕ, w0));
2 while S is not empty do
3 (ϕ, w)← pop(S);
4 if ϕ is a propositional formula then
5 if ϕ evaluates to false in w under η then return false;
6 else if ϕ = α∧β then push(S, (β, w)) and push(S, (α, w));
7 else if ϕ = α∨β then nondeteterministically push(S, (α, w)) or push(S, (β, w));
8 else if ϕ = EXα then
9 nondeteterministically choose w ′ ∈ {w ′ | (w, w ′) ∈ R};

10 push(S, (α, w ′));
11 else if ϕ = EFα then
12 nondeteterministically choose w ′ ∈ {w ′ | (w, w ′) ∈ R?};
13 push(S, (α, w ′));

14 return true;

Algorithm 3.3 returns false if and only if for the most recently removed pair (ψ, w) from
S, we have K, w 6|=ψ. Thence, in particular, Algorithm 3.3 returns true iff K, w |= ϕ.

Algorithm 3.3 can be implemented on a nondeterministic polynomial-time Turing
machine that besides its (unbounded) stack uses only logarithmic memory for the local
variables. Thus CTLpos-MC(T) is in LOGCFL.

The proof for the case T ⊆ {AX,AG} is analogous and follows from closure of LOGCFL

under complementation. �

Finally, for the trivial case where no CTL-operators are present, model checking CTL(;)-
formulae is equivalent to the problem of evaluating a propositional formula. This problem
is known to be solvable in NC1 [Bus87].

Lower Bounds

The P-hardness of model checking for CTL was stated in [Sch02] first. We improve this
lower bound and concentrate on the smallest fragments w.r.t. CTL-operators of monotone
CTL with P-hard model checking. For the monotone fragment we need to take care of
the dual operator R of U, which is therefore defined through [χRπ]≡¬[¬χU¬π].

Proposition 3.20.
Let T denote a set of CTL-operators. Then CTLmon-MC(T) is P-hard if T contains an
existential and a universal CTL-operator.

Proof. First, assume that T = {AX,EX}. We give a generic reduction from the word
problem for alternating Turing machines working in logarithmic space, which follows
a similar approach as the classical proof idea (see [Sch02, Theorem 3.8]), and which we

3.2 Model Checking in CTL and CTL? 55

will modify in order to be useful for other combinations of CTL-operators. Starting with
an arbitrary language A∈ ALOGSPACE, let M be an alternating logspace Turing machine
s.t. L(M) =A, and let x be an input to M . We may assume w.l.o.g. that each transition of
M leads from an existential to a universal configuration and vice versa. Further we may
assume that each computation of M ends after the same number p(n) of steps, where p is
a polynomial and n is the length of M ’s input x. Furthermore we may assume that there
exists a polynomial q such that q(n) is the number of configurations of M on any input of
length n.

Let c1, . . . , cq(n) be an enumeration of all possible configurations of M on input x,
starting with the initial configuration c1. We construct a Kripke structure K= (W , R,η)
by defining the set W =

def
{c j

i | 1≤ i ≤ q(n), 0≤ j ≤ p(n)} and the relation R⊆W ×W as

R =
def

�

(c j
i , c j+1

k
)
�

�M reaches configuration ck from ci in one step,0≤ j < p(n)
	

∪
�

(c j
i , c j

i)
�

� c j
i has no successor,1≤ i ≤ q(n), 0≤ j < p(n)

	

∪
�

(c p(n)
i , c p(n)

i)
�

� 1≤ i ≤ q(n)
	

.

The labelling function η is defined for all c j
i ∈W as

η(c j
i) =def

�

{t}, if ci is an accepting configuration and j = p(n)
;, otherwise

where t is the only atom used by this labelling. It then holds that

M accepts x iff K, c0
1 |=ψ1

�

ψ2

�

· · ·ψp(n)(t)
�

· · ·
�

,

where ψi (x) =
def

AX(x) if M ’s configurations before the i th step are universal, and ψi (x) =
def

EX(x) otherwise. Notice that the constructed CTL-formula does not contain any Boolean
connective. Since p(n) and q(n) are polynomials, the size of K and ϕ is polynomial in the
size of (M , x). Moreover, K and ϕ can be constructed from M and x using AC0-circuits.
Thus, A≤cd CTLmon-MC({AX,EX}) for all A∈ ALOGSPACE= P.

For T = {AF,EG} we modify the above reduction by defining the labelling function η
and the formula ψi as follows:

η(c j
i) =def

¨

{d j , t}, if ci is an accepting configuration and j = p(n)
{d j }, otherwise

ψi (x) =
def

¨

AF(di ∧ x), if M ’s configurations before step i are universal,
EG(Di ∨ x), otherwise,

(3.1)

where d j are atomic propositions encoding the ‘execution time point’ of the respective
configurations and Di =

∨

i 6= j∈{0,..., p(n)} d j .
For the combinations of T being one of {AF,EF}, {AF,EX}, {AG,EG}, {AG, EX},

{AX,EF}, and {AX,EG}, the P-hardness of CTLmon-MC(T) is obtained using analogous
modifications to η and the ψi ’s.

56 Chapter 3 Temporal Logic

For the remaining combinations involving the until operator, observe that w.r.t. the
Kripke structure K as defined in (3.1), AF(di ∧ x) and EG(Di ∨ x) are equivalent to
A[di−1Ux] and E[di−1Ux]., and that R and U are duals. �

In the presence of arbitrary negation, universal operators are definable by existential
operators and vice versa. Hence, from Proposition 3.20 we obtain the following corollary.

Corollary 3.21.
The model checking problem CTL-MC(T) is P-hard for each nonempty set T of CTL-operators.

We will now see that for monotone CTL, in most cases even one operator suffices to
make model checking P-hard:

Proposition 3.22.
Let T denote a set of CTL-operators. Then CTLmon-MC(T) is P-hard if T contains at least
one of the operators EG, EU, ER, AF, AU, or AR.

Proof. We modify the proof of Proposition 3.20 to work with EG only. The remaining
fragments follow from the closure of P under complementation and Fχ ≡ ¬G¬χ ≡
[>Uχ], [χUπ]≡¬[¬χR¬π].

Let the Turing machine M , the word x, the polynomials p, q , and K be as above.
Further assume w.l.o.g. that M branches only binary in each step. In the following we
will construct a Kripke structure K′ which is visualized in Figure 3.8. Denote by W∃ (resp.
W∀) the set of states corresponding to existential (resp. universal) configurations. Let the
Kripke structure K′ be defined as K′ =

def
(W ′, R,η) consisting of q(n)+ 1 layers and a ‘trap’

as follows: let W ′ =
def

W ×{1, . . . , q(n)+ 1} ∪ {z}. The transition relation R⊆W ′×W ′ is

defined as

R=
def

¨

�

(c j
i ,`), (c j+1

k
,`)
�

�

�

�

�

�

c j
i ∈W∃, M reaches ck from ci in one step,

1≤ `≤ q(n)+ 1,0≤ j < p(n)

«

∪

�

(c j
i ,`), (c j+1

k
, i)
�

,
�

(c j+1
k

, i), (c j+1

k ′
, q(n)+ 1)

�

,
�

(c j+1

k ′
, q(n)+ 1), z

�

�

�

�

�

�

�

�

�

c j
i ∈W∀, M reaches ck and ck ′ from ci in one step,

ck ≤ ck ′ , 0≤ j < p(n), 1≤ `≤ q(n)+ 1

∪
��

(c p(n)
i ,`), (c p(n)

i ,`)
�

| 1≤ i ≤ q(n), 1≤ `≤ q(n)+ 1
	

∪
�

(z, z)
	

That is, the arcs leaving an existential configuration ci lead to the successor configurations
of ci inside each layer; while any universal configuration ci has exactly one outgoing arc
pointing to its (lexicographically) first successor configuration in the layer i , from where
another arc leads to the second successor of ci in layer q(n) + 1, which in turn has an
outgoing arc to the state z . Observe that the layers are used to ensure the uniqueness of the
successors of universal configurations which is essential for the function ψi (x) constructed
below. The labelling function η is defined as η(z) =

def
{z}, η((c j

i ,`)) =
def
{`, d j , t} if ci is an

3.2 Model Checking in CTL and CTL? 57

d0
c0
1

d0
c0
2

. . .
d0

c0
q(n)

d1
c1
1

d1
c1
2

. . .
d1

c1
q(n)

d2
c2
1

d2
c2
2

. . .
d2

c2
q(n):. :. :. :.

d ′ c p(n)
1

t , d ′ c p(n)
2

. . .
t , d ′

c p(n)
q(n)

d0
c0
1

d0
c0
2

. . .
d0

c0
q(n)

d1
c1
1

d1
c1
2

. . .
d1

c1
q(n)

d2
c2
1

d2
c2
2

. . .
d2

c2
q(n):. :. :. :.

d ′ c p(n)
1

t , d ′ c p(n)
2

. . .
t , d ′

c p(n)
q(n)

d0
c0
1

d0
c0
2

. . .
d0

c0
q(n)

d1
c1
1

d1
c1
2

. . .
d1

c1
q(n)

d2
c2
1

d2
c2
2

. . .
d2

c2
q(n):. :. :. :.

d ′ c p(n)
1

t , d ′ c p(n)
2

. . .
t , d ′

c p(n)
q(n)

. . .
z

layer 1 layer 2 layer q(n)+ 1

Figure 3.8: The Kripke structure K′; dashed (resp. solid) arrows correspond to transitions
leaving existential (resp. universal) configurations. d ′ abbreviates dp(n).

58 Chapter 3 Temporal Logic

accepting configuration, and otherwise η((c j
i ,`)) =

def
{`, d j } for (1≤ `≤ q(n)+ 1). Define

ψi (x) =
def

(

EG(di−1 ∨ (di ∧ x)∨ z), if M ’s configurations in step i are universal,
EG(Di ∨ x), if M ’s configurations in step i are existential,

and Di =
∨

i 6= j∈{0,..., p(n)} d j . Through the construction of the Kripke structure observe
that—for the universal case—the EG-path induced by the corresponding ψi (x) visits each
of the series-connected successor states and must finish in the trap. As in each successor
state both di−1 and z are not satisfied the subformula di∧x must be satisfied which enforces
two new EG-paths defined through the next ψi+1. By this one can verify that it holds that
K, w |= AX(di ∧ x) if and only if K′, (w,`) |= EG

�

di−1 ∨ (di ∧ x)∨ z)
�

, for all w ∈W∀,
1≤ `≤ q(n)+ 1 and 1≤ i ≤ p(n). From this the following equivalence follows

M accepts x iff K′, (c0
1 , 1) |=ψ1

�

ψ2

�

· · ·ψp(n)(t)
�

· · ·
�

.

As the size of the set of states in K has only grown by factor q(n) + 1 and R can be
constructed from all triples of states in W ′, K′ remains AC0 constructible. Concluding
A≤cd CTLmon-MC({EG}) for all A∈ P. �

By Lemma 3.16, CTLmon-MC(T) ≤cd CTLpos-MC(T) and hence the above results di-
rectly translate to model checking for CTLpos: for any set T of temporal operators,
CTLpos-MC(T) is P-hard if T * {EX,EF} and T * {AX,AG}. These results cannot be
improved w.r.t. T , as for T ⊆ {EX,EF} and T ⊆ {AX,AG} we obtain a LOGCFL upper
bound for model checking from Proposition 3.19. In the following proposition we prove
the matching LOGCFL lower bound.

Proposition 3.23.
Let T be a nonempty set of CTL-operators. Then the monotone model checking problem
CTLmon-MC(T) is LOGCFL-hard.

Proof. As explained in Chapter 2, LOGCFL can be characterized as the set of languages
recognizable by logtime-uniform SAC1 circuits. For every single CTL-operator O, we
will show that CTLmon-MC(T) is LOGCFL-hard for all T ⊇ {O} by giving a generic
≤cd-reduction f from the word problem for SAC1 circuits to CTLmon-MC(T).

We start by considering the case EX ∈ T . Let C be a logtime-uniform SAC1 circuit of
depth ` with n inputs and let x = x1 . . . xn ∈ {0,1}n . Assume w.l.o.g. that C is connected,
layered into alternating layers of ∧-gates and ∨-gates, and that the output gate of C is an
∨-gate. We number the layers bottom-up, that is, the layer containing (only) the output
gate has level 0, whereas the input-gates and negations of the input-gates are situated in
layer `. Denote the graph of C by G = (V , E), where V =

def
Vin]V∧]V∨ is partitioned

into the sets corresponding to the (possibly negated) input-gates, the ∧-gates, and the
∨-gates, respectively. G is acyclic and directed with paths leading from the input to the
output gates. From (V , E) we construct a Kripke structure that allows to distinguish the

3.2 Model Checking in CTL and CTL? 59

two predecessors of an ∧-gate from each other. This will be required to model proof trees
using CTLmon({EX})-formulae.

For i ∈ {1,2}, let V i
in =def {v

i | v ∈Vin}, V i
∨ =def {v

i | v ∈V∨} and define V i
in,∨ =def V i

in ∪V i
∨ .

Further define

E ′ =
def

�

(v, u i) ∈V∧×V i
in,∨ | (u, v) ∈ E and u is the i th predecessor of v

	

∪
�

(v, v) | v ∈V 1
in ∪V 2

in

	

∪
⋃

i∈{1,2}

�

(v i , u) ∈V i
in,∨×V∧ | (u, v) ∈ E

	

,

where the ordering of the predecessors is implicitly given in the encoding of C . We now
define a Kripke structure K =

def
(V ′, E ′,η) with states V ′ =

def
V 1

in,∨ ∪V 2
in,∨ ∪V∧, transition

relation E ′, and labelling function η : V ′→P({1,2, t}) defined as

η(v) =
def

{i , t}, if (v = vin j
∈V i

in and x j = 1) or (v = v in j
∈V i

in and x j = 0),

{i}, if (v = vin j
∈V i

in and x j = 0) or (v = v in j
∈V i

in and x j = 1)

or v ∈V i
∨ ,

;, otherwise,

where i = 1,2, j = 1, . . . , n and vin1
, . . . , vinn

, v in1
, . . . , v inn

enumerate the input gates and
their negations. The formula ϕ that is to be evaluated on K consists of atomic propositions
1, 2 and t , Boolean connectives ∧ and ∨, and the CTL-operator EX. To construct ϕ we
recursively define formulae (ϕi)0≤i≤` by

ϕi =
def

t , if i = `,
EXϕi+1, if i is even (∨-layers),
∧

j=1,2 EX(j ∧ϕi+1), if i is odd (∧-layers).

We define the reduction function f as the mapping (C , x) 7→ (K, v0,ϕ0), where v0 is the
node corresponding to the output gate of C . It is to be accentuated that the size of ϕ
is polynomial, for the depth of C is logarithmic only. Clearly, each minimal accepting
subtree (cf. [Ruz80] or [Vol99, Definition 4.15]) of C on input x translates into a sub-
structure K′ of K such that K′, v0 |= ϕ0, where

(a) K′ includes v0,

(b) K′ includes one successor for every node corresponding to an ∨-gate, and

(c) K′ includes the two successors of every node corresponding to an ∧-gate.

As C (x) = 1 iff there exists a minimal accepting subtree of C on x, the LOGCFL-hardness
of CTLmon-MC(T) for EX ∈ T follows.

Next, consider EF ∈ T . We have to extend our Kripke structure to contain information
about the depth of the corresponding gate. We may assume w.l.o.g. that C is encoded

60 Chapter 3 Temporal Logic

such that each gate contains an additional counter holding the distance to the output gate
(which is equal to the number of the layer it is contained in, cf. [Vol99]). We extend
η to encode this distance i , 1 ≤ i ≤ `, into the “depth-propositions” di as in the proof
of Proposition 3.20. Denote this modified Kripke structure by K′. Further, we define
(ϕ′i)0≤i≤` as

ϕ′i =def

t , if i = `,
EF(di+1 ∧ϕ′i+1), if i is even,
∧

j=1,2 EF(di+1 ∧ j ∧ϕ′i+1), if i is odd.

Redefining the reduction f as (C , x) 7→ (K′, v0,ϕ′0) hence yields the LOGCFL-hardness of
CTLmon-MC(T) for EF ∈ T .

Finally consider AX ∈ T . Observe the following for the reduction in case 1 for
monotone CTLmon({EX})-formulae, where f (C , x) = (K, v0,ϕ) is the value computed by
the reduction function. It holds that C (x) = 1 iff K, v0 |= ϕ, and equivalently C (x) = 0
iff K, v0 |= ¬ϕ. Let ϕ′ be the formula obtained from ¬ϕ by multiplying the negation
into the formula. Then ϕ′ is a CTLa.n.({AX})-formula. Since LOGCFL is closed under
complement, it follows that CTLa.n.-MC({AX}) is LOGCFL-hard. Using Lemma 3.16, we
obtain that CTLmon-MC({AX}) is LOGCFL-hard, too. An analogous argument works for
the case AG ∈ T . The remaining fragments are even P-complete by Proposition 3.22. �

Using Lemma 3.16 we obtain LOGCFL-hardness of CTLpos-MC(T) for all nonempty
sets T of CTL-operators.

In the absence of CTL-operators, the lower bound for the model checking problem
again follows from the lower bound for evaluating monotone propositional formulae.
This problem is known to be hard for NC1 [Bus87, Sch10].

This concludes the proof of Theorem 3.17 and Theorem 3.18.

The Power of Negation

We will now show that model checking for the fragments CTLa.n. and CTLpos is computa-
tionally equivalent to model checking for CTLmon, for any set T of CTL-operators. Since
we consider ≤cd-reductions, this is not immediate.

From Lemma 3.16 it follows that the hardness results for CTLmon-MC(T) also hold for
CTLa.n.-MC(T) and CTLpos-MC(T). Moreover, the lemma implies that upper bounds of
CTLpos-MC(T) hold for the other two problems, i.e., the algorithms for CTLpos-MC(T)
also work for CTLmon-MC(T) and CTLa.n.-MC(T). Both observations together yield the
same completeness results for all CTL-fragments with restricted negations.

Theorem 3.24.
Let T be any set of CTL-operators, andC ∈ {CTLmon,CTLa.n.,CTLpos}. ThenC -MC(T) is

(1.) NC1-complete if T is empty,

(2.) LOGCFL-complete if ;(T ⊆ {EX,EF} or ;(T ⊆ {AX,AG},

3.2 Model Checking in CTL and CTL? 61

(3.) P-complete otherwise.

Further, the problems CTLmon-MC(T), CTLa.n.-MC(T), and CTLpos-MC(T) are equiva-
lent w.r.t. ≤cd-reductions.

This equivalence extends Lemma 3.16. This equivalence is not straightforward by
simply applying de Morgan’s laws to transform one problem into another because this
requires counting the number of negations on top of ∧- and ∨-connectives. This counting
cannot be achieved by an AC0-circuit and does not lead to the aspired reduction. The
theorem obtains equivalence of the problems as a consequence of our generic hardness
proofs in the Section Lower Bounds on page 54.

3.2.2 Model Checking Extensions of CTL

As for CTL, model checking for ECTL is known to be tractable [Sch02]. Moreover, our
next result shows that even for all fragments, model checking for ECTL is not harder than
for CTL.

Theorem 3.25.
Let T be a set of ECTL-operators. Then

ECTL-MC(T)≡cd CTL-MC(T ′) and ECTLpos-MC(T)≡cd CTLpos-MC(T ′),

where T ′ is obtained from T by substituting F
∞

with F and G
∞

with G.

Proof. For the upper bounds, notice that for the full fragment we have a membership
result for P. Thus it holds that ECTL-MC(ALL ∪ {EF

∞
,AF

∞
}) ∈ P. It thus remains to

show that ECTLpos-MC(T) ∈ LOGCFL for T ⊆ {EX,EF,EF
∞
} and T ⊆ {AX,AG,AG

∞
}

First, consider the case that T ⊆ {EX,EF,EF
∞
}. We modify Algorithm 3.3 to handle EF

∞
by

extending the case distinction in lines 4–13 with the code fragment given in Algorithm 3.4.
The algorithm for T ⊆ {AX,AG,AG

∞
} is analogous and membership in LOGCFL follows

from its closure under complementation.

Algorithm 3.4: Case distinction for EF
∞

1 else if ϕ = EF
∞
α then

2 nondet. choose k ≤ |W | and a path (wi)1≤i≤k s.t. (w, w1) ∈ R?, (wk , w1) ∈ R;
3 nondet. choose some 1≤ i ≤ k and push(S, (α, wi));

For proving the lower bounds, we extend the proofs of Propositions 3.20, 3.22 and 3.23
to handle sets T involving also the operators AF

∞
, AG

∞
, EF
∞

, and EG
∞

. Therefore, we only need
modify the accessibility relation R of respective Kripke structure K to be reflexive. The
hardness results follow by replacing F with F

∞
and G with G

∞
in the respective reductions.

62 Chapter 3 Temporal Logic

First consider the case that T contains an existential and a universal operator, say
T = {AF

∞
,EG

∞
}. Let M , x, and p be defined as in the proof of Proposition 3.20. We map

(M , x) to (K̃, c0
1 ,ψ1), where for K̃= (W , R̃,η) the accessibility relation R̃ is the reflexive

closure of R in the Kripke structure K defined for the P-hardness of CTL-MC({AF,EG}),
c0

1 ∈W , and ψ =
def
ψ1

�

ψ2

�

· · ·ψp(n)(t)
�

· · ·
�

, where

ψi (x) =
def

(

AF
∞
(di ∧ x), if M ’s configurations in step i are universal, and

EG
∞
(Di ∨ x), otherwise.

In K̃ it now holds that di ∈ η(w) and (w, w ′) ∈ R together imply that either w = w ′

or di /∈ η(w ′). Hence, for all w ∈W and 1 ≤ i ≤ p(|x|), K̃, w |= AF
∞
(di ∧ x) iff K, w |=

AF(di ∧ x), and K̃, w |= EG
∞
(
∨

i 6= j∈{0,..., p(n)} d j ∨ x) iff K, w |= EG(
∨

i 6= j∈{0,..., p(n)} d j ∨ x).
From this, correctness of the reduction follows. The P-hardness of CTL-MC(T) for the
remaining fragments can be proven analogously.

As for T ⊆ {EX,EF,EF
∞
}, we will show that ECTLmon-MC(T) is LOGCFL-hard under

≤cd-reductions for T = {EF
∞
}. Let C , x, and ` be as in the proof of Proposition 3.23. We

map the pair (C , x) to the triple (K̃′, v0,ϕ0), where K̃′ = (V ′, E ′,η) is the reflexive closure
of the Kripke structure K′ defined for the LOGCFL-hardness of CTL-MC({EF}), v0 ∈V ′,
and ϕ0 is recursively defined via (ϕ′i)0≤i≤` as

ϕi =
def

t , if i = `,
EF
∞
(di+1 ∧ϕi+1), if i is even,

∧

j=1,2 EF
∞
(di+1 ∧ j ∧ϕi+1), if i is odd.

Again, we conclude that in K̃′, di ∈ η(v) and (v, v ′) ∈ E ′ together imply that either v = v ′

or di /∈ η(v ′). It hence follows K̃′, v |= EF
∞
(di ∧ϕi) iff K′, v |= EF(di ∧ϕi), for all v ∈V ′

and 1≤ i ≤ `. We conclude that ECTLmon-MC({EF
∞
}) is LOGCFL-hard. The hardness for

case T = {AG
∞
} results from the complement argument. �

We will now consider CTL+, the extension of CTL by Boolean combinations of path
formulae.

In contrast to CTL, model checking for CTL+ is not tractable, but complete for ∆P
2

w.r.t. ≤cd-reductions [LMS01]. Below we classify the complexity of model checking for
both the full and the positive fragments of CTL+.

Theorem 3.26.
Let T be a set of temporal operators containing at least one path quantifier. Then CTL+-MC(T)
is

(1.) NC1-complete if T ⊆ {A,E},

(2.) P-complete if {X}(T ⊆ {A,E,X}, and

3.2 Model Checking in CTL and CTL? 63

(3.) ∆P
2 -complete otherwise.

Proof. If T ⊆ {A,E} then deciding CTL+-MC(T) is equivalent to the problem of evaluat-
ing a propositional formula, which is known to be NC1-complete [Bus87, Sch10].

If {X}(T ⊆ {A,E,X}, then CTL+-MC(T) can be solved using a labelling algorithm:
Let K= (W , R,η) be a Kripke structure, and ϕ be a CTL+({A,E,X})-formula. Assume
w.l.o.g. that ϕ starts with an E and that it does not contain any A’s (substitute Aφ with
¬E¬φ). Compute all states w ∈ W s.t. K, w |= ψ for all subformulae Eψ of ϕ such
that ψ is free of path quantifiers, and replace Eψ in ϕ with a new proposition pψ while
extending the labelling function η such that pψ ∈ η(w) iff K, w |= ψ. Repeat this step
until ϕ is free of path quantifiers and denote the resulting (propositional) formula by ϕ′.
To decide whether K, w |= ϕ for some w ∈W , it now suffices to check whether ϕ′ is
satisfied by the assignment implied by η(w). As for all of the above subformulae Eψ of ϕ,
ψ ∈CTL+({X}), it follows that K, w |= ψ can be determined in polynomial time in the
size of K and ψ. Considering that the number of labelling steps is at most O(|ϕ| · |W |)
it follows that CTL+-MC(T) is in P. The P-hardness follows from CTL-MC({EX})≤cd
CTL+-MC({E,X}) resp. CTL-MC({AX})≤cd CTL+-MC({A,X}).

For all other possible sets T , we have T ∩ {E,A} 6= ; and T ∩ {F,G,U} 6= ;. Conse-
quently, each of the temporal operators A, E, F, and G can be expressed in CTL+(T). The
claim now follows from [LMS01] proving the respecting∆P

2 lower bounds. �

For the positive fragments of CTL+ we obtain a more complex classification which
comprises six different completeness degrees:

Theorem 3.27.
Let T be a set of temporal operators containing at least one path quantifier. Then the problem
CTL+pos-MC(T) is

(1.) NC1-complete if T ⊆ {A,E},

(2.) LOGCFL-complete if T = {A,X} or T = {E,X},

(3.) P-complete if T = {A,E,X},

(4.) NP-complete if E ∈ T , A 6∈ T and T contains exactly one pure temporal operator aside
from X,

(5.) coNP-complete if A ∈ T , E 6∈ T and T contains exactly one pure temporal operator
aside from X, and

(6.) ∆P
2 -complete otherwise.

Proof. The first and third claim follow from Theorem 3.26 and from the monotone
formula value problem being NC1-complete [Sch10].

For the second claim, consider the case T = {E,X}. It is straightforward to adopt
Algorithm 3.3 to guess a successor w ′ of the current state once for every path quantifier

64 Chapter 3 Temporal Logic

E that has been read and decompose the formula w.r.t. w ′. For T = {A,X} analogous
arguments hold. The lower bounds apply due to Proposition 3.23.

The fourth claim can be solved with a labelling algorithm analogously to the algo-
rithm for CTL+-MC({A,E,X}). In this case, however, whole paths need to be guessed
in the Kripke structures. Hence, we obtain a polynomial time algorithm deciding
CTL+pos-MC(T) using an oracle B ∈ NP (resp. B ∈ coNP) . Furthermore this algo-
rithm is a monotone ≤p

T
-reduction from CTL+pos-MC(T) to B , in the sense that for any

deterministic oracle Turing machine M that executes the algorithm,

A⊆ B =⇒ L(M ,A)⊆ L(M ,B),

where L(M ,X) is the language recognized by M with oracle X . Both NP and coNP are
closed under monotone ≤p

T
-reductions [Sel82]. Thus we can conclude that the desired

membership result holds, i.e., CTL+pos-MC(T) ∈NP (resp., CTL+pos-MC(T) ∈ coNP).
As for the NP-hardness of CTL+pos-MC(T), note that the reduction from 3SAT to

the linear temporal logic model checking problem LTL-MC({F}), using the F-operator
only, given by Sistla and Clarke in [SC85] is a reduction to CTL+pos-MC({E,F}) indeed.
The NP-hardness of CTL+pos-MC({E,G}) is obtained by a similar reduction: let ϕ be a
propositional formula in 3CNF, i.e., ϕ =

∧n
i=1 Ci with Ci = `i1 ∨`i2 ∨`i3 and `i j = xk or

`i j = ¬xk for all 1≤ i ≤ n, all 1≤ j ≤ 3, and some 1≤ k ≤ m. Recall that for a set A,
∨

A
denotes the disjunction

∨

a∈A a. We map ϕ to the triple (K, y0,ψ), where K= (W , R,η) is
the Kripke structure defined as

W =
def
{y0} ∪ {xi , x i , yi | 1≤ i ≤ m},

R =
def
{(yi−1, xi), (xi , yi), (yi−1, x i), (x i , yi) | 1≤ i ≤ m} ∪ {(ym , ym)},

η(w) =
def
{w} for all w ∈W .

and ψ =
def

E
∧n

i=1

∨3
j=1 G

∨

(Φ \ {∼`i j }) with Φ =
def
{y0, yi , xi , x i | 1 ≤ i ≤ m} and ∼`i j

denoting the complementary literal of `i j . Note that the above reductions prove hardness
for CTL+mon-MC(T) already. The coNP-hardness of the two cases CTL+pos-MC({A,G})
and CTL+pos-MC({A,F}) follows from the same reductions.

As for the the last claim, note that the ∆P
2 -hardness of CTL+-MC({A,E,F,G}) car-

ries over to CTL+mon-MC({A,E,F,G}), because any CTL+({A,E,F,G})-formula can be
transformed into a CTL+a.n.({A,E,F,G})-formula, in which all negated atoms ¬p may be
replaced by fresh propositions p that are mapped into all states of the Kripke struc-
ture whose label does not contain p. It thus remains to prove the ∆P

2 -hardness of
CTL+pos-MC({A,E,F}) and CTL+pos-MC({A,E,G}). Consider CTL+pos-MC({A,E,G}).
Laroussinie et al. reduce from SNSAT (sequentially nested satisfiability). This is the prob-
lem to decide, given disjoint sets Z1, . . . ,Zn of propositional variables from {z1, . . . , zp}
and a list ϕ1(Z1),ϕ2(x1,Z2), . . . ,ϕn(x1, . . . , xn ,Zn) of formulae in conjunctive normal form,

3.2 Model Checking in CTL and CTL? 65

xn

cn

xn

s10
n

s01
n

s00
n

s11
n

xn−1

cn−1

xn−1

. . .

. . .

. . .

. . .

. . .

s10
2

s01
2

s00
2

s11
2

x1

c1

x1

s10
1

s01
1

s00
1

s11
1

z1

z1

. . .

. . .

zp

z p

Figure 3.9: Extended version of the Kripke structure constructed in [LMS01, Figure 3].

whether xn holds in the unique evaluation σ . The valuation function σ : Vars(ϕ)→{>,⊥}
is defined by

σ(xi) => iff ϕi (x1, . . . , xi−1,Zi) is satisfiable. (3.2)

An instance I of SNSAT is transformed to the Kripke structure K depicted in Figure 3.9
and the formula ψ2n−1 that is recursively defined as

ψk =
def

E
�

G
�

n
∨

i=1

x i → E
�

¬F
n
∨

i=1

(s 00
i ∨ s 01

i ∨ s 10
i ∨ s 11

i)∧F(
n
∨

i=1

xi 6→ψk−1)
�

�

︸ ︷︷ ︸

(A)

∧ G
�

n
∧

i=1

¬ci

�

︸ ︷︷ ︸

(B)

∧
n
∧

i=1

�

Fxi →
∧

j

∨

m

F`i , j ,m

�

︸ ︷︷ ︸

(C)

�

,

for 1 ≤ k ≤ n, ψ0 =
def
>, and ϕi =

∧

j

∨

m `i , j ,m , where the `i , j ,m ’s are literals over

{x1, . . . , xn} ∪ Zi . Note that the structure K from Figure 3.9 differs from the Kripke
structure constructed in [LMS01] in that we introduce different labels ci and s j

i for
1 ≤ i ≤ n and j ∈ {00,01,10,11}, as we need to distinguish the states later on. The
intuitive interpretation of (B) is that the existentially quantified path does actually encode
an assignment of {x1, . . . , xn} to {⊥,>}, while (C) states that this assignment coincides
with σ on all propositions that are set to >. Lastly (A) expresses the recursion inherent in
the definition of SNSAT. It holds that I ∈ SNSAT iff K, xn |=ψ2n−1 (see [LMS01] for the
correctness of this argument).

We modify the given reduction to hold without using F. At first note that ψk−1
occurs negatively in ψk . We will therefore consider the formulae ψ2n−1,ψ2n−3, . . . ,ψ1 and
¬ψ2n−2,¬ψ2n−4, . . . ,¬ψ2 separately. In ψ2n−1,ψ2n−3, . . . ,ψ1 replace

• (A)with G
�

n
∨

i=1

x i → E
�

G
n
∧

i=1

(¬s 00
i ∧¬s 01

i ∧¬s 10
i ∧¬s 11

i)∧G(
n
∨

i=1

x i∨
n
∨

i=1

ci∨¬ψk−1)
�

�

,

66 Chapter 3 Temporal Logic

• (C) with
n
∧

i=1

�

G¬xi ∨
∧

j

∨

m

G
∨

(Φ \ {∼`i , j ,m})
�

;

and in ¬ψ2n−2,¬ψ2n−4, . . . ,¬ψ2 replace

• (A) with
∨

1≤i≤n

G
�
∨

(Φ \ {x i})∨A
�

G(
∨

Φ \ {ci})∨G(ci ∨ψk−1

�

�

,

• (B) with
n
∨

i=2

G
∨

(Φ \ {s 00
i , s 01

i , s 01
i−1, s 11

i−1}), and

• (C) with
n
∨

i=1

�

G
∨

(Φ \ {x i})∧
∨

j

∧

m

G¬`i , j ,m

�

,

where Φ =
def
{xi , x i , ci , s 00

i , s 01
i , s 10

i , s 11
i | 1 ≤ i ≤ n} ∪ {zi , z i | 1 ≤ i ≤ p} is the set of all

propositions used in K. Denote the resulting formulae by ψ′k , k ≥ 0. In ψ′k , all negations
are atomic and only the temporal operators E,A and G are used.

To verify that K, xk |=ψk iff K, xk |=ψ′k holds for all 0≤ k < 2n, consider ψk with k
odd first. Suppose K, xk |=ψk . Then, by (A), there exists a path π in K such that whenever
some x i is labelled in the current state πp , then there exists a path π′ starting in πp that

never visits any state labelled with s j
i , 1≤ i ≤ n, j ∈ {00,01,10,11}, and eventually falsifies

ψk−1 because it reaches a state where neither x i nor ci holds for all 1 ≤ i ≤ n. Hence,
by construction of K, π′ has to visit the states labelled with ci and xi for i such that
x i ∈ η(πp). This is equivalent to the existence of a path π′ starting in πp which never

visits any state labelled with s j
i , 1 ≤ i ≤ n, j ∈ {00,01,10,11}, and that falsifies ψk−1 if

the current state is not labelled with ci or x i for all 1 ≤ i ≤ n. Hence the substitution
performed on (A) does not alter the set of states in K on which the formula is satisfied.

The formula (C), on the other hand, states that whenever the path π quantified by the
outmost E in ψk visits the state labelled xi , then for every clause j in the i th formula ϕi of
given SNSAT instance at least one literal `i , j ,m occurs in the labels on π (i.e., ϕi is satisfied
by the assignment induced by π). The path π is guaranteed to visit either a state labelled
xi or a state labelled x i but not both, by virtue of the subformula (B). Therefore, the
eventual satisfaction of xi is equivalent to globally satisfying ¬xi , whereas the satisfaction
of ϕi can be asserted by requiring that for any clause some literal is globally absent from
the labels on π. Thus the substitution performed on (C) does not alter the set of states
on which the formula is satisfied either. Concluding, K, xk |=ψk iffK, xk |=ψ′k for all odd
0≤ k < 2n.

3.2 Model Checking in CTL and CTL? 67

Now, if k is even, then

¬ψk ≡A
�

F
�

n
∨

i=1

x i ∧A
�

F
n
∨

i=1

(s 00
i ∨ s 01

i ∨ s 10
i ∨ s 11

i)∨G(
n
∨

i=1

xi →ψk−1)
�

�

︸ ︷︷ ︸

(A)

∨ F
�

n
∨

i=1

ci

�

︸ ︷︷ ︸

(B)

∨
n
∨

i=1

�

Fxi ∧
∨

j

∧

m

G¬`i , j ,m

�

︸ ︷︷ ︸

(C)

�

.

Here, (A) asserts that on all paths π there is a state πp such that x i ∈ η(πp) for some

1 ≤ i ≤ n and all paths π′ starting in πp eventually visit a state labelled with s j
i , 1 ≤

i ≤ n, j ∈ {00,01,10,11}, or satisfy ψk−1 whenever xi ∈ η(πp) for some 1 ≤ i ≤ n. By
construction of K, this is equivalent to stating that all paths π′ either pass the state labelled
ci and globally satisfy ci ∨ψk−1 or do not pass the state labelled ci . As for the states in
K the formula F

�∨n
i=1 xi ∧χ

�

≡
∨n

i=1 F
�

xi ∧χ
�

is satisfied iff
∨n

i=1 G
�∨

(Φ \ {x i})∨χ
�

is satisfied, the set of states in K on which the ψk is satisfied remains unaltered when
substituting (A) with

∨

1≤i≤n G
�∨

(Φ \ {x i})∨A
�

G(
∨

Φ \ {ci})∨G(ci ∨ψk−1

��

.
Similarly, the set of states in K on which the ψk is satisfied remains unaltered when

substituting (B) with
∨n

i=2 G
∨

(Φ \ {s 00
i , s 01

i , s 01
i−1, s 11

i−1}), as any path in K that visits a state
labelled with some ci cannot pass via states labelled with s 00

i , s 01
i , s 01

i−1, or s 11
i−1.

Finally, the equivalence of ψk with
∨n

i=1

�

G
∨

(Φ \ {x i}) ∧
∨

j

∧

m G¬`i , j ,m

�

follows
from arguments similar to those for the (C) part in the case that k is odd. We conclude that
K, xk |=ψk iffK, xk |=ψ′k for all 0≤ k < 2n. Hence, CTL+pos-MC({A,E,G}) is∆P

2 -hard.
For T = {A,E,F} similar modifications show that CTL+pos-MC(T) is ∆P

2 -hard, too.
This concludes the proof of Theorem 3.27. �

Lastly consider ECTL+, the combination of ECTL and CTL+. One can adapt the above
hardness and membership proofs to hold for F

∞
and G

∞
instead of F and G: For example, to

establish the ∆P
2 -hardness of ECTL+pos-MC(T) in case T = {A,E,G

∞
} we modify K such

that the states labelled xn and xn are reachable from zp and z p and assert that (a) the
path quantified by the outmost path quantifier in ψk , 1 ≤ i < 2n, additionally satisfies
∧n

i=1(G
∞
¬xi ∨G

∞
¬x i) and (b) whenever x i is labelled, then there exists a path that all but a

finite number of times satisfies xi . The changes if F
∞

is available instead of G
∞

follow by the
duality principle of these operators. For its model checking problem we hence obtain:

Corollary 3.28.
Let T be a set of temporal operators containing at least one path quantifier and let T ′

by obtained from T by substituting F
∞

with F and G
∞

with G. Then ECTL+-MC(T) ≡cd
CTL+-MC(T ′) and ECTL+pos-MC(T)≡cd CTL+pos-MC(T).

68 Chapter 3 Temporal Logic

I

V E N

M L

BF

Figure 3.10: Post’s lattice restricted to clones with both constants.

3.2.3 Model Checking CTL?

In 1986, CTL?-MC has been proven to be PSPACE-complete by Clarke, Emerson and
Sistla (see Theorem 2.12). For the model checking problem put into context of Post’s
lattice it is obvious that one always has access to both constants by strictly encoding them
with fresh propositions into the Kripke structure and formula. This leaves us with the
clones I, N, E, V, M, L, and BF which are depicted in Figure 3.10.

Classifying all possible fragments emerging by operator, path quantifier, and Boolean
function restrictions requires to study 26 · 7 = 448 different fragments or at least 384
different ones by using some duality principle which allows us to classify either the clone
V or the clone E. Adding the dual operator R of U to the classification leads to 896, resp.,
768 fragments. Thus, as a first approach to a full study we will state a classification of
all fragments CTL?-MC(T ,B) for all sets of temporal operators and path quantifiers for
which |T | ≤ 2 and R /∈ T holds. There we will categorize the fragments into tractable and
intractable cases only (therefore some cases will lack completeness results).

For the following theorem let FMC(B) denote the (propositional) formula model
checking problem as defined in [Sch10] as

Problem (FMC(B))
Input: a propositional formula ϕ ∈ PL(B), and an assignment θ : Vars(ϕ)→{>,⊥}.
Question: does it hold that θ |= ϕ?

Table 3.1 depicts the cases from Theorem 3.29 and shows in which part the complexity
of which fragment is proven.

Theorem 3.29.
Let B be a finite set of Boolean functions and T be a set of path quantifiers and/or pure
temporal operators such that |T | ≤ 2. Then CTL?-MC(T ,B) is

(1.) NP-complete if [B] =M and T = {X},{F},{E,X},{E,F},

(2.) coNP-complete if [B] =M and T = {A,X},{A,G},

(3.) NP-hard if E⊆ [B] and {F} ⊆ T ⊆ {E,F}, or
if V⊆ [B] and {G,X}= T , or
if U ∈ T ,

3.2 Model Checking in CTL and CTL? 69

CTL?-MC(T ,B) I E V M N L BF

E/A ≡cd FMC(9.)

G/U ≡cd LTL-MC(8.)

X/F ≡cd LTL-MC(8.) NP(1.) ≡cd LTL-MC(8.)

E,A ≡cd FMC(9.)

E,G NL(7.) P(5.) NP(3.) open
E,X NL(7.) LCFL(6.) NL(7.) NP(1.) open
E,F NL(7.) NP(3.) NL(7.) NP(1.) open
A,X NL(7.) LCFL(6.) coNP(2.) open
A,F NL(7.) P(5.) NL(7.) coNP(4.) open
A,G NL(7.) coNP(4.) coNP(2.) open

G,X/G,F/X,F ≡cd LTL-MC(8.)

U,? all intractable (8.)

Table 3.1: This table maps which fragment is proven in which case of Theorem 3.29. All
open cases encompass sets T with |T | > 2 due to the availability of negation.
Bold-face type fonts denote completeness results whereas all others entries
denote hardness results.

(4.) coNP-hard if V⊆ [B] and T = {A,G}, or
if M⊆ [B] and T = {A,F},

(5.) P-complete if [B] = V and T = {E,G}, or [B] = E and T = {A,F},

(6.) LOGCFL-complete if [B] = E and T = {E,X}, or [B] = V and T = {A,X},

(7.) NLOGSPACE-complete if I⊆ [B]⊆ E and T = {E,G},{A,G},{A,X}, or
if I⊆ [B]⊆ V and T = {E,X},{E,F},{A,F}

(8.) equivalent to LTL-MC(T ,B) if T ⊆ {X,F,G,U},

(9.) equivalent to FMC(B) if T ⊆ {A,E}.

Proof. Proving (1.) only involves showing a membership result for NP as the lower bound
applies due to LTL-MC. Thus for the upper bound the algorithm simply guesses paths of
length at most n in the given structure for the {E,X}-case whenever a new E-operator is
reached. Also the algorithm must take care of the scope of the path quantifier and needs
to test depending on the path on which state the subformulae must be satisfied. Again
as described in Section 3.1.2 the test until linear depth reached suffices in this case. For
the F-case each occurring F-operator is separately substituted by Xk for nondeterministic
guessed values 0≤ k ≤ n where n is the size of the input.

70 Chapter 3 Temporal Logic

(2.) follows by complementation and negation normal form from (1.). We want to
accentuate that this is not a contradiction to the LTL-results, e.g., for the case NP-hard case
LTL-MC({X},M). LTL-formulae are defined as path formulae and ask for the existence of
a path in some Kripke structure. Thus the result is bound to this existential quantified
problem. If we now allow the existence of the universal A operator, then we cannot carry
over the results from LTL any longer.
Case (3.) results from LTL-MC(T ,B) for the mentioned sets T and clones [B] where the
NP lower bounds were proven in [BMS+11].

The coNP-hardness of CTL?-MC(T ,B) for T = {A,G} and [B] = V in (4.) is entailed
by CTL?-MC(T ′,B ′) being NP-hard for T ′ = {E,F} and [B ′] = E. The other case follows
by CTL?-MC({E,G},B) and M= [B].

Turning now to the tractable fragments, we start with case (5.). The hardness carries
over from the proof for CTLmon-MC({EG}) in [BMS+11]which uses only ∨ as connective.
For the membership in P observe that the following simplifications of formulae with E,G
and ∨ are possible:

GGϕ ≡Gϕ, E(ψprop ∨ϕ)≡ψprop ∨E(ϕ), E(ϕ ∨ψ)≡ Eϕ ∨Eψ,

where ϕ,ψ ∈ CTL?(T ,B) and ψprop is a propositional formula. This leads to formulae
where only EG-operators are present besides ∨, which is indeed model checking for CTL
and this is in P. The opposite case {A,F} and E is due to complementation.

Case (6.) follows from the following observation. The LOGCFL-hardness for {E,X}
and E follows from the proof for CTLmon-MC({EX}) which uses only the ∧-operator as
Boolean connective in [BMS+11]. The LOGCFL-algorithm is shown in Algorithm 3.5.
The main idea of the algorithm is to use the stack to memorize the last state whenever a
new path is introduced by an E-operator. The algorithm saves the recent state on the stack
and then proceeds with the new subformula until this is finished. The overall relevant
states is bounded by the nesting depth of temporal operators #T(ϕ) and therefore involves
only polynomial stack size and overall runtime. The other remaining case follows by
LOGCFL being closed under complementation.

The main idea for case (7.) is a normal form which will be described now. Therefore we
enumerate all required upper bounds:

• {E,G},E: Using the equivalences

GGϕ ≡Gϕ, E(Gϕ ∧Gψ)≡ EG(ϕ ∧ψ),
E(ψprop ∧ϕ)≡ψprop ∧Eϕ, EG(ϕ ∧EGψ)≡ EG(ϕ ∧ψ),

where ϕ,ψ ∈ CTL?(T ,B) and ψprop is a propositional formula, we can simplify
the given formula to the form EG(ϕ) ∧ ϕprop which can be then verified by the
NLOGSPACE-algorithm for LTL-MC({G},B). The equivalences from above can be
computed in logarithmic space, see [BMS+11].

• {A,G},E: follows by closure under complement of NLOGSPACE and the case
{E,F},V.

3.2 Model Checking in CTL and CTL? 71

Algorithm 3.5: LOGCFL-machine deciding CTL?-MC({E,X},E)
Input :Kripke structure K= (W , R,η), formula ϕ ∈CTL?({E,X},E), state s0 ∈W .
Output : true if and only if K, s0 |= ϕ

1 stack S←;; push(S, (ϕ, s0));
2 while S is not empty do
3 (ϕ, w)← pop(S);
4 if ϕ is a propositional formula then
5 if ϕ evaluates to false in w under η then return false;
6 else if ϕ = α∧β then
7 push(S, (α, w)); push(S, (β, w));
8 else if ϕ = Eα then
9 S←makePath(K, S, (α, w));

10 return true;

makePath :
Input : a Kripke structure K= (W , R,η), a stack S, a formula α and a state w
Output : a stack S which is increased by at most #X(α) · |SF(α)| tuples denoting the tests for each

state in a combined path
11 wlast← w; i ← 0;
12 while i ≤ #X(α) do
13 if i > 0 then guess an R-successor w of wlast; wlast← w;
14 foreach ψ being propositional or starting with an E in α that is preceded by exactly i -many X

operators without Es in between do
15 push(S, (ψ, wlast));
16 i ← i + 1;

17 return S;

72 Chapter 3 Temporal Logic

• {A,X},E: follows by closure under complement of NLOGSPACE and the case
{E,X},V.

• {E,X},V: guess which subformula is satisfied on which path.

• {E,F},V: guess which proposition is reachable.

• {A,F},V: follows by closure under complement of NLOGSPACE and the case
{E,G},E.

The NLOGSPACE-hardness follows from the respective LTL-MC-cases in [BMS+11].
Case (8.) holds by the definition of the logics and [Sch02, Remark 2.6] and [BMS+11].
For (9.) observe that the path quantifiers can be deleted and this substitution transforms

the input formula into a propositional formula. The complexity depends only on [B] and
has been classified in [Sch10]. �

3.2.4 Conclusion

We have shown (Theorem 3.18) that model checking for CTLpos(T) is already P-complete
for most fragments of CTL. Only for some weak fragments, model checking becomes
easier: for nonempty sets T ⊆ {EX,EF} or T ⊆ {AX,AG}, the problem CTLpos-MC(T)
is LOGCFL-complete. In the case that no CTL-operators are used, NC1-completeness of
evaluating propositional formulae applies. As a direct consequence (Theorem 3.17), model
checking for CTL(T) is P-complete for every nonempty T . This shows that for the
majority of interesting fragments, model checking CTL(T) is inherently sequential and
cannot be sped up using parallelism.

While all the results above can be transferred to ECTL (Theorem 3.25), CTL+ and
ECTL+ exhibit different properties. For both logics, the general model checking problem
was shown to be complete for ∆P

2 in [LMS01]. Here we proved that model checking
fragments of CTL+(T) and ECTL+(T) for T ⊆ {A,E,X} remains tractable, while the exis-
tential and the universal fragments of CTL+pos(T) and ECTL+pos(T) containing temporal
operators other than X are complete for NP and coNP, respectively.

Instead of restricting only the use of negation as done in this thesis, one might go
one step further and restrict the allowed Boolean connectives in an arbitrary way. For
example, restricting the Boolean connectives to only one of the functions AND or OR
leads to many NLOGSPACE-complete fragments in the presence of certain sets of temporal
operators. However a full classification is still open.

Regarding the classification of CTL?-MC for arbitrary sets of temporal operators and
Boolean operators we restricted the study to sets T of temporal operators and/or path
quantifiers whose size is bounded by two. There, we investigated at least five different
complexity degrees ranging through the classes NLOGSPACE, P, LOGCFL, NP, coNP, and
PSPACE. The latter class is hidden in the equivalence of CTL?-MC(T ,B) to LTL-MC(T ,B)
for T ⊆ {X,F,G,U}. For the tractable cases of CTL?-MC(T ,B) we showed how the
proof applies several techniques known from the classification of CTL-MC but also from

3.2 Model Checking in CTL and CTL? 73

NC1-c.

LOGCFL-c.

LOGCFL-c.

P-c.

EX,EF

AF,AU,EG,EU

AX,AG

AX,AG,AF,AU,EG,EU

EX,EF

EX,EF,AF,AU,EG,EU

AX,AG

ALL

Figure 3.11: Complexity of CTLpos-MC(T) for all sets T of CTL-operators (depicted as
a “finite automaton” where states indicate completeness results and arrows
indicate an increase of the set of CTL-operators).

LTL-MC. Thus, completing the started study of classification of all operator and function
fragments of CTL? would be of great interest.

All in all the CTL variants considered in this thesis but over arbitrary sets of Boolean
operators would be one way to generalize our results. In the case of CTL+, where
model checking is intractable [EL87, Sch02, LMS01], such a more fine-grained complexity
analysis could help draw a tighter border between fragments with tractable and intractable
model checking problems.

In Section 3.2 we made the assumption that the formula and the Kripke structure
are part of the input and therefore can vary in size. The case where the complexity is
measured in terms of the size of the formula (or the Kripke structure), and the other
component is assumed to be fixed, is usually referred to as specification complexity (or
system complexity). The approach which has been pursued in this thesis measures the
joint complexity. In applications, where usually the structure is significantly bigger than
the specification, an analysis of the system complexity becomes interesting. For system
complexity, model checking for CTL and CTL? is already known to be NLOGSPACE-
complete [BVW94, KVW00]. Nevertheless, the hope for a significant drop of system
complexity is a justification of a systematic analysis of fragments of these logics.

Chapter 4

Description Logic

4.1 TBox and Ontology Satisfiability

In this section we will investigate the four satisfiability problems which are connected to
terminology boxes and ontologies. As the results can be separated into two parts we will
use ?SATQ(B) to refer to any of the four problems TSATQ(B),TCSATQ(B),OSATQ(B)
and OCSATQ(B) whereas the three problems which may refer to a single individual are
denoted with ?SATind

Q (B) = ?SATQ \{TSATQ (B)} by abusing our notion for the problems
?SATQ(B) without TSATQ(B).

The first part of this section will be used to state some technical lemmata to help restrict
the length of concepts in some of our reductions. The first lemma will show that for
certain operator sets B , there are always short concepts representing the operators u, t, ⊕,
or ¬, respectively. It directly follows from Lemma 2.4.

Lemma 4.1.
Let B be a finite set of Boolean operators.

(1.) If V ⊆ [B] ⊆M (E ⊆ [B] ⊆M, resp.), then there exists a B-concept C such that C is
equivalent to A1 tA2 (A1 uA2, resp.) and each of the atomic concepts A1,A2 occurs
exactly once in C .

(2.) If [B] = L, then there exists a B-concept C such that C is equivalent to A1 ⊕A2 and
each of the atomic concepts A1,A2 occurs exactly once.

(3.) If N⊆ [B], then there is a B-concept C such that C is equivalent to ¬A and the atomic
concept A occurs in C only once.

(4.) If [B] = BF, then there are B-concepts C and D such that C is equivalent to A1 tA2,
D is equivalent to A1 uA2, and each of the atomic concepts A1,A2 occurs in C and D
exactly once.

Lemma 4.2.
Let B be a finite set of Boolean operators s.t. N2 ⊆ [B] andQ ⊆ {∃,∀}. Then it holds that
?SATQ(B)≡log

m
?SATQ(B ∪{>,⊥}).

Proof. It is easy to observe that the concepts > and ⊥ can be simulated by fresh atomic
concepts T and B , using the axioms ¬T v T and B v¬B . �

76 Chapter 4 Description Logic

Lemma 4.3.
Let B be a finite set of Boolean operators and Q ⊆ {∃,∀}. Then it holds that TCSATQ(B)
≤log

m TSATQ∪{∃}(B ∪{>}).

Proof. It can be easily shown that (C ,T) ∈ TCSATQ(B) iff (T ∪ {> v ∃R.C }) ∈
TSATQ (B ∪{>}), where R is a fresh role. For “⇒” observe that for the satisfying interpre-
tation I = (∆I , ·I) there must be an individual w ′ where C holds and then from every
individual w ∈∆I there has to be an R-edge from w to w ′ to satisfy T ∪{>v ∃R.C }. For
“⇐” note that for a satisfying interpretation I = (∆I , ·I) all axioms in T ∪{>v ∃R.C }
are satisfied. In particular the axiom > v ∃R.C . Hence there must be at least one
individual w ′ s.t. w ′ |=C . Thus I |=T and CI ⊇ {w ′} 6= ;. �

Moreover, for a set B of Boolean operators that allows us to access both constants
>,⊥ ∈ [B], we are able to simulate the negation of an atomic concept in the following
way: adding the axioms A≡ ∃RA.> and A′ ≡ ∀RA.⊥ to the terminology enforces each
model I = (∆I , ·I) interpreting A′ as the complement of A, i.e., (A′)I =∆I \AI .

Base independence is a very helpful property which allows us to restrict the argumenta-
tion to a standard base and lets us generalize the complexity results from ?SATQ(B1) to
?SATQ (B2) for arbitrary bases B2 of [B1]. Therefore we will utilize a result from [HSS08]
which can be used for any clones in our case due to the formalisms of TBoxes. Hemaspaan-
dra et al. were only able to prove it for clones having access to implication and conjunction.

Lemma 4.4.
Let B1,B2 be two finite sets of Boolean operators s.t. [B1] = [B2], and letQ ⊆ {∃,∀}. Then
?SATQ ≤log

m
?SATQ(B2).

Proof. According to [HSS08, Theorem 3.6], we translate for any given instance each
concept (hence each side of an axiom) into a Boolean circuit over the basis B1. This circuit
can be easily transformed into a circuit over the basis B2. This new circuit will be expressed
by several new axioms that are constructed in the style of the formulae in [HSS08]:

• For input gates g , we add the axiom g ≡ xi .

• If g is a gate computing the Boolean operator ◦ and h1, . . . , hn are the respective
predecessor gates in this circuit, we add the axiom g ≡ ◦(h1, . . . , hn).

• For ∃R-gates g , we add the axiom g ≡ ∃R.h.

• Analogously for ∀R-gates.

For each axiom Av B , let g A
ou t and g B

ou t be the output gates of the appropriate circuits.
Then we need to add one new axiom g A

ou t v g B
ou t to ensure the axiomatic property of

Av B . For a concept C in the input (relevant for the problems TCSATQ ,OCSATQ), its
translation is mapped to the respective out-gate g C

ou t .
This reduction is computable in logarithmic space and its correctness can be shown in

the same way as in the Proof of [HSS08, Theorem 3.6]. �

4.1 TBox and Ontology Satisfiability 77

The idea for the following lemma goes back to Lewis [Lew79].

Lemma 4.5 (Lewis Knack).
Let B be a finite set of Boolean operators and Q ⊆ {∀,∃}. Then it holds that TSATQ(B ∪
{>})≤log

m TCSATQ(B).

Proof. Similarly as to SF(·) let SC(T) be the set of all (sub-)concepts occurring in T .
For every C ∈ SC(T), we use CT to denote C with all occurrences of > replaced by T .
Furthermore, we write TT for {CT vDT |C vD ∈ T }.

We claim that T ∈TSATQ(B) iff (T ′,T) ∈TCSATQ(B), where

T ′ =TT ∪{CT v T | C ∈ SC(T)} .

For the direction "⇒" observe that for any interpretation I = (∆I , ·I) with I |=T ,
we can set T I =∆I and then have I |=T ′ and obviously T I 6= ;.

Now consider the opposite direction "⇐". Let I = (∆I , ·I) be an interpretation s.t.
I |= T ′ and T I 6= ;. We construct J from I via restriction to T I , i.e., ∆J = T I ,
AJ =AI ∩T I for atomic concepts A, and RJ = RI ∩ (T I ×T I) for roles R. We claim
the following:

Claim. For every individual x ∈ T I and every (sub-)concept C occurring in T , it holds
that x ∈CIT if and only if x ∈CJ .

This claim implies that J |= T : for any x ∈ ∆J = T I and any axiom D v E ∈ T ,
we have that x ∈ DJ implies x ∈ DIT due to the claim, which implies x ∈ EIT because
I |=T ′, which implies x ∈ EJ due to the claim.

Proof of Claim. We proceed by induction on the structure of C . The base case includes
atomic C as well as > and ⊥, and follows from the construction of J .

For the induction step, we consider the following cases.

• In case C = ◦ f (C
1, . . . ,C n), where ◦ f is an arbitrary n-ary boolean operator corre-

sponding to an n-ary Boolean function f , and the C i are smaller subconcepts of C ,
the following holds.

x ∈CIT iff f (‖x ∈ (C 1
T)
I ‖, . . . ,‖x ∈ (C n

T)
I ‖) = 1 def. of satisfaction

iff f (‖x ∈ (C 1)J ‖, . . . ,‖x ∈ (C n)J ‖) = 1 induction hypothesis

iff x ∈CJ def. of satisfaction

• In case C = ∃R.D , the following holds.

x ∈CIT iff for some y ∈∆I : (x, y) ∈ RI and y ∈DIT
iff for some y ∈ T I : (x, y) ∈ RI and y ∈DIT
iff for some y ∈ T I : (x, y) ∈ RJ and y ∈DJ

iff x ∈CJ

78 Chapter 4 Description Logic

The first equivalence is due to the definition of satisfaction. The second’s “⇒”
direction is due to the additional axiom DT v T in T ′, while the “⇐” direction is
obvious. The third equivalence is again due to the definition of satisfaction and the
construction∆J = T I .

• In case C = ∀R.D , we rewrite to C = ¬∃R.¬D , apply the previous two cases, and
rewrite back. �

The following lemma uses the duality of Boolean operators, and quantifiers for stating
an equivalence of these dual fragments. Therefore we extend our notion of the operator
dual(·) to quantifiers by defining dual(∃) =

def
∀ and dual(∀) =

def
∃.

Lemma 4.6 (Contraposition).
Let B be a finite set of Boolean operators andQ ⊆ {∃,∀}. Then

(1.) TSATQ(B)≤log
m TSATdual(Q)(dual(B)), and

(2.) TCSATQ(B)≤log
m TCSATdual(Q)(dual(B)∪{⊥,u}),

where dual(B) =
def
{dual(f) | f ∈ B} and dual(Q) = {dual(q) | q ∈Q}.

Proof. Let B be a finite set of Boolean operators andQ ⊆ {∃,∀}. Let T ∈ TQ(B) be a
terminology.

(1.) Then it holds that T ∈TSATQ(B) iff T con ∈TSATdual(Q)(dual(B)), where

T con =
def
{D¬ vC ¬ | (C vD) ∈ T } ,

and C ¬ is C in negation normal form (all negations are moved inside s.t. they are
in front of atomic concepts) and the negated atomic concepts ¬A are replaced with
fresh atomic concepts A′. Because of the negation normal form all functions are
mapped to their dual and the quantifiers are expressed via their dual one. Therefore
note that C vD iff ¬D v¬C .

(2.) Here we need the operators ⊥ and u to ensure that the input concept C is not
instantiated by the same individual as C ′. Now it is easy to see that it holds that
(C ,T) ∈TCSATQ(B) iff

(C ,T con ∪{C uC ′ v⊥}) ∈TCSATdual(Q)(dual(B)),

where T con is as in (1.). �

4.1 TBox and Ontology Satisfiability 79

4.1.1 Both quantifiers

Now we will consider all Boolean function and quantifier fragments in the upcoming
sections. Therefore, we start with the fragments that contain both quantifiers ∀,∃.

Due to the interreducibilities stated in Section 2.3.2 on page 26, it suffices to show lower
bounds for TSAT and upper bounds for OCSAT. Moreover Lemma 4.4 enables us to
restrict the proofs to the standard basis of each clone for stating general results. From
Theorem 2.28 we know that OCSAT∃∀(BF) is EXP-complete.

Theorem 4.7.
Let B be a finite set of Boolean operators.

(1.) If I⊆ [B] or N2 ⊆ [B], then TSAT∃∀(B) is EXP-complete under ≤log
m .

(2.) If I0 ⊆ [B] or N2 ⊆ [B], then ?SATind
∃∀ (B) is EXP-complete under ≤log

m .

(3.) If [B]⊆ R0, then TSAT∃∀(B) is trivial.

(4.) If [B]⊆ R1, then ?SAT∃∀(B) is trivial.

Proof. Parts 1.–4. are formulated as Lemmas 4.8 to 4.12, and are proven below. �

The first two parts describe the high expressivity of terminologies. As they contain
limited forms of implication and conjunction the restriction of Boolean operators to
only constants (or only the constant ⊥ for the case ?SATind

∃∀) does not change the overall
complexity of the fragment and remains highly intractable. Further the results of this
classification differ from similar analyses of sub-Boolean modal logics by having such hard
cases near the bottom of Post’s lattice.

Furthermore, the second part of the theorem is a generalization of subsumption for
FL 0 andAL with respect to GCIs [GMWK02, Don03, BBL05a, Hof05]. The contrast
to the tractability of subsumption with respect to GCIs in EL , which uses only existential
quantifiers, undermines the observation that, for negation-free fragments, the choice of the
quantifier affects tractability and not the choice between conjunction and disjunction. The
logics DL-Lite andALU cannot be put into this context because they use unqualified
restrictions, that are, expressions of the form ∃R.> which only allow to enforce the
existence of an R-role but nothing more.

The last two parts reflect the fact that TSAT is less expressive than the other three
decision problems: a terminology alone cannot speak about one single individual, therefore
it cannot simulate the constant > as contrast to the instances of ?SATind.
Lemma 4.8.
Let B be a finite set of Boolean operators s.t. B contains only >-reproducing operators. Then
OCSAT∃∀(B) is trivial.

Proof. According to Post’s lattice, every B that does not fall under Theorem 4.7 (1.)–(3.)
contains only >-reproducing operators. Hence the following interpretation satisfies any
instance (O ,C): I = ({w}, ·I) s.t. AI = {w} for each atomic concept A, rI = {(w, w)}
for each role r , and aI = w for each individual a. It then holds trivially that I |= O and
CI = {w} 6= ;. �

80 Chapter 4 Description Logic

Lemma 4.9.
Let B be a finite set of Boolean operators s.t. B contains only ⊥-reproducing operators. Then
TSAT∃∀(B) is trivial.

Proof. The intepretation I = ({w}, ·I) with AI = ; for each atomic concept A, and
rI = {(w, w)} for each role r satisfies any instance T for TSAT∃∀(B), where B contains
only ⊥-reproducing operators. This follows from the observation that for each axiom
Av B in T both sides are always falsified by I (because every atomic concept is falsified,
and we only have ⊥-reproducing operators as connectives). This can be shown by an easy
induction on the concept structure. Please note that we need to construct a looping node
concerning the transition relations due to the fact that we need to falsify axioms with
∀r.⊥ on the left side for some role r . If we set rI = ; then this expression would be
satisfied and would contradict our argumentation for the axiom ∀r.⊥v⊥. Moreover this
construction cannot fulfill wrongly the left side of an axiom because of the absence of >
and as no atomic concept has instances with w. �

As an intermediate step we will show that for B ∈ {V,E} the problem TCSAT∃∀(B) is
EXP-hard. Finally we will prove how to remove the conjunction operator of concepts
reaching the hardness for I.

Lemma 4.10.
Let B be a finite set of Boolean operators with {⊥,u} ⊆ [B], or {⊥,t} ⊆ [B]. Then
?SATind

∃∀ (B) is EXP-complete w.r.t. ≤log
m . If D ⊆ [B], then TSAT∃∀(B) is EXP-complete

w.r.t. ≤log
m .

Proof. The membership in EXP for OCSAT∃∀(B) follows from Theorem 2.28 on page
26 in combination with Lemma 4.4.

For EXP-hardness, we first consider the case u ∈ [B] and reduce from the positive
entailment problem for Tarskian set constraints in [GMWK02]: thus we start from the
question if T |=C vD , for concepts C , D and a terminology T that uses the quantifiers
∀ and ∃, and u as the only Boolean connective. Hence T |= C v D if and only if
T ′ /∈ TSAT∃∀({u,>,⊥}), for T ′ =

def
T ∪ {> v ∃R.(C uD ′), D ′ ≡ ∃RD .>, D ≡ ∀RD .⊥},

where D ′ is a new atomic concept and R, RB are new roles. This holds as C does not
imply D iff there is an instance of C which is not an instance of D. As D and D ′ are
declared disjoint, the claim applies. Now for TCSAT∃∀({⊥,u}), we transform T ′ into T ′′
by substituting the two introduced occurrences of > with a fresh concept name C and
put C into the instance of TCSAT∃∀({⊥,u}) we are reducing to. Then, T |= C v D iff
(T ′′,C) /∈TCSAT∃∀({⊥,u}).

For TCSAT∃∀({⊥,t}), we modify the above definition of T ′′ to dispose of the intro-
duced conjunction: using a fresh atomic concept E , we set T ′′ =

def
T ∪ {E v C , E v

D ′, C v ∃R.E , D ′ ≡ ∃RD .C , D ≡ ∀RD .⊥}. Observe that T still consists of concept
expressions over ⊥ and t.

The remaining case for the self-dual operators follows from Lemmas 4.1 and 4.2, as all
self-dual functions in combination with the constants >,⊥ (to which we have access as ¬
is self-dual) can express any arbitrary Boolean function. �

4.1 TBox and Ontology Satisfiability 81

Lemma 4.11.
Let B ,B ′ be finite sets of Boolean operators s.t. I0 ⊆ [B] and I⊆ [B ′]. Then ?SATind

∃∀ (B) and
TSAT∃∀(B

′) are EXP-complete w.r.t. ≤log
m .

Proof. For the upper bound we apply Theorem 2.28 and Lemma 4.4. For hardness,
we reduce from TSAT∃∀({u,⊥,>}) to TSAT∃∀({⊥,>})—the former shown to be EXP-
complete in the proof of Lemma 4.10. The main idea is an extension of the normalization
rules in [Bra04b]. The following normalization rules have been stated and proven to be
correct in [Bra04b]:

(NF1) Ĉ uD � E {A≡ Ĉ ,AuD � E}
(NF2) C �D u Ê {C �D uA,A≡ Ê}
(NF3) ∃r.Ĉ �D {A≡ Ĉ ,∃r.A�D}
(NF4) C �∃r.D̂ {C �∃r.A,A≡ D̂}
(NF5) C vD u E {C vD ,C v E}
(NF6) C ≡D {C vD , D vC }

where � ∈ {v,≡}, Ĉ states that the concept description C is no concept name, and A is a
new concept name.

Now we want to extend these rules for conjunctions on the left side of GCIs and for
∀-quantification:

(NF3b) ∀r.Ĉ �D {A≡ Ĉ ,∀r.A�D}
(NF4b) C �∀r.D̂ {A≡ D̂ ,C �∀r.A}
(NF7) AuB vC {Av ∃RA.>,B v∀RA.A′,∃RA.A′ vC }

where RA is a fresh role, and A′ is a fresh concept name. For (NF7) we will prove its
correctness.

Assume AuB vC holds in the interpretation I = (∆I , ·I). Thus for each individual
w ∈∆I with wI ⊇ {A,B} it holds C ∈ wI as assumed.

In the following we will construct a modified interpretation I ′ from I that satisfies the
axioms constructed by (NF7), i.e., the axioms in {Av ∃RA.>,B v∀RA.A′,∃RA.A′ vC }.
As A ∈ wI ′ , we add one RA-edge to the same individual w, and due to B v ∀RA.A′ we
must add A′ to wI ′ . Finally the last GCI is satisfied as we have C ∈ wI ′ .

For the opposite direction assume AuB vC cannot be satisfied, i.e., in every interpre-
tation there is an individual which is an instance of A and B but not of C . Hence we take
an arbitrary interpretation I such that it satisfies the first two axioms Av ∃RA.> and
B v ∀RA.A′. Due to our assumption every individual w is in instance of A and B , and
hence we have an RA-edge to an individual where A′ must hold. Therefore the left side of
the third axiom is fulfilled but C does not hold for the individual w. Hence this axiom is
not satisfied and we have the desired contradiction.

As this normalization procedure runs in polynomial time and eliminates every conjunc-
tion of concepts, we have a reduction from TCSAT∃∀({u,⊥}) to TCSAT∃∀({⊥}), and also
from TSAT∃∀({u,⊥,>}) to TSAT∃∀({>,⊥}). Hence the Lemma applies. �

82 Chapter 4 Description Logic

Lemma 4.12.
?SAT∃∀(N2) is EXP-complete w.r.t. ≤log

m .

Proof. The upper bound follows from Theorem 2.28 and Lemma 4.4. For the lower
bound use Lemma 4.2 to simulate > and ⊥ with fresh atomic concepts. Then the argu-
mentation follows similarly to Lemmas 4.10 and 4.11. �

4.1.2 Restricted quantifiers

In this section we investigate the complexity of OCSATQ , OSATQ , TCSATQ , and
TSATQ , whereQ contains at most one of the quantifiers ∃ or ∀. Even the caseQ = ; is
nontrivial: for example, TSAT;(B) does not reduce to propositional satisfiability for B
because the (restricted) use of implication and conjunction is implicit in sets of axioms.

Theorem 4.13 (Results for Terminology Satisfiability without Quantifiers).
Let B be a finite set of Boolean operators.

(1.) If L3 ⊆ [B] or M⊆ [B], then TSAT;(B) is NP-complete w.r.t. ≤log
m .

(2.) If E= [B] or V= [B], then TSAT;(B) is P-complete w.r.t. ≤log
m .

(3.) If [B] ∈ {I,N2,N}, then TSAT;(B) is NLOGSPACE-complete w.r.t. ≤log
m .

(4.) Otherwise (if [B]⊆ R1 or [B]⊆ R0), then TSAT;(B) is trivial.

Proof. NP-completeness for (1.) results for the upper bound from OCSAT∃({u,¬,>,⊥})
whose membership in NP is proven in Lemma 4.27 and the lower bounds which are
proven in Lemmas 4.14 and 4.15. Both lower bounds of (2.) will be proven through
Lemmas 4.16 and 4.17. The upper bound is due to OCSAT∃({u,>,⊥}) which is shown to
be in P in Lemma 4.33. The membership of the third item results from TCSAT;({¬,>})
which is proven to be in NLOGSPACE in Lemma 4.28 and the hardness result is proven in
Lemma 4.18. Item (4.) follows through Lemmas 4.8 and 4.9. �

Lemma 4.14.
Let B be a finite set of Boolean operators s.t. D⊆ [B] or M⊆ [B]. Then TSAT;(B) is NP-hard.

Proof. We start with the implication problem for the self-dual (resp. monotone) fragment
of propositional logic IMP(D) (resp. IMP(M)), which is shown to be coNP-complete in
[BMTV09b]. To establish NP-hardness of TSAT;(M), we reduce from the complement of
IMP(M) in the following way. Let ϕ,ψ be two propositional formulae with monotone
operators only. Then

(ϕ,ψ) /∈ IMP(M) iff ϕ 6|=ψ iff ∃θ : θ |= ϕ ∧¬ψ
iff {Cψ v⊥,>vCϕ} ∈TSAT;(M),

where Cϕ and Cψ are concepts corresponding to ϕ,ψ in the usual way.
For TSAT;(D), we use the same reduction, but need to replace the introduced operators

>,⊥ as in Lemma 4.2. �

4.1 TBox and Ontology Satisfiability 83

Lemma 4.15.
Let B be a finite set of Boolean operators s.t. L3 ⊆ [B], then TSAT;(B) is NP-hard.

Proof. Here we will provide a reduction from the NP-complete problem 1-in-3-SAT. In
the following we can use the binary exclusive-or as we have access to negation because
x ⊕ x ⊕ z ⊕> ≡ ¬z, and we have access to both constants > and ⊥ due to Lemma 4.2.
Thus we are able to use the binary exclusive-or operator because x ⊕ y ⊕>⊕>≡ x ⊕ y.

The main idea of the reduction is to use for each clause (x ∨ y ∨ z) ∈ ϕ an axiom
> v x ⊕ y ⊕ z is used to enforce that only one literal is satisfied. As for this axiom it is
possible to have all literals satisfied we need some additional axioms to circumvent this
problem.

Let ϕ defined as above, then the reduction is defined as ϕ 7→ T , where

T =
def

¦

>v f (li1)⊕ f (li2)⊕ f (li3)⊕ s i ⊕> | 1≤ i ≤ n
©

∪

∪{>v f (li1)⊕ f (li2)⊕ f (li3) | 1≤ i ≤ n}∪

∪
¦

s i
1 v f (li1)⊕ f (li2) | 1≤ i ≤ n

©

∪

∪
¦

s i
2 v f (li1)⊕ f (li3) | 1≤ i ≤ n

©

∪

∪
¦

s i
3 v f (li2)⊕ f (li3) | 1≤ i ≤ n

©

∪

∪
¦

s i v s i
1 ⊕ s i

2 ⊕ s i
3 | 1≤ i ≤ n

©

∪

∪
�

>vAx ⊕Ax ′ | x variable in ϕ
	

,

where f (x) =Ax and f (x̄) =Ax ′ . Now we claim that ϕ ∈ 1-in-3-SAT iff T ∈TSAT;(L0).
Consider an arbitrary clause c = x∨y∨z from ϕ with x, y, z literals. Then the following

axioms which differ for convenience slightly from the notion above are part of T

>v x ⊕ y ⊕ z ⊕ s ⊕> (4.1)

>v x ⊕ y ⊕ z (4.2)

s1 v x ⊕ y

s2 v x ⊕ z

s3 v y ⊕ z

s v s1⊕ s2⊕ s3.

x y z s1 s2 s3 s (4.1) (4.2)
0 0 0 n
0 0 1 0

¯
1 0 1

¯
y y

0 1 0 1 0
¯

0 1
¯

y y
0 1 1 n
1 0 0 1 0 0

¯
1
¯

y y
1 0 1 n
1 1 0 n
1 1 1 0

¯
0
¯

0
¯

0
¯

n y

The table on the upper right shows each possible assignment for x, y, z and suitable
assignments for the si s and the validity of the axioms (4.1) and (4.2). Underlined numbers
denote mandatory truth values which are enforced by the axioms, whereas blank cells
denote arbitrary choices. If at least one of (4.1) and (4.2) are contradicted then there exists
no interpretation for T . At first we start with an interpretation that assigns the individuals
x, y, z to the recent world in some way. Then we immediately observe if axiom (4.2) is

84 Chapter 4 Description Logic

contradicted or not. If not contradicted then we have to look at the remaining si axioms
in order to find an extension of this interpretation which assigns the si s and s in a way
such that (4.2) is not violated whenever we have an interpretation which corresponds to
a valid 1-in-3-SAT assignment. Otherwise we have to show that there exists no possible
extension that falsely satisfies axiom (4.2).

Thus the table shows that for every eligible assignment we always have a fulfilling
interpretation, and for every improper assignment it is not possible to construct a fulfilling
one.

Lemma 4.16.
Let B be a finite set of Boolean operators s.t. E⊆ [B], then TSAT;(B) is P-hard.

Proof. In the following we will state a ≤cd-reduction from the complement of the P-
complete problem HGAP, which is the accessibility problem for directed hypergraphs. In
a given hypergraph H = (V , E), a hyperedge e ∈ E is a set of source nodes src(e)⊆V and
one destination node dest(e) ∈V . Instances of HGAP consist of a directed hypergraph
H = (V , E), a set S ⊆ V of source nodes, and a target node t ∈ V . Now the question
is whether there exists a hyperpath from the set S to the node t , i.e., whether there
are hyperedges e1, e2, . . . , ek s.t. for each ei there are ei1

, . . . , eiν
with 1 ≤ i1, . . . , iν < i and

⋃

j∈{i1 ,...,iν }
dest(e j)∪ src(e j)⊇ src(ei), and src(e1) = S and dest(ek) = t .

HGAP remains P-complete even if we restrict the hyperedges to contain at most two
source nodes [SI90]. W.l.o.g. assume that if there is a path from S to t , then the last edge
of that path is a usual edge with only one source node.

Let G = (V , E) be a directed hypergraph, {s1, . . . , sk}= S ⊆V with s1, . . . , sk ∈V be the
set of source nodes, and t ∈ V be the target node. For each node v ∈ V , we use a new
atomic concept v. In addition let t , t ′ be fresh atomic concepts. Now define

T =
def
{u1 u . . .u uk v v | (u1, . . . , uk ; v) ∈ E} ∪ {> v s1 u . . . u sk u t ′, t u t ′ v ⊥}.

Then (G, S, t) ∈HGAP iff T /∈TSAT;({u,>,⊥}).
“⇒”: Assume there is a hyperpath from S to t as above. Thus in every interpretation

I = (∆I , ·I) it holds for all w ∈ ∆I that s1, . . . , sk , t ′ ∈ wI . As the before mentioned
hyperpath exists, t must also be in wI through the chain of axioms that correspond to
the hyperedges in the path. This violates the axiom t u t ′ v⊥.

“⇐”: Assume there is no hyperpath from S to t in G = (V , E). Hence there is no chain
of axioms that enforce t to be true in every state. Therefore we are able to construct a
satisfying interpretation in the following way: I = ({w}, ·I) and

wI =
def
{v | (s1, . . . , sk ; v) ∈ E∗} ∪ {t ′},

where E is the transitive closure of E . Please note that (s1, . . . , sk ; t) /∈ E∗ and thus t /∈ wI .
Therefore, all axioms are satisfied and T ∈TSAT;({u,>,⊥}). �

Lemma 4.17.
Let B be a finite set of Boolean operators s.t. V⊆ [B], then TSAT;(B) is P-hard.

4.1 TBox and Ontology Satisfiability 85

Proof. To realize the desired lower bound, we use Lemma 4.6 to state a reduction from
TSAT;(E) to TSAT;(V). �

Lemma 4.18.
Let B be a finite set of Boolean operators s.t. I⊆ [B], then TSAT;(B) is NLOGSPACE-hard.

Proof. For proving NLOGSPACE-hardness we will reduce from the complement of the
graph accessibility problem GAP which is NLOGSPACE-complete. Consider a given
directed graph G = (V , E) and two nodes s , t ∈V as the recent instance for GAP asking
for a path from s to t in G. We introduce a concept name Av per node v ∈V and define

T =
def
{Au vAv | (u, v) ∈ E} ∪ {>vAs ,At v⊥}.

We will now prove that (G, s , t) /∈GAP iff T ∈TSAT;(B).
“(G, s , t) /∈GAP⇒T ∈ TSAT;(B)”: Assume there is no path from s to t . Take the

interpretation I =
def
({x}, ·I) with

AIv =def

(

{x} if v is reachable from s ,
; otherwise,

for each v ∈ V . Then AIt = ; and with that all axioms are satisfied. Thus it holds that
I |=T .

“(G, s , t) ∈GAP⇒T /∈TSAT;(B)”: Now assume we have a path π= v1, . . . , vk in G
with k ∈ Î, (vi , vi+1) ∈ E , vi ∈ V for 1 ≤ i ≤ k, v1 = s , and vk = t from s to t . Now
any interpretation needs to include an individual x instantiating As (else >v As would
be contradicted) and also Av2

, . . . ,Avk
= At . But with At ∈ xI we contradict the axiom

At v⊥. Thus I 6|=T , and with that T /∈TSAT;(B). �

Lemma 4.19.
Let B be a finite set of Boolean operators s.t. [B]⊆ I, then TSAT;(B) is in NLOGSPACE.

Proof. The main idea is to do a path search in a concept dependence graph—a reduction
to the complement of GAP. A given T is mapped to G = (V , E) where

V =
def
{vA, vB |Av B ∈ T }∪ {v>, v⊥} and

E =
def
{(vA, vB) |Av B} .

Now it holds T ∈ TSAT;(B) iff (G, v>, v⊥) /∈ GAP. Please note that we need to add
v>, v⊥ to V in order to keep consistency if at least one of > and ⊥ is not part of an
axiom side. If T is not satisfiable, then in every interpretation there is at least one axiom
contradicted. w.l.o.g. the contradicted axiom is of the form C v⊥ and C is instantiated
by some individual x. Thus there must be a chain of axioms that enforce C to be true and
it can be easily shown that this chain starts at some axiom >vC ′. Hence we have a path
starting at v> in the Graph G which leads to a node v⊥. For the opposite direction the
argumentation is analogue. �

86 Chapter 4 Description Logic

Theorem 4.20 (Results for Terminology Satisfiability with One Quantifier).
Let B be a finite set of Boolean operators andQ ∈ {∀,∃} be a quantifier.

(1.) If M⊆ [B] or N2 ⊆ [B], then TSATQ(B) is EXP-complete w.r.t. ≤log
m .

(2.) If E= [B], V= [B], or I= [B], then TSATQ(B) is P-complete w.r.t. ≤log
m .

(3.) Otherwise (if [B]⊆ R1 or [B]⊆ R0), then TSATQ(B) is trivial.

Proof. For the monotone case in (1.) consider Lemmas 4.21 and 4.22. The proof for N2 can
be found in Lemma 4.23. The respective upper bounds for (1.) result from Theorem 2.28
in combination with Lemma 4.4. The needed lower bound for the P-hardness results in (2.)
is shown for TSAT∃(I) in Lemma 4.25 (case ∀ is due to Lemma 4.6). The membership in P

for the cases in (3.) result on the one hand from OCSAT∃(u,>,⊥) which is shown to be
in P in Lemma 4.33 and on the other hand from TSAT∀(u,>,⊥) is proven in Lemma 4.24.
The two remaining upper bounds for [B] = V follow from the complementary problem
through Lemma 4.6.

Item (3.) follows through Lemmas 4.8 and 4.9. �

Part (3.) generalizes the fact that every EL - andFL 0-TBox is satisfiable, and the whole
theorem shows that separating either conjunction and disjunction, or the constants is the
only way to achieve tractability for TSAT.

Lemma 4.21.
Let B be a finite set of Boolean operators s.t. M⊆ [B], then TSAT∃(B) is EXP-hard.

Proof. For EXP-hardness, we will reduce from the complement of the subsumption
problem w.r.t. TBoxes for the logic ELU , which has been investigated in [BBL05a, Thm.
7]. ELU isALC restricted to the operators >,u,t,∃. Now it holds that

(T ,A,B) ∈ ELU -SUBS

iff T |=Av B

iff for all I :I |=T implies I |=Av B

iff there is no I :I |=T and I |=A 6v B

iff there is no I :I |=T and I |=>v ∃R.Au¬B

iff there is no I :I |=T ∪
�

>v ∃R.(AuB ′),>v B tB ′,B uB ′ v⊥
	

︸ ︷︷ ︸

T ′

iff T ′ /∈TSAT∃(M),

for a fresh role R and a fresh concept B ′. �

Lemma 4.22.
Let B be a finite set of Boolean operators s.t. M⊆ [B], then TSAT∀(B) is EXP-hard.

Proof. As in the proof of Lemma 4.17, we can reduce from the dual problem TSAT∃(B)
through Lemma 4.6. �

4.1 TBox and Ontology Satisfiability 87

Lemma 4.23.
Let B be a finite set of Boolean operators s.t. N2 ⊆ [B] andQ ∈ {∀,∃}, then TSATQ(B) is
EXP-hard.

Proof. We reduce from TSAT∃∀(I) whose EXP-hardness follows from Lemma 4.12. As
known from Lemma 4.2, we can simulate the constants using new concept names and
negation. Additionally observe that, althoughQ contains only one quantifier, the other
quantifier can be expressed using ¬. �

Lemma 4.24.
Let B be a finite set of Boolean operators s.t. [B]⊆ E, then TSAT∀(B) is in P.

Proof. Here we will specify an algorithm for satisfiability similar to the one in [Bra04a]
that constructs iteratively the transitive closure of atomic concepts that imply each other.
Thus, informal speaking, starting by the empty set S0 =

def
;, for each Si we look at each

axiom C v D and add D to Si+1 iff C ∈ Si . The construction of these sets is defined
inductively as follows, where T is a TBox that is in normalform (i.e., T contains only
expressions of the form C vD, C1 uC2 vD, ∀r.C vD, or C v∀r.D, where C and D
are atomic concepts and r is a role–please note that for each Si it holds Si ⊆ (NC∪{>,⊥})∗):

(IS1) If C1 ∈ Si (C) and C1 vD ∈ T , then Si+1(C) =
def

Si (C)∪{D}.

(IS2) If C1,C2 ∈ Si (C) and C1 uC2 vD ∈ T , then Si+1(C) =
def

Si (C)∪{D}.

(IS3) If C1 ∈ Si (C) and C1 v ∀r.D ∈ T and D1 ∈ Si (D) and ∀r.D1 v C ∈ T , then
Si+1(C) =

def
Si (C)∪{D}.

The construction for each of those sets Si takes time at most O (|T |) and eventually stops
for an atomic concept C if Si (C) = Si+1(C) for some i ∈ Î.

We now claim that T ∈TSAT∀(B) iff ⊥ /∈ ST∗ (>), where ST∗ (>) denotes the transitive
closure of Si for > w.r.t. T .

“⇒”: Let T ∈ TSAT∀(B) via the interpretation I . Hence I |= T and in particular
for each C vD ∈ T it holds that CI ⊆DI . As (IS1) to (IS3) hold, we have ⊥ /∈ ST∗ (>),
otherwise there exist C1 vD1, . . . ,C` vD` ∈ T s.t. C1 => and D` =⊥, and C1 implies
D` through these axioms. We show this by induction on n, where n is the index of the
first Si with ⊥ /∈ STi (>).

Let n = 1, then C1 = > and D1 = ⊥; hence we apply (IS1) for > v ⊥ ∈ T and
⊥∈ ST1 (>).

n→ n+ 1: Let 1≤ i , j ≤ n,

(1.) Cn+1 =D j , and D j ∈ Sn(>), then Dn+1 ∈ Sn+1(>).

(2.) Cn+1 =Di uD j , and Di , D j ∈ Sn(>), then Dn+1 ∈ Sn+1(>).

(3.) Ck = D j , 1 ≤ k 6= j < n, Dk = ∀r.Cs , k ≤ s ≤ n, and Ci ∈ Sn(>), and ∀r.Ci v
Dn ∈ T , then Dn+1 ∈ Sn+1(>).

88 Chapter 4 Description Logic

Hence, if Dn+1 =⊥, then ⊥∈ STn+1(>).
The argumentation for the opposite direction is analogue to [Bra04c]. �

Lemma 4.25.
Let B be a finite set of Boolean operators s.t. I⊆ [B], then TSAT∃(B) is P-hard.

Proof. A reduction from SUBS∃(I2) to TSAT∃(I), justified by (T ,A,B) ∈ SUBS∃(I2) iff
(T ∪ {> ≡ A,B ≡ ⊥}) /∈ TSAT∃(I), provides P-hardness of TSAT∃(I) as SUBS∃(D) with
I2 ⊆ [D] is P-hard. The proof for the P-hardness can be found in Lemma 4.43. �

Theorem 4.26 (Results for ?SATind
; (B) without Quantifiers).

Let B be a finite set of Boolean operators.

(1.) If S11 ⊆ [B], L3 ⊆ [B], or L0 ⊆ [B], then ?SATind
; (B) is NP-complete w.r.t. ≤log

m .

(2.) If [B] ∈ {E0,E,V0,V}, then ?SATind
; (B) is P-complete w.r.t. ≤log

m .

(3.) If [B] ∈ {I0, I,N2,N}, then ?SATind
; (B) is NLOGSPACE-complete w.r.t. ≤log

m .

(4.) Otherwise (if [B]⊆ R1), then ?SATind
; (B) is trivial.

Proof. NP-hardness for (1.) follows from the respective TSAT;(B) results in Lemmas 4.14
and 4.15 in combination with Lemma 4.5 for the lower bound. The membership in NP is
shown in Lemma 4.27.

The lower bounds for (2.) result from TSAT;(u,>,⊥) and TSAT;(t,>,⊥) shown in
Lemmas 4.16 and 4.17 in combination with Lemma 4.5 while the upper bound applies
due to OCSAT∃(u,>,⊥) which is proven to be in P in Lemma 4.33.

The lower bound of (3.) is proven in Lemma 4.29. The upper bound follows from
Lemmas 4.28 and 4.30.

(4.) is due to Lemma 4.8. �

Lemma 4.27.
Let B be a finite set of Boolean operators s.t. [B]⊆ BF. Then OCSAT;(B) is in NP.

Proof. We will reduce OCSAT;(B) to SAT, the satisfiability problem for propositional
formulae. Due to Lemma 4.4, we can assume that B = {u,¬}. Let

�

(T ,A),C
�

be an
instance of OCSAT;(B). Since ALC ;(B) does not have quantifiers, T only makes
propositional statements about all individuals and cannot enforce more individuals than
those inA . Let D j v E j , j = 1, . . . , n, be the axioms in T and a1, . . . ,am the individuals
occurring inA . We introduce a fresh atomic proposition p i

A for each i = 0, . . . , m and
each atomic concept A occurring in (T ,A). Every p i

A expresses that A has as instance
either the individual ai (if i ≥ 1) or is an instance of C (if i = 0). Although C may
have several instances, the absence of quantifiers allows us to identify them with a single
individual.

4.1 TBox and Ontology Satisfiability 89

For i = 0, . . . , m, we define a function f i that maps from arbitrary concepts occurring
in
�

(T ,A),C
�

to propositional formulae as follows:

f i (A) = p i
A for atomic concepts A, f i (>) = 1, f i (⊥) = 0,

f i (¬A) = f i (A), f i (A1 uA2) = f i (A1)∧ f i (A2).

We express the instance
�

(T ,A),C
�

using the following propositional formulae:

ϕT =
m
∧

i=0

n
∧

j=1

�

f i (D j)→ f i (E j)
�

ϕA =
m
∧

i=1

∧

D(ai)∈A

f i (D),

ϕC = f 0(C), ϕT ,A ,C = ϕT ∧ϕA ∧ϕC .

We will now show that
�

(T ,A),C
�

∈OCSAT;(B) if and only if ϕT ,A ,C ∈ SAT.
For “⇒”, assume that

�

(T ,A),C
�

∈OCSAT;(B). Then there is an interpretation I
such that I |= (T ,A) and CI 6= ;. Fix individuals x0, . . . , xm ∈∆I such that x0 ∈ CI

and xi = aIi for i = 1, . . . , m. Now construct a propositional assignment β such that
β(p i

A) = 1 if and only if xi ∈ AI . It is straightforward to show by induction on X that
for every, possibly complex, concept X occurring in

�

(T ,A),C
�

and each i = 0, . . . , m,
it holds that β

�

f i (X)
�

= 1 if and only if xi ∈X I . Using this equivalence, we show that
β(ϕT ,A ,C) = 1.

• β(ϕT) = 1 because, for every i , j , the axiom D j v E j in T ensures that xi ∈ DIj
implies xi ∈ EIj .

• β(ϕA) = 1 because every D(ai) inA means that xi ∈DI .

• β(ϕC) = 1 because x0 ∈CI .

For “⇐”, assume that ϕT ,A ,C ∈ SAT. Then there is an assignment β under which all
three conjuncts ϕT ,ϕA ,ϕC evaluate to 1. We construct an interpretation I from β as
follows. ∆I = {x0, . . . , xm}; for every i = 0, . . . , m, every individual a inA and every
atomic concept A in

�

(T ,A),C
�

: aIi = xi and xi ∈AI if and only ifβ(p i
A) = 1. As above,

it is straightforward to show that β
�

f i (X)
�

= 1 if and only if xi ∈ X I , for every X in
�

(T ,A),C
�

and every i = 0, . . . , m. Using this equivalence, we show that I |= (T ,A)
and CI 6= ;.

• I |= D j v E j , j = 1, . . . , n because, for every i = 0, . . . , m, the conjuncts in ϕT
ensure that β

�

f i (D j)
�

= 1 implies that β
�

f i (E j)
�

= 1, and therefore xi ∈ DIj
implies xi ∈ EIj .

• I |=D(ai), D(ai) ∈A , because the conjuncts in ϕA ensure that xi ∈DI .

• CI 6= ; because ϕC ensures that x0 ∈CI . �

90 Chapter 4 Description Logic

Lemma 4.28.
Let B be a finite set of Boolean operators s.t. [B]⊆N, then TCSAT;(B) is in NLOGSPACE.

Proof. Here we will provide a nondeterministic algorithm for TSAT;(B) that runs in
logarithmic space, which can be generalized to also work with TCSAT;(B) instances
(T ,C) by adding an axiom >v C to the input terminology (in our case this maintains
satisfiability because we can only talk about one individual). The algorithm consists of a
search for cycles with contradictory atomic concepts in the (directed) implication graph
GT which is induced by T .

W.l.o.g. assume T to be normalized in a way that all blocks of leading negations ¬ in
front of concepts are replaced by one negation if the number was odd, and completely
removed otherwise. Thus T consists only of axioms C v D, where C , D are atomic
concepts, constants, or its negations. The before mentioned implication graph GT =
(V , E) is constructed from T as follows:

V =
def
{vA, v¬A |A is an atomic concept in T }∪ {v>, v⊥},

E =
def
{(vC , vD) |C vD ∈ T }∪

∪ {(v⊥, vA), (vA, v>) |A is an atomic concept in T }∪ {(v⊥, v>)}.

Now we claim that T ∈TSAT;(B) iff GT does not contain a cycle that contains both
nodes vA, v¬A for some A∈NC ∪{>,⊥}.

"⇒": LetT ∈TSAT;(B)witnessed by the interpretationI = (∆I , ·I). W.l.o.g. assume
∆I = {x} by the same argumentation as in Lemma 4.27. Then it holds that I |= T .
Hence each axiom is satisfied, and with that there is no axiom C v D s.t. x ∈ CI but
x /∈ DI . Now assume that we have a cyclic path π containing the nodes vA and v¬A.
If x ∈ AI then for all successor nodes vA1

, vA2
, . . . of vA on π it must hold that x ∈ AIi

for i = 1,2, . . . , which is a contradiction to ¬A for which v¬A is a successor of vA. If
x /∈AI then x ∈ (¬A)I . Thus for all axioms A1,A2, . . . with vA1

, vA2
, . . . being successor

nodes of v¬A it must hold that x ∈ (Ai)
I . In particular this must hold for vA which is a

contradiction to x /∈AI .
"⇐": Assume that for each atomic concept A (including> and⊥) there is no cyclic path

containing vA and v¬A. In the following we will construct an interpretation I = ({x}, ·I)
that satisfies T . For each concept A ∈ Con({>,⊥,¬}) s.t. > v∗ A, add x to AI . As we
have (vA, v∼A) /∈ E∗ (where E∗ is the transitive closure of E , and ∼A= ¬B if A= B and
∼A= B if A= ¬B) it must hold that also A 6v∗ ∼A and thus I |= T , as all remaining
concepts are not enforced to be true. This completes the proof of the claim.

The NLOGSPACE-algorithm just checks for each concept A that there is no cycle from
vA containing v∼A. �

Lemma 4.29.
Let B be a finite set of Boolean operators s.t. I0 ⊆ [B], then TCSAT;(B) is NLOGSPACE-hard.

Proof. This result follows from Lemma 4.18 in combination with Lemma 4.5. �

4.1 TBox and Ontology Satisfiability 91

Lemma 4.30.
Let B be a finite set of Boolean operators s.t. [B]⊆N, then OCSAT;(B) is in NLOGSPACE.

Proof. Let B be a finite set of Boolean operators s.t. N= [B]. The algorithm first checks
whether the given TBox is solely satisfiable. Afterwards we need to ensure the given ABox
is consistent together with the TBox. Therefore observe for an ABoxA the following
property holds: (A ,T ,C) ∈ OCSAT;(B) iff (A ∪ {R(a, b)},T ,C) ∈ OCSAT;(B) for
new individuals a, b and a role R, as role assertions cannot affect the satisfiability of an
instance if quantifiers are not allowed. The algorithm now tests consecutively for each
individual a ∈A if (T a ,C) ∈TCSAT;(B), where T a =T ∪{>vD |D(a) ∈A}.

Now it holds that (A ,T ,C) ∈OCSAT;(B) iff (T a ,C) ∈TCSAT;(B) for all individuals
a ∈A and (T ,C) ∈TCSAT;(B).

If I = (∆I , ·I) is an interpretation with I |= (T ,A) and CI 6= ;, then for the
terminologies T a for each individual a ∈ A it holds that I |a |= T a , where I |a is the
restriction of I to the individual a. For the opposite direction to be considered, we
have interpretations I a = (∆I a

, ·I a) s.t. I a |= T a and CI a 6= ;. W.l.o.g. assume
∆I a = {a}, then an easy inductive argument proves that I |= (T ,A) and CI 6= ; for
I = (

⋃

a∈A ∆
I a

, ·
⋃

a∈A I
a).

This connection between OCSAT;(B) and TCSAT;(B) is possible as we can assume
different individuals to be distinct. As besides of that point we cannot speak about more
than one individual for a given TBox which is restricted to a single individual a, and
therefore we may assume the concept D to hold (and consider also the axiom >vD) if
D(a) ∈A for T a . �

Theorem 4.31 (Results for ?SATind
Q (B) with One Quantifier).

Let B be a finite set of Boolean operators, andQ ∈ {∀,∃} be a quantifier.

(1.) If S11 ⊆ [B], N2 ⊆ [B], or L0 ⊆ [B] then ?SATind
Q (B) is EXP-complete w.r.t. ≤log

m .

(2.) If I0 ⊆ [B]⊆ V, then TCSAT∃(B) and ?SATind
∀ (B) are P-complete1 w.r.t. ≤log

m .

(3.) If [B] ∈ {E0,E}, then ?SATind
∀ (B) is EXP-complete w.r.t. ≤log

m ,
and ?SATind

∃ (B) is P-complete w.r.t. ≤log
m .

(4.) If [B]⊆ R1, then ?SATind
Q (B) is trivial.

Proof. For (1.) combine the EXP-completeness of TSATQ(M) from Lemma 4.21 with
the usual >-knack known from Lemma 4.5.

The lower bound for N2 is due to Lemma 4.23 to state a reduction from TSATQ (L) with
Lemma 4.5 to TCSATQ(L0) forQ ∈ {∃,∀}.

The EXP-completeness in case (3.) follows from Lemma 4.32. For the P-complete cases
in (2.) and (3.) the results are organized as follows:

• the P-hardness of these cases results from TSATQ ({>,⊥}) in Lemma 4.25 in combi-
nation with Lemma 4.5,

1OSAT∃(B) and OCSAT∃(B) are P-hard w.r.t. ≤log
m for [B] ∈ {V0,V} and in EXP.

92 Chapter 4 Description Logic

• the membership in P of TCSAT∀({t,>,⊥}) follows by OCSAT∀({t,>,⊥}) ∈ P

proven in Lemma 4.34,

• the membership in P of TCSAT∃({t,>,⊥}) follows by TSAT∃({t,>,⊥}) in com-
bination with Lemma 4.3,

• membership in P of TCSAT∃({u,>,⊥}) follows by OCSAT∃({u,>,⊥}) and its
P-membership shown in Lemma 4.33.

(4.) is due to Lemma 4.8. �

Theorem 4.31 shows one reason why the logics in the EL family have been much more
successful as “small” logics with efficient reasoning methods than the FL family: the
combination of the ∀ with conjunction is intractable, while ∃ and conjunction are still in
polynomial time. Again, separating either conjunction and disjunction, or the constants is
crucial for tractability.

Lemma 4.32.
Let B be a finite set of Boolean operators s.t. E0 ⊆ [B], then TCSAT∀(B) is EXP-hard.

Proof. As a result from [BBL05a, Hof05] the subsumption problem w.r.t. a TBox for the
logicFL 0 (the description logic with ∀ and u as allowed operators) is EXP-complete. For
this lemma we will reduce from this problem inFL 0. Observe that the following holds

(T ,C , D) ∈FL 0-SUBS

iff ∀I :I |=T it holds I |=C vD

iff not(∃I :I |=T and (C u¬D)I 6= ;)
iff not(∃I :I |=T ∪{D uD ′ v⊥} and (C uD ′)I 6= ;)
iff (T ∪{D uD ′ v⊥},C uD ′) /∈TCSAT∀(B)

Lemma 4.33.
Let B be a finite set of Boolean operators s.t. [B]⊆ E, then OCSAT∃(B) is in P.

Proof. To provide an algorithm running in polynomial time, we will reduce the given
problem to the complement of the subsumption problem for the logic EL ++ , which is
known to be P-complete by [BBL08].

The reduction works as follows:

((T ,A),C) ∈OCSAT∃(B) iff ∃I :I |=T and C IA 6= ; and CI 6= ;

iff ∃I ′ :I ′ |=T ∪{>v ∃R.CA } and CI
′ 6= ;

iff T ∪{>v ∃R.CA } 6|=C v⊥
iff (T ∪{>v ∃R.CA },C ,⊥) /∈ EL ++-SUBS,

4.2 Subsumption 93

where T is a TBox,A is an ABox, R is a fresh role, and

CA =
def

l

C (a)∈A

∃u.({a} uC)u
l

r (a,b)∈A

∃u.({a} u∃r.{b})

is the concept constructed as in [BBL05b] from the ABox A , where u is a fresh role
name, and {a} and {b} denote nominals corresponding to the ABox individuals a and b .�

Lemma 4.34.
Let B be a finite set of Boolean operators s.t. [B]⊆ V, then OCSAT∀(B) is in P.

Proof. Here, a reduction to the dual problem OCSAT∃(E) suffices (see Lemma 4.33 for
its membership in P). Consider an ontology (T ,A) where T is a TBox andA an ABox,
and a concept C as the given instance of OCSAT∀(B). w.l.o.g. assume C to be atomic.
Now first construct the new terminology T ′ similarly to Lemma 4.17. Then add for
each A∈NC and hence each A′ the GCIs AuA′ v⊥ to ensure they are disjoint. Denote
this change by the terminology T ′′. Then it holds that ((T ,A),C) ∈ OCSAT∀(B) iff
((T ′′,A),C ′) ∈OCSAT∃(E). �

4.1.3 Conclusion

Having almost completely classified all operator and quantifier fragments, Table 4.1
shows the dichotomy for ?SAT∃∀(B), the trichotomy for ?SATQ (B) and |Q|= 1, and the
quartering for ?SAT;(B).

We have shown that the problem TSATQ (B) is strictly less expressive than the problems
?SATind

Q (B) as a single terminology cannot enforce single individuals and therefore is not
able to simulate the constant > in contrast to ?SATind

Q (B). Interestingly, the problems
become tractable if either disjunction or conjunction is present and only one quantifier
is allowed. Without any quantifiers the problems also become tractable for all unary
operators, namely the ones in the clone N.

Further research in this area would encompass closing the gaps for OCSAT∃(V) and
OSAT∃(V), and also classifying fragments using unqualified restrictions of the form ∃R.>.
These kind of fragments are only able to speak about the existence of a role-edge and
not about properties that hold there. Furthermore, a classification of the parameterized
complexity of the intractable cases would be of great interest.

4.2 Subsumption

Given two concepts and a terminology, asking the question whether one concept subsumes
the other with respect to the terminology, is the pendant to the propositional implication
problem and therewith a very important problem in the area of description logics. Nardi
and Brachman describe the problem as the "key inference" [NB03].

In Figures 4.1 and 4.2 on page 105 and 105 it is depicted how the following results
arrange in Post’s lattice.

94 Chapter 4 Description Logic

TSATQ(B) I V E N/N2 M L3 to BF else

Q = ; NL P NL NP trivial
|Q|= 1 P EXP trivial
Q = {∃,∀} EXP trivial

?SATind
Q (B) I/I0 V/V0 E/E0 N/N2 S11 to M L3/L0 to BF else

Q = ; NL P NL NP trivial
Q = {∃} P P§ P EXP trivial
Q = {∀} P EXP trivial
Q = {∃,∀} EXP trivial

Table 4.1: Complexity overview for all Boolean function and quantifier fragments. All
results are completeness results for the given complexity class, except for the
case marked §: here, OCSAT and OSAT are in EXP and P-hard. NL abbreviates
NLOGSPACE.

In [BMTV09b] Beyersdorff et al. classify the propositional implication problem with
respect to all fragments parameterized by all Boolean clones. As the subsumption problem
is closely related to the implication problem this theorem will be helpful by stating upper
and lower bounds.

Theorem 4.35 ([BMTV09b]).
Let B be a finite set of Boolean operators.

(1.) If C ⊆ [B] for C ∈ {S00,D2,S10}, then IMP(B) is coNP-complete w.r.t. ≤AC0

m
2.

(2.) If L2 ⊆ [B]⊆ L, then IMP(B) is ⊕LOGSPACE-complete w.r.t. ≤AC0

m .

(3.) If N2 ⊆ [B]⊆N, then IMP(B) is in AC0[2].

(4.) Otherwise IMP(B) ∈ AC0.

The following two lemmata translate Lemma 4.6 and Lemma 4.2 to the subsumption
problem and follows the same proof technique.

Lemma 4.36.
Let B be a finite set of Boolean operators andQ ⊆ {∀,∃}. Then

SUBSQ(B)≤
log
m SUBSdual(Q)(dual(B)).

2A language A is AC0 many-one reducible to a language B (A≤AC0
m B) if there exists a function f computable by a

logtime-uniform AC0-circuit familiy such that x ∈A iff f (x) ∈ B .

4.2 Subsumption 95

Lemma 4.37.
Let B be a finite set of Boolean operators s.t. N2 ⊆ [B] andQ ⊆ {∃,∀}. Then it holds that
SUBSQ(B)≡log

m SUBSQ(B ∪{>,⊥}).

Using Lemma 4.2 in [BMTV09b]we can easily obtain the ability to express the constant
> whenever we have access to conjunctions, and the constant ⊥ whenever we are able to
use disjunctions.

Lemma 4.38.
Let B be a finite set of Boolean operators andQ ⊆ {∀,∃}.

(1.) If E0 ⊆ [B], then SUBSQ(B)≡log
m SUBSQ(B ∪{>}).

(2.) If V0 ⊆ [B], then SUBSQ(B)≡log
m SUBSQ(B ∪{⊥}).

The connection of subsumption to terminology satisfiability and propositional implica-
tion is crucial for stating upper and lower bound results. The next lemma connects the
problem to the mentioned problems TCSAT from Section 4.1 and also to the propositional
implication problem.

Lemma 4.39.
Let B be a finite set of Boolean operators andQ ⊆ {∀,∃} be a set of quantifiers. Then

(1.) IMP(B)≤log
m SUBS;(B).

(2.) SUBSQ(B)≤log
m TCSATQ(B ∪{9}).

(3.) TCSATQ(B)≤log
m SUBSQ(B ∪{⊥}).

Proof. (1.) Holds due to (ϕ,ψ) ∈ IMP(B) iff (Cϕ ,Cψ,;) ∈ SUBS;(B), for concept de-
scriptions Cϕ = f (ϕ),Cψ = f (ψ)with f mapping propositional formulae to concept
descriptions via

f (>) =>, f (⊥) =⊥,

f (x) =Cx , for variable x,

f (g (C1, . . . ,Cn)) = ◦g (f (C1), . . . , f (Cn))

where g is an n-ary Boolean function and ◦g is the corresponding operator.

(2.) (C , D ,T) ∈ SUBSQ(B) iff (T ,C9D) ∈TCSATQ(B ∪{9}). [BCM+03].

(3.) (T ,C) ∈TCSATQ(B) iff (C ,⊥,T) ∈ SUBSQ(B ∪{⊥}). [BCM+03]. �

We will start with the subsumption problem using no quantifiers and will show that the
problem either is coNP-, P-, NLOGSPACE-complete, or is ⊕LOGSPACE-hard.

Theorem 4.40 (Q = ;).
Let B be a finite set of Boolean operators.

96 Chapter 4 Description Logic

(1.) If X ⊆ [B] for X ∈ {L0,L1,L3,S10,S00,D2}, then SUBS;(B) is coNP-complete.

(2.) If E2 ⊆ [B]⊆ E or V2 ⊆ [B]⊆ V, then SUBS;(B) is P-complete.

(3.) If [B] = L2, then SUBS;(B) is ⊕LOGSPACE-hard.

(4.) If I2 ⊆ [B]⊆N, then SUBS;(B) is NLOGSPACE-complete.

All hardness results hold w.r.t. ≤log
m reductions.

Proof. (1.) The reduction from the implication problem IMP(B) in Lemma 4.39 (1.)
in combination with Theorem 4.35 proves the coNP lower bounds of S10,S00,D2.
The lower bounds for L0 ⊆ [B] and L3 ⊆ [B] follow from Lemma 4.39 (3.) with
TCSAT;(B) being coNP-complete which follows from the NP-completeness result
of TCSAT;(B) shown in Theorem 4.26 on page 88. Further the lower bound for
L1 ⊆ [B] follows from the duality of ’⊕’ and ’≡’ and Lemma 4.36 with respect to
the case L0 ⊆ [B] allowing us to state the reduction

SUBS;(L0)≤
log
m SUBSdual(;)(dual(L0)) = SUBS;(L1).

The upper bound follows from a reduction to TCSAT;(BF) by Lemma 4.39 (2.) and
TCSAT;(BF) ∈NP by Theorem 4.26 on page 88.

(2.) The upper bound follows from the memberships in P for SUBS∃(E) and SUBS∀(V)
proven in Theorems 4.41 and 4.42.

The lower bound for [B] = E2 follows from a reduction from HGAP: set T =
{u1 u . . .u uk v v | (u1, . . . , uk ; v) ∈ E}, assume w.l.o.g. the set of source nodes as
S = {s}, then (G, S, t) ∈HGAP iff (T , s , t) ∈ SUBS;(E2). For the lower bound of
V2 apply Lemma 4.36.

(3.) Follows directly from the reduction from IMP(L2) by virtue of Theorem 4.35 and
Lemma 4.39 (1.).

(4.) For the lower bound we show a reduction from GAP to SUBS;(I2). Let G = (V , E)
be a undirected graph and s , t ∈ V be the vertices for the input. Then for T :=
{(Au vAv) | (u, v) ∈ E} it holds that (G, s , t) ∈GAP iff (T ,As ,At) ∈ SUBS;(I2).

For the upper bound we follow the idea from Lemma 4.28 on page 90. Given
the input instance (T ,C , D) we can similarly assume that for each E v F ∈ T
it holds that E , F are atomic concepts, or their negations, or constants. Now
(T ,C , D) ∈ SUBS;(N) holds iff for every interpretation I = (∆I , ·I) and x ∈∆I
it holds that if x ∈ CI then x ∈ DI holds iff for the implication graph GT
(constructed as in Lemma 4.28) there exists a path from vC to vD .

Informally if there is no path from vC to vD then D is not implied by C , i.e., it is
possible to construct an interpretation for which there exists an individual which is
a member of CI but not of DI .

4.2 Subsumption 97

Thus we have provided an coNLOGSPACE-algorithm which first checks accordingly
to the algorithm in Lemma 4.28 if there are not any cycles containing contradictory
axioms. Then we verify that there is no path from vC to vD implying that C is not
subsumed by D . �

Using some results from the previous theorem we are now able to classify most frag-
ments of the subsumption problem using only the ∀ or ∃ quantifier with respect to all
possible Boolean clones in the following two theorems.

Theorem 4.41 (Q = {∀}).
Let B be a finite set of Boolean operators.

(1.) If E2 ⊆ [B], then SUBS∀(B) is EXP-complete.

(2.) If N2 ⊆ [B] or L0 ⊆ [B], then SUBS∀(B) is EXP-complete.

(3.) If L1 ⊆ [B], then SUBS∀(B) is EXP-complete.

(4.) If S00 ⊆ [B], then SUBS∀(B) is EXP-complete.

(5.) If D2 ⊆ [B]⊆D1, then SUBS∀(B) is coNP-hard and in EXP.

(6.) If [B]⊆ V, then SUBS∀(B) is P-complete.

(7.) If [B] = L2, then SUBS∀(B) is P-hard and in EXP.

All hardness results hold w.r.t. ≤log
m reductions.

Proof. (1.) Follows from EXP-hardness of FL 0-SUBS which has been shown in
[Hof05, Thm 7.6].

(2.) The lower bound for N2 ⊆ [B] is achieved through the reductions

TCSAT∀(N2)≤
log
m SUBS∀(N)≡

log
m SUBS∀(N2),

where the first reduction is due to Lemma 4.39 (3.) and the second equivalence holds
through Lemma 4.37 which enables us to use always both constants for N2 ⊆ [B].
The EXP-hardness now follows from TCSAT∀(N2) being EXP-complete proven in
Theorem 4.31 on page 91.

The EXP-hardness for L0 ⊆ [B] follows from Lemma 4.39 (3.) which states the reduc-
tion TCSAT∀(L0)≤log

m SUBS∀(L0∪{⊥})where [L0∪{⊥}] = L0. From Theorem 4.31
on page 91 we know that TCSAT∀(L0) is EXP-complete.

(3.) The EXP-hardness follows from the following reduction:

TCSAT∃(L0)
(a)

≤log
m SUBS∃(L0)

(b)

≤log
m SUBSdual(∃)(dual(L0)) = SUBS∀(L1),

by virtue of TCSAT∃(L0) being EXP-complete (Theorem 4.31 on page 91) for (a),
and Lemma 4.36 for (b).

98 Chapter 4 Description Logic

(4.) Follows from Lemma 4.38 and the EXP-hardness of SUBS∀(M0) overlaid by Theo-
rem 4.41 (1.), as M0 = [S00 ∪{⊥}].

(5.) The coNP-hardness follows from SUBS;(D2) being coNP-hard shown in Theo-
rem 4.40.

(6.) For the upper bound Lemma 4.36 lets us state the reduction SUBS∀(V) ≤log
m

SUBS∃(E), where the latter is in P by virtue of Theorem 4.42 (6.).

The lower bound follows again from Lemma 4.36, and the P-hardness of SUBS∃(I2)
which is proven in Lemma 4.43.

(7.) The P-hardness follows from (6.). �

Theorem 4.42 (Q = {∃}).
Let B be a finite set of Boolean operators andQ = {∃}.

(1.) If V2 ⊆ [B], then SUBSQ(B) is EXP-complete.

(2.) If N2 ⊆ [B] or L0 ⊆ [B], then SUBSQ(B) is EXP-complete.

(3.) If L1 ⊆ [B], then SUBSQ(B) is EXP-complete.

(4.) If S10 ⊆ [B], then SUBSQ(B) is EXP-complete.

(5.) If D2 ⊆ [B]⊆D1, then SUBSQ(B) is coNP-hard and in EXP.

(6.) If [B]⊆ E, then SUBSQ(B) is P-complete.

(7.) If [B] = L2, then SUBSQ(B) is P-hard and in EXP.

All hardness results hold w.r.t. ≤log
m reductions.

Proof. (1.)-(3.): For the following reductions showing the needed lower bounds for
V2,N2,L1, and L0 we use Theorem 4.41 in combination with the contraposition argument
in Lemma 4.36:

SUBS∀(E2)≤
log
m SUBS∃(V2), SUBS∀(N2)≤

log
m SUBS∃(N2),

SUBS∀(L0)≤
log
m SUBS∃(L1), and SUBS∀(L1)≤

log
m SUBS∃(L0).

(4.) The needed lower bound follows from Lemma 4.38 whereas the EXP-hardness of
SUBS∃(M1) overlaid by Theorem 4.42 (1.) as M1 = [S10 ∪{>}].

(5.) The coNP lower bound follows from SUBS;(B) shown in Theorem 4.40.
(6.) The upper bound follows from the membership of subsumption for the logic

ELH in P, [Bra04c, Thm. 9]. The lower bound is proven below in Lemma 4.43.
(7.) The lower bound follows from (6.). �

Lemma 4.43.
Let B be a finite set of Boolean operators s.t. I2 ⊆ [B]. Then SUBS∃(B) is P-hard.

4.2 Subsumption 99

Proof. We will reduce the word problem for the Turing machine model that characterizes
LOGCFL to SUBS∃(B). As in the proof the runtime of the Turing machine is not relevant
we achieve instead a P-hardness result (because an NLOGSPACE-Turing machine using a
stack with arbitrary runtime leads to the class P [Coo71a]).

Let M be a nondeterministic Turing machine, which has access to a read-only input
tape, a read-write work tape and a stack, and whose runtime is bounded by a polynomial
in the size of the input. Let M be the 6-tuple (Σ,Ψ,Γ,Q, f , q0), where

• Σ is the input alphabet;

• Ψ is the work alphabet containing the empty-cell symbol #;

• Γ is the stack alphabet containing the bottom-of-stack symbol �;

• Q is the set of states;

• f : Q×Σ×Ψ×Γ → Q×Ψ×{−,+}2× (Γ\ {�})? is the state transition function
which describes a transition where the machine is in a state, reads an input symbol,
reads a work symbol and takes a symbol from the stack, and goes into another
state, writes a symbol to the work tape, makes a step on each tape (left or right) and
possibly adds a sequence of symbols to the stack;

• q0 ∈Q is the initial state.

We assume that each computation of M starts in q0 with the heads at the left-most position
of each tape and with exactly the symbol � on the stack. W.l.o.g., the machine accepts
whenever the stack is empty, regardless of its current state.

Let x = x1 . . . xn be an input of M . We consider the configurations that can occur during
any computation of M (x) in two versions. A shallow configuration of M (x) is a sequence
(pδ1 . . .δk−1qδk . . .δ`), where

• p ∈ {1, . . . , n} is the current position on the input tape, represented in binary;

• ` ∈O(log n) is the maximal number of positions on the work tape of M relevant
for the computations of M (x);

• δ1, . . . ,δ` is the current content of the work tape;

• k is the current position on the work tape;

• q is the current state of M .

The initial shallow configuration (0q0# . . . #) is denoted by S0. Let S C M ,x be the set of
all possible shallow configurations that can occur during any computation of M (x). The
cardinality of this set is bounded by a polynomial in n because the number of work-tape
cells used is logarithmic in n and the binary counter for the position on the input tape is
logarithmic in n.

A deep configuration of M (x) is a sequence (R1 . . . Rm pδ1 . . .δk−1qδk . . .δ`), where
the Ri are the symbols currently on the stack and the remaining components are as

100 Chapter 4 Description Logic

above. Let DC M ,x be the set of all possible deep configurations that can occur during any
computation of M (x). The cardinality of this set can be exponential as soon as Γ has more
than two elements besides �. This is not a problem for our reduction, which will only
touch shallow configurations.

We now construct an instance of SUBS∃(I2) from M and x. We use each shallow
configuration S ∈S C M ,x as a concept name and each stack symbol as a role name. The
TBox TM ,x describes all possible computations of M (x) by containing an axiom for every
two deep configurations that the machine can take on before and after some computation
step. A deep configuration D is represented by the concept corresponding to D’s shallow
part, preceded by the sequence of existentially quantified stack symbols corresponding to
the stack content in D . The TBox TM ,x is constructed from a set of axioms per entry in f .
(We will omit the subscript from now on.) For the instruction

(q ,σ ,δ, R) 7→ (q ′,δ ′,−,−, R1 . . . Rk)

of f , we add the axioms

∃R.(bin(p)δ0 . . .δi−1qδδi+1 . . .δ`) v
∃R1 . . .∃Rk .(bin(p −̇1)δ0 . . .δi−2q ′δi−1δ

′δi+1 . . .δ`) (4.3)

for every p with xp = σ , every i = 1, . . . ,`, and all δ0, . . . ,δi−1,δi+1, . . . ,δ`. The expres-
sion p −̇ 1 stands for p − 1 if p ¾ 2 and for 1 otherwise, reflecting the assumption that
the machine does not move on the input tape on a “go left” instruction if it is already on
the left-most input symbol. This behaviour can always be assumed w.l.o.g. In case k = 0,
the quantifier prefix on the right-hand side is empty. For instructions of f requiring “+”
steps on any of the tapes, the construction is analogue. The number of axioms generated
by each instruction is bounded by the number of shallow configurations; therefore the
overall number of axioms is bounded by a polynomial in n · | f |.

Furthermore, we use a fresh concept name B and add an axiom S v B for each shallow
configuration S . Also we add a single axiom S v ∃�.S0 to T . The instance of SUBS∃(;)
is constructed as (T , S, B). T can be constructed in logarithmic space. It remains to
prove the following claim.
Claim. M (x) has an accepting computation if and only if S vT B .
Proof of Claim. For the “⇒” direction, we observe that, for each step in the accepting
computation, the (arbitrary) concept associated with the pre-configuration is subsumed by
the concept associated with the post-configuration. More precisely, if M (x)makes a step

(q ,σ ,δ, R) 7→ (q ′,δ ′,−,−, R1 . . . Rk),

then its deep configuration before that step has to be

S1 . . . S j R pδ0 . . .δi−1qδδi+1 . . .δ`,

for some S1, . . . , S j ∈ Γ, δ0, . . . ,δi−1,δi+1, . . . ,δ` ∈Ψ and p ∈ Î., and the deep configura-
tion after that step is

S1 . . . S j R1 . . . Rk (p −̇1)δ0 . . .δi−2q ′δi−1δ
′δi+1 . . .δ`.

4.2 Subsumption 101

The set of axioms constructed in 4.3 ensures that there is an axiom that implies

∃S1 . . .∃S j .∃R.(bin(p)δ0 . . .δi−1qδδi+1 . . .δ`) vT
∃S1 . . .∃S j .∃R1 . . . Rk .(bin(p −̇1)δ0 . . .δi−2q ′δi−1δ

′δi+1 . . .δ`).

Since some computation of M (x) reaches a configuration with an empty stack, we can
conclude that some atomic concept corresponding to a shallow configuration S , and
therefore also B , subsumes ∃�.S0 which subsumes S (per definition).

For the “⇐” direction, we assume that M (x) has no accepting computation. This means
that, during every computation of M (x), the stack does never become empty. From the
set of all computations of M (x), we will show that there exists an interpretation I that
satisfies T , but not S v B ; hereby we can conclude (T , S,B) /∈ SUBS∃(;).

Observe that any atomic concept besides S and B in T correspond to a specific shallow
configuration of M (x). Let TM (x) := (V , E) denote the computation tree of M (x). Thus
every node v ∈V represents a deep configuration of M (x) which will be denoted via Cv .
Then for two nodes u, v ∈ V with (u, v) ∈ E it holds that Cu `M Cv . In the following
we will describe how to construct an interpretation I from TM (x) which has a witness
for SI 6⊆ BI . Further on we will denote individuals x in bold font to differ them from
the input x for M . For ease of notion we will write for some shallow configuration
µ ∈S C M ,x in the following also µ for the respecting concept in T .

The root of TM (x) is the initial configuration �0q0 # . . . #
︸ ︷︷ ︸

`

. Now we will define

I (S) :=
⋃

i≥0

Ii (S)

starting with∆I0(S) := {x} and

• SI0(S) := {x}, and

• y ∈ (S0)
I0(S) with (x,y) ∈�I0(S) (i.e., (∃�.S0)

I0(S) = {x})

inductively as follows. (1) For every node v ∈ V s.t. Cv = S1 . . . S j Rµ with µ ∈
bin(Î) × Ψh ·Q · Ψk and h + k = ` − 1 is the corresponding configuration in M (x)
and let x1, . . . ,x j ,xr ,xµ ∈ ∆Ii (S) be individuals such that (x1,x2) ∈ (S1)

Ii (S), (x2,x3) ∈
(S2)

Ii (S), . . . , (x j ,xr) ∈ (S j)
Ii (S), (xr ,xµ) ∈ RIi (S) and xµ ∈µIi (S):

if u ∈V with (v, u) ∈ E is a post configuration Cu = S1 . . . S j R1 . . . Rkλ for λ ∈ bin(Î)×
Ψh ·Q ·Ψk and h + k = `− 1 of the configuration Cv in the computation of M (x), i.e.,
Cv `M Cu , then

• add xr to λIi+1(S) for k = 0, and otherwise

• if there do not exist y1, . . . ,yk ∈∆Ii (S) with

(xr ,y1) ∈ (R1)
Ii (S), (y1,y2) ∈ (R2)

Ii (S), . . . , (yk−1,yk) ∈ (Rk)
Ii (S)

102 Chapter 4 Description Logic

and yk ∈ λIi (S), then introduce new individuals y1, . . . ,yk to∆Ii+1(S) and add (xµ,y1)
to (R1)

Ii+1(S), (y1,y2) to (R2)
Ii+1(S), . . . , (yk−1,yk) to (Rk)

Ii+1(S) and include yk into
λIi+1(S).

(2) For every individual x ∈∆Ii (S) and deep configuration χ that is also a shallow configu-
ration with x ∈ χ Ii (S) include x into BIi+1(S).

In the following we will show that I (S) is indeed a valid interpretation for T but
S 6vT B . As there is no axiom in T with S on the right side it holds that |SI (S)| = 1.
Assume there is some GCI G = AG v BG ∈ T which is violated in I (S), i.e., we have
some individual x′ ∈ ∆I (S) s.t. x′ ∈ (AG)

I (S) but x′ /∈ (BG)
I (S). As in T there are two

different kinds of axioms we have to distinguish these cases (because the axiom with S on
the left side cannot be such a violated axiom):

(1.) If G = α v β ∈ T for α and β being atomic (this is the case for axioms with
concepts representing shallow configurations on the left side and B on the right
side), then x′ ∈ αI (S) but x′ /∈ αI (S). Now consider the least index n s.t. x′ ∈ αIn (S).
As α represents clearly a shallow configuration and β = B then x′ is added to
βIn+1(S) ⊆βI (S) by (2), which contradicts the assumption.

(2.) If G = ∃R.µ v ∃R1. . . .∃Rk .λ ∈ T wherefore exist some entry in f from M s.t.
(S1 . . . S j Rµ) `M (S1 . . . S j R1 . . . Rkλ) for some stack symbols S1, . . . , S j , then it holds
that x′ ∈ (∃R.µ)I (S) but x′ /∈ (∃R1. . . .∃Rk .λ)I (S). Now let n denote the least index
s.t. y is added to (µ)In (S) and there must be some m < n s.t. (x′,y) is added to
RIm (S). Then in step (1) there are y1, . . . ,yk added to∆In+1(S), the corresponding Ri -
edges are added to their respective (Ri)

In+1(S)-set and yk is added to λIn+1(S) obeying
x ∈ (∃R1. . . .∃Rk .λ)In+1(S) ⊆ (∃R1. . . .∃Rk .λ)I (S). This contradicts our assumption
again.

Consequently I (S) is a model of T . Now assume that SI (S) ⊆ BI (S). Thus for the
starting point x which is added to SI (S) at the initial construction step of I (S), it holds
in particular that x ∈ BI (S). As x is added to BI (S) if and only if x is added to µI (S) for
some shallow configuration µ, we can conclude that an accepting configuration must be
reachable in TM (x) which contradicts our assumption (of the absence of such a computation
sequence). Thus an inductive argument proves that µ ∈ xIn (S) for {x}= SI (S) implies that
M reaches an accepting configuration on x in TM (x).

Claim. Let C = (R1 . . . Rkµ) be a configuration. It holds for all n ∈ Î that if x ∈
(∃R1. . . .∃Rk .µ)In (S) and {x} = SI (S) then M reaches C in the computation on x in its
computation tree TM (x).

Induction basis. Let n = 1 and C = (R1 . . . Rk .µ) for µ ∈ S C M ,s be some configura-
tion with x ∈ (∃R1. . . .∃Rk .µ)I1(S) and {x} = SI (S). Thus the individual x is added to
(∃R1. . . .∃Rk .µ)I1(S) because we have some axiom s.t. ∃�.(bin(0)# . . . #)v ∃R1. . . .∃Rk .µ ∈
T as we only have one step in this case. Hence C can be reached from the initial configu-
ration �0q0# . . . # in one step via the transition that corresponds to the before mentioned
axiom, i.e., �0q0# . . . # `M R1. . . . Rkµ.

4.2 Subsumption 103

Induction step. Let n > 1 and assume the claim holds for all m < n. Now we
have some configuration C = (S1 . . . S j R1 . . . Rkµ) for µ ∈ S C M ,x such that it holds
that x ∈ (∃S1. . . .∃S j .∃R1. . . .∃Rk .µ)In (S) and {x} = SI (S). By induction hypothesis we
have some other configuration C ′ = (S1 . . . S j Rλ) with λ ∈ S C M ,x from which C oc-
curs in one step, i.e., C ′ `M C , and C is reachable on the computation of M (x) and
x ∈ (∃S1. . . .∃S j .∃R.λ)In−1(S). Thus we also have some axiom that adds x to the set
(∃S1. . . .∃S j .∃R1. . . .∃Rk .µ)In (S) in (1). This axiom is of the form

∃R.λv ∃R1. . . .∃Rk .µ ∈ T .

As M reaches C ′ by induction hypothesis and C can be reached via one step from C ′ and
x is an instance of ∃S1. . . .∃S j .∃R1. . . .∃Rk .µ, M can also reach C within the computation
on x.

Hence this contradicts our assumption that M does not accept x and completes our
proof. �

Finally the classification of the full quantifier fragments naturally emerges from the
previous cases to EXP-complete, coNP-, and P-hard cases.

Theorem 4.44 (Q = {∀,∃}).
Let B be a finite set of Boolean operators andQ = {∀,∃}.

(1.) Let X ∈ {N2,V2,E2}. If X ⊆ [B], then SUBSQ(B) is EXP-complete.

(2.) If I0 ⊆ [B] or I1 ⊆ [B], then SUBSQ(B) is EXP-complete.

(3.) If D2 ⊆ [B]⊆D1, then SUBSQ(B) is coNP-hard and in EXP.

(4.) If [B] ∈ {I2,L2}, then SUBSQ(B) is P-hard and in EXP.

All hardness results hold w.r.t. ≤log
m reductions.

Proof. (1.) Follows from the respective lower bounds of SUBS∃(B), resp., SUBS∀(B)
shown in Theorems 4.41 and 4.42.

(2.) The needed lower bound follows from Lemma 4.39 (3.) enabling a reduction from
TCSAT∃∀(I0) which is EXP-complete by Theorem 4.7 on page 79. The case SUBS∃∀(B)
with I1 ⊆ [B] follows from the contraposition argument in Lemma 4.36.

(3.)+(4.) The lower bounds carry over from SUBS;(B) for the respective sets B (see
Theorem 4.40). �

4.2.1 Conclusion

In Figures 4.1 and 4.2 it is depicted how the results arrange in Post’s lattice. The classi-
fication has shown that the subsumption problem with both quantifiers is much harder
than the previously visited terminology problems in Section 4.1. Having access to at least
one constant already raises the complexity of the problem to EXP-completeness. For
the fragments having access to only one of the quantifiers the clones which are able to

104 Chapter 4 Description Logic

express either disjunction (for the universal quantifier) or conjunction (for the existential
case) become tractable (plus both constants). Without any quantifier allowed the problem
almost behaves as the propositional implication problem with respect to tractability. The
only exception of this rule are the L-cases that can express negation or at least one constant.
They become coNP-complete and therewith intractable.

Finally a similar systematic study of the subsumption problem for concepts (without
respect to a terminology) would be of great interest because of the close relation to the
implication problem of modal formulae. To the best of the author’s knowledge such
a study has not been done yet and would enrich the overall picture of the complexity
situation in this area of research. Further, a classification for other description logics
from theFL - and EL -family would be very interesting. Furthermore, closing the gaps
between upper and lower bounds of the clones I2,L2,D2 and D1 would finish our study.

4.2 Subsumption 105

BF

R1 R0

R2

M

M1 M0

M2 S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

BF

R1 R0

R2

M

M1 M0

M2 S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

SUBS∃∀(B)

EXP-c.

coNP-hard

P-hard

SUBS∃(B)/SUBS∀(B)
EXP-c.

EXP-c./P-c.

P-c./EXP-c.

P-complete

coNP-hard

P-hard

P-complete

Figure 4.1: Post’s lattice showing the complexity of SUBSQ(B) for all non-empty sets
;(Q ⊆ {∃,∀} and all Boolean clones [B].

106 Chapter 4 Description Logic

BF

R1 R0

R2

M

M1 M0

M2 S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

BF

R1 R0

R2

M

M1 M0

M2 S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

coNP-c.

P-c.

NLOGSPACE-c.

⊕LOGSPACE-hard

Figure 4.2: Post’s lattice showing the complexity for SUBS;(B) and all Boolean clones [B].

Chapter 5

Concluding Remarks

We almost completely classified the satisfiability as well as the model checking problem for
the temporal computation tree logics CTL and CTL? with respect to their operators and
path quantifiers as well as their Boolean fragments. Furthermore we have seen how several
ideas and techniques used in these proofs can be generalized to work with extensions of
the logic CTL. We thereby visited and classified the logic CTL+ which is, informally, the
logic CTL that allows Boolean combinations of path formulae. Adding the ability to
express fairness constraints to CTL extends the logic to ECTL which has been studied
with respect to the aforementioned fragments in the next step. In the context of temporal
logic we always worked with the two most central problems. On the one hand this is
the satisfiability problem and on the other hand the model checking problem. For the
latter we followed an approach of Sistla et al. and divided the problems into three kinds of
fragments: monotone, atomic negation, and positive. Interestingly we were able to show
that these three types of instances are computationally equivalent. Thus negation seems
rather irrelevant in the context of model checking.

Further research in this area of temporal logics should aim to close the gaps between
upper and lower bounds for the affine cases (which involve the exclusive-or function) with
respect to the satisfiability problem: for a temporal logicL ∈ {CTL,CTL?,CTL+,ECTL},
B a set of Boolean functions such that L0 ⊆ [B]⊆ L, and all sets of temporal operators/path
quantifiers T the problemsL -SAT(T ,B) lack matching upper and lower bounds. Never-
theless we presented some intuition about these cases in Section 3.1.4. Additionally we
were able to state some improvements of the trivial upper bounds for four fragments.

After leaving the temporal extensions of modal logic we moved forward to the field of
description logics which comprises of several rather diverse extensions. As many such
concepts emerge in as many various types of description logics we restricted ourself to the
logicALC which is closest to modal logic. Hereby we could analyze which concepts in
this logic would interact with the intractability of their decision problems. These concepts
turned out to be implication and conjunction which are heavily included in the definition
of terminologies. Thus the behavior of such fragments were mostly independent of the
allowed Boolean functions or quantifiers which are allowed to be used in the concept
formulae within the axioms. The decision problems which have been classified for their
operator and function fragments are terminology satisfiability (with and without respect
to a given concept), ontology satisfiability (with and without respect to a given concept),
and subsumption with respect to a given terminology.

Whilst the problems are all interreducible the reductions do not hold without any
respect to the allowed Boolean functions. Nevertheless we achieved (with two small open

108 Chapter 5 Concluding Remarks

cases) a computational equivalence between the three problems which can talk about a
single individual, that are, concept satisfiability with respect to a terminology TCSAT, on-
tology satisfiability OSAT, and concept satisfiability with respect to an ontology OCSAT.
The subsumption problem SUBS with respect to a terminology turned out to be the
hardest of the five investigated decision problems as, strictly speaking, only the existence
of one single constant (no matter which one) makes the problem EXP-complete if both
quantifiers are present.

For further research, one should prove completeness results for the two ontology
connected decision problems in the following way. Let O -SAT ∈ {OCSAT,OSAT} and B
be a finite set of Boolean operators such that [B] ∈ {V,V0}. Then O -SAT∃(B) is P-hard and
in EXP. We conjecture that both problems can be solved in P but were not able to achieve
a membership result yet. One of the most promising approaches was the construction of
an equivalent terminology by expressing concept assertions C (a) through axioms Ca vC
and role assertions S(a, b) through axioms Ca v ∃S.Cb . All available individuals a in the
given ABox will be then enforced to exist by axioms > v ∃R.Ca for each individual a.
This technique was inspired by [Hol96]. At the moment it is not clear how to use some
minimality condition defined on the size of the interpretation within the proof. Also the
construction of a nondeterministic polynomial-time algorithm guessing which part of the
disjunctions should be satisfied for the GCIs did not succeed. Thus the author suggests that
the first approach should be proving a small model property to get an NP membership
result as an intermediate step to the polynomial time algorithm.

Furthermore the next steps of the study of the subsumption problem should involve
finding an optimal complexity classification for

• SUBS∃∀(B) for [B] ∈ {I2,L2,D2,D1},

• SUBSQ(B) forQ ∈ {∃,∀} and [B] ∈ {L2,D2,D1}, and

• SUBS;(B) for [B] = L2.

Also, a classification of the subsumption problem without respect to a terminology
would be of great interest because the problem is equivalent to the modal implication
problem, i.e., the problem given two modal formulae ϕ,ψ ∈ML asking whether it holds
that ϕ |=ψ. To the best of the author’s knowledge this problem has not been classified or
visited yet.

As mentioned in Section 2.3.2, Schild has proven the correspondence to Propositional
Dynamic Logic in [Sch91]. This connection was useful in achieving and improving several
results for DL. Still it would be very interesting to obtain more general equivalences of
concepts in other logics to the ABoxes in description logics.

Additionally, a study on the application of the complexity results for the tractable cases
may be very interesting. How do they influence actual algorithms and how may they
enhance the runtime or the space requirements? Especially in the case of model checking
for the temporal logics and also for subsumption in the area of description logics these
questions are of great relevance and could lead to a significant improvement of current
algorithms.

109

Recently, the field of parameterized complexity [DF99] has gotten more attention in
the research community. In this sense, the study of the parameterized versions of a decision
problem leads to a very deep understanding of which parts of the problem are inherently
difficult to solve. Hence, the study of different kinds of parameterizations may lead to
FPT-algorithms stating that the hard parts of the problem only belong to the parameter.
Achilleos et al. turned towards parameterized modal satisfiability in [ALM10]. There
they inspect several new kinds of parameterizations of modal formulae, e.g., modality
depth, diamond dimension, and modal width. There the diamond dimension d◊(ϕ) of a
modal formula ϕ in negation normal form is inductively defined as

d◊(p) = d◊(¬p) = 0, if p ∈ PROP,

d◊(ϕ ∧ψ) = d◊(ϕ)+ d◊(ψ),
d◊(ϕ ∨ψ) =max{d◊(ϕ), d◊(ψ)},

d◊(�ϕ) = d◊(ϕ), and d◊(◊ϕ) = 1+ d◊(ϕ)

and models the intuition, that diamond preceded formulae require some kind of branching
whereas boxes do not enforce this mandatorily. The modal width of a formula ϕ describes,
informally speaking, the greatest number of subformulae which appear at some modal
depth in ϕ. An investigation of the interplay of these parameterizations with the modal
logic variants inspected in this thesis would be very interesting.

In particular, several kinds of space complexity classes have been introduced to the area
of parameterized complexity by Stockhusen [Sto11] lately. Thus an application of these
classes with respect to the modal logic variants is also of great interest and may improve
the overall understanding of intractability notably.

Bibliography

[Aal11] Aalborg University, A.N. Prior - The Founding Father of Temporal Logic,
2011, http://www.prior.aau.dk/.

[ACG+99] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
and M. Protasi, Complexity and approximation, 2nd ed., Springer, 1999.

[AI03] M. Adler and N. Immerman, An n! lower bound on formula size, ACM
Trans. Comput. Logic 4 (2003), no. 3, 296–314.

[ALM10] A. Achilleos, M. Lampis, and V. Mitsou, Parameterized modal satisfiabil-
ity, Proceedings of the 37th international colloquium conference on Au-
tomata, languages and programming: Part II (Berlin, Heidelberg), ICALP’10,
Springer-Verlag, 2010, pp. 369–380.

[Baa03] F. Baader, Terminological cycles in a description logic with existential restric-
tions, Proc. IJCAI, 2003, pp. 325–330.

[BAPM83] M. Ben-Ari, A. Pnueli, and Z. Manna, The temporal logic of branching time,
Acta Informatica 20 (1983), 207–226.

[Bau07] M. Bauland, Complexity results for boolean constraint satisfaction problems,
Ph.D. thesis, Gottfried Wilhelm Leibniz Universität Hannover, 2007.

[BBL05a] F. Baader, S. Brandt, and C. Lutz, Pushing the EL envelope, Proc. IJCAI,
2005, pp. 364–369.

[BBL05b] , Pushing the EL envelope, LTCS–Report, vol. 05-01, 2005.

[BBL08] , Pushing the EL envelope further, Proc. OWLED DC, 2008.

[BCM+03] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-
Schneider (eds.), The description logic handbook: Theory, implementation,
and applications, 2nd ed., vol. 1, Cambridge University Press, 2003.

[BDHM92] G. Buntrock., C. Damm, U. Hertrampf, and C. Meinel, Structure and
importance of logspace-mod class, Mathematical Systems Theory 25 (1992),
no. 3, 223–237.

[BdV01] P. Blackburn, M. de Rijke, and Y. Venema, Modal logic, Cambridge Univer-
sity Press, New York, NY, USA, 2001.

http://www.prior.aau.dk/

112 Bibliography

[BL84] R. J. Brachman and H. J. Levesque, The tractability of subsumption in frame-
based description languages, AAAI, 1984, pp. 34–37.

[BMM+11] O. Beyersdorff, A. Meier, M. Mundhenk, T. Schneider, M. Thomas, and
H. Vollmer, Model checking CTL is almost always inherently sequential, Logi-
cal Methods in Computer Science (2011).

[BMS+11] M. Bauland, M. Mundhenk, T. Schneider, H. Schnoor, I. Schnoor, and
H. Vollmer, The tractability of model checking for LTL: the good, the bad, and
the ugly fragments, ACM Transactions on Computational Logic (TOCL) 12
(2011), no. 2, 13:1–13:28.

[BMTV09a] O. Beyersdorff, A. Meier, M. Thomas, and H. Vollmer, The complexity of
reasoning for fragments of default logic, Theory and Applications of Satisfia-
bility Testing - SAT 2009, Lecture Notes in Computer Science, vol. 5584,
Springer Berlin /Heidelberg, 2009, pp. 51–64.

[BMTV09b] , The Complexity of Propositional Implication, Information Process-
ing Letters 109 (2009), no. 18, 1071–1077.

[Bra04a] S. Brandt, Polynomial time reasoning in a description logic with existential
restrictions, GCI axioms, and—what else?, Proc. ECAI, 2004, pp. 298–302.

[Bra04b] S. Brandt, Reasoning in ELH w.r.t. general concept inclusion axioms, LTCS-
Report LTCS-04-03, Dresden University of Technology, Germany, 2004.

[Bra04c] , Subsumption and instance problem in ELH w.r.t. general tboxes,
LTCS-Report LTCS-04-04, Chair for Automata Theory, Institute for The-
oretical Computer Science, Dresden University of Technology, Germany,
2004, See http://lat.inf.tu-dresden.de/research/reports.html.

[BS85] R. J. Brachman and J. G. Schmolze, An overview of the KL-ONE knowledge
representation system, Cognitive Science 9 (1985), no. 2, 171–216.

[BSS+09] M. Bauland, T. Schneider, H. Schnoor, I. Schnoor, and H. Vollmer, The
complexity of generalized satisfiability for Linear Temporal Logic, LMCS 5
(2009), no. 1, 1–21.

[Bus87] S. R. Buss, The Boolean formula value problem is in ALOGTIME, Proceedings
19th Symposium on Theory of Computing, ACM Press, 1987, pp. 123–131.

[BVW94] O. Bernholtz, M. Vardi, and P. Wolper, An automata-theoretic approach to
branching-time model checking (extended abstract), Proc. 6th International
Conference on Computer Aided Verification, Lecture Notes in Computer
Science, vol. 818, Springer, 1994, pp. 142–155.

[BvW06] P. Blackburn, J. van Bentham, and F. Wolter, Handbook of modal logic, Nort
Holland, Amsterdam, 2006.

Bibliography 113

[CE81] E. M. Clarke and E. A. Emerson, Desing and synthesis of synchronisation
skeletons using branching time temporal logic, Logic of Programs, Lecture
Notes in Computer Science, vol. 131, Springer Verlag, 1981, pp. 52–71.

[CES86] E. Clarke, E. Allen Emerson, and A. Sistla, Automatic verification of finite-
state concurrent systems using temporal logic specifications, ACM Transactions
on Programming Languages and Systems 8 (1986), no. 2, 244–263.

[CGP99] E. Clarke, O. Grumberg, and D. Peled, Model checking, The MIT Press,
1999.

[CKS81] A. K. Chandra, D. Kozen, and L. J. Stockmeyer, Alternation, Journal of the
Association for Computing Machinery 28 (1981), 114–133.

[CMTV10] N. Creignou, A. Meier, M. Thomas, and H. Vollmer, The complexity of
reasoning for fragments of autoepistemic logic, Circuits, Logic, and Games
(Dagstuhl, Germany) (Benjamin Rossman, Thomas Schwentick, Denis
Thérien, and Heribert Vollmer, eds.), Dagstuhl Seminar Proceedings, no.
10061, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2010.

[Coo71a] S. A. Cook, Characterizations of pushdown machines in terms of time-bounded
computers, Journal of the ACM 18 (1971), no. 1, 4–18.

[Coo71b] , The complexity of theorem proving procedures, Proceedings 3rd
Symposium on Theory of Computing, ACM Press, 1971, pp. 151–158.

[CST10] N. Creignou, J. Schmidt, and M. Thomas, Complexity of propositional
abduction for restricted sets of boolean functions, Proc. 12th International
Conference on the Principles of Knowledge Representation and Reasoning,
AAAI Press, 2010, pp. 8–16.

[CSTW10] N. Creignou, J. Schmidt, M. Thomas, and S. Woltran, Sets of boolean con-
nectives that make argumentation easier, Proc. 12th European Conference
on Logics in Artificial Intelligence, Lecture Notes in Computer Science, vol.
6341, Springer, 2010, pp. 117–129.

[CSV84] A. K. Chandra, L. Stockmeyer, and U. Vishkin, Constant depth reducibility,
SIAM Journal of Computing 13 (1984), no. 2, 423–439.

[DF99] R. G. Downey and M. R. Fellows, Parameterized complexity, Springer, 1999.

[DM00] F. M. Donini and F. Massacci, EXPTIME tableaux forALC , AI 124 (2000),
no. 1, 87–138.

[Don03] F. M. Donini, Complexity of reasoning, in Baader et al. [BCM+03], pp. 96–
136.

114 Bibliography

[EH85] E. Allen Emerson and J. Y. Halpern, Decision procedures and expressiveness
in the temporal logic of branching time, Journal of Computer and System
Sciences 30 (1985), no. 1, 1–24.

[EH86] , “sometimes” and “not never” revisited: On branching versus linear
time, Journal of the ACM 33 (1986), no. 1, 151–178.

[EJ00] E. Allen Emerson and C. S. Jutla, The complexity of tree automata and logics
of programs., SIAM Journal of Computing 29 (2000), no. 1, 132–158.

[EL87] E. Allen Emerson and C.-L. Lei, Modalities for model checking: Branching
time logic strikes back, Science of Computer Programming 8 (1987), no. 3,
275–306.

[Eme90] E. Allen Emerson, Temporal and modal logic, Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics, ch. 16, pp. 995–
1072, Elsevier and MIT Press, 1990.

[End01] H. B. Enderton, A mathematical introduction to logic, second ed., Hart-
court/Academic Press, 2001.

[FL79] M. J. Fischer and R. E. Ladner, Propositional modal logic of programs, Journal
of Computer and Systems Sciences 18 (1979), 194–211.

[Gal87] A. Galton, Temporal logics and their applications, Academic Press, Inc., San
Diego, CA, USA, 1987.

[Gia95] G. De Giacomo, Decidability of class-based knowledge representation for-
malisms, Ph.D. thesis, Università degli Studi di Roma "La Sapienza", 1995.

[GJ79] M. R. Garey and D. S. Johnson, Computers and intractability, a guide to the
theory of np-completeness, Freeman, New York, 1979.

[GMWK02] R. Givan, D. McAllester, C. Wittny, and D. Kozen, Tarskian set constraints,
Information and Computation 174 (2002), 105–131.

[Gol06] R. Goldblatt, Mathematical modal logic: A view of its evolution, Logic and
the Modalities in the Twentieth Century (D. Gabbay and J. Woods, eds.),
Handbook of the History of Logic, vol. 7, North-Holland, Amsterdam,
2006, pp. 1–98.

[HC68] G. Hughes and M. Cresswell, An introduction to modal logic, Methuen,
London, UK, 1968.

[HJ94] H. Hansson and B. Jonsson, A logic for reasoning about time and reliability,
Formal Aspects of Computing 6 (1994), 512–535, 10.1007/BF01211866.

Bibliography 115

[HM92] J. Halpern and Y. Moses, A guide to completeness and complexity for modal
logics of knowledge and belief., Artificial Intelligence 54 (1992), no. 2, 319–
379.

[HMU00] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to automata
theory, languages, and computation, 2nd ed., Addison Wesley, November
2000.

[Hof05] M. Hofmann, Proof-theoretic approach to description-logic, Proc. LICS, 2005,
pp. 229–237.

[Hol96] B. Hollunder, Consitency checking reduced to satisfiability of concepts in
terminological systems, Annals of Mathematics and Artificial Intelligence 18
(1996), 133–157.

[HSS08] E. Hemaspaandra, H. Schnoor, and I. Schnoor, Generalized modal satisfiabil-
ity, CoRR abs/0804.2729 (2008), 1–32.

[JL03] J. Johannsen and M. Lange, CTL+ is complete for double exponential time,
Proc. 30th Int. Coll. on Automata, Logics and Programming, ICALP’03,
vol. 2719 of LNCS, Springer, 2003, pp. 767–775.

[Joh90] D. S. Johnson, A catalogue of complexity classes, Handbook of Theoretical
Computer Science (J. van Leeuwen, ed.), vol. A, Elsevier, 1990, pp. 67–161.

[KF09] L. Kuhtz and B. Finkbeiner, LTL Path Checking is Efficiently Parallelizable,
Proceedings of the 36th International Colloquium on Automata, Languages
and Programming: Part II, Lecture Notes in Computer Science, vol. 5556,
2009, pp. 235–246.

[Kri63] S. Kripke, Semantical considerations on modal logic, Acta Philosophica Fen-
nica, vol. 16, 1963, pp. 84–94.

[Krö87] F. Kröger, Temporal logic of programs, Springer-Verlag New York, Inc., New
York, NY, USA, 1987.

[KVW00] O. Kupferman, M. Y. Vardi, and P. Wolper, An automata-theoretic approach
to branching-time model checking, Journal of the ACM 47 (2000), no. 2,
312–360.

[KWLS09] A. Kara, V. Weber, M. Lange, and T. Schwentick, On the hybrid extension
of CTL and CTL+, MFCS ’09: Proceedings of the 34th International Sym-
posium on Mathematical Foundations of Computer Science 2009 (Berlin,
Heidelberg), Springer-Verlag, 2009, pp. 427–438.

[Lad77] R. Ladner, The computational complexity of provability in systems of modal
propositional logic, SIAM J. Comput. 6 (1977), no. 3, 467–480.

116 Bibliography

[Lar95] F. Laroussinie, About the expressive power of CTL combinators, Information
Processing Letters 54 (1995), no. 6, 343–345.

[Lev73] L. A. Levin, Universal sorting problems, Problems of Information Transmis-
sion 9 (1973), 265–266.

[Lew18] C. I. Lewis, A survey of symbolic logic, University of California Press,
Berkley, 1918.

[Lew79] H. Lewis, Satisfiability problems for propositional calculi, Math. Sys. Theory
13 (1979), 45–53.

[LMS01] F. Laroussinie, N. Markey, and P. Schnoebelen, Model Checking CTL+ and
FCTL is Hard, Proc. 4th Foundations of Software Science and Computation
Structure, Lecture Notes in Computer Science, vol. 2030, Springer Verlag,
2001, pp. 318–331.

[LP82] H. R. Lewis and C. H. Papadimitriou, Symmetric space-bounded computation,
Theoretical Computer Science 19 (1982), no. 2, 161 – 187.

[Mar04] N. Markey, Past is for free: on the complexity of verifying linear temporal
properties with past, Acta Informatica 40 (2004), no. 6-7, 431–458.

[MMS+09] A. Meier, M. Mundhenk, T. Schneider, M. Thomas, V. Weber, and F. Weiss,
The complexity of satisfiability for fragments of hybrid logic — Part I, Proc.
MFCS, LNCS, vol. 5734, 2009, pp. 587–599.

[MMTV09] A. Meier, M. Mundhenk, M. Thomas, and H. Vollmer, The complexity
of satisfiability for fragments of CTL and CTL?, International Journal of
Foundations of Computer Science 20 (2009), no. 05, 901–918.

[MPSP09] B. Motik, P. F. Patel-Schneider, and B. Parsia, Owl 2 web ontology language:
Structural specification and functional-style syntax, 2009, http://www.w3.
org/TR/2009/REC-owl2-syntax-20091027/.

[MR95] R. Motwani and P. Raghavan, Randomized algorithms, Cambridge Univer-
sity Press, 1995.

[MS11a] A. Meier and T. Schneider, Generalized satisfiability for the description logic
ALC , Proceedings of the 8th Annual Conference on Theory and Appli-
cation of Models of Computation, Lecture Notes in Computer Science, vol.
6648, Springer Verlag, 2011, pp. 552–562.

[MS11b] , Generalized satisfiability for the description logic ALC , CoRR
abs/1103.0853 (2011), 1–37.

[NB03] D. Nardi and R. J. Brachman, An introduction to description logics, 2nd ed.,
ch. 1, vol. 1 of Baader et al. [BCM+03], 2003.

http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/

Bibliography 117

[ØH95] P. Øhrstrøm and P. Hasle, Temporal logic: From ancient ideas to artificial
intelligence, Kluwer Academic Publishers, Dordrecht, Boston and London,
1995.

[Pap94] C. H. Papadimitriou, Computational complexity, Addison-Wesley, 1994.

[Pip97] N. Pippenger, Theories of computability, Cambridge University Press, 1997.

[Pnu77] A. Pnueli, The temporal logic of programs, Proc. 18th Symposium on Founda-
tions of Computer Science, IEEE Computer Society Press, 1977, pp. 46–57.

[Pos41] E. Post, The two-valued iterative systems of mathematical logic, Annals of
Mathematical Studies 5 (1941), 1–122.

[Pra78] V. R. Pratt, A practical decision method for propositional dynamic logic: Pre-
liminary report, STOC, ACM, 1978, pp. 326–337.

[Pra80] , A near-optimal method for reasoning about action, Journal of Com-
puter and System Sciences 20 (1980), no. 2, 231–254.

[Pri57] A. N. Prior, Time and modality, Clarendon Press, Oxford, 1957.

[Pri67] , Past, present, and future, Clarendon Press, Oxford, 1967.

[QS82] J.-P. Queille and J. Sifakis, Specification and verification of concurrent sys-
tems in cesar, Proceedings 5th International Symposium on Programming,
Lecture Notes in Computer Science, vol. 137, Springer Verlag, 1982, pp. 337–
351.

[Rei01] S. Reith, Generalized satisfiability problems, Ph.D. thesis, Fachbereich Math-
ematik und Informatik, Universität Würzburg, 2001.

[Rei05] O. Reingold, Undirected st-connectivity in log-space, STOC ’05: Proceedings
of the thirty-seventh annual ACM symposium on Theory of computing
(New York, NY, USA), ACM, 2005, pp. 376–385.

[RKNP04] J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker, Mathematical tech-
niques for analyzing concurrent and probabilistic systems, p. panangaden and f.
van breugel (eds.), CRM Monograph Series, vol. 23, American Mathematical
Society, 2004.

[Ruz80] W. L. Ruzzo, Tree-size bounded alternation, Journal of Computer and System
Sciences 21 (1980), 218–235.

[RV97] K. Regan and H. Vollmer, Gap-languages and log-time complexity classes,
Theoretical Computer Science 188 (1997), 101–116.

118 Bibliography

[Sav70] W. J. Savitch, Relationships between nondeterministic and deterministic tape
complexities, Journal of Computer and System Sciences 4 (1970), no. 2, 177 –
192.

[SC85] A. Sistla and E. Clarke, The complexity of propositional linear temporal logics,
Journal of the ACM 32 (1985), no. 3, 733–749.

[Sch91] K. Schild, A correspondence theory for terminological logics: Preliminary
report, In Proc. of IJCAI-91, 1991, pp. 466–471.

[Sch02] P. Schnoebelen, The complexity of temporal logic model checking, Advances
in Modal Logic, vol. 4, 2002, pp. 393–436.

[Sch07] H. Schnoor, Algebraic techniques for satisfiability problems, Ph.D. thesis,
Gottfried Wilhelm Leibniz Universität Hannover, 2007.

[Sch08] I. Schnoor, The weak base method for constraint satisfaction, Ph.D. thesis,
Gottfried Wilhelm Leibniz Universität Hannover, 2008.

[Sch10] H. Schnoor, The complexity of model checking for Boolean formulas, Int. J.
Found. Comput. Sci. 21 (2010), no. 3, 289–309.

[Sel82] A. L. Selman, Reductions on NP and P-selective sets, Theoretical Computer
Science 19 (1982), 287–304.

[SI90] R. Sridhar and S. Iyengar, Efficient parallel algorithms for functional depen-
dency manipulations, Proc. ICPADS, ACM, 1990, pp. 126–137.

[Sip05] M. Sipser, Introduction to the theory of computation, 2nd ed., Course Tech-
nology, February 2005.

[Smo87] R. Smolensky, Algebraic methods in the theory of lower bounds for Boolean
circuit complexity, Proceedings of the 19th annual ACM symposium on
Theory of computing (New York, NY, USA), STOC ’87, ACM, 1987,
pp. 77–82.

[Sto77] L. J. Stockmeyer, The polynomial-time hierarchy, Theoretical Computer
Science 3 (1977), 1–22.

[Sto11] C. Stockhusen, Anwendung monadischer Logik zweiter Stufe auf Probleme
beschränkter Baumweite und deren Platzkomplexität, Diplomarbeit, Univer-
sität zu Lübeck, 2011.

[Tho09] M. Thomas, The complexity of circumscriptive inference in post’s lattice, Proc.
10th International Conference on Logic Programming and Nonmonotonic
Reasoning, Lecture Notes in Computer Science, vol. 5753, Springer, 2009,
pp. 209–302.

Bibliography 119

[Tho10] , On the complexity of fragments of nonmonotonic logics, Ph.D. thesis,
Leibniz University of Hannover, 2010.

[Vol99] H. Vollmer, Introduction to circuit complexity, Springer, 1999.

[VS85a] M. Y. Vardi and L. Stockmeyer, Improved upper and lower bounds for modal
logics of programs: Preliminary report, STOC ’85: Proceedings of the seven-
teenth annual ACM Symposium on Theory of computing, Lecture Notes
in Computer Science, 1985, pp. 240–251.

[VS85b] , Lower bound in full (EEXP-hardness for CTL?-SAT), Online, avail-
able at http://www.cs.rice.edu/~vardi/papers/ctl_star_lower_
bound.pdf, 1985.

[VW86] M. Y. Vardi and P. Wolper, Automata-theoretic techniques for modal logics of
programs, JCSS 32 (1986), no. 2, 183–221.

[Web09a] V. Weber, Branching-time logics repeatedly referring to states, Journal of Logic,
Language and Information 18 (2009), 593–624, 10.1007/s10849-009-9093-x.

[Web09b] , On the complexity of branching-time logics, Computer Science Logic
(Erich Grädel and Reinhard Kahle, eds.), Lecture Notes in Computer Sci-
ence, vol. 5771, Springer Berlin / Heidelberg, 2009, 10.1007/978-3-642-
04027-6_38, pp. 530–545.

[Wil99] T. Wilke, CTL+ is exponentially more succinct than CTL, Proceedings of the
19th Conference on Foundations of Software Technology and Theoretical
Computer Science (London, UK), Springer-Verlag, 1999, pp. 110–121.

http://www.cs.rice.edu/~vardi/papers/ctl_star_lower_bound.pdf
http://www.cs.rice.edu/~vardi/papers/ctl_star_lower_bound.pdf

Index

Symbols

#T(ψ) . 36, 46
� . 17
�i .17
∆P

k . 11
◊ .17
◊i . 17
K . 17
OQ(B) . 25
ΠP

k . 11
ΠR1 .13
R. .54
?SAT. .75
ΣP

k . 11
ΣR1 . 13
TQ(B) . 25
?SATind . 75
≤log

m see reduction, logspace
η . 17
⊥ . 9, 17
≤cd see reduction, constant depth
≤dlt

proj see reduction, dlt-proj
⊕LOGSPACE 10, 44, 94, 106
> . 9, 17
[B] . 13
1-in-3-SAT 44, 83, 84

A

ABox. .25
AC1(LOGDCFL) 52
ACi .11
affine . 14
AL . 79

ALC . 23, 86, 88
semantics . 24

ALU .79
atomic

concept see concept, atomic
formulae . 19
propositions 17

axiom . 25

B

base . 13
B0 . 11
B1 . 11

Boolean function 9
affine . 14, 43
c -reproducing 13, 79
c -separating 14

of degree n 14
identical . 14
linear .14
monotone 13, 82
self-dual14, 80, 94
T n+1

n . 14

C

c -reproducing.13, 79
c -separating . 14

of degree n14
clone . 13

base . 13
list of all . 15

concept .23
atomic .24

122 Index

set of all24
description 24
empty . 24
subconcept 77
universal .24

concept description23
coNLOGTIME . 12
ConQ(B) . 24
constant depth reduction . see reduction
CSAT . 24, 25
CTL . 20

CTL+ . 22
CTLa.n. 52
CTLmon . 52
CTL+ . 62
CTL+-SAT 45, 49, 50
CTLpos . 52
CTL-SAT 21, 32, 50
CTL? . 19, 68
CTL?-MC.20
CTL?-SAT 20, 41, 50
CTL? . 19
ECTL see ECTL
formula . 20
operators 21, 32

CTL-operator . 20

D

dual(·)14, 78, 80, 94

E

ECTL . 22, 47
EEXP . 10, 12
EL 79, 86, 92, 104
ELH . 98
EL ++ . 23, 92
ELU . 86
empty concept see concept
expk (n) . 10
EXP . 10, 12

F

fairness . 22
Fall . 18
F
∞

. 22, 61
fixpoint . 37
FL . 92, 104
FL 0 79, 86, 92, 97
FMC . 68
formula

propositional 9
SF(·) .9, see formula, subformulae,

77
subformulae 9

frame. .17
Ftotal . 18, 19

G

GAP . 26, 85
GCI see general concept inclusion
general concept inclusion 25
G
∞

. 22, 61
GOAP . 44

H

HGAP . 84
Hintikka . 32

I

id . 14
IMP . 94
implication . 94
individual .23

K

Kripke structure 17

L

Lewis knack 29, 77
linear .14

Index 123

literal .9
LOGCFL . 11, 99
LOGSPACE . 10
logtime-uniform 13, 94
LTL+ . 47, 50

M

MAJ . 27
MAJ . 44
ML. .17
ML-SAT . 25
model . 25
models . 19

quasi see quasi model
small model theorem 32

monotone . 13, 82
ML-SAT. .18

N

NAE-SAT . 44
NC see concept, set of all
NC1 . 12
NCi . 11
negation normal form . 9, 35, 36, 70, 78
NLOGTIME . 12
normalization . 81
NP . 10
NR see role, set of all roles

O

OCSAT . 26, 88
ontology . 25
oracle Turing machine see Turing

machine
OSAT. .26, 88

P

P . 10, 11, 99
PARITY . 27, 43
⊕LOGSPACE 10, 44, 94, 106
path . 19

formulae . 19
model checking 50
quantifier . 19

PH .11, 12
PL . 9

PL(B) . 14
Polynomial time hierarchy see PH
Post’s lattice . 16

both constants 68
promise problem 11, 31
PSPACE .10, 12
pure temporal operators 19, 36

Q

QBF-VAL . 27
QBF . 27
quasi model . 35

R

reduction
constant depth 13, 13
dlt-proj . 13
logspace . 11

release operator 54
role . 23

set of all roles 24

S

SAC1 . 11
satisfiable . 17
satisfy . 25
SC(·) see concept, subconcept
self-dual . 14, 80, 94
SF(·) see formula, subformula
short-representation 14
SIZE-DEPTHB (s(n), d (n)) 11
state formulae . 19
SUBS. .26
subsume. .26, 93
subsumption . 26
superposition . 13

124 Index

T

TBox . 25
TC0 . 12
TCi . 11
TCSAT . 25, 88
TM see Turing machine
T n+1

n . 14
tree-like . 34
TSAT . 25, 82
Turing machine

alternating 38, 42
deterministic 10
nondeterministic 10
oracle . 10

U

UGAP . 27
universal concept see concept

V

Vars(·) . 9

Index 125

Lebenslauf

Persönliches

Name Arne Meier

Geburt 06. Mai 1982 in Hannover

Schulische Laufbahn

1988–1992 Grundschule Kestnerstraße, Hannover

1992–1994 Orientierungsstufe Schulzentrum Lüerstraße, Hannover

1994–2001 Gymnasium Sophienschule, Hannover

Universitäre Laufbahn

2002-2005 Bachelor of Science in Informatik,
Leibniz Universität Hannover

2005-2007 Master of Science in Informatik,
Leibniz Universität Hannover

2003-2006 Vertreter im Fakultätsfachschaftsrat
für Elektrotechnik und Informatik

2007 Ehrung für besondere Leistungen
in der studentischen Selbstverwaltung

seit Januar 2008 Wissenschaftlicher Mitarbeiter am Institut für
Theoretische Informatik an der Leibniz Universität Hannover

Außerberufliche Laufbahn

2001-2002 Zivildienst an der Sophienklinik in Hannover

25. April 2009 Heirat mit Julia Meier, geb. Chamis

	Introduction
	Modal Logic
	Temporal Logic
	Description Logic
	Post's Lattice

	Results
	Publications

	Preliminaries
	Complexity Theory
	Boolean Clones
	Modal Logic
	Temporal Logic
	Description Logic

	Complete Problems

	Temporal Logic
	Satisfiability in CTL and CTL
	Restricting the Boolean connectives
	Restricting the CTL-operators
	Satisfiability for fragments of CTL
	About the Affine Cases
	Fragments of Extensions of CTL: Fairness, Succinctness, and LTL +
	Conclusion

	Model Checking in CTL and CTL
	Model Checking CTL and CTLpos
	Model Checking Extensions of CTL
	Model Checking CTL
	Conclusion

	Description Logic
	TBox and Ontology Satisfiability
	Both quantifiers
	Restricted quantifiers
	Conclusion

	Subsumption
	Conclusion

	Concluding Remarks
	Bibliography
	Index
	Lebenslauf

