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Abstract

This thesis aims at classifying the temporal logics CTL, LTL and CTL∗ in terms
of parameterized complexity of their satisfiability and model checking problems.
The studied parameters are combinations of temporal depth and syntactical tree-
width of formulas. The classification is done fragment-wise and focuses on the
question of tractability, i.e. for each fragment of temporal operators either an fpt
algorithm or a hardness result is presented.

For the related modal logic FPT results are known for a similar parameteriza-
tion by modal depth and syntactical treewidth. This thesis shows that the paramet-
erized tractability of modal satisfiability cannot be transferred for any temporal
operator but X and that the model checking problems of LTL and CTL∗ fragments
stay inherently intractable under the given parameterizations.

Furthermore it is shown that the chosen parameters are both crucial for the
tractability of satisfiability with X, except for LTL where treewidth is sufficient
due to the lack of branching.

Zusammenfassung

Die vorliegende Arbeit klassifiziert die Erfüllbarkeits- und Model-Checking-Pro-
bleme der Temporallogiken CTL, LTL und CTL∗ hinsichtlich deren parametrisier-
ter Komplexität. Untersuchte Parameter sind Kombinationen aus temporaler Tiefe
und syntaktischer Baumweite der Eingabeformeln. Die Klassifizierung wird für al-
le Fragmente bezüglich der temporalen Operatoren mit Fokus auf effizienter Lös-
barkeit durchgeführt, die Resultate sind daher Nachweise von FPT-Algorithmen
oder Schwere-Resultate.

Für die ähnliche Modallogik sind bereits Ergebnisse für modale Tiefe und syn-
taktische Baumweite als Parametrisierung bekannt. Diese Arbeit zeigt, dass die
parametrisierte effiziente Lösbarkeit des Erfüllbarkeitsproblems einzig für den
Operator X übertragen werden kann und dass Model-Checking für alle Fragmente
von LTL und CTL∗ auch derart parametrisiert inhärent schwierig bleibt.

Außerdem wird gezeigt, dass die Parameter temporale Tiefe und Baumweite
beide notwendig für die effiziente Prüfung der Erfüllbarkeit mit X sind; lediglich
bei LTL reicht die Baumweite als Parameter aus, da LTL keine Verzweigungsse-
mantik besitzt.
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1 Introduction

Motivation

Formal verification of software or hardware, i.e., proving the correctness of the beha-
viour of an algorithm or a dynamic system, gains importance as computational tasks
become more and more complex and systems become more and more difficult to man-
age. This is especially true for critical systems or infrastructures where informal veri-
fication processes are likely to suffer from the vagueness and ambiguity of natural
language. Typical examples for automatically verifiable systems are cryptographic
protocols, circuit designs or control flows of structured programming languages.

Next to verification by proof there are various techniques like simulation, manual
reviewing or testing. Yet they suffer from not being scalable, being expensive, or being
inherently incomplete in the sense that they can reveal most errors but cannot prove
the absence of them. On the other hand, a formal description of a fault-intolerant
system can be verified thoroughly not only by hand but also by automatic theorem
provers and model checkers.

Suited logical frameworks as a tool for modeling are for instance classical proposi-
tional logic or, if dealing with dynamic systems, variants of modal logic. Although the
problem of model checking for certain logics can be feasibly done by computers, this
is not the case for every logic. At the same time, the problems of consistency and tau-
tology are already computationally hard for propositional logic and thus even harder
for its modal extensions.

The theory of computational complexity provides tools to classify algorithmic prob-
lems into different degrees of (in-)tractability. Still problems that are hard in theory,
i.e., require superpolynomial time to compute, are solved in practice more or less effi-
ciently due to the use of heuristics or by being restricted to “nice” problem instances.
Reflecting this development in practice and allowing a more fine-grained tractabil-
ity measure, the technique of parameterization of a computational problem allows a
much deeper insight into the properties of input instances that are the source of inher-
ent hardness. An analysis of such a problem can provide a theoretical support for the
practical efficiency, but can also itself find such a property, a parameter, which makes
the problem easy to solve when it is itself not too complex.

Similar to classical complexity theory its offspring, parameterized complexity theory,
can be used to determine computational intractability with respect to a certain para-
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1 Introduction

meter. In analogy to the classical case, problems can be arranged into a hierarchy of
complexity classes where certain classes are considered as tractable and others as in-
tractable. The difference between tractability (in the sense of deterministic polynomial
time) and intractability is not fully understood yet even in classical complexity theory.
Nevertheless, it is desirable to fully classify seemingly sensible choices of parameters
of a problem based on the classical toolbox of reductions and complete problems.

Related work

This thesis aims at classifying certain parameterizations of the model checking and sat-
isfiability problems of temporal logics, continuing work that has been partially done for
modal and temporal satisfiability. After introducing the reader to relevant foundations
of parameterized complexity theory and logic, we will see a complete classification of
temporal logics in the sense of fragments, i.e., logics with a restricted set of allowed
temporal operators. A similar classification of temporal logic was thoroughly done for
classical complexity by Meier [Mei11]. He showed that even the satisfiability problem,
considered the “harder” one, quickly drops into realms of negligible complexity when
restricted to e.g. monotone Boolean expressions, while the temporal fragments range
from NP-complete over PSPACE- and EXP- to 2EXP-complete. He therefore concluded
that the inherent hardness of temporal logic beyond NP emerges from the different
non-Boolean, temporal operators.

It is sure that for restricting the Boolean connectives has a high price in terms of
expressivity. Hence in the world of parameterization it seems more interesting to
know the consequences of restricting the temporal operators. Is there a similar sharp
complexity gradient like for the Boolean connectives? Since the different temporal
operators form a strict hierarchy of expressiveness [Lar95], it is safe to assume that
they also differ in computational hardness in some way.

Next to Meier, the work of Praveen [Pra13] has been fundamental for this study. He
successfully applied parameterization to modal logic satisfiability on various classes of
Kripke frames, but shows that for these parameters the satisfiability prolem is harder
when restricted to transitive frames. This phenomenon reappears in the classification
of temporal satisfiability as an inherent source of computational hardness. Certain
tractability and hardness results regarding computation tree logic (CTL) fragments were
developed in parallel [LMS15].
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2 Preliminaries

Logical expressivity and computational complexity are close relatives which is an in-
sight that increasingly emerges in theoretical computer science. In this preliminary
chapter we remind the reader of various definitions regarding complexity theory and
logic which provide the groundwork for the presented results.

2.1 Complexity theory

We use the standard notation of Turing machines (TMs) to formalize computation. A
Turing machine is an abstract automaton that receives an input string encoded over
a finite, non-empty alphabet Σ, then executes a number of computation steps until it
eventually halts, leaving an output string on its tape. It may be a deterministic Turing
machine (DTM) or a non-deterministic one (NTM).

We call a string or word over Σ any sequence x = (x1, x2, . . . ) where x i ∈ Σ f. a.
i ∈ N. If not explicitly stated otherwise, we assume a word to be finite, denoting with
|x | the length of the sequence. We write Σ∗ for the set of all finite words over the
alphabet Σ.

Definition 2.1 (Computable functions). Let f : Σ∗ → Σ∗ be a function. We say that
a deterministic TM M computes the function f if for every x ∈ Σ∗ the machine M
eventually halts on input x with output f (x). If f is computed by a Turing machine
we call f computable.

Definition 2.2 (Decision problems). A set A ⊆ Σ∗ is called a language or a decision
problem over the alphabet Σ. We say that a TM M decides a language A if for every
x ∈ A the machine M has a computation that eventually halts in a special state qacc,
and if for every x /∈ A the machine M eventually halts in a state that is not qacc for
every computation. The machine M may be non-deterministic. For a language A we
write A for the complement of A, i.e. the set of all strings not in A. A language A that is
decided by a TM is called decidable.

Classical complexity theory

Definition 2.3 (Landau notation). Let f : N→ N. Then O( f ) is the class of functions
g that are bounded by c · f for a constant c, i.e. there is a fixed n0 s. t. g(n)≤ c · f (n)
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2 Preliminaries

for every n≥ n0.
For function classes F, G write F +G for { f + g | f ∈ F, g ∈ G } and similar for F ·G,

F G, O(F). Also, write log F for
{︀

logb f
⃒⃒

b > 1, f ∈ F
}︀

.

Definition 2.4 (Time and space complexity). Let M be a TM. If any computation of
M on a word x has at most t(|x |) steps we say M runs in time t. Similarly, M runs
in space s if the length of every configuration in a computation on x is at most s(|x |).
Also, M runs in time (space) F for a function class F if M runs in time (space) f for
any f ∈ F .

For the rest of the thesis we fix the alphabet Σ := {0,1}, i.e. a binary encoding, to
encode natural numbers, graphs, formulas etc. This does neither affect the definition
of the relevant complexity classes nor the validity of the results. The binary encoding
will be denoted 〈·〉 when explicitly mentioned and omitted otherwise.

For a function or function class f define the complexity classes

TIME ( f ) := { A⊆ Σ∗ | A is decided by a DTM in time O( f ) } ,
NTIME ( f ) := { A⊆ Σ∗ | A is decided by an NTM in time O( f ) } ,
SPACE ( f ) := { A⊆ Σ∗ | A is decided by a DTM in space O( f ) } .

We use the following symbols to refer to well-known classes:

P := TIME
(︀
nO(1)

)︀
EXP := TIME

(︁
2nO(1)

)︁
NP := NTIME

(︀
nO(1)

)︀
2EXP := TIME

(︁
22nO(1)

)︁
PSPACE := SPACE

(︀
nO(1)

)︀
The term co-C for a complexity class C refers to the complexity class which contains

the complements of the problems in C.

Definition 2.5 (Reduction). For problems A, B a ≤P
m-reduction or polynomial time re-

duction from A to B is a function f that is computable in polynomial time such that
for all x it holds x ∈ A⇔ f (x) ∈ B. Write A≤P

m B if there is a ≤P
m-reduction from A to

B. If f is computable in logarithmic space, f is a log-space-reduction from A to B, in
symbols A≤log

m B.

Definition 2.6 (Completeness). A problem A is C-hard under ≤P
m-reductions for a com-

plexity class C if and only if every B ∈ C is ≤P
m-reducible to A. If additionally A ∈ C

then A is C-complete.
The term hard resp. complete under ≤log

m -reductions is defined analogously.
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2.1 Complexity theory

Parameterized complexity theory

The following definitions were developed by Downey and Fellows and later by Flum
and Grohe who were the first to systematically lay ground for a theory that can speak
about parameterized intractability [FG06, DF99].

Definition 2.7 (Parameterized problem). Let Q ⊆ Σ∗ be a decision problem and let
κ: Σ∗→ N be a computable function. Then we call κ a parameterization of Q and the
pair Π= (Q,κ) a parameterized problem.

Definition 2.8 (Fixed-parameter tractable). Let Π = (Q,κ) be a parameterized prob-
lem. If there is a DTM M and a computable function f : N→ N s. t. for every instance
x ∈ Σ∗

• M decides correctly if x ∈Q and

• M has a runtime bounded by f (κ(x)) · |x |O(1)

then we say that M is an fpt-algorithm for Π and that Π is fixed-parameter tractable.
We define FPT as the class of all parameterized problems that are fixed-parameter
tractable.

Similarly, we refer to a function f as fpt-computable w. r. t. a parameter κ if there is
another computable function h such that f (x) can be computed in time h(κ(x))·|x |O(1).

Remark: Some authors demand that given an instance x the parameter κ(x) itself
is efficiently computable, i.e. in polynomial time [FG06]. Such a restriction would
prevent parameterizations like the treewidth of graphs which lead to interesting FPT
results when allowed as parameter, but the existence of a polynomial time algorithm to
compute their explicit value would imply P = NP. Nevertheless there are practically
relevant classes of e.g. graphs with low treewidth. Flum and Grohe recommend to
consider the parameter value as a part of the input to ensure its polynomial time
computability.

One could also restrict the available parameters κ to “reasonably” computable func-
tions, an adequate upper bound could be an fpt-like runtime, i.e. κ is fpt-computable
w. r. t. itself. This still gives most of the relevant theoretical results and allows the
treewidth parameter. Another possibility is to restrict the parameter size [CE12].

Besides FPT there is a number of important classes in theory of parameterized com-
plexity. If we consider FPT as the class of “tractable” problems then the class called
W[1] is a good candidate for the “smallest well-known intractable class” in the para-
meterized world.

A formal definition of intractability however first requires the concept of an fpt-
reduction which is very similar to a reduction in the world of classical complexity.
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2 Preliminaries

Definition 2.9 (fpt-reduction). Let (P,κ) and (Q,λ) be parameterized problems over
alphabets Σ resp. ∆. Then a function f : Σ∗ → ∆∗ is an fpt-reduction if it is fpt-
computable w. r. t. κ and there is a computable h: N → N s. t. the following holds
f. a. x ∈ Σ∗:

• x ∈ P ⇐⇒ f (x) ∈Q and

• λ
(︀

f (x)
)︀
≤ h
(︀
κ(x)

)︀
, i.e. λ is bounded by κ.

If there is an fpt-reduction from (P,κ) to (Q,λ) for pairs (P,κ) and (Q,λ) then we
call (P,κ) fpt-reducible to (Q,λ), denoted by (P,κ)≤fpt (Q,λ).

From the previous definitions it follows that FPT is closed under fpt-reductions, i.e.
if (P,κ) ≤fpt (Q,λ) and (Q,λ) ∈ FPT then (P,κ) ∈ FPT follows. Note that this even
holds in cases where the reduction causes a superpolynomial blow-up on the instance
size.

Definition 2.10 (W hierarchy). Let t ∈ N. We define the t-th level of the W hierarchy
as

W[t] :=
{︀
(P,κ)

⃒⃒
(P,κ)≤fpt p-CIRCSAT(t, d), d ≥ t

}︀
,

where p-CIRCSAT(t, d) = (Q,λ) is the following parameterized problem:

Q :=
{︂
(C , k)

⃒⃒⃒⃒
C is a Boolean circuit with weft t and depth d
that has a satisfying assignment of weight k

}︂
, λ(C , k) := k

For the fundamental concepts of Boolean circuits and circuit complexity the reader is
referred to Vollmer [Vol99]. We skip the foundations here since there are no following
definitions or results directly related to circuits. Here, the weft of a Boolean circuit
can simply be defined as the maximal number of nodes with input arity > 2 from
any straight path from an input node to the output node. The depth is the maximal
number of arbitrary nodes on such paths. The weight of an assignment is the number
of input bits set to one, and an assignment is satisfying if the output node of the circuit
produces a one for the given input, similar to propositional formulas.

Definition 2.11 (Parameterized hardness). A problem (P,κ) is C-hard under fpt-reduc-
tions for a parameterized complexity class C if (Q,λ) ∈ C implies (Q,λ)≤fpt (P,κ).

If additionally (P,κ) ∈ C, we say that (P,κ) is C-complete under fpt-reductions.

Not only the classes W[t] are closed under fpt-reductions by definition, it also holds
that W[t]-hardness is inherited along reductions. That is if (P,κ)≤fpt (Q,λ) and (P,κ)
is W[t]-hard then (Q,λ) is also W[t]-hard.
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2.1 Complexity theory

Definition 2.12 (XP). The class XP contains the parameterized problems (Q,κ) for

which there is a DTM deciding x
?
∈Q in time O

(︁
|x | f (κ(x))

)︁
+ f (κ(x)) for a computable

function f .

Definition 2.13 (W[P]). The class W[P] contains the parameterized problems (Q,κ)

for which there is a computable function f and an NTM deciding x
?
∈ Q in time

f (κ(x)) · |x |O(1) with at most O(κ(x) · log |x |) non-deterministic steps.

Flum and Grohe state how to obtain parameterized variants of classical complexity
classes [FG02]. They define for “standard” complexity classes C the corresponding
parameterized versions para-C. Here, “standard” means that the class C is defined via
usual resource-restricted Turing machines (read resource as time resp. space).

For most such classes C we obtain para-C by simply appending an additional factor
f (κ) to the resource bound, as done for P leading to FPT. This is possible for certain
classes that Flum and Grohe call robust, such as NP and PSPACE.1 This allows the
following definitions:

Definition 2.14 (para-NP). The class para-NP contains the parameterized problems

(Q,κ) for which there is a computable function f and an NTM deciding x
?
∈Q in time

f (κ(x)) · |x |O(1).

Definition 2.15 (para-PSPACE). The class para-PSPACE contains the parameterized

problems (Q,κ) for which there is a computable function f and a DTM deciding x
?
∈Q

in space f (κ(x)) · |x |O(1).

Definition 2.16 (Slice). The l-th slice of a parameterized problem (Q,κ) is denoted
(Q,κ)l and defined as:

(Q,κ)l := { x | x ∈Q and κ(x) = l }

Theorem 2.17 (Flum and Grohe, 2002 [FG02]). Let (Q,κ) be a parameterized problem,
Q ( Σ∗, Q 6= ;. Then (Q,κ) is para-NP-hard (resp. para-PSPACE-hard) if and only if a
union of finitely many slices of (Q,κ) is NP-hard (resp. PSPACE-hard).

It holds that FPT = W[0] ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ XP and as well W[P] ⊆
para-NP ⊆ para-PSPACE (see Figure 2.1).

When judging the “tractability” of a parameterized problem, one usually assumes
strictness of all inclusions above, similar to the relationship between P and NP, and
therefore aims at proving FPT-membership or (at least) W[1]-hardness.

1But not for e.g. LOGSPACE.
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FPT

W[1]

W[2]

...

W[P]

para-NP

para-PSPACE

XP

XPnu

Figure 2.1: Some parameterized complexity classes
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2.2 Logic

2.2 Logic

Propositional logic

The classical propositional logic is attained by combining propositional statements with
Boolean connectives. We follow the standard syntactic construction by giving a gram-
mar in its Backus-Naur form,

ϕ ::= x | > | ϕ ∧ϕ | ¬ϕ

and defining the formulas ϕ ∨ψ := ¬(¬ϕ ∧¬ψ) and ⊥ := ¬> as shortcuts. Here,
x can generate an arbitrary propositional variable. PS = {x1, x2, . . .} is the countable
set of all variables or atomic propositions. PL is the set of all propositional formulas.

The semantics of truth given an assignment is inductively defined as usual.

Modal logic

A formula in modal logic has a grammar slightly different from propositional logic:

ϕ ::= x | > | ¬ϕ | ϕ ∧ϕ |2ϕ

The dual modal operator 3 is also defined as a shortcut: 3ϕ := ¬2¬ϕ. We denote
with ML the set of all modal formulas.

Evaluation of a modal formula does not take place with respect to a single assign-
ment, but rather to a logical structure of worlds or states. This allows to formalize
a multi-state system in logic while speaking about successors of states using formulas
consisting of 2 or 3.

Definition 2.18 (Kripke frame and structure). A Kripke frame F is a finite structure
F = (W, R) consisting of a finite set W of worlds and a binary relation R ⊆ W ×W. A
Kripke structure is a tuple M = (W, R, V ) s. t. (W, R) is a Kripke frame and V : PS →
P(W ), i.e. every atomic proposition is mapped to a set of worlds. We say that the
proposition is labeled in these worlds or holds in these worlds.

Definition 2.19 (Kripke semantics). Now we can evaluate the truth of modal formulas
on Kripke structures. We say that a pair (M, w) of a Kripke structure M = (W, R, V )
and a world w ∈W models a modal formula ϕ, in symbols (M, w) |= ϕ, when it fulfills
an inductive definition:

9



2 Preliminaries

(M, w) |= x for x ∈ PS iff. w ∈ V (x)
(M, w) |=> always

(M, w) |= ¬ϕ iff. (M, w) 6|= ϕ
(M, w) |= ϕ ∧ψ iff. (M, w) |= ϕ and (M, w) |=ψ
(M, w) |=2ϕ iff. ∀w′ ∈W : (w, w′) ∈ R⇒ (M, w′) |= ϕ

For any Kripke structure M together with a world w of M we call (M, w) a model of
ϕ if (M, w) |= ϕ. If a modal formula ϕ ∈ML has a model then it is satisfiable.

The corresponding decision problem is defined as follows:

ML-SAT =
{︂
ϕ

⃒⃒⃒⃒
there is a Kripke structure M= (W, R, V )
and w ∈W s.t. (M, w) |= ϕ

}︂

Logical structures

Definition 2.20 (Vocabulary). Define a vocabulary τ as a tuple τ = (R, f , C), where
R = (R1, R2, . . . ) is a sequence of relation symbols, f = ( f1, f2, . . . ) is a sequence of
function symbols and C = (c1, c2, . . . ) is a sequence of constant symbols. Every relation
symbol R and function symbol f has a fixed arity denoted by ar(R) resp. ar( f ). If not
explicitly stated otherwise, we assume any vocabulary as finite. If a vocabulary τ
consists only of relation symbols, we call τ purely relational.

Definition 2.21 (Logical structure). A logical structure or a τ-structure over the finite
vocabulary τ= (R1, . . . Rn, f1, . . . , fm, c1, . . . , co) is a tuple

A= (A, RA
1 , . . . RA

n , f A
1 , . . . , f A

m , cA1 , . . . , cAo )

such that

• A is a non-empty set, the universe or domain of A,

• RA
i ⊆ Aar(Ri) is a relation on A for all i ∈ {1, . . . , n},

• f A
i is a function Aar( fi)→ A for all i ∈ {1, . . . , m},

• cAi ∈ A for all i ∈ {1, . . . , o}.

If τ is purely relational, call A a relational structure.

10



2.2 Logic

In the rest of this thesis we use only finite structures with finite domains. When
encoding a finite relational structure as an input for an algorithm we choose a repres-
entation that first contains the list of individuals followed by a list of tuples contained
in the respective relations. The encoding size |A| of A= (A,τA) is therefore

|A| := |τ|+ |A|+
n∑︁

i=1

ar(Ri) · (|RA
i |+ 1).

Monadic second-order logic

The language of formulas one is usually working with when dealing with logical struc-
tures is first-order logic (FO). It allows to use relations, functions and constants as well
as to quantify individuals from the domain of the structure. Second-order logic (SO)
additionally allows to quantify over relations of individuals. If the quantified relations
are restricted to be unary, i.e. sets, the resulting logic is called monadic second-order
logic (MSO).

Definition 2.22 (MSO syntax). Its syntax is defined

ϕ ::=> | ¬ϕ | ϕ ∧ϕ | ∀xϕ | ∀Uϕ | R( t, . . . , t⏟  ⏞  
ar(R) times

)

where U stands for unary relation symbols. Here, t denotes a term and R is the binary
relation “=” or a relation from the structure. Define the shortcutsϕ∨ψ := ¬(¬ϕ∧¬ψ),
∃xϕ := ¬∀x¬ϕ and ∃Uϕ := ¬∀U¬ϕ.

Terms are syntactically defined by

t ::= c | f ( t, . . . , t⏟  ⏞  
ar( f ) times

) | x

for constant symbols c, function symbols f and variables x .
Write MSO for the set of all syntactically valid MSO formulas.

Definition 2.23 (MSO semantics). The evaluation of such a formula is an easy exten-
sion of the standard semantics of first-order logic formulas. To handle assignments to
variables, we use an interpretation I of individual and set variables. Interpretations
can be seen as a generalization of assignments to Boolean variables. They allow to
inductively define the evaluation of a formula ϕ ∈MSO over a structure A:

11



2 Preliminaries

(A, I) |=> always

(A, I) |= ¬ϕ iff. (A,θ ) 6|= ϕ
(A, I) |= ϕ ∧ψ iff. (A, I) |= ϕ and (A, I) |=ψ
(A, I) |= ∀xϕ iff. (A, I[x/a]) |= ϕ for all a ∈ A
(A, I) |= ∀Uϕ iff. (A, I[U/R]) |= ϕ for all R ⊆ A

(A, I) |= R(t1, . . . , tar(R)) iff. (t(A,I)
1 , . . . , t(A,I)

ar(R)) ∈ R(A,I)

R(A,I) :=

{︃
I(R) if I(R) is defined

RA else,

where an extension of I is defined as

I[x/a](y) :=

{︃
a if x = y
I(y) else

I[U/R](V ) :=

{︃
R if U = V
I(V ) else

.

Terms are recursively evaluated to a single element of A as follows:

c(A,I) := cA for a constant symbol c

f (t1, . . . , tar( f ))
(A,I) := f A(t(A,I)

1 , . . . , t(A,I)
ar( f )) for a function symbol f

x (A,I) := I(x) for a variable x

A structure A models ϕ, i.e. A |= ϕ, if and only if (A,;) |= ϕ.

Example 2.24:
Let G = (V, E) be an undirected graph. It can as well be interpreted as a logical
structure where the vertices are the individuals and the edges form a binary, irreflexive,
symmetric relation E.

Then the well-known graph problem 3-COLORING can be formulated as an MSO
sentence:

∃R∃G∃B ∀x (Rx ∨ Gx ∨ Bx)

∧
(︀
Rx → (¬Gx ∧¬Bx)

)︀
∧
(︀
Gx → (¬Bx ∧¬Rx)

)︀
∧
(︀
Bx → (¬Rx ∧¬Gx)

)︀
∧ ∀u ∀v uEv→

(︀
¬(Ru∧ Rv)∧ ¬(Gu∧ Gv)∧ ¬(Bu∧ Bv)

)︀

12



3 Temporal logics

Propositional logic alone is not sufficient to talk about statements that change their
truth over time. The first one who systematically introduced time into modern logic
was Arthur N. Prior who used modal logic as a base framework [Pri57]. The resulting
system was called tense logic.

It was Amir Pnueli who discovered the usefulness of such logics in computer sci-
ence for formally describing the behaviour of dynamic systems with discrete time
steps [Pnu77]. While incorporating the “Until” operator proposed by Hans W. Kamp
[Kam68], further development by Pnueli [Pnu79] as well as E. Emerson, J. Halpern
and E. Clarke [CE82, EH85, EH86] has produced a family of temporal logics: Com-
putation Tree Logic (CTL), Linear Temporal Logic (LTL) and Full Branching Time Lo-
gic CTL*. Today, this familiy of temporal logics are widespread in many computer
scientific applications as e.g. system engineering, planning or automated reasoning.
Philippe Schnoebelen gave an excellent survey that in detail presents the motivation
and history of temporal logics as well as important results in computational complexity
of model checking and satisfiability [Sch02].

The temporal logics have in common a set of temporal operators which allow to
not only speak about truth of a formula, but instead about truth in timesteps that
are reachable from the current one. In practice, “timestep” will mostly address a step
in the computation tree of a program, therefore branching timelines are a common
concept in CTL and CTL*. In LTL however only linear timelines are considered.

We use the following syntactic constructs as temporal operators:

• Fψ: From now on, eventually ψ holds (Future).

• Gψ: From now on, ψ holds forever (Globally).

• Xψ: In the next timestep ψ holds (neXt). Synonyms: N,O

• ϕUψ: Eventually ψ has to hold and Until the timestep exactly before, ϕ holds.

Their meaning is visualized in Figure 3.1. There are also synonymous symbols 3, 2
and # for F, G and X respectively. Yet in this thesis we will stick to the non-symbolic
versions to avoid confusion with standard modal logic. Note that sometimes there are
more binary operators defined as shortcuts:

13



3 Temporal logics

. . .
Xψ

ψ

Xϕ

ϕ

X :

. . .
Fψ Fψ Fψ Fψ Fψ

ψ

F :

. . .
ψ ψ ψ ψ ψ

Gψ Gψ Gψ Gψ Gψ
G :

. . .
ψ ϕ ϕ ψ

ϕUψ ϕUψ ϕUψ ϕUψ
U :

Figure 3.1: Semantics of temporal operators X,F,G,U

• ϕRψ= Gψ∨ψUϕ: ψ has to hold until ϕ holds or forever (ϕ Releases ψ).

• ϕWψ= Gϕ ∨ϕUψ: ϕ has to hold until ψ holds or forever (Weak Until).

While the binary operator Until was introduced by Kamp, the unary temporal op-
erators are known since Prior’s publications [Pri57, Kam68]. They originally defined
analog operators to speak about the past, too:

• Oψ: In some earlier timestep ψ did hold (Once).

• Hψ: In all earlier timesteps ψ did hold (Historically).

• Pψ: In the previous timestep ψ did hold (Previous).

• ϕSψ: Earlier ψ did hold and Since the next timestep ϕ did hold.

For e.g. LTL the version supplemented with past operators is called PLTL. The ques-
tion whether how much these two logics differ in expressivity was open for more
than 20 years. In 2003 Nicolas Markey showed that even if LTL and PLTL can express
equivalent formulas, the latter one does so exponentially more succinct [Mar03]. Nev-
ertheless we will concentrate on pure future temporal logics for reasons of simplicity.

14



3.1 Computation Tree Logic (CTL)

3.1 Computation Tree Logic (CTL)

As the name says, CTL expresses properties of computation trees and is therefore a
branching time logic. In general, computation trees are considered infinite as depic-
ted in Figure 3.2a. Moreover the computation should not halt in any state. Yet we
are interested in systems which can be modeled with a finite number of states, giving
the advantage of being representable as a finite Kripke structure (see Definition 2.18).
These two representations of an infinite computation are equivalent, the finite struc-
ture however has to be serial then, i.e. every state has at least one successor, as shown
in Figure 3.2b. This condition essentially restricts the available Kripke frames to the
ones in the class D of serial frames1 [BdV01].

To specify the semantics of temporal logics, first the concept of state formulas and
path formulas has to be illustrated. The mentioned temporal operators are defined
on timesteps that are ordered along a path, yet there are many paths that origin at a
given state. Due to the concept of branching time in CTL, two path quantifiers called
E and A are required. Any formula with temporal operators is a path formula, but to
get a state formula (which can be evaluated in states of the structure) the temporal
operators may only occur in the scope of a path quantifier.

The set CTL of syntactically valid CTL formulas is defined by following grammar:

ϕ ::= x | > | ϕ∧ϕ | ¬ϕ | AFϕ | AGϕ | AXϕ | A[ϕUϕ] | EFϕ | EGϕ | EXϕ | E[ϕUϕ]

Since every temporal operator is always preceded by a path quantifier, CTL is a
temporal logic that has only state formulas.

Definition 3.1 (CTL semantics). Fix a Kripke structure M= (W, R, V ). Let

Π(w) = {π | π= (w1, w2, . . .), w1 = w, ∀i ∈ N : wiRwi+1 }

be the set of all paths π in M of infinite length which are starting in w. For an infinite
path π= (w1, w2, . . .), define π[i] := wi.

Then the evaluation semantics of CTL is defined inductively and purely on state
formulas.

1A binary relation R is serial if every element u has at least one element v with uRv.

15



3 Temporal logics

. . . . . . . . . . . . . . . . . .

w0

w1 w2

w4 w5w3 w6

(a) An infinite computation tree

wa wb wc

wd we w f

(b) A serial Kripke structure

Figure 3.2: Possible ways to model a non-halting computation

(M, w) |= x for x ∈ PS iff. w ∈ V (x)
(M, w) |=> always

(M, w) |= ¬ϕ iff. (M, w) 6|= ϕ
(M, w) |= ϕ ∧ψ iff. (M, w) |= ϕ and (M, w) |=ψ
(M, w) |= AFϕ iff. ∀π ∈ Π(w) ∃i ∈ N : (M,π[i]) |= ϕ
(M, w) |= AGϕ iff. ∀π ∈ Π(w) ∀i ∈ N : (M,π[i]) |= ϕ
(M, w) |= AXϕ iff. ∀π ∈ Π(w) : (M,π[2]) |= ϕ
(M, w) |= A[ϕUψ] iff. ∀π ∈ Π(w) ∃i ∈ N : (M,π[i]) |=ψ

and ∀ j, 1≤ j < i : (M,π[i]) |= ϕ
(M, w) |= EFϕ iff. ∃π ∈ Π(w) ∃i ∈ N : (M,π[i]) |= ϕ
(M, w) |= EGϕ iff. ∃π ∈ Π(w) ∀i ∈ N : (M,π[i]) |= ϕ
(M, w) |= EXϕ iff. ∃π ∈ Π(w) : (M,π[2]) |= ϕ
(M, w) |= E[ϕUψ] iff. ∃π ∈ Π(w) ∃i ∈ N : (M,π[i]) |=ψ

and ∀ j, 1≤ j < i : (M,π[i]) |= ϕ

Observe that the definition via quantifiers directly implies a duality relation for the
simpler temporal operators. This is however not the case for until-operators due to
their asymmetric quantifier structure, leading to different equivalences.
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3.2 Linear Temporal Logic (LTL)

EXψ = ¬AX¬ψ EFψ = E[>Uψ]
EFψ = ¬AG¬ψ AFψ = A[>Uψ]
EGψ= ¬AF¬ψ A[ϕUψ] = AFψ∧¬E[¬ψU(¬ϕ ∧¬ψ)]

This asymmetric result is surprising at first sight: The EU operator is more expressive
than the AU operator despite being defined with one less quantifier alternation. When
used together with AF, however, EU can define AU.

From the above equivalences one can prove that the operator set {AF,AX,EU } fully
expresses CTL and the set {AF,AX,AU } does not [Lar95].

The satisfiability problem corresponding to CTL is CTL-SAT,

CTL-SAT :=
{︂
ϕ

⃒⃒⃒⃒
ϕ ∈ CTL and (M, w) |= ϕ for a serial Kripke
structure M and a world w of M

}︂
.

The model checking problem is CTL-MC:

CTL-MC :=
{︂
(ϕ,M, w)

⃒⃒⃒⃒
ϕ ∈ CTL, M is a serial Kripke
structure and (M, w) |= ϕ

}︂

3.2 Linear Temporal Logic (LTL)

Linear Temporal Logic was initially introduced by Pnueli in 1977 [Pnu77]. Unlike CTL,
it is not considered a branching temporal logic but as the name suggests a linear one
instead. LTL originated from languages of infinite strings over finite alphabets, so-
called ω-words, named after the smallest infinite ordinal ω. It is possible to define
finite automata that accept such ω-languages, e.g. Büchi-automata, which accept an
ω-word if and only if they visit an accepting state infinitely often [Büc90].

Yet the definition of LTL semantics can also be carried over to serial Kripke structures.
When comparing the syntax of LTL to CTL, the absence of path quantifiers is obvious.
Indeed temporal operators can be nested directly in LTL and refer still to the same
infinite path, which is also called a run.

The set LTL of syntactically valid LTL formulas is defined as follows:

ψ ::= x | > |ψ∧ψ | ¬ψ | Fψ | Gψ | Xψ |ψUψ

In contrast to CTL, LTL is a temporal logic that has only path formulas.

Definition 3.2 (LTL semantics). Let π= (w1, w2, . . .) be an infinite path. Define π≥i as
the subpath starting at index i, i.e. π≥i := (wi, wi+1, . . .). The truth of an LTL formula
is then again defined inductively:

17



3 Temporal logics

(M,π) |= x for x ∈ PS iff. π[1] ∈ V (x)
(M,π) |=> always

(M,π) |= ¬ϕ iff. (M,π) 6|= ϕ
(M,π) |= ϕ ∧ψ iff. (M,π) |= ϕ and (M,π) |=ψ
(M,π) |= Fϕ iff. ∃i ∈ N : (M,π≥i) |= ϕ
(M,π) |= Gϕ iff. ∀i ∈ N : (M,π≥i) |= ϕ
(M,π) |= Xϕ iff. (M,π≥2) |= ϕ
(M,π) |= ϕUψ iff. ∃i ∈ N : (M,π≥i) |=ψ

and ∀ j, 1≤ j < i : (M,π≥ j) |= ϕ

General satisfiability of an LTL-formula is equivalent to the one on path-like Kripke
structures, hence to define satisfiability we simply quantify paths that start in an initial
world w.

The resulting problem is LTL-SAT:

LTL-SAT :=
{︂
ϕ

⃒⃒⃒⃒
ϕ ∈ LTL and (M,π) |= ϕ for a serial Kripke
structure M, a world w of M and all π ∈ Π(w)

}︂
Considering only one path starting at w instead of all paths would lead to an equi-

valent satisfiability problem due to the seriality of the structures.
The model checking problem is LTL-∀MC:

LTL-∀MC :=
{︂
(ϕ,M, w)

⃒⃒⃒⃒
ϕ ∈ LTL, M is a serial Kripke structure
and (M,π) |= ϕ for all paths π ∈ Π(w)

}︂
One could also define the problem LTL-∃MC where at least one path from the initial

world w has to fulfill ϕ, in fact for ϕ ∈ LTL holds:

(ϕ,M, w) ∈ LTL-∀MC⇔ (¬ϕ,M, w) /∈ LTL-∃MC

The universal variant is however more intuitive in practice and the results of compu-
tational complexity can easily be transferred between these two problems.

Notice that the different semantics (state formulas and path formulas) lead to in-
comparable expressiveness of CTL and LTL in the sense that there are CTL formulas not
expressible in LTL and vice versa. Roughly spoken, LTL cannot handle branching while
CTL cannot express fairness. Fairness in general has the meaning that a desired event
happens infinitely often in a run, or similar, that every request gets eventually granted.
An example for an LTL formula that expresses fairness is G(request→ Fgrant).
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3.3 Full Branching Time Logic (CTL*)

Example 3.3:
Consider another well-known counter-example that has no equivalent CTL formula:
FGp. It states that there is a future timestep from whereon p will forever hold. It is
satisfied for example by all paths starting in w0 in the following structure:

w0 w1 w2

p p

Now evaluate the CTL formula AFAGp where every temporal operator was just sup-
plemented with an A: It is false in world w0. It states that every infinite path has to
contain a state w such that on all paths starting in w globally p holds. But the path
π= (w0, w0, . . .) contains no such state w.

While AFAGp is stricter than FGp, the slight variation AFEGp is too permissive: It
states that every infinite path contains a world w such that p eventually holds in a path
starting from w. This is the case for every path starting in w0 in the structure below.

w0 w1 w2 w3

p p

In contrast, the LTL formula FGp now is false in every world because there is always
a path which can alternate between w2 and w3 infinitely often, preventing Gp from
ever holding on that path.

On the other hand, even the simple CTL formula EXp ∧EX¬p has no equivalent in
LTL since it necessitates branching.

Theorem 3.4 (Clarke and Draghicescu, 1989 [CD89]). A CTL formula ϕ is either equi-
valent to the LTL formula obtained by deleting all path quantifiers (A,E) from it, or it
has no equivalent LTL formula.

3.3 Full Branching Time Logic (CTL*)

The temporal logic CTL∗ was first proposed by Emerson and Halpern to join CTL-like
branching with LTL-like single-path nesting of temporal operators [EH86]. It allows
to freely combine these operators to path formulas which then are prefixed by a path
quantifier. This syntactical structure leads to a grammar using two symbols, state
formulas ϕ and path formulas ψ.

ϕ ::= x | > | ϕ ∧ϕ | ¬ϕ | Aψ | Eψ
ψ ::= ϕ |ψ∧ψ | ¬ψ | Fψ | Gψ | Xψ |ψUψ
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3 Temporal logics

A formula ϕ is a valid CTL∗ formula, i.e. ϕ ∈ CTL?, if and only if it is a state formula
constructed by the above grammar. The interpretation of CTL∗ formulas follows the
previously stated semantics of CTL and LTL:

Definition 3.5 (CTL∗ semantics).

(M, w) |= x for x ∈ PS iff. w ∈ V (x)
(M, w) |=> always

(M, w) |= ¬ϕ iff. (M, w) 6|= ϕ
(M, w) |= ϕ ∧ϕ′ iff. (M, w) |= ϕ and (M, w) |= ϕ′

(M, w) |= Aψ iff. ∀π ∈ Π(w) : (M,π) |=ψ
(M, w) |= Eψ iff. ∃π ∈ Π(w) : (M,π) |=ψ

(M,π) |= x for x ∈ PS iff. π[1] ∈ V (x)
(M,π) |=> always

(M,π) |= ¬ψ iff. (M,π) 6|=ψ
(M,π) |=ψ∧ψ′ iff. (M,π) |=ψ and (M,π) |=ψ′

(M,π) |= Aψ iff. (M,π[1]) |= Aψ
(M,π) |= Eψ iff. (M,π[1]) |= Eψ
(M,π) |= Fψ iff. ∃i ∈ N : (M,π≥i) |=ψ
(M,π) |= Gψ iff. ∀i ∈ N : (M,π≥i) |=ψ
(M,π) |= Xψ iff. (M,π≥2) |=ψ
(M,π) |=ψUψ′ iff. ∃i ∈ N : (M,π≥i) |=ψ′

and ∀ j, 1≤ j < i : (M,π≥ j) |=ψ

The satisfiability and model checking problems are defined as

CTL?-SAT :=
{︂
ϕ

⃒⃒⃒⃒
ϕ ∈ CTL? and (M, w) |= ϕ for a serial Kripke
structure M and a world w of M

}︂
,

CTL?-MC :=
{︂
(ϕ,M, w)

⃒⃒⃒⃒
ϕ ∈ CTL?, M is a serial Kripke
structure and (M, w) |= ϕ

}︂
Definition 3.6 (Negation Normal Form). A formulaϕ is in negation normal form (NNF)
if negations (¬) occur only in front of propositional variables.

We write CTLNNF for the subset of CTL-formulas that are in NNF, analogously we
write LTLNNF and CTL?NNF.

Note that every U-free temporal formula is equivalent to a formula in NNF by re-
peatedly applying DeMorgan’s Law, replacing a temporal operator by its dual if neces-
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3.3 Full Branching Time Logic (CTL*)

sary. For formulas containing U operators however this is not necessarily possible due
to the lack of dual operators.

As well as the expressive powers of CTL and LTL are incomparable, there are CTL∗

formulas that are neither expressible in CTL nor in LTL1. This comes together with
a higher computational complexity when deciding consistency and model validity, as
Figure 3.3 shows. For both problems there are various completeness results. CTL
is the only considered logic that has tractable2 model checking while the problem is
PSPACE-complete for LTL and CTL∗. Model checking for linear time logics is reducible
to satisfiability and in fact both problems are PSPACE-complete. But for the branch-
ing logics satisfiability checking is complete for single resp. double exponential time.
The upper bounds are to Clarke, Emerson, Sistla and Lei. The lower bounds are to
Schnoebelen for CTL and to Sistla and Clarke for LTL (they automatically hold for
CTL∗ as well) [SC85, CES86, EL87b, Sch02].

The reader is again referred to Schnoebelen for an excellent summary of results
regarding complexity of temporal logics [Sch02].

The influence of the restriction to Boolean and temporal operator fragments on the
complexity was extensively studied by Meier [Mei11].

CTL LTL

CTL*

PSPACE-complete
EXP-complete
2EXP-complete

(a) Satisfiability complexity

CTL LTL

CTL*

P-complete
PSPACE-complete

(b) Model checking complexity

Figure 3.3: Expressive power and complexity of temporal logics

1Basically any formula that necessitates branching on nested temporal operators.
2But inherently sequential since it is P-complete.
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4 Treewidth and Courcelle’s theorem

GRAPHS HAVE BEEN A FUNDAMENTAL TOOL FOR MODELING MANY PROBLEMS in com-
puter science for a long time. Since they have immense importance for many practical
tasks, they are researched thoroughly also in complexity theory where plenty of formal
graph problems are defined and analyzed. Many of them are known as NP-complete
and therefore considered as intractable, such as CLIQUE, INDEPENDENT SET, DOMIN-
ATING SET, VERTEX COVER, HAMILTONICITY, COLORING, SUBGRAPH ISOMORPHISM and
FEEDBACK VERTEX SET.

Almost all important graph problems including the ones mentioned above are trivial
or tractable on tree instances [Nie06]. This led to the desire to formalize the “tree-
alikeness” of graphs. This property called treewidth was initially studied by Rudolf
Halin in his work on the S-function lattice 1 [Hal76]. Later it was rediscovered by Neil
Robertson and Paul D. Seymour [RS84]. The treewidth is a direct measure of quality
of an optimal tree decomposition. According to the definition, trees have a treewidth
of 1, cycles and serial-parallel graphs have a treewidth of 2. Any graph containing the
n-complete subgraph has treewidth at least n−1. Furthermore, every treewidth k ∈ N
can be characterized by a finite set of forbidden minors which is a consequence of the
famous graph minor theorem by Robertson and Seymour [Ram97].

A good tree decomposition of a graph allows to solve searching problems on it
much more efficiently than on the original graph — which often manifests as an fpt-
algorithm parameterized by the treewidth.

4.1 Tree- and path-decompositions

We use the definitions 2.20 and 2.21 of vocabularies and logical structures.

Definition 4.1 (Tree and path decomposition). Let A =
(︀
A,τA

)︀
be a finite relational

structure over τ= (R1, . . . , Rn).
Then a tree-decomposition T of A is a pair T =

(︀
T, (Bv)v∈V

)︀
where

• T = (V, E) is a finite tree with vertex set V and edge set E,

• (Bv)v∈V is a family of subsets of A, called bags,

1This lattice of graph parameters has the treewidth as supremum and the Hadwiger number, the
maximal size of a clique minor, as infimum.
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4 Treewidth and Courcelle’s theorem

• for every a ∈ A the vertices of bags containing a induce a non-empty connected
subgraph of T and

• for every relation R of τ and every (a1, . . . , aar(R)) ∈ RA there exists a vertex v ∈ V
with

{︀
a1, . . . , aar(R)

}︀
⊆ Bv.

If additionally T is a path graph, i.e. acyclic with maximum degree 2, then T is a
path-decomposition of A.

Definition 4.2 (Treewidth and pathwidth). Let T =
(︀
(V, E), (Bv)v∈V

)︀
be a tree-decom-

position of a relational structure A=
(︀
A,τA

)︀
.

Then the width of T is the size of the biggest bag minus one, i.e.

w(T) :=max{|Bv| | v ∈ V} − 1.

The treewidth of A is the width of a tree-decomposition of A with smallest width:

tw(A) :=min{w(T) | T is a tree-decomposition of A}

Such a tree-decomposition is called optimal.
Likewise, the pathwidth of A is the width of a path-decomposition with smallest

width;

pw(A) :=min{w(T) | T is a path-decomposition of A}

The offset -1 in the definition of width was historically chosen to let trees correspond
exactly to the graphs with treewidth 1 and path graphs to those with pathwidth 1.

Much work has be done on treewidth and on algorithms computing optimal decom-
positions. In particular, a variety of results has been achieved by Bodlaender including
the following theorems [BK91, Bod93a, Bod93b].

Theorem 4.3 (Bodlaender, 1993). For every k ∈ N there is an algorithm with runtime
2O(k3) ·O(|A|) that, given a structure A, computes a tree-decomposition of A of width at
most k or returns “tw(A)> k” if no such decomposition exists.

A similar theorem holds for path-decompositions.
As given above, Bodlaender’s theorem merely states the existence of a non-uniform

algorithm, showing that the otherwise NP-complete problem TREEWIDTH (given a
graph G and a natural number k, decide if tw(G) ≤ k) is in P for each slice when
parameterized by k [Bod93a]. But it does not follow XP or even FPT membership
from this, in fact, a non-uniform algorithm deciding treewidth is easy to find. One
can e.g. determine if a graph has treewidth > k by testing each element of the finite
obstruction set for treewidth ≤ k [RS84, Ram97]. However, Bodlaender and others
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4.2 Recognizing MSO-definable sets

stated that in contrast to earlier results the new algorithm can be used “constructively”
and with k as part of the input. This leads to a more general version of the theorem
[FG06, Thm. 11.12]:

Corollary 4.4 (Construction of optimal decompositions). There is an algorithm that,
given a structure A, computes an optimal tree-decomposition (resp. path-decomposition)

in time f (tw(A)) ·O(|A|)
(︁

resp. f (pw(A)) ·O(|A|)
)︁

for a computable f .

Proof. Iterate the natural numbers k = 1,2, . . . until a decomposition is found via
Theorem 4.3.

Lemma 4.5. Let Πtw = (P,κ+ tw) and Πpw = (P,κ+ pw) be a set P of relational struc-
tures which is parameterized by κ and additionally by treewidth resp. pathwidth. Then
Πpw ≤fpt Πtw.

Proof. Every path-decomposition of a structure is also a tree-decomposition. There-
fore pathwidth is always an upper bound for treewidth. Hence κ+ tw(x)≤ κ+pw(x),
and the identity function yields a correct fpt-reduction.

4.2 Recognizing MSO-definable sets

In 1990 Courcelle worked on graph grammars and graph languages and as well on
monadic second order logic. He proved in a constructive way that any MSO-definable
graph property can be decided in linear time on the graphs’ tree-decompositions with
bounded treewidth. For this he used a finite automaton variant called tree automaton,
which runs on tree-like, non-linear inputs. The automata-theoretic approach is also
the most common proof for Courcelle’s theorem today.

Combined with Bodlaender’s results, the algorithm is usually given as in Algorithm
4.1.

Lemma 4.6. Algorithm 4.1, given A, k and ϕ, decides whether tw(A) ≤ k and A |= ϕ
in fpt-time.

Proof. We will sketch the common proof [Cou90]. By construction of ϕ∗ it holds that
A |= ϕ⇔ T |= ϕ∗. Also it holds that T |= ϕ∗ if and only if T ∈ L(M), i.e. M accepts
T.

The runtime of step 1 and 2 is f (k) · O(|G|) due to Theorem 4.3, step 3 runs in
time g(k, |ϕ|), the automaton construction in step 4 runs in time h(k, |ϕ|) and finally
the simulation in step 5 is possible in time h(k, |ϕ|) · |G|. The functions f , g, h are
computable. The whole algorithm requires time

(︀
f (k, |ϕ|) + g(k, |ϕ|) + h(k, |ϕ|)

)︀
·

O(|G|) which is fpt and in fact fixed-parameter linear time.
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4 Treewidth and Courcelle’s theorem

Algorithm 4.1: Courcelle’s algorithm
Input :A relational structure with treewidth tw(A)

k ∈ N upper bound for treewidth
ϕ MSO formula

Output : Is tw(A)≤ k and ϕ |=A ?
1 if tw(A)> k then reject
2 T← tree-decomposition of A with width at most k
3 ϕ∗← ϕ transformed to its tree variant
4 M← the tree automaton recognizing exactly the models of ϕ∗

5 Simulate M on T.
6 if M accepted then accept else reject

Let MSO-MC be the model checking problem for MSO formulas on relational struc-
tures:

MSO-MC := { (ϕ,A) | ϕ ∈MSO,A is a relational structure and A |= ϕ }

Then the following theorems show the fixed-parameter tractability of MSO-MC.

Theorem 4.7 (Courcelle’s meta-theorem for treewidth). The parameterized problem
(MSO-MC,κtw) is in FPT, where κtw(ϕ,A) = |ϕ|+ tw(A).

Proof. The theorem follows from Lemma 4.6 and Corollary 4.4. If no upper bound for
the treewidth is known a priori, one can for each natural number try to construct a
tree-decomposition of that width. This leads to another factor tw(A) in the runtime.
A more detailed proof is provided by Courcelle and Engelfriet [CE12, Theorem 1.24
and Chapter 6].

Corollary 4.8 (Courcelle’s meta-theorem for pathwidth). The parameterized problem
(MSO-MC,κpw) is in FPT, where κpw(ϕ,A) = |ϕ|+ pw(A).

Remark: Courcelle’s theorem is a result that has a purely theoretical nature due to
its enormous constant factors hidden in the O-notation and the dependence on the
parameter: g ≈ 232·k3

. The time h(k, |ϕ|) required for the construction of M cannot
even be bounded by an elementary function unless P = NP [FG04]. The number of
states of M rather grows as an exponential “power tower” whose height is linear in
the number of second-order quantifier alternations in ϕ. Hence applying Courcelle’s
theorem is usually not the end of classifying a problem but instead the beginning of
searching for an efficient algorithm.
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4.3 Meta-algorithm for uniform MSO-formula families

4.3 Meta-algorithm for uniform MSO-formula families

In Section 2.2 we saw how to define decision problems in terms of monadic second
order logic. It follows from Courcelle’s theorem that such a problem always is in FPT
when the chosen parameterization is at least the treewidth of the input structure. Still
there are problems which are undefinable in MSO for certain reasons.

To cover some of the problems that are not definable by a single MSO formula, a
meta-algorithm is presented that dynamically selects the proper formula for a given
instance. A variant of this algorithm was presented by Lück, Meier and Schindler
[LMS15].

As a first step we need a way to provide infinitely many MSO formulas to an al-
gorithm. Therefore we require a finite description of such a formula family:

Definition 4.9 (Uniform formula families). Let Φ := (ϕn)n∈N be a family of MSO for-
mulas. We call Φ uniform if there is a computable function g such that g(n) = ϕn, that
is, g computes the correct formula when a binary representation of n is provided.

A computable formula family however does not automatically grant fpt-like runtime.
For the theorem it is also required that the selection of a proper formula for a given
instance happens in fpt-time too and that the formula cannot become too long.

Definition 4.10 (κ-bounded functions). Let κ : Σ∗ → N be a function. A function
f : Σ∗ → ∆∗ is κ-bounded if for every x ∈ Σ∗ the length of f (x) can be computable
bounded in terms of κ, i.e. there is another computable function h : N→ N such that
∀x ∈ Σ∗ : | f (x)| ≤ h(κ(x)).

Altogether we get:

Theorem 4.11. Let (Q,κ) be a parameterized problem over structures A such that tw(A)
is κ-bounded. Let (ϕn)n∈N be a uniform MSO formula family. Let f be a κ-bounded, fpt-
computable function w. r. t. κ. If for every A it holds that A ∈ Q ⇔ A |= ϕ| f (A)|, then
(Q,κ) ∈ FPT.

Proof. Let (ϕn)n∈N be computed by a function g. Then the following algorithm cor-
rectly decides Q:

Algorithm 4.2: Meta-algorithm for MSO-family definable problems
Input : Relational structure A

1 n← | f (A)|
2 ϕ← g(n)
3 return A |= ϕ?

The runtime of f in step 1 is fpt w. r. t. κ by premise. Because f is κ-bounded, the
size of n and therefore the runtime of g in step 2 can also only depend on κ. The
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4 Treewidth and Courcelle’s theorem

runtime of step 3 follows from Courcelle’s theorem and is linear when parameterized
by |ϕ| + tw(A). But |ϕ| is bounded by the runtime of g so both |ϕ| and tw are κ-
bounded. Formally, the runtime of step 3 is j(|ϕ|, tw(A)) · |A|. The function j can be
chosen non-decreasing hence we get fpt-runtime and the theorem follows.

Note that the individual members of a formula family do not have to agree on a fixed
vocabulary. A possibility to use this theorem is when dealing with sets of structures
with unbounded number of relation symbols. It is impossible to define such a set with
a single formula unless only finitely many relation symbols are used non-trivially. In
this thesis however we will stick to finite vocabularies.
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5 Parameterizing temporal
satisfiability

The satisfiability problem of a logic is in general harder to solve than its model checking
problem. The task of formal verification mostly deals with models. However, both
problem have their importance in practice in the scope of temporal logics. Usually in
the progress of verification it is stated that a certain constraint ϕ should hold on a
given model A. This constraint ϕ should not contain inconsistent subformulas; the
existence of such a subformula obviously doesn’t make sense in a verification task.

On the other hand a tautological subformula is even worse in practice; it is clearly
not intended in model checking and can easily lead to wrong verification results since
it is more difficult to notice. Hence a good model checking tool should also be able to
do satisfiability and validity tests efficiently.

In this chapter we want to determine the parameterized complexity of satisfiabil-
ity of various fragments of temporal logics for a suitable parameter. An important
part of work is usually to find a meaningful parameter. Take for example the prob-
lem of propositional satisfiability, SAT: One could easily parameterize the instances
(propositional formulas) by the number of occurring variables. While such a choice
would immediately yield an fpt-algorithm deciding SAT in time 2k · O(n), this result
is not very helpful for a simple reason; the average number of variables is not a prop-
erty that is “usually low” in common instances, and therefore this parameterization
is useless in practice1. In general, for every decidable problem one can find artificial
parameterizations permitting straightforward FPT results, as well as for every intract-
able problem it can be proven that certain parameterizations2 stay fixed-parameter
intractable [FG06].

Following similar research of Praveen on modal logic [Pra13], we use the temporal
depth together with the structural pathwidth resp. treewidth of the formula as a para-
meter. This seems sensible for the following reasons: On the one hand, a temporal
formula used for verification is likely designed having a rather low nesting depth of
temporal operators. This is sufficient to express most important constraints like live-
ness, safety and fairness. On the other hand, the structural pathwidth and treewidth

1More details about choosing a good parameterization can be found in [Nie06, pp. 41–49].
2Take an arbitrary EXP-complete problem and the constant parameterization κ= 1.
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5 Parameterizing temporal satisfiability

are correlated to the degree of “interconnectedness” of disjoint subformulas in the
sense of how many variables they have in common. Thus they are the lower the more
the formula consists of multiple independent constraints. In this sense parameterized
complexity theory allows to formally relate propositional interconnectedness to com-
putational complexity.

The following sections are organized as follows. The fragments of the temporal
logics CTL, LTL and CTL∗ are each analyzed in the context of parameterization by tem-
poral depth and treewidth. Regarding the parameterization by treewidth or pathwidth
we apply the result by Bruno Courcelle which was presented in Chapter 4. Last, the
influence of the two parts of the parameter is studied separately.

5.1 Syntactical structures

To define a measure of pathwidth and treewidth on temporal formulas, we transform
them into a structure that almost resembles a syntax tree. The main difference is
that every propositional variable is represented by exactly one node. Hence in the
case that a variable occurs multiple times the syntax graph is no longer a tree but a
directed acyclic graph (dag). From now on, we write SF(ϕ) for the set of all syntactically
valid subformulas of ϕ, including ϕ itself. Note that we distinguish subformulas that
are lexicographically equal but occur at different positions inside ϕ. Therefore we
define SFo(ϕ) similar to SF(ϕ) except it can contain multiple subformulas that are
syntactically equivalent. Instead of considering SFo(ϕ) as a multiset one could also
treat it as a simple set of subformula-position pairs.

If for a temporal formula ϕ we speak about the treewidth tw(ϕ)
(︀
resp. pathwidth

pw(ϕ)
)︀

we always refer to the treewidth (resp. pathwidth) of the syntactical structure
Sϕ of ϕ. This structure is constructed on a special relational vocabulary τsyn which
contains the following relation symbols:

Rroot(α) if α= ϕ
R ·T (α,β) if ∃γ s. t. α= βTγ for a binary connective T
RT ·(α,β) if ∃γ s. t. α= γTβ for a binary connective T
RT (α,β) if α= Tβ for a unary connective T

Connectives appear as Boolean connectives ∧,∨,¬ and temporal connectives X, F,
G, U, A, E plus their combinations to CTL operators.

Construct the syntactical structure Sϕ :=
(︁

SFo(ϕ),
(︀
τsyn

)︀Sϕ )︁ by using SFo(ϕ) as do-
main and then choosing the minimal interpretations of the given relations that obey
the rules above.
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5.2 Modal Logic (ML)

Example 5.1:
Let ϕ = AF (EXp ∧ A[¬pUq]) be a CTL formula. Then the corresponding structure
Sϕ is shown in Figure 5.1.

Rroot

RAF

R ·∧ R∧·

REX

RAU·R ·AU

R¬

Figure 5.1: Example for a syntactical structure

Remark: Modelling a formula as a structure is not a new idea. Several graph theo-
retic interpretations have been considered for example in the context of the problem
Counting-SAT (#SAT) which asks for the number of satisfying assignments of a propos-
itional formula. In this area the fixed-parameter tractability with regard to different
notions of treewidth has been studied e.g. by Marko Samer and Stefan Szeider [SS06].

A different generalization of the satisfiability problem is the constraint satisfaction
problem (CSP). Again Samer and Szeider did a classification with respect to paramet-
erized complexity along a wide lattice of parameters including several notions of struc-
tural treewidth [SS10].

5.2 Modal Logic (ML)

Modal logic on serial frames, i.e. in the frame class D, can be seen as a kind of restricted
version of CTL in the sense that the only allowed temporal operators are AX and EX,
where AX ̂︀= 2 and EX ̂︀= 3, as illustrated in Figure 5.2. It was shown by Praveen
that modal satisfiability is fixed-parameter tractable when restricted to modal CNF
(conjunctive normal form) and parameterized by structural treewidth and modal depth.
The structural treewidth of a modal CNF formula is similarly defined as in Section 5.1.
The modal depth of a formula ϕ is the maximal nesting depth of modal operators in
ϕ.
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5 Parameterizing temporal satisfiability

Formally:

md(x) := 0 if x ∈ PS md(>) := 0

md(ϕ ∧ψ) :=max{md(ϕ),md(ψ)} md(¬ϕ) :=md(ϕ)
md(2ϕ) :=md(ϕ) + 1

An example of a property that is not expressible in modal logic is the reachability
property: From the world w, is there a sequence of successors such that one finally
arrives in a world w′ where ψ holds? In general, every formula ϕ is satisfiable if
and only if it has a model with depth bounded by md(ϕ). Here, the depth of a Kripke
structure is the maximum depth of a world, where the depth of a world w is the length
of the shortest path to w from the root of the structure.

Hence reachability over a path with arbitrary length is not expressible with 2 and
3 [BdV01]. This however not longer holds if the Kripke structures are restricted to
e.g. frames with a transitive successor relation. Such restrictions can have signific-
ant impact on the hardness of the satisfiability problem. This holds in the classical
complexity theory as well as when parameterized by modal depth.

Theorem 5.2 (Ladner, 1977). ML-SAT is PSPACE-complete under ≤log
m -reductions. If

the frames are restricted to the class S5 of Euclidean frames1, the resulting satisfiabil-
ity problem is NP-complete under ≤log

m -reductions and therefore as easy as propositional
satisfiability [Lad77].

Theorem 5.3 (Praveen, 2013). ML-SAT is FPT on CNF formulas when parameterized
by structural treewidth and modal depth, W[1]-hard when restricted to transitive frames,
and again FPT for any frame class that is additionally Euclidean [Pra13].

Note that the classical complexity drops to NP for the class S5 because of the polyno-
mial model property: A modal formula ϕ is satisfied in S5 if and only if it is satisfied by
an Euclidean model with size |ϕ|O(1). This is not the case for the other frame classes
since there are formulas that enforce non-Euclidean models of exponential size.

In the parameterized version, the FPT results stem from a similar property: Every
satisfiable modal formulaϕ has a model of depth at most md(ϕ)which can also be con-
structed Euclidean, but not necessarily transitive. The bounded model depth allows to
express satisfiability by an MSO formula over the formula structure which essentially
quantifies sets of subformulas corresponding to worlds in a model, using O(md(ϕ))
quantifiers overall. Then FPT membership follows from Courcelle’s theorem as a spe-
cial case of Theorem 4.11.

1A binary relation R is Euclidean if wRu∧wRv→ uRv.
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ML

CTL

CTL*

PSPACE-complete
EXP-complete
2EXP-complete

Figure 5.2: Modal logic embedded into temporal logics

5.3 Computation Tree Logic (CTL)

In CTL we distinguish between the operator fragments depicted in Figure 5.3. Every
black line between two fragments T, T ′ represents an increase of expressive power in
the sense that every formula expressible in T can also be expressed using the operators
in T ′ but not the other way around. The operators EF,EG,EX are not considered
explicitly because they can be expressed in their dual operators AG,AF,AX together
with negation:

Definition 5.4. For sets T and T ′ of temporal operators, T is simulated by T ′, written
T v T ′, if every temporal operator in T is also in T ′ or can be written with operators
from T ′ together with Boolean connectives. Write T ≡ T ′ if T v T ′ and T ′ v T .

Example 5.5:
{AF,AX} ≡ {EX,EG}. {F,X} v {U,X}. {A,F} ≡ {E,A,G,F}. {AU} v {AF,EU}.

Let T be a set of temporal operators. For the set of CTL formulas using only the
operators that can be simulated using T , write CTL(T ) (we will omit the set brack-
ets when appropriate). Use the shortcuts CTL-SAT(T ) := CTL(T ) ∩ CTL-SAT and
CTLNNF(T ) := CTL(T )∩CTLNNF.

Following classical complexity results are known from Meier [Mei11]:

• The fragments ; and {AF } are NP-hard, as this property already arises for pro-
positional logic, and in NP for the ; case.
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;

AX

AF

AF,AX AG

AG,AX

AU

AU,AX

EU

EU,AX

AF,AG

AF,AG,AX

AU,AG

AU,AG,AX

AF,EU

AF,EU,AX

NP-complete
PSPACE-complete
EXP-complete
Open

Figure 5.3: Classical complexity of CTL satisfiability

• The fragments {AG } , {AG,AF } , {AX } , {AX,AF } are PSPACE-complete. Even
if this comes with a slightly modified proof when AX is not available, the hard-
ness directly carries over from the possibility to embed model logic in these frag-
ments. PSPACE membership on the other hand is obtained using an algorithm
with polynomial recursion depth.

• Any fragment containing {AU }, {EU } or {AG,AX } can express computations
of Alternating Turing Machines with polynomial space, which itself is equivalent
to exponential time. Therefore the satisfiability problem of these fragments is
EXP-complete.

In this section the satisfiability problem of CTL is studied with regard to paramet-
erization by treewidth of syntactic structures and nesting depth of temporal operat-
ors. Certain operator fragments turn out to be fixed-parameter tractable for reasons
that are similar to the classical case with some exceptions, namely having models of
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5.3 Computation Tree Logic (CTL)

bounded depth. Those fragments which can enforce “long models” are provided with
a matching lower bound, i.e. W[1]-hardness.

The parameter temporal depth, td, is defined similar to modal logic:

td(x) := 0 if x ∈ PS td(>) := 0

td(ϕ ∧ψ) :=max{td(ϕ), td(ψ)} td(¬ϕ) := td(ϕ)
td(Tϕ) := td(ϕ) + 1 if T ∈ {AX,AF,AG,AU,EX,EF,EG,EU}

5.3.1 The tractable fragment AX
The following result regarding a tractable problem makes intensive use of Courcelle’s
theorem and therefore relies on MSO-definability of the corresponding decision prob-
lem. The main idea is to express the existence of a model in an MSO formula by
consecutively quantifying each world and as many successors as necessary. The syn-
tactical structures of formulas are used as the logical structures for the MSO formula.
Then a particular world is quantified as a unary relation, and therefore a subset of
individuals which essentially is the set subformulas labeled in this world.

This representation of a model has its pitfalls: To check consistency of a quantified
model, in particular it has to be ensured that every “eventuality” imposed by temporal
operators is fulfilled in a future world. Strictly spoken, the linear order of quantifiers is
not suitable for expressing cyclic models, but every acyclic “tree” model of a temporal
formula has to be infinite (see Chapter 3). Therefore we rely on the fragments being
finitely verifiable, i.e. that it is sufficient to inspect only a small number of worlds of
an infinite tree model to prove its correctness.

First we introduce the notions of quasi-models which are required for working with
such infinite tree models.

Definition 5.6 (Quasi-labels). Let Γ be a set of CTL formulas in negation normal form.
A quasi-label H over Γ is a subset of Γ such that every element is propositionally implied,
i.e. for every formula α∧β ∈ H it follows that α ∈ H and β ∈ H and for every α∨β ∈ H
it follows that α ∈ H or β ∈ H.

These quasi-label conditions are also called local conditions.
Quasi-labels which contain both ψ and ¬ψ for a formula ψ are inconsistent, other-

wise they are consistent.

Definition 5.7 (Quasi-structures). A quasi-structure is almost a Kripke structure. It is
a tuple (W, R, L) with the following properties:

• W is a set of worlds,

• R ⊆W ×W is a serial successor relation,
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5 Parameterizing temporal satisfiability

• L : W 7→P(CTLNNF) meaning that for every w ∈W the set L(w) is a quasi-label
over CTLNNF.

Call a quasi-structure finite if W is finite. A quasi-structure is consistent if L(w) is
consistent for every w ∈W .

The main difference to a usual model is that the latter can only label simple propos-
itional variables to worlds.

Definition 5.8 (Quasi-models). A quasi-model of a formula ϕ ∈ CTLNNF is a tuple
(M, w0) with M = (W, R, L) being a quasi-structure and the following quasi-model
conditions satisfied:

• M is consistent,

• ϕ ∈ L(w0),

• L(w) is a quasi-label over SF(ϕ) for every w ∈W .

Additionally the temporal subformulas have to be satisfied for every w ∈W :

• if AXψ ∈ L(w) then ∀π ∈ Π(w) : ψ ∈ L(π[2])

• if EXψ ∈ L(w) then ∃π ∈ Π(w) : ψ ∈ L(π[2])

• if AFψ ∈ L(w) then ∀π ∈ Π(w) ∃i ∈ N : ψ ∈ L(π[i])

• if EFψ ∈ L(w) then ∃π ∈ Π(w) ∃i ∈ N : ψ ∈ L(π[i])

• if AGψ ∈ L(w) then ∀π ∈ Π(w) ∀i ∈ N : ψ ∈ L(π[i])

• if EGψ ∈ L(w) then ∃π ∈ Π(w) ∀i ∈ N : ψ ∈ L(π[i])

• if A[ψUχ] ∈ L(w) then ∀π ∈ Π(w) ∃i ∈ N : χ ∈ L(π[i]) and ∀ j, 1 ≤ j <
i : ψ ∈ L(π[i])

• if E[ψUχ] ∈ L(w) then ∃π ∈ Π(w) ∃i ∈ N : χ ∈ L(π[i]) and ∀ j, 1 ≤ j <
i : ψ ∈ L(π[i])

A quasi-model is state-minimal for a formulaϕ if deletion of a state leads to the struc-
ture not longer satisfying ϕ in the quasi-model sense. It is label-minimal if every quasi-
label is minimal, i.e. deletion of a subformula from a quasi-label leads to violation of
a quasi-label condition w. r. t. ϕ. If a quasi-model is state-minimal and label-minimal
just call it minimal.
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In their definition, quasi-models expose similarities to the so-called Hintikka struc-
tures which themselves are also structures with extended labelings. Different notions
of quasi-models, pseudo-models or Hintikka structures are defined in this context:
Either quasi-labels require to have every formula labeled that is true at the given state;
or they require to have at least the formulas labeled that are required by another for-
mula labeled somewhere in the model. The definitions given above make use of the
second meaning.

The fragmentary problem CTL-SAT(AX) is already PSPACE-complete in classical
complexity theory, whereas the hardness disappears in the parameterization by tem-
poral depth. The reason for this is similar as in modal logic and is called finite tree
model property.

We will indeed start proving the tractability of CTL-SAT(AX) by restricting ourselves
to easily verifiable models that are characteristic for temporal X-formulas and as well
for modal formulas.

Definition 5.9. A Kripke model (M, r) is tree-like if the following properties hold for
every world w of M:

• either w= r and w has no predecessors,

• or w has exactly one predecessor,

• or w has exactly two predecessors of which one must be w itself (inducing a loop
in M) and w has only itself as a successor (w is a pseudo-leaf)

Definition 5.10. Let T be a tree quasi-model for a formula ϕ ∈ CTLNNF. We say that T
is branching-normalized if for every world w in T it holds: For every distinct E-prefixed
subformula ψ labeled in w there is exactly one successor of w where ψ is labeled.

Theorem 5.11. Let ϕ ∈ CTLNNF(AX,EX). Then the following statements are equivalent:

(1) ϕ is satisfiable.

(2) ϕ has a tree quasi-model.

(3) ϕ has a branching-normalized minimal tree quasi-model.

(4) ϕ has a tree-like Kripke model of depth td(ϕ).

Proof. (4)⇒ (1) is clear.
(1)⇒ (2):
A finite model (M, r) ofϕ can easily be transformed into such a tree T by “unrolling”

M beginning at the root r, repeatedly appending copies of worlds v1, . . . , vn to a leaf
w, if v1, . . . , vn are the corresponding successors of w in the finite model. Since M is a
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model of ϕ we can label ϕ at the root of T and extend every quasi-label L(w) of T to
fulfill the quasi-label conditions.
(2)⇒ (3):
We normalize the tree quasi-model T as follows. Assume that T is minimal since we

can always chop worlds and delete formulas from quasi-labels if it is not.
Let then w be a state of T that has the E-prefixed formulas EXγ1, . . . ,EXγn labeled.

Then there are (not necessarily distinct) successors w1, . . . , wn of w which each have
the corresponding γ1, . . . ,γn labeled. Every formula γi is labeled in exactly one suc-
cessor of w (otherwise T is not minimal). If there is a successor where γi,γ j for i 6= j
are labeled, duplicate the subtree below wi into two subtrees s. t. wi has labeled γi

but not γ j and the copy of wi has labeled γ j but not γi. The remaining formulas are
labeled in both states. Therefore a branching-normalized minimal tree pseudo-model
of ϕ can be constructed.
(3)⇒ (4):
For modal logic the result is proven as in [GO07, Lemma 35] (finite tree model

property). Since the temporal operators AX and EX correspond (besides seriality) to
the modal operators 2 and 3, the proof basically is the same as for modal logic.

Alternatively consider a minimal tree quasi-model T. Write td(w) as the maximal
temporal depth of a formula labeled in w, i.e. td(w) :=max { td(ψ) |ψ ∈ L(w) }. Then
for every world w and successor w′ it holds that td(w′)< td(w): Assume td(w′)≥ td(w)
for contradiction. Let ψ be a formula of maximal temporal depth labeled in w′ such
that ψ is not implied by a local quasi-label condition. Such a formula ψ must exist in
L(w). However ψ can then only be necessary because in w there is a formula AXψ or
EXψ labeled. But td(w)≤ td(w′) and ψ had maximal temporal depth in w′.

This shows that every quasi-label at depth td(ϕ) can merely contain propositional
formulas. In the minimal infinite tree model replace the successors of such worlds
by a self-loop, then delete every labeled formula except propositional variables. The
resulting structure is a finite Kripke model (because of the finite branching of T), tree-
like, of depth td(ϕ) and a model of ϕ.

Remark: For many other logics often the so-called filtration technique can be applied
to obtain finite models, which is used as follows. Take an infinite tree pseudo-model
T. Since T can be assumed minimal we have T to have only subformulas labeled that
indeed occur in ϕ. Hence we have only finitely many different quasi-labels appear-
ing in T. The worlds then form an equivalence relation ≡ in the sense that w≡ w′ iff.
L(w) = L(w′). ≡ has finite index (and indeed index≤ 2|ϕ|). Doing a quotient construc-
tion, i.e. collapsing equivalence classes of states into a single state results in a finite
structure. Unfortunately this construction introduces additional loops in the model
which causes problems with A operators. Therefore an additional step is required. A
correct construction is done by Emerson, which is basically a quotient construction
followed by an extraction of acyclic substructures that satisfy A-formulas. This yields
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the finite model [Eme90, Theorem 6.14].

Theorem 5.12. The problem CTL-SAT(AX) is fixed-parameter tractable when paramet-
erized by temporal depth and structural treewidth, i.e. (CTL-SAT(AX),κ) ∈ FPT for
κ(ϕ) := td(ϕ) + tw(Sϕ).

Proof. Let n ∈ N be a natural number. Then the following MSO formulas existentially
quantify a consistent quasi-structures of a formula ϕ ∈ CTLNNF(AX,EX).

θBoolean(H) := ∀x∀y∀z

H(x)→
(︁
R ·∧(x , y)∧R∧·(x , z)→ (H(y)∧H(z)) ∧

R ·∨(x , y)∧R∨·(x , z)→ (H(y)∨H(z)) ∧

R¬(x , y)→¬H(y)
)︁

θ 0
world(H) := θBoolean(H)

θ n
world(H) := θBoolean(H) ∧ ∃HAX

(︁
∀x
(︀
HAX(x)↔ (H(x)∧ ∃y RAX(x , y))

)︀
∧

∃H ′
(︀
θ n−1

world(H
′) ∧ ∀zHAX(z)→ H ′(z)

)︀
∧

∀x∀y
(︀
H(x)∧REX(x , y)

)︀
→
(︀
∃H ′ θ n−1

world(H
′)∧H ′(y)∧∀zHAX(z)→ H ′(z)

)︀)︁
Now it holds for a CTL formula ϕ in NNF that ϕ ∈ CTL-SAT(AX,EX) if and only if

Sϕ |= ∃H ∃x Rroot(x) ∧H(x) ∧ θ td(ϕ)
world(H).

Correctness

From Theorem 5.11 we know that it is sufficient to verify a tree quasi-model of ϕ
only up to depth ≤ td(ϕ). The formula θBoolean makes sure that every quantified quasi-
label H is consistent and ∧,∨-expressions are satisfied. This check is also sufficient
at maximal depth of the model where only propositional formulas are labeled. The
formula θ n

world(H) for n > 0 additionally requires at least one successor world to exist
at the next level to ensure seriality, and also that for every EX-formula in the quasi-
label H there is a branching to a successor of the current world, satisfying exactly that
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EX-formula. Also, every successor of the current world is required to fulfill any AX-
formula labeled in the current quasi-label H. This procedure is sufficient due to the
normalized-branching property.

FPT Runtime

Clearly there is a computable function g(n) = ∃H∃xRroot(x)∧ H(x)∧ θ n
world(H). Also

there is a function f with | f (ϕ)| = td(ϕ) that is computable in linear time. Since
κ(ϕ) = td(ϕ) + tw(Sϕ), both tw and f are κ-bounded. We may assume that the
formula ϕ is in NNF since such a conversion can again be done in linear time.

From ϕ ∈ CTL-SAT(AX,EX) ⇔ Sϕ |= g(| f (ϕ)|) and Theorem 4.11 follows the
fixed-parameter tractability.

5.3.2 Intractable fragments

AX- and EX-formulas can only speak about structures in a restricted way, i.e. they
cannot speak about worlds that have greater depth than the temporal depth of the
formula. Other CTL operators however have a greater expressive power by being able
to enforce “deep” models, i.e. the model depth cannot be bounded by the parameter
alone, lifting the algorithmic complexity of the satisfiability problem outside the range
of fixed-parameter tractability. This will be proven in two steps: First we will introduce
another W[1]-hard parameterized problem and then show that it can be formulated
in terms of different CTL operators.

Partitioned Weighted Satisfiability

Previously used by Praveen to show intractability of transitive modal logic, the prob-
lem of partitioned weighted satisfiability further generalizes the problem of weighted
satisfiability [Pra13].

An instance is a tuple I =
(︀
ϕ, k, (X i)i∈[k], (Ci)i∈[k]

)︀
where ϕ is a propositional for-

mula in CNF over variables x1, . . . , xn, and the variables are partitioned into disjoint
sets X1, . . . , Xk. [k] is a shorthand for the set {1, . . . , k}. Each partition X i has an
assigned capacity Ci ∈ N.

An assignment θ is called saturated for an instance I if in every partition X i there
are exactly Ci variables set to one by θ .

We define the problem of finding a saturated assignment:

PARTWEIGHT-SAT :=
{︂

I =
(︀
ϕ, k, (X i)i∈[k], (Ci)i∈[k]

)︀ ⃒⃒⃒⃒ ϕ is CNF and has a saturated
satisfying assignment θ

}︂
The parameter is κ (I) := pw(Gϕ) + k, where Gϕ is the primal graph of ϕ.
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The primal graph of a propositional formula ϕ in CNF is the graph that contains a
vertex vx for every variable x in ϕ and edges (vx , vy) if x and y are distinct variables
that occur together in at least one clause.

As a shortcut for the parameterized problem (PARTWEIGHT-SAT,κ) we will write
p-PW-SAT.

Remark: At this point it is important to understand the different notions of graphs rep-
resenting a formula. Another known notion besides the primal graph is the incidence
graph of ϕ that in contrast contains a vertex vx for every variable x in ϕ, one vertex
vC for every clause C of ϕ and edges (vx , vC) if x ∈ C .

The primal graph in general has a much simpler structure and lower treewidth and
pathwidth than the incidence graph. The next results require the use of primal graphs
to maintain low pathwidths, whereas the syntactical structures defined earlier contain
an embedded incidence graph of their formula (but are not restricted to formulas in
CNF).

Theorem 5.13 (Praveen, 2013 [Pra13]). The problem p-PW-SAT is W[1]-hard.

Proof. To prove the hardness we use another W[1]-hard problem, NUMBERLISTCOL-
ORING (NLC), which was introduced by Fellows et al. [FFL+07]

An instance of NLC is again a tuple I = (V, E, k, (Lv)v∈V , (Ci)i∈[k]). Here, (V, E) is
an undirected simple graph for which a vertex coloring has to be found; k is the total
number of colors. The parameter is k plus the pathwidth of (V, E). For a vertex v ∈ V ,
Lv ⊆ [k] is the list of colors that are available for coloring the vertex v. Similar to
p-PW-SAT, Ci is the capacity of color i. A coloring of a graph is called proper if no two
adjacent vertices share the same color, and every color of a vertex is picked from its
corresponding list of allowed colors, and additionally we call a coloring saturated if
the number of occurences of any color is equal to its capacity.

We use a slight variation of the problem: The set pw2-NLC is the set of all instances
I such that the given graph has a proper saturated coloring but additionally has path-
width at most 2. Fellows et al. showed that this restricted problem is already W[1]-
hard when using only k as parameter, the total number of colors.

Now the reductions to the problem p-PW-SAT works as follows: First check if the
input graph has pathwidth at most 2 in linear time using Theorem 4.3 (Bodlaender’s
algorithm); return an arbitrary negative instance if pw > 2. Otherwise continue as
follows. For every combination of a vertex v and one of its colors i ∈ Lv, introduce
a propositional variable qv,i. The variables are partitioned in classes depending on
which color they represent:

X i :=
{︀

qv,i

⃒⃒
v ∈ V, i ∈ Lv

}︀
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5 Parameterizing temporal satisfiability

The propositional formula ϕ is defined to check if the coloring is proper:

ϕ :=
⋀︁
v∈V

(︂ ⋁︁
i∈ Lv

qv,i

)︂
⏟  ⏞  

T1: ≥1 color for v

∧
⋀︁
v∈V

⋀︁
i, j∈ Lv

i 6= j

(︀
¬qv,i ∨¬qv, j

)︀
⏟  ⏞  

T2: ≤1 color for v

∧
⋀︁

(u,v)∈ E

⋀︁
i∈ Lu∩Lv

(︀
¬qu,i ∨¬qv,i

)︀
⏟  ⏞  
T3: different colors for u and v

We define h as the function that computes the mapping

I =
(︀
V, E, k, (Lv)v∈V , (Ci)i∈[k]

)︀
7→
(︀
ϕ, k, (X i)i∈[k], (Ci)i∈[k]

)︀
= I ′.

h is an fpt-reduction from pw2-NLC to p-PW-SAT: The described transformations are
possible in polynomial time. Also a proper vertex coloring of (V, E) results in a satisfy-
ing assignment of ϕ, while any satisfying assignment of ϕ has to be of the form that
it induces a proper vertex coloring of (V, E).

Since the weights and capacities of the partitions in the output instance correspond
to the color lists and capacities of the input instance and since the selection of a color
for a vertex sets exactly one variable of ϕ to one, there is a saturated proper coloring
of (V, E) if and only if there is a saturated satisfying assignment of ϕ.

For h being an fpt-reduction it remains to show that the parameter of I ′ is bounded
by the parameter of I which is κ(I ′) = pw(Gϕ) + k. The parameter of the left hand
side is k, hence we finish the proof by bounding the resulting pathwidth of Gϕ in k.

Consider an optimal path decomposition P of (V, E). P has width two. Now con-
struct a decomposition P′: For each bag B of P, replace every vertex v ∈ B by the set{︀

qv,i

⃒⃒
i ∈ Lv

}︀
. Every bag of P′ has now at most size 3k.

The resulting decomposition P′ is a correct path decomposition of Gϕ, the primal
graph ofϕ: For every variable qv,i the bags containing it induce a non-empty connected
subpath in P′ since the vertex v did the same in P before. For every edge (qv,i, qv′,i′) of
Gϕ to be covered in P′ we show that there is a bag B′ in P′ that contains both variables.

Assume that v = v′. Then the edge must stem from the two variables being together
in a clause of the T1 or T2 type (ensuring that v receives exactly one color of its list).
But then every bag previously containing v also contains qv,i and qv,i′ in P′.

The other case is v 6= v′. Such an edge always stems from a clause of type T3, i.e.
ensuring that the coloring is proper. But a clause of type T3 is only added for vertices
v, v′ that are adjacent in (V, E). Therefore the path composition P already had a bag
containing both v and v′. Similar to the argumentation above the corresponding bag
of P′ contains qv,i and qv′,i′ and therefore covers the edge.
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Expressing partitioned weighted satisfiability in CTL

Praveen proved the W[1]-hardness of modal satisfiability in transitive frames by for-
mulating the problem of partitioned weighted satisfiability in modal logic. The rough
idea is as follows: Consider an instance I =

(︀
ϕ, k, (X i)i∈[k], (Ci)i∈[k]

)︀
of PARTWEIGHT-

SAT withϕ containing variables q1, . . . , qn. Then a modal formula is constructed which
enforces the existence of worlds w0 7→ w1 7→ w2 7→ . . . 7→ wn forming a chain. For i ≥ 1
the world wi then has the purpose to assign to qi either> or⊥. In the last world wn an-
other subformula eventually checks the number of variables set to > in each partition;
the number has to equal the respective capacity.

Crafting such a type of formula is not a new technique, but doing it in the context
of a parameterized reduction requires careful assembling of subformulas in a way that
keeps the pathwidth low. Significant parts of technical work in [Pra13] are devoted
to prove that the structural pathwidth of the produced formula is bounded by the
parameter.

We will cover the different CTL fragments in three steps: First the reduction from
saturated satisfiability is presented in detail for general CTL . The transition from
modal logic to temporal logic that is required in this step is not hard. The second
part of this section describes how to obtain a path decomposition of low structural
pathwidth from the resulting formula. In the final step the result is transferred to the
remaining fragments of CTL.

Lemma 5.14. For every instance I of PARTWEIGHT-SAT there is a temporal formula
ψ(I) ∈ CTL that is satisfiable if and only if I has a saturated satisfying assignment.

Proof. The formulaψ(I) is a conjunction of several subformulas which will be presen-
ted next. In the construction we assume reasonable (and efficiently checkable) prop-
erties of the instance, e.g. that the capacity of a partition is at most its size, and that
ϕ is a syntactically valid CNF.

The original formula ϕ should be true in the initial world w0 to ensure its satisfiability.

ψ[formula] := ϕ (5.1)

Enforce a model that contains the chain of worlds mentioned above. For this we use
“depth” variables d0, d1, d2, . . . that have to be labeled in the desired order.

ψ[depth] := AG
n⋀︁

i=0

[(di ∧¬di+1)→ AX(di+1 ∧¬di+2)] (5.2)
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5 Parameterizing temporal satisfiability

Let Q be the subset of the variables { q1, . . . , qn } that is labeled in w0. ψ[formula]
ensures that Q represent a satisfying assignment of ϕ. To check the saturation of Q
w. r. t. the given capacities the set Q should be repeatedly labeled in each consecutive
world.

ψ[fixed-Q] := AG
n⋀︁

i=1

[qi ↔ AXqi] (5.3)

Next let p(i) ∈ [k] denote the partition number of qi. We introduce new propositional
variables >↑p(i) which signal that the number of labeled variables from partition p(i)
has increased.

ψ[signal] := AG
n⋀︁

i=1

[︁
(di ∧¬di+1)→

(︁
qi ↔>↑p(i)

)︁]︁
(5.4)

To count the total number of labeled variables per partition we need several variables
named > j

p here. Let N(p) denote the size of the partition p. Then whenever an incre-
ment signal for partition p is encountered, increment the counter from j to the next
integer j + 1.

ψ[count] := AG
k⋀︁

p=1

N(p)⋀︁
j=0

[︁
>↑p→

(︁
> j

p↔ AX> j+1
p

)︁
(5.5)

∧¬>↑p→
(︁
> j

p↔ AX> j
p

)︁]︁
Make sure that all the used variables do a consistent counting.

ψ[monotone] := AG

[︃
n⋀︁

i=1

(di → di−1)∧
k⋀︁

p=1

N(p)+1⋀︁
j=1

(︁
> j

p→>
j−1
p

)︁]︃
(5.6)

Begin the counting correctly at the initial world.

ψ[init] := d0 ∧¬d1 ∧
k⋀︁

p=1

[︁
¬>↑p ∧¬>

1
p

]︁
∧AG

k⋀︁
p=1

>0
p (5.7)

Require that the counted number of positive variables per partition equals the capacity.

ψ[target] := AG
k⋀︁

p=1

[︁
dn+1→

(︁
>Cp

p ∧¬>
Cp+1
p

)︁]︁
(5.8)
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It follows the proof of the lemma.
“⇒”: Assume

(︀
ϕ, k, (X i)i∈[k], (Ci)i∈[k]

)︀
∈ PARTWEIGHT-SAT. Construct a model for

ψ(I) as follows. Start with the world w0. ϕ is satisfied by setting a saturated subset Q
of variables to one, i.e. the number of ones in a partition equals its capacity. Label Q in
the world w0 so ϕ is satisfied there as well (remember that ϕ is purely propositional).
Construct successor worlds w1, . . . , wn+1, add a self-loop to wn+1 and label the min-
imal amount of propositional variables in w0, w1, . . . to satisfy ψ[init], ψ[depth] and
ψ[fixed-Q]. Note that this step is always possible. Now label the variables>↑p(i) where

necessary to fulfill ψ[signal]. This leads to exactly Cp(i) occurences of >↑p(i) since Q
is chosen saturated. For this reason, the formula ψ[count] allows for every partition
p that its counter is incremented exactly Cp times. This construction does not violate
the ψ[monotone] condition and allows to satisfy ψ[target] in the world wn+1.

“⇐”: Let M be a model of ψ(I). It has to contain a tree of worlds which fulfill
the conditions ψ[init], ψ[depth] and ψ[fixed-Q]. This tree of worlds can be shrunk
to a path w0, . . . , wn+1 by removing unnecessary labels and then identifying worlds at
the same depth (which have to share exactly the same labels since no E operator is
present). Because ψ[target] and ψ[monotone] have to hold in all worlds including
wn+1 (which has dn+1 labeled), on the path w0, . . . , wn+1 the>↑p signal is labeled exactly
Cp times for every partition p. Butψ[signal] allows this if and only if the corresponding
variable qi is set to one in the world wi. This proves the existence of a saturating
assignment θ for ϕ. θ also is satisfying for ϕ since w0 was labeled consistently.

Lemma 5.15. For an instance I the formula ψ(I) from Lemma 5.14 can be constructed
to have a κ-bounded structural pathwidth, where κ is the parameter of p-PW-SAT.

Proof. Write S for Sψ(I). Let P denote an optimal path decomposition of the primal
graph of ϕ. It is to show how P can be extended to a path-decomposition P′ of S.

For this we first assume a special structure of P, the one-step addition property that
was already used in [Pra13]. It says that the bag Bi in P introduces exactly one variable
q, i.e. q and only q is present in Bi but was not present in Bi−1. A bag that introduces no
new variable can be deleted, and a bag introducing multiple variables can be split into
multiple bags. Therefore assume the one-step addition property. Also use a renaming
of bags Bi and variables qi s. t. the bags are ordered along their number and bag Bi

introduces variable qi.
The process of augmenting a bag B with x means inserting a copy B′ of B between

B and its successor bag and placing the additional element x there. It holds that
|B′| = |B|+ 1. Augmenting a bag does preserve the one-step addition property in the
sense that there always is a “leftmost” bag introducing a variable qi.

Now use the following procedure to construct P′:

1. For 1≤ p ≤ k add the variable >↑p to every bag. This increases every bag size by
the number k of partitions.
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2. ψ[formula]: ϕ is in CNF. For every clause the primal graph of ϕ has to contain a
clique of its variables, thereforeP already must contain a bag B covering all these
variables. Assume that this clause has size m and is represented as a subformula
((((L1∨ L2)∨ L3)∨ . . .)∨ Lm) where every literal Li is a variable q or its negation
¬q. Augment B with the ∨-nodes in the following way: Create m copies of B.
Add the j-th ∨-node to the j-th and the ( j + 1)-th copy of B. This results in
the bags containing an ∨-node inducing a connected component. Refer to the
outmost ∨-operators as the primary ∨-nodes. Proceed similar for the ∧-nodes:
Select two primary ∨-clauses that are “neighbors” in the path decomposition and
add a ∧-node to all bags that connect them.

Remember that an optimal path decomposition can be computed in fpt by Co-
rollary 4.4. Hence the structure S can be constructed in a way that allows the
arguments above a priori, e.g. the placement of parentheses in ψ(I) can always
be chosen to associate literals in ascending order of variables in P, and then as-
sociate clauses in ascending order of primary ∨-nodes. Then in the structure the
edge linking these primary ∨-nodes and their common conjunction is covered
and every bag receives at most two additional ∨-nodes and at most two addi-
tional ∧-nodes. Figure 5.4 illustrates the procedure.

3. For 1 ≤ i ≤ n add the variables di−1, di, di+1, dn+2 and the nodes representing
their negations to the bag B that introduces qi as well the nodes representing
(di ∧ ¬di+1), (di+1 ∧ ¬di+2) and (di → di−1). Because of the one-step addition
property regarding the qi ’s every inserted node induces a connected component.
This adds a constant number of items to every bag. The same holds when adding
the necessary AX-nodes and →-nodes to every bag to cover each conjunct of
ψ[depth]. Process its

⋀︀
-node like before, adding at most two items to every

bag, and also add its AG-node to every bag to completely cover this formula.

. . .

a a a a
a a a

∨
∨

∨

∨
∨

∨

∧
∧

≤ 4

Figure 5.4: Bag augmentation for many small ∧,∨-nodes
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4. ψ[fixed-Q]: Add the AX- and ↔-nodes for the i-th conjunct exactly to the re-
spective bags that introduce qi, increasing the size of each bag by at most two.
Process

⋀︀
and AG as before.

5. ψ[signal]: Again augment the bag introducing qi by the nodes↔, (di ∧¬di+1)
and→. The signal variable >↑p(i) is already added in every bag, then add

⋀︀
and

AG as before.

6. For the remaining formulas, jump to the last bag B. W.l.o.g. assume it contains
the variable dn+1. Let C again be the maximum of the capacities. For every
1≤ j ≤ C now do the follwing: Append one bag that is a copy of B, but the j-th
appended bag additionally contains> j

p,> j+1
p and> j−1

p for every partition p. This
increases every bag size by 3k. Since dn+1 also is in these bags, the nodes rep-
resenting subformulas containing > j

p’s of ψ[count], ψ[monotone], ψ[init] and
ψ[target] can be added (each a constant number of items). Note thatψ[target]
actually requires these nodes to be added after the last bag so the bags contain-
ing dn+1 are connected.

7. The remaining subformulas of ψ(I) are either conjunctions of size C over > j
p’s

(which are be covered by augmenting the bags introduced in the previous step
by constantly many items), conjunctions of size k and connectives of constant
depth to link the subformulas together to get ψ(I) (which all can be added to
every bag).

The above construction results in a path decomposition of the structure S whose
width is κ-bounded. The use of signal variables >↑p is crucial for the construction;
Them being the only “link” between variables qi and partition weight counters > j

p is
necessary for keeping the pathwidth low.

Observe that the pathwidth resulting from this construction will in general be higher
than the similar approach for modal CNF in [Pra13] (which is only 4pw(Gϕ) + 2k +
9). The reason lies in the chosen structural representation of modal formulas in the
previous work, which relies on CNF: For every clause, only one node is added to the
structure, whereas the syntactical structure defined in Section 5.1 only allow binary
connectives, i.e. of arity at most two. Therefore the number of∧,∨-connectives inψ(I)
itself is not κ-bounded, but by carefully choosing the association order of subformulas
the items can be added with bag size increasing only by a constant number.

Lemma 5.16. CTL-SAT(AG,AX) is W[1]-hard when parameterized by structural path-
width (resp. treewidth) and temporal depth.

Proof. Consider an≤fpt-reduction from the W[1]-hard problem p-PW-SAT as described
in Lemma 5.14. This is a valid≤fpt-reduction: The CTL formulaψ(I) can be computed
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in fpt-time, and the parameter is bounded since the temporal depth ofψ(I) is constant
and the structural pathwidth is bounded by the parameter of p-PW-SAT according to
Lemma 5.15. The same hardness result for treewidth instead of pathwidth follows
from pathwidth being an upper bound for treewidth.

Lemma 5.17. CTL-SAT(AF,AX) is W[1]-hard when parameterized by structural path-
width (resp. treewidth) and temporal depth.

Proof. We re-prove Lemma 5.14 for the fragment {AF,AX}. Observe that the for-
mulas were deliberately chosen to have AG operators occuring at temporal depth
zero only. Instead of constructing ψ(I) as a conjunction of those AG-formulas, con-
struct a semantically equivalent AG-formula of conjunctions since

⋀︀
AGαi ≡ AG

⋀︀
αi

holds. Therefore assume ψ(I) to be in the form ψ(I) = α ∧ AGγ for a purely pro-
positional formula α. Then ψ(I)′ = α ∧ EGγ and equivalently ψ(I)′′ = α ∧ ¬AF¬γ
suffice for the proof of Lemma 5.14, because already from one single path of worlds
w0, . . . , wn with correctly labeled depth propositions one can construct a saturated as-
signment of ϕ. The structural pathwidth of ψ(I)′′ can be bounded almost exactly like
in Lemma 5.15 since “α ∧” is constant and only “

⋀︀
AG” has to be changed to “¬AF¬

⋀︀
”

in the proof.

Lemma 5.18. CTL-SAT(AG) is W[1]-hard when parameterized by structural pathwidth
(resp. treewidth) and temporal depth.

Proof. To prove the theorem some changes in the reduction given in Lemma 5.14 are
required. The formulas which contain AX have to be changed for two reasons.

Stutter-invariance. One problem is a property that is known as the stutter-invariance
of the operators F,G and U. Basically it says that they cannot distinguish between
a path π and a path π′ where arbitrary worlds of π have been duplicated. In this
sense it leads to an incorrect reduction when depth proposition di are enforced
with F operators only, since then they can occur twice, which would result in
counting a variable qi for its partition twice.

No irreflexive operators. All operators but X are reflexive in the sense that the
present is part of the future. However, the incrementation of the > j

p coun-
ters must be implemented irreflexive, otherwise the counter would immediately
jump to its maximal value at the first labeled >↑p.

Replace the formulas in the following way.
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In ψ[depth] we replace AX with the branching operator ¬AG¬ ≡ EF. Note that it is
then not longer the case that all paths reachable from w0 form the desired chain of
worlds. However the branch of the model that satisfies one of the EF-formulas has
again to branch correctly at least once for the next depth level because of the nesting
inside an AG operator, therefore at least one path starting in w0 contains the correct
labels. The next difference is that an arbitrary number of states now can share the
same depth. But eventually the depth indicator has to increase in a satisfying model
due to the semantics of EF. Hence at least one path reachable from w0 has the desired
form. To deal with the problem of irreflexivity, we enforce some kind of alternation in
terms of variables. Label a new variable m0 resp. m1 in worlds of parity 0 resp. 1.

ψ[depth]′ := AG
n⋀︁

i=0

[(di ∧¬di+1)→ EF(di+1 ∧¬di+2)] (5.9)

ψ[alternation] := AG
n−1⋀︁
i=0

[︀
(di ∧¬di+1)→ (mi mod 2 ∧¬m1−(i mod 2))

]︀
(5.10)

Fixing the chosen subset of variables qi is easily done using only AG.

ψ[fixed-Q]′ :=
n⋀︁

i=1

[(qi → AGqi)∧ (¬qi → AG¬qi)] (5.11)

The signal counting formula has to be adapted to the fact that there can now exist
multiple consecutive worlds having the same depth proposition labeled. Also, the
counting procedure has to be implemented differently for the case that no increment
signal is set. Without AX we cannot express that the labeled counter propositions
may not change in the next world. To maintain correctness of the reduction, we have
to introduce a second type of counters for variables set to zero, ⊥↑p. The following
formulas are inserted to ensure the correctness of the new counter.

ψ[signal]2 := AG
n⋀︁

i=1

[︁
(di ∧¬di+1)→

(︁
¬qi ↔⊥↑p(i)

)︁]︁
(5.12)

ψ[init]2 :=
k⋀︁

p=1

[︁
¬⊥↑p ∧¬⊥

1
p

]︁
∧AG

k⋀︁
p=1

⊥0
p (5.13)

ψ[monotone]2 := AG
k⋀︁

p=1

N(p)+1⋀︁
j=1

(︁
⊥ j

p→⊥
j−1
p

)︁
(5.14)
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Check if for partition p at most Cp variables have been set to one and at most N(p)−Cp

variables have been set to zero.

ψ[target] := AG
k⋀︁

p=1

[︂
¬>Cp+1

p ∧¬⊥N(p)−Cp+1
p

]︂
(5.15)

At last, the existing counting procedure has to be replaced and split up into counting
of ones and zeros.

ψ[count]1 := AG
k⋀︁

p=1

N(p)⋀︁
j=0

1⋀︁
i=0

[︁(︁
>↑p ∧>

j
p ∧mi

)︁
(5.16)

→ AG
(︁

m1−i → AG> j+1
p

)︁]︁
ψ[count]2 := AG

k⋀︁
p=1

N(p)⋀︁
j=0

1⋀︁
i=0

[︁(︁
⊥↑p ∧⊥

j
p ∧mi

)︁
(5.17)

→ AG
(︁

m1−i → AG⊥ j+1
p

)︁]︁
As explained above there is at least one path of worlds where every depth proposi-

tion is reached at least once. If a depth proposition di is reached with a signal variable
>↑p or ⊥↑p labeled, then the corresponding counter value increases during the next par-
ity change of i. That means that if a partition p has weight k, then on this path there
are at least k parity changes with the proposition >↑p labeled, and at least N(p) − k
parity changes with the proposition ⊥↑p labeled. This leads to the counter > j

p having
a value j ≥ k and the counter ⊥ j

p having a value j ≥ N(p) − k in world wn+1. This
contradictsψ[target] unless j is exactly k resp. N(p)−k and the partition is saturated.

The structural pathwidth increases only by a constant when considering the changes
of the two formulas ψ[depth]′ and ψ[fixed-Q]′. The formula ψ[alternation] can be
handled by augmenting the bags which introduce di. To add the new counting and tar-
get formulas the same procedure as in Lemma 5.15 can be used: Treat every variable
of the type ⊥↑p, ⊥ j

p like its >↑p or > j
p counterpart to preserve the κ-boundedness.

Lemma 5.19. CTL-SAT(AU) is W[1]-hard when parameterized by structural pathwidth
(resp. treewidth) and temporal depth.

Proof. Only minor changes from Lemma 5.18 are required to show the W[1]-hardness
of the fragment {AU}. Change the formulas as follows: Introduce an additional depth
proposition dn+2 that has to hold after dn+1. Then every subformula AGγ can be
replaced by A [γUdn+2]. This is possible since AG never occurs negated except in
ψ[depth], also the depth formula has to be modified to make sure that no “rogue”
occurence of dn+2 appears before the propositions d1, . . . , dn+1 occured in that order.
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ψ[depth]′ :=
n⋀︁

i=0

A
[︁
(di ∧¬di+1)→

(︀
mi mod 2 ∧¬m1−(i mod 2)

∧A [¬dn+2U(di+1 ∧¬di+2)]
)︀
Udn+2

]︁

5.3.3 The open fragment AF
The tractability result for the AX fragment cannot be simply transferred to AF. There
are two reasons.

First, AF together with negation obviously has not the finite tree property, it is not
the case that quasi-labels of a certain depth can be assumed as empty in an infinite
tree model. A single formula with AF’s dual EG is enough to have infinite paths with
non-empty label. The question for such paths is: Is the path “good” in the sense
that it fulfills all eventualities imposed by labeled AF formulas, or is it “bad” in the
sense that the EG-prefixed formula is labeled forever but prevents the AF-prefixed
formulas from being labeled? In this context the terms “good” path and “bad” paths
are coined by Mark Reynolds for a tableau algorithm that decides CTL?-SAT [Rey11].
Tableau algorithms in general try to traverse a formula top-down or bottom-up while
creating a canonical model, or finding out that none exists. The MSO formula that
defines CTL-SAT(AX) can be interpreted as such a tableau algorithm. But a procedure
deciding satisfiability for CTL(AF) additionally has to deal with the question of good
and bad paths, and then has to terminate after only verifying a finite number of states
on a path. Reynolds’s algorithm terminates, but he states that bad paths are followed
for a prefix of length that is at least doubly exponential in ϕ. For an fpt-algorithm, a
similar bound has to be found that depends only on the parameter, i.e. on the temporal
depth and structural treewidth of ϕ.

This leads to the second reason: AF and EG operators can enforce long models (i.e.
not bounded by the parameter) s. t. the used approach is not possible with a MSO
formula that quantifies each world of the model.

Theorem 5.20. The minimal depth of a model of a formula ϕ ∈ CTL(AF) cannot be
bounded by td(ϕ) + pw(Sϕ).

Proof. The proof is given using a formula family (ϕn)n∈N ∈ CTL(AF) with constant
structural pathwidth and temporal depth s. t. ϕn has no model with depth less than n.

Define βi := qi ∧EG(¬qi−1).
Define ϕn := q0 ∧AFβ1 ∧AFβ2 ∧ ....∧AFβn.
ϕn has constant temporal depth of two. ϕn has constant pathwidth:

51



5 Parameterizing temporal satisfiability

Obtain a path-decomposition P by introducing for i ∈ [n] a bag Bi and inserting all
subformulas of AFβi into Bi, which is a constant number of nodes. Insert q0 in another
bag B0. For i = 0, . . . , n−1 then connect bag Bi and Bi+1. To cover the ∧-nodes, insert
the i-th ∧ into the bags Bi and Bi+1. This increases the width of P by at most two.

Now it holds: ϕn has a model of size n + 1 and depth n, but no model with size
< n + 1 or depth < n. As a model of ϕn we can choose a chain of n + 1 worlds s. t.
that the variables q0, . . . , qn are consecutively labeled in ascending order. After the last
world a loop is added. This chain model has size n+ 1 and depth n.

Now arbitrarily choose another model (M, r) of ϕn. We show that (M, r) has depth
at least n and therefore size at least n+ 1. First extend M to a quasi-model. Next we
use some notions introduced by Emerson [Eme90]: For a formula AFβ labeled in a
world w, write DAG[w,β] for the finite dag that starts at w and contains all worlds
reachable from w up to the first occurence of the formula β in a quasi-label. Such a
finite dag always has to exist. Furthermore the dag is not only contained in M , but
embedded in M , which means that every path through M that leads out of the dag has
to go through its leaves. The leaves of DAG[w,β] are also called frontier worlds and
the non-leaves are called interior worlds.

In this proof shortly write DAG[i] for DAG[r,βi].

Claim. DAG[i] is contained in the interior worlds of DAG[i + 1].

Proof of claim. It suffices to show that DAG[i] is contained in DAG[i + 1]. The two
dags cannot have common frontier worlds as those worlds would have both qi and ¬qi

labeled.
Let w be a frontier world of DAG[i + 1]. Then βi+1 ∈ L(w). But then AFβi /∈ L(w)

for the following reason: As βi+1 ∈ L(w) implies EG¬qi ∈ L(w) and AFβi implies AFqi,
the formula AFβi is false in w. Let π ∈ Π(w) be the path that satisfies G¬qi.

Every path π′ ∈ Π(r) which runs through w has to visit a “shallower” world w′ with
βi ∈ L(w′) before w: Otherwise the path

(r = π′[1],π′[2], . . . , w= π[1],π[2], . . .)

would be a path starting in r but not fulfilling Fβi. Then (M, r) would not be a model.
This implies that on every path to a frontier node of DAG[i + 1] there occurs a

frontier node of DAG[i].

From the above claim it follows that no frontier node of DAG[n] is reachable from
r with less than n steps. In fact, every model (M, r) of ϕn contains the chain of length
n.

If we consider EG-free formulas only, then long models can only be enforced by AF-
formulas with many common variables and therefore presumably a high structural
treewidth: The required number of worlds is at most the chromatic number of the
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primal graph of the formula. Graph theoretic approaches were made to find a cor-
relation between the chromatic number of the primal graph and the treewidth of the
syntax graph, but so far without success.

Example 5.21:

ϕn :=
n⋀︁

i=1

AF

(︃
i−1⋀︁
j=1

¬q j ∧ qi

)︃
The smallest model of the formula ϕn is a chain w1 7→ . . . 7→ wn s. t. in the world

wi exactly the variable qi is labeled but q j for j < i is not. It is not possible to satisfy
two of the n AF-eventualities in the same world, and ϕn has always temporal depth
td(ϕn) = 1, but to enforce n distinct worlds to exist seems not possible with a structural
treewidth less than log n.

Unfortunately the reduction from p-PW-SAT to CTL-SAT also seems to be impossible
when using only AF and EG operators with nesting depth bounded by k. For the
remaining fragments however the results are summed up in the following theorem.

Theorem 5.22 (Parameterized complexity of CTL-SAT). Consider CTL-SAT(T ) para-
meterized by structural pathwidth (resp. treewidth) and temporal depth. Then the prob-
lem is FPT if T v {AX} and W[1]-hard if {AU} v T, {AG} v T or {AX,AF} v T.

Proof. The tractability result follows from Theorem 5.12. The case T = ; can trivi-
ally be reduced to CTL-SAT(AX). The hardness results follow from Lemma 5.18,
Lemma 5.17 and Lemma 5.19. Note that the length of a formula can increase ex-
ponentially when simulating AU operators, but since the reductions have to keep the
temporal depth bounded by k and the blow-up is at most 2td(ϕ), the reduction is still
possible in fpt-time.
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;

AX

AF

AF,AX AG

AG,AX

AU

AU,AX

EU

EU,AX

AF,AG

AF,AG,AX

AU,AG

AU,AG,AX

AF,EU

AF,EU,AX

in FPT
W[1]-hard
Open

Figure 5.5: Complexity of CTL-SAT parameterized by κ= (td+ tw)

5.4 Linear Temporal Logic (LTL) and Full Branching
Time Logic (CTL∗)

For L ∈ {LTL,CTL?}, define the sets L(T ),L-SAT(T ),LNNF(T ) as for CTL. The follow-
ing classical results are known for LTL and CTL∗:

Theorem 5.23 (Bauland, Schneider, Schnoor, Schnoor and Vollmer, 2007 [BSS+07]).
The problem LTL-SAT(T ) is NP-complete for T v {X} and T v {F} and PSPACE-complete
for other fragments.

Theorem 5.24 (Meier, Thomas, Vollmer and Mundhenk, 2009 [MTVM09]). The prob-
lem CTL?-SAT(T ) is NP-complete when T v {A} or {A} 6v T, it is PSPACE-complete for
T ≡ {A,F} or T ≡ {A,X}, and it is 2EXP-complete for other fragments.

In the world of parameterized complexity we choose the similar definitions of struc-
tural treewidth resp. pathwidth as before. Also define the temporal depth like for
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;

X

F

F,X

U

U,X

NP-complete
PSPACE-complete

(a) Complexity of LTL satisfiability

No/only A

A,X

A,F

A,F,X

A,U

A,U,X

NP-complete
PSPACE-complete
2EXP-complete

(b) Complexity of CTL∗ satisfiability

Figure 5.6: Classical complexity of temporal logics

CTL. Observe that the path quantifiers A and E do not count as temporal operators for
themselves.

td(x) := 0 if x ∈ PS td(>) := 0

td(ϕ ∧ψ) :=max{td(ϕ), td(ψ)} td(¬ϕ) := td(ϕ)
td(Eϕ) := td(ϕ) td(Aϕ) := td(ϕ)
td(Tϕ) := td(ϕ) + 1 if T ∈ {X,F,G,U}

For the next theorems we use the notion of quasi-models as we did in Definition 5.8
for CTL. The only important difference is that a quasi-label of a state can only contain
state formulas to make sense. We therefore introduce path labels to deal with CTL∗

formulas.

Definition 5.25 (CTL∗ quasi-models). A CTL∗ quasi-model of a formula ϕ ∈ CTL?NNF
is a tuple (M, w0) with M = (W, R, Ls, Lp) and (W, R, Ls) being a quasi-structure. Lp

maps infinite paths starting at states in W to a quasi-label. The following quasi-model
conditions have to be satisfied:

• ϕ ∈ Ls(w0),

• Ls(w) is a consistent quasi-label over SF(ϕ) for every w ∈W .
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• Ls(w) contains only state formulas,

• Lp(π) is a consistent quasi-label over SF(ϕ) for every infinite path π through M .

Note that the function Lπ is in general not finite since most Kripke structures contain
infinitely many paths.

For state formulas there are two new consistency rules:

• if Aψ ∈ Ls(w) then ∀π ∈ Π(w) : ψ ∈ Lp(π)

• if Eψ ∈ Ls(w) then ∃π ∈ Π(w) : ψ ∈ Lp(π)

The remaining consistency rules are to path labels:

• if ψ ∈ Lp(π) and ψ is also a state formula then ψ ∈ Ls(π[1])

• if Xψ ∈ Lp(π) then ψ ∈ Lp(π≥2)

• if Fψ ∈ Lp(π) then ∃i ∈ N : ψ ∈ Lp(π≥i)

• if Gψ ∈ Lp(π) then ∀i ∈ N : ψ ∈ Lp(π≥i)

• if ψUχ ∈ Lp(π) then ∃i ∈ N : χ ∈ Lp(π≥i) and ∀ j, 1≤ j < i : ψ ∈ Lp(π≥ j)

Lemma 5.26. Every satisfiable formula ϕ ∈ CTL?NNF has a minimal tree quasi-model.

Proof. Constructed by “unrolling” as for CTL (cf. Theorem 5.11).

Lemma 5.27. Let ϕ ∈ CTL?NNF(A,E,X). Every minimal tree quasi-model T of ϕ has the
property that every world at depth ≥ td(ϕ) and every path starting at such a world can
only have propositional formulas labeled.

Proof. Like for CTL in Theorem 5.11 write td(w) := max { td(ψ) |ψ ∈ Ls(w) } as the
maximal temporal depth of a formula labeled in w.

Similar write td(π) :=max
{︀

td(ψ)
⃒⃒
ψ ∈ Lp(π)

}︀
for quasi-labels of paths.

First we show that ∀w∀π ∈ Π(w) : td(π) ≤ td(w). Consider a world w and a path
π starting in w with td(π) > td(w). Let ψ be a formula of maximal temporal depth
in Lp(π) such that ψ is not implied by a local quasi-label condition. Then ψ can only
be labeled in Lp(π) because Aψ or Eψ is labeled in π[1] = w. But this contradicts
td(π)> td(w). Therefore td(π)≤ td(w).

Second we show that ∀w∀π ∈ Π(w) : td(π) > td(π≥2). Assume there is a path π
with td(π) ≤ td(π≥2). Similar as above let ψ be a subformula labeled in Lp(π≥2) s. t.
ψ has maximal temporal depth and is not locally required. But this implies that Xψ ∈
Lp(π) since otherwiseψ could be deleted from Lp(π≥2). Again we get a contradiction
to td(π)≤ td(π≥2).
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The last statement can be generalized to ∀w∀π ∈ Π(w) : td(π≥i)− td(π≥i+ j) ≥ j.
We prove this by induction on j. For j = 0 we have td(π≥i)− td(π≥i) = 0. For j > 0:

π≥i+( j+1) =
(︀
π≥i+ j

)︀
≥2

⇒ td
(︀
π≥i+( j+1)

)︀
< td

(︀
π≥i+ j

)︀
⇒ td

(︀
π≥i

)︀
− td

(︀
π≥i+( j+1)

)︀
> td

(︀
π≥i

)︀
− td

(︀
π≥i+ j

)︀
⇒ td

(︀
π≥i

)︀
− td

(︀
π≥i+( j+1)

)︀
≥ td

(︀
π≥i

)︀
− td

(︀
π≥i+ j

)︀
+ 1

⇒ td
(︀
π≥i

)︀
− td

(︀
π≥i+( j+1)

)︀
≥ j + 1

For the proof we do the same chopping of states as in CTL. To prove that no quasi-
label is violated we show that in the minimal model for every world w in depth td(ϕ)
it holds td(w) = 0 and td(π) = 0∀π ∈ Π(w). This is obvious for td(ϕ) = 0.

Assume now that td(w) > 0 for a world w in depth td(ϕ). Then let ψ be a subfor-
mula labeled in Ls(w) s. t. td(ψ) > 0 and ψ is not locally required. That means that
there is a path π and i > 1 s. t. w = π[i] and ψ ∈ Lp

(︀
π≥i

)︀
, since w is not the root

of the model, and td
(︀
π≥i

)︀
> 0. But

(︀
π≥i

)︀
has to be of the form

(︁
π′≥td(ϕ)+1

)︁
for some

π′ ∈ Π(r), i.e. a path that starts at the root of the model, so

td
(︀
π′
)︀
− td

(︀
π≥i

)︀
= td

(︀
π′≥1

)︀
− td

(︁
π′≥td(ϕ)+1

)︁
≥ td(ϕ)

and td (π′) ≥ td
(︀
π≥i

)︀
+ td(ϕ) > td(ϕ). But a formula ψ with td(ψ) > td(ϕ) cannot

be labeled in a minimal model, hence the assumption that td(w)> 0 for a world w in
depth td(ϕ) is false. For such a world it automatically also holds ∀π ∈ Π(w) : td(π)≤
td(w) which we showed earlier.

Remark: Note that unlike for CTL the filtration technique alone (i.e. construction of
equivalence classes of states) does not work for CTL∗ for the direction from right to
left. One cannot simply identify states that have the same set of labeled formulas in
the quasi-model as adding this type of “back edges” would lead to unfulfilled path
formulas.

Considerations like this also take place in certain tableau construction methods for
satisfiability. Such methods were well-known for modal logic or CTL whereas there
was no such algorithm known for CTL∗ due to the difficulties imposed by nested path
operators, until in 2011 Reynolds presented his sophisticated tableau algorithm that
correctly handles the “back edge” construction in the tree [Rey11].

The direction from right to left has been left out in Lemma 5.26 and it is unknown
to the author if a similar “infinite tree compaction” as for CTL in [Eme90] has been
done. But for CTL∗ restricted to X operators we again (almost) fall down to plain
modal logic and immediately get back the finite tree model property:
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Theorem 5.28. Let ϕ ∈ CTL?NNF(A,E,X). Then the following statements are equivalent:

(1) ϕ is satisfiable.

(2) ϕ has a tree quasi-model.

(3) ϕ has a minimal tree quasi-model.

(4) ϕ has a tree-like Kripke model of depth td(ϕ).

Proof. (4)⇒ (1) is clear. (1)⇒ (2) and (2)⇒ (3) are due to Lemma 5.26.
(3)⇒ (4) follows from Lemma 5.27.

Corollary 5.29. A formula ϕ ∈ CTL?NNF(A,E,X) is satisfiable iff there is a tree quasi-
structure T such that the following holds:

• ϕ is labeled at the root state of T,

• T is consistent up to depth td(ϕ),

• quasi-label conditions are satisfied in T for states and paths up to depth td(ϕ).

The separation of state formulas and path formulas that happens in CTL∗ bears its
own subtleties. Even when X is the only present temporal operator, the placement of
path quantifiers A,E still influences the semantics.

Example 5.30:
Compare the following two formulas from which one is a valid CTL formula and the
other one is only a CTL∗ formula.

ϕ1 := EXp ∧EX¬p ∧ (AXp ∨AX¬p)
ϕ2 := EXp ∧EX¬p ∧A(Xp ∨X¬p)

ϕ1 is unsatisfiable since it requires all successors to either satisfy p or all successors
to satisfy ¬p, but there also must be successors which fulfill p resp. ¬p. In ϕ2 every
path outgoing from the initial world has to fulfill the path formula (Xp ∨X¬p). This
does not require that all paths consequently decide for Xp or X¬p.

In general it holds A(φ∧ψ)≡ Aφ∧Aψ, but A(φ∨ψ) 6≡ Aφ∨Aψ. In the converse
we have E(φ ∨ψ)≡ Eφ ∨Eψ but E(φ ∧ψ) 6≡ Eφ ∧Eψ.

Note that the sheer number of paths that exists in a model already prohibits to
existentially quantify all related quasi-labels of paths. Therefore Theorem 5.12 cannot
be directly transferred to work with path formulas. The approach for the next theorem
relies on a property of “path equivalence” that holds in formulas containing only A,E,X
as temporal operators. Call a formulaψ for which Aψ is labeled on a path A-scoped and
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for which Eψ is labeled E-scoped. Call pure path subformulas ofψ (i.e. no intermediate
A,E-operator) also A- resp. E-scoped. The proof is based on a PSPACE algorithm for
CTL?-SAT(A,X) given by Meier, Thomas, Vollmer and Mundhenk [MTVM09]. This
algorithm recursively evaluates a formula ϕ in depth-first search and checks for a
contradiction up to depth td(ϕ).

The main argument is that only two sets PA and PE have to be remembered by the al-
gorithm which are exactly the sets of A-scoped and E-scoped path formulas. Consider
for example a path formula ψ that is labeled on a path π. If ψ is A-scoped, then ψ
has to be labeled in all paths starting at π[1], and if ψ is E-scoped, then ψ has to be
labeled in at least one path starting at π[1], independent of the total number of paths
that start in π[1] (which can be higher than the number of immediate successors of
π[1]). Due to the path equivalence we then only need to remember these two sets
PA and PE of A- resp. E-scoped formulas: If a path formula ψ in π has the form Xξ
then we can just label ξ at all successors resp. one successor of π[1], and for nested
path formulas the membership in PA resp. PE then recursively is inherited to subpaths
starting at the successor.

Note that when other temporal operators besides X occur then the path equivalence
property does not hold anymore: The point of fulfillment of imposed eventualities is
not longer determined over all paths but instead can be different.

Theorem 5.31. CTL?-SAT(A,X) is in FPT when parameterized by structural treewidth
and temporal depth.

Proof. We encode the PSPACE algorithm as the following MSO formula which verifies
a tree model for ϕ up to depth td(ϕ).

θBoolean(L) := ∀x∀y∀z

L(x)→
(︁
R ·∧(x , y)∧R∧·(x , z)→ (L(y)∧ L(z)) ∧

R ·∨(x , y)∧R∨·(x , z)→ (L(y)∨ L(z)) ∧

R¬(x , y)→¬L(y)
)︁

θinherit R(P, P ′) := ∀x∀y
(︁(︀

P(x)∧RR(x , y)
)︀
→ P ′(y)

)︁
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θ n
path(PA, PE) := θBoolean(PA)∧ θBoolean(PE)∧

∃H
(︂
θBoolean(H)∧∀z

(︀
(PA(z)∨ PE(z))→ H(z)

)︀
∧

θinherit A(H, PA) ∧ θinherit E(H, PE)
)︂
∧

∃P ′A ∃P ′E

(︁
θ n−1

path(P
′
A, P ′E)∧ θinherit X(PA, P ′A)

)︁
∧

∀x ∀y
(︂
(PE(x)∧RX(x , y))→

∃P ′A ∃P ′E

(︁
θ n−1

path(P
′
A, P ′E) ∧ P ′E(y) ∧ θinherit X(PA, P ′A)

)︁)︂

θ 0
path(PA, PE) := θBoolean(PA)∧ θBoolean(PE)∧

∃H
(︂
θBoolean(H)∧∀z

(︀
(PA(z)∨ PE(z))→ H(z)

)︀
∧

θinherit A(H, PA) ∧ θinherit E(H, PE)
)︂

Set m := td(ϕ). Define

θ := ∃PA∃PE ∃x Rroot(x) ∧ PA(x) ∧ θm
path(PA, PE).

Now it holds for a formula ϕ ∈ CTL?NNF(A,X) that ϕ ∈ CTL?-SAT⇔ Sϕ |= θ .

Correctness

“⇐”:
We construct a tree quasi-model T for ϕ from a valid interpretation of θ .
In the formula θm

path(PA, PE) for the initial PA, PE a path π is represented which starts
in a state with label H. Insert a root r into T with empty quasi-label. Then add an
infinite path starting at r as well with empty quasi-label.

Repeat the following to ensure the quasi-label conditions up to depth i ∈ {0, . . . , m}:
Choose a world w at depth i which is not yet processed, starting with r.
There is exactly one path π ∈ Π(w) as well as instances of PA, PE which satisfy

θ n
path(PA, PE) and correspond to π. PA is the set of path formulas that must hold at all

paths starting in w and PE is the set of path formulas that must hold in at least one
path starting in w. Set the quasi-label LS(w) to the state formulas in H. (If r = w
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then ϕ ∈ H.) We know that for every formula Aψ ∈ H there is also ψ ∈ PA and for
every formula Eψ ∈ H there is also ψ ∈ PE. Therefore we “split up” π as follows: For
every formula ψ ∈ PE attach a new infinite path to w which has ψ labeled. Now for
every path added to w this way label every ψ with ψ ∈ PA to it. This cannot create an
inconsistent quasi-label of the common origin w of these paths since the quasi-label H
is consistent. Also the new paths are not affected by residual path formulas labeled in
LP(π). Now LS(w) fulfills all quasi-label conditions for state formulas.

Then forπ and every added path jump one step forward to the world w′ in depth i+1.
This is done in the MSO formula by quantifying a unique successor path π′ ∈ Π(w′)
for every added path as well as for π. In π′ every ψ can be labeled for which Xψ was
labeled in the unique path (w, w′, . . .). Hence for every path π ∈ Π(w) the quasi-label
conditions are also satisfied.

This step can be repeated up to depth m. ϕ is in CTL?NNF(A,E,X). Due to Corol-
lary 5.29 we know that if a tree quasi-model T is consistent until depth m and has
ϕ labeled at its root, then T can be truncated to a minimal model which has only
propositional formulas in depth m, which are sufficiently checked by θ 0

path.

“⇒”:
A quasi-model M of ϕ can be traversed to choose correct instances for the set vari-

ables occuring in θ : Use quasi-labels of paths for sets PA, PE, P ′A, P ′E and use quasi-labels
of states for sets H.

Choose an arbitrary path starting at the root r of M for the sets PA and PE, choose
a suitable superset of LS(r) for the first instance of H.

For the remaining instances of θ n
path that correspond to a path π in M use the quasi-

label of π≥2 to instanciate the first P ′A and P ′E, and for formulas Eψ corresponding to
elements of PE choose an arbitrary path π′ starting in a successor of π[1] where ψ is
labeled. The quasi-label of π′ can again be used to instanciate the second P ′A and P ′E
for every E-scoped formula in PE. Note that a path in M can be used to assign the
same set to multiple occurences of set variables P ′A, P ′E.

Due to the local quasi-label conditions the formula θBoolean is always satisfied, and
due to the temporal quasi-label conditions the formulas θinherit R are always satisfied in
the above construction.

FPT Runtime

Proven similar as Theorem 5.12 since the length of θ depends only on td(ϕ).

Lemma 5.32. LTL-SAT(F) is W[1]-hard when parameterized by structural pathwidth
and temporal depth.

Proof. The result is proven by a parameterized reduction from the problem p-PW-SAT
similar to the CTL-SAT(AG) case (cf. Lemma 5.18): Let I =

(︀
ϕ, k, (X i)i∈[k], (Ci)i∈[k]

)︀
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5 Parameterizing temporal satisfiability

be an instance of p-PW-SAT. We consider an equivalent LTL formula ψ(I) that has a
low structural pathwidth.

The formula ψ(I) ∈ LTL(F) is a conjunction of the following subformulas.

ψ[formula] := ϕ (5.18)

ψ[depth] := G
n−1⋀︁
i=0

[︀
(di ∧¬di+1)→ (mi mod 2 ∧¬m1−(i mod 2) (5.19)

∧ F(di+1 ∧¬di+2))
]︀

ψ[fixed-Q] :=
n⋀︁

i=1

[(qi → Gqi)∧ (¬qi → G¬qi)] (5.20)

ψ[signal] := G
n⋀︁

i=1

[︂
(di ∧¬di+1)→

(︂(︁
qi ↔>↑p(i)

)︁
(5.21)

∧
(︁
¬qi ↔⊥↑p(i)

)︁)︂]︂

ψ[count] := G
k⋀︁

p=1

n(p)⋀︁
j=0

1⋀︁
i=0

[︂(︁
>↑p ∧>

j
p ∧mi

)︁
→ G

(︁
m1−i → G> j+1

p

)︁]︂
(5.22)

∧
[︂(︁
⊥↑p ∧⊥

j
p ∧mi

)︁
→ G

(︁
m1−i → G⊥ j+1

p

)︁]︂
(5.23)

ψ[monotone] := G

[︃
n⋀︁

i=1

(di → di−1)∧
k⋀︁

p=1

n(p)+1⋀︁
j=1

[︁(︁
> j

p→>
j−1
p

)︁
(5.24)

∧
(︁
⊥ j

p→⊥
j−1
p

)︁]︁]︃

ψ[target] := G
k⋀︁

p=1

[︂
dn+1→

(︂
>Cp ∧¬>Cp+1 (5.25)

∧ ⊥n(p)−Cp
p ∧¬⊥n(p)−Cp+1

p

)︂]︂

ψ[init] := d0 ∧¬d1 ∧G
k⋀︁

p=1

[︁
>0

p ∧⊥
0
p

]︁
(5.26)

The κ-boundedness of the structural pathwidth ofψ(I) is proven as in Lemma 5.15.
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5.4 Linear Temporal Logic (LTL) and Full Branching Time Logic (CTL∗)

The pathwidth increases only marginally when replacing G by ¬F¬ in the given for-
mulas. The correctness follows from the argumentation already done in Lemma 5.18:
In the CTL case the formula enforces at least one path which does the correct count-
ing of variables in their respective partitions. The given LTL formula, which is a path
formula, ensures the same behaviour on a single path.

Note that the path semantics of LTL allows this reduction using the F operator only.
For CTL on the other hand the different semantics of AF and EF resp. AG and EF are
crucial for this method: Replacing AG by EG would result in an incorrect reduction.
The problem already occurs in ψ[fixed-Q]. Using only EG it is not possible to force
even two variables q1, q2 to maintain their value on a single path; they can immediately
“branch off” onto different paths.

Theorem 5.33. LTL-SAT(T ) parameterized by structural pathwidth (resp. treewidth)
and temporal depth is FPT if T ⊆ {X} and W[1]-hard if F ∈ T or U ∈ T.

Proof. For T ⊆ {X} the problem is ≤fpt-reducible to CTL?-SAT(A,X) by the function
f (ϕ) = Aϕ. For T = {F} refer to Lemma 5.32. For {F} ⊆ T the hardness is shown by
the identity reduction from LTL-SAT(F) to LTL-SAT(T ) which is an ≤fpt-reduction. For
{U} ⊆ T we modify the reduction and replace every formula Fψ by [>Uψ], increasing
the pathwidth only marginally.

Theorem 5.34. CTL?-SAT(T ) parameterized by structural pathwidth (resp. treewidth)
and temporal depth is FPT if T v {A,X} or {A} 6v T, and W[1]-hard if {A,F} v T or
{A,U} v T.

Proof. The case T v {A,X} is shown by Theorem 5.31. If {A} 6v T , it is only possible to
express propositional formulas which is equivalent to T = ; v {A,X}. For {A,F} v T
and {A,U} v T one can ≤fpt-reduce LTL-SAT(F) resp. LTL-SAT(U) to CTL?-SAT(T ) via
f (ϕ) = Aϕ.
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;

X

F

F,X

U

U,X

in FPT
W[1]-hard

(a) Complexity of LTL satisfiability

No/only A

A,X

A,F

A,F,X

A,U

A,U,X

in FPT
W[1]-hard

(b) Complexity of CTL∗ satisfiability

Figure 5.7: Complexity of temporal logics parameterized by κ= (td+ tw)

5.5 Variations of the parameterization

The tractability or intractability of a temporal logic fragment can depend on the chosen
parameterization. In this section the influence of different parameters is studied with
respect to the temporal fragments.

Lemma 5.35. LTL-SAT(X) is in FPT when parameterized by structural treewidth.

Proof. It holds due to the path semantics of LTL that X(φ∧ψ)≡ Xφ∧Xψ, X(φ∨ψ)≡
Xφ ∨ Xψ and X¬φ ≡ ¬Xφ for φ,ψ ∈ LTL. Hence every LTL formula with only X
operators can efficiently be converted to an equivalent Boolean combination β of X-
preceded variables:

ϕ ≡ β(Xn1q1, . . . ,Xnmqm), where Xi := X . . .X⏟  ⏞  
i times

and qi is a variable.

Inconsistent literals can only occur inside the same world and therefore at the same
nesting depth of X. Hence the above formula ϕ is satisfiable if and only if it is satis-
fiable as a purely propositional formula where the expression Xni qi is interpreted as
an atomic formula (i.e. a variable).

Formally we have

(LTL-SAT(X), twϕ)≤fpt (SAT, twϕ)≤fpt (CTL-SAT(;), twϕ + td) ∈ FPT.
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5.5 Variations of the parameterization

Lemma 5.36. CTL-SAT(AF) is W[1]-hard when parameterized by structural treewidth
or pathwidth.

Proof. Similar as in Lemma 5.14 we give a reduction from the problem p-PW-SAT. Due
to the restricted power of the AF and EG operators we choose a different approach
for expressing the existence of a saturated assignment in CTL.

Let I =
(︀
ϕ, k, (X i)i∈[k], (Ci)i∈[k]

)︀
be a given instance of PARTWEIGHT-SAT. ϕ is a

propositional formula in CNF, k is the number of partitions, X i is the subset of variables
in partition i and Ci is the capacity of partition i, i.e. the desired weight inside the
partition of a satisfying assignment of ϕ.

We construct a CTL formula ψ(I) which is a conjunction of the formulas described
next. Use the following notation: Let the propositional variables that occur in ϕ be
named q1, . . . , qn. Then p(i) is the number of the unique partition that contains qi. For
an arbitrary partition number p, write C(p) for its capacity and N(p) for its size as
before.

Assuming some assignment to q1, . . . , qn, the idea of the reduction is to measure the
weight of a partition in terms of worlds which have labeled a special propositional
variable p+, where p is a partition number. p+ is used to bound the weight of p from
above. Similar use a propositional variable p− to bound the weight of p from below.

First enforce the model of ψ(I) to have a special “ordered” form like in the proof of
Theorem 5.20:

β d
i :=

[︀
qi → AF

(︀
p(i)+ ∧ di ∧EG(¬ei−1))

)︀]︀
∧[︀

¬qi →
(︀
AF(p(i)− ∧ di ∧EG(¬ei−1)

)︀]︀
β e

i :=AF

(︃
ei ∧EG(¬di)∧

k⋀︁
p=1

¬p+ ∧¬p−
)︃

Let (M, r) be a model which has β d
i and β e

i labeled in r for i ∈ [n]. It holds
DAG[β d

1 ] ≺ DAG[β e
1] ≺ DAG[β d

2 ] ≺ DAG[β e
2] ≺ . . . ≺ DAG[β d

n ] ≺ DAG[β e
n], where

≺ means “is contained in the interior worlds of”. This can be proven similar to The-
orem 5.20: Now, additionally to the n “depth” propositions we also have n “emptiness”
frontiers in the sense that they have neither the p+ and p− propositions labeled, while
the frontier worlds of β d

i formulas have at least p+ or p− or both labeled.
Call the set of frontier worlds of a dag simply its frontier.

Claim. For any assignment of q1, . . . , qn in r holds: If a partition p has weight h, then
every path π ∈ Π(r) visits a set of frontiers H = {A1, . . . , Ah, B1, . . . , BN(p)−h} s. t. no two
frontiers of H have common worlds, all worlds of each Ai have p+ labeled and all worlds
of each Bi have p− labeled.

Proof of claim. Consider the assignment of variables q1, . . . , qn in r. The frontier of
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5 Parameterizing temporal satisfiability

DAG[β d
i ], i.e. the worlds that are witness for the AF-subformula in β d

i , have p(i)+

labeled if qi holds in r, and they have p(i)− labeled if ¬qi holds in r. These frontiers
are distinct since DAG[β d

i ]≺ DAG[β d
i+1] for each i and ≺ is transitive.

So for every partition p and every path π from r through M, π visits at least h times
a frontier with p+ and N(p) − h times a frontier with p− labeled if the partition p
was assigned weight h. We use the following recursively defined formulas to limit the
weight to the capacity:

γ+(p, 0) := EG
(︀
¬p+→ EG¬p+

)︀
γ+(p, j) := EG

(︀
¬p+→ EG(p+→ γ+(p, j − 1))

)︀
These formulas, when labeled in r, can be interpreted as follows: γ+(p, 0) is true

when there is no frontier with p+ labeled, i.e. none of the variables qi with p(i) = p
was assigned one (and no rogue p+ is labeled somewhere in the model). The formula
γ+(p, j) means: As soon as on a path first ¬p+ and then p+ is encountered, at most
j − 1 more worlds with p+ may be encountered.

Similar define formulas γ−(p, j) which limit the occurences of worlds with p−. Also
label ¬p+ ∧¬p− in r for each partition number p.

Claim. Let p be a partition and 0≤ h≤ N(p). If the formulas γ+(p, h) and γ−(p, N(p)−
h) are both true in r, then the variables q1, . . . , qn are assigned in r s. t. p has weight h.

Proof of claim. For a contradiction assume that p has weight h′ > h. Then there are at
least h′ distinct frontiers which have p+ labeled. Between two frontiers of DAG[β d

i ]
and DAG[β d

i+1] there is always another frontier of DAG[β e
i ] where neither p+ nor p−

is labeled.
Write F1, . . . , Fh′ for the h′ distinct frontiers with p+ labeled and assume they are

ordered from smallest to largest distance relative to r. Now assume that γ+(p, h)
is true in r. Since p+ does not hold in r, a path π starting from r has to satisfy
G(p+→ γ+(p, h−1)). As h′ > 0, πwill eventually encounter a world w with p+ labeled
(in F1 or earlier). But due to a frontier with ¬p+ the formula G(p+→ γ+(p, h−2)) has
to hold on another path π′ that yet has to reach F2.

When repeating this h times we get that in a world w∗ the formula γ+(p, 0) has to
hold, but every path starting at w∗ has yet to reach the frontier Fh′ , which contradicts
the assumption.

The case h′ < h is proven similar: If h′ < h, then there are more than N(p) − h
frontiers with p− labeled and γ−(p, N(p)−h) cannot be true in r. Note that both cases
also work when there are rogue propositions labeled somewhere in the model; they
can only make a valid formula γ+ or γ− false, but not vice versa.

Figure 5.8 illustrates this argumentation.
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r · · · · · ·
d1

e1
d2

e2
dn

en

p+
p−

p+

Figure 5.8: p has weight at least 2: All paths π ∈ Π(r) fail to fulfill γ+(p, 1)

From the above claims it follows that in every model (M, r) of the formula

ψ(I) := ϕ∧
k⋀︁

p=1

[︀
¬p+ ∧¬p− ∧ γ+(p, C(p))∧ γ−(p, N(p)− C(p))

]︀
∧

n⋀︁
i=1

[︀
β d

i ∧ β
e
i

]︀
the root label L(r) contains a subset of {q1, . . . , qn} that forms a saturated and satisfying
assignment of I .

On the other hand, a saturated, satisfying assignment of I can be used to construct a
model ofψ(I). A chain of 2n+1 worlds suffices: Label the satisfying assignment in the
root and fill the remaining worlds with depth propositions and emptiness propositions
in a way that satisfies ψ(I). From this it follows

I ∈ PARTWEIGHT-SAT⇔ψ(I) ∈ CTL-SAT(AF).

The formula is computable in fpt-time w. r. t. to the parameter κ of the left hand side,
i.e. the number k of partitions and the pathwidth of the CNF formula ϕ. To complete
the reduction it remains to show that the structural pathwidth of ψ (and therefore its
structural treewidth) is bounded by κ. For this, obtain a path-decomposition of ψ(I)
as follows.

Assume that P is a path-decomposition of the structure of ϕ s. t. there are bags
B1, . . . , Bn which introduce the variables q1, . . . , qn in this order. P can be obtained
using the same argumentation as in Lemma 5.15. Obtain a path-decomposition P′

of Sψ as follows: For every variable qi, insert all nodes of non-atomic subformulas of
[β d

i ∧ β
e
i ] into the bag Bi. Add the variables di−1, di, ei−1, ei to the bags Bi and Bi+1.

Every bag has now at most the width of P plus a constant. The n − 1 conjunctions
between the formulas [β d

i ∧ β
e
i ] also can be added with increasing the bag size by at

most two.
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5 Parameterizing temporal satisfiability

To cover a formula γ+(p, C(p)), append C(p) + 1 new bags to P′ that successively
cover (SF(γ+(p, j)) \ SF(γ+(p, j − 1)))∪ {γ+(p, j − 1)} for each j = 0, . . . , C(p). Every
such constructed bag has only constant width. Handle the γ− instances identically.
The only variables contained in γ-subformulas are p+ and p− for p = 1, . . . , k. These
variables as well as the remaining connectives of ψ(I) can be added to every bag,
increasing the width of P′ only by a computable function of k.

For the next theorem we require a result about complexity of modal logic. Define
ML-SAT({p}, D) as the set of formulas ϕ that have at most one propositional variable
and are satisfied by a serial Kripke structure.

Lemma 5.37. ML-SAT({p}, D) is PSPACE-complete.

Proof. It was shown by Joseph Y. Halpern that the problem of modal satisfiability with
only one variable is already PSPACE-complete [Hal95]. The upper bound is clear due
to the problem being a restriction of ML-SAT. Halpern states a reduction from the
problem Quantified Boolean Formula Truth (QBF) for the lower bound as follows.

A quantified Boolean formula (qbf) is of the form Q1p1Q2p2 . . .Qmpmφ where every
pi is a propositional variable, Q i ∈ {∃,∀} and φ is a propositional formula on the
variables p1, . . . , pm. A qbf ∃pφ is defined as true if and only if φ[p/>] or φ[p/⊥] is
true, i.e. p is replaced by > resp. ⊥ in φ, and a qbf ∀pφ is defined as true if both
φ[p/>] and φ[p/⊥] are true.

In a first step, we encode truth of qbf’s in a modal logic formula. The formula uses
modal operators to span a full binary tree, modeling assignments to the quantified
variables as leaves. In the second step we will reduce the number of required propos-
itional variables to one. For these parts of the proof we follow Halpern [Hal95, Sec.
3]. We will then restrict the problem to serial frames.

Assume a qbf of the form Q1p1Q2p2 . . .Qmpmφ. A binary tree of depth m+1 is built
using the following modal formulas:

Enforce monotonicity of the depth predicates d1, . . . , dm+1:

ψ[monotone] :=
m+1⋀︁
i=1

(di → di−1) (5.27)

At depth i choose a value for pi and keep it fixed for deeper worlds:

ψ[determined] :=
m⋀︁

i=1

[︂
di →

(︂(︀
pi →2(di → pi)

)︀
∧
(︀
¬pi →2(di →¬pi)

)︀)︂]︂
(5.28)
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Introduce successors for every world that correctly handle the branching depending
on the quantifiers in the qbf. For a universal (∀) quantifier have two successors:

ψ[branch]i,∀ :=
[︀
(di−1 ∧¬di)→

(︀
3(di ∧¬di+1 ∧ pi) (5.29)

∧3(di ∧¬di+1 ∧¬pi)
)︀]︀

For an existential (∃) quantifier have at least one successor with arbitrary assignment
of pi:

ψ[branch]i,∃ :=
[︀
(di−1 ∧¬di)→3(di ∧¬di+1)

]︀
(5.30)

The constructed modal formula ψ is then:

ψ := d0∧¬d1∧
m⋀︁

i=1

2i
[︀
ψ[monotone]∧ψ[determined]∧ψ[branch]i,Q i

∧(dm→ φ)
]︀

It holds that ψ is satisfiable if and only if Q1p1Q2p2 . . .Qmpmφ is true.
In the next step we reduce the number of propositional variables by replacing them

by so-called primitive-proposition-like (pp-like) formulas. Intuitively, pp-like formulas
are “independent enough” from each other so they can be used as an immediate re-
placement for propositional variables occuring in a modal formula.

Let p be a single propositional variable. We construct a family (q j) j∈N of pp-like
formulas:

q j =3(¬p ∧3 j p)

Intuitively, q j is true at a state w0 iff. there is a path (w0, . . . , w j) starting in w0 such
that p is false in w1 but true in w j. Halpern shows that this formula family is indeed
pp-like, thus in the formula ψ given above the 2m + 1 variables can be replaced by
q1, . . . , q2m+1 and the reduction stays valid.

In the last step we show that the formula ψ is satisfiable if and only if it is satisfied
in a serial Kripke structure by making a satisfying structure serial (the direction from
right to left comes for free). First observe that the family (q j) j∈N is still pp-like in
serial frames. Every state which is affected by a 2-subformula also has to fulfill a 3-
subformula (since it has a depth predicate labeled), hence it already has a successor.
Vice versa, states without successors cannot have a depth predicate labeled, hence we
can arbitrarily add successors or loops without affecting the validity of the reduction
from QBF.

Lemma 5.38. CTL-SAT(AX) and CTL?-SAT(A,X) are complete for para-PSPACE when
parameterized by structural treewidth.

Proof. As CTL?-SAT(A,X) ∈ PSPACE, the membership follows automatically for any
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5 Parameterizing temporal satisfiability

parameter [Mei11]. For the hardness consider the problem ML-SAT({p}, D) which is
PSPACE-complete (see Lemma 5.37). Now define a function g : ML→ CTL(AX) via

g(ϕ) :=

{︃
ϕ[2/AX,3/¬AX¬] if ϕ has at most one variable,

⊥ otherwise

i.e. g simply replaces the modal operators 2, 3 with the corresponding temporal
operators (EX ≡ ¬AX¬). Indeed g is computable in linear time. For any ψ =
g(ϕ) we have tw(Sψ) ≤ 2. Therefore g is a ≤P

m-reduction from ML-SAT({p}, D) to
(CTL-SAT(AX), tw)2. As now a single slice of it is already PSPACE-hard, the paramet-
erized problem (CTL-SAT(AX), tw) is para-PSPACE-hard.

The constant treewidth of Sϕ can be understood with a simple consideration: A
formula without variables always has a tree-like structure and treewidth one. Adding
a single variable to the structure increases the size of each bag of an optimal tree
decomposition by at most one.

Theorem 5.39. Let κ(ϕ) := tw(Sϕ), i.e. the parameter is only the structural treewidth.

• CTL-SAT(T ) is in FPT if T = ;, para-PSPACE-hard if {AX} v T and otherwise
W[1]-hard.

• LTL-SAT(T ) is in FPT if T ⊆ {X} and otherwise W[1]-hard.

• CTL?-SAT(T ) is in FPT if T v {A} or {A} 6v T, para-PSPACE-hard if {A,X} v T
and otherwise W[1]-hard.

Proof. A temporal formula without temporal operators is satisfiable if and only if it is
satisfiable in a model with a single world. Hence FPT membership for T = ; in the
CTL and LTL cases follows from Theorem 5.12 and Theorem 5.31: The MSO formulas
that are used can easily be replaced by such with constant length. CTL∗ formulas
cannot contain path formulas as subformulas unless they use A,E operators together
with X,F,G,U operators and hence have this property as well. The tractable case
LTL-SAT(X) is proven in Lemma 5.35.

Obviously td(ϕ)+tw(Sϕ) is an upper bound for tw(Sϕ), thus satisfiability for the frag-
ments CTL(AG) and CTL(AU) is again W[1]-hard via an identity reduction from the
parameterization by treewidth and temporal depth (see Lemma 5.17, Lemma 5.18 and
Lemma 5.19). Analogously the satisfiability problems for LTL(F), LTL(U), CTL?(A,F)
and CTL?(A,U) are W[1]-hard. The case CTL(AF) is W[1]-hard due to Lemma 5.36.

Corollary 5.40. CTL-SAT(T ) is para-PSPACE-complete if {AX} v T v {AX,AF}.
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Theorem 5.41. Let κ(ϕ) := td(ϕ), i.e. the parameter is only the temporal depth. Then
for any T the problems CTL-SAT(T ), LTL-SAT(T ) and CTL?-SAT(T ) are para-NP-hard
under ≤fpt-reduction.

Proof. Because propositional formulas have no temporal operators, it holds SAT ≤P
m

(CTL-SAT(;), td)0 and thus the slice (CTL-SAT(T ), td)0 is already NP-hard.
The same argument holds for LTL and CTL∗.

Corollary 5.42. (CTL-SAT(;), td), (LTL-SAT(;), td), (CTL?-SAT(;), td), (LTL-SAT(X), td),
and (LTL-SAT(F), td) are complete for para-NP under ≤fpt-reduction.
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Figure 5.9: Complexity of CTL-SAT parameterized by κ= tw
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Figure 5.10: Complexity of temporal logics parameterized by κ= tw
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6 Parameterizing temporal model
checking of LTL and CTL∗

The model checking of temporal logics started to gain attention in theory as well as
in practice in the last decades, whereas satisfiability (or equivalently validity) was the
primarily interesting problem for logicians in the early days of temporal logics.

The success of verification with temporal logic in practice doubtlessly is due to the
discovery of efficient algorithms, in particular models for CTL can be decided in poly-
nomial time:

Theorem 6.1 (Beyersdorff et al., 2011 [BMM+11]). CTL-MC(T ) is P-complete if T 6= ;
and NC1-complete if T = ;.

Here and in the following, L-MC(T ) is the model checking problem of the logic L

restricted to the operators that can be simulated by T . NC1 is the class of problems
that can be decided by Boolean circuits of only logarithmic depth (see [Vol99] for a
formal definition).

But also LTL grew important despite its PSPACE-complete validity and model check-
ing problems.

Corollary 6.2. LTL-∃MC(;), LTL-∀MC(;) and CTL?-MC(;) are NC1-complete.

Theorem 6.3 (Sistla and Clarke, 1985 [SC85]). LTL-∀MC(T ) is coNP-complete if T =
{X} or T = {F} and PSPACE-complete if {X,F} ⊆ T or U ∈ T.

Theorem 6.4 (Schnoebelen [Sch02]). CTL?-MC(T ) is:

• NC1-complete if T contains no or only path quantifiers,

• PNP-complete if T ≡ {A,F},

• PNP[log2 n]-complete if T ≡ {A,X},

• PSPACE-complete otherwise (namely if LTL-∀MC(T ) also is PSPACE-complete)

Here, PNP is the class of problems that are decidable by such deterministic polyno-
mial time Turing machines that have access to an NP oracle. PNP[log2 n] is defined similar,
but only O(log2 n) oracle accesses are allowed in a computation of the Turing machine.
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6 Parameterizing temporal model checking of LTL and CTL∗

In automata theory it is a known result that LTL model checking is a special case
of satisfiability. The rough idea is as follows: A given LTL formula ϕ can equivalently
described by a Büchi automaton B(ϕ).1 But for every finite model A there is an
automaton B(A) which accepts exactly this model. Now it holds that ϕ is satisfiable
if L(B(ϕ)), the language accepted by B(ϕ), is non-empty and that A |= ϕ if the
language L(B(¬ϕ))∩ L(B(A)) is empty.

Even if general model checking for LTL and CTL∗ is PSPACE-complete, statements as
early as from Lichtenstein and Pnueli already distinguished between program complex-
ity, the runtime dependence on the length of the formula ϕ, and structure complexity,
the runtime dependence on the length of the structure A to be checked. They stated
that the runtime factor 2|ϕ| does not prohibit efficient model checking as the size of
the structure is clearly dominant in practice.

Theorem 6.5 (Lichtenstein and Pnueli, 1985 [LP85]). There is an algorithm that de-
cides if (A, w,ϕ) ∈ LTL-∀MC in time 2O(|ϕ|) ·O(|A|).

Theorem 6.6 (Emerson and Lei, 1987 [EL87a]). There is an algorithm that decides if
(A, w,ϕ) ∈ CTL?-MC in time 2O(|ϕ|) ·O(|A|).

In the context of parameterized complexity, this automatically yields nice fixed-
parameter tractable problems:

Corollary 6.7. Let κ(ϕ,A, w) := |ϕ|. For Q ∈ {LTL-∃MC,LTL-∀MC, CTL?-MC} we have
(Q,κ) ∈ FPT.

In the rest of this chapter the influence of several parameterizations on the model
checking complexity is studied. Starting with temporal depth as parameter we can get
hardness results similar as for the satisfiability problems.

6.1 Temporal depth

Definition 6.8. Define LTLc(T ) as the fragment of LTL(T ) which has temporal depth
at most c, and similar CTL?c(T ) as the corresponding subset of CTL?(T ).

Define LTLc-∀MC(T ) and CTL?c -MC(T ) as the model checking problems restricted
to LTLc(T ) resp. CTL?c(T ) formulas.

Lemma 6.9. (LTL-∀MC(F), td) is complete for para-coNP under ≤fpt-reduction.

Proof. We follow Sistla and Clarke and show that LTL1-∀MC(F) (i.e. only F-operators
without nesting) is coNP-hard. This is done by a reduction from the NP-complete
3SAT problem: Given a propositional formula ϕ in 3CNF2, is it satisfiable?

1In fact every LTL formula defines a ω-regular language, but not vice versa.
2Conjunctive normal form with exactly three literals per clause
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6.1 Temporal depth

For this we construct a formula ψ ∈ LTL1 and a structure S such that (S, w0) |= ψ
if and only if ϕ is unsatisfiable. First assume ϕ =

⋀︀m
i=1

(︀
Li,1 ∨ Li,2 ∨ Li,3

)︀
where Li, j

is a literal, i.e. a propositional variable or its negation. Then simply define ψ :=⋁︀m
i=1

(︀
F¬Li,1 ∧ F¬Li,2 ∧ F¬Li,3

)︀
, soψ is basically the negation of ϕ supplemented with

F operators in front of the literals.
Assume that ϕ contains variables { x1, . . . , xn }. For a correct reduction the structure

S is now required to allow either Fx i or F¬x i to hold for 1 ≤ i ≤ n, but not both.
Also, for every subset X ⊆ {x1, . . . , xn} of variables (which can be interpreted as the
assignment that sets exactly the variables in X to true) there should be a path through
S and vice versa. The structure depicted in Figure 6.1 has these property and therefore
models propositional assignments as runs from its initial world w0. This means that
all runs in S fulfill the path formula ψ if and only if ¬ϕ is satisfied by all Boolean
assignments. Hence ϕ /∈ 3SAT ⇔ (ψ,S, w0) ∈ LTL1-∀MC(F). ψ and S are both
constructible in linear time.

Due to a small model property also LTL-∀MC(F) ∈ coNP holds [SC85] and the
para-coNP completeness follows from Theorem 2.17.

Corollary 6.10. Let {F} v T. Then the problem (LTL-∃MC(T ), td) is para-NP-hard and
the dual problem (LTL-∀MC(T ), td) is para-coNP-hard under ≤fpt-reduction.

Corollary 6.11. Let {A,F} v T. Then (CTL?-MC(T ), td) is para-NP-hard and para-
coNP-hard under ≤fpt-reduction.

The twofold hardness of CTL?-MC results from the path quantifiers available in CTL?;
CTL?-MC incorporates LTL-∀MC as well as LTL-∃MC.

When replacing Fα by >Uα in Lemma 6.9 the intractability automatically carries
over to the corresponding model checking problems with U-operators.

Lemma 6.12. Let T be a non-empty set of temporal operators. Then LTL-∀MC(T ) is
coNP-hard.

. . .w0

x1 x2 x3

¬x1 ¬x2 ¬x3

xn

¬xn

Figure 6.1: Structure that models propositional assignment as runs

77



6 Parameterizing temporal model checking of LTL and CTL∗

Proof. For X ∈ T we modify the reduction given in Lemma 6.9. Simply replace the
subformula Fx i by Xi x i in ψ and the reduction stays valid. This substitution leads
only to polynomial blowup. The cases F ∈ T and U ∈ T follow from Lemma 6.9.

Theorem 6.13. Let T v {A,X}. Then (CTL?-MC(T ), td) ∈ XP.

Proof. Algorithm 6.1 is based on the depth-bounded search tree1 method and decides
CTL?-MC(A,X).

The main idea is similar to Theorem 5.31: We recursively traverse the given for-
mula ϕ, only in this case we are not quantifying potential quasi-labels but instead
check the labels of the model. Due to the lack of F and U operators it is sufficient to
follow paths in the model only up to depth td(ϕ). This leads to a recursion tree with
depth roughly td(ϕ) and maximal branching degree |W |. Note that between two such
foreach-branchings there is at most a polynomial sized subtree of checkState, check-
AllPaths and checkOnePath calls which do the processing of propositional connectives.

The resulting runtime is thus:

|ϕ|O(1) · |W |td(ϕ)

Remark: The term td(ϕ) that appears as exponent of |W | is typical for XP-runtime;
even for LTL(X) it is unlikely to find such an approach by exhaustive search that works
in FPT-runtime. Note that on the other hand the hardness of LTL model checking arises
only from the problem of searching the correct path in a possibly branching structure!
In fact, the LTL model checking problem on non-branching structures is in P due to
a dynamic programming algorithm (but it is unknown if it is P-hard like CTL-MC)
[Gor09].

Theorem 6.14. Let T ⊆ {X}. Then (LTL-∀MC(T ), td) ∈ coW[P].

Proof. Let a formula ϕ ∈ LTL(X) and a structure A with root w be given. Now it holds
that (A, w) 6|= ϕ if and only if there is a path π ∈ Π(w) s. t. (A,π) 6|= ϕ. But this
depends only on a finite prefix of π that has length td(ϕ). This can be proven similar
to Theorem 5.28.

So to determine if the given formula is not satisfied by the structure, simply guess
a finite path of length td(ϕ) through A and verify the formula. This requires at most
O(td(ϕ) · log |A|) non-deterministic steps (using pointers to denote worlds) and leads
to coW[P] according to Definition 2.13.

1Further information on this method is presented e.g. by Niedermeier [Nie06].
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6.1 Temporal depth

Algorithm 6.1: Algorithm for deciding CTL?-MC(A,X)
Input :ϕ ∈ CTL?(A,X)

A= (W, R, L) Kripke structure
w0 ∈W initial world

Output : (A, w0) |= ϕ ?
1 Procedure checkState(ϕ, w)
2 if ϕ = x , x ∈ PS then return x ∈ L(w)
3 if ϕ = ¬x , x ∈ PS then return x /∈ L(w)
4 if ϕ = α∧ β then return checkState(α, w) ∧ checkState(β , w)
5 if ϕ = α∨ β then return checkState(α, w) ∨ checkState(β , w)
6 if ϕ = Aα then return checkAllPaths(α, w)
7 if ϕ = Eα then return checkOnePath(α, w)

8 Procedure checkAllPaths(ϕ, w)
9 if ϕ = Xα then

10 foreach R-successor v of w do
11 if ¬ checkAllPaths(α, v) then return false

12 return true

13 if ϕ = α∧ β then return checkAllPaths(α, w) ∧ checkAllPaths(β , w)
14 if ϕ = α∨ β then return checkAllPaths(α, w) ∨ checkAllPaths(β , w)
15 return checkState(ϕ, w) /* state formula */

16 Procedure checkOnePath(ϕ, w)
17 if ϕ = Xα then
18 foreach R-successor v of w do
19 if checkOnePaths(α, v) then return true

20 return false

21 if ϕ = α∧ β then return checkOnePath(α, w) ∧ checkOnePath(β , w)
22 if ϕ = α∨ β then return checkOnePath(α, w) ∨ checkOnePath(β , w)
23 return checkState(ϕ, w) /* state formula */

24 Transform ϕ into NNF
25 return checkAllPaths(ϕ, w0 )
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6 Parameterizing temporal model checking of LTL and CTL∗

Definition 6.15 (Maximum branching degree). Let A be a Kripke structure. Then
write ∆(A) for the maximum branching degree in A, i.e. the smallest number ∆ s. t.
every world in A has at most ∆ successors.

Theorem 6.16.

1. (LTL-∀MC(T ), td +∆) is in FPT for T v {X}, para-coNP-complete for T ≡ {F}
and para-coNP-hard otherwise,

2. (CTL?-MC(T ), td+∆) is in FPT for {A} 6v T or T v {A,X} and hard for para-NP
and para-coNP otherwise.

Proof. The runtime of Algorithm 6.1 is at most |ϕ|O(1)·∆(A)td(ϕ) because the branching
of its recursion tree is bounded by the branching of the Kripke structure. This proves
the FPT cases. For the para-coNP-hard cases it is obvious that the Kripke structures in
Theorem 6.17 in fact have only branching of degree two.

6.2 Treewidth and pathwidth

Define twA as the treewidth of the input structure, i.e. twA(ϕ,A, w) := tw(A). Define
twϕ as the structural treewidth of the input formula, i.e. twϕ(ϕ,A, w) := tw(Sϕ). Sim-
ilarly define pwA and pwϕ.

Theorem 6.17. For every non-empty set T of temporal operators (LTL-∀MC(T ), pwA) is
hard for para-coNP under ≤fpt-reduction.

Proof. This is shown using the same argument as in Lemma 6.9 and Lemma 6.12.
The structure S used there has a constant pathwidth of at most three: One bag B0

contains the worlds w0, w+1 , w−1 , where w+i (w−i ) is the unique world in S that has x i

(¬x i) labeled. Further bags Bi contain w+i , w+i+1, w−i and w−i+1 for 1≤ i < n. Connecting
the bags Bi and Bi+1 for 0 ≤ i < n results in a path-decomposition of S with width at
most three.

Corollary 6.18. For every non-empty set T of temporal operators (LTL-∀MC(T ), twA) is
hard for para-coNP.

Corollary 6.19. For T ≡ {F} or T ≡ {X}, (LTL-∀MC(T ), twA) is complete for para-
coNP.
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Corollary 6.20. For every set T that contains at least one path quantifier and one tem-
poral operator, (CTL?-MC(T ), pwA) and (CTL?-MC(T ), twA) are hard for para-NP and
para-coNP under ≤fpt-reduction.

This hardness result is not surprising when considering usual LTL model checking
algorithms since they already have runtime exponential in |ϕ| but only linear in |A|.

As mentioned above, model checking of LTL can be done by intersecting an ω-
language defined by the input formula with anω-language defined by the input struc-
ture. The satisfiability problem LTL-SAT(X) is in FPT w. r. t. structural treewidth of
the formula (see Lemma 5.35). There is however a problem when considering this
parameterization for model checking: The Büchi automaton B(¬ϕ) can be construc-
ted on-the-fly with its state depth bounded by td(ϕ) [Muk97]. But the Büchi auto-
maton B(A) that represents the input structure cannot be bounded by the structural
treewidth of ϕ or its temporal depth (it is completely independent of ϕ). Hence we
cannot use Courcelle’s theorem for LTL model checking due to the unbounded size of
the model.

In fact we get the following hardness result in constrast to the tractable satisfiability
problem.

Lemma 6.21. (LTL-∀MC(X), twϕ) is complete for para-coNP.

Proof. The hardness proof can be done similar to Lemma 6.9 and Lemma 6.12. The
crucial modification is to simulate the formulas Fx1, . . . ,Fxn by certain LTL formulas
using only a constant number of variables. This leads to a formula with a constant
structural treewidth.

First modify the structure as shown in Figure 6.2, i.e. replace every variable x i by
q and every variable ¬x i by ¬q. Then from the constructed formula ψ obtain ψ′

by substituting Xiq for Fx i and Xi¬q for F¬x i. Since any path from w0 through S

can only visit either w+i or w−i , fulfilling the formula Xiq is equivalent to choosing
x i = 1 in a Boolean assignment for ϕ. Thus we again get that ϕ is valid if and only if
(ψ′,S, w0) ∈ LTL-∀MC.

Corollary 6.22. Let X ∈ T. Then (LTL-∃MC(T ), twϕ) resp. (LTL-∀MC(T ), twϕ) is hard
for para-NP resp. para-coNP under ≤fpt-reduction.

Corollary 6.23. Let {A,X} v T. Then (CTL?-MC(T ), twϕ) is hard for para-NP and
para-coNP under ≤fpt-reduction.

Lemma 6.24. (LTL-∀MC(F), twϕ) is hard for para-coNP under ≤fpt-reduction.

Proof. We change the proof of Lemma 6.21 again such that the resulting structure S

has only constantly many variables but the formula ϕ uses only F operators. This
proves the theorem similar to Lemma 6.21.
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. . .w0

q q q

¬q ¬q ¬q

q

¬q

Figure 6.2: A one-variable structure with hard LTL(X) model checking

The problem with F is that it can enforce neither order of fulfillment nor the length
of a fulfilling prefix of a path. To achieve the desired effect, a rather large overhead
in form of nested F operators is required.

For paths π and π′ say that π′ is a j-suffix of π if there is an i ≥ j s. t. π′ = π≥i.
Consider the structure S with only one variable that was defined in Lemma 6.21.

Modify it such that every world w+i ,w−i and wi has the variable peven labeled if i is
even, and otherwise the variable podd. The resulting S is illustrated in Figure 6.3.

To create a matching LTL formula, first inductively define a shortcut operator Fi, j.
Fi, j(α) holds on a path π ∈ Π(w+i ) ∪ Π(w

−
i ) if a j-suffix of π fulfills α. For this, we

“skip” at least j worlds using the odd- and even-literals:

Fi,0(α) := Fα

Fi, j+1(α) :=

{︃
F(peven ∧¬podd ∧ Fi+1, j(α)) if i is odd

F(podd ∧¬peven ∧ Fi+1, j(α)) if i is even

At the same time we have to make sure that every F does not skip further on a path
than to the immediate suffix path, i.e. the unique subpath that is a 1-suffix but not a 2-
suffix. For this we use the fact that a path in S starts at w+n or w−n exactly when it fulfills
Gpeven (n is even) resp. Gpodd (n is odd). In the rest of the proof, write pend for the
matching literal depending on n. Then a path π ∈ Π(w+i )∪Π(w

−
i ) fulfills Fi, j(F¬pend)

if after skipping j or more worlds it gets to a world which still has a proper successor
in S. Thus Fi, j(F¬pend) means that there are at least j + 1 more steps between π[1]
and a world with pend labeled.

We aggregate the subexpressions into

F= j(α) := F0, j

(︀
α∧ F j,n− j−1(¬pend)

)︀
for n> j and

F=n(α) := F0,n (α) .

Due to the construction F= j(α) is the desired formula; it states that for a path π ∈
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Π(w0) the expression α should hold in world π[ j]: This is the only world on π which
is reachable from w0 with at least j steps but which still has distance at least n− j from
the world π[n].

The rest of the proof follows Lemma 6.21 but replaces Xiq by F=i(q). Then again
every path starting in w0 fulfills the constructed ψ if and only if it visits worlds W =
{w+i1 , w+i2 , . . . , w+im} s. t. X = {x i1 , x i2 , . . . , x im} is a satisfying assignment for the originalϕ.
Also the structure S and the formulaψ are again constructible in polynomial time.

Corollary 6.25. Let {F} v T or {U} v T. Then the problem (LTL-∃MC(T ), twϕ) resp.
(LTL-∀MC(T ), twϕ) is hard for para-NP resp. para-coNP under ≤fpt-reduction.

Corollary 6.26. Let {A,F} v T or {A,U} v T. Then (CTL?-MC(T ), twϕ) is hard for
para-NP and para-coNP under ≤fpt-reduction.

The proof of Lemma 6.24 would also work with only one “even” variable p and its
negated literal ¬p, together with q resulting in only two variables, but using peven and
podd makes it clearer.

The given reduction from 3SAT would likely not work with only one variable. The
used “even-odd” trick is necessary since F-formulas are “compressible” in the sense
that future in most temporal logics is reflexive (the present being a part of the future).
Also it seems that the linear nesting depth of F or X operators cannot be avoided if
only constantly many variables are used. Therefore it is unlikely that 3SAT can offer
para-coNP-hardness for model checking w. r. t. the parameterization td+ twϕ. We can
however use the W[1]-complete SQUARETILING problem.

Definition 6.27 (Tiling). Let C be a finite set of colors and D ⊆ C4 a set of tiles. Every
tile has four sides, namely up, down, left and right, which each have a color c ∈ C .
Use the quadruple notation to explicitly write the colors of a tile: d = 〈cu, cd , cl , cr〉. A
D-tiling for a discrete area R ⊆ N×N is a function γ : R→ D.

Write γ(x , y) = 〈(x , y)u, (x , y)d , (x , y)l , (x , y)r〉. Then γ is a valid tiling if for every
(x , y), (x ′, y ′) ∈ R holds:

. . .w0

peven

q, podd q, peven q, podd

¬q, podd ¬q, peven ¬q, podd

q, pend

¬q, pend

Figure 6.3: A three-variable structure with hard LTL(F) model checking
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• if x ′ = x and y ′ = y + 1, then (x , y)d = (x ′, y ′)u,

• if x ′ = x + 1 and y ′ = y , then (x , y)r = (x ′, y ′)l .

Tiling problems usually ask if a certain area has a valid tiling.

Definition 6.28. The problem SQUARETILING contains the instances (C , D, 〈k〉1) for
which the k× k-grid has a valid D-tiling:

SQUARETILING :=
{︀
(C , D, 〈k〉1)

⃒⃒
D ⊆ C4, k ∈ N and [k]× [k] has a valid D-tiling

}︀
Here, 〈·〉1 denotes a unary encoding.

Theorem 6.29 (Chlebus, 1986 [Chl86]). SQUARETILING is NP-complete.

Theorem 6.30 (Cai, Chen, Downey and Fellows, 1997 [CCDF97]). Let κ(C , D, 〈k〉1) :=
k. Then the parameterized problem (SQUARETILING,κ) is W[1]-complete.

Theorem 6.31. Let κ(ϕ,A, w) := td(ϕ) + pw(Sϕ). Then (LTL-∀MC(X),κ) is coW[1]-
hard.

Proof. The idea of the proof, a reduction from SQUARETILING, is to use the path se-
mantics of LTL to describe a valid tiling of the k× k grid: For every SQUARETILING in-
stance (C , D, 〈k〉1) we construct a formula ψ and structure S. ψ will have k-bounded
temporal depth and structural pathwidth. The Kripke structure S however will have
unbounded branching degree∆ (which is unlikely to be avoided as LTL-∀MC is already
in FPT with parameter td+∆).

Construct S as follows:

• Add worlds wstart and wend with the proposition qend labeled in wend.

• For every tile d ∈ D and for every i ∈ [k2] add a world wi
d .

• Connect wstart to w1
d for every d ∈ D.

• Connect w k2

d to wend for every d ∈ D.

• Connect wi
d to wi+1

d ′ for every d, d ′ ∈ D and 1≤ i < k2.

• Connect wend to itself.

• In every world wi
d with d = 〈cu, cd , cl , cr〉 label propositional variables c i

u, c i
d , c i

l ,
c i

r .

• In every world wi
d where i = k · j for j ∈ [k] label a propositional variable qborder.
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wstart wend

. . .

. . .

...
...

w k2

d1

w k2

dn

w1
d1

w1
dn

w2
d1

w2
dn

Figure 6.4: Structure that models square tilings as runs

The structure S is illustrated in Figure 6.4. It models (not necessarily valid) tilings
γ as runs from wstart by “serializing” the square into a path: It contains k worlds for
the first row, another k worlds for the second row appended to the first w worlds, and
so on to the k-th row, resulting in a total of k2 worlds on each path (besides wstart and
wend). At the same time, there are |D| successors that a path can use to select the next
tile in the current (or next) row: For every place (i, j) ∈ [k]× [k] a tile d is selected
by visiting the corresponding world w(i−1)·k+ j

d .
Now we give the path formulas that verify that the tiling γ described by a run π ∈

Π(wstart) is valid.

ψi
c,r :=

[︀
qborder ∨

(︀
c i

r → X(qend ∨ c i+1
l )
)︀]︀

ψi
c,d :=

[︀
c i

d → Xk
(︀
qend ∨ c i+k

u

)︀]︀

The formula ψi
c,r is true in a path π starting in a world wi

d (which has color c to the
right) if π chooses a matching successor: Either wi

d is a border and the color to the
right is not relevant, or wi

d has wend as immediate successor and the tiling is complete,
or the color matches the left color of the next tile.

Similar, the formulaψi
c,d ensures that the tile directly below the current one (which

lies in distance exactly k in the structure) has the matching up color or is already
beyond the last row.

We form the conjunction over every color c and every i:

ψ :=
k2⋀︁

i=1

[︃
Xi
⋀︁
c∈C

(︁
ψi

c,r ∧ψ
i
c,d

)︁]︃
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Claim. S and ψ can be constructed in fpt-time.

Proof of claim. The structure S can be constructed in time O(|D|2 · k2) and the formula
ψ can be constructed in time O(|C | · k3), which is both polynomial since k is encoded
unary in SQUARETILING. �

Claim. Let π = (wstart, w1
d1

, w2
d2

, . . . , wk2

dk2
, wend, . . .) be a run through S. Then π |= ψ if

and only if d1, d2, . . . , dk2 form a valid tiling of [k]× [k].

Proof of claim. “⇒”: Assume there are (x , y) and (x ′, y ′) such that the tiling conditions
are violated.

• Case 1: x ′ = x + 1 and y ′ = y . Then x 6= k, (x , y) has right color c and
(x +1, y) has left color c′ 6= c. Let i := (x −1) · k+ y . By definition of π it holds
that π[1] = wstart and π[i+1] = wi

di
. But as wi

di
is not a border and π≥i+1 |=ψi

c,r ,
so the successor has c as left color. But this means that c i

r is labeled in wi
di

and
c i+1

l is labeled in wi+1
di+1

, contradiction to c′ 6= c.

• Case 2: x ′ = x and y ′ = y + 1 which is similar proven as Case 1.

“⇐”: Let d1, d2, . . . , dk2 be a valid tiling γ of [k]× [k]. Assume that ¬ψ holds, i.e.
there is a color c and an i s. t. π≥i+1 does not satisfy ψi

c,r ∧ψ
i
c,d . If ψi

c,r is false, then
wi

di
is not a border but also has a different right color than its successor on π has as

left color. But then γ would not be a valid tiling. The case that ψi
c,d is false can be

handled analogously. �

It is easy to see that every run π through S from wstart has the form as in the above
claim, i.e. π= (wstart, w1

d1
, w2

d2
, . . . , wk2

dk2
, wend, . . .). Hence we get

(C , D, k) ∈ SQUARETILING ⇔ ∃π ∈ Π(wstart) : (S,π) |=ψ

and converse

(C , D, k) /∈ SQUARETILING⇔ ¬∃π ∈ Π(wstart) : (S,π) |=ψ
⇔ ∀π ∈ Π(wstart) : (S,π) |= ¬ψ
⇔ (¬ψ,S, wstart) ∈ LTL-∀MC(X)

Claim. The formula ψ has temporal depth k2 + k and structural pathwidth at most
2k2 + k+ 15.

Proof of claim. The temporal depth of k2 + k is the nesting depth of X operators in ψ.
For the pathwidth we construct a path-decomposition P of ψ as follows: For every

i ∈ [k2] and every color c ∈ C we create an isolated bag Bi
c. The bag Bi

c contains the
nodes representing
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6.2 Treewidth and pathwidth

• the Boolean connectives ∨,→ and ∨ in ψi
c,r ,

• the Boolean connectives→ and ∨ in ψi
c,d ,

• the variables qborder, qend, c i
r , c i+1

l , c i
d and c i+k

u ,

• the single X-operator in ψi
c,r ,

• the k X-operators in ψi
c,d .

The isolated bag covers every edge between nodes representing subformulas ofψi
c,r

andψi
c,d with a width of |Bi

c|= 3+2+6+1+k = k+12. Also every subformula ofψi
c,r

andψi
c,d except qborder and qend occurs exactly once inψ, hence every such subformula

of ψ trivially induces a connected path in P. But as qborder and qend are added into
every bag Bi

c they also induce a connected path as soon as the bags are connected.
To handle the remaining connectives including the “big conjunctions” of size |C |,

proceed as follows: First for every formula ξi
c :=

(︁
ψi

c,r ∧ψ
i
c,d

)︁
, add ξi

c to Bi
c.

Assume that the colors are ordered as c1, c2, . . . , c|C |, and that the big conjunctions
have the structure ((((ξ1 ∧ ξ2)∧ ξ3) . . .)∧ ξ|C |). For every j, 1 ≤ j < |C | then connect
the bags Bi

c j
and Bi

c j+1
by inserting an edge in P, and add the j-th ∧-node into both

bags, similar as in Lemma 5.15. Then after inserting the last conjunction, add the i
nodes for Xi to Bi

c|C |
, and finally add the nodes for the conjunction of size k2 to every

bag. These steps increase the size of every bag by at most 2k2 + 3.
As P now consists of k2 disconnected sequences of |C | bags each, concatenate them

into a path in arbitrary order. This leads to P being a connected path; and the vari-
ables qborder and qend as well as the nodes of the k2-conjunction now induce connected
subpaths. �

As the above claims show

(SQUARETILING, k)≤fpt (LTL-∃MC(X), td+ pwϕ),

the theorem follows.

Corollary 6.32. Let X ∈ T. Then LTL-∃MC is W[1]-hard and LTL-∀MC(T ) is coW[1]-
hard when parameterized by temporal depth and structural treewidth resp. pathwidth.

Corollary 6.33. Let {A,X} v T. Then CTL?-MC(T ) is W[1]-hard and coW[1]-hard
when parameterized by temporal depth and structural treewidth resp. pathwidth.

The W[1]-hard case LTL(X) is special because it is the only case of LTL model check-
ing where a non-trivial (read: actually using the parameter) upper bound (W[P]) has
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6 Parameterizing temporal model checking of LTL and CTL∗

been found. It would be very interesting to improve the result to a completeness res-
ult for some class W[·]. But such a result seems to be much harder to find for the
following reason.

The class W[1] can be characterized as the class of parameterized problems which
are reducible to the p-SHORT-NSTM-HALT problem. p-SHORT-NSTM-HALT contains the
pairs (M , k) s. t. M is a single-tape NTM halting on the empty word in at most k steps.
It is plausible that the W[1]-hard LTL model checking can simulate this problem when
X operators of depth k are available. On the other hand we have already seen that
LTL-∃MC(X) ∈W[P], k · log n non-deterministic bits allow to guess the fulfilling path.
To have W[1] also as an upper bound, we would have to reduce the process of choosing
k worlds (forming a path) in a model to a Turing machine making k non-deterministic
transitions. At first sight it is perfectly possible to do this for a model M by having
|M|-fold branching of the Turing machine. But a correct reduction would also require
that the propositional formulas at temporal depth i are evaluated on the i-th chosen
world in constant time, but checking propositional assignments is already NC1-hard
and therefore impossible in constant time. It is also not clear how the evaluation could
be “sufficiently precomputed” during the reduction (due to the exponential number
of possible propositional assignments).

Theorem 6.34. Let {F} v T or {U} v T. Then (LTL-∀MC(T ),κ) is coW[1]-hard when
parameterized by temporal depth and structural treewidth resp. pathwidth.

Proof. We adapt the reduction given in Theorem 6.31. First label a new depth pro-
position di in every world wi

d for d ∈ D, 1 ≤ i ≤ k2. Then change the formulas as
follows:

ψi
c,r :=

[︀
qborder ∨

(︀
c i

r → F(c i+1
l )
)︀]︀

ψi
c,d :=

{︃[︀
c i

d → F
(︀
c i+k

u

)︀]︀
if i + k ≤ k2

> otherwise

ψ :=
k2−1⋀︁
i=1

[︃
F
(︂

di ∧
⋀︁
c∈C

(︁
ψi

c,r ∧ψ
i
c,d

)︁)︂]︃

This does increase the pathwidth at most by k2 for d1, . . . , dk2 . Also Fα can be re-
placed by >Uα as usual.

Corollary 6.35. For {A,F} v T, CTL?-MC(T ) is W[1]-hard and coW[1]-hard when
parameterized by temporal depth and structural treewidth resp. pathwidth.

Definition 6.36. The problem RECTANGLETILING contains the tuples (C , c0, c1, D) for
which there is an m ∈ N such that the |D|×m-grid has a valid D-tiling γ with the color
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6.2 Treewidth and pathwidth

c0 at the top edge and c1 at the bottom edge:

RECTANGLETILING :=

⎧⎪⎪⎨⎪⎪⎩ (C , c0, c1, D)

⃒⃒⃒⃒
⃒⃒⃒⃒ D ⊆ C4, and for an m ∈ N the
[|D|]× [m] plane has a valid
D-tiling with c0 ∈ C at the top edge
and c1 ∈ C at the bottom edge

⎫⎪⎪⎬⎪⎪⎭
Theorem 6.37 (Chlebus, 1986 [Chl86]). The problem RECTANGLETILING is PSPACE-
complete.

Theorem 6.38. Let κ(ϕ,A, w) := pw(Sϕ). Then (LTL-∀MC(X,F),κ) is para-PSPACE-
complete.

Proof. We consider a ≤P
m-reduction from RECTANGLETILING to LTL-∀MC(X,F) such

that only LTL formulas with constant structural pathwidth are produced. As LTL-∀MC
is in PSPACE, this proves the theorem according to Theorem 2.17. This reduction
originally is from Sistla and Clarke to show the PSPACE-hardness of general LTL model
checking. We modify it to obtain a constant pathwidth.

Write the shortcut n := |D|. Then similar to Theorem 6.31 we construct a Kripke
structure S that models n×m-tilings as runs:

• Add worlds wleft, wright and wend which have each only one proposition labeled,
namely qleft, qright and qend.

• For every tile d ∈ D and for every i ∈ [n] add a world wi
d .

• Connect wleft to w1
d for every d ∈ D.

• Connect wk
d to wright for every d ∈ D.

• Connect wi
d to wi+1

d ′ for every d, d ′ ∈ D and 1≤ i < n.

• Connect wright to wend, wright to wleft and wend to itself.

• In every world wi
d with d = 〈cu, cd , cl , cr〉 label propositional variables cu, cd , cl ,

cr .

The structure S is shown in Figure 6.5 and models tilings as follows: A run π starts
in wleft and visits a row of n worlds wi

d . These worlds are the first row of the tiling.
In every of the n steps, π may decide for any of the |D| possible successors (which
correspond to tiles). The back edge from wright to wleft may be used then an arbitrary
number of times, constructing a tiling consisting of many rows. The path may then
enter the state wend and stay there forever.
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wleft

wright

wend

. . .

. . .

...
...

wn
d1

wn
dn

w1
d1

w1
dn

w2
d1

w2
dn

Figure 6.5: Structure that models rectangle tilings as runs

We use the following formulas to check if the tiling is valid. First ensure that the
complete first row has up color c0:

ψfirst :=
n⋀︁

i=1

Xi(c0)u

Check the neighbor to the right and below (if it is not the border):

ψc,r :=
[︀
cr → X

(︀
qright ∨ cl

)︀]︀
ψc,d :=

[︀
cd → Xn+2 (qend ∨ cu)

]︀
The last row must exist and have down color c1:

ψlast := F

[︃
qleft ∧

(︀
Xn+2qend

)︀
∧

n⋀︁
i=1

Xi(c1)d

]︃

The whole tiling is expressed by ψ:

ψ :=ψfirst ∧ψlast ∧¬F¬
⋀︁
c∈C

(︀
ψc,r ∧ψc,d

)︀
Similar to Theorem 6.31 is is the case that there is a valid n×m-tiling if and only if

a path starts in wleft and satisfies ψ.

Claim. The formula ψ has constant structural pathwidth.
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6.2 Treewidth and pathwidth

Proof of claim. We construct a path-decomposition P of ψ as follows. Ignore the vari-
ables (c0)u, (c1)d , qleft, qright and qend as they can be added to every bag at the end, in-
creasing every bag size only by five.

Now first process the formula ψfirst. It contains n “chains” of X-operators. For each
such chain create a row of bags. For j = 1, . . . , n−1 then add the j-th and the ( j+1)-th
X-operator node to the j-th bag, so the edge in the syntactical structure between them
is covered. Then the big conjunction is handled as in Theorem 6.31, connecting the n
rows of bags to a single path, increasing the width by at most two.

The formulas ψc,r have each constant length, so for every c ∈ C put all of the nodes
of subformulas of ψc,r into a single bag and append it to P. This does not violate
the path-decomposition rules as every variable cr , cl appears only once in the whole
formula ψ.

The length of ψc,d depends on n, but the chain of n+ 2 X-operators can be decom-
posed like in ψfirst, leading to n+ 2 new bags with each constant size.

The length ofψlast is again not constant; it contains a big conjunction of chains of X-
operators as well as another single chain with qend inside. Decompose the chains and
the big conjunction as in ψfirst. The edges connecting them to the remaining number
of constantly many ∧-nodes and the F node can then be covered by adding the nodes
to every bag, increasing the size only by a constant.

Finally for covering the whole formulaψ in P, we need to insert the remaining small
∧-operators, negations and the F into every bag; and to decompose the big conjunction
for every color c append the bags of the ψc,d formulas in the right order, again adding
the small conjunction parts of the big conjunction.

Due to the claim and the PSPACE-hardness of RECTANGLETILING we get that the
problem LTL-∀MC(X,F) is para-PSPACE-hard for the structural pathwidth parameter.

Corollary 6.39. For {X,F} v T, the problems LTL-∀MC(T ) and CTL?-MC({A}∪ T ) are
para-PSPACE-complete when parameterized by structural pathwidth or treewidth.

Theorem 6.40. Let κ(ϕ,A, w) := td(ϕ) + pw(Sϕ). Then (LTL-∀MC(U),κ) is para-
PSPACE-complete.

Proof. For the Until operator the reduction from Theorem 6.38 is possible in constant
temporal depth. Similar to Theorem 6.34 adapt the structure S and supplement the
labeled color variables cu, cd , cl , cr by their depth-aware versions, i.e. c i

u, c i
d , c i

l and c i
r

for 1≤ i ≤ n.
Modify the formulas as follows:
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ψfirst := [qleft ∨ (c0)u]Uqright

ψlast :=>U
[︀
qleft ∧ [(qleft ∨ (c1)d)Uqright]

]︀
ψi

c,r := c i
r →

[︀
c i

rUc i+1
l

]︀
ψi

c,d := c i
d →

[︀
c i

dU
(︀
¬c i

dU(qend ∨ c i
u)
)︀]︀

ψ :=ψfirst ∧ψlast ∧¬
[︂
>U¬

n⋀︁
i=1

⋀︁
c∈C

(︁
ψi

c,r ∧ψ
i
c,d

)︁]︂
The variables (c0)u, (c1)d , qleft and qright can again be added to every bag of a path-

decomposition P of ψ. The only part of ψ that is not constant is the conjunction over
the n · |C | subformulas ψi

c,r and ψi
c,d . But each such subformula ψi

c,r resp. ψi
c,d can

be covered by a single isolated bag: It has only a constant number of nodes and every
occuring variable is either subformula-local or is already added to every bag.

Then it remains to decompose the big conjunctions which can be done in two steps.
First connect the isolated bags for the inner conjunction and add the small conjunction
nodes as needed. Then connect the resulting chains of length |C | to finalize the path-
decomposition P that has a constant width.

Corollary 6.41. For U ∈ T, LTL-∃MC(T ), LTL-∀MC(T ) and CTL?-MC({A} ∪ T ) are
para-PSPACE-complete when parameterized by temporal depth and structural pathwidth
resp. treewidth.
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7 Summary and conclusion

In 2013 Praveen asked: “Does Treewidth Help in Modal Satisfiability?”
He saw that the otherwise PSPACE-complete modal satisfiability problem becomes

fixed-parameter tractable when the modal depth and the structural treewidth are
chosen as parameter. If we modify the question to

“Does Treewidth Help in Temporal Satisfiability?”
then the correct answer should be: “Only if it is Modal Logic.” This might be surprising
at first sight, but this thesis shows that the recent results on applying Courcelle’s the-
orem to modal logic likely cannot be transferred to temporal fragments with “future”
or “global” operators; they are W[1]-hard under the given parameterization. Praveen
already observed that this is the case for modal logic restricted to transitive frames.
Also treewidth alone is not a sufficient parameterization, a combination with modal
depth is required. Still, for some kinds of logics the modal or temporal depth exactly
fails to help as a parameter. The results imply that such logics are those with fixpoint
operators like F. It is plausible that the hardness is inherent to all logics which can
express “deep” properties of structures with low operator depth.

The W[1]-hardness for a combination of treewidth and temporal depth is however
not yet proven for the pure {AF,EG} CTL fragment, but the long model property (see
Theorem 5.20) forbids that satisfiability can be handled with a similar approach as for
{AX}. Expressing {AF,EG} satisfiability with Courcelle’s theorem is presumably only
possible with much more technial work, if at all.

Similar, the used parameterizations have no to little effect on the intractable tem-
poral model checking cases. Merely the {X} resp. {A,X} fragment falls down to W[P]
resp. XP with the temporal depth as parameter; but in contrast to satisfiability no
fragment becomes fixed-parameter tractable, not even together with treewidth as para-
meter. Therefore the model checking algorithm by Lichtenstein and Pnueli which runs
in time 2|ϕ| · |A| stays the best known FPT result for LTL (|ϕ| is the parameter).

Future research possibilities are the determination of a non-trivial parameterization
for model checking that suffices for fixed-parameter tractability. Such parameteriza-
tions have potentially big relevance in practice where model checking tasks are dom-
inant for temporal logics. Different approaches of LTL model checking, e.g. in terms
of Büchi automata, may help here. Also the {AF,EG} fragment is not yet fully un-
derstood in terms of complexity: Does the fact that both operators are composed of
“mixed” quantifiers lead to fixed-parameter tractability?
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7 Summary and conclusion

Problem Q Parameter κ

CTL-SAT(·) - td twϕ td+ twϕ / td+ pwϕ

; NP-c. para-NP-c. FPT FPT
AF ? para-NP-c. W[1]-h. ?
AX PSPACE-c. para-NP-h. para-PSPACE-c. FPT
AF,AX PSPACE-c. para-NP-h. para-PSPACE-c. W[1]-h.
AG PSPACE-c. para-NP-h. W[1]-h. W[1]-h.
AG,AF PSPACE-c. para-NP-h. W[1]-h. W[1]-h.
other EXP-c. para-NP-h. W[1]-h. W[1]-h.
other (with AX) EXP-c. para-NP-h. para-PSPACE-h. W[1]-h.

CTL-MC(·)

; NC1-c.
other P-c.

Problem Q Parameter κ

LTL-SAT(·) - td twϕ / pwϕ td+ twϕ / td+ pwϕ

; NP-c. para-NP-c. FPT FPT
X NP-c. para-NP-c. FPT FPT
F NP-c. para-NP-c. W[1]-h. W[1]-h.
other PSPACE-c. para-NP-h. W[1]-h. W[1]-h.

LTL-∀MC(·) - td td+∆ twϕ

; NC1-c.
X coNP-c. coW[P], coW[1]-h. FPT para-coNP-c.
F coNP-c. para-coNP-c. para-coNP-c. para-coNP-c.
F,X PSPACE-c. para-coNP-h. para-coNP-h. para-PSPACE-c.
other PSPACE-c. para-PSPACE-c. para-coNP-h. para-PSPACE-c.

pwA / twA |ϕ| td+ twϕ / td+ pwϕ

X para-coNP-c. FPT coW[P], coW[1]-h.
F para-coNP-c. FPT coW[1]-h.
F,X para-coNP-h. FPT coW[1]-h.
other para-coNP-h. FPT para-PSPACE-c.
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Problem Q Parameter κ

CTL?-SAT(·) - td twϕ td+ twϕ / td+ pwϕ

no / only A NP-c. para-NP-c. FPT FPT
A,X PSPACE-c. para-NP-h. para-PSPACE-c. FPT
A,F PSPACE-c. para-NP-h. W[1]-h. W[1]-h.
other 2EXP-c. para-NP-h. W[1]-h. W[1]-h.

CTL?-MC(·) - td td+∆ twϕ

no / only A NC1-c.
A,X PNP[log2 n]-c. XP, (co)W[1]-h. FPT para-(co)NP-h.
A,F PNP-c. para-(co)NP-h. para-(co)NP-h. para-(co)NP-h.
A,F,X PSPACE-c. para-(co)NP-h. para-(co)NP-h. para-PSPACE-c.
other with A PSPACE-c. para-PSPACE-c. para-(co)NP-h. para-PSPACE-c.

twA / pwA |ϕ| td+ twϕ / td+ pwϕ

A,X para-(co)NP-h. FPT XP, (co)W[1]-h.
A,F para-(co)NP-h. FPT (co)W[1]-h.
A,F,X para-(co)NP-h. FPT (co)W[1]-h.
other with A para-(co)NP-h. FPT para-PSPACE-c.
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