
PSPACE-completeness of LTL/CTL∗ model checking

Peter Lohmann

April 10, 2007

Abstract

This paper will give a proof for the PSPACE-completeness of LTL-
satisfiability and for the PSPACE-completeness of the problem of determining if
a given LTL/CTL∗ formula is true in a given system. CTL∗, a very expressive
temporal logic, combines and extends both LTL and CTL and is used in model
checking.

The fact that CTL∗ model checking is PSPACE-complete was shown by
Clarke, Emerson and Sistla in 1986 but most of the work had already been
done by Sistla and Clarke in 1985.

Before proving the main results the basics of Kripke structures and temporal
formulas will be explained shortly as we need them later on.

This paper was written as a Studienarbeit at the Institute of Theoretical
Computer Science of the Leibniz University Hannover, Germany.

I want to thank Thomas Zeume for his advice on the first draft of this paper.

Contents

1 Introduction 1
1.1 Preliminaries . 2

2 PSPACE-completeness of LTL/CTL∗ model checking and LTL-
satisfiability 4
2.1 LTL-truth is reducible to LTL-satisfiability 4
2.2 LTL-truth is PSPACE-hard . 6
2.3 LTL-satisfiability ∈ PSPACE . 8
2.4 CTL∗-truth ∈ PSPACE . 14

1 Introduction

Model checking is the problem of proving that a given system (computer program,
network protocol, hardware design etc.) fulfills or does not fulfill a given specification.
If the latter is the case a counter example is given which violates the specification.
The system in question is hereby modeled by a Kripke structure, a kind of finite
state machine, and the specification is represented by a temporal logic formula. This
formula may contain specific operators and quantifiers to model the specifications for
the dynamic behaviour of the system.

1

mailto:peter@lohmannhannover.de

Different temporal logics have been invented – each with its own strengths and
weaknesses. Two common logics are LTL (Linear Temporal Logic) and CTL (Com-
putation Tree Logic). This paper will examine the complexities of LTL and of CTL∗

(Computation Tree Logic∗), a quite powerful temporal logic combining both the ex-
presiveness of LTL and CTL in a single model.

We will prove that model checking for LTL is PSPACE-complete which was first
shown by Sistla and Clarke [SC85]. In fact they even showed that the problem of de-
termining whether a Kripke structure fulfilling a given formula exists is also PSPACE-
complete. This we will prove, too. From there it is only a small step to see that model
checking for CTL∗ is also PSPACE-complete, as shown by Clarke, Emerson and Sistla
[CES86].

The remainder of this first chapter will introduce the basics of Kripke structures
and temporal logic formulas.

1.1 Preliminaries

Definition 1.1.
A Kripke structure is a triple M = (S, R, P) where S is the finite set of states, R ⊆ S×S
is the total transition relation (total meaning that ∀s ∈ S : ∃s′ ∈ S such that
(s, s′) ∈ R) and P : S → 2AP is the label function (AP is the finite set of atomic
propositions).

The intuitive function is that the system is in exactly one state s ∈ S in every
moment and can step to all states s′ ∈ S for which (s, s′) ∈ R. P is needed because
Kripke structures are not connected to temporal logic formulas directly with the states
but via atomic propositions. P (s) is the set of atomic propositions which are true in
state s.

These atomic propositions will now be used in the definition of temporal logic
formulas of which there are two different kinds, namely temporal state formulas and
temporal path formulas.

Definition 1.2.
A temporal state formula is inductively defined as follows:

• If f ∈ AP , then f is a state formula.

• If f and g are state formulas, then ¬f , f ∧g, f ∨g and f → g are state formulas.

• If f is a path formula, then Af and Ef are state formulas.

Definition 1.3.
A temporal path formula is inductively defined as follows:

• If f is a state formula, then f is a path formula.

• If f and g are path formulas, then ¬f , f ∧ g, f ∨ g, f → g, Xf , Ff , Gf and
fUg are path formulas.

The letters stand for the following:

• A means “on all paths”

• E means “a path exists”

2

• X means “in the next state on the path”

• F means “eventually in a state along the path”

• G means “globally in all states along the path”

• U means “until”

Now we can define CTL∗:

Definition 1.4.
CTL∗ (Computation Tree Logic∗) is the set of all temporal state formulas.

For a Kripke structure M = (S, R, P), a state s ∈ S, a sequence of states
u = (u0, u1, u2, . . .) ∈ SN with (uk, uk+1) ∈ R ∀k ≥ 0 (such a u is called a path in M),
a temporal state formula f and a temporal path formula g we write

M, s |= f for “the Kripke structure M fulfills the formula f in state s”
or “f is true in state s in M”

and M,u |= g for “the Kripke structure M fulfills the formula g along the path u”
or “g is true along path u in M”.

If u = (u0, u1, u2, . . .) we write uk for the suffix (uk, uk+1, . . .).
Now that we know the syntax of temporal logic formulas we can define their se-

mantics and hereby define the truth of a formula in a Kripke structure.

Definition 1.5.
The truth of a formula in a Kripke structure is inductively defined as follows:
(let f1 and f2 be state formulas and g1 and g2 path formulas; and let s ∈ S and
u = (u0, u1, . . .) a path in M)

M, s |= p (p ∈ AP) ⇔ p ∈ P (s)
M, s |= ¬f1 ⇔ M, s 6|= f1

M, s |= f1 ∧ f2 ⇔ M, s |= f1 and M, s |= f2

M, s |= Eg1 ⇔ ∃ path v = (v0 = s, v1, v2, . . .) in M : M,v |= g1

M,u |= f1 ⇔ M,u0 |= f1

M,u |= ¬g1 ⇔ M,u 6|= g1

M,u |= g1 ∧ g2 ⇔ M,u |= g1 and M,u |= g2

M,u |= Xg1 ⇔ M,u1 |= g1

M,u |= g1Ug2 ⇔ ∃k ≥ 0 :
[
M,uk |= g2 ∧ ∀0 ≤ j < k : M,uj |= g1

]
The remaining types of formulas are only abbreviations and are defined as follows:

f ∨ g ≡ ¬(¬f ∧ ¬g)
f → g ≡ ¬f ∨ g

Af ≡ ¬E¬f
Ff ≡ trueUf
Gf ≡ ¬F¬f

Sometimes we are not only interested in whether a given formula is true in a given
Kripke structure but we want to know if there is a Kripke structure at all in which
the formula is true:

Definition 1.6.
A CTL∗ formula f is satisfiable :⇔ ∃M = (S, R, P) ∧ s0 ∈ S such that M, s0 |= f .

3

CTL∗ has an important subset:

Definition 1.7.
LTL (Linear Temporal Logic) is the subset of CTL∗ which only contains the formulas
of the form Ef where f is a path formula with only atomic propositions as state
subformulas.

Or in other w: LTL is the set of all formulas Ef where f is a LTL path formula.
A LTL path formula is inductively defined as follows:

• If f is an atomic proposition, then f is a path formula.

• If f and g are path formulas, then ¬f , f ∧ g, f ∨ g, f → g, Xf , Ff , Gf and
fUg are path formulas.

We will now leave the basics of Kripke structures and temporal formulas.
For a wider introduction into Kripke structures and temporal formulas and for some
examples the reader may refer to [CGP99, pp. 13-33].

2 PSPACE-completeness of LTL/CTL∗ model
checking and LTL-satisfiability

The following three problems are to be examined:

Definition 2.1.
LTL-satisfiability := {f ∈ LTL | f is satisfiable}
LTL-truth := {〈M, s0, f〉| M is a Kripke structure, s0 is a state in M, f ∈ LTL,
M, s0 |= f}
CTL∗-truth := {〈M, s0, f〉| M is a Kripke structure, s0 is a state in M, f ∈ CTL∗,
M, s0 |= f}

We will now show that LTL-satisfiability, LTL-truth and CTL∗-truth are all
PSPACE-complete. Therefor we will first show that LTL-truth is polynomial time
reducible to LTL-satisfiability. Trivially LTL-truth is reducible to CTL∗-truth (the
reduction function is the identity). Then we will show that LTL-truth is PSPACE-
hard. From this it follows by the above reductions that the other two problems are
also PSPACE-hard. Then we will show that LTL-satisfiability ∈ PSPACE and from
this it follows (again by the above reduction) that LTL-truth ∈ PSPACE. Finally we
will show that CTL∗-truth ∈ PSPACE. Therefor we will use the former result that
LTL-truth ∈ PSPACE.

Note that CTL∗-satisfiability := {f ∈ CTL∗ | f is satisfiable} 6∈ PSPACE but in
fact 2EXPTIME-complete as shown by Emerson and Lei.

2.1 LTL-truth is reducible to LTL-satisfiability

Let M = (S, R, P) be a Kripke structure, let s0 ∈ S and let Ef ∈ LTL. The idea of
the reduction function is to model the behaviour of M by an appropriate formula fM ,
model the beginning state s0 ∈ S by an atomic proposition ps0 and then conjunct f ,
fM and ps0 .

4

Let AP be the set of all atomic propositions appearing in f and let
APS := {ps|s ∈ S} and let w.l.o.g. AP ∩APS = ∅, i.e. APS contains one new atomic
proposition for each state in S.

For a given state s ∈ S we will now construct a formula fs that ensures

• that ps is true,

• that for no s′ ∈ S\{s} ps′ is true (meaning that at a given point in time the
system is in state s and in no other state),

• that exactly the atomic propositions in P (s) are true

• and that in the next state a ps′′ will be true for a s′′ ∈ S such that (s, s′′) ∈ R
(meaning that the state will change according to the transition relation R).

Then the formula fM is simply the globally quantified disjunction of all fs ∀s ∈ S
(meaning that at every point in time the system will be in a valid state).

Let s ∈ S arbitrarily chosen. Let

gs := ps ∧

(
¬

∨
s′∈S\{s}

ps′

)

hs :=

(∧
p∈P (s)

p

)
∧

(
¬

∨
p∈AP\P (s)

p

)

ds := X

 ∨
s′′∈S

(s,s′′)∈R

ps′′


fs := gs ∧ hs ∧ ds

Let fM := G
(∨

s∈S

fs

)
and finally r(Ef) := E(f ∧ fM ∧ ps0).

Theorem 2.2.
Let M, s0, f be defined as above and let r : LTL → LTL be defined by the above

transformation. Then M, s0 |= Ef ⇔ r(Ef) is satisfiable. And thus LTL-truth ≤p
m

LTL-satisfiability since r is clearly computable in polynomial time.

Proof. “⇒”:
Let M, s0 |= Ef .
Proposition: M ′, s0 |= r(Ef) where M ′ := (S, R, P ′) with P ′(s) := P (s)∪{ps} ∀s ∈ S.
Proof (of proposition): As M, s0 |= Ef by precondition, there is a path u = (u0 =
s0, u1, u2, . . .) with M,u |= f .
⇒ M ′, u |= f because in every formula which contains only atomic propositions from
AP and none from APS M and M ′ behave exactly the same way.
Trivially M ′, u |= ps0 and so we just need to show that M ′, u |= fM .

But this can also easily be seen as fM is constructed to model M :
∀k ≥ 0 : M ′, uk |= guk

∧ huk
due to the definition of P ′ and M ′, uk |= duk

because
(uk, uk+1) ∈ R.
⇒ ∀k ≥ 0 : M ′, uk |= fuk

and hence M ′, u |= fM .
⇒ M ′, u |= f ∧ fM ∧ ps0 ⇒ M ′, s0 |= r(Ef).

“⇐”:
Let r(Ef) be satisfiable and let M ′ = (S′, R′, P ′), s′0 ∈ S′, u′ = (u′0 = s′0, u

′
1, u

′
2, . . .) ∈

S′N such that M ′, u′ |= f ∧ fM ∧ ps0 .

5

We will now prove by induction on k that there is a path u = (u0, u1, u2, . . .) in
M with u0 = s0 and ∀k ≥ 0 : P ′(u′k) = P (uk) ∪ {puk

}. (We can w.l.o.g. assume that
the set of atomic propositions of M ′ = AP ∪APS .)

Induction beginning: Because M ′, u′ |= ps0 and M ′, u′ |= fM

⇒ M ′, u′ |= fs0

⇒ P ′(s′0) = P (s0) ∪ {ps0}.
Induction hypothesis: True for u0, . . . , uk.
Induction conclusion: Because P ′(u′k) = P (uk) ∪ {puk

} and M ′, u′ |= fM

⇒ M ′, u′k |= fuk

⇒ M ′, u′k |= duk

⇒ ∃uk+1 ∈ S : (uk, uk+1) ∈ R ∧M ′, u′k+1 |= puk+1

⇒ M ′, u′k+1 |= fuk+1

⇒ P ′(u′k+1) = P (uk+1) ∪ puk+1 .
Now we are able to prove that M,u |= f :

Since ∀k ≥ 0 : P ′(u′k) = P (uk) ∪ {puk
} and f contains only atomic propositions from

AP and none from APS , M behaves exactly the same way along u as M ′ does along
u′. ⇒ M,u |= f ⇒ M, s0 |= Ef .

2.2 LTL-truth is PSPACE-hard

Theorem 2.3.
LTL-truth is PSPACE-hard.

Proof.
Let T = (Q,Σ, δ, Qa, Qr, q0,�) be a one-tape DTM where Q is the set of states, Σ is
the alphabet, δ : Q× Σ → Q× Σ× {L,R} is the transition function, Qa is the set of
accepting states, Qr is the set of rejecting states, q0 is the initial state and � ∈ Σ is
the blank symbol. Let T immediately stop its computation when reaching a state in
Qa or in Qr. Let T be P (n)-space bounded where P is a polynomial and w.l.o.g. T
only visits tape cells to the right of the input word. Let a = a1a2a3 . . . an be an input
to T .

Let M = (S, R, P) be the following Kripke structure:

S = {begin, end} ∪
(
{1, 2, 3, . . . , P (n)} ×

(
(Q× Σ) ∪ Σ

))
R = {(begin, (1, σ)) | σ ∈ (Q× Σ) ∪ Σ}

∪ {((P (n), σ), end) | σ ∈ (Q× Σ) ∪ Σ}
∪ {(end, begin)}
∪ {((i, σ), (i + 1, τ)) | σ, τ ∈ (Q× Σ) ∪ Σ, i ∈ {1, . . . , P (n)− 1}}

M has P (n) “columns” which are connected as a chain. In each column there
are |(Q× Σ) ∪ Σ| vertices.

P (begin) = begin
P (end) = end

P ((i, σ)) = pσ ∀σ ∈ (Q× Σ) ∪ Σ, i ∈ {1, . . . , P (n)}
The set of atomic propositions is AP = {pσ|σ ∈ (Q× Σ) ∪ Σ} ∪ {begin, end}.

⇒ Each subpath between begin and end (where exactly one vertex is in Q×Σ and
the others are in Σ) represents a configuration of T (the vertex from Q × Σ denotes
the current state and head position of T) and a path beginning at begin represents a
computation of T .

6

Now we will construct a LTL formula f = r(T, a) which will be true in M at the
state begin iff T halts in an accepting state when given a as input:

fvalid :=

G

(
begin →

(∨
k=1...P (n)

((
X
∨

σ∈Σ

pσ

)
∧
(
XX

∨
σ∈Σ

pσ

)
∧
(
XXX

∨
σ∈Σ

pσ

)
∧ · · · ∧

(
XX . . .X︸ ︷︷ ︸
(k−1)−times

∨
σ∈Σ

pσ

)
∧
(
XX . . .X︸ ︷︷ ︸

k−times

∨
σ∈Q×Σ

pσ

)
∧
(

XX . . .X︸ ︷︷ ︸
(k+1)−times

∨
σ∈Σ

pσ

)
∧ · · · ∧

(
XX . . .X︸ ︷︷ ︸
P (n)−times

∨
σ∈Σ

pσ

))))
asserts that every subpath between begin and end represents a valid configuration of T .

finitial :=
Xp(q0,a1) ∧XXpa2 ∧XXXpa3 ∧XXXXpa4 ∧ · · · ∧XX . . .X︸ ︷︷ ︸

n−times

pan
∧ XX . . .X︸ ︷︷ ︸

(n+1)−times

p�∧

· · · ∧ XX . . .X︸ ︷︷ ︸
P (n)−times

p�

asserts that the first subpath between begin and end represents the initial configura-
tion of T with input a.

∀(z, b) ∈ Q× Σ : ftransition,z,b := fleft transition,z,b :=∧
k=2...P (n)

G

((
begin ∧Xpb1 ∧XXpb2 ∧ · · · ∧XX . . .Xpbk−1 ∧XX . . .X︸ ︷︷ ︸

k−times

p(z,b)

∧XX . . .Xpbk+1 ∧ · · · ∧XX . . .XpbP (n)

)
→

XX . . .X︸ ︷︷ ︸
(P (n)+2)−times

(
Xpb1 ∧XXpb2 ∧ · · · ∧XX . . .Xpbk−2 ∧ XX . . .X︸ ︷︷ ︸

(k−1)−times

p(z′,bk−1)

∧XX . . .X︸ ︷︷ ︸
k−times

pc ∧XX . . .Xpbk+1 ∧ · · · ∧XX . . .XpbP (n)

))
if δ((z, b)) = (z′, c, L)

or ftransition,z,b := fright transition,z,b :=∧
k=1...P (n)−1

G

((
begin ∧Xpb1 ∧XXpb2 ∧ · · · ∧XX . . .Xpbk−1 ∧XX . . .X︸ ︷︷ ︸

k−times

p(z,b)

∧XX . . .Xpbk+1 ∧ · · · ∧XX . . .XpbP (n)

)
→

XX . . .X︸ ︷︷ ︸
(P (n)+2)−times

(
Xpb1 ∧XXpb2 ∧ · · · ∧XX . . .Xpbk−1 ∧XX . . .X︸ ︷︷ ︸

k−times

pc

∧ XX . . .X︸ ︷︷ ︸
(k+1)−times

p(z′,bk+1)∧XX . . .Xpbk+2∧· · ·∧XX . . .XpbP (n)

))
if δ((z, b)) = (z′, c, R)

or ftransition,z,b := floop,z,b :=∧
k=1...P (n)

G

((
begin ∧Xpb1 ∧XXpb2 ∧ · · · ∧XX . . .Xpbk−1 ∧XX . . .X︸ ︷︷ ︸

k−times

p(z,b)

∧XX . . .Xpbk+1 ∧ · · · ∧XX . . .XpbP (n)

)
→

7

XX . . .X︸ ︷︷ ︸
(P (n)+2)−times

(
Xpb1 ∧XXpb2 ∧ · · · ∧XX . . .Xpbk−1 ∧XX . . .X︸ ︷︷ ︸

k−times

p(z,b)

∧XX . . .Xpbk+1 ∧ · · · ∧XX . . .XpbP (n)

))
if z ∈ Qa ∪Qr

assert that every successive subpath represents the configuration which follows from
the configuration represented by the previous subpath and that nothing changes
anymore after an accepting or rejecting state is reached.

ffinal := F
∨

q∈Qa
b∈Σ

p(q,b)

asserts that eventually an accepting state will be reached.

f := fvalid ∧ finitial ∧ ffinal ∧
∧

(z,b)∈Q×Σ

ftransition,z,b.

⇒ M, begin |= Ef ⇔ T halts in an accepting state when given input a. Clearly M
and f are space-bounded by a polynomial in the length of T and a.

2.3 LTL-satisfiability ∈ PSPACE

Now we will show that LTL-satisfiability ∈ PSPACE. In order to do this we will need
some other results in preparation.

Definition 2.4.
Let M = (S, R, P) be a Kripke structure, let u = (u0, u1, . . .) be a path in M and let
f be a LTL path formula. Then [u]M,f := {g ∈ subformulas(f) | M,u |= g}.

Lemma 2.5.
Let M = (S, S × S, P) be a Kripke structure, let u = (u0, u1, . . .) be a path in M ,

let f be a LTL path formula, let i < j ∈ N, let [ui]M,f = [uj]M,f and let u′ =
(u0, u1, . . . , ui−1, uj , uj+1, uj+2, . . .).

⇒ ∀k ∈ N\{i, i + 1, . . . , j − 1} : [uk]M,f = [u′k
′
]M,f where k′ ∈ N such that u′k

′

begins at uk.

Proof. (by induction on the length of f)
Notation: ∀l ∈ N\{i, i + 1, . . . , j − 1} : l′ shall denote the natural number with

u′l
′
= (ul, ul+1, ul+2, . . . , ui−1, uj , uj+1, . . .).

⇒ l′ =
{

l if l < i
l − (j − i) if l ≥ j

Induction beginning: length(f) = 1
⇒ f ∈ AP
⇒ SF (f) := subformulas(f) = {f}
⇒

(
M,uk |= f ⇔ f ∈ P (uk) ⇔ M,u′k

′ |= f
)

Induction hypothesis: True for length(f) < n.
Induction conclusion: Let length(f) = n.

Let g ∈ SF (f)\{f} arbitrarily chosen.
SF (g) ⊂ SF (f)⇒ [ui]M,g = [uj]M,g

I.H. ∧ length(g) < n⇒ [uk]M,g = [u′k
′
]M,g

So we just have to prove that
M,uk |= f ⇔ M,u′k

′ |= f .

8

Case 1: f = ¬g ⇒

M,uk |= f ⇔ M,uk 6|= g
I.H.⇔ M,u′k

′ 6|= g

⇔ M,u′k
′ |= f

Case 2: f = g ∧ h ⇒

M,uk |= f ⇔ M,uk |= g and M,uk |= h
I.H.⇔ M,u′k

′ |= g and M,u′k
′ |= h

⇔ M,u′k
′ |= f

Case 3: f = Xg
Case 3.1: k 6= i− 1 ⇒

M,uk |= f ⇔ M,uk+1 |= g
I.H.⇔ M,u′k

′+1 |= g

⇔ M,u′k
′ |= f

Case 3.2: k = i− 1 ⇒

M,ui−1 |= f ⇔ M,ui |= g
precondition ∧ g∈SF (f)⇔ M,uj |= g

I.H.⇔ M,u′j
′ |= g (j′ = i)

⇔ M,u′i−1 |= f

Case 4: f = gUh
Case 4.1: k ≥ j ⇒

∀a ≥ k : M,ua |= g
I.H.⇔ M,u′a

′ |= g (a′ = a− (j − i))
M,ua |= h

I.H.⇔ M,u′a
′ |= h

⇒ M,uk |= f ⇔ ∃m ≥ k : M,um |= h
∧ ∀k ≤ l < m : M,ul |= g

⇔ ∃m′ ≥ k′ : M,u′m
′ |= h

∧ ∀k′ ≤ l′ < m′ : M,u′l
′ |= g

⇔ M,u′k
′ |= f

Case 4.2: k < i (⇒ k = k′)
“⇒”: Let M, uk |= f ⇒ ∃m ≥ k :

`
M, um |= h ∧ ∀k ≤ l < m : M, ul |= g

´
.

Case 4.2.1a: m < i
I.H.⇒

M, u′m |= h ∧ ∀k ≤ l < m : M, u′l |= g

⇒ M, u′k |= f

9

Case 4.2.2a: m ≥ i ⇒

M, ui |= f (since M, um |= h ∧ ∀l with k < i ≤ l < m : M, ul |= g)
precondition ∧ f∈SF (f)⇒ M, uj |= f

⇒ ∃a ≥ j :
`
M, ua |= h ∧ ∀j ≤ l < a : M, ul |= g

´
I.H.⇒ M, u′a

′
|= h ∧ ∀j ≤ l < a : M, u′l

′
|= g (*)

Because ∀k ≤ l < m : M, ul |= g ∧ i ≤ m

⇒ ∀k ≤ l < i : M, ul |= g
I.H.⇒ ∀k ≤ l < i : M, u′l |= g (**)

From (*) and (**) ⇒ ∀k ≤ l′ < a′ : M, u′l
′
|= g

⇒ M, u′k |= f

“⇐”: Let M, u′k |= f ⇒ ∃m ≥ k :
`
M, u′m

′
|= h ∧ ∀k ≤ l′ < m′ : M, u′l

′
|= g

´
.

Case 4.2.1b: m < i
I.H.⇒

M, um |= h ∧ ∀k ≤ l < m : M, ul |= g

⇒ M, uk |= f

Case 4.2.2b: m ≥ i ⇒ m ≥ j ⇒

M, u′j
′
|= f (j′ = i)

⇒ ∃a ≥ j :
`
M, u′a

′
|= h ∧ ∀j ≤ l < a : M, u′l

′
|= g

´
I.H.⇒ M, ua |= h ∧ ∀j ≤ l < a : M, ul |= g
⇒ M, uj |= f

precondition ∧ f∈SF (f)⇒ M, ui |= f (*)

Because ∀k ≤ l′ < m′ : M, u′l
′
|= g ∧ i ≤ m

⇒ ∀k ≤ l < i : M, u′l |= g
I.H.⇒ ∀k ≤ l < i : M, ul |= g (**)

From (*) and (**) ⇒ M, uk |= f

Let f = gUh, let i, j ∈ N, j > i and let M,pi |= f . Then we say that f is fulfilled
before pj iff ∃i ≤ k < j : M,pk |= h.

Let M = (S, R, P) be a Kripke structure and let u = (u0, u1, . . .) be a path in
M . Then we say that u is ultimately periodic with starting index l and period p iff
∀k ≥ l : P (uk) = P (uk+p).

A formula f is called a U-formula iff it is of the form f = gUh.

Lemma 2.6.
Let M = (S, S×S, P) be a Kripke structure, let u = (u0, u1, . . .) be a path in M and let
n, p ∈ N such that p > 0, [un]M,f = [un+p]M,f and every U-formula in [un]M,f is ful-
filled before un+p. Let u′ = (u0, u1, . . . , un, . . . , un+p−1, un, un+1, . . . , un+p−1, un, . . .).
u′ is an ultimately periodic path in M with starting index n and period p.

Then the following is true:
(a) ∀k < n + p : [uk]M,f = [u′k]M,f

(b) ∀k ≥ n : [u′k]M,f = [u′k+p]M,f

Proof. (by structural induction on g ∈ SF (f))
We need to show that ∀g ∈ SF (f) the following is true:
(a) ∀k < n + p : M,uk |= g ⇔ M,u′k |= g
(b) ∀k ≥ n : M,u′k |= g ⇔ M,u′k+p |= g
So let g ∈ SF (f) arbitrarily chosen.

10

(b) trivially holds because ∀k ≥ n : u′k = u′k+p.
(a) Induction beginning: g ∈ AP ⇒ Trivially holds.

Induction hypothesis: holds for g1, g2 ∈ SF (f).
Induction conclusion:
Case 1 & 2: g = ¬g1 or g = g1 ∧ g2

I.H.⇒ Trivially holds.
Case 3: g = Xg1 ⇒

Case 3.1: k < n + p− 1 I.H.⇒ trivial
Case 3.2: k = n + p− 1 ⇒

M,uk |= g
def. of X⇔ M,un+p |= g1

precondition∧g1∈SF (f)⇔ M,un |= g1
I.H.⇔ M,u′n |= g1
(b)⇔ M,u′n+p |= g1

def. of X⇔ M,u′k |= g

Case 4: g = g1Ug2

“⇒”: Let M,uk |= g ⇒ ∃m ≥ k :
(
M,um |= g2 ∧ ∀k ≤ l < m : M,ul |= g1

)
.

Case 4.1a: m < n + p
I.H.⇒ M,u′k |= g

Case 4.2a: m ≥ n + p ⇒

M,un+p |= g
precondition⇒ M,un |= g

⇒ ∃m′ ≥ n :
(
M,um′ |= g2 ∧ ∀n ≤ l < m′ : M,ul |= g1

)
precondition⇒ m′ < n + p

I.H.⇒ M,u′n |= g
(b)⇒ M,u′

n+p |= g
∀k≤l<n+p≤m:M,u′l|=g1⇒ M,u′k |= g

“⇐”: Let M,u′k |= g ⇒ ∃m ≥ k :
(
M,u′m |= g2 ∧ ∀k ≤ l < m : M,u′l |= g1

)
.

Case 4.1b: m < n + p
I.H.⇒ M,uk |= g

Case 4.2b: m ≥ n + p ⇒

M,u′n+p |= g
(b)⇒ M,u′n |= g

⇒ ∃m′ ≥ n : m′ < n + p ∧
(
M,u′m

′ |= g2 ∧ ∀n ≤ l < m′ : M,u′l |= g1

)
Proof (that there is an m′ < n + p): Suppose there is not.

⇒ m′ ≥ n + p
(b)⇒ M,u′m

′−p |= g2 ∧ ∀n ≤ l < m′ − p : M,u′l |= g2

⇒ Contradiction; as we could have chosen m′ − p instead of m′.
⇒ ∃m′ < n + p
I.H.⇒ M,un |= g

precondition⇒ M,un+p |= g
∀k≤l<n+p≤m:M,ul|=g1⇒ M,uk |= g

11

Theorem 2.7 (Ultimately periodic model theorem).
Let f ∈ LTL. Then f is satisfiable iff it is satisfiable on an ultimately periodic path
v = (v0, v1, . . .) with starting index n ≤ 2length(f), period p ≤ 4length(f) and ∀k ≥
n :

(
[vk]M,f = [vk+p]M,f ∧ every U-formula in [vk]M,f is fulfilled before vk+p

)
.

Proof. Let Ef ∈ LTL-satisfiability and let M = (S, S × S, P), u = (u0, u1, . . .) such
that M,u |= f (we can choose S × S as transition relation since we are interested
in whether a path exists and if one exists with respect to some transition relation, it
stays a valid path after substituting this relation with S × S). Let l,m ∈ N such that
[ul]M,f = [ul+m]M,f ∧ (*)every U-formula in [ul]M,f is fulfilled before ul+m. Such
l,m exist because ∀i ∈ N : [ui]M,f ⊆ SF (f) and there are ≤ 2|SF (f)| = 2length(f)

different subsets of SF (f) (and every of the only finitely many U-formulas in [ul]M,f

is eventually fulfilled after a finite number of states).

Now we do the following:
While ∃i, j ∈ N, 1 < i < j < l and [pi]M,f = [pj]M,f do

Delete the subpath (ui, ui+1, . . . , uj−1) from u.
End While
While ∃i, j ∈ N, l < i < j < l + m and [pi]M,f = [pj]M,f do

Delete the subpath (ui, ui+1, . . . , uj−1) from u
if this is possible without violating (*).

End While

Let u′ be the modified path. In u′ there are ≤ 2length(f) states before ul (a) and
≤ length(f) · 2length(f) states between ul and ul+m (b).

Proof:
(a) is true because there are no two states ui, uj before ul with [u′i]M,f = [u′j]M,f

and
∣∣{[v]M,f |v ∈ SN}

∣∣ ≤ 2length(f).
Now assume (b) does not hold. ⇒ ∃ui0 , ui1 , . . . , uilength(f) between ul and

ul+m : [u′i0]M,f = [u′i1]M,f = · · · = [u′ilength(f)]M,f . Because there are less than
length(f) U-formulas in SF (f), there is an interval {uij

, uij+1 . . . uij+1−1} (for a
j ∈ {0, 1, . . . , length(f) − 1}), in which no U-formula, which is true on ul, is ful-
filled. But this means that we could have deleted the subpath (uij , uij+1, . . . , uij+1−1).
This is a contradiction and so (b) does hold.

Now set n := l′ ≤ 2length(f) (where l′ is the index of ul in u′) and p := m′ ≤
4length(f) (where l′ + m′ is the index of ul+m in u′). ⇒ [u′n]M,f = [u′n+p]M,f ∧ every
U-formula in [u′n]M,f is fulfilled before u′n+p. Using Lemma 2.6 we obtain that the
ultimately periodic path v = (u′0, u

′
1, . . . , u

′
n+p−1, u

′
n, u′n+1, . . .) fulfills all the wanted

conditions and that [v]M,f = [v0]M,f
La. 2.6(a)

= [u′0]M,f
La. 2.5= [u0]M,f = [u]M,f . And

therefore M,v |= f since M,u |= f by precondition.

Theorem 2.8.
LTL-satisfiability ∈ PSPACE

Proof. Let Ef ∈ LTL. Then Theorem 2.7 states that we only need to find out whether
f is satisfiable on an ultimately periodic path. For that we will now give a non-
deterministic algorithm which uses space linear in length(f). First guess two numbers
l ≤ 2length(f) and p ≤ 4length(f) which are supposed to be the starting index and the
period of an ultimately periodic path.

12

We will now try to non-deterministically find a Kripke structure M and an ulti-
mately periodic path u in M with starting index l and period p such that M,u |= f .
First note that it is enough to find a “consistent” sequence (subn)n∈N of subsets of
SF (f) with f ∈ sub0 ∧ subn+p = subn ∀n ≥ l since then for M := (2AP , 2AP×2AP , P)
with P (sub) := sub and u = (u0, u1, . . .) with ui := subi ∩AP : M,u |= f . Consistent
here means that no two or more subi and subj contradict each other, which would e.g.
be the case if Xp0 ∈ sub0 and ¬p0 ∈ sub1.

On the other hand we can obtain such a consistent sequence (subn)n∈N of subsets
of SF (f) if we have a Kripke structure M = (S, R, P) and an ultimately periodic path
u = (u0, u1, . . .) in M with M,u |= f by defining subi := P (ui).

⇒ f is satisfiable on an ultimately periodic path with starting index l and period
p iff there is a consistent sequence of subsets of SF (f) fulfilling the above conditions.
Therefore it is enough to give an algorithm for finding out whether such a sequence
exists.

The idea for finding such a sequence is to subsequently guess the subformulas,
which are true, in every state of the ultimately periodic path to be constructed and
check that every guess is consistent with the former guesses.

Subpresent ⊆ SF (f) is the set of subformulas guessed to be true in the present
state and Subnext ⊆ SF (f) is the set of subformulas guessed to be true in the next
state.

The algorithm does the following:
Guess Subpresent ⊆ SF (f).
If ¬(f ∈ Subpresent) then reject.
Set n := 0.
While n < l do

Guess Subnext ⊆ SF (f).
If ¬consistent

(
Subpresent, Subnext

)
then reject.

Subpresent := Subnext.
n := n + 1.

End While
Subperiod := Subpresent.
∀g = g1Ug2 ∈ Subperiod : Ag := false. (We need to check that every U-formula in

[ul]M,f is fulfilled before ul+p)
n := 0
While n < p do

Guess Subnext ⊆ SF (f).
If ¬consistent

(
Subpresent, Subnext

)
then reject.

If ∃g = g1Ug2 ∈ Subperiod with g2 ∈ Subpresent then Ag := true.
Subpresent := Subnext.
n := n + 1.

End While
If ∃g = g1Ug2 ∈ Subperiod with Ag = false then reject.
Subnext := Subperiod.
If ¬consistent

(
Subpresent, Subnext

)
then reject.

Accept.

13

Hereby consistent
(
Subpresent, Subnext

)
is computed by the following algorithm:

For each g ∈ SF (f) do
If g = ¬g1 then

If ¬ (g ∈ Subpresent ⇔ g1 6∈ Subpresent) then return false.
If g = g1 ∧ g2 then

If ¬ (g ∈ Subpresent ⇔ g1 ∈ Subpresent ∧ g2 ∈ Subpresent)
then return false.

If g = Xg1 then
If ¬ (g ∈ Subpresent ⇔ g1 ∈ Subnext) then return false.

If g = g1Ug2 then
If ¬(g ∈ Subpresent ⇔ g2 ∈ Subpresent∨

(g1 ∈ Subpresent ∧ g1Ug2 ∈ Subnext))
then return false.

End For
Return true.

The algorithm accepts an input formula iff it is satisfiable as explained above.

Corollary 2.9.
LTL-satisfiability and LTL-truth are PSPACE-complete.

Proof. Theorem 2.3 showed that LTL-truth is PSPACE-hard. As LTL-truth ≤p
m LTL-

satisfiability as proved in Theorem 2.2, LTL-satisfiability is also PSPACE-hard.
Theorem 2.8 showed that LTL-satisfiability ∈ PSPACE. Because of the just men-

tioned reduction this is also the case for LTL-truth.

2.4 CTL∗-truth ∈ PSPACE

Theorem 2.10.
CTL∗-truth ∈ PSPACE.

Proof. Let M = (S, R, P) be a Kripke structure with AP as the set of atomic
propositions, let s0 ∈ S, let f ∈ CTL∗ and w.l.o.g. let f be free of As. The following
algorithm removes any path quantifiers from f :
Set f ′ := f.
Set AP ′ := AP.
Set P ′ := P.
While f ′ contains an E do

Choose a g ∈ SF (f ′) such that g = Eg′ ∧ g′ does not contain an E.
(This means that g ∈ LTL.)

Compute the set Sg of all states s ∈ S with M ′, s |= g.
(Theorem 2.8 states that this can be done in polynomial space.)

AP ′ := AP ′ ∪ {pg}.

P ′(s) :=
{

P ′(s) ∪ {pg} if s ∈ Sg

P ′(s) else
M ′ := (S, R, P ′) with AP ′ as the set of atomic propositions.
Let the new f ′ be the formula obtained by replacing all occurences
of g in the old f ′ with pg.

End While

14

Now f ′ is a temporal state formula not containing any path quantifiers and therefore
is a simple Boolean formula. It can now easily be checked if M ′, s0 |= f ′ which is the
case iff M, s0 |= f .

Corollary 2.11.
CTL∗-truth is PSPACE-complete.

Proof. Theorem 2.3 showed that LTL-truth is PSPACE-hard. As trivially LTL-
truth ≤p

m CTL∗-truth, the latter is also PSPACE-hard.
Theorem 2.10 showed that CTL∗-truth ∈ PSPACE.

References

[CES86] E. M. Clarke, Jr., E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM Transac-
tions on Programming Languages and Systems, 8(2):244–263, April 1986.

[CGP99] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, 1999.

[SC85] A. P. Sistla and E. M. Clarke, Jr. The complexity of propositional linear
temporal logics. Journal of the ACM, 32(3):733–749, July 1985.

15

	Introduction
	Preliminaries

	PSPACE-completeness of LTL/CTL* model checking and LTL-satisfiability
	LTL-truth is reducible to LTL-satisfiability
	LTL-truth is PSPACE-hard
	LTL-satisfiability PSPACE
	CTL*-truth PSPACE

