
Institut für Informationssysteme Universität Hannover

Diplomarbeit

Enumeration Algorithms for Constraint
Satisfaction Problems

Ilka Johannsen

15. Februar 2005

Prüfer:
Prof. Dr. Heribert Vollmer
PD. Dr. Matthias Kriesell

Erklärung

Hiermit versichere ich, dass ich diese Diplomarbeit selbst verfasst und dabei keine
außer den angegebenen Quellen und Hilfsmitteln verwendet habe.

Ilka Johannsen, Hannover den 15. Februar 2005

Contents

1 Introduction 2

2 Preliminaries 2
2.1 Algebras . 3
2.2 The Boolean Case . 6
2.3 G-Sets . 6

3 The 3-Element Case 9
3.1 Properties Providing Tractability . 9

3.1.1 The Partial Zero Property . 13
3.1.2 The Splitting Property . 14

3.2 Bulatov’s Dichotomy Theorem . 15
3.3 NP-complete clones . 16

4 Enumeration Algorithms 19

1

1 Introduction

A constraint satisfaction problem (CSP) is the question, if there is an assignment of values
over some domain to a set of variables that fulfills specified constraints. In many areas
of computer science and mathematics there are problems that can be expressed as CSPs,
for example graph colorability and problems in database theory.

In general a CSP is NP-complete, but if we restrict the form of the constraints in
a certain way we get CSPs that are tractable, that is solvable in polynomial time. In
1978 Schaefer classified the complexity of all Boolean CSPs, that means CSPs over a
2-element domain ([Sch78]). He identified tractable CSPs and proved that all others are
NP-complete. Later it was shown that the complexity of CSPs is determined by certain
algebraic closure properties which are represented by polymorphisms. So it was possible
to reprove Schaefer’s classification by using only polymorphisms.

Bulatov proved in [Bul02c, Bul02a] a dichotomy theorem for CSPs with a 3-element
domain. Such CSPs are (like Boolean CSPs) NP-complete or tractable. Bulatov’s result
gives a classification of the 3-element case which had remained open since 1978. In
[BJK00] the conjecture was stated that a dichotomy holds for arbitrary CSPs over finite
domains. In Section 3 we describe Bulatov’s classification and in Section 3.3 we restate
the classification using only polymorphisms.

Another problem related to CSPs often examined is finding all assignments of values
over some domain to a set of variables that fulfill specified constraints. Algorithms that
enumerate all such assignments are called enumeration algorithms and the question is
which sets of constraints allow an efficient enumeration algorithm. In [CH97] Creignou
and Hebrard solved this question for the Boolean case by giving an efficient enumeration
algorithm for some sets of constraints and proving all others have none unless P=NP. We
generalize this algorithm in Section 4 for the 3-element domain.

2 Preliminaries

An n-ary relation on a set A is a subset of An. A set of finitary relations on A is said to
be a constraint language on A.

Definition Let Γ be a constraint language on A. The constraint satisfaction problem
over Γ, denoted CSP(Γ), is defined to be the decision problem with instances (V,A, C),
where

V is a set of variables;

A is called domain and its elements values; and

2

C = {C1, . . . , Cq} is a set of constraints, in which a constraint Ci ∈ C is a pair 〈si, Ri〉
with si ∈ V mi, called the constraint scope, and Ri an mi-ary relation from Γ, called
the constraint relation.

A solution to (V,A, C) is a function ϕ : V → A, such that, for each constraint 〈s, R〉 ∈ C
it holds that ϕ(s) ∈ R. The question is whether there exists a solution.

Definition A constraint language Γ is said to be tractable, if CSP(Γ′) is tractable, i.e.
there exists an algorithm that decides in time bounded by a polynomial in the input size if
the input is an instance from CSP(Γ′) or not, for each finite subset Γ′ ⊆ Γ. It is said to
be NP-complete, if CSP(Γ′) is NP-complete for some finite subset Γ′ ⊆ Γ.

We want to know which constraint languages are tractable, which are NP-complete
and which lie in between. In [FV98] it was conjectured that there are no constraint
languages on finite domains with intermediate complexity.

2.1 Algebras

To characterize tractable constraint language on a finite domains we use algebraic closure
properties of relations.

Definition Let f be an n-ary operation and R an m-ary relation. We say f is a
polymorphism of R (or f preserves R,or R is invariant under f) if the following holds:

(a11, . . . , am1), . . . , (a1n, . . . , amn) ∈ R⇒ (f(a11, . . . , a1n), . . . , f(am1, . . . , amn)) ∈ R

With Pol Γ := {f | every R ∈ Γ is invariant under f} we denote the set of all polymor-
phisms of all relations from Γ and with Inv F := {R | R is invariant under every f ∈ F}
we denote the set of all relations invariant under all operations from F.

We say a set F of operations on A is closed under superposition if F contains the
identity and for any n-ary operation f ∈ F and m-ary operation g ∈ F the following
holds:

- h defined by h(x1, . . . , xn−1, y1, . . . , ym) = f(x1 . . . , xn−1, g(y1, . . . , ym)) is in F .

- h defined by h(x1, . . . , xn) = f(xΠ(1), . . . , xΠ(n)), where Π is a permutation on
{1, . . . , n}, belongs to F .

- h defined by h(x1, . . . , xn−1) = f(x1, . . . , xn−1, xn−1) is in F .

- h defined by h(x1, . . . , xn+1) = f(x1, . . . , xn) is in F .

3

Such closed sets of operations on A are called clones and they form a lattice. It holds that
Pol Inv F is the smallest clone containing F . Post identified all Boolean clones and their
inclusion structure, moreover he gave finite bases for each clone. The lattice of Boolean
clones is now known as Post’s lattice. While the number of clones in Post’s lattice is
countable, it has been proven that the lattices of clones over a domain containing more
than 2 elements contain uncountably many clones and thus not every clone has a finite
base. However, only the lattice of Boolean clones is fully specified.

Corresponding to superposition we say a constraint language Γ on A is closed if for
any n-ary relation R1 ∈ Γ and for any R2 ∈ Γ holds:

- Ak ∈ Γ for k ∈ N.

- R1 ×R2 ∈ Γ.

- {(xΠ(1), . . . , xΠ(n)) | (x1, . . . , xn) ∈ R1} ∈ Γ for every permutation Π on {1, . . . , n}.

- {(x1, . . . , xn−1) | there is an x ∈ A such that (x1, . . . , xn−1, x) ∈ R1} ∈ Γ.

- {(x1, . . . , xn−1, xn−1) | (x1, . . . , xn−1, xn−1) ∈ R1} ∈ Γ.

Such closed constraint languages are called coclones and the smallest coclone which con-
tains a constraint language Γ is Inv Pol Γ.

It is easy to see that Pol Γ always is a clone and Inv F is a coclone for any set of
operations F . The following theorem shows that there is a direct correspondence between
clones and coclones.

Theorem 1 ([Dal00]) Pol and Inv form a Galois connection between the lattice of
clones on a domain A and the lattice of coclones on A, that means:

1. For all clones F1, F2 it holds that: if F1 ⊆ F2 then Inv F2 ⊆ Inv F1.

2. For all coclones Γ1,Γ2 it holds that: if Γ1 ⊆ Γ2 then Pol Γ2 ⊆ Pol Γ1.

3. For all clones F and coclones Γ it holds that: F ⊆ Pol Inv F and Γ ⊆ Inv Pol Γ.

Because of this connection we can transfer results about clones on coclones and vice
versa. With the following theorem from [Jea98] we see that the polymorphisms of a
constraint language fully determine its complexity. Therefore its algebraic structure is
very interesting.

Theorem 2 ([Jea98]) Let Γ be a constraint language on a finite set. Γ is tractable
(NP-complete) if and only if Inv Pol (Γ) is tractable (NP-complete).

4

Definition A pair A = (A,F) such that A is a nonempty set and F is a family of
finitary operations on A is an algebra. A is called the universe of A and the operations
from F are called basic operations. We say A is a finite algebra if A is finite.

Given a constraint language Γ on A, we call the algebra AΓ := (A,Pol Γ) the algebra
associated with Γ. In this way any algebra is assigned to a constraint language.

So the complexity of a constraint language Γ depends on AΓ only and constraint
languages that give raise to an algebra A = (A,F) have the same complexity as Inv F .
We say A is tractable (NP-complete) if Inv F is tractable (NP-complete). Operations
from Pol Inv F are called term operations of A.

We now define some properties of operations:

Definition Let f be an n-ary operation on a finite set A. f is called

- a projection if there is i ∈ {1, . . . , n} such that for any x1, . . . , xn ∈ A it holds that
f(x1, . . . , xn) = xi;

- essentially unary if there is a unary operation g such that for any x1, . . . , xn ∈ A it
holds that f(x1, . . . , xn) = g(xi);

- a constant operation if there is c ∈ A such that for any x1, . . . , xn ∈ A it holds that
f(x1, . . . , xn) = c ;

- idempotent if f(x, . . . , x) = x for any x ∈ A;

- semilattice if it is binary and satisfies the following conditions for any x, y, z ∈ A:

(a) f(x, (y, z)) = f(f(x, y), z) (Associativity),

(b) f(x, y) = f(y, x) (Commutativity),

(c) f(x, x) = x (Idempotency);

- conservative commutative if it is binary, f(x, y) = f(y, x) and f(x, y) ∈ {x, y} for
any x, y ∈ A;

- a majority operation if it is ternary and f(x, x, y) = f(x, y, x) = f(y, x, x) = x for
any x, y ∈ A;

- affine if it is ternary and f(x, y, z) = x− y + z for any x, y, z ∈ A, where +,− are
the operations of an abelian group;

- Malt’sev if it is ternary and f(x, y, y) = f(y, y, x) = x for any x, y ∈ A.

5

Note that every affine operation is also Malt’sev.

Proposition 3 ([Bul02b, BJ00, JCC98, JCG97]) Let Γ be a constraint language. If
AΓ has a term operation that is constant, semilattice, conservative commutative, Malt’sev,
or majority, then it is tractable.

2.2 The Boolean Case

We say a CSP(Γ) is a Boolean constraint satisfaction problem if Γ is a constraint language
over the Boolean domain {0, 1}. The following famous result classifies the complexity of
the Boolean constraint languages.

Theorem 4 (Schaefers Dichotomy Theorem) Let Γ be a constraint language over
the Boolean domain. If Γ satisfies one of the following conditions then it is tractable.

1. AΓ has the constant term operation 0.

2. AΓ has the constant term operation 1.

3. ∧ is a term operation of AΓ.

4. ∨ is a term operation of AΓ.

5. f with f(x, y, z) = (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x) is a term operation of AΓ.

6. f with f(x, y, z) = x− y + z(mod 2) is a term operation of AΓ.

In any other case Γ is NP-complete.

If Γ satisfies the condition 1 resp. 2 it is called 0-valid resp. 1-valid and if it satisfies
one of the conditions 3-4 it is called Schaefer.

It holds that ∧ and ∨ are semilattice operations. The operation from condition 5 is a
majority operation and that one from condition 6 is Malt’sev. So in all polynomial cases
from Theorem 4 there is a term operation with a property mentioned in Proposition 3.

2.3 G-Sets

Definition We say an algebra is a G-Set if every of its term operations is essentially
unary and the corresponding unary operation is a permutation.

G-Sets are are important for finding NP-complete algebras. The following proposition
was proved in [JCG97].

6

Proposition 5 A finite G-Set with at least two elements is NP-complete.

In Post’s Lattice there are only two clones, N2 and I2 (notation from [BCRV03]) such
that the corresponding algebras ({0, 1},N2) and ({0, 1},I2) are G-Sets. It holds that N2

and I2 are the only clones with Inv N2 and Inv I2 are neither 0-valid nor 1-valid nor
Schaefer, and therefore NP-complete. So we can restate Schaefer’s Dichotomy Theorem.

Theorem 6 ([BJK00]) A Boolean constraint language Γ is tractable if AΓ is not a G-
Set. Otherwise Γ is NP-complete.

Definition Let A = (A,F) be an algebra and B ⊆ A such that, for any f ∈ F and any
b1, . . . , bn ∈ B, it holds that f(b1, . . . , bn) ∈ B. Let F |B := {f |B | f ∈ F} be the set of
basic operations restricted to B. Then we call the algebra B = (B,F |B) a subalgebra of
A and B a subuniverse of A.

Definition Let A = (A,F) be an algebra. An equivalence relation θ ∈ Inv F is said to
be a congruence of A. The equivalence class containing a ∈ A is denoted by aθ and we
call A/θ := {aθ | a ∈ A} a factor-set of A. A/θ = (A/θ, F

θ) with F θ = {f θ|f ∈ F},
where f θ(aθ

1, . . . , a
θ
n) = (f(a1, . . . , an))θ, is said to be a factor-algebra of A. Observe that

the operations are well-defined because θ ∈ Inv F .

We call every factor-algebra of a subalgebra of A a factor of A.

Proposition 7 ([BJK00]) Let Γ be a tractable constraint language, B a subuniverse of
AΓ and θ a congruence of AΓ. Then

1. B = (B, (Pol Γ)|B) is a tractable subalgebra of AΓ;

2. AΓ/θ is tractable.

As a conclusion from the last proposition we get that every factor of a tractable algebra
is tractable. Hence, every tractable algebra satisfies the following condition: none of its
factors with at least two elements is a G-Set. We write (No-G-Set) for this condition.

In the special case of 3-element algebras factors have a simple structure.

Proposition 8 Let A be a 3-element algebra and let B be a factor of A with at least two
elements. Then one of the following conditions holds.

1. B = A;

2. B is a 2-element subalgebra of A;

3. B is a 2-element factor-algebra of A.

7

Proof Let A be a 3-element algebra and B a factor of A. That means there is an algebra
C such that B is a factor-algebra of C and C is a subalgebra of A. Let θ be a congruence
of C such that B = C/θ.

Case 1: C is a 3-element algebra. Then it holds that C = A. If θ has three equivalence
classes we have B = C/θ = C = A. If θ has two equivalence classes then B is a
2-element factor-algebra of C = A. For fewer equivalence classes B has less than
two elements.

Case 2: C is a 2-element algebra. If θ has two equivalence classes then it holds that
B = C/θ = C is a 2-element subalgebra of A. Otherwise B has less than two
elements.

Other cases lead to factors with only one element. 2

Definition Let Γ be a constraint language and f ∈ Pol Γ of minimal range such
that f is unary and f ◦ f = f . Then we say f(Γ) = {f(R)|R ∈ Γ} where f(R) =
{(f(x1), . . . , f(xn))|(x1, . . . , xn) ∈ R} is a core of Γ. We denote the constraint language
Γ ∪ {{(a)} | a ∈ A} by Γ+ and f(Γ)+ by Γid

f .

Example The following table contains all unary operations f on {0, 1, 2} with f ◦f = f .

f f(0) f(1) f(2)

c0 0 0 0
c1 1 1 1
c2 2 2 2
g0,1 1 1 2
g0,2 2 1 2
g1,0 0 0 2
g1,2 0 2 2
g2,0 0 1 0
g2,1 0 1 1
h 0 1 2

The operations with a range of 1 are trivially the constants and the only operation in the
table with a range of 3 is the identity. We see that the operations in the table with a range
of 2 are of the form ga,b(x) = x if x ∈ {0, 1, 2}\{a} and ga,b(a) = b for a, b ∈ {0, 1, 2}, a 6= b.

8

Let Γ be a constraint language, f a polymorphism of Γ which satisfies the conditions
in the previous definition, and P = (V,A, C) a problem instance with constraint relations
from Γ. If ϕ is a solution of P , then ψ = f ◦ϕ also is a solution of P . Since every solution
of P ′ = (V, f(A), C ′) where C ′ = {〈s, f(R)〉 | 〈s, R〉 ∈ C} is a solution of P , we have that P
has a solution if and only if P ′ has one. In [BJK00] the following proposition was shown.

Proposition 9 Let Γ be a constraint language on A and let f ∈ Pol Γ be a unary opera-
tion with minimal range such that f ◦ f = f . Then Γ is tractable (resp. NP-complete) if
and only if Γid

f is tractable (resp. NP-complete).

The complexity of a core f(Γ) does not depend on the choice of f , moreover for two
cores f1(Γ) and f2(Γ) it holds that f1(f2(Γ)) = f1(Γ). Therefore we denote Γid

f by Γid.
Notice that the term operations of AΓ+ are exactly those from AΓ which are idempotent.
If every term operation of an algebra is idempotent we call the algebra idempotent. Thus,
AΓid

f
is idempotent. The next proposition will be needed later.

Proposition 10 Let Γ be a constraint language on a finite domain such that Γ is its own
core. Then all unary polymorphisms of Γ are permutations.

Proof Let Γ be a constraint language on a finite domain A that is its own core and
assume there is an unary polymorphism of Γ that is no permutation. Let f be an opera-
tion with minimal range l under those unary polymorphisms and let k = |A|. Then l < k
and since the range of f is minimal, it holds that f ◦ f has range l. That means f |f(A)

is a permutation on f(A). Therefore f |f(A)|!|f(A) is the identity on f(A). The range of
f |f(A)|! is l and it holds that f |f(A)|! ◦ f |f(A)|! = f |f(A)|!. Thus f |f(A)|!(Γ) is a core of Γ. But
f |f(A)|!(Γ) is different from Γ, therefore Γ cannot be its own core. This is a contradiction. 2

In [Bul02c] Bulatov states the conjecture that every algebra Γ such that Γid satisfies (No-
G-Set) is tractable and all others are NP-complete. In the next section we will see, that
this conjecture holds for 3-element algebras.

3 The 3-Element Case

3.1 Properties Providing Tractability

In [Bul02c] Bulatov defined seven properties for 3-element algebras that will guarantee
tractability. If we want to know if an algebra A is tractable or NP-complete it is sufficient
to determine the complexity of AΓid because of Proposition 9. Therefore we only need to

9

consider idempotent algebras. For an n-ary relation R, I = {i1, . . . , ik} ⊆ {1, . . . , n} such
that i1 ≤ · · · ≤ ik, and −→a ∈ R we denote the tuple (−→a [i1], . . . ,

−→a [ik]) by −→a I and the
relation {−→a I | −→a ∈ R} by RI . R is said to be irreducible if for any i, j ≤ n with i 6= j
holds that R{i,j} is not of the form {(a, f(a)) | a ∈ A} for a bijective mapping f : A→ B.

Definition Let A = (A,F) be an idempotent algebra with a 3-element universe such
that A satisfies (No-G-Set) and let U(R) = {i ≤ n | R{i} = A} for every n-ary relation
R.

1. A satisfies the partial zero property if there exists a set of subuniverses Z such that

∀B ∈ Z ∃ zB ∈ B such that (a) A ∈ Z and (b) ∀R ∈ Inv F ∀−→a ∈ R ∃
−→
b ∈ R with

−→
b [i] =

{
zB, if R{i} = B ∈ Z
−→a [i], otherwise

2. A satisfies the splitting property if for any n-ary relation R ∈ Inv F and for N =
{1, . . . , n} \ U(R) it holds that

R = RU(R) ×RN and RU(R) = A|U(R)|

Let B ⊆ A be a 2-element subuniverse of A and W (R) = {i ≤ n | B ⊆ R{i}} for
every n-ary relation R. Let θB(R) be the equivalence relation on W (R) generated by the
set {(i, j) | ∀−→a ∈ R : −→a [i],−→a [j] ∈ B or−→a [i],−→a [j] /∈ B} and W1(R), . . . ,Wk(R) the
corresponding equivalence classes.

3. Let a ∈ A − B, and b ∈ B. Then A satisfies the (a − b)-replacement property if

∀R ∈ Inv F ∀ −→a ∈ R ∃
−→
b ∈ R with

−→
b [i] =

{
b, if −→a [i] = a and a, b ∈ R{i}−→a [i], otherwise

4. A satisfies the B-extendibility property if ∀R ∈ Inv F

- ∀ k ∈ W (R) ∀ a ∈ B ∃−→a ∈ R ∀ i ∈ W (R) : −→a [i] ∈ B and −→a [k] = a

- ∀ k, l ∈ W (R) ∀ (a, b) ∈ R{k,l} ∃−→a ∈ R ∀ i ∈ W (R) : −→a [i] ∈ B,−→a [k] = a and
−→a [l] = b

- ∀−→a ∈ B|W (R)| with (−→a [i],−→a [j]) ∈ R{i,j} ∀ i, j ∈ W (R) ∃
−→
b ∈ R such that

−→
b [i] =


−→a [i], if i ∈ W (R)
d, if |R{i}| = 2 and {d} = R{i} ∩B
d, if {d} = R{i}

10

5. A satisfies the B-rectangularity property if ∀R ∈ Inv F

- RW (R) ∩B|W (R)| = (RW1(R) ∩B|W1(R)|)× · · · × (RWk(R) ∩B|Wk(R)|)

- ∀−→a ∈ R such that ∀ i ∈ W (R) −→a [i] ∈ B ∃
−→
b ∈ R with

−→
b [i] =

{ −→a [i], if i ∈ W (R) or |R{i}| = 1
c, otherwise,with {c} = B ∩R{i}

6. A satisfies the B-semirectangularity property if the equivalence relation η with
classes B and A − B = {c} is a congruence of A and if the following holds:

∀R ∈ Inv F ∀−→a ∈ R ∀j ∈ {1, . . . , k} ∀−→a j ∈ RWj(R) ∩B|Wj(R)| ∃
−→
b ∈ R with

−→
b [i] =


−→a [i], if B * R{i}
c, if B ⊆ R{i} and−→a [i] = c
−→a j[i], if i ∈ W (R) and−→a [i] ∈ B.

7. A satisfies the B-semisplitting property if for any n-ary R ∈ Inv F such that R is
irreducible and N = {1, . . . , n} \ U(R) the following holds:

- (RU(R) ∩B|U(R)|)×RN ⊆ R and

- ∀i, j ∈ U(R) ∀ (ai, aj) ∈ R{i,j} ∩ B2 there is −→a ∈ RU(R) ∩ B|U(R)| such that
−→a [i] = ai,

−→a [j] = aj.

In [Bul02c] Bulatov proved that an algebra that satisfies one of this properties is tractable.

Theorem 11 Let A = (A,F) be an idempotent algebra with a 3-element universe such
that A satisfies (No-G-Set) and one of the seven properties of the previous definition.
Then A is tractable.

To prove this theorem, Bulatov gives a polynomial time algorithm for each property
that solves the constraint satisfaction problem for problem instances with constraint re-
lations that give raise to an algebra satisfying the property. First we present an example,
then we take a closer look on two of the properties. We write an n-ary relation R as
n ×m-matrix where m is the cardinality of R and every tuple in R is represented by a
column in the matrix.

Example

Let R1 =

 0 0 0 0 0 2
0 0 1 1 1 0
0 1 0 1 2 1

 , R2 =

(
0 1 2
1 1 1

)
, R3 = (2).

11

Let Γ = {R1, R2, R3} be a constraint language. It is obvious to see that all term operations
of AΓ are idempotent.
We examine AΓ for subalgebras: Since AΓ is idempotent it holds that {0}, {1}, and {2}
are subuniverses of AΓ. Let f be an n-ary term operation of AΓ. {0, 1} is a subuniverse of
AΓ as well: Assume there is −→a = (a1, . . . , an) ∈ {0, 1}n such that f(−→a) = 2. Without loss
of generality let a1 = · · · = ak = 0 and ak+1 = · · · = an = 1 for a k such that 1 ≤ k ≤ n.
Let g be the term operation defined by

g(x, y) = f(x, . . . , x︸ ︷︷ ︸
k

, y, . . . , y︸ ︷︷ ︸
n−k

).

Then it holds that g(0, 1) = 2 and g(0, 0) = 0. But that is a contradiction because
(0, 0, 0), (0, 1, 1) ∈ R1, and (g(0, 0), g(0, 1), g(0, 1)) = (0, 2, 2) /∈ R1. Thus, {0, 1} is a
subuniverse of AΓ.
Analogously {0, 2} is a subuniverse because (0, 0, 1), (2, 0, 1) ∈ R1 but (1, 0, 1) /∈ R1.

{1, 2} is not a subuniverse of AΓ because f0 defined by the table

f0 0 1 2
0 0 0 0
1 1 1 0
2 0 1 2

is a term

operation of AΓ.
Now we examine AΓ for factor algebras. We are only interested in factor algebras that

have 2 elements and therefore we consider the equivalence relations on {0, 1, 2} with two

equivalence classes. They are of the form Let Qc =

(
a a b b c
a b a b c

)
with {a, b, c} =

{0, 1, 2}. If c = 0 it holds that (1, 1), (1, 2) ∈ Q0, but (f0(1, 1), f0(1, 2)) = (1, 0) /∈ Q0.
For c = 1 it holds that (1, 0), (1, 2) ∈ Q1, but (f0(1, 0), f0(1, 2)) = (1, 0) /∈ Q1. It can

be verified that the operation f1 defined by

f1 0 1 2
0 0 1 0
1 1 1 2
2 0 2 2

is a term operation of AΓ. If

c = 2 we have that (2, 0), (2, 1) ∈ Q2, but (f1(2, 0), f1(2, 1)) = (0, 2) /∈ Q2. So we have no
congruences with two equivalence classes, hence there are no 2-element factor algebras of
AΓ.

To verify that AΓ satisfies (No-G-Set), we must examine all factors with at least to
elements for G-Sets. The interesting factors are AΓ itself and the subalgebras with the
universes {0, 1} and {0, 2}. AΓ is no G-Set because f0 is not essentially unary and the
two subalgebras are no G-Sets because f1|{0,1} and f1|{0,2} are not essentially unary.
We prove that AΓ satisfies the partial zero property. Let Z = {{0, 1, 2}, {0, 2}} and
zA = z{0,2} = 0. Now let R be an n-ary relation that is invariant under all term oper-

ations of AΓ and let −→a ∈ R. We define −→a 0 = −→a and −→a i = f0(f0(
−→a i−1,

−→
b i),

−→c i) for

12

1 ≤ i ≤ n and
−→
b i,

−→c i ∈ R such that
−→
b i[i] = 0, −→c i[i] = 2 if R{i} ∈ Z and

−→
b = −→c = −→a i−1

otherwise. Since f0(f0(x, 0), 2) = 0 and f(0, x) = 0 for any x ∈ {0, 1, 2}, it holds that
−→a n[i] = 0 for any 1 ≤ i ≤ n with R{i} ∈ Z. It is obvious that −→a n[i] = −→a [i] for
any 1 ≤ i ≤ n with |R{i}| = 1. Because f0(x, y) = x for x, y ∈ {0, 1}, we have that
−→a n[i] = −→a [i] for any 1 ≤ i ≤ n with R{i} = {0, 1}. The last case, R{i} = {1, 2}, can not
occur since {1, 2} is not a subuniverse of AΓ. Thus we have proved that AΓ satisfies the
partial zero property.

Most of the polynomial time algorithms for the properties modify the given problem
instance in such way that it can be solved with the knowledge about Boolean constraint
satisfaction problems. We need some more vocabulary:

Definition Let P = (V,A, C) be a problem instance and W ⊆ V . Then PW = (W,A, CW)
with CW = {〈s ∩W,Rs∩W 〉 | 〈s, R〉 ∈ C} is called a restricted problem instance of P. A
solution of PW is said to be a partial solution of P on W and we denote the set of all
partial solutions by SW .

Definition We say a problem instance P = (V,A, C) is 2-valued if for any v ∈ V it
holds that |S{v}| ≤ 2.

A 2-valued problem instance over a constraint language that gives raise to an idem-
potent algebra satisfying (No-G-Set) can be solved in polynomial time ([Bul02c]).

Definition A problem instance P = (V,A, C) is said to be k-minimal if for any k-
element subset W ⊆ V the following conditions holds:

- there is a constraint 〈s, R〉 ∈ C such that W ⊆ s;

- for any 〈s, R〉 ∈ C and any −→a ∈ R there exists an partial solution ϕ ∈ SW with
ϕ(s[i]) = −→a [i] for any i such that s[i] ∈ W .

To every problem instance P and every k ∈ N there is a k-minimal problem instance
P ′, which has the same solutions as P and can be obtained from P in polynomial time
(for an algorithm see [Bul02c]).

3.1.1 The Partial Zero Property

Let A = (A,F) be a 3-element algebra that satisfies the partial zero property and let
P = (V ;A; C) be a problem instance with constraint relations from Inv F . We give
Bulatov’s proof that A is tractable by reducing P to a 2-valued instance:

13

Without loss of generality assume P to be 1-minimal. Because A satisfies the partial
zero property there exists a set of subuniverses Z such that

(a) A ∈ Z and

(b) ∀B ∈ Z ∃ zB ∈ B such that ∀R ∈ Inv F ∀−→a ∈ R ∃
−→
b ∈ R with

−→
b [i] =

{
zB, if R{i} = B ∈ Z
−→a [i], otherwise

.

Let T{v} = {ϕ(v) | ϕ ∈ S{v}}. We prove: If ϕ is a solution of P then ψ with

ψ(v) =

{
zT{v} , if T{v} ∈ Z
ϕ(v), otherwise

is a solution of P . Let ϕ be a solution of P , 〈s, R〉 ∈ C and −→a = ϕ(s). Then holds that
−→
b such that

−→
b [i] =

{
zB, if R{i} = B
−→a [i], otherwise

contains to R. Let v = s[i]. Because P is 1-minimal, it holds that −→c [i] ∈ T{v} for
any −→c ∈ R. That means R{i} ⊆ T{v}. Trivially it holds that T{v} ⊆ R{i} , so we have

R{i} = S{v}. Hence, ψ(s) =
−→
b ∈ R and ψ is a solution of P .

We reduce P to the problem instance P ′ = (V ;A; C ′) with C ′ := C ∪ {〈s, R′〉|〈s, R〉 ∈ C},
where R′ := {a ∈ R | a[i] = zT{v} for every v with T{v} ∈ Z and i such that s[i] = v} :
Since C ⊆ C ′ it is obvious that every solution of P ′ also is a solution of P and we have
proved that for every solution ϕ of P there exists a solution ψ of P ′.

It holds that P ′ is 2-valued: Assume there is a v ∈ V with T{v} = A ∈ Z. Because P is
1-minimal, there is a 〈s, R〉 ∈ C with s[i] = v for an i. Then there exists 〈s, R′〉 ∈ C ′ with
R′

{i} = zT{v} Since T{v} ⊆ R′
{i} we have a contradiction.

Thus A is tractable.

3.1.2 The Splitting Property

Let A = (A,F) be a 3-element algebra that satisfies the splitting property. Let Γ = Inv F
and Γ′ = {RN | R ∈ Γ}, where U(R) = {i ≤ n | R{i} = A} and N = {1, . . . , n} \ U(R)
for every n-ary relation R. Any problem instance P = (V,A, C) with constraint relations
from Γ has exactly the same solutions as the instance P ′ = (V,A, C ′) over Γ′ where
C ′ = {〈s, RN〉 | 〈s, R〉 ∈ C}. It is easy to see, that P ′ is 2-valued and that therefore A is
tractable.

14

3.2 Bulatov’s Dichotomy Theorem

The following theorem is the main result from [Bul02c].

Theorem 12 Let A = (A,F) be an idempotent 3-element algebra that satisfies the con-
dition (No-G-Set). Then there exists a subset of basic operations F ′ ⊆ F such that the
algebra A′ = (A,F ′) satisfies (No-G-Set) and one of the following conditions holds.

1. A′ satisfies the partial zero property

2. A′ satisfies the splitting property

3. A′ satisfies the (a− b)-replacement property for A = {a, b, c} and {b, c} subuniverse
of A′

4. A′ satisfies the B-extendibility property for a 2-element subuniverse B of A′

5. A′ satisfies the B-rectangularity property for a 2-element subuniverse B of A′

6. A′ satisfies the B-semirectangularity property for a 2-element subuniverse B of A′

7. A′ satisfies the B-semisplitting property for a 2-element subuniverse B of A′

8. A′ has a majority term operation

9. A′ has a conservative commutative term operation

10. A′ has a Malt’sev term operation

Hence, the following corollary is a conclusion from Proposition 9 and Theorems 11 and
12.

Corollary 13 A 3-element constraint language Γ is tractable if AΓid satisfies (No-G-
Set) and NP-complete otherwise.

In case that P6=NP, Γ is tractable if and only if one of the following conditions holds:

- AΓid is a 3-element algebra satisfying one of the ten conditions from Theorem 12; or

- AΓid is a 2-element algebra with a semilattice, majority or affine polymorphism in
its term operations; or

- AΓid is a 1-element algebra.

To verify if an algebra satisfies conditions 7,8 or 9 of Theorem 12 we have to find only
a term operation that has a certain property, but to verify conditions 1 - 6 is more
complicated, because it is not enough to consider the term operations separated, but we
need to consider all together.

The proof of Theorem 12 is very technical.

15

3.3 NP-complete clones

Let f be an operation on A. We denote with uf the unary operation on A defined by
uf (x) = f(x, . . . , x) for any x ∈ A. If f is essentially unary and the corresponding unary
operation is a permutation we say f is an essentially unary permutation.

Lemma 14 Let Γ be a constraint language on a finite domain A such that every unary
polymorphism is a permutation. Then every polymorphism of Γ is an essentially unary
permutation if every polymorphism of Γ+ is essentially unary.

Proof Let f ∈ Pol Γ be an n-ary operation. Then uf is a polymorphism of Γ. Now let
d = |A|!. Since uf is a permutation on A, u d

f is the identity operation. Because u d
f (x) =

u d−1
f ◦f(x, . . . , x) for any x ∈ A it holds that u d−1

f ◦f is idempotent and therefore a poly-

morphism of Γ+. Thus u d−1
f ◦ f is an essentially unary permutation. That means there

exists a permutation g ∈ Pol Γ and i ∈ {1, . . . , n} such that g(xi) = u d−1
f ◦ f(x1, . . . , xn)

for any x1, . . . , xn ∈ A. Thus uf ◦ g(xi) = u d
f ◦ f(x1, . . . , xn) = f(x1, . . . , xn) for any

x1, . . . , xn ∈ A and f is an essentially unary permutation. 2

Theorem 15 Let Γ be a constraint language on the domain {0, 1, 2}. Γ is NP-complete
if the polymorphisms of Γ satisfy one of the following conditions:

1. Pol Γ ⊆ C1 = {f | f is an essentially unary permutation}.

2. Pol Γ ⊆ CB
2 = {f | uf is a permutation and f |B is essentially unary} for a 2-element

subset B ⊆ {0, 1, 2}.

3. Pol Γ ⊆ CB
3 = {f | uf is a permutation, f(x1, . . . , xi−1, a, xi+1, . . . , xn) = uf (c) ⇔

f(x1, . . . , xi−1, b, xi+1, . . . , xn) = uf (c) for any 1 ≤ i ≤ n and g ◦ u5
f ◦ f |B is an

essentially unary permutation on B} for {0, 1, 2} = {a, b, c}, B = {b, c} and g the
operation defined by g(x) = x if x ∈ B and g(a) = b.

4. AΓid is a 2-element algebra that is a G-Set.

In any other case Γ is tractable.

16

Proof Let Γ be a constraint language on {0, 1, 2}. We prove: AΓid does not satisfy (No-
G-Set) if and only if one of the four conditions is satisfied. Then this Theorem follows
due to Corollary 13. First we assume that Γid does not satisfy (No-G-Set). That means
that AΓid has a factor B = (B,FB) with at least 2 elements that is a G-set. Because B
is a G-Set and B is idempotent, all term operations of B are essentially unary and the
corresponding unary operation is the identity. There are 4 cases:

Case 1: AΓid has 3 elements and is a G-Set itself. Because of Proposition 10 every unary
polymorphism is a permutation. So with Lemma 14 follows that every polymor-
phism of Γ is essentially unary. Hence, Γ ⊆ C1 an thus Γ satisfies condition 1.

Case 2: AΓid has 3 elements and B is a 2-element subalgebra of AΓid . Then all unary
polymorphisms of Γ are permutations because of Proposition 10. Let f be an
idempotent polymorphism of Γ. It holds that f |B is an operation on B. Since B is
a G-Set, f |B is essentially unary. With the same proof as of Lemma 14 it follows
that f |B is essentially unary. Thus we know Pol Γ ⊆ CB

2 and therefore condition 2
is satisfied.

Case 3: AΓid has 3 elements and B is a 2-element factor-algebra of AΓid . So all unary
polymorphisms of Γ are permutations due to Proposition 10, and there exists an
equivalence relation θ = {(a, a), (a, b), (b, a), (b, b), (c, c)} which is a congruence of
AΓid such that B = AΓid/θ and {a, b, c} = {0, 1, 2}.
Let f ∈ Pol Γid be an n-ary operation. We first prove that for any 1 ≤ i ≤ n the
following holds:

f(x1, . . . , xi−1, a, xi+1, . . . , xn) = c⇔ f(x1, . . . , xi−1, b, xi+1, . . . , xn) = c

We assume there are x1, . . . , xi−1, xi+1, . . . , xn ∈ {0, 1, 2} such that, without loss of
generality, f(x1, . . . , xi−1, a, xi+1, . . . , xn) = c and f(x1, . . . , xi−1, b, xi+1, . . . , xn) 6= c.
Since (a, b) ∈ θ and (xk, xk) ∈ θ for any k ∈ {1, . . . , i − 1, i + 1, . . . , n} and θ is
invariant under f , it holds that

(f(x1, . . . , xi−1, a, xi+1, . . . , xn), f(x1, . . . , xi−1, b, xi+1, . . . , xn)) ∈ θ,

which contradicts the assumptions made.

Now let f ∈ Pol Γ be an n-ary operation. Since uf is a permutation on {0, 1, 2},
u 6

f is the identity operation, therefore u 5
f ◦ f is idempotent. We define −→a =

(x1, . . . , xi−1, a, xi+1, . . . , xn) and
−→
b = (x1, . . . , xi−1, b, xi+1, . . . , xn) for some 1 ≤

i ≤ n and xk ∈ A for any k ∈ {1, . . . , i − 1, i + 1, . . . , n}. It follows that u 5
f ◦

17

f(−→a [1], . . . ,−→a [n]) = c ⇔ u 5
f ◦ f(

−→
b [1], . . . ,

−→
b [n]) = c. Since u 6

f is the identity

operation we have f(−→a [1], . . . ,−→a [n]) = uf (c) ⇔ f(
−→
b [1], . . . ,

−→
b [n]) = uf (c).

Let f ∈ Pol Γid and g be the operation defined by g(x) = x if x ∈ B and g(a) = b.
Without loss of generality we choose b as representative of the equivalence class
{a, b} and assume that B = {b, c}. Then f θ corresponds to g ◦ f |B. Since B is a
G-Set, it holds that g ◦ f |B is an essentially unary permutation on B.

So for an arbitrary operation f ∈ Pol Γ it holds that g ◦ u5
f ◦ f |B is an essentially

unary permutation on B.

Hence Pol Γ ⊆ CB
3 .

Case 4: AΓid has 2 elements. Then B = AΓid and condition 4 is satisfied.

To show the other direction, now let one of the four conditions be satisfied.

Condition 1 If Pol Γ ⊆ C1 then AΓ is a G-Set and therefore does not satisfy (No-G-
Set).

Condition 2 Let Pol Γ ⊆ CB
2 = {f | uf is an permutation and f |B is essentially unary}

for a 2-element subset B ⊆ {0, 1, 2}
Let f ∈ Pol Γ. If f is unary it holds that f = uf is a permutation and therefore we
have Γid = Γ+.

Now let f ∈ Pol Γid ⊆ CB
2 an n-ary operation. Since f |B is essentially unary and

idempotent, the corresponding unary operation of f |B is the identity on B. So
B = (B, {f |B | f ∈ Pol Γid}) is a subalgebra of AΓid that only has term operations
that are essentially unary permutations. B is a factor of AΓid and G-Set, thus AΓid

does not satisfy (No-G-Set).

Condition 3 Let Pol Γ ⊆ CB
3 = {f | uf is a permutation, f(x1, . . . , xi−1, a, xi+1, . . . , xn) =

uf (c) ⇔ (x1, . . . , xi−1, b, xi+1, . . . , xn) = uf (c) for any 1 ≤ i ≤ n and g◦uf◦f |B is an
essentially unary permutation on B} for {0, 1, 2} = {a, b, c}, B = {b, c} and g the
operation defined by g(x) = x if x ∈ B and g(a) = b.

Let f ∈ Pol Γ be a unary permutation. It holds that f = uf is a permutation and
therefore Γid = Γ+.

Let now f ∈ Pol Γid ⊆ CB
3 be an n-ary operation. We prove that f is a polymor-

phism of the equivalence relation θ =

(
a a b b c
a b a b c

)
.

18

Let X0 = (

(
x1

y1

)
, . . . ,

(
xn

yn

)
) ∈ θn and let Xi be defined by Xi[k] = Xi−1[k]

if k 6= i and Xi[i] =

(
xi

xi

)
for any i, k ∈ {1, . . . , n}. Since

(
xi

xi

)
∈ θ for any

i ∈ {1, . . . , n}, it follows that Xi ∈ θn f. Notice that xi = c ⇔ yi = c for any
i ∈ {1, . . . , n}. Let x = f(x1, . . . , xn). Because f ∈ CB

3 the following holds:

f(X0[1], . . . , X0[n]) =

(
x
c

)
⇔ f(X1[1], . . . , X1[n]) =

(
x
c

)
⇔ · · · ⇔ f(Xn[1], . . . , Xn[n]) =

(
x
c

)
⇔ x = c

Thus f(

(
x1

y1

)
, . . . ,

(
xn

yn

)
) ∈ θ.

It follows that B = AΓid/θ is a factor-algebra of AΓid . We identify the equivalence
class {a, b} with b and {c} with c. Then f θ corresponds to g◦f |B and B = ({b, c}, {g◦
f |B | f ∈ Pol Γid}). Since for any f ∈ Pol Γid holds that g ◦ u5

f ◦ f |B = g ◦ f |B,
every term operation of B is an essentially unary permutation and B is a G-Set.
Therefore AΓid does not satisfy (No-G-Set).

Condition 4 If AΓid is a G-Set then it does not satisfy (No-G-Set).

2

4 Enumeration Algorithms

Bulatov’s classification of constraint languages on a 3-element set says something about
the complexity of deciding if there is a solution to an instance of CSP. But it says nothing
about the complexity of finding solutions. We are interested in algorithms that give us all
solutions of an CSP instance. Because in general the number of solutions is exponential
in the size of the input we use a special notion of efficiency.

Definition An algorithm that generates on the input of a CSP instance all solutions
of the instance without duplicates is called an enumeration algorithm or a generating
algorithm. An enumeration algorithm has polynomial delay if the time from start to the
output of the first solution, the time between the output of two solutions and between the
output of the last solution and the halting is bounded by a polynomial in the input size.

19

In [CH97] there is an algorithm given that enumerates all solutions of a Boolean CSP
instance. This algorithm has polynomial delay for instances over a constraint language
that is Schaefer. We generalize it to an enumeration algorithm for CSPs over a 3-element
set. The Procedure Generate enumerates the solutions of a problem instance, by printing
for every solution ϕ of P the vector ϕ(v1, . . . , vn) where (v1, . . . , vn) is a list of all variables
that belong to P. Its parameters are the problem instance P, a list M and the number of
variables p. M is empty in the beginning and in every recursion step, the assignment of
one variable is put at the front. For this we use Cons(x,M) that inserts x onto the head
of the list M.

1 Input: problem instance (V,A,C), V = (v_1,...,v_n)

2 Output: all vectors that represent a solution of P

3 Begin

4 If P is satisfiable

5 Then Generate(P,(),n)

6 End

7

8 Procedure Generate(P,M,p)

9 Begin

10 If p = 0

11 Then Output(M)

12 Else Begin

13 If (V,A,C+{<(v_p),{(0)}>}) is satisfiable

14 Then Generate((V,A,C+{<(v_p),{(0)}>}),Cons(0,M),p-1)

15 If (V,A,C+{<(v_p),{(1)}>}) is satisfiable

16 Then Generate((V,A,C+{<(v_p),{(1)}>}),Cons(1,M),p-1)

17 If (V,A,C+{<(v_p),{(2)}>}) is satisfiable

18 Then Generate((V,A,C+{<(v_p),{(2)}>}),Cons(2,M),p-1)

19 End

20 End

This algorithm obviously enumerates every solution of the given instance exactly one
time.

Lemma 16 If Γ is a tractable constraint language over {0, 1, 2} and AΓid is a 3-element
algebra there is an enumeration algorithm with polynomial delay for each problem instance
over Γ.

Proof Let the problem instance P = (V,A, C) over Γ with V = {v1, . . . , vn} be the
input. Since Γ ⊆ Γ+, it holds that Γ is tractable and therefore line 4 takes only polynomial

20

time. If P is not satisfiable the algorithm stops in line 6 without calling of the Procedure
Generate. So let us assume P is satisfiable. We set Γa = Γ∪{{(a)}} for any a ∈ {0, 1, 2}.

Generate calls itself recursively up to a recursion depth of n + 1. In every recursion
an extended instance is given to the next. The extension is always one constraint with a
unary relation. Therefore an instance that is given in a recursion of depth n + 1 is only
n log n longer than the original instance, its size is polynomial in the input size.

Since Γ+ is tractable, it holds that Γa is tractable for any a ∈ {0, 1, 2} and in every
recursion lines 13, 15, and 17 take polynomial time in the size of the extended instance,
that is polynomial time in the input size of the original instance.

The first output is given in the (n+1)th recursive call of Generate. Each of this calls
tries at most three times if an extended instance is satisfiable (this takes only polynomial
time) until calling the next instance of Generate. So the first solution is printed after a
delay bounded by a polynomial in the input size.

Between two outputs, the algorithm goes at most n times back to the previous call
of Generate and needs at most n new recursive calls. The going back to the previous
call is also done in polynomial time because it is tested at most two times if an extended
instance is satisfiable. Hence, the time needed is polynomial.

After the last output the algorithm only needs to finish n+ 1 recursions to stop. This
is done also in polynomial time in the input size.

Thus the algorithm has polynomial delay. 2

Notice that for a tractable constraint language Γ over {0, 1, 2} such that AΓid has less
than three elements, we do not know if Γa = Γ∪{{(a)}} is tractable for every a ∈ {0, 1, 2}.
Therefore in general the given enumeration algorithm does not have polynomial delay for
such a constraint language.
Let P = (V,A, C) be a problem instance over Γ. We can enumerate all solutions that
use only values from AΓid with polynomial delay. In the case that AΓid has only one
element, this is done by giving the constant solution ϕ with ϕ(v) = c for any v ∈ V
and c the element of AΓid . In the case that AΓid is a 2-element algebra, Γid is a tractable
constraint language and therefore Schaefer. So there is a f ∈ Pol Γ such that f ◦ f = f
and Γid = f(Γ)+ and we can apply the original algorithm from [CH97] on the instance
P ′ = (V, f(A), C ′), where C ′ = {〈s, f(R)〉 | 〈s, R〉 ∈ C}, to generate all such solutions.

However, to every solution ϕ of P ′ there may exist an exponential number of solutions
ψ of P such that f ◦ ψ = ϕ. So there is no straight way to enumerate all solutions of P
with polynomial delay.

Cohen presents the result of Lemma 16 for the general case of constraint languages
over a finite domain.

Theorem 17 ([Coh04]) Let Γ be a tractable constraint language over a finite domain A

21

with |A| = k. Then it holds that there is an enumeration algorithm with polynomial delay
for CSP(Γ) if AΓid is a k-element algebra.

22

References

[BCRV03] E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean blocks,
part I: Post’s lattice with applications to complexity theory. SIGACT News,
34(4):38–52, 2003.

[BJ00] A. Bulatov and P. Jeavons. Tractable constraints closed under a binary op-
eration. Technical Report PRG-TR-12-00, Computing Laboratory, University
of Oxford, UK, 2000.

[BJK00] A. Bulatov, P. G. Jeavons, and A. A. Krokhin. Constraint satisfaction prob-
lems and finite algebras. In Proceedings 27th International Colloqium on Au-
tomata, Languages and Programming, volume 1853 of Lecture Notes in Com-
puter Science, pages 272–282, Berlin Heidelberg, 2000. Springer Verlag.

[Bul02a] A. Bulatov. A dichotomy theorem for constraints on a three-element set. In
Proceedings 43rd Symposium on Foundations of Computer Science, pages 649–
658. IEEE Computer Society Press, 2002.

[Bul02b] A. Bulatov. Mal’tsev constraints are tractable. Technical Report 02-034, Elec-
tronic Colloqium on Computational Complexity, 2002.

[Bul02c] A. Bulatov. Tractable constraint satisfaction problems on a 3-element set.
Technical Report 02-032, Electronic Colloquium on Computational Complex-
ity, 2002.

[CH97] N. Creignou and J.-J. Hébrard. On generating all solutions of generalized
satisfiability problems. Informatique Théorique et Applications/Theoretical
Informatics and Applications, 31(6):499–511, 1997.

[Coh04] D. A. Cohen. Tractable decision for a constraint language implies tractable
search. Constraints, 9(3):219–229, 2004.

[Dal00] V. Dalmau. Computational complexity of problems over generalized formulas.
PhD thesis, Department de Llenguatges i Sistemes Informàtica, Universitat
Politécnica de Catalunya, 2000.

[FV98] T. Feder and M. Y. Vardi. The computational structure of monotone monadis
SNP and constraint satisfaction: a study through Datalog and group theory.
SIAM Journal on Computing, 28(1):57–104, 1998.

[JCC98] P. G. Jeavons, D. Cohen, and M. C. Cooper. Constraints, consistency and
closure. Artificial Intelligence, 101:251–265, 1998.

23

[JCG97] P. G. Jeavons, D. A. Cohen, and M. Gyssens. Closure properties of constraints.
Journal of the ACM, 44(4):527–548, 1997.

[Jea98] P. G. Jeavons. On the algebraic structure of combinatorial problems. Theo-
retical Computer Science, 200:185–204, 1998.

[Sch78] T. J. Schaefer. The complexity of satisfiability problems. In Proccedings 10th
Symposium on Theory of Computing, pages 216–226. ACM Press, 1978.

24

