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Abstract. We will investigate the relationships between classes of formal languages
defined by various means. First we will show the equivalence of first order definable
languages, where the defining formula may use the binary relations < and successor and
may only use two different variable names, to the languages definable by temporal logic
formulas, with X, Y, F and O as the only temporal operators, and to the languages
whose syntactic semigroup belongs to DA ∗D. We will show that the equivalence still
holds if the successor relation is no longer used, only F and O are used and DA ∗ D
is replaced with DA. All of this was already discussed in detail by Etessami, Vardi,
Wilke [EVW97] and Thérien [TW98]. We will then show the equivalence of first order
definability, with only two different variables and without the < relation, to temporal
logic definability, with only X, Y and the newly introduced D, and to local threshold
testability with a threshold of 2.
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1 Introduction

Logics are a major field of theoretical computer science. One of those is (Linear) Tempo-
ral Logic which is similar to modal logic and was introduced by Pnueli [Pnu77] as a way
to express properties of computing systems. Temporal Logic is an extension of propo-
sitional logic with several temporal operators which are used to describe the change of
system state over time. Though not as expressive as general first order logic, temporal
logic can be used to describe many typical requirements of computing systems. And,
unlike in the case of general first order logic, checking whether a given system fulfills a
given temporal logic formula is still computable – even in PSPACE.

Another major field of research in theoretical computer science is formal language
theory. Within formal language theory the theory of regular languages – which form the
lowest level of the Chomsky hierarchy of formal languages – forms a wide field of study
in its own. The field is especially wide in the number of techniques commonly used to
approach it, e.g. automata theory, combinatorics, logics or semigroup theory. In this
thesis we will combine several of these approaches by proving some connections between
them. We will characterize subclasses of regular languages by means of temporal logic,
first order logic, combinatorics and semigroup theory and then show equalities between
the hereby defined classes of languages.

On a larger scale the class of languages, which have a finite aperiodic syntactic semi-
group, equals the class of languages, which can be defined by a first order formula
over the vocabulary {<, succ, P0, P1, P2, . . . }, where < is the usual order relation on the
natural numbers, succ is the binary successor relation and the Pi are unary relations.
The proof of this equality is due to Schützenberger [Sch65], McNaughton and Papert
[MP71]. Kamp showed in [Kam68] that this class can also be characterized as the class
of all languages which can be defined by a temporal logic formula.

On a smaller scale (which we will focus on) the class of languages, which can be
defined by a temporal logic formula that does not use either of the two binary temporal
operators XU and YS, was shown by Etessami, Vardi and Wilke [EVW97] to be equal
to the class of languages, which can be defined by a first order formula which uses at
most two different names for variables. Thérien and Wilke [TW98] showed that this
class is equal to the class of languages, whose syntactic semigroup is in the class DA∗D
which denotes the semidirect product of the semigroup pseudovarieties DA and D.

There are several natural subclasses of the latter class: One can restrict the vocabulary
in the first order characterization by only allowing one out of < or succ. Or one can
forbid some more temporal operators in the temporal logic characterization, e.g. only
use X and Y or only use F and O.

In [EVW97] it was also shown that the class, obtained by only allowing < and not
using succ in the first order logic characterization, equals the class, obtained by using F
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7

and O as the only temporal operators in the temporal logic characterization. In [TW98]
it was shown that this class equals the class of languages whose syntactic semigroup is
in DA.

So the question remains whether the class obtained by only using succ and the class
obtained by only using X and Y are equal. However, this can be very easily falsified
as only using X and Y leads to a class which is even too small to define all languages
definable by first order formulas with neither < nor succ but only the unary relations.

But we will nonetheless show two other characterizations of the class, obtained by only
allowing succ, not using < and not using more than two different variables. The first one
is a temporal logic characterization which follows almost immediately from the work in
[EVW97]: The latter class is equal to the class, obtained when using X, Y and D as the
only temporal operators, hereby D is not one of the standard temporal operators but
newly introduced in this thesis. We will then look into a combinatorial characterization
called local threshold testability. The class of all locally threshold testable languages is
long known to be equal to the class of languages, definable by first order formulas using
only succ but not having any restrictions on the number of variables used. At last we
will show that the above class, obtained by using X, Y and D, is equal to the subclass
of all locally threshold testable languages, obtained when allowing no higher threshold
than 2.

First Order Logic Temporal Logic Semigroups Combinatorics Shown in
FO[<, succ] LTL A [Sch65], [MP71], [Kam68]
FO2[<, succ] LTL[F,O,X,Y] DA ∗D [EVW97], [TW98]
FO2[<] LTL[F,O] DA [EVW97], [TW98]

FO2[succ] LTL[D,X,Y]
locally threshold
testable with
threshold 2

this thesis

FO[succ]
locally threshold
testable

[Str94]

List of all classes covered in this thesis

Chapter 2 contains the necessary terminology and some basic results while chapter 3
contains the main results already mentioned above and chapters 4–6 contain the proofs
of these results.



2 Preliminaries

We will begin by introducing the terminology needed for the later results. Therefore we
will start with an introduction into formal languages and their connection to semigroups.
Then we will get to know how first order formulas can be used in the formal language
context and finally define temporal logic, an extension of propositional logic which is in
general not as powerful as first order logic, but we will show in the next chapter that – in
the formal language context – it is equivalent to first order logic with certain predicates.

2.1 Formal Languages and Finite Semigroups

Definition 2.1. (Alphabet, Word and Language)
An alphabet is an arbitrary finite set whose elements are called letters. A (finite) word
over such an alphabet is a finite sequence of letters. The empty word of length 0 is
denoted by ε. A (formal) language is an arbitrary set of words over a fixed alphabet.
If Σ is an alphabet then we write Σ∗ for the language containing all words over Σ and
Σ+ for Σ∗ \ {ε}. Instead of (a0, a1, . . . , ak) we write a0a1 · · · ak and for a word a ∈ Σ∗

we write ai for the (i + 1)th letter in a, |a| for the length of a and λ(a) for the set
{a0, a1, . . . , a|a|−1} of letters occuring in a.

Definition 2.2. (Syntactic Semigroup)
For an arbitrary alphabet Σ we define the concatenation of words a, b ∈ Σ∗ as a ◦ b :=
a0a1 · · · akb0b1 · · · bl where a = a0 · · · ak and b = b0 · · · bl. Obviously ◦ is an associative
binary operation on Σ∗ and hence (Σ∗, ◦) as well as (Σ+, ◦) are semigroups. We often
write ab instead of a◦b. If L ⊆ Σ∗ we define the syntactic congruence ≈L of L as follows:

For all a, b ∈ Σ∗ : a ≈L b iff for all u, v ∈ Σ∗ : uav ∈ L ⇔ ubv ∈ L

≈L is a congruence relation on Σ∗ and on Σ+ for every language L ⊆ Σ∗ with respect to
the operation of concatenation of words and therefore Σ+/≈L and Σ∗/≈L are semigroups;
the former one is called the syntactic semigroup of L and the latter one is called the
syntactic monoid of L.

Usually one only considers Σ∗/≈L and does not also discuss Σ+/≈L but here we have
the problem that in the context of first order logic – which we will cover in the next
section – we cannot include the empty word into any language and so we have to restrict
ourselves to the analysis of Σ+/≈L . However, this is not really a problem as including
the empty word in a given language L ⊆ Σ+ does not change any property of L relevant
for us – given that it is at all possible to include the empty word. And therefore we will
from now on not mention this rather irrelevant problem anymore.
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2.1 Formal Languages and Finite Semigroups 9

Definition 2.3. (Regular language)
A formal language L ⊆ Σ∗ is called regular iff its syntactic semigroup is finite.

We will now briefly leave the context of formal languages and discuss general classes
of semigroups. The connection back to formal languages is of course always present in
the syntactic semigroup of a language.

For the next definition we need the following remark.

Remark 2.4.
Let S be an arbitrary finite semigroup and a ∈ S. Then there is a unique b ∈
{a, a2, a3, . . . } with b idempotent, i.e. b2 = b.

Proof. Existence. Because S is finite, the set {a, a2, a3, . . . } is finite as well. Therefore
there are k, l ∈ N \ {0} such that k = min{i > 0 | ai = ai+j for a j ∈ N \ {0}} and
l = min{j > 0 | ak = ak+j}. By induction follows that

for all i, j ∈ N, i ≥ k : ai = ai+jl.

Now let n ∈ N such that k ≤ n < k + l and that there is an m ∈ N with ml = n. Then
an = aml = aml+ml = a2n.

Uniqueness. Let p ∈ N \ {0} arbitrarily chosen with ap = a2p. Since ap = a2p = a4p =
a8p = . . . we can w.l.o.g. assume that p ≥ k and p ≥ l. Let q, r ∈ N such that p = ql+ r
and r < l. Since ak = ak−r+ql+r = ak−r+p = ak−r+2p = ak−r+2ql+2r = ak+r and r < l
it follows that r = 0 and therefore p = ql. Because p ≥ k we have p ≥ n and therefore
q ≥ m, p = ml + (q −m)l and ap = aml+(q−m)l = aml = an.

Definition 2.5. (A, D and DA)
For a finite semigroup S and a ∈ S let aω be the element of the set {a, a2, a3, . . . } which
is idempotent and let S be the monoid induced by S, i.e.

S :=
{
S if S already contains an identity element
S ∪ {e} if S does not contain an identity element

,

where e is a new identity element for S.
Then the class A of aperiodic semigroups is defined as the class of all finite semigroups

S which satisfy the condition

aωa = aω for all a ∈ S.

DA is the class of all finite semigroups S which satisfy the condition

(abc)ωb(abc)ω = (abc)ω for all a, b, c ∈ S.

And D is the class of all finite semigroups S which satisfy the condition

baω = aω for all a, b ∈ S.

Classes of semigroups as the three defined above are often called pseudovarieties.
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Remark 2.6.
We write aω because in the case that S ∈ A, we get for a ∈ S that aω is the element that
results when multiplying a with itself infinitely many times. If S 6∈ A there is no such
unique element but still aω occurs infinitely often when multiplying a with itself infinitely
often.

Remark 2.7.
One could think that the condition defining A is satisfied in every semigroup as it does
not matter whether you multiply a with itself infinitely often or infinitely often and then
one time more. But as stated in the above remark this view of aω is not always valid.

Consider for example the semigroup Z2 := ({0, 1},+) where + is defined by
+ 0 1
0 0 1
1 1 0

.

Then 1ω = 0 but 1ω + 1 = 1.

Remark 2.8.
DA ⊂ A.

Proof. Let S ∈ DA and b ∈ S. We have to show that bωb = bω. Since S ∈ DA we get
(ebe)ωb(ebe)ω = (ebe)ω (where e is the neutral element of S) and therefore bωbbω = bω.
Now let l,m ∈ N be defined as in the proof of Remark 2.4, i.e. bω = bml = b(m+1)l =
· · · = b2ml. Then we get bωbbω = bmlbbml = bml+1+ml = b2ml+1 = bml+1 = bωb and
therefore the wanted result.

The pseudovariety A plays an important role in Theorem 3.1 and DA plays an im-
portant role in Theorems 3.2 and 3.3 whereas D is only needed in the part of Theorem
3.2 which we will only quote and not prove.

2.2 First Order Logic

We will not give a general introduction into first order logic here but just describe the
vocabularies and structures we will use in the later sections and chapters. The reader
may refer to [EFT94] or any other introductory textbook on mathematical logic for a
general introduction into first order logic.

Definition 2.9.
An FO[<, succ]-formula is a first order (with equality) formula over the vocabulary
{<, succ, P0, P1, P2, . . . }, where <, succ are binary relation symbols and all Pi are unary
relation symbols. FO[<, succ] is the set of all FO[<, succ]-formulas without free variables
(also called sentences) and FO[<] and FO[succ] are the sets of all FO[<, succ]-sentences
in which no succ respectively no < occurs. Finally we write FOk[<, succ],FOk[<] and
FOk[succ] for FO[<, succ] respectively FO[<],FO[succ] restricted to sentences with at
most k different variables – each of which may be quantified arbitrarily often in a single
formula.

Because “=” is an element of our first order language, we use the symbol “≡” to
denote the equality of two formulas.



2.3 Ehrenfeucht-Fräıssé Games 11

Example 2.10.

The formula ψ := ∃x
((
∀y ¬ y < x

)
∧ ∃y

(
x < y ∧ P0(y) ∧ ∃x

(
x < y ∧ P2(x)

)))
is

in FO2[<].

As this example shows, the quantifier depth of a formula is not even limited when the
number of different variables is. This is due to the fact that a variable can be introduced,
then have another variable relate to it, e.g. by <, and finally be “redefined” with relation
to that same other variable which is still “active”.

Our goal is to associate a single formula with a whole language, i.e. a set of words.
Therefore we first need to relate single words with single formulas. For that we will
define the structure of a word and then define the relationship between a word and a
formula as that between the structure of the word and the formula.

Definition 2.11. (Structure of a word)
For every nonempty word a = a0a1 · · · an−1 over the alphabet Σm := {b0, b1, . . . , bm} we
define the first order structure a of a as a := ({0, 1, . . . , n−1}, <a, succa, P a0 , P

a
1 , . . . , P

a
m)

where {0, 1, . . . , n−1} is the universe, <a is the usual order relation on {0, 1, . . . ,n− 1},
succa is the successor relation on {0, 1, . . . , n − 1}, i.e. succa := {(k, k + 1) | k ∈
{0, 1, . . . , n− 2}} and for all i ≤ m : P ai := {j | aj = bi}, i.e. the set of all positions in a
where the letter bi occurs. Note that we only consider nonempty words because for the
empty word the universe of the structure would be the empty set and this is generally
not desirable for first order logic as all quantifiers would lose their meaning.

We usually identify a with a, e.g. we say that a fulfills ϕ (and also write a |= ϕ) iff
a |= ϕ.

From now on we will mostly speak about Σm for an arbitrary natural number m
instead of completely arbitrary alphabets. This is only due to representational reasons
(Pi instead of Pbi and the like) and not a real restriction since for every alphabet Σ the
letters can simply be relabeled such that Σ transforms into Σm for an m. Note that we
do not need any order of the letters – the order induced by numbering the letters is a
never used byproduct.

Definition 2.12. (Recognized language)
Let ϕ ∈ FO[<, succ] and let k := max{i | Pi occurs in ϕ}. Then we define the language
recognized by ϕ as follows: Lϕ := {a ∈ Σ+

k | a |= ϕ}. As stated before we only consider
nonempty words as the structure of the empty word is the empty set and therefore it
can neither fulfill nor not fulfill any formula.

2.3 Ehrenfeucht-Fräıssé Games

We will now define a game theoretic view of first order logic which can be used to show
whether some property is first order definable and will be used extensively in the later
chapters as connection between first order logic on the one hand and finite semigroups
and combinatorics on the other hand. A good introduction to the topic can be found in
[Imm99, pp. 91-112] by Immerman whose notation we mostly adopt.
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Definition 2.13. (Induced Substructure)
Let A be an arbitrary structure and C a subset of the universe of A. If the vocabulary of
A does not contain any functions or constants, we define the induced substructure CA as
the structure over the same vocabulary as A with universe C and where every relation
RC

A
is the restriction of the original relation RA to the new universe C.

Definition 2.14. (Isomorphism)
LetA and B be structures over the same vocabulary which does not contain any functions
or constants, let A and B be their respective universes and ϕ : A→ B a total function.
Then ϕ is called an isomorphism iff ϕ is bijective and for every relation R (with arity
iR) of the common vocabulary of A and B we have

For all a1, a2, . . . , aiR ∈ A : (a1, a2, . . . , aiR) ∈ RA ⇔ (ϕ(a1), ϕ(a2), . . . , ϕ(aiR)) ∈ RB.

Definition 2.15. (Ehrenfeucht-Fräıssé Game)
Let k, r ∈ N. An r-round k-pebble Ehrenfeucht-Fräıssé game is played on two structures
A and B over the same vocabulary. It is played by a male player named Spoiler and
a female player named Duplicator over a maximum of r rounds. There are k pairwise
distinct pebbles for each structure which are all lying outside the structures at the
beginning of the game. In each round Spoiler chooses one of the two structures and one
of the k pebbles belonging to this structure and puts the pebble on an arbitrary element
of the universe of the structure. He may choose a pebble already lying on an element of
the universe – in this case he simply moves the pebble. Duplicator must then respond
by putting the corresponding pebble belonging to the other structure on an element of
the universe of this other structure.

If the structures are words – in the sense of definition 2.11 – we denote the position of
the l-th pebble on the first (respectively second) word after round s is played by αs(xl)
(respectively βs(xl)). So αs : {x1, . . . , xk} → {0, . . . , |a| − 1} and βs : {x1, . . . , xk} →
{0, . . . , |b| − 1} are partial functions for every s ∈ {0, . . . , r}.

Duplicator wins round s iff βs ◦ α−1
s is an isomorphism of the induced substruc-

tures range(α)A and range(β)B. Duplicator wins the game iff she wins all rounds
s ∈ {1, . . . , r}.

Note that α−1
s is not a function if αs(xi) = αs(xj) for some s, i, j ∈ N. But if also

βs(xi) = βs(xj) it can still be true that βs ◦ α−1
s is a bijective function.

Since Ehrenfeucht-Fräıssé games are deterministic games of perfect information and
finite length there is always a winning strategy for one of the two players, i.e. one of
the two players can play in such a way that his or her opponent can do nothing against
losing the game.

Definition 2.16.
Let m, k, r ∈ N and a, b ∈ Σ+

m. Then a ∼=k
r b iff Duplicator has a winning strategy in the

r-round k-pebble Ehrenfeucht-Fräıssé game on a and b.
For this definition the underlying first order vocabulary is important because whether

a function is an isomorphism or not depends on which relations are considered. The



2.4 Temporal Logic 13

underlying vocabulary would naturally be {<, succ, P0, P1, P2, . . . } for we defined the
structure of a word as a structure over this vocabulary; but when we deal with fragments
of FO[<, succ] we will also consider only subsets of the above vocabulary. Specifically
when we cover fragments of FO[<] we will take {<,P0, P1, P2, . . . } as the underlying vo-
cabulary and when we deal with fragments of FO[succ] we will take {succ, P0, P1, P2, . . . }
as the underlying vocabulary. Usually it will be clear from the context which vocabulary
is considered.

It can be easily seen that ∼=k
r is a congruence relation for every k, r ∈ N with respect

to the operation of concatenation of words. When we write about congruence relations
we will from now on always mean “with respect to the operation of concatenation of
words”.

2.4 Temporal Logic

Temporal logic is an extension of propositional logic which can very well be used to
describe properties of computing systems – and was partly developed for that purpose.
However, we will use it to recognize formal languages – in the same sense as for first
order logic.

In the next chapters it will be our main goal to provide different characterizations
of several classes of formal languages corresponding to certain classes of temporal logic
formulas.

Definition 2.17. (Syntax)
The set LTL of all (linear) temporal logic formulas is inductively defined as follows:

• For all i ∈ N : pi ∈ LTL

• For all ϕ,ψ ∈ LTL : ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ, ϕ ↔ ψ, Xϕ, Yϕ, Fϕ, Oϕ, Dϕ,
ϕXUψ, ϕYSψ ∈ LTL

p0, p1, p2, . . . are called atomic propositions and X(neXt), Y(esterday), F(uture),
O(nce), D(ifferent), XU(neXt Until) and YS(Yesterday Since) are called temporal
operators. For any temporal operators Op1, Op2, . . . we write LTL[Op1, Op2, . . . ] for the
subset of LTL which uses no temporal operators exceptOp1, Op2, . . . . LTL[X,Y,F,O,D]
is called unary temporal logic (UTL).

Example 2.18.
The formula ϕ := F(p0 ∧Op2) is in LTL[F,O].

The semantics of temporal logic formulas are defined by a translation to FO[<, succ]-
sentences.

Definition 2.19. (Semantics)
Let ϕ ∈ LTL. Then we inductively define a corresponding FO[<, succ]-formula ϕ̂(x) as
follows:
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• If ϕ = pi for some i ∈ N then ϕ̂(x) := Pi(x).

• If ϕ = ψ ∧ θ then ϕ̂(x) := ψ̂(x) ∧ θ̂(x). Analogous for ¬, ∨, → and ↔.

• If ϕ = Xψ then ϕ̂(x) := ∃y(succ(x, y) ∧ ψ̂(y)).

• If ϕ = Yψ then ϕ̂(x) := ∃y(succ(y, x) ∧ ψ̂(y)).

• If ϕ = Fψ then ϕ̂(x) := ∃y(x < y ∧ ψ̂(y)).

• If ϕ = Oψ then ϕ̂(x) := ∃y(y < x ∧ ψ̂(y)).

• If ϕ = Dψ then ϕ̂(x) := ∃y(¬x = y ∧ ¬ succ(x, y) ∧ ¬ succ(y, x) ∧ ψ̂(y)).

• If ϕ = ψXUθ then ϕ̂(x) := ∃y
(
x < y ∧ θ̂(y) ∧ ∀z

(
x < z ∧ z < y → ψ̂(z)

))
.

• If ϕ = ψYSθ then ϕ̂(x) := ∃y
(
y < x ∧ θ̂(y) ∧ ∀z

(
z < x ∧ y < z → ψ̂(z)

))
.

Finally we define ϕ := ∃x
((
∀y ¬ y < x

)
∧ ϕ̂(x)

)
∈ FO[<, succ] and define the semantics

of ϕ as those of ϕ, i.e. a |= ϕ iff a |= ϕ and Lϕ := Lϕ. We also write a, i |= ϕ for
a |= ϕ̂(i).

Note that a |= ϕ iff a |= ϕ̂(0) and therefore a |= ϕ can simply be viewed as an
abbreviation for a, 0 |= ϕ.

Intuitively, a, i |= ϕ stands for “the word a at the position i fulfills the formula ϕ”.

Example 2.20.
The formulas ψ from Example 2.10 and ϕ from Example 2.18 have the following con-
nection:

ψ ≡ ϕ

Definition 2.21.
Two formulas ϕ, ψ (each in LTL or FO) are called equivalent iff Lϕ = Lψ. If ϕ,ψ ∈ LTL
they are called strongly equivalent iff for all words a and all i ∈ {0, . . . , |a|−1} : a, i |= ϕ
iff a, i |= ψ.

Our major results will only use the notion of (not necessarily strong) equivalence
as we are mainly interested in recognizable languages. However, when dealing with
formulas which are to be used as subformulas of other formulas it can be of importance
whether the formulas are only equivalent “at the beginning” of a word or also “at every
position inside” the word; and this exactly is the difference between strong equivalence
and equivalence.

Remark 2.22.
We can translate every LTL-formula into a strongly equivalent LTL[XU,YS]-formula
according to the following rules:

• Xϕ translates into (p0 ∧ ¬p0)XUϕ.
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• Yϕ translates into (p0 ∧ ¬p0)YSϕ.

• Fϕ translates into (p0 ∨ ¬p0)XUϕ.

• Oϕ translates into (p0 ∨ ¬p0)YSϕ.

• Dϕ translates into XFϕ ∨YOϕ.

We only have defined the semantics of the other formulas by a translation to first order
logic because of the next Remark and Theorems 3.2, 3.3 and 3.4.

Remark 2.23.
The following connections between subclasses of LTL and subclasses of FO[<, succ] hold
true:

• If ϕ ∈ LTL[X,Y,D] then ϕ ∈ FO2[succ].
(We have to change the old definition of ϕ to the equivalent new definition ϕ :=
∃x
((
∀y ¬ succ(y, x)

)
∧ ϕ̂(x)

)
for this to be true.)

• If ϕ ∈ LTL[F,O] then ϕ ∈ FO2[<].

• If ϕ ∈ UTL then ϕ ∈ FO2[<, succ].

• If ϕ ∈ LTL[XU,YS] then ϕ ∈ FO3[<].

• If ϕ ∈ LTL then ϕ is equivalent to a formula in FO3[<].

Remark 2.24.
The operator D is not one of the commonly used temporal operators but is our “in-
vention”. One would expect Dϕ to be equivalent to Fϕ ∨ Oϕ but instead we have the
connection from 2.22 which suggests to call the D operator “very different” rather than
“different”. However, for the context of Remark 2.23 it does not matter because for the
operator D′ defined by D′ϕ := Fϕ ∨Oϕ it follows that:

For all ϕ ∈ LTL[X,Y,D] there is a ϕ′ ∈ LTL[X,Y,D′] strongly equivalent to ϕ
and for all ψ ∈ LTL[X,Y,D′] there is a ψ′ ∈ LTL[X,Y,D] strongly equivalent to ψ.

Proof. Both statements will be proven inductively over the structure of the formula. For
both statements it is clear that Boolean connections as well as X and Y translate one
to one. So we only need to translate formulas of the form Dϕ respectively D′ψ.

The second translation is the easy one. So let D′ψ ∈ LTL[X,Y,D′] and assume by
induction hypothesis that ψ is equivalent to a formula ψ′ ∈ LTL[X,Y,D]. Then it
follows that D′ψ is equivalent to Fψ′ ∨Oψ′ which is equivalent to

Xψ′ ∨XFψ′ ∨ Yψ′ ∨YOψ′.

And this is equivalent to

Dψ′ ∨Xψ′ ∨Yψ′ ∈ LTL[X,Y,D]
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by Remark 2.22.
The first translation is not really more difficult but rather more complicated. In the

following translation we use the notation [ψ1, ψ2, ψ3] for the formula Yψ1 ∧ ψ2 ∧Xψ3.
Now let Dϕ ∈ LTL[X,Y,D] and assume by induction hypothesis that ϕ is equivalent to
a formula ϕ′ ∈ LTL[X,Y,D′]. Then it follows that Dϕ is equivalent to(

[¬ϕ′,¬ϕ′,¬ϕ′] ∧ D′ϕ′
)

∨
(

[¬ϕ′, ϕ′,¬ϕ′] ∧ D′ϕ′
)

∨
(

[ϕ′,¬ϕ′,¬ϕ′] ∧ YD′ϕ′
)

∨
(

[¬ϕ′,¬ϕ′, ϕ′] ∧ XD′ϕ′
)

∨
(

[ϕ′,¬ϕ′, ϕ′] ∧
(
D′
(
ϕ′ ∧ ¬(X¬ϕ′ ∧XXϕ′) ∧ ¬(Y¬ϕ′ ∧YYϕ′)

)
∨D′[ϕ′,¬ϕ′, ϕ′]

))
∨

(
[¬ϕ′, ϕ′, ϕ′] ∧

(
D′
(
ϕ′ ∧ ¬(Yϕ′ ∧YY¬ϕ′)

)
∨D′[¬ϕ′, ϕ′, ϕ′]

))
∨

(
[ϕ′, ϕ′,¬ϕ′] ∧

(
D′
(
ϕ′ ∧ ¬(Xϕ′ ∧XX¬ϕ′)

)
∨D′[ϕ′, ϕ′,¬ϕ′]

))
∨

(
[ϕ′, ϕ′, ϕ′] ∧

(
D′
(
ϕ′ ∧ ¬(Xϕ′ ∧XXϕ′) ∧ ¬(Yϕ′ ∧YYϕ′)

)
∨D′[ϕ′, ϕ′, ϕ′]

))
∨ “several simple cases for the beginning and end of a word”

The problem is that D′ can only exclude one position at a time and so something like
D′ϕ′∧XD′ϕ′ would be satisfied by any model of ϕ′∧Xϕ′ which obviously does not need
to satisfy Dϕ. To cope with this we make a case distinction for the validity of ϕ′ on the
three positions which we do not want to say anything about. The knack is to express – in
the difficult cases where ϕ′ holds at least two times in the neighbourhood of the current
position – that there either must be a position where ϕ′ holds and which has a different
neighbourhood or there must be a second position with the exact same neighbourhood.
This way it is guaranteed that there is a position not in the neighbourhood of the current
position such that ϕ′ holds there.

The general idea of the last proof – to do a case distinction and then reveal and use
the structure of the problem – will occur again in the proof of Theorem 6.5.



3 Main Results

This chapter contains the main theorems of this thesis but their detailed proofs make
up the next three chapters.

We start with a theorem about different characterizations of FO[<, succ], i.e. first
order logic with < and succ and without any restriction on the number of variables
used in a formula. However, we just mention it for the sake of completeness and will
not prove it here. We then move on to our real goal: Different characterizations of
FO2[<, succ], FO2[<] and FO2[succ], i.e. first order logic restricted to formulas with at
most two different variables and sometimes with only one of our two binary predicates.
Theorems 3.2 and 3.3 are old results – although not nearly as old as Theorem 3.1 – but
Theorem 3.4 is new in this thesis.

From now on always let m be an arbitrary natural number.

Theorem 3.1.
Let L ⊆ Σ+

m. Then the following are equivalent:

(i) The syntactic semigroup of L is in A.

(ii) L = Lϕ for a ϕ ∈ FO[<, succ].

(iii) L = Lϕ for a ϕ ∈ LTL.

(iv) L = Lϕ for a ϕ ∈ LTL[XU,YS].

(v) L = Lϕ for a ϕ ∈ FO3[<].

This theorem goes back to [Sch65], [MP71] (i ⇔ ii) and [Kam68] (ii ⇒ iii). We
just notice that the implication from (iii) to (iv) is Remark 2.22, the implication from
(iv) to (v) is contained in Remark 2.23 and for the implication from (v) to (ii) there is
nothing to show. The interested reader may refer to Diekert and Gastin [DG08] for a
complete proof (and some more equivalences).

Theorem 3.2.
Let L ⊆ Σ+

m. Then the following are equivalent:

(i) The syntactic semigroup of L is in DA ∗D, the semidirect product of DA and D.

(ii) L = Lϕ for a ϕ ∈ FO2[<, succ].

(iii) L = Lϕ for a ϕ ∈ UTL.

17
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Proof. (i) ⇔ (ii): This follows from Theorem 5.3 by the wreath product principle
from Straubing [Str78] and was shown in [TW98]. We will not give the proof
here, nor say what the wreath product principle is, as this would require too much
semigroup theory. We will not even define the semidirect product as we will never
need it again. So this part of the theorem exists only for those experienced in
semigroup theory.

(ii) ⇒ (iii): This is Proposition 4.1 a) which was first proved in [EVW97].

(iii) ⇒ (ii): This is contained in Remark 2.23.

Theorem 3.3.
Let L ⊆ Σ+

m. Then the following are equivalent:

(i) The syntactic semigroup of L is in DA.

(ii) L = Lϕ for a ϕ ∈ FO2[<].

(iii) L = Lϕ for a ϕ ∈ LTL[F,O].

Proof. (i) ⇔ (ii): This is contained in Theorem 5.3 which was first proved in [TW98].

(ii) ⇒ (iii): This is Proposition 4.1 b) which was first proved in [EVW97].

(iii) ⇒ (ii): This is contained in Remark 2.23.

Theorem 3.4.
Let L ⊆ Σ+

m. Then the following are equivalent:

(i) L = Lϕ for a ϕ ∈ FO2[succ].

(ii) L = Lϕ for a ϕ ∈ LTL[X,Y,D].

(iii) L is locally threshold testable with threshold 2.

Proof. (i) ⇒ (ii): This is Proposition 4.1 c).

(ii) ⇒ (i): This is contained in Remark 2.23.

(i) ⇔ (iii): Local threshold testability is introduced in Definition 6.3 and this equiv-
alence is Theorem 6.5.

Remark 3.5.
The language Lϕ for ϕ := ∃xP1(x), i.e. ϕ ∈ FO2[], is not definable by a formula ψ ∈
LTL[X,Y].



4 First Order Logic to Temporal Logic

Out of all connections stated in the previous chapter the connection between first order
logic and temporal logic is probably the most basic one. This is not surprising since
both are logics and temporal logic is even defined by a translation to first order logic.
However, the reverse direction is not trivial but involves some work which was first done
in [EVW97].

Proposition 4.1.

a) Let ϕ ∈ FO2[<, succ]. Then there is a ϕ̃ ∈ UTL with Leϕ = Lϕ.

b) Let ϕ ∈ FO2[<]. Then there is a ϕ̃ ∈ LTL[F,O] with Leϕ = Lϕ.

c) Let ϕ ∈ FO2[succ]. Then there is a ϕ̃ ∈ LTL[X,Y,D] with Leϕ = Lϕ.

Proof. This proof is basically from [EVW97]. It is slightly modified to include cases b)
and c) and, of course, it is extended to (hopefully) improve clarity.

The proofs of a), b) and c) are almost identical. So we will give the proof for a) and
point out the changes needed for b) and c) where they are necessary.

W.l.o.g. we can assume the only variables in ϕ are x and y. If ϕ is a Boolean connection
of subformulas, i.e. ϕ ≡ ψ ∧ θ or ϕ ≡ ¬ψ for ψ, θ ∈ FO2[<, succ], we can obviously set
ϕ̃ := ψ̃ ∧ θ̃ or ϕ̃ := ¬ψ̃ respectively. Since ϕ has no free variables it cannot be an atomic
formula and so the only remaining case is ϕ ≡ ∃x ψ(x).

We will compute a formula ψ′ ∈ UTL with a |= ψ(i) iff a, i |= ψ′ for every i and every
word a and set

ϕ̃ :=
{
ψ′ ∨ Fψ′

ψ′ ∨Xψ′ ∨Dψ′
for

a), b)
c)

If ψ(x) is a Boolean connection of subformulas, i.e.

ψ(x) ≡ θ(x) ∧ τ(x) or ψ(x) ≡ ¬θ(x)

we construct ψ′ by
ψ′ := θ′ ∧ τ ′ or ψ′ := ¬θ′.

If ψ(x) ≡ Pjx we set ψ′ := pj .
The remaining case is ψ(x) ≡ ∃y θ(x, y). In this case we write θ(x, y) as

σ
(
χ0(x, y), . . . , χr−1(x, y), ξ0(x), . . . , ξs−1(x), ζ0(y), . . . , ζt−1(y)

)
where σ is a Boolean formula, each χi is an atomic formula (because every formula with
two distinct free variables which do not get quantified again – then we would have a ξi
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or ζi instead – is atomic since we are in FO2) and each ξi and ζi is a formula with a
quantifier depth less than that of ψ. We will now use the lower quantifier depth and
recursively compute each ξ′i and ζ ′i, i.e. formulas ξ′i and ζ ′i with a, j |= ξ′i iff a |= ξi(j) and
a, j |= ζ ′i iff a |= ζi(j) for every i, j and every word a, and then create ψ′ in three steps.

Step 1. Each ξi(x) can either be true or false and since none of them depends on y
we can introduce a case distinction on all possible 2s truth assignments for the set of all
ξi(x). We obtain the following formula which is equivalent to ψ(x):

∨
−→α∈{>,⊥}s

( s−1∧
i=0

ξαii (x) ∧ ∃y σ
(
χ0(x, y), . . . , χr−1(x, y), α0, . . . , αs−1, ζ0(y), . . . , ζt−1(y)

))
,

where > stands for an arbitrary tautological formula, ⊥ for an arbitrary unsatisfiable
formula and ξαii stands for ξi iff αi ≡ > and for ¬ξi iff αi ≡ ⊥.
The ξαii (x) ensure that only the element of the disjunction, where all αi get the “correct”
interpretation, can be true and is therefore the only element that really counts into the
disjunction.

Step 2. We will now introduce a case distinction on which of the χi(x, y) hold. There-
fore we notice that any χi(x, y) only expresses some kind of order between x and y – since
the only possible atomic formulas using both x and y are x = y, succ(x, y), succ(y, x),
x < y and y < x (and both variables must be used because otherwise we would not
really have a χi but a ξi or a ζi). There are only few combinations of these five formulas
which can be true together and this leads us to the following set of mutually exclusive
cases:

∆(x, y) :=


{x = y, succ(x, y), succ(y, x), x < y ∧ ¬succ(x, y), y < x ∧ ¬succ(y, x)} for a).
{x = y, x < y, y < x} for b).
{x = y, succ(x, y), succ(y, x), ¬x = y ∧ ¬succ(x, y) ∧ ¬succ(y, x)} for c).

If we assume an arbitrary δ(x, y) ∈ ∆(x, y) then each of the atomic formulas χi(x, y)
will evaluate to either true or false. We will denote the value of χi(x, y) under δ(x, y)
by χδi . We now obtain the following formula equivalent to ψ(x):

∨
−→α∈{>,⊥}s

( s−1∧
i=0

ξαii (x) ∧
∨
δ∈∆

∃y

(
δ(x, y) ∧ σ(χδ0, . . . , χ

δ
r−1, α0, . . . , αs−1, ζ0(y), . . . , ζt−1(y))

))
.

Step 3. If δ(x, y) ∈ ∆(x, y) and τ(x) is an FO2[<, succ]-formula for which we already
have computed τ ′ ∈ UTL then we can compute τ ′δ for τδ(x) := ∃y (δ(x, y) ∧ τ(y)) as
follows:

• If δ(x, y) ≡ x = y then we set τ ′δ := τ ′.

• If δ(x, y) ≡ succ(x, y) then we set τ ′δ := Xτ ′.

• If δ(x, y) ≡ succ(y, x) then we set τ ′δ := Yτ ′.
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• If δ(x, y) ≡ x < y ∧ ¬succ(x, y) then we set τ ′δ := XFτ ′.

• If δ(x, y) ≡ y < x ∧ ¬succ(y, x) then we set τ ′δ := YOτ ′.

• If δ(x, y) ≡ x < y then we set τ ′δ := Fτ ′.

• If δ(x, y) ≡ y < x then we set τ ′δ := Oτ ′.

• If δ(x, y) ≡ ¬x = y ∧ ¬succ(x, y) ∧ ¬succ(y, x) then we set τ ′δ := Dτ ′.

We now obtain ψ′ as follows:

ψ′ =
∨

−→α∈{>,⊥}s

( s−1∧
i=0

(ξαii )′ ∧
∨
δ∈∆

ρ(−→α , δ)′δ
)
,

where ρ(−→α , δ) is defined by

ρ(−→α , δ)(y) := σ(χδ0, . . . , χ
δ
r−1, α0, . . . , αs−1, ζ0(y), . . . , ζt−1(y))

and ρ(−→α , δ)′δ can be computed by the above and by

ρ(−→α , δ)′ := σ(χδ0, . . . , χ
δ
r−1, α0, . . . , αs−1, ζ

′
0, . . . , ζ

′
t−1).

By induction hypothesis every (ξαii )′ := ξ′αii and every ζ ′i can be computed as each one’s
quantifier depth is less than that of ψ.



5 First Order Logic and Finite Semigroups

Almost the whole chapter goes back to Thérien and Wilke [TW98] (the only exception
being section 5.1). The definitions and proofs in this chapter (with the same exception
as above) are also from [TW98] and are only extended and sometimes illustrated for
clarity.

As already stated above the proof of the connection between first order logic and finite
semigroup theory is more involved than for the inter-logic connection. In fact, it will
not be proven directly but we need two intermediate characterizations. The first one
is based on Ehrenfeucht-Fräıssé games and is a common approach to work with first
order logic characterizations in a game-theoretic way. The second characterization was
especially invented for the purpose of this proof. It is a combinatorial characterization
based on certain decompositions of words. We start by defining these decompositions
and a congruence relation based on them.

Definition 5.1.
Let a ∈ Σ+

m and p ∈ λ(a). Then the p-left decomposition of a is defined as the unique
triple (a′, p, a′′) with a′pa′′ = a and p 6∈ λ(a′) and is denoted by p-ldecomp(a). Sym-
metrically we define the p-right decomposition of a as the unique triple (a0, p, a1) with
a0pa1 = a and p 6∈ λ(a1) and denote it by p-rdecomp(a).

We now inductively define the equivalence relation ≡n for every n ∈ N.

Definition 5.2.
Let a, b ∈ Σ+

m and n ∈ N. Then a ≡n b iff

n = 0
or a = b
or λ(a) = λ(b)

and for all p ∈ λ(a) : (a′, p, a′′) = p-ldecomp(a) and (b′, p, b′′) = p-ldecomp(b)
⇒ a′ ≡n b′ and a′′ ≡n−1 b

′′

and for all p ∈ λ(a) : (a0, p, a1) = p-rdecomp(a) and (b0, p, b1) = p-rdecomp(b)
⇒ a0 ≡n−1 b0 and a1 ≡n b1

It can be shown that ≡n is a congruence relation for every n ∈ N.

Theorem 5.3.
Let L ⊆ Σ+

m. Then the following are equivalent:

(i) The syntactic semigroup of L is in DA.

(ii) L is a union of classes of ≡n for an n ∈ N.

22
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(iii) L is a union of classes of ∼=2
r (with underlying first order vocabulary {<,P0, P1, . . . })

for an r ∈ N.

(iv) L = Lϕ for a ϕ ∈ FO2[<].

Proof. (i) ⇒ (ii): This is Proposition 5.13 which was proved in [TW98].

(ii) ⇒ (iii): This is Lemma 5.5 which was proved in [TW98].

(iii) ⇒ (i): This is Lemma 5.8 which was proved in [TW98].

(iii) ⇔ (iv): This is Lemma 5.4 (with symbols = {<}).

5.1 First Order Logic and Ehrenfeucht-Fräıssé Games

This game-theoretic approach to first order logic goes back to Fräıssé [Fra54] and Ehren-
feucht [Ehr61] and has become a standard method. We will not give a complete proof
for our lemma here but only cover the things specific to our formal language context and
therefor use a theorem from [Imm99] about general Ehrenfeucht-Fräıssé games.

Lemma 5.4.
Let r ∈ N, L ⊆ Σ+

m and symbols ⊆ {<, succ}. Then L is a union of classes of ∼=2
r

(with underlying first order vocabulary symbols∪{P0, P1, . . . }) iff L = Lϕ for a formula
ϕ ∈ FO2[symbols] with quantifier depth at most r.

Proof. We use (without proof) Theorem 6.10 in [Imm99, p. 95] which states that for all
k, r ∈ N \ {0} two words a, b ∈ Σ+

m are distinguishable by ∼=k
r , i.e. a 6∼=k

r b, iff they are
distinguishable by a formula ϕ ∈ FOk with quantifier depth at most r, i.e. one of the
words fulfills ϕ and the other does not.

“⇐”: Let L = Lϕ for a ϕ ∈ FO2[symbols] and let r ∈ N \ {0} be the quantifier depth
of ϕ. We have to show that for every a, b ∈ Σ+

m with a ∈ L, i.e. a |= ϕ, and a ∼=2
r b it

follows that also b ∈ L. So assume b 6∈ L = Lϕ. This yields b 6|= ϕ and so a and b do not
agree on ϕ but by the above quoted theorem this is a contradiction to our assumption
that a ∼=2

r b since the quantifier depth of ϕ is at most r.
“⇒”: First of all note that there are only finitely many pairwise non-equivalent formu-

las (two formulas are non-equivalent iff there is a word which fulfills one of them but not
the other) in FO2[symbols] with quantifier depth at most r. Then denote for every word
a ∈ Σ+

m the set of all formulas in FO2[symbols] with quantifier depth at most r, which
are fulfilled by a, with [a]2r . If for two words a and b we have a 6∼=2

r b, i.e. [a]∼=2
r
6= [b]∼=2

r
,

then we know by the above quoted theorem that also [a]2r 6= [b]2r . And since there are
only finitely many pairwise distinct sets of the form [a]2r , there are also only finitely many
classes of ∼=2

r .
Now let

L =
⋃
i∈I

[ai]∼=2
r

with [ai]∼=2
r
6= [aj ]∼=2

r
for all i 6= j.
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The above yields that I is finite and that [ai]2r is finite for all i ∈ I. Therefore we can
construct a formula ϕ ∈ FO2[symbols] with quantifier depth at most r and L = Lϕ as
follows:

ϕ :=
∨
i∈I

∧
ψ∈[ai]2r

ψ

5.2 ≡n to Ehrenfeucht-Fräıssé Games

We will now begin a circular argument to prove the equivalence of (i)− (iii) in Theorem
5.3.

Lemma 5.5.
Let n ∈ N and L ⊆ Σ+

m a union of classes of ≡n. Then L is a union of classes of ∼=2
n+m

(with underlying first order vocabulary {<,P0, P1, . . . }).

Proof. Since by assumption L is a union of classes of ≡n it is enough to show that for
all a ∈ Σ+

m : [a]∼=2
n+m
⊆ [a]≡n , i.e. ∼=2

n+m is a refinement of ≡n. And because [a]∼=2
n+m
⊆

[a]∼=2
n+|λ(a)|

for all a ∈ Σ+
m (if Duplicator wins the (n+m)-round game she even more wins

the (n+|λ(a)|)-round game) it is enough to show that for all a ∈ Σ+
m : [a]∼=2

n+|λ(a)|
⊆ [a]≡n .

This is equivalent to:

For all a, b ∈ Σ+
m : a 6≡n b ⇒ a 6∼=2

n+|λ(a)| b.

So let a, b ∈ Σ+
m and a 6≡n b. The proof that a 6∼=2

n+|λ(a)| b goes by induction on
n+ |λ(a)|. Assume n = 0. This is not possible because a ≡0 b for all a, b ∈ Σ+

m.
So we get n > 0. If λ(a) 6= λ(b) we immediately have a 6∼=2

1 b since Spoiler has a trivial
winning strategy: He chooses a structure that has a letter not occuring in the other word
and pebbles a position with this letter. If λ(a) = λ(b) 6= ∅ (the case |λ(a)| = |λ(b)| = 0
cannot occur since it implies a = b = ε and therefore a ≡n b) there is by definition
of ≡n a p ∈ λ(a) such that a′ 6≡n b′ or a′′ 6≡n−1 b′′ if (a′, p, a′′) = p-ldecomp(a) and
(b′, p, b′′) = p-ldecomp(b); or the analog thing happens for the p-right decompositions
but w.l.o.g. we can assume it happens for the p-left decompositions.

If a′ 6≡n b′ we get n+ |λ(a′)| < n+ |λ(a)| since p 6∈ λ(a′) and by induction hypothesis
this leads to a′ 6∼=2

n+|λ(a′)| b
′. This means that Spoiler has a winning strategy for the

(n + |λ(a′)|)-round game on a′ and b′. For the (n + |λ(a)|)-round game on a and b he
just plays this strategy and either wins or w.l.o.g. Duplicator must answer with setting
αs(x1) := k for some s ≤ n + |λ(a′)|, k ≥ |a′|. Then Spoiler sets αs+1(x2) := |a′|.
This leads to αs+1(x2) ≤ αs+1(x1) = k and so Duplicator must make sure βs+1(x2) ≤
βs+1(x1). But at the same time she must set βs+1(x2) on a position j with bj = p. But
as βs(x1) < |a′| there is no position which fulfills both conditions and so Duplicator loses
in round s+ 1 ≤ n+ |λ(a′)|+ 1 = n+ |λ(a)|.
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After round s: a0a1 . . . a|a′|−1︸ ︷︷ ︸
αs(x2)

pa|a′|+1 . . . ak︸︷︷︸
αs(x1)

. . . a|a|−1

b0b1 . . . b|b′|−1︸ ︷︷ ︸
βs(x2)<βs(x1)

pb|b′|+1 . . . b|b|−1

After round s+ 1: a0a1 . . . a|a′|−1 p︸︷︷︸
αs+1(x2)

a|a′|+1 . . . ak︸︷︷︸
αs+1(x1)

. . . a|a|−1

b0b1 . . . b|b′|−1︸ ︷︷ ︸
βs+1(x1)

pb|b′|+1 . . . b|b|−1︸ ︷︷ ︸
βs+1(x2)Contradiction!

If a′′ 6≡n−1 b
′′ we get n− 1 + |λ(a)| < n+ λ(a) and by induction hypothesis this leads

to a′′ 6∼=2
n−1+|λ(a)| b

′′. Analog to the first case this means that Spoiler has a winning
strategy for the (n − 1 + |λ(a)|)-round game on a′′ and b′′. And again for the game on
a and b he just plays this strategy and either wins or w.l.o.g. Duplicator must answer
with setting αs(x1) := k for some s ≤ n − 1 + |λ(a)|, k ≤ |a′|. Then Spoiler sets
βs+1(x2) := |a′|. This leads to βs+1(x2) < βs+1(x1) and so Duplicator must make sure
αs+1(x2) < αs+1(x1). But at the same time she must set αs+1(x2) on a position j with
aj = p. But as αs(x1) ≤ |a′| there is no position which fulfills both conditions and so
Duplicator loses in round s+ 1 ≤ n− 1 + |λ(a)|+ 1 = n+ |λ(a)|.

After round s: a0a1 . . . ak︸︷︷︸
αs(x1)

. . . a|a′|−1p a|a′|+1 . . . a|a|−1︸ ︷︷ ︸
αs(x2)

b0b1 . . . b|b′|−1p b|b′|+1 . . . b|b|−1︸ ︷︷ ︸
βs(x1)<βs(x2)

After round s+ 1: a0a1 . . . ak︸︷︷︸
αs+1(x1)

. . . a|a′|−1 pa|a′|+1 . . . a|a|−1︸ ︷︷ ︸
αs+1(x2)Contradiction!

b0b1 . . . b|b′|−1 p︸︷︷︸
βs+1(x2)

b|b′|+1 . . . b|b|−1︸ ︷︷ ︸
βs+1(x1)

5.3 Ehrenfeucht-Fräıssé Games to Finite Semigroups

To prove the next part of our circular argument we need some additional semigroup
theory. However, what we need is very basic and is only needed for technical reasons at
the beginning of our main proof.

Definition 5.6. (Divisor)
Let S, S′ be arbitrary semigroups. Then we say that S divides S′ iff S is a homomorphic
image of a subsemigroup of S′. We write S ≺ S′.

Lemma 5.7.
Let ∼ be an arbitrary congruence relation on Σ+

m and let L ⊆ Σ+
m be a finite union of
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classes of ∼. Then it follows that Σ+
m/∼ is divided by Σ+

m/≈L, the syntactic semigroup
of L.

Proof. This is a technical but fairly easy proof found e.g. in [Str94, p. 56] by Straubing.

We will now give the main proof.

Lemma 5.8.
Let r ∈ N and L ⊆ Σ+

m a union of classes of ∼=2
r. Then the syntactic semigroup of L is

in DA.

Proof. Because L is a finite union of elements of Σ+
m/∼=2

r
(the union is finite because there

are only finitely many equivalence classes of ∼=2
r since every language recognized by an

FO2-sentence with quantifier depth at most r it follows by Lemma 5.7 that Σ+
m/∼=2

r
is

divided by Σ+
m/≈L . Now let ϕ be the corresponding homomorphism from a subsemigroup

of Σ+
m/∼=2

r
onto Σ+

m/≈L . We have to show that for all x, y, z ∈ Σ+
m/≈L the condition

(xyz)ωy(xyz)ω = (xyz)ω holds true.
First note that if S ≺ S′ are semigroups and ψ the corresponding homomorphism

from a subsemigroup of S′ onto S we have ψ(xω) = (ψ(x))ω for all x ∈ S′. This follows
immediately from the uniqueness part of Remark 2.4 since ψ(xω) = ψ(xn) for an n ∈ N
and (ψ(x))n = ψ(xn) = ψ(x2n) = (ψ(x))2n.

Now let x′, y′, z′ ∈ Σ+
m/≈L . Then there are x, y, z ∈ Σ+

m/∼=2
r

with

ϕ(x) = x′, ϕ(y) = y′ and ϕ(z) = z′.

If (xyz)ωy(xyz)ω = (xyz)ω we get

(x′y′z′)ωy′(x′y′z′)ω = ϕ((xyz)ωy(xyz)ω) = ϕ((xyz)ω) = (x′y′z′)ω.

Therefore it is enough to show that

(xyz)ωy(xyz)ω = (xyz)ω.

Since there is an n > r with (xyz)ω = (xyz)n = (xyz)2n it is enough to show that
(xyz)ny(xyz)n = (xyz)2n for all n > r. Therefore we have to show that Duplicator wins
the r-round two-pebble Ehrenfeucht-Fräıssé game on u = (abc)nb(abc)n and v = (abc)2n

for arbitrary a, b, c ∈ Σ+
m with [a]∼=2

r
= x, [b]∼=2

r
= y and [c]∼=2

r
= z.

We may assume that a, b, c ∈ Σm and that they are pairwise distinct from each other.
The single letter assumption stems from the fact that if one of the words was longer,
Duplicator could simply play the strategy she has for the one letter case, i.e. always
pebble the same occurrence of a, b or c as she would in the one letter case, and to
decide which letter inside the respectively chosen block she has to pebble she would
simply always pebble the same inner-block position as Spoiler just did. The pairwise
distinctness can be assumed because in the case of an equality the words u and v would
be more alike than in the pairwise distinct case. Therefore Duplicator could still play
her strategy for the latter case to win the game even more.
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The first and the last 3n positions in u correspond naturally to the ones in v. Duplica-
tor’s winning strategy is to place the pebble on the corresponding position in the other
word if possible and if not to place it as close as possible to the corresponding position.

In the following we will write k′ for the position in v which corresponds to the position

k in u, i.e. k′ :=
{
k
k − 1

iff
k < 3n
k > 3n

. Note that k′ does not exist if k = 3n.

We now prove the following claim from which it is apparent that Duplicator wins the
r-round game.

Claim. Duplicator has a strategy which ensures that

for all s ≤ r : For all i ∈ {1, 2} (with αs(xi) and βs(xi) defined) :
αs(xi)′ = βs(xi) (i)

or αs(xi)′, βs(xi) ∈ {3(n− s), . . . , 3(n+ s)} (ii)
and βs ◦ α−1

s is an isomorphism.

Proof of the claim by induction on s. Let s = 0. Then the claim is trivially true since
α0(xi) and β0(xi) are undefined for i = 1, 2.

Now let the claim be true for s ≥ 0. If only one of the two pebbles will be in the
game after round s + 1, i.e. only one of αs+1(x1) and αs+1(x2) is defined, the strategy
for Duplicator to ensure the claim for round s+ 1 is quite trivial. So assume that both
will be defined and therefore s ≥ 1. Also assume w.l.o.g. that in round s+ 1 Spoiler sets
pebble x1. We have to consider two cases now.

The first one is that for i = 2 condition (ii) is not satisfied for round s. In this case
condition (i) must be satisfied for round s instead; and then automatically also for round
s+ 1 because pebble x2 is not moved in round s+ 1. If Spoiler now sets αs+1(x1) := k
with k 6= 3n Duplicator can simply answer with setting βs+1(x1) := k′ and if he sets
βs+1(x1) := k′ she can set αs+1(x1) := k. In this subcase condition (i) is satisfied for
i = 1 and round s+ 1.

u : abc . . .
↑

αs(x2)

abc b abc . . .
↑

αs+1(x1):=k

abc

v : abc . . .
↑

βs(x2)=αs(x2)′

abc abc . . .
↑

βs+1(x1):=k′

abc

If Spoiler sets αs+1(x1) := 3n, i.e. he pebbles the b in the center position, Duplicator
can answer with setting βs+1(x1) := 3n− 2. In this subcase condition (ii) is satisfied for
i = 1 and round s+ 1 because 3n− 2 ∈ {3(n− (s+ 1)), . . . , 3(n+ (s+ 1))} for all s ≥ 0.

u : abc . . .
↑

αs(x2)

a b c b
↑

αs+1(x1):=3n

abc . . . abc

v : abc . . .
↑

βs(x2)=αs(x2)′

a b
↑

βs+1(x1):=3n−2

c abc . . . abc

The second case is that αs(x2)′, βs(x2) ∈ {3(n− s), . . . , 3(n+ s)}; and again the same
condition is automatically satisfied for i = 2 and round s+1. If Spoiler sets αs+1(x1) := k
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(or βs+1(x1) := k′) with k′ 6∈ {3(n − s), . . . , 3(n + s)} Duplicator can easily answer by
setting βs+1(x1) := k′ (or respectively αs+1(x1) := k) and thereby fulfill condition (i)
for i = 1 and round s+ 1.

u : abc . . . abc . . .
↑

αs(x2)

abc b abc . . . abc . . .
↑

αs+1(x1):=k

abc

v : abc . . . abc . . . abc abc . . .
↑

βs(x2)

abc . . .
↑

βs+1(x1):=k′

abc

︸ ︷︷ ︸
{3(n−s),...,3(n+s)}

If k′ ∈ {3(n − s), . . . , 3(n + s)} it may not be possible for Duplicator to simply pebble
the corresponding position; but this is not necessary to fulfill condition (ii). So if Spoiler
sets αs+1(x1) := k with k′ ∈ {3(n− s), . . . , 3(n+ s)} and k > αs(x2) she will respond by
setting βs+1(x1) to the smallest position j with j > βs(x2) and vj = uk. If k < αs(x2)
she will choose the largest position j with j < βs(x2) and vj = uk and if k = αs(x2) she
sets βs+1(x1) := βs(x2).

If Spoiler sets βs+1(x1) := k′ she acts accordingly. In all subcases she ensures
αs+1(x1)′, βs+1(x1) ∈ {3(n−(s+1)), . . . , 3(n+(s+1))} because by induction hypothesis
we have αs(x2)′, βs(x2) ∈ {3(n−s), . . . , 3(n+s)} and the position pebbled by Duplicator
with x1 is the closest position to x2 with the correct letter on it and can therefore be
at most three letters away from the position of x2 (except when x2 is very close to the
center where it can be a distance of four; but clearly condition (ii) is still fulfilled then).

u : abc . . . abc . . .
↑

αs(x2)

a
↑

αs+1(x1):=k

bc b abc . . . a bc . . . abc

v : abc . . . abc . . . a bc abc . . .
↑

βs(x2)

a
↑

βs+1(x1):=k′

bc . . . abc

︸ ︷︷ ︸
{3(n−s),...,3(n+s)}︸ ︷︷ ︸
{3(n−(s+1)),...,3(n+(s+1))}

5.4 Finite Semigroups to ≡n
For the next proof we need some more semigroup related notation. Although it may not
seem as basic as in the last section it is in fact still very basic and just not as commonly
used.

Definition 5.9.
For a semigroup S and a, b ∈ S we write a ≤R b iff {a} ∪ {as | s ∈ S} ⊆ {b} ∪ {bs |
s ∈ S} and aRb iff a ≤R b and b ≤R a. ≤L is defined analogously by a ≤L b iff
{a} ∪ {sa | s ∈ S} ⊆ {b} ∪ {sb | s ∈ S}.
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Remark 5.10.
If L ⊆ Σ+

m and a, b ∈ Σ+
m then [ab]≈L ≤R [a]≈L.

Proof. This follows immediately because ≈L is a congruence relation with respect to the
operation of concatenation of words.

For the sake of clearness we will often write [a] instead of [a]≈L in the following.

Definition 5.11.
Let L ⊆ Σ+

m and u ∈ Σ+
m. Then we write RdecompL(u) for the R decomposition of u in

L which is defined as the unique sequence (v0, p1, v1, . . . , pl, vl) satisfying the following
conditions:

• u = v0p1v1 . . . plvl.

• For all i ∈ {1, . . . , l} : pi ∈ Σm and for all i ∈ {0, . . . , l} : vi ∈ Σ∗m.

• [u0]R[v0] (where u0 is the first letter of u) and for all i ∈ {1, . . . , l} :
[v0p1v1 . . . pi]R[v0p1v1 . . . pivi].

• For all i ∈ {1, . . . , l} : [v0p1v1 . . . vi−1]/R[v0p1v1 . . . vi−1pi].

So to construct RdecompL(u) one has to consider the ≈L classes of increasingly long
prefixes of u and whenever a class is not R-equivalent to the class before we get a new pi,
i.e. the pi are the “breakpoints” where a new R-equivalence class is entered and stayed
into until pi+1.

Note that in the definition we could have written ≤R wherever R occurs, as the
opposite direction, ≥R, automatically holds by Remark 5.10.

The next Lemma contains the most important fact about R decompositions. We will
use it in the proof of Proposition 5.13 to connect R decompositions and iterations of
p-left decompositions.

Lemma 5.12.
Let L ⊆ Σ+

m, Σ+
m/≈L ∈ DA, u ∈ Σ+

m and RdecompL(u) = (v0, p1, v1, . . . , pl, vl). Then
pi+1 6∈ λ(vi) for all 0 ≤ i ≤ l − 1.

Proof. Let i ∈ {0, . . . , l− 1}, vi = vi,0vi,1 . . . vi,|vi|−1, j ∈ {0, . . . , |vi| − 1}. Then we have
to show that pi+1 6= vi,j .

Since [v0p1v1 . . . pi]R[v0p1v1 . . . pivi] there is b ∈ Σ+
m with [v0p1v1 . . . pivi][b] =

[v0p1v1 . . . pi]. Now we set w := [v0p1 . . . pivi], x := [bvi,0vi,1 . . . vi,j−1], y := [vi,j ] and
z := [vi,j+1vi,j+2 . . . vi,|vi|−1].

We will now show that [v0p1v1 . . . pivi]R[v0p1v1 . . . pivivi,j ], i.e. wRwy, which immedi-
ately yields pi+1 6= vi,j because [v0p1v1 . . . vi]/R[v0p1v1 . . . vipi+1]. Because Σ+

m/≈L ∈ DA
there is an n ∈ N \ {0} with (xyz)ny(xyz)n = (xyz)n. This yields w(xyz)ny(xyz)n =
w(xyz)n. On the other hand we have

w(xyz)n = [v0p1v1 . . . pivi]([bvi,0vi,1 . . . vi,j−1][vi,j ][vi,j+1 . . . vi,|vi|−1)])n

= [v0p1v1 . . . pivi (bvi)n]
= [v0p1v1 . . . pivi b(vib)n−1vi]

Def. von b= [v0p1v1 . . . pi vi]
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and w(xyz)ny(xyz)n = w(xyz)n[vi,j ]([bvi,0vi,1 . . . vi,j−1][vi,j ][vi,j+1 . . . vi,|vi|−1)])n
see above= [v0p1v1 . . . pivi][vi,j ][(bvi)n]

= [v0p1v1 . . . pivivi,j ][(bvi)n].

This leads to [v0p1v1 . . . pivivi,j ][(bvi)n] = [v0p1v1 . . . pivi] and therefore to
[v0p1v1 . . . pivivi,j ] ≥R [v0p1v1 . . . pivi]. Since by Remark 5.10 [v0p1v1 . . . pivivi,j ] ≤R
[v0p1v1 . . . pivi] we have [v0p1v1 . . . pivivi,j ]R[v0p1v1 . . . pivi].

The following is the main result of this section. The proof may not be the longest but
is probably the most involved and difficult one of this whole chapter.

Proposition 5.13.
Let L ⊆ Σ+

m and the syntactic semigroup of L in DA. Then there is an n ∈ N such that
L is a union of classes of ≡n.

Proof. Since L is a union of classes of ≈L it is enough to show that there is an n such
that for all a, b ∈ Σ+

m : a ≡n b ⇒ a ≈L b.
In [Pin86, p. 65] by Pin it is proved that if S ∈ A ⊃ DA, a, b ∈ S, aRb and aLb then

a = b. We will now show by induction on |λ(a)| that from a ≡k b for k > |λ(a)||Σ+
m/≈L |

it follows that [a]≈L = [b]≈L . Therefor we will only show that [a]≈L ≥R [b]≈L and then
get by a-b-symmetry that [a]≈L ≤R [b]≈L and therefore also [a]≈LR[b]≈L . By R-L-
symmetry we immediately get [a]≈LL[b]≈L . And from the above that a ≈L b. Choosing
n := m|Σ+

m/≈L | + 1 ensures that n > |λ(a)||Σ+
m/≈L | for every a ∈ Σ+

m and so yields the
wanted result.

If |λ(a)| = 0 we have nothing to show since a ≡1 b and therefore λ(a) = λ(b) and
a = b = ε. If |λ(a)| > 0 let (a0, p1, a1, . . . , pl, al) := RdecompL(a). Lemma 5.12
yields pi+1 6∈ ai and from this follows (simply by definition of p-left decompositions)
that (ai, pi+1, ai+1 . . . plal) = pi+1-ldecomp(aipi+1 . . . al) for every i ∈ {0, . . . , l − 1}. We
now inductively define bi, b′i for every i ∈ {0, . . . , l}. First let b′0 := b. Now for every
i ∈ {0, . . . , l − 1} let bi, b′i+1 ∈ Σ+

m with pi+1-ldecomp(b′i) = (bi, pi+1, b
′
i+1). And finally

let bl := b′l.
Since a ≡k b we get that a0 ≡k b0 and a1p2a2 . . . plal ≡k−1 b′1 = b1p2b2 . . . plbl.

Recursively follows that ai ≡k−i bi for every i ∈ {0, . . . , l} (l < k is proven below). Since
pi+1 6∈ ai it follows that |λ(ai)| < |λ(a)| for every i ∈ {0, . . . , l − 1} (not for i = l since
there is no pl+1). From this also follows

k − i > k − l > |λ(a)||Σ+
m/≈L | − |Σ

+
m/≈L | = (|λ(a)| − 1)|Σ+

m/≈L | ≥ |λ(ai)||Σ+
m/≈L |

for every i ∈ {0, . . . , l − 1} since l < |Σ+
m/≈L | because l is less than the number of R

classes of Σ+
m/≈L and the number of R classes of a semigroup can obviously not be higher

than the number of elements of that semigroup.
So we can use the induction hypothesis and get that [ai] = [bi] for every i ∈ {0, . . . , l−

1}. Therefore we have

[a]
Def. of RdecompL(a)

R [a0p1a1 . . . pl]
[ai]=[bi]= [b0p1b1 . . . pl]

Remark 5.10
≥R [b0p1 . . . plbl] = [b].
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In this chapter we will introduce a combinatorial characterization for formal language
classes. This characterization is called local threshold testability and is a generalization
of local testability which goes back to [MP71] and has received a lot of attention since.

Definition 6.1.
Let a ∈ Σ+

m, b ∈ Σ∗m. Then Fact(a, b) denotes the number of times a occurs in b,
i.e. Fact(a, b) := |

{
i | i ∈ {0, . . . , |b| − 1} and bibi+1 . . . bi+|a|−1 = a

}
|. For example,

Fact(pp, qpqppqppp) = 3.

We now define an equivalence relation ∼rk on Σ+
m.

Definition 6.2.
Let a, b ∈ Σ∗m. Then a ∼rk b iff

|a| ≤ k and a = b
or |a| > k and a0 . . . ak−1 = b0 . . . bk−1,

i.e. the prefixes of a and b of length k are equal.
and a|a|−k . . . a|a|−1 = b|b|−k . . . b|b|−1,

i.e. the suffixes of a and b of length k are equal.

and for all c ∈ Σ+
m with |c| ≤ k :

Fact(c, a) = Fact(c, b) < r
or Fact(c, a) ≥ r and Fact(c, b) ≥ r.

Note that for arbitrary but fixed k, r there are obviously only finitely many pairwise
distinct equivalence classes of ∼rk.

Definition 6.3.
Let L ⊆ Σ+

m. Then L is called locally threshold testable with threshold r iff L is a union
of equivalence classes of ∼rk for a k ∈ N.
L is called locally threshold testable iff it is locally threshold testable with threshold r
for an r ∈ N.
And L is called locally testable iff it is locally threshold testable with threshold 1.

The name “locally testable“ comes from the fact that for a locally testable language
one can check whether a given word belongs to the language by simply scanning the word
with a fixed-size window and then only considering which words occured in the window
(without respect to the order or cardinality of these words). The addition ”threshold“
stems from the fact that one no longer only considers the set of all occurring strings but
also their cardinalities up to the specified threshold.

31
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We will now quote an equivalence result between local threshold testability and a
certain first order logic characterization and then prove Theorem 3.4 (i) ⇔ (iii) which
is a new equivalence result for a subclass of all locally threshold testable languages.

Theorem 6.4.
Let L ⊆ Σ+

m. Then L = Lϕ for a ϕ ∈ FO[succ] iff L is locally threshold testable.

Proof. This is Theorem IV.3.3 in [Str94, p. 49].

Theorem 6.5.
Let L ⊆ Σ+

m. Then L = Lϕ for a ϕ ∈ FO2[succ] iff L is locally threshold testable with
threshold 2.

Proof. We modify and refine the proof from [Str94, p. 49].
“⇐”: The proof of this direction is much like the proof from [Str94] – only slightly

modified to handle the problem with the restricted number of variables which is quite
easy to cope with in this part.

Let k ∈ N such that L is the union of ∼2
k classes. It is enough to show that for all

a ∈ Σ+
m there is a ψa ∈ FO2[succ] with Lψa = [a]∼2

k
because then follows

L = Lϕ for ϕ :=
∨

[a]∼2
k
⊆L

ψa.

So let a ∈ Σ+
m and a = a0a1 . . . al. In the following we will use capital letters with

indices (A0, C0 etc.) to denote the unary predicate symbols corresponding to the letters
from Σm represented by the lowercase letters with the same indices (a0, c0 etc.). If
|a| ≤ k we can simply set

ψa := ∃x
(
¬∃y(succ(y, x))∧A0(x)∧∃y

(
succ(x, y) ∧A1(y) ∧ ∃x

(
succ(y, x) ∧A2(x) ∧ ∃y . . .

)))
︸ ︷︷ ︸

l quantifiers

.

If |a| > k the situation is a little bit more complex and we need for arbitrary c =
c0c1 . . . cj ∈ Σ+

m the formulas

“Fact(c, ·) ≥ 1” := ∃x
(
C0(x) ∧ ∃y

(
succ(x, y) ∧ C1(y) ∧ ∃x

(
succ(y, x) ∧ C2(x) ∧ ∃y . . .

)))
︸ ︷︷ ︸

j + 1 quantifiers

and

“Fact(c, ·) ≥ 2” := ∃x
(
C0(x) ∧ ∃y

(
succ(x, y) ∧ C1(y) ∧ ∃x

(
succ(y, x) ∧ C2(x) ∧ ∃y . . .

))︸ ︷︷ ︸
j quantifiers

∧ ∃y
(
¬x = y ∧ C0(y) ∧ ∃x

(
succ(y, x) ∧ C1(x) ∧ ∃y . . .

))︸ ︷︷ ︸
j + 1 quantifiers

)
.

Then follows that ψa is the conjunction of the following formulas:
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• ∃x
(
¬∃y(succ(y, x))∧A0(x)∧∃y

(
succ(x, y) ∧A1(y) ∧ ∃x

(
succ(y, x) ∧A2(x) ∧ ∃y . . .

)))
︸ ︷︷ ︸

k − 1 quantifiers

,

which ensures that a word b ∈ Σ+
m with b |= ψa has the same prefix of length k as

a.

• ∃x
(
¬∃y(succ(x, y))∧Al(x)∧∃y

(
succ(y, x) ∧Al−1(y) ∧ ∃x

(
succ(x, y) ∧Al−2(x) ∧ ∃y . . .

)))
︸ ︷︷ ︸

k − 1 quantifiers

,

which ensures that a word b ∈ Σ+
m with b |= ψa has the same suffix of length k as

a.

• for every c ∈ Σ+
m with |c| ≤ k and Fact(c, a) = 0 the formula ¬“Fact(c, ·) ≥ 1”.

• for every c ∈ Σ+
m with |c| ≤ k and Fact(c, a) = 1 the formula

“Fact(c, ·) ≥ 1”∧¬“Fact(c, ·) ≥ 2”.

• for every c ∈ Σ+
m with |c| ≤ k and Fact(c, a) ≥ 2 the formula “Fact(c, ·) ≥ 2”.

“⇒”: We show that for all r ∈ N, a, b ∈ Σ+
m : a ∼2

8r+1 b ⇒ a ∼=2
r b (with first order

vocabulary {succ, P0, P1, . . . }) which proves that ∼2
8r+1 is a refinement of ∼=2

r for every
r ∈ N. The hypothesis now follows immediately: If L = Lϕ for a ϕ ∈ FO2[succ] then
by Lemma 5.4 L is the union of classes of ∼=2

r for an r ∈ N and therefore L is locally
threshold testable with threshold 2 because it is a union of classes of ∼2

8r+1 by the above.
Now let r ∈ N, a, b ∈ Σ+

m and a ∼2
8r+1 b. We will prove the following claim from which

it is immediate that Duplicator has a winning strategy in the r-round two-pebble game
on a and b with succ as the only additional predicate.

Claim. There is a strategy for Duplicator which ensures that

for all s ≤ r : βs ◦ α−1
s is an isomorphism

and for all i ∈ {1, 2} such that αs(xi) and βs(xi) are defined :
a[αs(xi)− 4(r − s), αs(xi) + 4(r − s)] = b[βs(xi)− 4(r − s), βs(xi) + 4(r − s)],

where a[i, j] := amax{i,0} . . . amin{j,|a|−1}.
Proof of the claim by induction on s. First let s = 0. Then we have nothing to show.

Now let s = 1. Then only one kind of pebble was already used in the game, say w.l.o.g.
that Spoiler set α1(x1). Then we have

Fact(a[α1(x1)− 4(r − 1), α1(x1) + 4(r − 1)], a) ≥ 1

and therefore also

Fact(a[α1(x1)− 4(r − 1), α1(x1) + 4(r − 1)], b) ≥ 1

because a ∼2
8r+1 b. And so Duplicator can set β1(x1) such that

b[β1(x1)− 4(r − 1), β1(x1) + 4(r − 1)] = a[α1(x1)− 4(r − 1), α1(x1) + 4(r − 1)]
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and trivially also the first condition, namely that β1 ◦α−1
1 is an isomorphism, is satisfied.

After round 1: a0a1 . . . . . . aα1(x1) . . .︸ ︷︷ ︸
a[α1(x1)−4(r−1),α1(x1)+4(r−1)]

. . . a|a|−1

b0b1 . . . . . . bβ1(x1) . . .︸ ︷︷ ︸
b[β1(x1)−4(r−1),β1(x1)+4(r−1)]

=a[α1(x1)−4(r−1),α1(x1)+4(r−1)]

. . . b|b|−1

Now let the claim be true for s ∈ {1, . . . , r− 1}. If there is still only one pebble in the
game when it is Duplicator’s (s+1)-th turn she can play the same strategy as in the first
round. So assume w.l.o.g. that x2 is played in round s + 1, i.e. αs+1(x1) = αs(x1) = i
and βs+1(x1) = βs(x1) = j. And that Spoiler set αs+1(x2) = k. Now we have to consider
several different cases.

Case 1. If k ∈ {i− 1, i, i+ 1} Duplicator can simply set βs+1(x2) := j − 1, j or j + 1
accordingly. Then the isomorphism is preserved because x2 is pebbled on a neighbour
of x1 and the second condition of the claim is also preserved because by induction
hypothesis we have

a[αs(x1)− 4(r − s), αs(x1) + 4(r − s)]
= b[βs(x1)− 4(r − s), βs(x1) + 4(r − s)]

and since only neighbours of αs(x1) and βs(x1) are pebbled by x2 in round s+ 1 we get

a[αs+1(x2)− 4(r − s− 1), αs+1(x2) + 4(r − s− 1)]
= b[βs+1(x2)− 4(r − s− 1), βs+1(x2) + 4(r − s− 1)].

After round s: a0a1 . . . . . . aαs(x1) . . .︸ ︷︷ ︸
a[αs(x1)−4(r−s),αs(x1)+4(r−s)]

. . . a|a|−1

b0b1 . . . . . . bβs(x1) . . .︸ ︷︷ ︸
b[βs(x1)−4(r−s),βs(x1)+4(r−s)]

=a[αs(x1)−4(r−s),αs(x1)+4(r−s)]

. . . b|b|−1

After round s+ 1: a0a1 . . . . . .

a[αs+1(x2)−4(r−s−1),αs+1(x2)+4(r−s−1)]︷ ︸︸ ︷
. . . aαs(x1)aαs+1(x2) . . . . . .︸ ︷︷ ︸

a[αs(x1)−4(r−s),αs(x1)+4(r−s)]

. . . . a|a|−1

b0b1 . . . . . . .

b[βs+1(x2)−4(r−s−1),βs+1(x2)+4(r−s−1)]
=a[αs+1(x2)−4(r−s−1),αs+1(x2)+4(r−s−1)]︷ ︸︸ ︷

. . . bβs(x1)bβs+1(x2) . . . . . .︸ ︷︷ ︸
b[βs(x1)−4(r−s),βs(x1)+4(r−s)]

=a[αs(x1)−4(r−s),αs(x1)+4(r−s)]

. . . b|b|−1

Case 2. If k 6∈ {i−1, i, i+1} Duplicator has to make sure that βs+1(x2) 6∈ {j−1, j, j+1}
in order to preserve the isomorphism. And she has to find a position l on b with

b[l − 4(r − s− 1), l + 4(r − s− 1)] = a[k − 4(r − s− 1), k + 4(r − s− 1)]
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in order to preserve the second condition of the claim. Since

Fact(a[k − 4(r − s− 1)− 2, k + 4(r − s− 1) + 2], a) ≥ 1

it follows
Fact(a[k − 4(r − s− 1)− 2, k + 4(r − s− 1) + 2], b) ≥ 1.

Let l′ ∈ {0, . . . , |b| − 1} such that

b[l′ − 4(r − s− 1)− 2, l′ + 4(r − s− 1) + 2]
= a[k − 4(r − s− 1)− 2, k + 4(r − s− 1) + 2].

Case 2.1. If there is such an l′ with l′ 6∈ {j−1, j, j+1} Duplicator can set βs+1(x2) := l′

and preserve the claim for round s+ 1.
Case 2.2. Otherwise l′ = j + h with h ∈ {−1, 0, 1}. Now we are going to show that

there must not only be an l′ which satisfies the above conditions but also an l′′ 6= l′

which satisfies the same conditions. And there must be corresponding positions k′ and
k′′ on word a. We will then use this to show that although there might not be a position
l′ on word b with l′ 6∈ {j− 1, j, j+ 1} and the surrounding with radius 4(r− s− 1) + 2 of
l′ equals the surrounding with radius 4(r− s− 1) + 2 of k, there must be such a position
not in {j − 1, j, j + 1} for which the surroundings of the lesser radius 4(r − s − 1) are
equal. And since this is all Duplicator needs to find to preserve the claim the proof will
be finished.

First we notice that

{l′ − 4(r − s− 1)− 2, . . . , l′ + 4(r − s− 1) + 2} ⊆ {j − 4(r − s), . . . , j + 4(r − s)} (i).

By induction hypothesis we have

b[j − 4(r − s), j + 4(r − s)] = a[i− 4(r − s), i+ 4(r − s)] (ii)

and this implies

a[k − 4(r − s− 1)− 2, k + 4(r − s− 1) + 2]
= b[l′ − 4(r − s− 1)− 2, l′ + 4(r − s− 1) + 2]
(i)
= b[j + h− 4(r − s− 1)− 2, j + h+ 4(r − s− 1) + 2]

(ii)
= a[i+ h− 4(r − s− 1)− 2, i+ h+ 4(r − s− 1) + 2].

And since k 6∈ {i− 1, i, i+ 1} this leads to

Fact(a[k − 4(r − s− 1)− 2, k + 4(r − s− 1) + 2], a) ≥ 2.
a∼2

8r+1b⇒ Fact(a[k − 4(r − s− 1)− 2, k + 4(r − s− 1) + 2], b) ≥ 2.

So let l′′ ∈ {0, . . . , |b| − 1} such that l′′ 6= l′ and

b[l′′ − 4(r − s− 1)− 2, l′′ + 4(r − s− 1) + 2]
= b[l′ − 4(r − s− 1)− 2, l′ + 4(r − s− 1) + 2].
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Because we are in case 2.2 we have l′′ ∈ {j − 1, j, j + 1}. And therefore it follows as
before that

a[k− 4(r− s− 1)− 2, k+ 4(r− s− 1) + 2] = b[l′′− 4(r− s− 1)− 2, l′′+ 4(r− s− 1) + 2]

is completely contained in

b[j − 4(r − s), j + 4(r − s)] = a[i− 4(r − s), i+ 4(r − s)]

and hence
Fact(a[k − 4(r − s− 1)− 2, k + 4(r − s− 1) + 2], a) ≥ 3

since l′′ ∈ {j − 1, j, j + 1} \ {l′}.
At this point our method of going back and forth between factors of a and factors of

b and thereby increasing the number of repetitions of the factor

a[k − 4(r − s− 1)− 2, k + 4(r − s− 1) + 2]

in either word does not work any longer because we cannot follow from

Fact(a[k − 4(r − s− 1)− 2, k + 4(r − s− 1) + 2], a) ≥ 3

that also
Fact(a[k − 4(r − s− 1)− 2, k + 4(r − s− 1) + 2], b) ≥ 3.

This is due to the fact that we would need a ∼3
8r+1 b instead of only a ∼2

8r+1 b to
conclude such a thing.

We now have that there are k′, k′′ ∈ {i− 1, i, i+ 1} with k′ 6= k′′ and

a[k − 4(r − s− 1)− 2, k + 4(r − s− 1) + 2]
= a[k′ − 4(r − s− 1)− 2, k′ + 4(r − s− 1) + 2]
= a[k′′ − 4(r − s− 1)− 2, k′′ + 4(r − s− 1) + 2].

And we know that there is no position l 6∈ {j − 1, j, j + 1} with

b[l− 4(r − s− 1)− 2, l + 4(r − s− 1) + 2] = a[k − 4(r − s− 1)− 2, k + 4(r − s− 1) + 2]

but two positions l′, l′′ ∈ {j − 1, j, j + 1} with l′ 6= l′′ and

b[l′ − 4(r − s− 1)− 2, l′ + 4(r − s− 1) + 2]
= b[l′′ − 4(r − s− 1)− 2, l′′ + 4(r − s− 1) + 2]
= a[k − 4(r − s− 1)− 2, k + 4(r − s− 1) + 2].

Case 2.2.1. If |l′ − l′′| = 1 we can w.l.o.g. assume that l′ = j and l′′ = j + 1. Since

b[l′ − 4(r − s− 1)− 2, l′ + 4(r − s− 1) + 2]
= b[l′′ − 4(r − s− 1)− 2, l′′ + 4(r − s− 1) + 2]
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it follows that

bl′−4(r−s−1)−2 = bl′′−4(r−s−1)−2
l′′=l′+1= bl′−4(r−s−1)−1

= . . .
l′′=l′+1= bl′

= bl′′
l′′=l′+1= bl′+1
l′′=l′+1= bl′+2

= . . .
l′′=l′+1= bl′+4(r−s−1)+2

= bl′′+4(r−s−1)+2

=: p

This implies

b[l′ − 4(r − s− 1)− 2︸ ︷︷ ︸
=j−4(r−s−1)−2

, l′′ + 4(r − s− 1) + 2︸ ︷︷ ︸
=j+1+4(r−s−1)+2

] = p8(r−s−1)+6︸ ︷︷ ︸
:=p...p

and hence

b[j + 2− 4(r − s− 1), j + 2 + 4(r − s− 1)]
= p8(r−s−1)+1

= b[l′ − 4(r − s− 1), l′ + 4(r − s− 1)]
= a[k − 4(r − s− 1), k + 4(r − s− 1)].

And so Duplicator can set βs+1(x2) = j + 2.

a : . . .

4(r−s−1)+2︷ ︸︸ ︷
p . . . p p

↑
i=αs+1(x1)

p

4(r−s−1)+2︷ ︸︸ ︷
p . . . p . . . . . .

4(r−s−1)+2︷ ︸︸ ︷
p . . . p p

↑
k=αs+1(x2)

4(r−s−1)+2︷ ︸︸ ︷
p . . . p . . .

b : . . .

4(r−s−1)+2︷ ︸︸ ︷
p . . . p p

↑
l′=j=βs+1(x1)

p
↑
l′′

p
↑

βs+1(x2)

4(r−s−1)+1︷ ︸︸ ︷
p . . . p . . .

Case 2.2.2. If |l′− l′′| = 2 we can w.l.o.g. assume that l′ = j− 1 and l′′ = j+ 1. Since

b[l′ − 4(r − s− 1)− 2, l′ + 4(r − s− 1) + 2]
= b[l′′ − 4(r − s− 1)− 2, l′′ + 4(r − s− 1) + 2]
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it follows that
bl′−4(r−s−1)−2 = bl′′−4(r−s−1)−2

l′′=l′+2= bl′−4(r−s−1)

= . . .
l′′=l′+2= bl′

= bl′′
l′′=l′+2= bl′+2
l′′=l′+2= bl′+4

= . . .
l′′=l′+2= bl′+4(r−s−1)+2

= bl′′+4(r−s−1)+2

=: p

as well as
bl′−4(r−s−1)−1 = bl′′−4(r−s−1)−1

l′′=l′+2= bl′−4(r−s−1)+1

= . . .
l′′=l′+2= bl′−1

= bl′′−1
l′′=l′+2= bl′+1
l′′=l′+2= bl′+3

= . . .
l′′=l′+2= bl′+4(r−s−1)+1

= bl′′+4(r−s−1)+1

=: q

Furthermore we can assume that p 6= q since otherwise we could re-choose l′ and l′′ such
that we would be in case 2.2.1 again and we already solved that case.

All of this together implies

b[l′ − 4(r − s− 1)− 2︸ ︷︷ ︸
=j−1−4(r−s−1)−2

, l′′ + 4(r − s− 1) + 2︸ ︷︷ ︸
=j+1+4(r−s−1)+2

] = (pq)2(r−s−1)+1pqp(qp)2(r−s−1)+1.

and hence
b[j + 3− 4(r − s− 1), j + 3 + 4(r − s− 1)]

= (pq)2(r−s−1)p(qp)2(r−s−1)

= b[l′ − 4(r − s− 1), l′ + 4(r − s− 1)]
= a[k − 4(r − s− 1), k + 4(r − s− 1)].

And so Duplicator can set βs+1(x2) = j + 3.
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a : . . .

4(r−s−1)+2︷ ︸︸ ︷
pq . . . pq p q

↑
i=αs+1(x1)

p

4(r−s−1)+2︷ ︸︸ ︷
qp . . . qp . . . . . .

4(r−s−1)+2︷ ︸︸ ︷
pq . . . pq p

↑
k=αs+1(x2)

4(r−s−1)+2︷ ︸︸ ︷
qp . . . qp . . .

b : . . .

4(r−s−1)+2︷ ︸︸ ︷
pq . . . pq p

↑
l′

q
↑

j=βs+1(x1)

p
↑
l′′

q p
↑

βs+1(x2)

4(r−s−1)︷ ︸︸ ︷
qp . . . qp . . .



7 Conclusion and Open Problems

Although we have seen two new characterizations for the languages, definable by first
order formulas with only two different variables and succ as the only binary relation,
one of these (the temporal logic one) seems to be only introduced to specifically fit this
problem and so nothing new has been shown here. However, it is not clear a priori –
although the actual proof is very easy – why it should even be possible to just invent
another operator and then have the same kind of equivalence as for the classes including
the < relation.

A next step would be to investigate the hierarchy defined by the nesting depth of the
D operator and show that it is strict – which it “should” be. This might be achieved
by characterizing this hierarchy in terms of semigroup theory and then showing that the
resulting hierarchy of pseudovarieties is strict. This approach was used by Thérien and
Wilke [TW04] to prove that the Until-Since-hierarchy is strict.

Of course it should also be interesting to investigate the effects of allowing other
combinations of temporal operators, e.g. only XU without YS (work has be done in
this field already, e.g. in [TW96]) or unorthodox combinations like XU together with O.

Furthermore in the case without the < relation it could be investigated what would
happen if we allowed more than two different variables as in this case we would not
automatically end up in the whole class of languages definable by temporal logic as we
do with <, as seen in Theorem 3.1.
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