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Zusammenfassung

Meine Dissertation beschäftigt sich mit verschiedenen Verallgemeinerungen des klas-
sischen Erfüllbarkeitsproblems, das in der Komplexitätstheorie eine zentrale Rolle spielt.
Durch Erfüllbarkeitsprobleme lassen sich viele wichtige Komplexitätsklassen charakter-
isieren, und viele offene Fragen der Komplexitätstheorie können in diesem Kontext for-
muliert werden. Das klassische Erfüllbarkeitsproblem ist die Frage, ob eine gegebene
aussagenlogische Formel, in der Variablen sowie die Konnektoren ∧ (und), ∨ (oder) und
¬ (nicht) vorkommem, eine erfüllende Belegung hat. Dieses Problem lässt sich auf ver-
schiedene Weisen verallgemeinern.

Auf der einen Seite kann man die oben genannten Konnektoren durch beliebige
Kombinationen von Boole’schen Funktionen ersetzen. Für viele dieser eingeschränkten
Klassen kann man zeigen, dass das Erfüllbarkeitsproblem und andere interessante Pro-
bleme im Formelkontext effiziente Lösungen besitzen. In dieser Arbeit werden zwei
wichtige Probleme für diese Formeln betrachtet: das Formula Value Problem ist die
Frage, ob eine gegebene variablenfreie Formel zu 0 oder zu 1 evaluiert. Dieses Problem
spielt eine zentrale Rolle in vielen Algorithmen, die zur Lösung von Formelproblemen
eingesetzt werden. Weiterhin wird die Komplexität des Problems, zu einer gegebenen
Formel die Menge ihrer erfüllenden Belegungen zu berechnen, klassifiziert.

Auf der anderen Seite betrachtet man Formeln in konjunktiver Normalform. Hier-
bei beschreiben die Formeln eine Menge von Klauseln in einfacher Form, die simultan
erfüllt sein müssen. Klassische Vertreter von Problemen in diesem Kontext sind 3SAT
oder 2SAT, wo die Klauseln aus Disjunktionen von maximal 2 bzw. 3 Literalen beste-
hen. Auch hier kann man verallgemeinerte Klauseln betrachten, die beliebige Relatio-
nen zulassen. Solche Probleme werden als Constraint Satisfaction Problems bezeich-
net. Für den Boole’schen Fall wurde die Komplexität dieser Probleme von Thomas
Schaefer im Jahr 1978 betrachtet und er zeigte, dass solche Probleme entweder effizient
lösbar oder bereits NP-vollständig sind. In dieser Arbeit wird dieses “Dichotomie”-
Resultat auf verschiedene Weisen verallgemeinert. Für das Boole’sche Problem wird
eine vollständige Klassifizierung der effizienten Fälle erzielt, und es zeigt sich, dass die
Dichotomie-Eigenschaft, dass also nur eine endliche Menge von “Komplexitätsgraden”
angenommen wird, auch hier gilt. Weiterhin wird die Verallgemeinerung des quan-
tifizierten Problems betrachtet, wo in den Formeln zusätzlich die Quantoren ∃ und ∀
auftreten. Für diese Formeln werden Erfüllbarkeitsprobleme, Zählprobleme und die
Komplexität des Äquivalenzproblems untersucht. Auch hier ergeben sich dichotomie-
artige Resultate: die Probleme sind effizient lösbar oder vollständig für Stufen in der
Polynomialzeit-Hierarchie.

Die wichtigste Technik, um komplexitätstheoterische Ergebnisse für diese Probleme zu
erzielen, ist die Anwendung von verschiedenen algebraischen Abschlussoperatoren auf der
Menge der Funktionen und der Relationen. Insbesondere existiert eine Galois-Verbindung
zwischen diesen beiden “Welten”, die es erlaubt, Resultate zu übertragen. Eine wichtige
Frage in der Arbeit ist daher auch die nach den Grenzen der Anwendbarkeit dieses alge-
braischen Ansatzes.
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Abstract

This thesis deals with several generalizations of the classical satisfiability problem,
which plays a central role in complexity theory. Many important complexity classes can
be characterized using satisfiability problems, and many open questions in complexity
theory can be phrased in this context. The classical satisfiability problem is the question,
if a given propositional formula built from variables and the connectors ∧ (and), ∨ (or),
and ¬ (not), has a satisfying truth assignment. This problem can be generalized in several
ways.

First, we can allow arbitrary connectors instead of the three mentioned above. For
many of the classes of formulas which can be defined this way, it can be shown that the
satisfiability problem and other interesting problems can be solved by efficient algorithms.
In this thesis, we study the complexity of the question if a given variable-free Boolean
formula evaluates to 0 or to 1. We also consider the problem of computing the set of
satisfying assignments for a given formula.

Second, formulas in conjunctive normal form are studied. Here, formulas consist of
clauses of a very simple form, which must be satisfied simultaneously. Classical examples
of these problems are 3SAT or 2SAT, where the clauses consist of disjunctions of up to 2 or
3 literals. Again, generalizations can be studied, where arbitrary relations are allowed as
clauses. These problems are called constraint satisfaction problems. For the Boolean case,
the complexity of these problems was determined in 1978 by Thomas Schaefer. He showed
that such problems can either be solved efficiently, or are already NP-complete. In this
thesis, we generalize this “dichotomy”-result in several ways. For the Boolean problem,
we give a complete classification of the cases where efficient algorithms exist and show that
the dichotomy property still holds: there is only a finite number of “complexity degrees”
which arise in this classification. Further, we study the corresponding quantified problem,
where formulas may additionally contain the quantifiers ∃ and ∀. For these formulas, we
study the complexity of satisfiability problems, counting problems, and the equivalence
problem. Again, we show dichotomy-like results: the problems are either solvable by
efficient algorithms, or complete for levels of the polynomial hierarchy.

The main techniques that we use to obtain results on the complexity classifications
of these problems are applications of different algebraic closure operators on the set of
functions and relations. There is an interesting Galois correspondence which allows to
transfer results from one type of restriction to the other. An important question in this
thesis is the question for limitations of the applicability of these techniques.

xi
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Introduction

In computer science, the main task is to study the structure of computational problems,
and possible algorithms to solve them. Recursion theory has provided many answers
to the question which of the problems appearing in a computer scientist’s every day
life can be solved with an algorithm, and, more importantly, which cannot. In fact, by a
simple argument comparing the number of possible algorithms and the number of possible
problems, it is evident that “most” problems cannot be solved by any algorithm at all.
Recursion theory also provided a suitable model for computation, which is independent
of whatever kind of computer hardware might be in fashion at a given date: the Turing
machine is both universal enough to serve as the general definition of a “computer,” and
simple enough for the researcher to prove results without too much technical reliance on
the model itself.

For problems appearing in practice, the answer “there is an algorithm to solve it” is
not entirely satisfying. Usually, we are interested in an algorithm solving the problem
at hand using as few resources as possible. Among the most important measurements of
resources are the time needed for the computation, and the memory used by an algorithm.
Therefore, questions like “is there an algorithm to solve this problem in a time which
is linear in the input length” become important. This is where complexity theory has
provided many answers, and, maybe as important, interesting questions.

One of the most basic questions that complexity theory considered was the question
how to define an efficient algorithm. The answer which is generally agreed on by people
working in the field today is the following: an algorithm is efficient if the time it needs to
perform its task on a Turing machine is polynomial in the length of its input. It can be
shown that this class is “robust,” meaning that if we study the class of problems solvable
on a “real” computer in polynomial time instead, we get the same class of problems.
Thus, the class P containing all problems with a polynomial-time algorithm is considered
to contain all problems which can be solved “efficiently.” In addition to this class, many
other complexity classes have been defined, which are meant to group problems where
the computational power required to solve them is similar. The question to determine
for some problem, in which complexity class it belongs, is therefore the same as asking
what resources we need to solve it.

It is obvious that positive results in the way of “there is an efficient algorithm to
solve problem A” can be shown by simply stating an algorithm for the problem at hand,
proving its correctness and analyzing its running time. But what about negative results,
proving that there is no efficient algorithm for a given problem? Results of this kind have
proven to be much more difficult to achieve. In fact, for many problems which are very
relevant in practice, it is unknown if an efficient algorithm can exist.
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To be able to compare the complexity of given problems, the notion of reductions was
introduced. In this way, even if we do not know if we can solve the problems A or B
efficiently, it is possible to prove statements like “either both A and B have an efficient
algorithm, or none of them has.” Using this concept, it was shown that many problems
appearing in practice are “equivalent” in a certain way: either all of them can be solved
by an efficient algorithm, or none can. These problems form the fundamental class of
NP-complete problems. The question if an efficient algorithm for this class of problems
exists is one way to phrase complexity theory’s most important open question: the “P-
NP”-problem. The first known mention of this problem is in a letter by Kurt Gödel
to John von Neumann, where he asks if there is a better method to prove first-order
formulas than simply testing all combinations. Despite considerable efforts by computer
scientists and mathematicians for more than 35 years, this question remains open. Most
researchers believe that the answer to it is “no,” and therefore to say that a problem is
NP-complete is now generally understood as meaning that there probably is no efficient
algorithm for it.

But what about cases “in between” efficiently-solvable and NP-complete? It is very
conceivable that there are problems which are “easier” than the NP-complete problems,
but still do not have an efficient algorithm. Under the assumption that the NP-complete
problems themselves cannot be solved efficiently, this, and in fact a much stronger result,
has been proven by Richard Ladner in [Lad75b]: there are infinitely many “degrees
of complexity” between P and NP. It is of interest that very few “natural” problems
appear to lie in these intermediate degrees. One of the well-known candidates for such
a problem is graph isomorphism, which is the problem to determine if two given graphs
are mathematically the same structure.

From the very beginning of the study of these problems, in fact starting withthe above-
mentioned letter by Gödel, propositional formulas lay at the heart of the discussion. One
of the most important problems in complexity theory is the satisfiability problem, which
is the following: given a propositional formula, determine if there is an assignment which
makes the formula true. For example, consider the formula

ϕ1 = x ∧ (y ∨ x).

This formula can easily seen to be satisfiable, by setting both variables x and y to
“true.” On the other hand, consider the formula

ϕ2 = (x ∨ y) ∧ (y ∨ z) ∧ x ∧ z.

This formula is not satisfiable: for any “true/false”-assignment to the variables x, y,
and z, the formula is false. The satisfiability problem seems like a simple enough ques-
tion to be solved by an algorithm: simply test all of the possible truth assignments to
the variables, and check if one of them makes the formula true. While this procedure
certainly is correct, it cannot be considered efficient: for a formula in which n variables
appear, there are 2n many possible truth assignments to the variables which need to be
tested. Assuming that a computer can test 1.000.000.000 assignments per second, this
would mean that for a formula with 1000 variables, the algorithm would roughly take
3 · 10284 years to check all possible assignments. Since formulas of this length do appear
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in practical settings, this obviously is not satisfactory. However, there are no known al-
gorithms which solve the problem significantly faster. The P-NP-problem can be stated
as the question if there is an algorithm which can do significantly better, i.e., perform
only a polynomial number of computation steps instead of the exponentially many tests
needed for the complete search algorithm described above.

Although we do not know how to solve this problem efficiently, for a satisfiable for-
mula, it is easy to “prove” that it is indeed satisfiable, by simply giving a satisfying
assignment, as we did above for the formula ϕ1. There are many problems which share
this characteristic. For another example, consider the Traveling Salesman Problem. Here
we are given a set of cities, a table of plane ticket costs for each city-to-city connection,
and a number c. Our task is to determine if there is a round-trip which costs at most c
Euros. Again, given such a round-trip, it is easy to check if it satisfies the cost bound.
But it seems to be difficult to answer the question if such a trip exists. This property
gives a characterization of the problems in the complexity class NP: we do not know how
to solve them efficiently, but there are short and easily verifiable “proofs” to show that
the answer to such a question is “yes.”

The satisfiability problem was the first problem proven to be NP-complete, by Stephen
Cook in [Coo71], and, independently, by Levin (a partial English translation of his result
can be found in [Tra84]). From that starting point on, literally thousands of problems
were proven to fall into this class, and entire books are devoted to proving these kinds of
results [GJ79]. The search for NP-complete problems is motivated by two main reasons.
First, if there is one problem of these which can be solved in polynomial time, then this
immediately gives efficient algorithms for all the NP-complete problems. Therefore, it was
hoped that if enough NP-complete problems were known, then there would be discovered
some problem which is both NP-complete and efficiently solvable, thus proving that
P=NP, and giving efficient algorithms for a vast number of practically relevant problems.
However, this has not happened, and in fact, most researchers now believe that it never
will, since there probably simply are no efficient algorithms for NP-complete problems.
But the search for NP-complete problems still remains interesting: when analyzing the
complexity of a problem occurring in practice, in order to prove that it is NP-complete, it
is useful to have a problem as “similar as possible” to it for which completeness is known.
If for a practical problem we know that it is NP-complete, then we know that with
known algorithms and techniques, we cannot obtain an efficient solution, and we need to
consider approximation algorithms. Therefore, knowing many completeness results helps
to influence decisions in practical software design.

In the above mentioned Traveling Salesman Problem, the goal was to find a strategy
of visiting cities. In the satisfiability problem, we search for a strategy to assign truth
values to the variables. In both examples, there was no opponent we needed to take
into account. When we add possible opponents, and study problems in a game-theoretic
setting, then often problems which cannot be solved in NP anymore occur. Consider the
following “game:” We are given a propositional formula ϕ, where the occurring variables
are x1, . . . , xn. Player A starts to assign a value to the first variable, x1. Then player B
may choose a value for the variable x2, then it is A’s turn again and he determines the
value for x3, and so on, until every variable has been assigned a value. Player A (the
universal player) wins if the formula ϕ is false under this assignment, and player B (the
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existential player) wins if the formula is true. The question if player A or B have a
winning strategy in this game does not seem to be solvable in NP, because unlike with
short and easily-checkable assignments for a formula, there does not seem to be short way
to encode the strategies in this more general setting. The obvious approach would be to
write down every possible “reply” to the other player’s moves, but it is easy to see that
this results in a table with exponentially many entries in the number of rounds of the
game. Problems like these therefore lie in higher complexity classes - the classes arising
here are those forming the polynomial hierarchy , and the class PSPACE. The example
just discussed can be phrased as the validity problem for a quantified Boolean formula,
where the variables controlled by A are quantified with ∀, and the variables controlled
by B are quantified with ∃.

As mentioned, the class P is considered as the class of problems which can be solved
efficiently. It is obvious that there are different “degrees” of efficiency, and hence it is nat-
ural to study complexity classes below P. To this end, alternative models of computation
were introduced, allowing to obtain results on questions of efficient parallel algorithms,
and algorithms with low space usage. Both extensions of the Turing machine and dif-
ferent, circuit-based models were introduced, which allow natural definitions of various
complexity classes inside P. Similarly to the NP-complete problems, the notion of com-
pleteness for these classes was introduced to describe problems which are “among the
hardest” in them. Again, it turned out that satisfiability problems related to restricted
classes of Boolean formulas are typical examples for complete problems of these complex-
ity classes. Therefore, a systematic study of these restricted satisfiability problems is of
interest, to gain insight into those complexity classes with deep connections to Boolean
formulas.

There are two different systematic ways of phrasing the restrictions of propositional
formulas that we consider in this thesis. A propositional formula is usually defined to be
built of propositional variables, constants, and the operators ∧,∨, and ¬, representing
conjunction, disjunction, and negation. What happens if we remove one of them? It is
obvious that removing either ∧ or ∨ does not reduce the expressive power of the formulas,
since we can simulate one of them using the other and negation: x ∧ y is equivalent to
(x ∨ y), and analogously x∨y can be expressed as (x ∧ y). But what if we forbid negation?
It is easy to see that the satisfiability problem for negation-free formulas is much simpler
than the one for arbitrary formulas: We can simply set every variable occurring in a given
formula to 1, and if this assignment does not satisfy the formula, then no assignment will.
This problem is not only solvable by an efficient, i.e., a polynomial-time algorithm, but
there are efficient parallel algorithms for this problem, as we will see as an easy corollary
from the results in Chapter 2. But what about other possible operators, like implication?
Or the binary exclusive-or? In fact, we can introduce any Boolean function as an operator
allowed in propositional formulas. For each possible set of Boolean functions, this gives
a restriction of formulas: the class of formulas built using variables and these connectors.
Therefore, we can define an infinite number of possible restrictions in this way, and for
each of these restrictions, we obtain a new version of the satisfiability problem, each with
a potentially different complexity.

To consider an infinite set of problems, we need some structure on this set. One of
the most important results in the classification of the expressive power of these restricted
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formulas was Emil Post’s work regarding certain “closed classes of Boolean functions.”
He proved his results already in the 1920s, but his work was not published until 1941,
in [Pos41]. His results identify all the “classes of expressiveness” which can be generated
by Boolean formulas restricted in this way, and therefore allow for a systematic study of
restrictions of propositional formulas by limiting, or extending, the possible operators in
the way suggested above. His classification is now known as Post’s lattice.

One of the first known results applying Post’s work to complexity theory and the
study of satisfiability problems was achieved by Harry Lewis in [Lew79], where he ex-
amined the question which operators make the satisfiability problem NP-complete, and
which combinations give efficient algorithms. In particular, he showed that this problem
is “dichotomic:” the complexity degrees between NP-completeness and solvable in poly-
nomial time mentioned above do not appear here. Dichotomy results are very interesting
in complexity theory: for one, they show that the infinite class of problems in question
breaks down to finitely many, if we are only interested in their “complexity behaviors.”
In this way, it is shown that an infinite class of problems can be considered “the same”
from a computational point of view. Also, in many cases a dichotomy theorem demon-
strates the exact point where the problem gets difficult, and can therefore give a precise
description of the features which make the problems in question hard. Lewis’ work gives
a precise answer what kind of operators used in formulas make the problem “easy,” and
which make them NP-complete.

Another restriction is to remove one of the most important features from Boolean
formulas, which is nesting. A usual Boolean formula can be nested to any degree. By
only considering formulas in conjunctive normal form, the nesting degree is reduced
to a constant. These are formulas of the form C1 ∧ · · · ∧ Cn, where the “clauses” Ci
must be of a very simple and regular form. It turns out that if we allow arbitrary
clauses with up to three variables, the satisfiability problem for these formulas is still
NP-complete. If we restrict the number of variables appearing in each clause to 2, then
the problem is solvable in nondeterministic logarithmic space, which is a subclass of P.
But there are other possible restrictions on these clauses than just limiting the number
of variables allowed to occur. A systematic study of these restrictions is known as the
constraint satisfaction problem. In its non-uniform version, this problem studies so-called
Γ-formulas, where the appearing clauses must take the form of some “templates” defined
in a set Γ. For the Boolean case, Thomas Schaefer showed in [Sch78], that again, the
problem is dichotomic: such a problem either can be solved in polynomial time, or is
NP-complete. Surprisingly, this result can be proven by again applying Post’s lattice
mentioned above. Post’s classification is used indirectly here, with an interesting “Galois
connection” between Boolean functions and closure properties of the clauses allowed
in the language Γ. It can be shown that both of these restrictions can be phrased in
an algebraic context, and the lattices of closed sets that appear in both cases are dually
isomorphic. This means that Post’s analysis of the closed classes of Boolean functions also
gives us a complete list of cases to study in the constraint satisfaction setting. However,
this isomorphism does not seem to allow the direct transfer of complexity results from
one of the restrictions to the other.

Constraint satisfaction problems have very interesting theoretical properties, as their
dichotomic complexity behavior and the connections to universal algebra. But there also
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is a vast number of practical applications. Constraint satisfaction problems generalize
not only many well-studied cases of the satisfiability problem, but can be used to express
almost any combinatorial problem which can be phrased as a set of local conditions. For
example, constraint satisfaction problems play a role in database theory, electronic design
automation, scheduling problems, and many other computational settings. On the the-
oretical side, they generalize problems like graph colorings, graph search, various flavors
of satisfiability problems, and many more. Therefore, constraint satisfaction problems
can be seen as the “combinatorial core of complexity theory” [CKS01], and hence learn-
ing about constraint formulas gives us better insight into many of complexity theory’s
questions.

In this thesis, we study various forms and generalizations of the satisfiability problem,
which using the systematic restrictions explained above. In addition to the satisfiability
problem itself, we also consider the closely related problems of model checking, enumer-
ation, counting, and equivalence. The structure of the work is as follows: After recalling
prerequisites from the literature and proving some initial results about formulas and re-
lations of our own in Chapter 1, we start with considering formula restrictions in the
Post sense. One of the simplest possible questions which can be asked in this context is
the problem to determine if a given formula in which no variable appears is true. This
problem, called the formula value problem, can be seen as the most basic satisfiability
problem, where no assignment to the variables has to be considered, but a formula simply
has to be evaluated. This task is one of the most important ones arising in algorithms
dealing with propositional formulas. It turns out that this problem has efficient paral-
lel algorithms for all types of formulas that we consider, and again we show that if we
restrict the propositional operators appearing in the formula, the complexity of the prob-
lem decreases even further. Using Post’s lattice, we show that there is a finite number of
complexity classes such that for any choice of propositional operators, the formula value
problem is complete for one of these classes. While this is not a “dichotomy” in the
strictest sense, since there are more than two complexity cases arising here, it still shares
the properties of dichotomy results which make them so interesting: the complexity of
an infinite set of problems can be shown to only give complexities from a finite list.

In practice, knowing the actual solutions to a problem is often more interesting than
simply knowing whether at least one solution exists. In Chapter 3, we therefore turn
our attention to the problem of computing the set of satisfying assignments for a given
propositional formula. This is not a decision problem like the ones mentioned up to now,
where the answer to the question is simply “yes” or “no,” but a problem where the task
is to generate a set of assignments for a given formula. Hence, these problem cannot be
grouped into the usual complexity classes of decision problems, like P or NP. Instead, we
consider several notions of “efficient enumeration” suggested by David Johnson, Christos
Papadimitriou, and Mihalis Yannakakis in [JPY88]. Assuming P 6= NP, for each possible
restriction of propositional formulas, and each of the efficiency notions considered, we
answer the question if such an algorithm exists.

In the remainder of the thesis, we study problems for formulas restricted in the con-
straint satisfaction context. In Chapter 4, we refine Schaefer’s dichotomy theorem for
formulas in conjunctive normal form, and consider the subclasses of polynomial time. It
turns out that the Galois connection mentioned before has its limitations here: there are
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cases which have the same algebraic behavior, but lead to different degrees of complexity.
Hence we need to go beyond the classification provided by the algebraic properties, and
perform a finer analysis of the cases. It turns out that the problem still is dichotomic in
nature, revealing that each of these problems is equivalent to the standard “complete”
problems of standard complexity classes inside P. Finally, in Chapter 5, we consider
quantified constraint formulas. These are generalizations of the usual constraint formu-
las, where additionally the quantifiers ∃ and ∀ are allowed to occur. As hinted above,
such formulas can be used to describe settings where two opponents are working against
each other. It is well-known that adding these quantifiers to the formulas raises the
complexity of the involved decision problems significantly: the problems we consider in
this chapter are prototypical for the classes of the polynomial hierarchy, and for the
class PSPACE, containing all computational problems which can be solved in polyno-
mial space. We study various problems for these formulas: first, we consider the formula
evaluation problem in this context, and the closely related model checking problem. An-
other decision problem which is very interesting is the equivalence problem, where we
ask if two formulas have the same set of satisfying assignments. This question is very
important in practice, since it can be used to decide whether two given database queries
are equivalent, if a program behaves as its specification demands, or if two games have
the same winning strategies.

Finally, we consider the counting problem for these formulas, which is the task to
determine the number of satisfying assignments for a given formula. This problem arises
in practice when we want to determine the number of elements in a database which match
a given query. To study the complexity of these problems, counting complexity classes
have been introduced, which have a close relationship to the classes of decision problems.

In all of the problems considered in this thesis, we show dichotomy-like results, show-
ing that for an infinite set of problems, only a finite set of complexity classes arises, and
the problems turn out to be complete for these classes. Hence, among adding to the list
of complete problems for all kinds of classes, we show that all of these infinite classes
of problems break down into finitely many complexity cases. Therefore, from a compu-
tational point of view, there are only finitely many different problems in this context.
For the problems considered in Chapter 4, this can be made even stricter, as in fact we
can show that the problems only give rise to finitely many equivalence classes under the
much stronger notion of isomorphism.
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Publications

The material about bases for co-clones, i.e., the results presented in Table 1.2, the sur-
rounding discussion, and Lemma 1.5.6 previously appeared in [BRSV05]. Lemma 1.4.5
appeared in [Sch05], on which Chapter 2 is based. Chapter 4 previously appeared as
[ABI+05], and the results on counting and the QCSPk(Γ)-problem from Chapter 5 ap-
peared in the technical report [BBC+05]. Further results in that chapter contain unpub-
lished work with Michael Bauland, Nadia Creignou, and Heribert Vollmer. The results
from Chapter 3 are new.



Chapter 1

Preliminaries

In this chapter, we introduce the basic terminology for the topics that this thesis deals
with, cite results from the literature about complexity theory and propositional formulas,
and prove some initial results of our own which will be useful in later chapters.

1.1 Basic Notation and Mathematical Prerequisites

We assume that the reader knows the basic definitions and results from theoretical com-
puter science, i.e., the concept of a Turing machine, a finite state machine, O-notation,
etc. We also assume that the reader is familiar with basic mathematical structures, like
graphs, lattices, partial orders, permutations, fields, and standard mathematical nota-
tion, like propositional and first-order logic. We also rely on basic concepts from “naive
set theory,” i.e., finite, countable, and uncountable sets.

In this work, 0 is a natural number. The symbol ◦ denotes the concatenation of strings
and of functions. For sets A,B, the set A + B is their disjoint union. For a Boolean
value α, α denotes its negation. For a function f : A → {0, 1} , the function f denotes
its component-wise negation, i.e., f(α) = f(α). With ∨k, we denote k-ary disjunction,
we use the symbol ∧k for k-conjunction, and ¬ for negation. The binary exclusive-or
is denoted with ⊕. As usual, we will consider decision problems as languages, i.e., we
identify the problem to compute a “yes” or “no” answer with the problem to recognize
the set of strings where the answer is “yes.” In particular, our problems are sets A ⊆ Σ∗,
where Σ∗ denotes the set of all finite strings over some finite alphabet Σ.

A n-ary Boolean function is a function f : {0, 1}n → {0, 1} for some n ∈ N. For a
set A, we denote its cardinality with |A|. We also use the notation #A, when we talk
about counting problems. For a string w, and strings w1, . . . , wn, z1, . . . , zn, the string
w[w1/z1, . . . , wn/zn] is obtained from w by simultaneously replacing every occurrence of
wi with zi for all relevant i.

1.2 Formulas and Circuits

The main subject of this thesis is the complexity of problems related to propositional
formulas. Therefore, we will first define formulas, and their generalizations as circuits.
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These concepts are interesting for two reasons: First, the problems that we study in
this thesis are problems involving these structures, and second, the concept of circuit is
essential for the definition of several relevant complexity classes. Usually, propositional
formulas are defined as formulas where variables take values from the domain {0, 1}
(“false” and “true”), and the formulas are built from variables, conjunction, disjunction,
and negation. In our context, we allow the domain to be an arbitrary finite set D, and
we also consider more general sets of allowed connectors than the set {∧,∨,¬} . For a
set B of functions with finite arity on a domain D, we define B-formulas inductively:
A variable x is a B-formula. If ϕ1, . . . , ϕn are B-formulas, and f is an n-ary function
from B, then f(ϕ1, . . . , ϕn) is a B-formula. We often identify the function f and the
symbol representing it in a formula. The meaning should always be clear from the
context. We denote the set of occurring variables in a formula ϕ with VAR (ϕ) . We often
write ϕ(x1, . . . , xn) to indicate that VAR (ϕ) = {x1, . . . , xn} . For an assignment of values
I : VAR (ϕ) → D, the value of ϕ for the assignment I, ϕ(I), is defined as follows: If ϕ is
the variable x, then ϕ(I) = I(x). If ϕ is of the form f(ϕ1, . . . , ϕn), then ϕ(I) is defined
as f(ϕ1(I), . . . , ϕn(I)). If VAR (ϕ) = {x1, . . . , xn} , or if there is some other canonical
order on the variables of ϕ, then we say that ϕ represents the function f defined as
f(α1, . . . , αn) = ϕ(I), where I(xi) is defined as αi. We say that two formulas ϕ1 and ϕ2

are equivalent, if ϕ1(I) = ϕ2(I) for all assignments I. In the case of Boolean formulas,
i.e., if D = {0, 1} , the assignments I are also called truth assignments. In this case, we
also write I |= ϕ if ϕ(I) = 1, and we say that I satisfies ϕ, or that ϕ is a solution of ϕ.
The set of solutions of ϕ is denoted with SOL (ϕ) . When no other domain is specified,
we always assume D to be the Boolean domain {0, 1} .

A formula can be represented as a graph, and the occurring structure is a tree. In
generalizing formulas to circuits, we allow arbitrary acyclic graphs in this representation.
The Boolean circuit is relevant for us for two reasons: For one, Boolean circuits present
a way to encode Boolean functions succinctly. Second, as a computation model, the
Boolean circuit can solve computational problems, and its power is used to define standard
complexity classes. The implementation of an algorithm as a Boolean circuit is also a
model suited very well for the study of hardware implementations. We will now define
this formally. The following definition is based on Definition 1.6 in [Vol99].

Definition Let B be a set of Boolean functions. A Boolean circuit over B, or a B-circuit
with n input gates and m output gates is a tuple

C = (V,E, α, β, o1, . . . , om),

where (V,E) is a finite, acyclic, directed graph, α : E → N is an injective function,
β : V → B ∪ {x1, . . . , xn} , and o1, . . . , om ∈ V, such that the following conditions hold:

• If v ∈ V has in-degree 0, then β(v) ∈ {x1, . . . , xn} , or β(v) is a 0-ary function from
B,

• if v ∈ V has in-degree k > 0, then β(v) is a k-ary function in B.

Nodes in V are also called gates. A gate v with β(v) ∈ {x1, . . . , xn} is called an
input-gate. The gates o1, . . . , om are also called output-gates .
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This definition of a Boolean circuit corresponds to the intuitive idea that a circuit
consists of a set of gates which are either input gates, or compute some Boolean function
(in our case, functions from B) with arguments taken from the predecessor gates. The
set B is also called a base. The distinguished gates o1, . . . , om are the output-gates, i.e.,
the value computed by the circuit is obtained by concatenating the results computed in
these gates. The size of a circuit is the number of non-input gates, and the depth is the
length of a longest path from an input- to an output-gate. The function computed by
a circuit is defined in the canonical way: Once we know the values for the input-gates,
we can inductively (since the graph is acyclic) compute the value for each gate g ∈ V.
For non-commutative functions in B, the ordering α on the edges in the graph gives a
well-defined function value. We formalize this concept in the following definition:

Definition Let C = (V,E, α, β, o1, . . . , om) be a Boolean circuit with n input gates and
m output gates, and let α1, . . . , αn ∈ {0, 1} . Let v be a gate in C. We define the function
fv computed by the gate v on input (α1, . . . , αn) as follows:

• If v is an input-gate, i.e., β(v) = xi for i ∈ {1, . . . , n} , we define fv(α1, . . . , αn) =def

αi.

• If v has in-degree 0, but is not an input-gate, then fv(α1, . . . , αn) =def β(v) (which
in this case must be a constant).

• If v has in-degree k, and v1, . . . , vk are the predecessor gates of v in C such that
α ((v1, v)) < · · · < α ((vk, v)) , then

fv(α1, . . . , αn) =def β(v)(fv1(α1, . . . , αn), . . . , fvk
(α1, . . . , αn)).

We define the function fC : {0, 1}n → {0, 1}m , the function computed by C, as the
bit-string fo1(α1, . . . , αn) . . . fom(α1, . . . , αn).

Unlike a Turing machine or even a finite state machine, a given circuit, due to its
limited number of input gates, only can compute values for a finite set of input combina-
tions. In order for circuits to decide infinite languages, or compute functions with infinite
domains, we consider circuit families. A B-circuit family C is a sequence of B-circuits
(Cn)n∈N, such that for each n ∈ N, Cn is a B-circuit with n input gates. We say that
such a family computes the function f : {0, 1}∗ → {0, 1}∗ , if for each w ∈ {0, 1}∗ , the
value of C|w| on input w is f(w). Such a family decides the language L, if it computes
the characteristic function fL of L, i.e., the function for which fL(w) = 1 if w ∈ L, and
fL(w) = 0 otherwise.

Note that, as mentioned above, there is a close relationship between circuits and
formulas: a formula can be seen as a tree-like circuit. Such circuits can be written as
an equivalent formula, and the representation does not grow significantly in size. For a
general circuit, the length of its “formula representation” can be exponential in the size
of the original circuit.
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1.3 Complexity Theory

We now explain the basic definitions and important results of complexity theory which
play a role in this thesis.

1.3.1 Complexity classes

Following notation from [BDG95] and [BDG90], we introduce complexity classes in a
standard way. Our model of computation is the Turing machine, although most of our
results do not use this model explicitly.

Let f : N → N be a function. Then the class DTIME (f) (DSPACE (f)) contains all
problems which can be solved by a deterministic Turing machine in time (space) O(f).
Similarly, the class NTIME (f) (NSPACE (f)) consists of problems or languages solvable
by a nondeterministic Turing machine in time (space) O(f). In order for our complexity
classes to define sets in the usual mathematical sense, we need to restrict the languages
occurring here. For convenience, the following restriction is usually made: it is obvious
that any finite alphabet {q0, . . . , qk} can be represented by the binary notations of the
numbers 0, . . . , k. It is easy to find, for any given natural problem, a representation over
this set, which preserves the complexity of the original problem. Hence, we assume that
all our languages are subsets of {0, 1}∗ .

Some of the most important complexity classes, which also play a role in the classifi-
cations arising in this work are:

LOGSPACE =def DSPACE (log n) ,

NL =def NSPACE (log n) ,

P =def

⋃
k∈N

DTIME
(
nk

)
,

NP =def

⋃
k∈N

NTIME
(
nk

)
,

PSPACE =def

⋃
k∈N

DSPACE
(
nk

)
=

⋃
k∈N

NSPACE
(
nk

)
[Sav70].

The class ⊕LOGSPACE is defined to be the class of languages L for which there is
a non-deterministic Turing machine M operating in logarithmic space, and for any word
w, it holds that w is a member of L if and only if the number of accepting paths of M on
input w is odd. For these classes, the following containments hold (see also Figure 1.1):

LOGSPACE ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE.

It is also known that LOGSPACE 6= PSPACE, but for the other inclusions, the
question whether they are proper remains open (though most researchers believe that all
of them are). In particular, the question if P = NP is probably the most important open
problem in complexity theory. Intuitively, the class NP contains languages L which have
the following property: if some word w is a member of L, then there is a short “proof”
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for this fact, which can be verified in polynomial time. The proof is just an encoding
of the accepting computation path of a given NP-machine deciding the language L. In a
similar way, there are languages where there are short proofs for the fact that some word
is not in the language. This leads to a more general concept, which can be described as
follows:

Definition Let C be a complexity class of languages over the alphabet {0, 1} . Then
the class coC is defined as follows:

coC =def {{0, 1}∗ \ L | L ∈ C} .

For complexity classes C which are defined by deterministic computation models, like
deterministic Turing machines or circuits using a standard set of gates, it is easy to see
that C = coC holds: a given machine or circuit deciding the language L can be turned
into one deciding the language {0, 1}∗ \ L by simply exchanging accepting and rejecting
states in the Turing machine, or by computing a single negation at the output gate of
a circuit. However, for non-deterministic classes, this is not so easy. Natural examples
for this are the classes NP and coNP. A prominent problem for the class NP is the
satisfiability problem for propositional formulas. As explained in the introduction, this
language contains all propositional formulas using variables, conjunction and negation, for
which there is an assignment to the variables which makes it true. The problem is in NP,
since a satisfying assignment can be guessed. This assignment also serves as the “proof”
in the sense explained above. Now the “complement problem” (aside from syntactical
correctness) is the problem to recognize the unsatisfiable formulas. This problem is in
coNP, since a “proof” for a formula to be not unsatisfiable is, again, a satisfying solution.
There does not seem to be a natural short proof for the unsatisfiability of a formula, and
in fact, this problem is not believed to be in NP. The question whether NP and coNP are
equal is a major open question in complexity theory. However, for space-bounded classes,
an analogous result can be shown. The following theorem was proven independently by
Neil Immerman [Imm88] and Robert Szelepcsényi [Sze88].

Theorem 1.3.1 ([Imm88, Sze88]) Let f : N → N be a function such that f(n) ≥
log(n) for all n ∈ N. Then NSPACE (f) = coNSPACE (f) .

In particular, the theorem implies that NLOGSPACE=coNLOGSPACE. We also say
that these classes are closed under complementation, because for each language L in the
complexity class, the “complement language” {0, 1}∗ \ L is also a member of the class.

An often-used extension of the Turing machine is the notion of an oracle Turing
machine. Such a machine is an ordinary Turing machine which has access to an “oracle,”
which means that it gets answers to certain questions “for free.” An oracle Turing
machine has a special query tape, on which it has write-only access. It also has three
special states, donated with q?, q+, and q−.

Let A be an arbitrary language, the “oracle language.” We define the operation of an
oracle machine MA with access to the oracle A. On states q /∈ {q?, q+, q−} , MA behaves
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like an ordinary Turing machine. When MA enters the state q?, its next state is q+, if the
word on the query tape is in the language A, and it is q− otherwise. The query tape is
erased after such an operation. This transition counts as one step in the running time of
the machine, therefore this concept captures the idea that M gets answers to questions
of the form “does w ∈ A hold” at no cost. Oracles can be used to consider questions like
“what happens if we ignore the complexity for the problem A?” In giving the machines
access to A via an oracle, we essentially disregard that it takes computational power to
decide A.

This notion of oracles can be used to define complexity classes. For some complexity
class C which is defined by a restriction of Turing machines and a language A, the class
CA denotes the set of languages which can be decided by a C-machine with access to the
oracle A. For some set S of problems, we define

CS =def

⋃
A∈S

CS.

We can now define the classes of the polynomial time hierarchy, as introduced by
Larry Stockmeyer in [Sto77]:

Σp
0 =def Πp

0 =def ∆p
0 =def P,

∆p
k+1 =def PΣp

k ,

Σp
k+1 =def NPΣp

k ,
Πp
k+1 =def coΣp

k+1.

These classes are called the classes of the polynomial hierarchy , which is denoted with
PH and consists of the union of all the classes defined above. It can easily be shown that
PH is a subset of PSPACE. The class Σp

1 is the class NP, and Πp
1 is equal to coNP. For

any k ∈ N, the following inclusions hold:

P ⊆ ∆p
k ⊆ Σp

k ⊆ ∆p
k+1 ⊆ Πp

k+1 ⊆ ∆p
k+2.

Obviously, the classes ∆p
k are closed under complementation for any k ∈ N. The

classes Σp
k are not believed to be closed under complementation. It is also believed that

the inclusions above are proper, but this has not been proven. In particular, if P = NP,
then all of these classes are identical to P. The classes of the polynomial hierarchy and
other complexity classes arising in this thesis are presented in Figure 1.1. The classes
∆R

0 , ΣR
1 , and ΠR

1 which also appear in the figure are introduced in Chapter 2.
As explained above, problems in the class NP can be characterized as search problems,

where the question is if some “solution” with a certain property, which easily can be
verified, exists. Problems in coNP can be phrased similarly: here we basically ask if a
“solution” does not exist. Equivalently, this can be stated as “all strings are no solution.”
In this way, we ask if all possible members from a given set have some easily verifiable
property. By this informal argument, it is natural that the class NP is related to questions
which can be phrased with an existential quantifier, and the class coNP similarly deals
with questions which can be stated using a universal quantifier.

A canonical generalization of this observation to the Σp
k and Πp

k-classes of the poly-
nomial hierarchy can be found in any textbook about complexity theory. Following the
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presentation from [Pap94], we say that a (k+ 1)-ary relation over {0, 1}∗ is polynomially
balanced, if there is some l ∈ N such that (x, y1, . . . , yk) ∈ R implies |y1|, . . . , |yk| ≤ |x|l.
Now the classes Σp

k and Πp
k from the polynomial hierarchy can be characterized as follows:

Theorem 1.3.2 ([Wra77]) Let L be a language, and let k ≥ 1.

1. L ∈ Σp
k if and only if there is a polynomial-time decidable, polynomially balanced

(k + 1)-ary relation R such that the following holds:

L = {x | ∃y1∀y2∃y3 . . . Qyk(x, y1, . . . , yk) ∈ R} ,

where Q is ∀ if k is even, and Q is ∃ if k is odd.

2. L ∈ Πp
k if and only if there is a polynomial-time decidable, polynomially balanced

(k + 1)-ary relation R such that the following holds:

L = {x | ∀y1∃y2∀y3 . . . Qyk(x, y1, . . . , yk) ∈ R} ,

where Q is ∃ if k is even, and Q is ∀ if k is odd.

Note that the quantifiers in the above equations are over a set of strings of polynomial
length, and not just a single Boolean value.

Another extension of the Turing machine is the alternating Turing machine. This
concept was introduced by Ashok Chandra, Dexter Kozen, and Larry Stockmeyer in
[CKS81]. A “traditional” nondeterministic Turing machine accepts if and only if there
is one nondeterministic computation path which accepts the input. An alternating ma-
chine has two possibilities for nondeterministic choices. The first one, called “existential
branches,” is the same as in the usual nondeterministic model, and accepts if and only if
at least one of the nondeterministic choices does. The other possibility is to accept if and
only if every of the nondeterministic choices does. For a function s : N → N, the class
ATIME (s) contains the problems which can be solved by an alternating Turing machine
in time s, and similarly, ASPACE (s) contains the problems solvable on such a machine
with space s. In particular, the class AP contains the problems which can be solved on an
alternating machine in polynomial time. It is obvious that the existential and universal
branches can be used to simulate existential and universal quantifiers in propositional
formulas. As we will see later, problems for these formulas are typical examples for prob-
lems in PSPACE, and hence it is not surprising that AP = PSPACE. Many interesting
relationships between classes defined by alternating machines and those defined by other
models of computation can be found in [Coo85].

There are also complexity classes defined using the computational power of cir-
cuits. For some set B of Boolean functions, and functions s, d : N → N, the class
SIZE−DEPTHB (s, d) is defined as the set of languages L which can be decided by
a family of Boolean B-circuits C = (Cn)n∈N where the circuit Cn has size O(s) and depth
O(d). Let B0 =def {∧,¬} , and let B1 =def {¬} ∪ {∧i | i ∈ N} . It should be noted that
infinite bases like B1 can enhance the computational power of circuits significantly, so
we need to be careful with these. Since this does not play a big role in this thesis, we
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Figure 1.1: The polynomial hierarchy and other relevant complexity classes
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only mention that infinite bases need to be “uniform” in some way, as B1 clearly is. For
details and more results on Boolean circuits and their complexity, see [Vol99].

We now define some of the most important circuit complexity classes. Let k be a
natural number. The class ACk was defined by Stephen Cook, Ashok Chandra, Larry
Stockmeyer, and Uzi Vishkin [Coo85, CSV84], and NCk is named after Nicolas Pippenger,
who first studied it [Pip79]:

• ACi =def

⋃
k∈N

SIZE−DEPTHB1

(
nk, (log n)i

)
,

• NCi =def

⋃
k∈N

SIZE−DEPTHB0

(
nk, (log n)i

)
.

It can easily be seen that for any i ∈ N, it holds that ACi ⊆ NCi+1 ⊆ ACi+1.
Additionally, it is known that AC0 is a proper subclass of NC1 [Smo87]. The class NC,
defined as the union of all NCk, is often considered to capture the notion of efficient
parallel algorithms. It is important to remember that circuit complexity classes display
a certain amount of non-uniformity. It is easy, for example, to construct a family C of
small circuits which, on input w ∈ {0, 1}∗ , output 1 if w = 1n for some n which is
a member of the halting problem, and 0 otherwise. Since the halting problem is well-
known to be undecidable (first shown by Alan Turing in [Tur36]), the inclusions ACi ⊆ P
etc., do not hold. But we still want these complexity classes to capture the notion of
“low complexity.” To avoid the above-mentioned problem, we demand that our circuit
families C are uniform, meaning that there must be a reasonably efficient algorithm
which, on input 1n, outputs a suitable encoding of Cn. This construction algorithm must
be efficient enough to ensure that the construction of the circuit is not more complex than
the operation performed by the circuit itself. However, for the purpose of this thesis, the
above description of uniformity suffices.

Up to now, we only considered the complexity of decision problems. These can be
seen as the computation of functions whose output value is either 0 or 1. However, many
computational problems arising in practice are of a different nature, as for example the
task to sort a given sequence of numbers. The complexity of these problems can be
defined similarly. For alphabets Σ1 and Σ2, let f : Σ∗

1 → Σ∗
2 be a function, and let C be

a complexity class for decision problems as defined above, where the computation model
is a deterministic Turing machine or a circuit. We say that f is in the class FC, if it can
be computed by a Turing machine or circuit with the same resource bounds as required
by the class C. Here, a Turing machine computes a function f, if for any input x, the
Turing machine stops, and on a designated output-tape of the machine, the word f(x) is
written.

For example, the class FP is the class of functions which can be computed by a
deterministic Turing machine in polynomial time, and the class FAC0 is the class of
functions which can be computed by circuits over the base B1 with polynomial size and
constant depth. It is also possible to define the function computed by a non-deterministic
Turing machine, but we only consider this for the special case of counting problems in
Chapter 5.
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1.3.2 Reductions

One of the most important tools developed in complexity theory is the concept of the
reduction. The idea behind a reduction is that it allows us to compare the complexity
of problems. For a reduction ≤, the relationship A ≤ B is usually meant to capture “A
is not harder than B.” More precisely, a reduction usually demands that if we can solve
the problem B, then we can also, with very little additional resources, solve the problem
A. Of course a key question here is what “very little resources” means. The answer
to this question depends on the context: If we are talking about the class PSPACE,
then a polynomial-time computable function might classify. When considering classes
e.g., below LOGSPACE, the resource bound of polynomial time is rather meaningless.
Usually, the lower the considered complexity classes are, the finer the required reductions
get. We will now introduce some important reductions. For now, we restrict ourselves to
decision problems. In Chapter 5, we will see that reductions can also be applied to other
types of problems.

For languages A ⊆ Σ∗
1 and B ⊆ Σ∗

2, we say a function f : Σ∗
1 → Σ∗

2 is a many-one
reduction from A to B, if for all x ∈ Σ∗

1, it holds that x ∈ A if and only if f(x) ∈ B. We
say that A ≤p

m B, if there is a function f ∈ FP which is a many-one reduction from A to
B. Analogously, we say that A ≤log

m B (A ≤AC0

m B) if there is a many-one reduction from
A to B which can be computed in FLOGSPACE (FAC0). The reduction ≤p

m is also called
polynomial time many-one reduction, and ≤log

m is called logspace many-one reduction.

For two problems A and B such that A ≤p
m B and B ≤p

m A holds, we also write
A ≡p

m B, and say that the problems are equivalent under polynomial time many-one
reductions. The problems equivalent in this way form a ≤p

m-degree of complexity. We use
the obvious generalizations for other reducibilities. All the notions of reducibility that
we use in this thesis are both reflexive and transitive, and hence form a quasi-ordering on
the set of languages over a given alphabet. Languages which are maximal with respect
to this quasi-ordering play a special role, as they can be regarded to be among the “most
difficult” languages in the corresponding complexity class. For a complexity class C and
a language A, we say that A is complete for C under ≤p

m-reductions if the following holds:

1. A ∈ C,

2. For all L ∈ C, it holds that L ≤p
m A.

The second condition is also referred to as A is hard for C under ≤p
m-reductions. For

other reduction types like ≤log
m , ≤AC0

m , etc., analogous notations are defined in the obvious
way. As mentioned before, it is important to consider reductions which are suitable for
the given complexity class considered. This is evident when we are talking about complete
problems. We say that a complexity class C is closed under a reduction ≤, if the following
holds: for all problems A,B such that B ∈ C and A ≤ B, it follows that A ∈ C. Now if
we consider a complexity class D ⊆ C which is closed under ≤-reductions, and show that
some problem which is complete for C under ≤-reductions already is contained in the
class D, then the equality of these two classes follows. It is easy to see that the classes
P,NP, and all classes from the polynomial hierarchy are closed under ≤p

m-reductions.
Hence, if there is a single problem which is complete for NP under ≤p

m-reductions that
can be solved in P, then P = NP follows.
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1.3.3 Complexity results for specific problems

Complexity theory has achieved very many results on the exact complexity of various
problems. We introduce some specific problems and their complexity, as far as they are
relevant to our work. The first problem we define now is the satisfiability problem, which
already has been mentioned.

Problem: SAT
Input: A propositional formula ϕ using variables, ∧,∨, and ¬
Question: Is there a truth assignment to the variables such that

ϕ evaluates to true?

As mentioned before, the satisfiability problem was the first ever problem proven to
be NP-complete, in a seminal paper by Stephen Cook:

Theorem 1.3.3 ([Coo71]) SAT is complete for NP under ≤log
m -reductions.

This theorem is one of the most famous results in theoretical computer science. Many
restricted versions of this problem have been shown to be still NP-complete. One of the
most important ones is the problem 3SAT, which we will define now. We say that a
propositional formula ϕ is in 3CNF, if it is a conjunction of clauses, where each clause is
the disjunction of exactly 3 literals. The satisfiability problem for these formulas is still
NP-complete. This follows from an easy modification of Cook’s proof for Theorem 1.3.3.

Problem: 3SAT
Input: A propositional formula ϕ in 3CNF
Question: Is ϕ satisfiable?

Theorem 1.3.4 ([Coo71]) 3SAT is complete for NP under ≤log
m -reductions.

The next result gives standard complete problems for the important complexity classes
LOGSPACE and NLOGSPACE:

Problem: (directed) Graph Accessibility Problem
Input: A (directed) graph G, vertices s and t from G
Question: Is there a path from s to t in G?

The complexity of these problems is summarized in the following Theorem:

Theorem 1.3.5 ([Pap94, Rei05]) The accessibility problem for undirected graphs is
complete for LOGSPACE under ≤AC0

m -reductions. The graph accessibility problem for
directed graphs is complete for NLOGSPACE under ≤AC0

m -reductions.

This theorem has a long history. It is easy to see that the directed graph accessibility
problem can be solved in NLOGSPACE, and the hardness has been known for a long
time, it can be shown with an elementary proof. For example, the result can be found as
Theorem 16.2 in [Pap94]. Until 2004, it was not known that the undirected version of the
problem can be solved in LOGSPACE. Instead, this problem was known to be complete
for the class SL, which is the class of problems which can be solved by “symmetric
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logspace machines,” machines using a restricted form of non-determinism. Omer Reingold
proved in [Rei05] that a deterministic logspace algorithm exists to solve this problem,
hence showing that the complexity classes SL and LOGSPACE coincide. Since SL is, by
definition, a superclass of LOGSPACE, this also immediately gives the hardness result.

1.4 Functions and Relations

For any domain D, and natural numbers k and n, let the n-ary function idk,nD be defined as
idk,nD (x1, . . . , xn) =def xk. The functions of the form idk,nD are called projections or identity
functions on D. We say that some set C of functions over D is a closed set of functions
over D, or a clone over D, if C satisfies the following conditions:

1. C contains all projections on D,

2. If f1, . . . , fn ∈ C are functions of arity k1, . . . , kn, and f ∈ C is an n-ary function
then the function g defined as

g(x1
1, . . . , x

1
k1
, . . . , xn1 , . . . , x

n
kn

) =def f(f1(x
1
1, . . . , x

1
k1

), . . . , fn(x
n
1 , . . . , x

n
kn

))

is in C (composition of functions),

3. If f is a k-ary function in C, then the function g defined as g(x1, . . . , xk+1) =def

f(x1, . . . , xk) is in C (introduction of a fictive variable),

4. If f is a k-ary function in C, then the function g defined as g(x1, . . . , xk−1) =def

f(x1, . . . , xk−1, xk−1) is in C (identification of variables).

The set of all finitary functions over D satisfies the above condition. Therefore the
intersection in the following equation is not empty, and therefore the definition is valid:
For any set B of functions on D, we define the clone generated by B as

[B] =def

⋂
{C | C is a clone and B ⊆ C} .

We say that B is a base for [B] . It can easily be verified that the set [B] is indeed
closed under the above-mentioned transformations, and that the operator [.] is a closure
operator, i.e., for all B1 and B2, it holds that B1 ⊆ [B1] , B1 ⊆ B2 implies [B1] ⊆ [B2] ,
and [[B1]] = [B1] .

For any closure operator C, the set of C-closed sets (i.e., sets B such that C(B) = B)
forms a lattice: It is easy to see that with the definitions C(B1) u C(B2) =def C(B1) ∩
C(B2), and C(B1)tC(B2) =def C(B1∪B2), the operators u and t fulfill the requirements
of the infimum and supremum operations in a lattice where the partial order is set
inclusion. Therefore, the set of clones over any domain D forms a lattice. For the
Boolean case, i.e., the case where |D| = 2, this lattice has been classified by Emil Post
in [Pos41]: All Boolean clones and their inclusion structure can be seen in Figure 1.2.
A list of the classes and a base for each is given in Table 1.1. We will use the names
introduced for the clones in Table 1.1 frequently in this thesis. This lattice is now known
as Post’s lattice. It has several nice properties: for one, it is countable, and the infinite
parts of the lattice have a very uniform structure. Further, Post proved that for every
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Boolean clone C, there is a finite base, i.e., a finite set B such that [B] = C. As we will see
later, this lattice is a powerful tool for analyzing the complexity of problems related to
Boolean formulas. For cases where the cardinality of the domain is larger than 2, it can
be shown that the corresponding clone lattice is uncountable, and none of these larger
versions have been classified completely. Since they are uncountable, it is obvious that
here, almost all of the clones do not have a finite base. The higher complexity of the
clone lattice for larger domains is one of the key reasons why classifying the complexity
for problems in this context over non-Boolean domains is significantly more difficult.

We define a few properties of functions which play a role in Post’s classification.
For a function f : Dk → D, we say that it does not depend on its i-th argument, if
for all α1, . . . , αk, β ∈ D, it holds that f(α1, . . . , αk) = f(α1, . . . , αi−1, β, αi+1, . . . , αk).
A function which does not depend on all of its arguments is called degenerated . We
say that f is essentially unary , if f depends on exactly one of its arguments, and f is
constant, if it does not depend on any of its arguments. If the domain D is of the form
{1, . . . , n} for some n ∈ N, then we say that f is monotone, if α1 ≤ β1, . . . , αk ≤ βk
implies f(α1, . . . , αk) ≤ f(β1, . . . , βk). For α ∈ D, we say that f is α-reproducing , if
f(α, . . . , α) = α. For α ∈ D, a set A ⊆ Dn is α-separating , if there exists some i ∈
{1, . . . , n} such that for all (α1, . . . , αn) ∈ A, it holds that αi = α. The function f is
α-separating if f−1({α}) is. We say that f is α-separating of degree m, if every subset
A ⊆ f−1({α}) with |A| = m is α-separating. Finally, a Boolean function f is linear ,
if f can be written as xi1 ⊕ · · · ⊕ xin ⊕ c for some variables xi1 , . . . , xin and a constant
c ∈ {0, 1} . In addition, the function hn occurring in the bases of Post’s lattice as given
in Table 1.1 is defined as

hn(α1, . . . , αn+1) =def

n+1∨
i=1

(α1 ∧ α2 ∧ · · · ∧ αi−1 ∧ αi+1 ∧ · · · ∧ αn+1) .

Post’s lattice displays a symmetry, which is given by the dualization of Boolean func-
tions: For an n-ary Boolean function f, the function dual (f) is defined as follows:
dual (f) (α1, . . . , αn) =def f(α1, . . . , αn). A function f is self-dual , if dual (f) = f. For
a set B of Boolean functions, we define dual (B) =def {dual (f) | f ∈ B} . It is obvious
that dual (dual (f)) = f, and dual (dual (B)) = B. In Post’s lattice, the dual (.)-operator
gives the symmetry in Figure 1.2: for the clone B, the set dual (B) also is a clone, and is
the mirror class of B in Post’s lattice. Hence, the clones on the vertical symmetry axis
are exactly those clones which are closed under dualization. The clones B and dual (B)
have very similar properties, and it often turns out that for a complexity classification,
only one side of Post’s lattice needs to be considered.

We now explain how the closure operator [.] is related to the complexity of problems
defined by certain classes of formulas. For many problems in the context of proposi-
tional formulas, the complexity gets significantly lower if we look at a restricted class of
formulas. For example, the satisfiability problem for propositional Boolean formulas is
NP-complete due to Theorem 1.3.3. However, if we look at the set B =def {∧,∨, 0, 1}
and the corresponding B-formulas, then we get an easier problem: such a formula de-
scribes a monotone function. It can easily be seen that such a formula is satisfiable if and
only if it is satisfied by the constant 1-assignment. This test surely can be performed in
polynomial time. This example shows that restricting the class of formulas in this way,
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Figure 1.2: Graph of all closed classes of Boolean functions
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Clone Definition Base
BF All Boolean functions {∨,∧,¬}
R0 {f ∈ BF | f is 0-reproducing } {∧,⊕}
R1 {f ∈ BF | f is 1-reproducing } {∨,↔}
R2 R1 ∩ R0 {∨, x ∧ (y ↔ z)}
M {f ∈ BF | f is monotone } {∨,∧, 0, 1}
M0 M ∩ R0 {∨,∧, 0}
M1 M ∩ R1 {∨,∧, 1}
M2 M ∩ R2 {∨,∧}
Sn

0 {f ∈ BF | f is 0-separating of degree n} {→,dual (hn)}
S0 {f ∈ BF | f is 0-separating } {→}
Sn

1 {f ∈ BF | f is 1-separating of degree n} {x ∧ y, hn}
S1 {f ∈ BF | f is 1-separating } {x ∧ y}
Sn

02 Sn
0 ∩ R2 {x ∨ (y ∧ z),dual (hn)}

S02 S0 ∩ R2 {x ∨ (y ∧ z)}
Sn

01 Sn
0 ∩M {dual (hn) , 1}

S01 S0 ∩M {x ∨ (y ∧ z), 1}
Sn

00 Sn
0 ∩ R2 ∩M {x ∨ (y ∧ z),dual (hn)}

S00 S0 ∩ R2 ∩M {x ∨ (y ∧ z)}
Sn

12 Sn
1 ∩ R2 {x ∧ (y ∨ z), hn}

S12 S1 ∩ R2 {x ∧ (y ∨ z)}
Sn

11 Sn
1 ∩M {hn, 0}

S11 S1 ∩M {x ∧ (y ∨ z), 0}
Sn

10 Sn
1 ∩ R2 ∩M {x ∧ (y ∨ z), hn}

S10 S1 ∩ R2 ∩M {x ∧ (y ∨ z)}
D {f ∈ BF | f is self-dual} {xy ∨ xz ∨ (y ∧ z)}
D1 D ∩ R2 {xy ∨ xz ∨ yz}
D2 D ∩M {xy ∨ yz ∨ xz}
L {f ∈ BF | f is linear} {⊕, 1}
L0 L ∩ R0 {⊕}
L1 L ∩ R1 {↔}
L2 L ∩ R {x⊕ y ⊕ z}
L3 L ∩D {x⊕ y ⊕ z ⊕ 1}
V {f ∈ BF | f is constant or an n−ary OR function} {∨, 0, 1}
V0 [{∨}] ∪ [{0}] {∨, 0}
V1 [{∨}] ∪ [{1}] {∨, 1}
V2 [{∨}] {∨}
E {f ∈ BF | f is constant or an n−ary AND function} {∧, 0, 1}
E0 [{∧}] ∪ [{0}] {∧, 0}
E1 [{∧}] ∪ [{1}] {∧, 1}
E2 [{∧}] {∧}
N [{¬}] ∪ [{0}] ∪ [{1}] {¬, 1}
N2 [{¬}] {¬}
I [{id}] ∪ [{0}] ∪ [{1}] {id, 0, 1}
I0 [{id}] ∪ [{0}] {id, 0}
I1 [{id}] ∪ [{1}] {id, 1}
I2 [{id}] {id}

Table 1.1: Bases for all Boolean clones
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i.e., by choosing another set of connectors than {∧,∨,¬} , can change the complexity of
formula-related problems. These restricted classes of circuits and formulas give rise to a
number of computational problems. For many problems which have been considered for
arbitrary formulas, it can be shown that the complexity of the problem decreases if the
set of allowed connectives is restricted. A classical example of this is the satisfiability
problem, as discussed above:

Problem: SAT (B)
Input: A B-formula ϕ
Question: Is ϕ satisfiable?

Theorem 1.3.3 states that SAT ({∧,∨,¬}) is NP-complete. For other sets B, this
problem is easier: as explained above, the problem SAT ({∧,∨, 0, 1}) can be solved in
polynomial time. To get a complete classification of the complexity of this problem,
and others in the context of B-formulas, the question when short formulas for some
functions exist is of importance: suppose we have some decision problem PROBLEM(B),
depending on some set B of Boolean functions, and suppose B1 and B2 are two sets of
Boolean functions such that B1 ⊆ [B2] . We would like to conclude that the complexity
of PROBLEM(B1) is lower than the complexity of PROBLEM(B2), since every function
from B1 can be expressed by a B2-formula. Therefore we would expect the set B2 to
give a problem of at least the same complexity, we would expect that PROBLEM(B1) ≤p

m

PROBLEM(B2). The canonical reduction from PROBLEM(B1) to PROBLEM(B2) is to
replace every occurrence of some B1-formula in a given instance with its equivalent B2-
formula. While this certainly does preserve all properties of formulas that we normally
would be interested in, this straightforward reduction cannot necessarily be computed in
polynomial time. For example, let B1 =def {⊕} , and let B2 =def {∧,∨,¬} . Since the clone
generated by B2 is known to contain all Boolean functions, it is obvious that B1 ⊆ [B2] .
Now consider the family of formulas (ϕn)n∈N , where ϕn =def x1⊕x2⊕· · ·⊕xn. To express
x1 ⊕ x2 with B2, we would use the formula (x1 ∧ x2) ∨ (x1 ∧ x2). But what happens if
we use this recursively? It can easily be seen that the {∧,∨,¬}-formula representing
x1 ⊕ x2 ⊕ · · · ⊕ xn obtained by recursively applying this identity is of exponential size
in n. This example illustrates that in general, the canonical reduction is not necessarily
computable in polynomial time. The key problem here is that in the formula (x1 ∧ x2)∨
(x1 ∧ x2), each of the relevant variables appears twice. Therefore, recursive replacement
of ϕ ⊕ ψ with (ϕ ∧ ψ) ∨ (ϕ ∧ ψ) leads to a “combinatorial explosion.” We can avoid
this problem, and give an efficient reduction from PROBLEM(B1) to PROBLEM(B2), if
we can represent every function from B1 with a “short” B2-formula. We will now define
what we mean by this:

Definition Let f be an n-ary Boolean function, and let B1, B2 be sets of Boolean
functions. We say that B1 efficiently implements f, if there is a B1-formula ϕ such
that VAR (ϕ) = {x1, . . . , xn, y1, . . . , yk} , and for all α1, . . . , αn, β1, . . . , βk ∈ {0, 1} , it
holds that f(α1, . . . , αn) = 1 if and only if I is a solution for ϕ, where I(xi) = αi, and
I(yi) = βi for all relevant i, and each variable xi appears in ϕ at most once. Such a
formula ϕ is called an efficient B1 implementation of f. We say B2 efficiently implements
B1, if B2 efficiently implements every function from B1.
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If the sets B1 and B2 have the property defined above, then we can, in most cases,
show that PROBLEM(B1) ≤p

m PROBLEM(B2) holds. This holds for any PROBLEM
which depends only on the function represented by a given instance. We say a variable
is irrelevant for the formula ϕ if the function represented by ϕ does not depend on
the corresponding argument (note that the variables yi in the above definition do not
contribute to the function represented by the formula). In this case, the straightforward
transformation by replacement can be performed in polynomial time.

Proposition 1.4.1 Let B1, B2 be sets of Boolean functions such that B1 is finite, and B2

efficiently implements B1. Then there is a polynomial-time computable function f which
computes, for a given B1-formula, an equivalent B2-formula, with additional irrelevant
variables.

This immediately gives a polynomial time reduction for all problems which are in-
variant under transformations of the formulas which give an equivalent formula with
additional irrelevant variables. Since this is obviously the case for the satisfiability prob-
lem, we immediately get the following Corollary:

Corollary 1.4.2 Let B1, B2 be sets of Boolean functions such that B1 is finite, and B2

efficiently implements B1. Then SAT (B1) ≤p
m SAT (B2) .

To our knowledge, the first known application of this technique to complexity theory
was a result by Harry Lewis. The following theorem, similarly to Schaefer’s Theorem
which we will state later, proves a dichotomy for the classes P and NP. The fact that
such dichotomy theorems exist is very interesting, because due to a classic result result
by Richard Ladner [Lad75b], there are an infinite number of ≤p

m-degrees between the
classes P and NP, unless these classes coincide. We will state the theorem and give a
variation of Lewis’ proof, since it is an important example of how short formulas can be
used.

Theorem 1.4.3 ([Lew79]) Let B be a finite set of Boolean functions. Then SAT (B)
is NP-complete under ≤p

m-reductions if f ∈ [B] , where f(x, y) = x ∧ y, and SAT (B) is
solvable in polynomial time otherwise.

The proof for this theorem makes extensive use of Post’s lattice. The polynomial time
cases follow easily: For any set B ⊆ R1, every B-formula ϕ is satisfiable by the all-1-
assignment. For a set B ⊆ M, a B-formula ϕ is satisfied if and only if the all-1-assignment
satisfies it. In the case B ⊆ L, the formula can easily be rewritten in a formula of the form
x1⊕x2⊕· · ·⊕xn⊕ c, where c ∈ {0, 1} . Now this formula is satisfiable if and only if c = 0
and there is a variable occurring an odd number of times, or c = 1. In the case B ⊆ D,
if the all-0-assignment does not satisfy a B-formula ϕ, then the all-1-assignment does.
Now a quick glance at Post’s lattice presented in Figure 1.2 shows that in all remaining
cases, B ⊆ S1 holds. Since the function f forms a base for this clone, it remains to show
that SAT (B) is NP-hard for all sets B such that f ∈ B. To prove this, Lewis showed
a lemma proving the existence of efficient implementations, which is the main technical
difficulty in his proof of the dichotomy theorem:



26 Chapter 1. Preliminaries

Lemma 1.4.4 ([Lew79]) Let B be a set of Boolean functions such that [B] = BF. Then
B efficiently implements {∧,∨,¬} .

With the help of this lemma, the proof for the hardness part of Theorem 1.4.3 can
be done easily: Let B be a set of Boolean functions such that f ∈ [B] . Since [{f}] =
S1, it follows that [B] ⊇ S1. Post’s lattice (Figure 1.2) reveals that [B ∪ {1}] = BF.
Therefore, B ∪ {1} efficiently implements {∧,∨,¬} due to Lemma 1.4.4. From Corol-
lary 1.4.2, we conclude that SAT (B ∪ {1}) is NP-hard. It therefore remains to prove that
SAT (B ∪ {1}) ≤p

m SAT (B) . For this, let ϕ be a B ∪ {1}-formula, and let t be a variable
not appearing in ϕ. In ϕ, replace every occurrence of the constant 1 with the variable t.
Let ϕ′ denote the result of this transformation. Now it is obvious that ϕ is satisfiable
if and only if ϕ′ ∧ t is. The latter formula can be constructed, since the AND operator
can be expressed with B, because it is in the clone S1. The set B does not necessarily
implement the AND function efficiently, but since this does not appear nested, and the
B-formula for AND is fixed, this can be done in polynomial time. Hence the reduction
is complete.

This classical example shows how efficient implementations can be used to get re-
ductions. However, Lemma 1.4.4 only can be applied to complete sets B, i.e., sets B of
Boolean functions where [B] = BF. But in many cases, we need efficient implementa-
tions for the important functions ∨, ∧, and ¬ for other sets B. The following lemma is
an extension of Lewis’ lemma above, and gives efficient implementations for a variety of
bases.

Lemma 1.4.5 Let B be a finite set of Boolean functions such that 0, 1 ∈ B.

1. If [B] ∈ {V,M}, then B efficiently implements ∨.

2. If [B] ∈ {E,M}, then B efficiently implements ∧.

3. If N ⊆ [B], then B efficiently implements ¬ via some formula ϕ. If [B] ⊆ L, and no
function in B is degenerated, then ϕ can be chosen in such a way that the variable
x occurs in ϕ as the last symbol which is not a parenthesis.

Proof. 1. Since ∨ ∈ V2 ⊆ [B] , and [B] contains the set of functions which can be
represented by B-formulas, it follows that there is a B-formula ϕ(x, y) such that ϕ
represents x∨ y and has a minimal number of occurrences of x and y. Let n be the
number of occurrences of x, and m the number of occurrences of y in ϕ. Without
loss of generality, let m ≤ n, and assume n ≥ 2. Let ϕ#(x1, . . . , xn, y1, . . . , ym) be
the formula obtained from ϕ by numbering the variable occurrences, i.e., renaming
the i-th occurrence of x to xi and accordingly for y.

Since 1 ∈ B, we can construct a B-formula equivalent to

ϕ′(x, y) =def ϕ#(x1/1, x2/x, . . . , xn/x, y1/y, . . . , ym/y).

The minimality of ϕ implies that ϕ′(x, y) does not represent x∨y. Since B ⊆ M, the
function represented by ϕ# is monotone, and thus for all α, β ∈ {0, 1} , it follows
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that ϕ′(x/α, y/β) ≥ α ∨ β holds. In particular, this implies the following:

ϕ′(x/0, y/1) = 1,

ϕ′(x/1, y/0) = 1,

ϕ′(x/1, y/1) = 1.

Now assume that ϕ′(x/0, y/0) = 0. Then it follows that ϕ′ is a representation of
the OR-function. This is a contradiction to the minimality of ϕ. Hence, we know
that ϕ′(x/0, y/0) = 1, and this means that ϕ′(x/α, y/β) = 1 for all Boolean values
α and β, in particular:

ϕ′(x/0, y/0) = ϕ#(x1/1, x2/0, . . . , xn/0, y1/0, . . . , ym/0) = 1,

and since ϕ# is monotone, this implies

ϕ#(x1/1, x2/α2, . . . , xn/αn, y1/β1, . . . , ym/βm) = 1. (1.1)

for all α2, . . . , βm ∈ {0, 1}. Since 0 ∈ B, we can construct the B-formula

ϕ′′(x, y) =def ϕ(x1/x, x2/0, x3/x, . . . , xn/x, y1/y, . . . , ym/y).

Observe that the following holds:

ϕ′′(x/1, y/0) = ϕ#(x1/1, x2/0, x3/1, . . . , xn/1, y1/0, . . . , ym/0) = 1
ϕ′′(x/1, y/1) ≥ ϕ′′(x/1, y/0) = 1
ϕ′′(x/0, y/1) = ϕ(x/0, y/1) = 1
ϕ′′(x/0, x/0) = ϕ(x/0, y/0) = 0

The first of these equations follows from equation 1.1, the second one is true because
the function represented by ϕ′′ is monotone, and the final two follow from the choice
of ϕ. Thus, ϕ′′ represents the OR function, and ϕ′′ has one variable less than ϕ,
which is a contradiction to the minimality of ϕ. Therefore, ϕ only contains two
variable occurrences.

2. This follows with an analogous proof. It also follows from the duality implicit in
Post’s lattice.

3. Existence of the formula ϕ follows with Lemma 1 from [Lew79]. Lewis only states
the result for complete sets B, but his proof only relies on the fact that negation
and both constants can be expressed with B-formulas. Now observe that if [B] ⊆
L holds, then every B-formula represents a function g which is symmetric in all
of its relevant arguments (observe that all arguments to all functions in B are
relevant). Therefore, the only variable x in ϕ can be moved to the end of the
formula by swapping arguments, which does not change the function represented
by the formula.

�
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1.5 Constraints

Using B-formulas as defined in the previous section, we can generalize well-known restric-
tions of propositional formulas, like monotone formulas. But there are other restrictions
which cannot be expressed in this way, like the restriction to 3CNF.

Constraint satisfaction problems are natural generalizations of these and other sat-
isfiability problems, and can be used to express many combinatorial problems. Further
key examples are search and colorability problems in graphs. They also can be seen as
a homomorphism problem, where the task is to find out if there exists a homomorphism
between two finite given relational structures [FV98]. We now define constraint satisfac-
tion problems formally and then explain why they can be used to express some of the
problems mentioned above.

Definition Let D be an arbitrary set. A constraint language Γ over the domain D is a
finite set of nonempty, finitary relations over D. A Γ-formula ϕ is a formula of the form

ϕ(x1, . . . , xm) =
n∧
i=1

Ri(x
i
1, . . . , x

i
ki

),

where xij ∈ {x1, . . . , xm} for 1 ≤ i ≤ n, 1 ≤ j ≤ ki, and for all i, Ri is a ki-ary relation from
Γ. A clause of the form Ri(x

i
1, . . . , x

i
ki

) is called a constraint or a constraint application.
An assignment I for ϕ is a function I : VAR (ϕ) → D. An assignment I satisfies ϕ,
written as I |= ϕ, if (I(xi1), . . . , I(x

i
ki

)) ∈ Ri for all 1 ≤ i ≤ n. A formula ϕ is satisfiable
if there exist a satisfying assignment for ϕ.

The requirement that the constraint languages do not contain the empty relation is
not just for convenience, but of some importance. We will discuss this after the statement
of Theorem 1.5.2. For a single-element constraint language {R} , we often simply write R
instead of {R} . We call a constraint language over a domain of cardinality two a Boolean
constraint language. We can now define the constraint satisfaction problem CSP (Γ) :

Problem: CSP (Γ)
Input: A Γ-formula ϕ
Question: Is ϕ satisfiable?

On first glance, the constraint satisfaction problem and the “usual” satisfiability prob-
lem for Boolean formulas seem to be very much alike. And in fact, the step from the
normal propositional problem to the constraint problem is as subtle as the step from
the problem SAT to the problem 3SAT. The significance of this step is that one very
important aspect of Boolean formulas is lost: formulas can be nested arbitrarily, and in
many problems, it is this nesting which gives the complexity. In a constraint satisfaction
problem, nesting does not occur. The formula here consists of a collection of “local”
conditions restricting the possible values of the appearing variables.

There is a canonical correspondence between formulas and relations: for each Boolean
formula, the set of its satisfying assignments defines a relation. For example, the formula
x∨y defines the relation {(0, 1), (1, 0), (1, 1)} . This relation also is often referred to simply
as OR. Therefore it is natural to write relations as Boolean formulas.



1.5. Constraints 29

We now explain how the problem 3SAT defined above can be seen as a constraint
satisfaction problem.

Definition We define the following Boolean relations:

Rx∨y∨z =def {0, 1}3 \ {(0, 0, 0)} ,
Rx∨y∨z =def {0, 1}3 \ {(1, 0, 0)} ,
Rx∨y∨z =def {0, 1}3 \ {(0, 1, 0)} ,
Rx∨y∨z =def {0, 1}3 \ {(0, 0, 1)} ,

Rx∨y∨z =def {0, 1}3 \ {(1, 1, 0)} ,
Rx∨y∨z =def {0, 1}3 \ {(1, 0, 1)} ,
Rx∨y∨z =def {0, 1}3 \ {(0, 1, 1)} ,
Rx∨y∨z =def {0, 1}3 \ {(1, 1, 1)} .

The constraint language Γ3SAT contains all the relations defined above.

It is obvious that, for instance, the clause Rx∨y∨z(x, y, z) is equivalent to x ∨ y ∨
z. Since the language Γ3SAT contains all possible combinations of a 3SAT-clause, the
problem CSP (Γ3SAT) is essentially the same problem as 3SAT. Therefore, Theorem 1.3.4
immediately gives the following Corollary:

Corollary 1.5.1 The problem CSP (Γ3SAT) is NP-complete under ≤log
m -reductions.

The relation between 3SAT and CSP (Γ3SAT) is much stronger than just a logspace
reduction: the original 3CNF-formula and the constraint formula have the exact same
set of satisfying assignments, i.e., they are equivalent. Therefore, the reduction cannot
only be applied to the satisfiability problem, but also to problems where we are interested
in other properties of the involved formulas, for example, the problem to determine the
number of solutions, or to enumerate all solutions. Similar relationships exist for other
examples, as the aforementioned graph problems. For this reason, constraint satisfaction
problems can be used to express various kinds of combinatorial problems in such a way
that the CSP-instance contains all the information about the original problem. This im-
mediately gives a vast number of applications of the constraint satisfaction problem, and
explains one reason why these problems have received a lot of attention in computational
complexity theory.

In addition to applications, these problems are also very interesting from a theoretical
point of view. In the seminal paper [Sch78], Thomas Schaefer proved that for any Boolean
constraint language Γ, the problem CSP (Γ) can either be solved in polynomial time, or
it is NP-complete. In [FV98], Thomás Feder and Moshe Vardi proved that in a certain
framework, the class of constraint satisfaction problems is the largest class of problems
where dichotomy results are expected. It is conjectured that the dichotomy behavior
mentioned above for the Boolean case also holds for arbitrary finite domains. Andrei
Bulatov proved this for the case of three-element domains in [Bul06].

When looking at some problem which can be parametrized by its constraint language,
like CSP (Γ) , we again face the problem of how to handle all of these problems at once.
Similarly to the case for B-formulas as defined previously, we can again utilize a closure
operator, this time on the set of relations. The following operator has proven to be helpful
in the context of constraints:
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Definition Let Γ be a constraint language on the domain D. Then 〈Γ〉 contains all
k-ary relations on D which can be defined by a formula ϕ of the following form:

ϕ(x1, . . . , xk) = ∃y1 . . . ∃yl
n∧
i=1

Ri(z
i
1, . . . , z

i
ki

),

where for i ∈ {1, . . . , n} , Ri is a ki-ary relation from Γ ∪ {=} , and for each i and j,
zij is a variable from {x1, . . . , xk, y1, . . . , yl} . The set 〈Γ〉 is called the co-clone generated
by Γ.

It can easily be verified that 〈.〉 is a closure operator, and hence by the same argument
as for the clones, the sets closed under this operator, the co-clones, again form a lattice.
The relation = denoting the equality relation on D can be problematic when applying
this closure operator in a complexity context, as we will see in Chapters 4 and 5.

There is a close relationship between functions and relations on a given domain.
Therefore it is not surprising to discover that there is a strong correspondence between
clones and co-clones. To explain the correspondence, we need one more definition:

Definition Let R be a k-ary relation on a domain D, and let f : Dn → D be an n-ary
function on D. We say that R is closed under f, or that f is a polymorphism of R, if for
all (α1

1, . . . , α
1
k), . . . , (α

n
1 , . . . , α

n
k) ∈ R, it holds that

(f(α1
1, . . . , α

n
1 ), . . . , f(α1

k, . . . , α
n
k)) ∈ R,

i.e., R is closed under coordinate-wise application of f. We denote the set of poly-
morphisms of R with Pol (R) , and for a constraint language Γ, we define Pol (Γ) =def⋂
R∈Γ Pol (R) . For a set B of functions on D, we define Inv (B) to be the set of relations

R on D such that B ⊆ Pol (R) .

It follows immediately from the definition that the operators Pol (.) and Inv (.) form a
Galois connection between the sets of relations and the sets of functions over the domain
D. As noted by Marcel Erné in [Ern04], a Galois connection is only of practical use
when the involved closure operators are known. In the case of the Galois connection
induced by Pol (.) and Inv (.) , the closure operators Pol (Inv (.)) on the set of functions
and Inv (Pol (.)) on the set of relations are exactly the same operators as we already
encountered. The following theorem was known in mathematics since 1968. To our
knowledge, it was first applied in a complexity context by Peter Jeavons, David Cohen,
and Marc Gyssens in the influential paper [JCG97].

Theorem 1.5.2 ([Gei68, JCG97]) Let Γ1,Γ2 be constraint languages over a finite do-
main D, and let B be a set of functions on D.

1. The inclusion Pol (Γ1) ⊆ Pol (Γ2) holds if and only if 〈Γ2〉 ⊆ 〈Γ1〉 holds.

2. [B] = Pol (〈Inv (B)〉), and 〈Γ1〉 = Inv (Pol (Γ1)) .

For constraint languages Γ1,Γ2, such that Γ1 ⊆ 〈Γ2〉, with help of additional existen-
tially quantified variables and the equality relation, Γ2 can express every relation in Γ1.
Therefore, the expressive power of Γ2 is stronger than that of Γ1. Seen in this way, the
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above Theorem 1.5.2 states that the more polymorphisms a constraint language has, the
weaker its expressive power is. Also note that for any set B of functions on some finite
domain, the set Inv (B) is a co-clone, and for any set of relations Γ, the set Pol (Γ) is a
clone.

It is easy to see that Theorem 1.5.2 fails if we allow the empty relation to be a member
of a constraint language: obviously, the empty relation is closed under negation and
conjunction, and hence is invariant under every function from the clone BF. Therefore,
Theorem 1.5.2 would imply that this relation is a member of every possible co-clone. This
can easily be seen not to hold: As a counter-example, consider the co-clone generated by
the Boolean constraint language Γ containing the implication as only relation. It is easy
to see that every Γ-formula is satisfiable by the constant assignments. Therefore, the
empty relation cannot be obtained as a Γ-formula with additional existential variables.
We believe that disallowing the empty relation in constraint languages is the most natural
way to deal with this problem, since formulas in which the empty relation appear are
obviously unsatisfiable, and hence not of much interest.

It is not surprising that constraint languages with high expressive power give rise to
constraint satisfaction problems with high complexity. The following theorem states this
formally. The result for polynomial time reductions follows easily from Theorem 1.5.2,
and is due to [JCG97]. In Chapter 4, we will show that this reduction can also be
performed in logarithmic space (see Corollary 4.2.3).

Theorem 1.5.3 ([JCG97]) Let Γ1,Γ2 be constraint languages over a finite domain D
such that Pol (Γ2) ⊆ Pol (Γ1) . Then CSP (Γ1) ≤p

m CSP (Γ2) .

One of the most important consequences of this theorem is that for a constraint
language Γ, the complexity of CSP (Γ) depends only on the co-clone generated by Γ. A
corollary of Theorem 1.5.2 is that the lattice of clones and the lattice of co-clones are very
similar: the operators Pol (.) and Inv (.) give a dual isomorphism between these lattices
(i.e., an isomorphism which reverses the order). Intuitively speaking, the co-clone lattice
is the clone-lattice “upside down.” Therefore, Post’s classification of the Boolean clones
immediately gives a classification of the Boolean co-clones as well. This classification
can be used to show dichotomy results for problems over the Boolean domain in the
constraint context. For example, Theorem 1.5.3 and Post’s classification can be used to
give a very short proof of Schaefer’s classic dichotomy theorem, which we will state now.

Theorem 1.5.4 ([Sch78]) Let Γ be a Boolean constraint language. If Pol (Γ) is either
I2 or N2, then CSP (Γ) is NP-complete. Otherwise, CSP (Γ) can be solved in polynomial
time.

This theorem was one of the first complexity results in the context of constraint
satisfaction problems, and is the starting point of a long line of research. A proof using the
Galois connection can be found in [BCRV04]. Some of the properties that Schaefer used in
his proof have more consequences than just ensuring the tractability of the satisfiability
problem. In the following, the ternary majority function on the Boolean domain is
the function f : {0, 1} → {0, 1} such that for α, β ∈ {0, 1} , it holds that f(α, β, β) =
f(β, α, β) = f(β, β, α) = β.
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Definition Let R be a Boolean relation. We say that

• R is Horn, if ∧ ∈ Pol (R) ,

• R is anti-Horn, if ∨ ∈ Pol (R) ,

• R is bijunctive, if the ternary majority function is a polymorphism of R,

• R is affine, if x⊕ y ⊕ z ∈ Pol (R) ,

• R is complementive, if ¬ ∈ Pol (R) ,

• R is 0-valid , if the constant 0-function is a polymorphism of R,

• R is 1-valid , if the constant 1-function is a polymorphism of R.

A Boolean constraint language Γ has one of the above properties if every relation in
Γ has, and we say that Γ is Schaefer if Γ is Horn, anti-Horn, bijunctive or affine.

The following fact is often useful:

Proposition 1.5.5 Let Γ be a Boolean constraint language which is Schaefer. Then
Γ ∪ {x, x} is Schaefer as well.

Proof. This can easily be seen by verifying that each of the polymorphisms leading to
the defining properties of Schaefer is a polymorphism of the relations {(0)} and {(1)} as
well. �

In the literature, often problems called “satisfiability with constants,” denoted with
SATc, have been studied. These are problems where in addition to variables, the con-
stants 0 and 1 may appear in the formulas. Proposition 1.5.5 implies that if we consider
constraint languages which are Schaefer, then adding constants in the sense of SATc does
not give higher complexity.

It is often convenient to know a base for each co-clone. Due to Theorem 1.5.2, we
know that the lattice of co-clones is isomorphic to the lattice of clones with an order-
reversing isomorphism. But in contrast to the lattice of clones, there are some Boolean
co-clones which do not have a finite base, as proven by the following lemma:

Lemma 1.5.6 There is no Boolean constraint language Γ such that 〈Γ〉 ∈ {Inv (S0) ,
Inv (S02) , Inv (S01) , Inv (S00) , Inv (S10) , Inv (S11) , Inv (S12) , Inv (S1)}.

Proof. Assume that Γ is such a finite constraint language. Since Γ is finite, it follows
that Γ = {R1, . . . , Rn} for some Boolean relations R1, . . . , Rn. By definition, every clone
Sab is the intersection of all Skab. Due to the correspondence between clones and co-clones
exhibited in Theorem 1.5.2, it follows that every co-clone Inv (Sab) is the union of all
Inv

(
Skab

)
. Therefore, for every i ∈ {1, . . . , n} there exists a ki such that Ri ∈ Inv

(
Ski
ab

)
.

Since the Inv
(
Skab

)
-co-clones form a chain in the lattice, there exists some k such that

Γ ⊆ Inv
(
Skab

)
$ Inv (Sab) , which is a contradiction. �



1.5. Constraints 33

For all other Boolean co-clones, a finite base can be constructed; a list is presented
in Table 1.2. The correctness of these bases can easily be verified by hand or by an
algorithm: For a constraint language Γ and a clone C, it holds that 〈Γ〉 = Inv (C) if
and only if Pol (Γ) = C. Since for each Boolean clone, a finite base and a finite set of
neighbors in Post’s lattice is known, this test can easily be performed. Also, it is easy
to derive, from a base given for a co-clone, a base for the dual co-clone. Similarly, the
case where a clone is the intersection of two others can be used to obtain a base. Thus,
we omit the proofs for the correctness of the results in the table. We define some of the
relations which appear in the given bases. NAE is an abbreviation for “not all equal,”
and DUP stands for “duplicate.”

Definition Let m be a natural number. We define the following relations:

ORm =def {(α1, . . . , αm) ∈ {0, 1}m | 1 ∈ {α1, . . . , αn}} ,
NANDm =def {(α1, . . . , αm) ∈ {0, 1}m | 0 ∈ {α1, . . . , αn}} ,

EVENm =def

{
(α1, . . . , αm) ∈ {0, 1}m |

m∑
i=1

αi is even

}
,

ODDm =def

{
(α1, . . . , αm) ∈ {0, 1}m |

m∑
i=1

αi is odd

}
,

NAE =def {0, 1}3 \ {(0, 0, 0), (1, 1, 1)} ,
DUP =def {0, 1}3 \ {(0, 1, 0), (1, 0, 1)} ,
Rn/m =def {(α1, . . . , αm) ∈ {0, 1}m | α1 + · · ·+ αm = n} .

It should be noted that the version of Table 1.2 which appeared in [BRSV05] contained
a mistake, and in that version, an incorrect base for the co-clone Inv (I1) was given.
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Clone Remark Base(s) of corresponding co-clone
BF {=}, {∅}
R0 dual of R1 {x}
R1 {x}
R2 R0 ∩ R1 {x, x} ,{xy}
M {x → y}
M0 M ∩ R0 {x → y, x}, {x ∧ (y → z)}
M1 M ∩ R1 {x → y, x}, {x ∧ (y → z)}
M2 M ∩ R2 {x → y, x, x}, {x → y, x → y} , {xy ∧ (u → v)}
Sn

0 {ORn}
S0 ∩m≥2Sm

0 {ORm | m ≥ 2}
Sn

1 dual of Sn
0 {NANDn}

S1 dual of S0 {NANDm | m ≥ 2}
Sn

02 Sn
0 ∩ R2 {ORm, x, x}

S02 S0 ∩ R2 {ORm | m ≥ 2} ∪ {x, x}
Sn

01 Sn
0 ∩M {ORm, x → y}

S01 S0 ∩M {ORm | m ≥ 2} ∪ {x → y}
Sn

00 Sn
0 ∩ R2 ∩M {ORm, x, x, x → y}

S00 S0 ∩ R2 ∩M {ORm | m ≥ 2} ∪ {x, x, x → y}
Sn

12 dual of Sn
02 {NANDm, x, x}

S12 dual of S02 {NANDm | m ≥ 2} ∪ {x, x}
Sn

11 dual of Sn
01 {NANDm, x → y}

S11 dual of S01 {NANDm | m ≥ 2} ∪ {x → y}
Sn

10 dual of Sn
00 {NANDm, x, x, x → y}

S10 dual of S00 {NANDm | m ≥ 2} ∪ {x, x, x → y}
D {x⊕ y}
D1 D ∩ R1 {x⊕ y, x}
D2 D ∩M {x⊕ y, x → y} ,{xy ∨ xyz}
L {EVEN4}
L0 L ∩ R0 {EVEN4, x} ,

{
EVEN3

}
L1 L ∩ R1 {EVEN4, x} ,

{
ODD3

}
L2 L ∩ R2 {EVEN4, x, x} , every {EVENn, x} where n ≥ 3 is odd
L3 L ∩D {EVEN4, x⊕ y} ,

{
ODD4

}
V {x ∨ y ∨ z}
V0 V ∩ R0 {x ∨ y ∨ z, x}
V1 V ∩ R1 {x ∨ y ∨ z, x}
V2 V ∩ R2 {x ∨ y ∨ z, x, x}
E dual of V {x ∨ y ∨ z}
E0 dual of V1 {x ∨ y ∨ z, x}
E1 dual of V0 {x ∨ y ∨ z, x}
E2 dual of V2 {x ∨ y ∨ z, x, x}
N {DUP}
N2 N ∩ L3 {DUP,EVEN4, x⊕ y}, {NAE}
I L ∩M {EVEN4, x → y}
I0 L ∩M ∩ R0 {EVEN4, x → y, x} ,{DUP, x → y}
I1 L ∩M ∩ R1 {EVEN4, x → y, x} ,{x ∨ (y ⊕ z)}
I2 L ∩M ∩ R2 {EVEN4, x → y, x, x}, {R1/3}, {x → (y ⊕ z)}

Table 1.2: Bases for all Boolean co-clones



Chapter 2

Very Basic Satisfiability: The
Formula Value Problem

2.1 Introduction

When studying problems related to Boolean formulas in any way, one of the most basic
computational tasks arising in any algorithm used in this context is the Formula Value
Problem. This is the problem to evaluate a given formula without variables, and can
be seen as the most basic version of satisfiability: for a formula without any variables,
there is only one possible truth assignment (the empty assignment), and this satisfies the
formula if and only if the formula evaluates to true.

It is obvious that the formula value problem can be solved in polynomial time. Its
circuit version is one of the the most well-known problems which are complete for poly-
nomial time, as shown by Richard Ladner [Lad75a]. In [Bus87], Samuel Buss showed
that the formula version of the problem can be solved in NC1, which means that the
complexity for formulas is significantly lower than the problem for circuits. When con-
sidering formulas as tree-like circuits, this seems like a natural result: in a tree structure,
the predecessors of each node are completely independent. Therefore, it is not surprising
that the problem can be solved by an efficient parallel algorithm. For circuits, on the
other hand, this is not possible: since for any gate in the circuit, its predecessors might
“meet” deeper down in the circuit, the values of these gates cannot be considered to be
independent. Therefore, this problem is one of the examples where the complexity for
formulas and circuits actually differs. To our knowledge, such examples are only known
for complexity classes below P - as long as only the ≤p

m-degree of complexity is considered,
the complexity seems to be the same if we consider formulas or circuits. This is certainly
the case for the satisfiability problem, as the proof for Theorem 1.4.3 also can be applied
to the circuit case. Other problems where B-circuits and B-formulas lead to the same
≤p
m-degree of complexity are certain membership problems in Post’s lattice, as shown by

Elmar Böhler and Henning Schnoor in [BS05], and various satisfiability problems in the
context of modal logics as shown by Michael Bauland, Edith Hemaspaandra, Henning
Schnoor, and Ilka Schnoor in [BHSS06]. We will see in Chapter 3 that this holds when
considering the enumeration problem for Boolean formulas and circuits.

We formally define the formula value problem as follows: Let D be a finite set, and
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let B be a finite set of functions on D.

Problem: VALF (B)
Input: A variable-free B-formula ϕ and an element α ∈ D
Question: Does ϕ evaluate to α?

For Boolean domains, this question can be stated more naturally as “does ϕ evaluate
to true,” i.e., the input for the problem in the Boolean case consists only of a formula,
without the additional value α.

When considering this problem as defined above, a decision algorithm for a problem
VALF (B) not only has to evaluate the given formula, but has to ensure its syntactical
correctness as well. For formulas written as strings, this involves counting the number of
parentheses, and verifying that each function gets the appropriate number of arguments.
This problem is harder to solve than the evaluation problem for some formulas itself.
Hence, we consider the formula value problem as a promise problem: in our algorithms,
we assume that the input is syntactically correct. For syntactically incorrect inputs, the
output of the algorithm is not required to be correct. For similar reasons, for the problem
VALF (B) , we assume that all the functions in B only have relevant variables. Otherwise,
the “relevancy check” for parts of the formula would dominate the complexity of the
decision problem. For technical reasons, we assume that the identity is always a member
of the set B, and that our Turing machines have a separate symbol for each function in
B, and for each α ∈ D.

Hence, for the consideration of this problem, we define variable-free formulas as fol-
lows: if α ∈ D, then α is a variable-free B-formula. If ϕ1, . . . , ϕn are variable-free
B-formulas and f ∈ B is an n-ary function, then fϕ1 . . . ϕn is a variable-free B-formula.
The value of such a formula is defined in the canonical sense: the value of α ∈ D is α
itself, and if α1, . . . , αn are the values of ϕ1, . . . ϕn, then the value of fϕ1 . . . ϕn is defined
as f(α1, . . . , αn). Note that in formulas defined in this way, no parentheses occur. Since
we are dealing with formulas in prefix notation as opposed to infix notation, this does
not give any ambiguity.

2.2 Logarithmic Time

Turing machines operating in logarithmic time obviously cannot read the entire input.
Therefore, in order to define classes of problems solvable in logarithmic time, we need to
consider special access modes for the input. There are several definitions in the literature,
the following are taken from [RV97]. A deterministic logtime Turing Machine has access
to the input x via an index tape, on which it writes a number j, enters a query state,
and receives the j-th character of the input string, at cost 1. We assume that the index
tape is not deleted after the query. The class LOGTIME contains all decision problems
which can be solved by such a machine in logarithmic time. A stronger restriction is that
we demand that the Turing machine may only read one character of its input. Problems
which can be solved by deterministic logtime machines with this additional restriction
form the class ∆R

0 . It is obvious that these classes are in fact different: the problem to
determine, for a string from {0, 1}∗ , if it starts with a 1 and ends with a 1, can be solved in
LOGTIME by simply checking these two positions in the string, but it obviously cannot
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be solved by only looking at one character of the input. If we allow the machine to be
nondeterministic, but still demand that it only makes one access to the input tape, then
the class of languages decidable by these machines is the class ΣR

1 , and the complements
of languages in this class make up the class ΠR

1 .

It is obvious that the classes ∆R
0 and ΣR

1 differ: it is easy to see that the language
containing all strings over the alphabet {0, 1} which contain at least one occurrence of
1 can be recognized in ΣR

1 , but it cannot be recognized in ∆R
0 , since for the strings 0n1

and 0n−110, the deterministic machine would need to read the same bit from the input,
and therefore would miss the occurrence of the 1 for at least one of the two words. With
a similar argument, it can be seen that this problem cannot be solved in LOGTIME.

Another way to define the access of a logtime machine to the input tape is block
read/write: In this model, M can write two addresses i ≤ j on the index tape, and it
then receives the string consisting of bit i to bit j of the input, at cost log |x|+ (j − i).

For these very low complexity classes, we also need an appropriate notion of reduc-
tion. We use two reduction types here: first, we consider logtime-uniform projections,
as introduced in [RV97], which were defined to formulate the ”sharpest practical notion
of reducibility.” For our purposes, the interesting properties of this reduction are that
it is transitive, closes our relevant complexity classes and contains the idea of a ”finite
replacement reduction.” The formal definition, taken from [RV97], is as follows:

Definition Let A and B be languages, and f be a many-one reduction from A to B
such that |f(x)| is polynomial in |x|.

1. A reduces to B via a deterministic logtime reduction if there is a deterministic
logtime Turing machine M that computes f in the following way: On input x and
auxiliary input |x| and j, M outputs |f(x)| and the jth bit of f(x). If additionally
M only makes one query to the input, then the reduction is a Ruzzo reduction.

2. A reduces to B via a DLT reduction if there is a deterministic logtime Turing
Machine M that works in block read/write mode and on input x and auxiliary
input |x|, i, j with j − i = O(log |x|), outputs bits i to j of f(x) together with
|f(x)|.

These reducibility concepts have different properties which are usually required from a
reduction. The Ruzzo reduction is transitive, but not all relevant classes are closed under
this reduction. The DLT reduction is not transitive, but closes our classes. Since we
want both of these properties, we define that A reduces to B via a deterministic logtime
projection, A ≤dlt

proj B, if A reduces to B via a reduction function f which is both a Ruzzo
and a DLT reduction. This reduction is both transitive and closes our complexity classes.

For a detailed explanation of these concepts, see [RV97]. Note that all of the re-
ductions appearing in this chapter, with the exception of the reduction in Lemma 2.4.7,
can also be computed by a Mealy automaton. Hence, the reductions in this chapter can
basically be computed by almost any reduction type which has practical applications at
all. The reduction in the lemma just mentioned does not work with the strict resource
bounds we require for the ≤dlt

proj-reductions. Here, we use deterministic logtime reductions
as defined above. Finally, another degree of complexity which arises in the classification
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of the formula value problem is the following:

Problem: MOD2

Input: Boolean values α1, . . . , αn
Question: Is

∑n
i=1 αi an even number?

This problem is essentially the computation of the n-ary parity function. This function
plays a crucial role in circuit complexity theory, as for this function, it can be shown that
is is in the class NC1, but cannot be computed by AC0-circuits (see [Smo87]). It naturally
arises in the complexity classification of the formula value problem.

2.3 Tools

The first result in this context is an easy observation: Since in our formulas, constants
from the domain D are allowed, it does not matter if we have these constants in our base
B as well. Hence, we get the following trivial proposition:

Proposition 2.3.1 Let B be a finite set of functions over a finite domain D. Then
VALF (B ∪D) ≡dlt

proj VALF (B) .

Proof. The reduction from VALF (B) to VALF (B ∪D) is trivial, since every correct in-
stance for VALF (B) also is a correct instance for VALF (B ∪D) . For the other direction,
we replace every function symbol for a constant function with the corresponding constant
from D. Note that if we use the same symbol for both the constant function “computing”
the value α and the value α ∈ D itself, then this reduction is in fact the identity. �

I

V E N

M L

BF

Figure 2.1: The Boolean clones
containing the constants

For the Boolean case, Proposition 2.3.1 simplifies
the task of determining the complexity of the problem
VALF (B) for all possible sets B significantly: there is an
infinite set of problems of the form VALF (B) to consider,
since there are infinitely many sets of Boolean functions.
We will later see that the complexity of VALF (B) de-
pends only on the clone generated by B, and Proposi-
tion 2.3.1 tells us that we only need to consider those
clones which contain both Boolean constants 0 and 1.
By definition of I, the clonescontaining both constants
are exactly those which are a superset of the clone I,
and Figure 1.2 shows that there are only finitely many
of these, namely the ones shown in Figure 2.1.

We now exhibit one problem which is complete for
the crucial class ΣR

1 :

Proposition 2.3.2 Let L be the language of strings over the alphabet {0, 1} which con-
tain at least one occurrence of 1. Then L is complete for ΣR

1 under ≤dlt
proj-reductions.
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Proof. It is obvious that L is in ΣR
1 . Hence, let L1 be some language over an alphabet

Σ from this class, and let M be a machine which accepts it in logarithmic time with the
restriction that at most one bit of the input string is read.

Then there exists a function g : N × Σ → {0, 1} which can be computed in linear
deterministic time, such that g(i, c) = 1 if and only if the machine M accepts, if it
nondeterministically chooses to read the i-th bit of the input, and this bit is the character
c (since the length of i is logarithmic in |x|).

The reduction function f is defined as follows: For x ∈ {0, 1}∗ , the length of f(x) is
the same as the length of x, and the i-th position of f(x) is g(i, x[i]), where x[i] denotes
the i-th bit of x.

We claim that f is a many-one reduction from L1 to L. For this, note that x is a word
from L1 if and only if there is some number i, such that if M reads the i-th bit of x, it
accepts. By definition, this is equivalent to g(i, x[i]) = 1 for some i, and by definition of
f, this is equivalent to f(x) ∈ L.

It is easy to see that f can be computed by a ≤dlt
proj-reduction, since it captures the

idea of a local replacement. From the definition, it is obvious that f can be computed
by a Ruzzo reduction.

It also can be computed by a DLT reduction, since in order to compute bits i to j of
f(x), exactly the bits i to j of x are needed, and g can be computed in logarithmic time.

Again, since the length of the binary representations i and j are logarithmic in the
length of x, this implies that g can be computed in time logarithmic in the length of
x. �

2.4 Classification

We now give concrete complexity results for the formula value problem. To prove the
general upper bound, we will briefly leave the Boolean domain for technical reasons.
After that, we will consider the relevant Boolean clones and give complexity results for
these cases.

2.4.1 General Upper Bound

The first complexity result here is the general upper bound: We show that for any finite
set B of Boolean functions, the problem VALF (B) can be solved in ALOGTIME = NC1.
The identity of these classes has been shown by Walter Ruzzo in [Ruz81]. The formula
evaluation result has been proven by Samuel Buss in [Bus87] for Boolean formulas using
only the operators ∧, ∨, and ¬, which are presented in infix notation. This formulation
does not give an easy way to generalize it to non-binary operators. But a more general
result has been proven by Martin Beaudry and Pierre McKenzie in [BM95]: they consider
formulas in infix notation, and hence their results are restricted to binary operations. But
since their theorem handles arbitrary domains, we can “exchange domain size for arity:”
starting with our Boolean formulas, in which operations of arbitrary arity appear, we
construct formulas over a larger domain, but using only binary operations. This can
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be formalized as follows. In the following lemma, ar(B) denotes the maximal arity of a
function in B.

Lemma 2.4.1 Let D be a finite domain, and let B be a finite set of finitary functions
over D, such that ar(B) ≥ 3. Then VALF (B) reduces to VALF (B′) for a finite set B′ of
functions over a domain D′, where |D′| = |D|2 + |D|, ar(B′) = ar(B) − 1, and |B′| =
|B|+ 1. The reduction can be computed in NC1.

Proof. We define the new domain D′ as D ∪ (D × D) (without loss of generality, we
assume that D and D×D are disjoint sets). Now we define a new binary operation ∗ on
D′. For α1, α2 ∈ D, we define α1 ∗ α2 =def (α1, α2). For arguments not of this form, ∗ is
defined in an arbitrary way.

Now for any function f ∈ B such that n =def ar(f) ≥ 3, define a new function f ′ of
arity n − 1 as follows: For arguments α1, . . . , αn−1, if α1 = (β1, β2) for some β1, β2 ∈ D,
and α2, . . . , αn−1, define f ′(α1, . . . , αn−1) =def f(β1, β2, α3, . . . , α4).

Now given a variable-free B-formula, we replace any occurrence of ff1f2 . . . fn with
f ′ ∗ f1f2 . . . fn. The resulting formula is obviously equivalent to the original, and the
construction can be performed in NC1. �

Using this transformation allows us to apply the result from [BM95] to show our
desired general upper bound. The main task which remains is to convert our formulas
from prefix notation to infix notation. In order for the formulas to still give a well-defined
value, we need to introduce parentheses to remove ambiguity. Note that the result in
[BM95] is much more general than we need it for this context: they prove that even with
formulas in infix notation with “missing” parentheses, it can still be decided in NC1 if
there is a possible way to evaluate the formula so that the result is a given constant.

Theorem 2.4.2 Let B be a finite set of Boolean functions. Then VALF (B) ∈ NC1.

Proof. Let k =def ar(B). If k > 2, then by applying Lemma 2.4.1 k − 2 times, we can
reduce the problem to a problem having only at most binary operations. Since B does
not depend on the input, this conversion can be performed by k − 2 subsequent NC1-
computable steps, and hence the entire construction can be performed in NC1. Similar
to the proof of Proposition 3.1 in [BM95], we can reduce the problem to the case where
B consists of a single binary operator.

Theorem 3.4 from [BM95] states that the evaluation of a formula in infix notation
can be performed in NC1. Hence, to obtain our desired result, it suffices to convert a
given B-formula ϕ which is given in prefix notation into an infix representation. This
representation exists, since due to the above we can assume that B only contains one
binary operator, which we will call f.

For the conversion, for two subformulas ϕ1 and ϕ2, we convert the term ψ = fϕ1ϕ2 to
(ϕ′1fϕ

′
2), where ϕ′1 and ϕ′2 are the infix representations of ϕ1 and ϕ2. For any subformula

ψ, let ext(ψ) denote the length of its infix representation. Then it is easy to see that
ext(ψ) = |ψ|+2 ·ψf , where ψf is the number of function symbols f appearing in ψf . The
equality holds due to the added parentheses in the conversion.
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The main operation required to compute the infix representation ϕ′ of a given variable-
free formula ϕ is to determine the place of the function symbols f, since the order of the
constant symbols is preserved in the conversion.

To determine the position of f in the infix representation of ψ, we mainly need to
compute the position of the last character of ϕ1, which basically means counting to
determine the arguments for each binary operation: we set a counter to 2 and increment
it by 1 whenever we find a binary operation symbol, and decrease if by 1 whenever we
find a constant. This can be done in parallel for each function symbol appearing in the
formula.

Since counting can be done in NC1, this can be performed in NC1. Now the position
of the symbol f in the infix representation ϕ′ of ϕ is its position in ϕ plus ext(ϕ1) plus
the number of parentheses introduced in the part of ϕ′ before the occurrence of ϕ′1. This
can be determined in a similar way by counting operation symbols and checking if their
range extends beyond the position of f. If it does, then add 1 for the opening parenthesis,
if it does not, add 2 to take into account both the opening and the closing parenthesis.

To determine this, the range of an operation symbol appearing in ϕ has to be checked,
this can be done in the same way as outlined above.

Hence, we can compute this conversion in NC1, and thus we get the desired result. �

2.4.2 Results for Individual Clones

As mentioned in Section 1.4, the symmetry in Post’s lattice often gives a corresponding
symmetry for the resulting complexities of the problem at hand. The Formula Value
Problem is an example where this is true:

Proposition 2.4.3 Let B be a finite set of Boolean functions. Then VALF (B) reduces

to VALF (dual (B)) with a ≤dlt
proj-reduction.

Proof. Let ϕ be a variable-free B-formula. We compute a dual (B)-formula by replacing
every function symbol f in ϕ with the symbol for the function dual (f) . This includes
exchanging the symbol for the constant 0 with the symbol for the constant 1, and vice
versa. We call the resulting formula ϕ′. This transformation can obviously be performed
by a ≤dlt

proj-reduction, since this is just a character replacement. To prove the proposition
it suffices to show that ϕ is true if and only if ϕ′ is false. We show this claim by induction
over the formula construction.

If ϕ is a constant, then this is true by definition. Now let ϕ = fϕ1 . . . ϕn for an n-ary
function f and formulas ϕ1, . . . , ϕn. It is obvious by definition that ϕ′ = dual (f)ϕ′1 . . . ϕ

′
n,

where the ϕ′i denote the formulas resulting from the transformation applied to the ϕi.
By induction, we know that for all relevant i, ϕ′i evaluates to the negation of the truth
value of ϕi. Let α1, . . . , αn denote the truth values of ϕ1, . . . , ϕn. Then the truth value
of ϕ is simply f(α1, . . . , αn). Due to the above, it follows that the truth value of ϕ′ is
dual (f) (α1, . . . , α1), which due to the definition of the dual (.) operator is the negation
of the truth value of ϕ. �

We now look at the individual clones that are interesting for our classification, i.e., the
clones which contain both Boolean constants 0 and 1. We start with the simplest problem
in this context, which naturally corresponds to the smallest of our relevant clones.
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Lemma 2.4.4 Let B be a finite set of Boolean functions such that [B] = I. Then
VALF (B) ∈ ∆R

0 .

Proof. Due to the prerequisites, B only contains symbols for the identity, and constants.
Since we assume our sets B only contain functions which have no irrelevant variable,
this means that all function symbols from B are either unary or nullary. Hence, a
syntactically correct B-formula is of the form f1 . . . fnc, where the fi are symbols for the
identity function, and c is a symbol representing either 0 or 1.

To determine if such a formula is true, it is sufficient to read its very last character.
This can be performed in ∆R

0 . �

Note that in the previous lemma, without the assumption that B only contains func-
tions which depend on all of their variables, the complexity of the problem rises. Instead
of looking at the last character only, the evaluation procedure has to follow a “relevant
path” to evaluate the formula. Hence, our assumption is not a mere convenience, but
does have an impact on our results. However, we believe that this version of the problem
is more natural: in a concrete context, if we want to express some facts using proposi-
tional formulas, we are usually interested in a succinct representation. To use functions
with irrelevant variables only adds redundancy, and this will not be used in practice.

The key reason why the above problem is so very simple is that the involved functions
are trivial, and that since they are unary, we know where to look for the argument for their
concatenation. It is natural that the complexity rises when we allow binary functions.

Lemma 2.4.5 Let B be a finite set of Boolean functions. If [B] = V, then VALF (B) is
complete for ΣR

1 under ≤dlt
proj-reductions. If [B] = E, then VALF (B) is complete for ΠR

1

under ≤dlt
proj-reductions.

Proof. We show the claim for the case [B] = V, the case [B] = E follows from Propo-
sition 2.4.3. Hence, let [B] = V. It is obvious that VALF (B) ∈ ΣR

1 , since a B-formula
evaluates to true if and only if at least one of the constants in the formula is 1: This
condition is obviously necessary, and since we do not allow irrelevant variables in our
functions in B, the functions in B are all disjunctions of various arities. Hence, the
condition is sufficient as well.

It remains to show that the problem is hard for ΣR
1 under ≤dlt

proj-reductions. Let L
denote the language of strings over the alphabet {0, 1} containing at least one occurrence
of 1. This problem is hard for ΣR

1 due to Proposition 2.3.2. Due to Lemma 1.4.5, there
exists a B-formula ψ in which the variables x and y, and possibly other variables z1, . . . , zk
appear, and both x and y appear exactly once, and ψ(x, y, z1, . . . , zk) is equivalent to
x ∨ y. Let ψ = ψBxψMyψE (as a string). Since all functions from B are commutative,
we can swap arguments and achieve that ψE is empty. Let c1 . . . cn be some string from
{0, 1}∗ . Now define ϕ as the formula ψBc1ψ

MψBc2ψ
MψBc3 . . . ψ

Bcn−1ψ
Mcn. Since the

strings ψB and ψM are independent of the input, this can be performed by a uniform
logtime projection. Since ψ represents the OR-operator, it is obvious that the formula
ϕ constructed in this way evaluates to 1 if and only if at least one of the characters
c1, . . . , cn is 1. �
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The problems involving just AND and OR operators covered in the above lemma are
easy, because here one value “dominates” the entire truth evaluation of the formula in
the following sense: in the case of OR, if there is at least one 1 appearing in the formula,
then the formula evaluates to 1. In the case of AND, the presence of at least one zero
ensures that the formula is false. It is natural that the formula value problem gets more
difficult if for the formula evaluation, every symbol appearing in the function must be
taken into account. This happens in the following case: in the case where we only have
negations and identities, the number of negation symbols in the formula determines the
truth value together with the single constant appearing. In the case where the binary
exclusive-or is present, more constant symbols can appear, and each of them needs to
be considered. The formula value problem for these cases is still relatively easy, since
the functions in the considered clone are symmetric in all of their arguments. Hence,
the complexity does rise, but due to the symmetry, the problem is still easier than the
general formula evaluation problem. It should be noted that since it has been proven that
the problem MOD2 cannot be performed in AC0 (this follows from Roman Smolensky’s
famous theorem [Smo87]), and ΣR

1 very trivially is subclass of AC0, the following lemma
gives a provably harder complexity bound than the one given in Lemma 2.4.5.

Lemma 2.4.6 Let B be a finite set of Boolean functions such that [B] = N or [B] = L.
Then VALF (B) is equivalent to MOD2 under ≤dlt

proj-reductions.

Proof. In both cases, Lemma 1.4.5 implies that there exists a B-formula ψneg in which
the variable x appears exactly once as the last character in the formula, and ψneg(x) is
equivalent to x. We can, without loss of generality, assume that x is the only variable
appearing in ψneg : other appearing variables can be replaced by constants from {0, 1} ,
and since these variables are irrelevant due to the choice of ψneg, this transformation does
not change the function represented by the formula. Now, let c1 . . . cn be an instance of
MOD2, i.e., c1 . . . cn is a string over the alphabet {0, 1} . For the reduction, we construct
a B-formula as follows: Define

ϕ =def ψ1 . . . ψn0, where ψi =def

{
ψid, if ci = 0,

ψneg, if ci = 1.

Here ψid denotes a sequence of as many identity symbols as there are symbols in
the formula ψneg. This ensures that the starting positions of the occurrences of ψid and
ψneg do not depend on whether the previously occurring symbols denote negation or the
identity. Therefore, the reduction again consists of a finite replacement table, and hence
can be computed by a ≤dlt

proj-reduction. It is obvious that the formula ϕ evaluates to 1 if
and only if the number of occurrences of 1 in the string c1 . . . cn is odd.

Now for the other direction, we show that VALF (B) reduces to MOD2. For this,
consider that each n-ary function f ∈ B is equivalent to c ⊕ xi1 ⊕ · · · ⊕ xin , and all
functions in B are associative. Let ϕ be a variable-free B-formula. A reduction can be
performed by simply inserting a 0 for every constant 0 or variable value 0 appearing in
the formula, and similarly a 1 for every 1 appearing either directly in the formula or
indirectly in the function from B.
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To be precise: for each occurrence of a function symbol f, write a 0 or a 1 correspond-
ing to the constant c in the formula. Simply copy any symbols for constants appearing
in ϕ. This obviously is a correct reduction which can be computed by a deterministic
logtime projection. �

We now consider the case where we have both AND and OR functions present in our
base B. Here, we cannot neglect most of the arguments, as was possible in Lemma 2.4.5,
and there are no symmetries that we can use like in Lemma 2.4.6. In this case, the lower
complexity bound for the problem matches the upper bound proven in Theorem 2.4.2: we
get a NC1-completeness result. Hence the formula value problem is one example where the
monotone property of the involved functions does not give an easier problem, in contrast
to the results for the satisfiability problem (see Theorem 1.4.3) and the enumeration
problem for propositional formulas, which we consider in Chapter 3. The proof for the
following Lemma uses the idea already exhibited in [Bus87] to express alternating Turing
machines as monotone Boolean formulas. In our situation, the proof becomes more
difficult technically, since we cannot use infix notation due to our more general setting.

Lemma 2.4.7 Let B be a finite set of Boolean functions with [B] ∈ {M,BF}. Then
VALF (B) is complete for NC1 under deterministic log time reductions.

Proof. The upper complexity bound follows from Theorem 2.4.2. With Lemma 1.4.5
or Lemma 1.4.4, we obtain formulas f∨(x, y) and f∧(x, y) for x∨ y and x∧ y with each of
the variables occurring only once. By padding the formulas with symbols for the identity,
we can achieve that these formulas are of the following form:

f∨ = fB∨ x fM∨ fN∨ y fE∨ , and f∧ = fB∧ x fM∧ fN∧ y fE∧ and it holds that |fE∨ | = |fM∨ | =
|fN∨ | = |fE∨ | = |fB∧ | = |fM∧ | = |fM∧ | = |fE∧ |.
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B1 E1

M2 N2 N5M5
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Figure 2.2: Example tree with height 3

In the same way, we can get formu-
las f0 and f1 representing the constants
that are split up into these parts, but
without occurrences of x and y. We also
assume that the formula parts have a
length of some power of 2, and consider
them as of length 1 for the rest of the
proof—since division by and multiplica-
tion with a power of 2 is easy, the posi-
tion calculation in the formula we want
to construct can be performed by a log-
time machine. Note that these formulas
are not necessarily syntactically correct,
since the symbol for the unary identity
can appear as the last character in the formula. However, to avoid this problem we just
have to ensure that in the complete formula we construct for the reduction, the last
symbol is different from the identity.

The class NC1 is the same as the class ALOGTIME, which is the class of languages
recognized by an alternating Turing machine in logarithmic time. Let L be a language
in ALOGTIME, and let M be an alternating Turing machine accepting L in logarithmic
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time. Without loss of generality, assume that M branches binarily in every non-halting
configuration. The execution tree of the machine M on a given input x directly corre-
sponds to a Boolean formula using only AND (universal configurations), OR (existential
configurations) and constants (halting configurations). The formula we want to construct
is in prefix notation, which corresponds to a tree-walk on the configurations of M using
depth-first search. More precisely: The root of this tree consists of nodes M1 and N1 rep-
resenting the two middle parts of the outmost formula. It has four children: The leftmost
is a node B1 representing the beginning of the formula, the second one, ϕ1 represents the
first argument, the third child ϕ2 is the second argument and finally the right-most child,
E1, represents the ending part of the formula. The order of the tree-walk is the same as
the order in which these parts of the formula appear when written out: B1ϕ1M1N1ϕ2E1.
The formulas ϕ1 and ϕ2 represent subtrees constructed in the same manner. Figure 2.2
is an example for such a tree with height 3. Here B1 refers to the beginning part of the
first (outmost) formula, this is fB∨ if the first configuration of the alternating machine is
existential, and fB∧ if it is universal, M1 and N1 refer to the two middle parts and E1 to
the end part.

The numbers 1 to 28 indicate the order in which the parts appear in the formula. It
is obvious that the formula constructed in this way is true if and only if x is an element
of L. For a canonical logtime reduction, it would be necessary to compute, on input x
and n, the n-th bit of the formula. The main problem to solve here is to determine how
the node n is labeled in the tree outlined above. The algorithm presented in Figure 2.3
calculates, on input h (height of the tree) and n, a search string to the node n as follows:
Observe that the tree is ”essentially binary”, that is, every vertex has at most two subtrees
which are not just single vertices. Now a search string to a node Bi,Mi,Ni or Ei consists
of a word from {l, r}∗, denoting a left/right path to the corresponding Mi node, plus
an indicator B,M,N or E, to determine which of these nodes is required. Given such
a search string, a deterministic Turing Machine can simulate the alternating machine
recognizing the language L and make the non-deterministic choices according to the
search string, and thus determine whether this is an existential, universal, accepting or
rejecting configuration. Based on the indicator, it is easy to look up the appropriate bit
of the corresponding formula part.

A tree of the form outlined above with height h (the height is log |x|) has 2h+2 − 4
vertices. The node M1 has the number 2h+1 − 2, E1 has number 2h+2 − 4. The first
B-node of the left child has number 2, for the right subtree, this number is 2h+1. Given
these numbers, it is easy to see that the algorithm in Figure 2.3 correctly computes the
search string for a given node: In the conditions adding a ”r” or a ”l” to the string,
the new number n is the number of the required node when considering the right or left
subtree as an independent tree (the numbers added or subtracted to n correspond to the
difference between the indexes of the B nodes of the three subtrees involved).

The algorithm does not run in logarithmic time, but we can work around that: Since
we have the identity in our language, we can insert these without altering the value of the
resulting formula. This corresponds to ”leaving out” some numbers in the enumeration,
and thus we can reduce the search string calculation to a search string verification as
follows: On input (n, s, x), we put out the corresponding bit of the node described by
s on input x, if the string s describes the way to node n in the tree, and the identity
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symbol otherwise. Since there are O(|x|) nodes in the tree, the binary length of n is
log |x|, the same holds for s. The resulting formula contains all formulas representing
the configurations in the correct order, plus identity symbols. As mentioned above, we
must assure that the final character of the generated formula is not the identity symbol.
Therefore we must ”switch” the very last character with the last ”relevant” character,
i.e., instead of writing the last symbol of E1, we write in identity symbol, and as the very
last character, we write the last symbol of E1. This can easily be done, since we do not
have to perform the verification in this case: Whenever the search string leads to the
last symbol of E1, write an identity, unless the input is 1 . . . 1, the very last symbol. The
verification needs to be performed in time O(log |x|).

Input: Height h and search number n
searchstring =def ε
loop

if search=1 then
output searchstring+”B”

else if n = 2h+1 − 2 then
output searchstring+”M”

else if n = 2h+1 − 1 then
output searchstring+”N”

else if n = 2h+2 − 4 then
output searchstring+”E”
end.

else if first bit of n is zero then
// equivalent to n < 2h+1 − 2
// after cases above have been consid-
ered
n =def n− 1
searchstring =def searchstring+”l”

else if first bit of n is one then
// equivalent to n > 2h+1 − 1
// after cases above have been consid-
ered
n =def n− 2h+1 + 1
searchstring =def searchstring+”r”

end if
h =def h− 1

end loop

Figure 2.3: Search Algorithm

We proceed as follows: On tape one,
we keep a copy of the search string. On
tape two, we keep track of what we added
to the number n, on tapes three and four
we keep track of what we subtracted from
n. On tape five, we keep the number
h, which is initially set to log |x|. For
each symbol of the search string, we per-
form the additions and subtractions on
n and h that the algorithm would have
done when writing the symbol. This es-
sentially requires adding the constant 1 to
tapes two and three, and setting the left-
most bit of tape 4 to 1 (The statement
N =def n−2h+1+1 is split up into an addi-
tion and a subtraction). After processing
each symbol, tape 5 is decremented by 1.
By standard amortized running time anal-
ysis, this can be done in time O(log n).
When the search string is processed, we
add to n the content of tape 2 and sub-
tract tapes 3 and 4, which can be done
in time O(log n) again. Finally, the con-
ditions whether to put out M,N,E, or B
can be verified in time O(|n|), since these
are easy patterns in binary representa-
tion. The length of the resulting formula is
O(2|n|+|s|) = O(2logn+logn) = O(n2), where
n is the length of |x|, and thus polynomial
in |x|. Since these formulas have length
of more than one bit, we still need to di-
vide by the length, but that can be done
easily—just assure the formula length is a
power of 2. �
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2.5 Conclusion

With the results in this chapter, we are now in a position to prove a complete classification
of the formula value problem for the Boolean case. Due to Proposition 2.3.1, we only
need to consider the clones in which both constants appear, and hence, the following
theorem gives the complete classification:

Theorem 2.5.1 Let B be a finite set of Boolean functions. Then the following complexity
classification holds:

• If [B ∪ {0, 1}] = I, then VALF (B) ∈ ∆R
0 .

• If [B ∪ {0, 1}] = V, then VALF (B) is complete for ΣR
1 under ≤dlt

proj-reductions.

• If [B ∪ {0, 1}] = E, then VALF (B) is complete for ΠR
1 under ≤dlt

proj-reductions.

• If [B ∪ {0, 1}] ∈ {N,L} , then VALF (B) is equivalent to the problem MOD2 under
≤dlt

proj-reductions.

• Otherwise, VALF (B) is complete for NC1 under deterministic log time reductions.

Proof. In the cases not covered in the first four cases, Figure 2.1 shows that the set
B ∪ {0, 1} generates a clone which is either M or BF. The complexity classification for
the individual cases then follows from the results previously shown in this chapter.

Since due to Proposition 2.3.1, the problems VALF (B) and VALF (B ∪ {0, 1}) have
the same complexity, this finishes the proof of the theorem. �

It is worth noting that although Theorem 2.5.1 gives a classification where the com-
plexity of the problem VALF (B) depends only on the clone generated by B, there is no
“uniform” proof showing that if [B1] = [B2] , then VALF (B1) ≡dlt

proj VALF (B2) . Rather,
this follows from the proofs for the individual cases in this chapter, and almost all of the
individual result make use of the fact that for all relevant cases, Lemmas 1.4.4 and 1.4.5
guarantee the existence of short formulas to express the necessary Boolean connectives.
This is a significant difference between B-formulas and B-circuits, since for circuits, such
a uniform proof can easily be obtained by simple gate replacement. In the constraint
context, uniform proofs often easily follow from an application of the Galois connection,
Theorem 1.5.3. We will see examples of such results in Chapters 4 and 5.

We have seen that the formula value problem can be parametrized by restricting the
occurring propositional operators, and that the complexity of the problem depends only
on the clone generated by the allowed operators. However, to achieve this result we
needed to make several assumptions. Hence, this problem shows that when considering
very low complexity classes, like the classes below logarithmic time, it gets difficult to
deal with “natural” problems. We also needed to use a less strict reduction, namely the
deterministic logtime reduction to show our NC1 hardness result for the case where the
set B ∪ {0, 1} generates one of the clones M and BF. However, the assumptions that we
needed to make are not too unreasonable: syntactical correctness of formulas can usually
be guaranteed in a practical setting, where the occurring formulas are typically generated
by an algorithm. The restriction that the functions appearing in the set B do not have
any non-relevant variables also can be seen as a natural one, as explained above. The
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final assumption, that B contains a symbol for the identity, is similar to the condition of
“neutral characters” which is sometimes used in formal language theory. The application
of the less strict reductions for our NC1 completeness result also can be justified, since
NC1 is a lot stronger in computational power than the logtime classes considered here,
and these reductions are still strict compared to the resources of NC1 (typically, AC0-
reductions are used when comparing the complexity of problems inside NC1). Therefore,
our results are still meaningful, but also demonstrate that when dealing with natural
problems, the usefulness of complexity classes as low as logarithmic time is limited.

Still, the general result that formula evaluation can be performed in NC1 has interest-
ing practical applications, since this means that there is an efficient parallel algorithm for
this problem. As mentioned in the introduction, our classification immediately implies
complexity results for the satisfiability problem for formulas as well: since for any set B
of Boolean formulas, the formula value problem can be computed in NC1, this implies
that the satisfiability problem for monotone formulas can also be decided in this class,
since in order to decide this, it suffices to test if the given formula is satisfied by the all-1-
assignment. With the hardness result from our work, it also follows that the satisfiability
test for monotone formulas is NC1-complete, if we allow the constant 0 in the base B
(otherwise, such formulas are always satisfiable).

For other sets of Boolean functions, the formula value problem can actually be harder
than the satisfiability problem. For example, let B be a finite set of Boolean functions
such that [B] = R1. Then the formula value problem for B-formulas is complete for NC1,
since adding both constants to B gives a set which generates the clone BF. However, the
satisfiability problem for B-formulas is trivial, since every B-formula is satisfied by the
all-1-assignment. In this case, it is also trivial to compute one single solution, since an
algorithm just needs to print out the all-1-assignment. For another example, consider a
set B such that [B] = D. Again, the satisfiability problem is trivial, since every B-formula
is satisfiable. But the formula value problem again is NC1-complete. In this case, we
cannot easily generate a satisfying solution, since we just know that for each assignment
I to the variables in a B-formula ϕ, at least one of I and its negation satisfies ϕ. But to
decide which of them does, and print a solution, a formula value test has to be performed.

In the next chapter, we consider questions like these, where we not only look for one
satisfying assignment of a formula, but study the problem to generate all solutions of a
given B-formula.



Chapter 3

Enumerating all Solutions For
Propositional Formulas

3.1 Introduction

In Chapter 2, we studied how restricting the allowed propositional operators affects the
complexity of the problem to evaluate a variable-free formula. There are several other
questions to consider in this context. One of the most famous and important problems
in the context of propositional formulas is the satisfiability problem. Theorem 1.4.3
gives a complete classification of this problem with respect to polynomial time many-
one reductions. A refinement of this statement to the complexity classes inside P was
achieved for the case of Boolean circuits by Steffen Reith and Klaus Wagner in [RW00].
The logical next problem to consider, which is often relevant in practical applications, is
the following: given a propositional formula, generate the set of its satisfying solutions.
This problem has been considered in the constraint context. For Boolean constraint
formulas, a complete classification was achieved by by Nadia Creignou and Jeans-Jaques
Hébrard in [CH97]. For non-Boolean domains, the problem was studied by Henning
Schnoor and Ilka Schnoor in [SS06a], but a full classification remains open. In this
chapter, we study the problem in the B-formula context. It is obvious that in general,
this problem cannot be solved efficiently, since we do not even know how to decide if
some formula has a solution at all in polynomial time. But in a similar way to Chapter 2,
we can show that by restricting the propositional operators allowed in the formulas, we
obtain cases in which the problem is significantly easier than for the case where all of the
usual connectors ∧,∨, and ¬ are allowed. For restricted classes of formulas, we obtain
efficient algorithms for the enumeration problem, and we show that in all other cases,
such algorithms cannot exist, unless P = NP.

3.2 Preliminaries

For a formula ϕ, its set of satisfying assignments can be exponential in the length of ϕ.
Therefore, we cannot enumerate all of its solutions in polynomial time, and thus need
to consider other notions of efficiency for this problem. In [JPY88], several possibilities
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were considered for enumeration algorithms. We adopt the definitions for the context
of enumerating solutions for propositional formulas. In this context, an enumeration
algorithm has to perform the following task: given a formula ϕ, print each of its so-
lution exactly once. Such an algorithm has polynomial total time, if the running time
of the algorithm is polynomial in the length of the input formula and in the number
of its satisfying solutions. It has polynomial delay if the time needed by the algorithm
between its start and the printing of the first solution, the time between the printing
of each two consecutive solutions, and the time between printing the last solution and
the termination of the algorithm is bounded by a polynomial in the length of the input
formula. It is lexicographic order , if it prints the solutions of ϕ in lexicographic order.
As remarked in [JPY88], this condition is only of interest in the polynomial delay case,
since with polynomial total time, we can just sort the printed solutions afterwards. Since
sorting can be done in polynomial time, every algorithm satisfying the total polynomial
time condition can be modified to also give the solutions in lexicographical order. There-
fore we require a lexicographic order algorithm to additionally print the solutions with
polynomial delay. An incremental polynomial time algorithm is not required to generate
all solutions in some efficient way, but has to generate one additional solution: given a
formula and a set of solutions for it, find another solution or determine that none exists
in a time bounded by a polynomial in the entire input. In [JPY88], algorithms requiring
only polynomial space were considered as well. Trivially, such an algorithm exists for
enumerating solutions of formulas: since formula evaluation can be performed in NC1

due to Theorem 2.4.2, the obvious “test all assignments and print the satisfying ones”
approach can be used to obtain a polynomial space algorithm. Therefore, we disregard
polynomial space algorithms in our study.

With the above, lexicographical order implies polynomial delay, which implies poly-
nomial total time.

3.3 Algorithms

We present enumeration algorithms for the various cases here. We first present positive
results for the strictest of our enumeration notions.

Theorem 3.3.1 Let B be a finite set of Boolean functions such that SAT (B ∪ {0, 1}) can
be solved in polynomial time. Then B has an efficient lexicographic order enumeration
algorithm, and an incremental polynomial time enumeration algorithm.

Proof. We first show the existence of the lexicographical order algorithm. Let ϕ be a
B-formula, such that VAR (ϕ) = {x1, . . . , xn} . We first check if ϕ[x1/0] is satisfiable,
if yes, we recursively print the satisfying solutions of this formula with the additional
assignment x1 = 0. We do the same for ϕ[x1/1]. For a formula without variables, we
print the empty assignment. Since by the prerequisites, this test can be performed in
polynomial time, this approach obviously gives a polynomial delay algorithm printing the
solutions in lexicographic order.

For the incremental polynomial time algorithm, we are given a formula ϕ and a set
of solutions for ϕ. We first sort these solutions, which can be done in polynomial time.
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It obviously suffices to show that the following can be done in polynomial time: Given
the formula ϕ and two assignments I1, I2, print a solution J |= ϕ such that I1 ≤ J ≤ I2,
or determine that such a solution does not exist. The lexicographic order enumeration
algorithm constructed above can obviously be modified to only print the solutions which
are lexicographically larger than a given assignment. Therefore this algorithm can be
used to solve the problem at hand in polynomial time. �

A look at Post’s lattice and Lewis’ Theorem 1.4.3 immediately gives the following
corollary:

Corollary 3.3.2 Let B be a finite set of Boolean functions, such that B ⊆ M or B ⊆ L.
Then B has an efficient lexicographic order enumeration algorithm, and an incremental
polynomial time enumeration algorithm.

Proof. It follows from Theorem 1.4.3 and Figure 1.2 that SAT (B ∪ {0, 1}) ∈ P. Hence
the result follows from Theorem 3.3.1. �

We now present cases where we do not have efficient lexicographic enumeration algo-
rithms, but the weaker notion of polynomial delay algorithms.

Theorem 3.3.3 Let B be a finite set of Boolean functions, such that B ⊆ S2
0, or B ⊆ D.

Then B has a polynomial delay enumeration algorithm and an incremental polynomial
time enumeration algorithm.

Proof. We show that for an assignment I : VAR (ϕ) → {0, 1}, if I 2 ϕ, then I |= ϕ. This
gives a polynomial-delay enumeration algorithm for SOL (ϕ), by testing the set of all
assignments in an appropriate order: if VAR (ϕ) = {x1, . . . , xn} , then use an arbitrary
order, for example the lexicographical order, on the assignments I with I(x1) = 0, and for
each of the assignments considered, test if I or I satisfies the formula. In the cases where
the answer is “yes,” print the corresponding assignment. Due to the above mentioned
property, this gives at least one solution for each I considered, since if I is not a solution,
then I is. Therefore, since it can be verified in polynomial time if a given assignment
is a solution for the formula due to Theorem 2.4.2, this clearly gives a polynomial delay
algorithm.

We now prove that this property holds for the sets B in question. For the case
B ⊆ D, this follows from the definition of the clone D. Therefore, assume that B ⊆
S2

0. Now assume that I 2 ϕ and I 2 ϕ. Since ϕ is a B-formula, and B ⊆ S2
0,

we know that the function described by ϕ is 0-separating of degree 2. Thus every
set S with |S| = 2 and S ⊆ ϕ−1({0}) is 0-separating. The set S defined as S =def{
(I(x1), . . . , I(xn)), (I(x1), . . . , I(xn))

}
meets these conditions, and hence is 0-separating.

From the definition, it follows that there is some i ∈ {1, . . . , n} such that I(xi) = I(xi),
which is a contradiction.

For the incremental polynomial time algorithm, assume that we are given the set of
solutions in lexicographical order (otherwise, sort it in polynomial time). For each given
solution I, test if its negation I also satisfies the formula. If yes, print it out and we are
finished. Otherwise, find an assignment I such that neither I nor I are included in the
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given list of solutions. One of the two is a solution for ϕ due to the above. If no new
solution is obtained in this way, then obviously the given set of solutions is the complete
set of solutions for ϕ. It is obvious that this can be performed in polynomial time. �

3.4 Hardness Results

We now show that the list of algorithms presented in Section 3.3 is complete, i.e., that
in the cases not covered, algorithms of the corresponding types do not exist. Again, we
start with the sharpest notion of efficiency in this context.

Lemma 3.4.1 Let B be a finite set of Boolean functions such that S02 ⊆ [B] or D1 ⊆ [B].
Then there is no efficient lexicographic enumeration algorithm for B-formulas, unless
P = NP.

Proof. We prove that for any set B, if one of these algorithm exists, then SAT (B ∪ {0}) ∈
P. The result then follows with Theorem 1.4.3, since due to Figure 1.2, [B ∪ {0}] = BF,
and therefore this problem is NP-complete.

We show how a polynomial-time decision algorithm for this problem can be obtained
from a lexicographic enumeration algorithm for B-formulas. To this end, let ϕ be a
B ∪ {0}-formula, such that VAR (ϕ) = {x1, . . . , xn}. Introduce a new variable x0, and
construct the formula ϕ′ =def ϕ[0/x0]. Then ϕ′ is a B-formula. Now enumerate the
solutions for ϕ′ in lexicographic order.

We show that ϕ has a solution if and only if ϕ′ is satisfiable, and the lexicographically
first solution of ϕ′ maps x0 to 0, which clearly finishes the proof, since the lexicographic
order enumeration algorithm has to produce the first solution in polynomial time, or
determine that none exists.

First assume that ϕ has a solution I. Then, due to the construction of ϕ′, it is
obvious that the solution I ′ obtained by extending I with the assignment I(x0) =def 0 is
a solution for ϕ′. In particular, since a solution for ϕ′ exists which sets x0 to 0, so does
the lexicographically minimal solution.

For the other direction, assume that the lexicographically minimal solution I of ϕ′

satisfies I(x0) = 0. Then obviously, the solution I restricted to the variables appearing
in ϕ is a solution for this formula. �

To show non-existence of other types of efficient enumeration algorithms, we introduce
a special version of the satisfiability problem:

Problem: SAT∗ (B)
Input: A B-formula ϕ
Question: Does ϕ have a non-constant solution?

In Section 4.2 of Elmar Böhler’s PhD thesis [Böh05], the following hardness result
was proven for circuits. We show that it also holds for the more restricted formula case.

Lemma 3.4.2 Let B be a finite set of Boolean functions such that S12 ⊆ [B] . Then
SAT∗ (B) is NP-complete under ≤p

m-reductions.
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Proof. Obviously, SAT∗ (B) is in NP. For the hardness proof, observe that Post’s lat-
tice shows that [B ∪ {0, 1}] = BF. Therefore, SAT (B ∪ {0, 1}) is NP-complete due to
Theorem 1.4.3. We show SAT (B ∪ {0, 1}) ≤p

m SAT∗ (B).
Let ϕ be a B ∪ {0, 1}-formula. We introduce new variables t and f , to simulate the

constants 1 and 0, respectively. Let ϕ′ =def ϕ[1/t, 0/f ]. Now observe that we can, since
∧ ∈ S12, using appropriate bracketing and a logarithmic tree construction, construct a
B-formula ψ ≡ x1 ∧ · · · ∧ xn.

The function f(x, y, z) =def x ∧ (y ∨ z) is in S12 ⊆ [B]. Therefore, since the AND-
function is in the clone generated by B, and nesting does not appear, we can construct
in polynomial time a B-formula equivalent to χ ≡ ϕ′ ∧ (ψ ∨ f) ∧ t.

We claim that ϕ is satisfiable if and only if χ has a non-constant solution. First, let ϕ
be satisfiable, and let I be a satisfying assignment for ϕ. By construction of the involved
formulas, the assignment I ′ obtained by enlarging I with the assignments I ′(f) = 0 and
I ′(t) = 1, is a non-constant satisfying assignment for χ. Therefore, χ has a non-constant
solution. Now, let I |= χ, such that I is not constant. We make a case distinction
(observe that I(t) = 1 must hold). If I(f) = 0, then the assignment I ′ obtained from I
by restriction to VAR (ϕ) , is a satisfying assignment of ϕ, therefore ϕ is satisfiable. If
I(f) = 1, then by construction of χ, I |= ψ, i.e., I(x) = 1 for all x ∈ VAR (ϕ) . Since
I(t) = I(f) = 1, this implies that I is the constant 1-assignment, which is a contradiction
to the choice of I. �

As our final hardness result in this chapter, we consider the weakest notion of enumer-
ation algorithms: total polynomial time and incremental polynomial time algorithms.

Theorem 3.4.3 Let B be a finite set of Boolean functions, such that S12 ⊆ [B]. Then
there is no total polynomial time enumeration algorithm and no incremental polynomial
time algorithm for B-formulas, unless P = NP.

Proof. We show that the existence of one of these algorithms for B-formulas implies
that SAT∗ (B) can be decided in polynomial time. The Theorem then follows from
Lemma 3.4.2.

Let ϕ be a B-formula. First check if the constant assignments are solutions of ϕ, this
can be done in polynomial time due to Theorem 2.4.2. If there is an incremental poly-
nomial time algorithm, then this algorithm can directly be used to decide, in polynomial
time, if there is an additional solution to ϕ.

Now assume that there is a polynomial total time enumeration algorithm for B-
formulas, and let i be the number of constant solutions determined above. It is obvious
that ϕ has a non-constant solution if and only if it has at least i+1 many solutions. This
condition can easily be tested with the polynomial total time enumeration algorithm:
the time the algorithm is allowed to spend if the number of solutions is at most i is, by
definition, bounded by a polynomial in ϕ (since i can be at most 2). Therefore, we can
simply start the algorithm, and wait if it finishes in this time. If it does, then its output
is the full list of solutions for ϕ, and we obviously can decide if there is a non-constant
solution present in this list. If it does not finish in this time, then there are more then i
solutions, and thus there is a non-constant one. �
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3.5 Conclusion

If P = NP, then for each set B of Boolean functions, an algorithm of each efficiency type
we defined exists (this follows from Theorem 3.3.1). It is easy to see that an algorithm
which satisfies the polynomial delay condition also is a polynomial total time algorithm.
Since in our definition, a lexicographical enumeration algorithm also has polynomial delay,
the following theorem gives a full classification. Figure 3.1 gives a graphical overview of
the result.

Theorem 3.5.1 Assume that P 6= NP, and let B be a finite set of Boolean functions.
Then the following holds:

• If B ⊆ M or B ⊆ L, then there is an efficient lexicographic enumeration algorithm,
and an incremental polynomial time algorithm for B-formulas.

• Otherwise, if B ⊆ D or B ⊆ S2
0, then there is a polynomial-delay algorithm, and

an incremental polynomial time algorithm for B-formulas. There is no efficient
lexicographic enumeration algorithm for B-formulas.

• Otherwise, there is no total polynomial time enumeration and no incremental poly-
nomial time algorithm for B-formulas.

We have completely answered the question in which cases there is, for a given set
B, an enumeration algorithm of each of the types considered in [JPY88]. In addition to
the cases where the satisfiability problem for B-formulas is NP-complete, and therefore
efficient enumeration algorithms obviously cannot be hoped for unless P = NP, we also
showed that in the cases where tractability of the satisfiability problem follows from a
simple “trick,” like the knowledge that the all-1-assignment is a solution to the formulas,
efficient enumeration algorithms do not exist. An interesting special case here is the case
of self-dual formulas. The satisfiability problem again is easy, simply because any such
formula is always satisfiable. But the property of self-duality does not only give one
solution, it guarantees that half of the possible assignments are solutions. Therefore it is
not surprising that these solutions also can be enumerated in an efficient way. Following
the discussion at the end of Chapter 2, if B1 is a subset of D and B2 is a subset of R1,
then it is easier to compute a single solution of a B2-formula than to compute one of a
B1-formula, but to determine all solutions of a B1-formula is easier that to determine
all solutions of a B2-formula. However, since the property of self-duality does not say
anything about the set of solutions where a given variable is set to 0, this does not help
us to construct a lexicographical order enumeration algorithm.

A natural generalization of this problem is to consider Boolean circuits instead of
formulas. However, it is easy to see that our proofs also give a classification of this
problem for the circuit representation of formulas, and it is in fact the same classification.
The reason for this is that the only property of formulas which we use is that we can test,
in polynomial time, if a given assignment satisfies the formula. This can also be done
in polynomial time for the circuit case. The hardness results obviously carry over to the
circuit case, since every formula can be transformed in an equivalent circuit in polynomial
time. Therefore, the circuit and the formula case give exactly the same classification for
the enumeration algorithm types considered here.
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Figure 3.1: The complexity of the enumeration problem
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It is of interest that similarly to the results from Chapter 2, we again could show that
the existence of efficient algorithms for B-formulas depends only on the clone generated
by B. But again, there is no “uniform” proof showing that if [B1] = [B2] , then B1 and
B2 either both give an algorithm of one of the considered types, or both do not. In
the remainder of this thesis, we will consider formulas in the constraint context, where
“base-independence” results like this can usually be achieved easily by means of the Galois
connection exhibited in Theorem 1.5.2. However, as we will see in the next chapter, these
results cannot always be obtained for free, and there are cases in which we cannot achieve
them at all.



Chapter 4

Constraint Satisfaction Problems in
Polynomial Time

4.1 Introduction

Up to now, we only studied problems in the B-formula setting, where the formulas
are defined as arbitrary nestings, but using only operators from a restricted set B. We
will now consider formulas in the constraint setting, as defined in Section 1.5. The
main difference to the B-formulas is that the main feature of nesting is absent from
constraint formulas. Instead, constraint formulas can be seen as describing a set of local
conditions, or constraints, on a set of variables. This also is the reason why a “formula
value problem” for constraints is very easy to solve: Let ϕ be a conjunction of clauses
C1 ∧ · · · ∧Cn, where the Ci are defined over a finite constraint language Γ. If we consider
the formula value problem, then each of these clauses only contains constants. The
formula ϕ is true if and only if each clause Ci is true. Hence, for an unsatisfiability test, a
logarithmic time Turing machine only needs to guess the position of the false clause, and
then read constant-many bits. With a suitable encoding, when we allow one character
for each of the possible combinations of relation symbols and following constants, this
means that the “unsatisfiability problem” is ≤dlt

proj-equivalent to the language L of words
over the alphabet {0, 1} containing all words which contain at least one zero. Due to
Proposition 2.3.2, this problem is in the class ΣR

1 , and hence the formula value problem for
constraint formulas can be solved in ΠR

1 . As long as the constraint language Γ contains
at least one non-full relation, the problem is also complete for this class. Otherwise,
the “formula value problem for Γ” is trivial, since all Γ-formulas with constants are
true (recall that by definition, we do not allow our constraint languages to contain the
empty relation). We therefore conclude that this problem is not very interesting to
look at. This observation gives an interesting insight into the differences between B-
formulas and constraint formulas: While the nesting of operators, which is a key feature
of Boolean formulas, is not necessary to give a complex satisfiability problem (the problem
CSP (Γ3SAT) is NP-complete), it is required to give a complex formula evaluation problem.

In the constraint context, the satisfiability problem has achieved much attention. Due
to Theorem 1.3.4, we know that 3SAT is NP-complete, and since this problem can be
seen as a constraint satisfaction problem, we know that in general, CSP is NP-complete.
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However, similarly to the B-formula case, there are cases of the constraint satisfac-
tion problem which can be solved in polynomial time. As 3SAT, it is obvious that an
analogously defined 2SAT also can be seen as a constraint satisfaction problem, and this
is known to be solvable in polynomial time (in fact, nondeterministic logarithmic space).
Also, the well-known Horn satisfiability problem can be defined in this context. Hence,
the problem for which constraint language Γ there exist efficient algorithms is of interest.
As stated in Theorem 1.5.4, Thomas Schaefer identified all tractable cases of the Boolean
constraint satisfaction problem, and showed that the others are NP-complete. His result
has been generalized to non-Boolean domains: Andrei Bulatov showed in [Bul06] that
this dichotomy also holds for the case where the domain is of cardinality 3. Much work has
been done for arbitrary domains, see for example the already mentioned [JCG97], and re-
sults by Victor Dalmau and Andrei Krokhin about polymorphisms leading to tractability
in [Dal05] and [DK06]. A full classification of the problem for any domain of cardinal-
ity bigger than three is still open, but many results were achieved for identifying both
tractable and intractable cases.

We now consider the tractable cases over the Boolean domain more closely. As seen
in Chapter 2, there are very different complexities inside the class P for problems related
to Boolean formulas. Therefore, we now analyze the exact complexity of the polynomial
time cases in Schaefer’s Theorem 1.5.4 more closely. The motivation for this study
is driven by two reasons: first, for practical applications, it is interesting to know if
there exist efficient parallel algorithms for the polynomial cases, or if they can be solved
with low space bounds, e.g., in logarithmic space. Second, the most interesting feature
of Schaefer’s result from a theoretical point of view is that it displays a dichotomy,
avoiding the infinitely many degrees of complexity which exist between P and NP if
these classes differ. Kenneth Regan and Heribert Vollmer showed that there also exist
infinitely many degrees of complexity inside the class P, even between the classes AC0

and NC1 ([RV97]). Therefore, the question if a dichotomy-like result also holds for the
polynomial time cases is of interest. We show that this is indeed the case: under the strict
notion of ≤AC0

m -reducibility, the Boolean constraint satisfaction problems can be shown to
just give 6 different complexity cases, namely the complexity classes AC0, LOGSPACE,
⊕LOGSPACE, NLOGSPACE, P, and NP.

In our analysis, we show that the usual tool in the study of the complexity of constraint
satisfaction problems, the Galois connection presented in Theorems 1.5.2 and 1.5.3 is
only of limited help here: it fails to produce a reduction which closes all complexity
classes arising in this classification. Hence, we need to go beyond the algebraic structure
of constraint satisfaction problems provided by the lattices of clones and co-clones to
achieve a full complexity classification of the problem.

4.2 Preliminaries and Algebraic Tools

The usual reduction given by the Galois connection in Theorem 1.5.3 is stated as a
polynomial time reduction. A close inspection of the actual transformation and an ap-
plication of Omer Reingold’s result that search in undirected graphs can be performed in
logarithmic space (Theorem 1.3.5) shows that this reduction actually can be computed in
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LOGSPACE. However, this is not enough for our purposes, since we will see that there
are constraint satisfaction problems in classes as low as AC0, and this class is not closed
under logspace reductions. Hence, in order to study the complexity of the constraint
satisfaction problems inside P, we consider ≤AC0

m -reductions, as introduced in Chapter 1.
Unfortunately, we will soon see that a further refinement of the aforementioned reduc-
tion given by the Galois connection to AC0 is not possible. Before we demonstrate this
negative result, we prove the logspace reduction and show in which cases it can be used
to give an AC0-reduction.

Lemma 4.2.1 Let Γ1 and Γ2 be constraint languages over a finite domain such that
Pol (Γ2) ⊆ Pol (Γ1) , and let Γ1 be finite. Then CSP (Γ1) ≤AC0

m CSP (Γ2 ∪ {=}) .

Proof. Let ϕ be a Γ1-formula. We replace each constraint application R(x1, . . . , xn)
occurring in ϕ with a conjunction of clauses as follows: Since ϕ is a Γ1-formula, R is
a relation from Γ1. Since Pol (Γ2) ⊆ Pol (Γ1) , we know that due to Theorem 1.5.2, the
clause R(x1, . . . , xn) is equivalent to ∃y1, . . . , ytS1(z

1
1 , . . . , z

1
i1
) ∧ · · · ∧ Sk(zk1 , . . . , zkik) for

some relations S1, . . . , Sk ∈ Γ2 ∪ {=} and variables zij ∈ {y1, . . . , yt, x1, . . . , xn} . Hence
the reduction can be achieved by replacing the clause R(x1, . . . , xn) with its equivalent
conjunction, where the existential quantifiers are left out, and using new y-variables for
each clause to be transformed. Since Γ1 is finite, the replacement rules can be hard-coded
into the AC0-circuit computing the reduction. It is obvious that the resulting formula is
satisfiable if and only if the original formula is, and that the reduction can be performed
in AC0. �

The lemma shows that if we have the equality relation present in our constraint
languages, then the usual algebraic techniques are sufficient to classify the constraint
satisfaction problem up to ≤AC0

m -reductions. If we want to consider constraint languages
which do not contain the equality relation, we need to manually remove equality clauses.
The next lemma shows that we can do this, but not without cost: the transformation
needs the power of logspace machines.

Lemma 4.2.2 Let Γ be a constraint language. Then CSP (Γ ∪ {=}) ≤log
m CSP (Γ) .

Proof. Let ϕ be a Γ ∪ {=}-formula. Consider the variables appearing in ϕ as a graph,
where two vertices x and y are connected with an edge if and only if there is a clause
x = y in the formula ϕ. For each of the connected components of this graph, introduce a
single new variable, and replace all of the variables in the component with this new one.
Remove all the equality clauses.

It is obvious that the formula constructed in this way is satisfiable if and only if
the original formula is satisfiable. The transformation can be computed in LOGSPACE,
because in LOGSPACE, it can be tested if two vertices in an undirected graph are
connected due to Theorem 1.3.5. �

The proof of Lemma 4.2.2 uses the search problem in undirected graphs, which is
complete for LOGSPACE due to Theorem 1.3.5. It therefore gives good evidence that
the reduction needs the entire computational power of LOGSPACE, and cannot be re-
fined to a ≤AC0

m -reduction. We will see in the following that this is indeed the case.
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But first we state a more positive result, which directly follows from the above and the
observation that an AC0-reduction can be computed by a LOGSPACE-machine. The
following corollary is a refinement of Theorem 1.5.3:

Corollary 4.2.3 Let Γ1 and Γ2 be constraint languages over a finite domain such that
Pol (Γ2) ⊆ Pol (Γ1) . Then CSP (Γ1) ≤log

m CSP (Γ2) .

Hence, as long as we are interested in a complexity only up to logspace reductions,
the Galois connection suffices. However, if we look closer than this, we see that inside
LOGSPACE, the Galois connection has its limitations: we now exhibit two constraint
languages which have the same set of polymorphisms, and hence generate the same co-
clone, but give provably different complexities.

Lemma 4.2.4 Let Γ1 be the Boolean constraint language defined by Γ1 =def {x, x} , and
let Γ2 =def Γ1 ∪ {=} . Then the following holds:

1. Pol (Γ1) = Pol (Γ2) ,

2. CSP (Γ1) ∈ AC0,

3. CSP (Γ2) is hard for LOGSPACE under ≤AC0

m -reductions.

Proof. 1. Pol (Γ2) ⊆ Pol (Γ1) holds since Γ1 ⊆ Γ2. Since any function is a polymor-
phism of the equality relation, the other direction holds as well.

2. Let ϕ be a Γ1-formula. Then ϕ is a conjunction of literals. Hence, ϕ is unsatisfiable
if and only if there is some variable which appears both as a positive and as a
negative literal. Thus, unsatisfiability can easily be verified by an AC0-circuit.
Since AC0 is closed under complementation, the result follows.

3. We show that the undirected graph accessibility problem can be reduced to the
complement of CSP (Γ2) . Since LOGSPACE is closed under complementation, the
claim then follows from Theorem 1.3.5. Let G be a graph, and let s, t be vertices
in G. We construct a formula ϕ, where there is a variable for every vertex in the
graph, and for each edge (x, y) in G, we introduce a clause x = y. Additionally, we
introduce the clauses s and t. This transformation can obviously be computed by
an AC0-reduction.

If there is a path in G from s to t, then obviously, the formula ϕ is not satisfiable:
since an equality clause is introduced for every edge, the variables must take the
same value in a satisfying assignment for ϕ. But ϕ also demands that s must be
true, and t must be false. This is clearly a contradiction. For the other direction,
suppose that there is no path from s to t in G. Since G is an undirected graph,
this means that s and t are not connected in G. Hence, they are not connected
with equality clauses in the formula ϕ either. Therefore, we can simply set s and
everything connected to s to true, and every other variable to false, satisfying the
formula.

�
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The main message of the lemma is that when considering ≤AC0

m -reductions, we need
to look at a finer classification than the one given by the co-clone structure. In the
constraint languages exhibited in Lemma 4.2.4, the presence of the equality relation was
the only difference between the two languages. It is easy to see that for the problem to get
LOGSPACE-hard, it suffices to have a relation which is “nearly the equality relation,”
or “implements” it. For example, we could do the same construction as in the proof for
the lemma if we had the relation ⊕, by simulating a clause x = y with (x⊕ z) ∧ (z ⊕ y).
We capture this generalization with the following definition:

Definition Let Γ be a Boolean constraint language, and let R be an m-ary relation. We
say that Γ can express R, if there is a Γ-formula ϕ with variables x1, . . . , xm, t1, . . . , tn,
such ∃t1, . . . , tnϕ(x1, . . . , xm, . . . , tn) is equivalent to R(x1, . . . , xm). We say that ϕ ex-
presses R.

If R is the equality relation, then we just say “Γ expresses equality.” It is obvious that
if some constraint language can express equality, then adding the equality relation itself
to the language does not make a significant difference for the complexity of its constraint
satisfaction problem:

Proposition 4.2.5 Let Γ be a constraint language which can express equality. Then
CSP (Γ ∪ {=}) ≤AC0

m CSP (Γ) .

Proof. The reduction is achieved by simply replacing any occurring equality clauses with
the Γ-formula that expresses equality. �

The proposition implies that if we only consider constraint languages which can ex-
press equality, then the Galois connection suffices to completely classify the complexity of
the constraint satisfaction problem. The following is an easy corollary from the previous
results:

Corollary 4.2.6 Let Γ1 and Γ2 be Boolean constraint languages such that Pol (Γ1) =
Pol (Γ2) , and both Γ1 and Γ2 can express equality. Then CSP (Γ1) ≡AC0

m CSP (Γ2) .

Proof. We show that CSP (Γ1) ≤AC0

m CSP (Γ2) . The other direction follows due to sym-
metry. Due to Lemma 4.2.1, we know that CSP (Γ1) ≤AC0

m CSP (Γ2 ∪ {=}) , and from
Proposition 4.2.5, it follows that CSP (Γ2 ∪ {=}) ≤AC0

m CSP (Γ2) . Due to the transitivity
of the ≤AC0

m -reduction, the result follows. �

The question how to deal with languages which cannot express equality remains open
for now. However, we will show that for the cases which actually arise in the Boolean
constraint satisfaction problem, we can answer this question on a case-by-case basis.

As mentioned before, and encountered in Chapter 2, the symmetry in Post’s lattice
often gives a symmetry in the involved complexity classes as well. In the constraint
context, this result can be stated as follows:
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Definition Let R be a Boolean relation. We define

R =def {(α1, . . . , αn) | (α1, . . . , αn) ∈ R} .

For a constraint language Γ, we define Γ =def

{
R | R ∈ Γ

}
.

It is obvious that the relations R and R are isomorphic. Hence, the following propo-
sition is natural:

Proposition 4.2.7 Let Γ be a finite constraint language. Then CSP (Γ) ≡AC0

m CSP
(
Γ
)
.

Proof. The reduction is achieved by simply replacing each occurrence of a relation R with
the relation R. From a satisfying assignment for one formula we can obtain a satisfying
assignment for the other formula by negating every variable assignment. The reduction
in the converse direction follows due to symmetry. �

There is a natural connection between the complement of a relation and the polymor-
phisms of the original relation:

Lemma 4.2.8 Let R be a Boolean relation. Then Pol (R) = dual
(
Pol

(
R

))
.

Proof. Due to symmetry (obviously, for a set B of Boolean functions, it holds that

dual (dual (B)) = B, and R = R), it suffices to show one inclusion. Therefore, let
f : {0, 1}m → {0, 1} be an m-ary polymorphism of R. We need to show that dual (f)
is a polymorphism of R. Hence, let (α1

1, . . . , α
1
n), . . . , (α

m
1 , . . . , α

m
n ) be tuples from R. By

definition, it follows that (α1
1, . . . , α

1
n), . . . , (α

m
1 , . . . , α

m
n ) are tuples from R. Since f is a

polymorphism of R, it follows that

(f(α1
1, . . . , α

m
1 ), . . . , f(α1

n, . . . , α
m
n ))

is a tuple from R. Thus, the coordinate-wise negation of this tuple is an element of R.
Due to the definition of the dual (.)-operator, this is the same element as dual (f) applied
to the coordinates of the original tuples. Hence, dual (f) is a polymorphism of R, as
claimed. �

The obvious corollary of Corollary 4.2.3, Proposition 4.2.7 and Lemma 4.2.8 is the
following:

Corollary 4.2.9 Let Γ1 and Γ2 be Boolean constraint languages such that Pol (Γ1) =
dual (Pol (Γ2)) . Then CSP (Γ1) ≡log

m CSP (Γ2) .

4.3 Algorithms

We will now give upper complexity bounds for the Boolean constraint satisfaction prob-
lems. It is obvious that the problem is in NP for any finite constraint language Γ. The
following results can be found in e.g., [Sch78] and [BCRV04].
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Proposition 4.3.1 Let Γ be a Boolean constraint language. Then the following holds:

1. If Pol (Γ) /∈ {N2, I2} , then CSP (Γ) ∈ P,

2. if L2 ⊆ Pol (Γ) , then CSP (Γ) ∈ ⊕LOGSPACE,

3. if D2 ⊆ Pol (Γ) , then CSP (Γ) ∈ NLOGSPACE,

4. if I0 ⊆ Pol (Γ) or I1 ⊆ Pol (Γ) , then every Γ-formula is satisfiable and hence CSP (Γ)
is trivial.

Note that for the last point, it is important to remember that our constraint languages
are not allowed to contain the empty relation: The empty relation is in fact invariant
under the 1-ary constant functions (but not under the 0-ary constants). We now give
our first upper bound. The proof for the following lemma is based on the proof for
Theorem 6.5 in [CKS01].

Lemma 4.3.2 Let Γ be a Boolean constraint language such that S02 ⊆ Pol (Γ) or S12 ⊆
Pol (Γ) . Then CSP (Γ) ∈ LOGSPACE.

Proof. We show the claim for the case S02 ⊆ Pol (Γ) , the claim for S12 ⊆ Pol (Γ) follows
from Corollary 4.2.9. Note that due to Lemma 1.5.6, there is no finite constraint language
whose polymorphisms are exactly the clone S02. Since Γ is finite, this implies that Sk02 ⊆
Pol (Γ) for some k ≥ 2.

Due to Table 1.2, we know that Pol
({

ORk, x, x
})

= Sk02. Due to Corollary 4.2.3,
and since LOGSPACE is closed under ≤log

m -reductions, we can therefore assume that
Γ =

{
ORk, x, x

}
.

Now for this constraint language, a Γ-formula is satisfiable if and only if for every
OR(xi1 , . . . , xik)-clause, at least one of the variables xi1 , . . . , xik does not appear as a
negative literal. Hence, to verify that such a formula is not satisfiable, it suffices to
compare one of the OR-clauses and k many literals. This can be performed by an AC0-
circuit. Therefore, the constraint satisfaction problem for Γ can be solved in AC0 ⊆
LOGSPACE, putting our original problem inside LOGSPACE as well. �

The proof for Lemma 4.3.2 reveals that this is not the best answer we can give for the
constraint languages involved: the algorithm uses a reduction to a constraint satisfaction
problem which can be solved in a much lower class than LOGSPACE. However, due to
Lemma 4.2.4, we know that if we add the equality relation to the constraint language{
ORk, x, x

}
, we get a problem which is hard for LOGSPACE under AC0-reductions.

Hence, we will need to revisit these constraint languages in order to get a complete
classification. But first, we give another upper bound complexity result:

Lemma 4.3.3 Let Γ be a Boolean constraint language such that S00 ⊆ Pol (Γ) or S10 ⊆
Pol (Γ) . Then CSP (Γ) ∈ NL.

Proof. Again we show the claim for the case S00 ⊆ Pol (Γ) , the dual case follows with
Corollary 4.2.9. Due to Lemma 1.5.6, we conclude that Pol (Γ) ⊇ Sk00 holds for some
k ≥ 2. Table 1.2 now shows that Pol

({
ORk, x, x,→

})
= Sk00. Hence, we can assume, due

to Corollary 4.2.3, that Γ is equal to this set. Now it is easy to see that a Γ-formula is
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unsatisfiable if and only if for some clause OR(xi1 , . . . , xik), for every appearing variable,
there is a →-path in the formula to a variable which appears as a negative literal. Since
search in directed graphs can be performed in NL due to Theorem 1.3.5, and NL is closed
under complementation due to Theorem 1.3.1, this completes the proof. �

In contrast to the previous result, here we needed the entire power of NL to solve the
constraint satisfaction problem. We will later see that this is not a coincidence: for the
constraint languages covered by Lemma 4.3.3, there are no easier cases.

4.4 The Equality Relation

As mentioned before, the question whether a constraint language contains or can express
the equality relation makes a significant difference complexity-wise. Hence, we now study
which constraint languages can express this relation, and which cannot. Fortunately, it
turns out that in most cases, our constraint languages can express equality, and hence
due to Corollary 4.2.6, we know that in this case, all constraint languages giving the same
co-clone give rise to constraint satisfaction problems of equal complexity. As we will see
later in Chapter 5, this question is not only of interest when considering low complexity
classes, but also if we study problems different from satisfiability, where identification of
variables does not leave the properties of the formulas that we are interested in unchanged.

Lemma 4.4.1 Let Γ be a finite Boolean constraint language such that Pol (Γ) ⊆ M,
Pol (Γ) ⊆ L, or Pol (Γ) ⊆ D. Then Γ can express equality.

Proof. For M, observe that due to Table 1.2, the relation x → y is invariant under M.
Hence, for any constraint language Γ satisfying Pol (Γ) ⊆ M, there exists a Γ ∪ {=}-
formula in which additional new existentially quantified variables occur, and which is
equivalent to x → y. Equality clauses in this formula involving existentially quantified
variables can be removed using variable identification. Equality clauses between x and
y cannot appear, since the assignment I(x) = 0, I(y) = 1 satisfies the formula, but not
the equality constraint x = y. Hence, we can construct a Γ-formula which additional
existentially quantified variables which is equivalent to x → y. Now the conjunction
(x→ y) ∧ (y → x) expresses equality.

For the other two cases, the argument is very similar. In the case Pol (Γ) ⊆ L,
observe that due to Table 1.2, the relation EVEN4 is invariant under L. Again, in a
formula defining EVEN4(x1, x2, x3, x4), no equality clauses between the xi can appear.
Hence, we can build a Γ-formula with existential quantifiers expressing this relation, and
finally express x = y as ∃zEVEN4(z, z, x, y). For the final case Pol (Γ) ⊆ D, we can
express x⊕ y in a similar way, and then express x = y as ∃z(x⊕ z) ∧ (y ⊕ z). �

Lemma 4.4.1 and Corollary 4.2.6 imply that for the constraint languages with the
corresponding set of polymorphisms, we do not need to “look inside the co-clones.” But
Lemma 4.2.4 and the discussion after the proof for Lemma 4.3.2 indicate that in the cases
S02 ⊆ Pol (Γ) and S12 ⊆ Pol (Γ) , there is need for a more detailed analysis. The following
Lemma gives the complete picture of the situation here:
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Lemma 4.4.2 Let R be a Boolean relation such that S02 ⊆ Pol (R) . Then either R can
be expressed using only literals and OR-clauses, or R can express equality. There is an
algorithm deciding which case occurs.

Proof. Assume thatR is an n-ary relation, and S02 ⊆ Pol (R) .Again, due to Lemma 1.5.6,
we know that these sets cannot be equal, and hence it holds that Sk02 ⊆ Pol (R) for some
k ≥ 2. Table 1.2 shows that Pol ({x, x,ORm}) = Sk02, and hence Theorem 1.5.2 tells
us that we can construct a formula ϕ which is equivalent to R(x1, . . . , xn), and only
contains equalities, literals, and m-ary OR-clauses, where some of the variables may be
existentially quantified. Without loss of generality, assume that R is not the empty
relation, hence the formula ϕ is satisfiable.

We now give an algorithm which simplifies this formula. We can assume that equality
clauses only appear between the variables x1, . . . , xn, i.e., the ones which are not exis-
tentially quantified. Occurrences of equality between existentially quantified variables
can be removed by variable identification. Repeat the following steps as long as changes
occur in the formula:

1. For any clause t1 = t2 where t1 or t2 also appear as a literal, remove the equality
clause and insert the corresponding literals for t1 and t2.

2. For each OR-clause, remove every variable which also appears as a negative literal,
because this variable cannot be set to 1.

3. Remove each OR-clause in which a variable appears which also appears as a positive
literal, because these clauses are trivially true.

4. In an OR-clause containing variables which are connected with =, remove all of
them except one.

It is obvious that the transformations above do not change the relation represented
by the formula ϕ. The steps need to be performed until no change happens anymore,
since in step 2, or step 3, an OR-clause can be reduced to a literal, and thus literals can
be added during the execution of this algorithm.

The algorithm terminates, since in each step, one of the following occurs: an equality
clause is removed, an OR-clause is removed, or an OR-clause is reduced in arity. Since
clauses are neither introduced nor extended in arity, this can only be done a finite number
of times.

Now, if after this transformation, no equality clause remains, then obviously, R can
be expressed by a formula containing only the m-ary OR and literals. Otherwise, let
xi1 = xi2 be a remaining clause (remember that equality only occurs between the variables
x1, . . . , xn). Without loss of generality, assume that this clause is x1 = x2. Now consider
the formula ψ = ∃x3, . . . , xnR(x1, . . . , xn). We claim that ψ expresses equality, concluding
the proof.

We show that I(x1) = α1, I(x2) = α2 is a satisfying assignment to ψ if and only if
α1 = α2. Since x1 = x2 is a clause in ψ, it is obvious that if I |= ψ, then α1 = α2. Now
let α1 = α2. We prove that I is a satisfying assignment for ψ. We extend the assignment
I to the existentially quantified variables as follows:
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• For every variable t which is connected to x1 and x2 with equality clauses, define
I(t) =def I(x1).

• For every variable t which appears as a negative literal, define I(t) =def 0.

• For all other variables t, define I(t) =def 1.

We claim that I satisfies the constraints appearing in ψ. Obviously, all literals are
satisfied by the assignment: The variables x1 and x2 cannot appear as literals due to
step 1 of the simplification procedure, and since R is not empty, there cannot be any
contradicting literals. By construction, all of the equality clauses are satisfied: The
equality x1 = x2 is satisfied due to the choice of I, and for every variable connected to
these, the equality constraints in which they appear are satisfied due to the construction
of I. It remains to show that all of the appearing OR-clauses are satisfied. Hence, let
OR(t1, . . . , tj) be a clause. None of the variables (t1, . . . , tj) appear as negative literals
due to step 2 of the simplification procedure. The clause cannot only contain variables
connected to x1 with =-clauses, since then it would have been reduced to a literal in
step 4 of the procedure. Hence, the clause contains a variable which neither appears as
a negative literal, nor is connected to x1 with equality constraints. By choice of I, all of
these variables are set to 1, and hence the OR-clause is satisfied. �

Note that the algorithm to test if a relation can implement equality can be made much
simpler than the one explained above: it is sufficient to test for each pair of variables,
if the relation, where all other variables are quantified existentially, gives the equality
relation. However, the above proof also shows that in the case where this is not the case,
we have a representation of the relation as a conjunction of literals, which is required for
our complexity results involving these relations.

Lemma 4.4.2 helps us to give a complete characterization of the complexity of con-
straint languages with this set of polymorphisms:

Corollary 4.4.3 Let Γ be a Boolean constraint language such that S02 ⊆ Pol (Γ) or
S12 ⊆ Pol (Γ) . Then CSP (Γ) is either solvable in AC0, or complete for LOGSPACE
under ≤AC0

m -reductions.

Proof. Due to Proposition 4.2.7 and Lemma 4.2.8, it suffices to show the claim for the
case S02 ⊆ Pol (Γ) .

If there is a relation in Γ which can express equality, then CSP (Γ) is hard for
LOGSPACE due to Lemma 4.2.4 and Corollary 4.2.6. The upper bound follows from
Lemma 4.3.2.

Hence, assume that none of the relations in Γ can express equality. Then, Lemma 4.4.2
states that every relation in Γ can be expressed using only OR-clauses of bounded arity,
and literals. Hence, each Γ-formula can be transformed by an ≤AC0

m -reduction, into a
formula in which only these constraints appear. Now for these formulas, satisfiability can
be tested in AC0, this is shown in the proof for Lemma 4.3.2. �



4.5. Hardness Results 67

4.5 Hardness Results

As mentioned before, for the sets of polymorphisms that we deal with in this section,
we know that our constraint languages can express equality. Hence, we can apply Corol-
lary 4.2.6, and know that our complexity results are independent of the actual constraint
language that we consider.

Lemma 4.5.1 Let Γ be a Boolean constraint language such that Pol (Γ) ∈ {D1,D} . Then
CSP (Γ) is complete for LOGSPACEunder ≤AC0

m -reductions.

Proof. Note that due to Table 1.2, it holds that Pol (⊕) = D, and Pol (x1 ∧ (x2 ⊕ x3)) =
D1. Hence, by Lemma 4.4.1 and Corollary 4.2.6, we can assume that Γ only contains
these relations.

From Theorem 1.3.5, we know that the class known as SL, (“symmetric logspace”)
and LOGSPACE coincide. Hence, Problem 4.1 in Section 7 of [AG00] shows that the
satisfiability problem for formulas in which positive literals and clauses of the form x⊕ y
is complete for LOGSPACE, giving the proof for the case Pol (Γ) = D1.

Due to Corollary 4.2.3, and since D1 ⊆ D, this also gives the upper bound for the case
Pol (Γ) = D. It remains to show hardness for this case. In order to do this, we reduce
CSP ({x1 ∧ (x2 ⊕ x3)}) to CSP ({⊕}) .

The reduction works as follows: for each clause x, introduce a clause x⊕f for a single
new variable f. In this way, we generate a formula in which only ⊕-clauses appear. Now
if the original formula is satisfiable, then extending a satisfying assignment for it with the
additional assignment f = 0 gives a solution for the new formula. On the other hand,
if I satisfies the new formula, then, since ⊕ is closed under negation, we know that the
assignment I, which is obtained by I(x) =def I(x) for every variable x, is a satisfying
assignment for the formula as well. Hence, if the formula is satisfiable, then there is a
satisfying assignment I such that I(f) = 0. Obviously, this assignment restricted to the
variables appearing in the original formula satisfies it. This completes the reduction. �

The next case that we will consider deals with Horn and anti-Horn formulas. The
complexity result that we give was known to hold for logspace reductions (see for example
[Pla84] for Horn formulas). We now prove that this is also true for the stricter ≤AC0

m -
reduction.

Lemma 4.5.2 Let Γ be a Boolean constraint language such that Pol (Γ) ∈ {E2,V2} .
Then CSP (Γ) is complete for P under ≤AC0

m -reductions.

Proof. The upper bound follows from Proposition 4.3.1. We show the lower bound for the
case Pol (Γ) = V2, the proof for the dual case Pol (Γ) = E2 then follows from Lemma 4.2.8,
Proposition 4.2.7, Lemma 4.4.1, and Corollary 4.2.6. For the lower bound, we reduce
from the problem SATC ({(x ∧ (y ∨ z)), c0}) . This is the problem to determine if a given
Boolean circuit over the base containing the function (x∧ (y ∨ z)) and the constant zero
function is satisfiable. This problem is hard for P due to Theorem 16 in [RW00].

The idea of the proof is the following: to simulate a single gate in the original circuit,
we use a single constraint. It turns out that this is possible using only relations which
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are invariant under the Boolean OR-operator. Let C be a {(x ∧ (y ∨ z)), c0}-circuit. For
each gate g in C, introduce a variable xg. The variable xg in the constraint formula will
be used to represent the value computed by the gate g in the circuit C. For the gate g,
additionally introduce a constraint as follows:

• If g is a c0-gate, then add a constraint xg.

• If g is a gate computing the function x∨(y∧z), then let gx, gy, gz be the predecessor
gates of g in C. Now introduce a constraint xg → (xgx ∧ (xgy ∨ xgz)).

• If g is the output-gate, then add a clause xg.

All the relations appearing in the construction are invariant under the Boolean OR,
and hence for the constraint language Γ′ containing these, it holds that Pol (Γ) ⊇ V2.
Hence, we can use the given contraint language Γ to express these relations. We now
claim that the original circuit C is satiable if and only if the conjunction of the constraints
mentioned above, which we will call ϕ, is.

First, assume that C is satisfiable. Let I be a satisfying assignment for C, and now
assign to every variable xg in ϕ the value that the gate g computes when I is given as
input to the circuit. By construction, it is obvious that all constraints in ϕ are satisfied
(since I is a satisfying assignment, it holds that xg is true for g denoting the output gate
of the circuit).

For the other direction, assume that ϕ is satisfiable, and let I be a satisfying assign-
ment. Assign to all input gates from C the values that I assigns to the corresponding
variables in ϕ. By an easy induction, it can be shown that for all gates g in C, it holds
that the value computed by the gate g on this input is 1 whenever the variable xg is 1.
Hence, this holds for the output gate g in particular, and since xg is a clause in ϕ, this
implies that the output gate computes the value 1, i.e., we have constructed a satisfying
assignment for the circuit, as required. �

The next case can again be covered by a reduction from a restricted satisfiability
problem for Boolean circuits:

Lemma 4.5.3 Let Γ be a Boolean constraint language such that Pol (Γ) ∈ {L2,L3} .
Then CSP (Γ) is ≤AC0

m -complete for ⊕LOGSPACE.

Proof. The upper bound follows from Proposition 4.3.1. For the lower bound, due to
Lemma 4.4.1 and Corollary 4.2.6, it suffices to exhibit one constraint language Γ with
the required polymorphism that gives rise to a problem which is hard for ⊕LOGSPACE.
This means that we can, without loss of generality, assume that Γ consists of the relations
represented by the formulas x and x = y ⊕ z, since these relations are invariant under
L2, and hence the original constraint language can express these relations.

We now show that SATC ({⊕}) , which is the satisfiability problem for circuit con-
taining only ⊕-gates, reduces to CSP (Γ) . Since Theorem 12 of [RW00] shows that this
problem is complete for ⊕LOGSPACE, the claim then follows. Let C be a circuit in which
only ⊕-gates occur. The reduction is straightforward: as in the proof for Lemma 4.5.2,
we introduce a variable xg for each gate g in the circuit. Now, to simulate a gate g com-
puting the function y ⊕ z, where the predecessor gates are gy and gz, simply introduce a
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clause xg = (xgy ⊕ xgz). For the output gate g, insert a clause xg. It is obvious that this
formula simulates the circuit, and is satisfiable if and only if the circuit is.

Now assume that Pol (Γ) = L3. In this case, we cannot express a term like xg to
force the variable corresponding to the output-gate to 1, since L3 contains negation, and
therefore for every satisfying assignment I to a Γ-formula, the negated assignment I
satisfies it as well. Therefore, we cannot simply simulate a circuit with this constraint
language. Instead, we give a reduction from the case just proven before: we show that for
every constraint language Γ satisfying Pol (Γ) = L2, there exists a constraint language Γ′,
such that Pol (Γ′) ⊇ L3, and CSP (Γ) ≤AC0

m CSP (Γ′) . Since due to the comments at the
beginning of the proof it is sufficient to show the hardness result for a single constraint
language with this set of polymorphisms, the general claim follows.

For an n-ary relation R ∈ Γ, we define the relation R′ as the (n+ 1)-ary relation

R′ =def ({0} ×R) ∪
(
{1} ×R

)
.

By construction, this relation is invariant under negation, but it is obvious that it
contains all the information that R contains. It is straightforward to verify that R′ is still
closed under L2, since R is. Since L3 = [N2 ∪ L2] , and the set of polymorphisms always
is a clone, this implies that R′ is closed under L3. We now define Γ′ as the constraint
language containing the relation R′ for each relation R in Γ. We show that CSP (Γ) can
be reduced to CSP (Γ′) as folllows:

Let ϕ be a Γ-formula. Introduce a new variable t. For each clause R(x1, . . . , xn) in ϕ,
introduce the clause R′(t, x1, . . . , xn). Let ϕ′ denote the conjunction of these terms. By
construction, ϕ′ is a Γ′-formula. The reduction obviously can be performed in AC0. It
remains to prove that ϕ is satisfiable if and only if ϕ′ is.

First, let I be a satisfying assignment for ϕ. It is obvious that by extending this
assignment with I(t) = 0, we obtain a solution for the formula ϕ′. On the other hand, if
I satisfies ϕ′, then we can assume, without loss of generality, that I(t) = 0 (otherwise,
consider the assignment I, which satisfies the formula as well, since every relation in Γ′ is
closed under negation). Trivially, by restricting this assignment to the variables appearing
in the original formula ϕ, we get a solution for ϕ. This concludes the proof. �

The final result is the matching lower bound for Lemma 4.3.3:

Lemma 4.5.4 Let Γ be a Boolean constraint language such that Pol (Γ) ⊆ M2. Then
CSP (Γ) is hard for NL under ≤AC0

m -reductions.

Proof. Again, since Γ can express equality and the results from Section 4.4, it suffices to
present a single constraint language with the required properties. Let Γ = {x, x, x→ y} .
We show that the search problem in directed graphs can be reduced to CSP (Γ) , the
result then follows from Theorem 1.3.5.

Let G be a directed graph, and let s, t be vertices in G. Introduce a clause s and a
clause t, and for each edge (x, y) in the graph, a constraint x → y. As in the proof for
the LOGSPACE-hardness part of Lemma 4.2.4, it is obvious that there is a path from s
to t in G if and only if ϕ is not satisfiable: if there is a path from s to t, then the formula
demands that s must be set to 1, and t to 0. But at the same time, the formula forces s
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to imply t, which is a contradiction. If there is no from s to t, then an assignment can
simply set s and everything implied by s to 1, and every other variable to 0, satisfying the
formula. Since NL is closed under complementation due to Theorem 1.3.1, this concludes
the proof. �

4.6 Conclusion

The results from this chapter give a complete complexity classification of the Boolean
constraint satisfaction problem. In Figure 4.1, the classes and complexities are shown in a
graphical representation. The classes where the complexity reads “LOGSPACE-complete
/ AC0” are the cases where the complexity does not only depend on the polymorphisms.
In this case, the algorithm from Lemma 4.4.2 gives the precise answer. Note that for
those cases where the constraint satisfaction problem is NP-complete, we know that the
polymorphisms of the constraint language are a subset of N2. In this case, Lemma 4.4.1
shows that the constraint language can express equality, and hence these problems are
also equivalent under ≤AC0

m -reductions. The complete classification of the complexity
of the Boolean constraint satisfaction problem is summarized by the following theorem,
which is a refinement of Theorem 5.1 from [Sch78] and Theorem 6.5 from [CKS01]:

Theorem 4.6.1 Let Γ be a Boolean constraint language.

• If I0 ⊆ Pol (Γ) or I1 ⊆ Pol (Γ), then every constraint formula over Γ is satisfiable,
and therefore CSP (Γ) is trivial.

• If Pol (Γ) ∈ {I2,N2}, then CSP (Γ) is complete for NP under ≤AC0

m -reductions.

• If Pol (Γ) ∈ {V2,E2}, then CSP (Γ) is complete for P under ≤AC0

m -reductions.

• If Pol (Γ) ∈ {L2,L3}, then CSP (Γ) is complete for ⊕LOGSPACE under ≤AC0

m -
reductions.

• If S00 ⊆ Pol (Γ) ⊆ S2
00 or S10 ⊆ Pol (Γ) ⊆ S2

10 or Pol (Γ) ∈ {D2,M2}, then CSP (Γ)
is complete for NLOGSPACE under ≤AC0

m -reductions..

• If Pol (Γ) ∈ {D1,D}, then CSP (Γ) is complete for LOGSPACE under ≤AC0

m -reduc-
tions.

• Otherwise, S02 ⊆ Pol (Γ) ⊆ R2 or S12 ⊆ Pol (Γ) ⊆ R2, and either CSP (Γ) is in
AC0, or CSP (Γ) is complete for LOGSPACE under ≤AC0

m -reductions.

The theorem reveals an important corollary. We say that two languages are AC0-
isomorphic, if there is a bijection f between them such that f and f−1 can be computed in
FAC0. As with all mathematical structures, an isomorphism gives a very close relationship
between two languages: they are “identical” as long as we are interested only in their
features which are relevant for AC0-computation.

Corollary 4.6.2 For any Boolean constraint language Γ, CSP (Γ) is AC0-isomorphic
either to 0Σ∗ or to the standard complete set for one of the following complexity classes:
NP, P, ⊕LOGSPACE, NL, LOGSPACE.
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Proof. Theorem 4.6.1 implies that if CSP (Γ) cannot be solved in AC0, then it is com-
plete for one of the classes NP, P, NLOGSPACE, LOGSPACE, or ⊕LOGSPACE under
≤AC0

m -reductions. By [Agr01], all complete problems for these classes are AC0-isomorphic.
Therefore, the constraint satisfaction problems considered in this chapter are, in partic-
ular, isomorphic to the standard complete problem in the corresponding class.

Now for the cases where CSP (Γ) can be solved in AC0, any problem A ∈ AC0 can be
reduced to CSP (Γ) via a length-squaring, invertible AC0-reduction as follows: we first
check if a given word x is in the language A, and if it is not, take a fixed syntactically
incorrect instance, and add as many clauses as needed, which encode the string x, for
example in the indices of the used variables. If x is in the language A, then by repeating
a single satisfiable clause often enough, with only alternating the variables to code x, but
never sharing a variable, a satisfiable instance of arbitrary length can be obtained from
which the original word x can be obtained by an FAC0-function.

It is obvious that any problem which can be solved in AC0 can be AC0-reduced to
the problem 0Σ∗ with a length-squaring and invertible AC0-reduction, by simply first
solving the problem, and depending on the answer computing either a 0 or a 1, and then
simply copying the instance often enough to produce the required length. Therefore,
AC0 isomorphism to 0Σ∗ now follows from [ABI97], since here it was shown that any
two problems which can be reduced to one another with length-squaring and invertible
AC0-reductions are AC0-isomorphic. �

We have completely answered the question for the exact complexity of the Boolean
constraint satisfaction problem. In the process, we showed that the Galois connection
can be refined to give a logarithmic space reduction, but a further refinement to ≤AC0

m -
reductions is not possible. The feature of the Galois connection stopping us from refining
it to ≤AC0

m -reductions is that the co-clone closure operator allows the introduction of
equality clauses, which, as we have seen, can be used to express search problems in
undirected graphs, and therefore gives hardness results for LOGSPACE. The presence
of the equality relation can lead to difficulties for other reasons as well: While we can
use variable identification to remove occurrences of the equality relation and end up with
a formula that is satisfiable-equivalent to the original formula, this transformation does
not give a fully equivalent formula. Therefore, when considering problems different from
satisfiability, we expect to encounter difficulties. In Chapter 5, we will see that this
is indeed a problem when we consider the equivalence of formulas, a context in which,
naturally, we are interested in transformations preserving equivalence.

There is a second feature which is present in the co-clone closure 〈Γ〉 extending rela-
tions definable by simple Γ-formulas, which is the introduction of existentially quantified
variables. While this feature is not problematical for the satisfiability problems studied
in this chapter, it is for other questions. It can be shown that for the enumeration prob-
lem for constraint formulas, the existential quantifiers make an application of the Galois
connection impossible: In [SS06a], it was shown that there are constraint languages Γ1

and Γ2, such that Γ1 ⊆ 〈Γ2〉, but the solutions of Γ2-formulas can be enumerated by a
polynomial-delay algorithms, and those for Γ1-formulas cannot. Hence there are two pos-
sible reasons why the Galois connection can fail: If we consider complexity classes below
logarithmic space, the connection fails due to the introduction of equality constraints.
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For problems different than satisfiability, it fails due to the fact that the reduction pro-
vided by the Galois connection only preserves satisfiability, and not equivalence. While
there does not seem to be an easy way out for the first problem, the second one can be
solved by algebraic means: there is a modification of the standard Galois connection,
which refines it to the case where we do not allow existential quantification in the co-
clone closure operator. However, this tool does not come without cost: instead of the
well-known Post’s lattice, we need to study the partial functions on the Boolean domain.
In [SS06b], Henning Schnoor and Ilka Schnoor show how this refined Galois connection
can be used to obtain classification results for Boolean constraint problems.
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Chapter 5

Quantified Constraints: Decision
and Counting

5.1 Introduction

We will generalize the results from Chapter 4 in several ways: first, instead of the simple
Γ-formulas considered there, we will look at quantified formulas. The standard constraint
satisfaction problem can be seen as a special case of the quantified problem, where all
appearing variables are existentially quantified. The problem to decide whether a quan-
tified Boolean formula evaluates to true is the standard complete problem for the class
PSPACE. When we restrict the problem in limiting the number of quantifier alternations
which may appear in the formula, we obtain problems which are complete for the corre-
sponding levels of the polynomial hierarchy. For the Boolean case, a dichotomy theorem
concerning these problems has been proven by Edith Hemaspaandra in [Hem04]. We will
use the algebraic approach to constraint satisfaction problems to obtain an extension of
her results to the non-Boolean case.

Second, we look at problems other than satisfiability: similarly to the unquantified
case considered in [BHRV02], the question of equivalence for quantified formulas is of
interest. We also study the model checking problem, which is closely related to satisfi-
ability. Beyond decision problems, we consider the counting problem corresponding to
quantified formulas, which is the following: given a quantified formula with free variables,
determine the number of possible assignments to the free variables such that the formula
evaluates to true.

Counting problems for propositional formulas have been known to give complete prob-
lems for natural counting complexity classes since [Val79a, Val79b], in which many of the
basic notions for counting complexity were introduced. In the context of counting prob-
lems, the question for suitable reductions is often a difficult one. While for the decision
problems, the concept of the many-one reduction is very often sufficient to prove hard-
ness results, this is not so easy for counting problems. The natural generalization of the
many-one reduction to this context is the parsimonious reduction. However, as we will
soon show, this reduction fails to give completeness results for many problems which we
would naturally consider to be complete for the complexity class in question. For certain
counting problems in the context of Boolean constraint satisfaction problems, comple-
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mentive reductions were introduced in [BCC+04]. These reductions close the relevant
complexity classes, and therefore can be used to prove completeness results for natural
problems arising in this context. However, a generalization to non-Boolean domains has
not yet been successful.

For our results in this area, we mostly restrict ourselves to parsimonious reductions
. Due to the above-mentioned problems, compromises need to be made here, since there
are limitations to the application of parsimonious reductions in the constraint context.
Our way out is a redefinition of the counting problem, and we believe that this is a
good compromise between considering natural problems and achieving sharp complexity
bounds: as we will see, the redefined problem is “equivalent” to the original one in a very
natural way.

5.2 Counting Problems and Reductions

We give some background on the study of the complexity of counting problems. Except
for the enumeration algorithms studied in Chapter 3, the problems considered up to now
have been decision problems, i.e., problems for which the answer is either “yes” or “no.”
Computational problems where the goal is to compute the number of solutions of some
formula cannot be expressed in this context in a satisfying way. However, complexity
theory has developed powerful tools to deal with questions like this. In contrast to the
case of enumeration problems, there is a rich theory of complexity classes and suitable
reductions dealing with counting problems.

A counting problem is a computational problem where the task is to compute a func-
tion f : Σ∗ → N. In the counting context, the class FP is considered to capture the notion
of efficient computation. One of the most important higher counting classes is the class
# · P, which easily can be seen to be a superset of FP. This class, introduced by Leslie
Valiant in [Val79a, Val79b] is defined as follows: A function f : Σ∗ → N is in # · P, if
there is a non-deterministic polynomial-time Turing machine M which, on input w, has
exactly f(w) accepting computation paths. Hence, one of the prototypical problems in
the class # · P is the problem #SAT, which we define now.

Problem: #SAT
Input: A propositional formula ϕ
Output: #SOL (ϕ)

It is obvious that this problem can be solved in # · P, since a Turing machine can
simply branch into as any paths as there are possible truth assignments for the formula,
and on each computation path, accept if and only if the corresponding assignment satisfies
the formula. Other typical problems which can be solved in this class are counting the
number of colorings for a graph, counting perfect matchings in bipartite graphs, and
computing the permanent of a Boolean matrix [Val79a].

To deal with counting problems which cannot be solved in # · P, a general notion
of counting classes has been introduced by Lane Hemaspaandra and Heribert Vollmer
in [HV95]. We consider counting problems of a special form only: For alphabets Σ
and Γ, let R ⊆ Σ∗ × Γ∗ be a binary relation between their strings. Then the counting
problem #R is the following: Given a string x ∈ Σ+, determine the cardinality of the
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set {y ∈ Γ∗ | (x, y) ∈ R} . The members of this set are also called witnesses for x. The
relation R is called the witness relation of the counting problem. This concept can easily
be seen to be a generalization of the class # · P as defined above, where R contains
the pairs (x, y), for instances x and encodings y of an accepting path. For a satisfiable
propositional formula, the set of its witnesses is the set of its satisfying assignments.

Definition Let C denote a complexity class of decision problems. The class # · C
contains all counting problems whose witness relation satisfies the following conditions:

• There is a polynomial p such that for all x ∈ Σ∗, every witness y has a length
restricted by p(|x|),

• The problem “given x and y, is y a witness for x?” can be solved in C.

It is obvious that this definition gives the same class # ·P as the one above: for a fixed
nondeterministic polynomial-time Turing machine M, the question “given x and y, is y
an accepting computation path of M on input x?” can be solved in polynomial time, and
such paths can be encoded with polynomial length. For the classes C of the polynomial
hierarchy, the corresponding counting classes # · C form the counting hierarchy .

In order to compare the complexity of counting problems, we introduce a suitable
reduction. Let #R and #S be counting problems with witness relations R ⊆ Σ∗

1 × Γ∗1
and S ⊆ Σ∗

2 × Γ∗2. A polynomial-time computable function f : Σ∗
1 → Σ∗

2 is called a
parsimonious reduction from #R to #S, if for all x ∈ Σ∗

1, the cardinality of the witness
set for x (with respect to R) is the same as the cardinality of the witness set of f(x)
(with respect to S). It is obvious that the classes from the counting hierarchy are closed
under this reduction.

Parsimonious reductions are the natural generalization of polynomial time many-one
reductions to counting problems: in both cases we have a polynomial-time transformation
between the possible input instances of the corresponding problems which preserve the
answer to the question that we are interested in.

Later, we will see that this definition is too strict to capture some problems where we
would naturally assume the complexity to be “as hard as it gets.” In the constraint con-
text, there are satisfiability problems, where the problem if a given formula has a solution
at all is NP-complete, but the corresponding counting problem is not complete for # · P
under parsimonious reductions (this can be proven without any complexity theoretical
assumptions). A slightly less strict reduction type is the weak parsimonious reduction
or counting reduction, as defined by Viktória Zankó [Zan91]. A counting reduction con-
sists of two polynomial-time computable functions f and g. This pair forms a counting
reduction from #R to #S, if for all x, it holds that the cardinality of the witness set
of x (with respect to R) is the same as g(s), where s is the cardinality of the witness
set of f(x) (with respect to S). Hence, parsimonious reductions are the special case of
counting reductions where the function g is simply the identity. Although the step from
parsimonious to counting reductions seems subtle, there is a significant difference: unlike
parsimonious reductions, counting reductions do not close the classes of the counting hi-
erarchy, unless the counting hierarchy collapses (this was shown by Seinosuke Toda and
Osamu Watanabe in [TW92]).
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As commented above, for counting problems, it is often unclear what kind of reduc-
tion is suitable. We will give an easy example demonstrating that this is a problem in
the constraint context. Assume we have some Boolean constraint language Γ, such that
Pol (Γ) is the set N2, i.e., contains only the identity and the negation. Due to Theo-
rem 1.5.4, the constraint satisfaction problem CSP (Γ) is NP-complete. But it is easy to
see that the counting problem #SAT (Γ) , which is the problem to determine the number
of satisfying assignments of a given Γ-formula, cannot be complete for # · P under par-
simonious reductions: since Γ is closed under negation, for every Γ-formula ϕ and every
solution I |= ϕ, the assignment I obtained by negating the assignment of I for every
single variable, is a solution for ϕ as well. Hence, the number of satisfying solutions for
ϕ is always an even number, and therefore we cannot reduce any counting problem to
#SAT (Γ) where odd results may appear (it is obvious that such problems appear even
in FP, consider the “counting problem” where the answer is always 3). However, we still
want to regard this problem as one of the “hardest” problems in this context, in other
words, we want it to be # · P-complete, for reasons which we will now explain.

There are two possible ways to relate the counting problem for these formulas to
a problem which can be shown to be # · P-hard under parsimonious reductions. The
first one is based on the following idea: Since the number #SOL (ϕ) is always even, this
means that the last bit of its representation as a binary number is fixed. Hence, the actual
computational task is to determine the remaining bits of this number, or equivalently to
compute 1

2
#SOL (ϕ) . It turns out that this problem can be proven to be # ·P-complete

under parsimonious reductions. This is the main reason why we still want to regard the
original problem as hard for # ·P : it is not natural to have a problem where to compute
the string f(x) is “more difficult” than to compute the string f(x) augmented with a
zero. It is obvious that similar issues arise when we consider non-Boolean domains, if for
a constraint language Γ, the set Pol (Γ) contains every permutation on its domain D. We
could again ask for the number of solutions divided by some constant here, but as it will
turn out, this is not as easy as in the Boolean case. The other option is to not consider
the number of solutions for a given formula, but the number of “classes of solutions,”
which are defined as equivalence classes under any permutation. If we know that each
solution gives us a large class of solutions by applying every permutation of the domain,
then the question how many of these classes exist becomes relevant.

For the Boolean case, there is a third possibility, which is to introduce a new type of
reduction for counting problems. In [BCC+04], the notion of a complementive reduction
was introduced to deal with the above mentioned issue. This reduction can also be applied
to the quantified problems we consider here, but since it does not seem to generalize to the
non-Boolean case, we do not consider this reduction. Completeness results of the Boolean
counting problems we consider here using complementive reductions were achieved in the
technical report [BBC+05], which contains some of the results of this chapter.

5.3 Quantified Constraint Formulas

In the constraint satisfaction problem, we are essentially asking if a sentence where all
appearing variables are existentially quantified is true. In this chapter, we additionally
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allow variables to be universally quantified. We only consider quantified formulas in
prenex form, i.e., formulas of the form ψ = Q1X1Q2X2 . . . QnXnϕ(x1, . . . , xk, y1, . . . , yk),
where Qi ∈ {∃,∀} , X1, . . . , Xn are sets of variables which contain x1, . . . , xk, ϕ is a
propositional formula, called the kernel of ψ, and where y1, . . . , yk are additional variables
not appearing in the quantifier block Q1X1Q2X2 . . . QnXn. These variables are called free
variables . We denote the set of free variables of ϕ with FVAR (ϕ) . There is a canonical
order on the variables appearing in a quantified formula which mirrors the dependence
of the possible assignments. This order, which we will denote with <ϕ, is defined as
follows: restricted to the free variables, the order is arbitrary. For a free variable y and
a quantified variable x, y <ϕ x always holds. For two quantified variables x1 and x2,
x1 <ϕ x2 holds if the quantification of x1 happens before the one of x2 in the quantifier
block.

Let X be the set of variables in ψ which are universally quantified, i.e., let X =⋃
{Xi | Qi = ∀} , and similarly let Y be the set of existentially quantified variables in ψ.

If the kernel ϕ of ψ is a propositional formula where variables take values from the domain
D, then an assignment I : FVAR (ψ) → D is a satisfying assignment , or a solution of ψ,
if the following holds: For every assignment U : X → D for the universally quantified
variables, there is a function E : Y → D such that the assignment I ∪ U ∪ E satisfies ϕ,
and for each xi ∈ Y, the value E(xi) depends only on the assignment I and the values
U(xj) for xj <ϕ xi, i.e., the values of the variables universally quantified before the
quantification of xi occurs (note that in the literature, often a dependence on existential
variables xj quantified earlier is allowed as well, but this can be avoided, by coding the
behavior of E(xj) into the function E(xi)). Here the assignment I ∪ U ∪E is defined as
usual for the union of functions with disjoint domains. It is straightforward to verify that
this definition is equivalent to the standard definition of truth in a quantified formula. As
usual, we denote the set of solutions of ϕ with SOL (ϕ) . A quantified formula is closed
if it does not have any free variable. Such a formula is either true or false.

It should be noted that even though quantifiers are a typical feature of predicate logic,
they do not enrich the propositional language in our context: For a Boolean formula ϕ
in which the variable x occurs, the formula ∀xϕ can be considered as a shorthand for
ϕ[x/0]∧ϕ[x/1], and similarly, ∃xϕ is equivalent to ϕ[x/0]∨ϕ[x/1]. Therefore, a quantified
formula is only an abbreviation for a purely propositional formula. Obviously, analogous
constructions can be used in the non-Boolean case, as long as the domain remains finite.
However, quantifiers allow us to present formulas in a succinct way: The quantifier-
removing expansion described above will usually lead to a formula which is exponential
in length compared to the original. Therefore it is not surprising that QBF, the truth
evaluation for quantified formulas, is significantly more difficult than the same problem
for the quantifier-free formulas considered in Chapter 2. In fact, this is one of the standard
complete problems for PSPACE. In a similar way, it can also be restricted by limiting
the propositional operators allowed to appear in the formula. This problem has been
considered in [RW00] for Boolean circuits and in [Sch78, CKS01] for constraint formulas,
and full complexity classifications were achieved.

We now study problems for quantified formulas where the propositional kernel is in
constraint form. For a constraint language Γ, a quantified Γ-formula with k−1 quantifier
alternations, is a formula of the form Q1X1Q2X2 . . . . . . QkXkϕ, where ϕ is a Γ-formula,
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and Q1, . . . , Qk are either ∃ or ∀, where Qi 6= Qi+1 for i ∈ {1, . . . , k − 1} , and X1, . . . , Xk

are sets of variables appearing in ϕ. Depending on whether we start with an existential
or a universal quantifier, we make the following distinction:

Definition Let Γ be a constraint language, and let k be a natural number.

• A Σk(Γ)-formula is a quantified Γ-formula with at most k−1 quantifier alternations
where the first quantifier is ∃,

• A Πk(Γ)-formula is a quantified Γ-formula with at most k−1 quantifier alternations
where the first quantifier is ∀.

Since we are dealing with formulas in conjunctive normal form, the question if the
last quantifier is existential or universal makes a significant difference: the problem to
decide whether a given Γ-formula is satisfiable is NP-complete in general. However, the
problem to decide if such a formula is a tautology is trivially solvable in P, since this is
the case if and only if each of the clauses is a tautology. For a fixed constraint language
Γ, this can be tested in polynomial time. Therefore, when dealing with formulas from
the constraint context, adding a ∀-quantifier after the last ∃-quantifier does not raise the
complexity of the problems anymore. Hence, we are interested in formulas where the last
quantifier is existential. Therefore we define the following:

Definition Let Γ be a constraint language, and let k be a natural number. If k is odd,
then a QCSP(Γ)k-formula is a Σk(Γ)-formula. If k is even, then a QCSP(Γ)k-formula is a
Πk(Γ)-formula.

In addition, a QCSP(Γ)-formula is a QCSP(Γ)k-formula for an arbitrary k, i.e., the set
of QCSP(Γ)-formulas is the union of the sets of all QCSP(Γ)k-formulas. We now define
the problems that we are interested in for these formulas. In the following, let Γ be a
constraint language over the domain D, and let k be a natural number. The first problem
we consider is a variation of the classical QBF problem:

Problem: QCSPk(Γ)
Input: A closed QCSPk(Γ)-formula ϕ
Question: Is ϕ true?

A closely related problem is the following, which is called the model checking problem
for QCSPk(Γ)-formulas . This can be seen as a slight generalization of the QCSPk(Γ)-
problem, where we can additionally fix some values for the free variables.

Problem: QMCKk(Γ)
Input: A QCSPk(Γ)-formula ϕ and an assignment I : FVAR (ϕ) → D
Question: Does I satisfy ϕ?

The final decision problem which we study is the problem to decide whether two
formulas are equivalent. Equivalence in this context is defined as solution-equivalence, i.e.,
formulas ϕ1 and ϕ2 are equivalent if every assignment I : FVAR (ϕ1) ∪ FVAR (ϕ2) → D
is a solution for ϕ1 if and only if it is a solution for ϕ2. As usual, we write this as ϕ1 ≡ ϕ2.
The following is called the equivalence problem for QCSPk(Γ)-formulas :
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Problem: QEQUIVk(Γ)
Input: Two QCSPk(Γ)-formulas ϕ1 and ϕ2

Question: Does ϕ1 ≡ ϕ2 hold?

Formulas with free variables obviously also give rise to a canonical counting problem,
namely the problem to determine the number of satisfying solutions to the formula, i.e.,
the number #SOL (ϕ) . Hence, we define the following:

Problem: #QCSPk(Γ)
Input: A QCSPk(Γ)-formula ϕ
Output: #SOL (ϕ)

It is easy to see that the problem #QCSPk(Γ) can be regarded as a counting problem
in the sense defined above, where the witness relation contains the tuples (ϕ, I), where
ϕ is a formula, and I a satisfying assignment. It is obvious that such an assignment
can be represented by a string which is polynomial in the length of the formula. Due to
Theorem 1.3.2, it is not surprising that computational problems related to these formulas
have a connection to the polynomial hierarchy. We will show that the decision problems
just defined are indeed either complete for some level of the polynomial hierarchy, or can
be decided in polynomial time.

Recall that in our discussion earlier, we explained that for constraint languages in-
variant under all permutations of the domain, we cannot hope to achieve parsimonious
reductions from arbitrary problems in classes even as low as FP. We now formalize the
approach mentioned above: to instead count the number of classes of solutions. The
following definitions are meant to capture this idea. As usual, let SD denote the group
of permutations on the set D.

Definition

• A constraint language Γ over a domain D is called permutative, if Pol (Γ) contains
every unary permutation of D, i.e., if SD ⊆ Pol (Γ) .

• Let X be a finite set of variables, and let A be a set of assignments I : X → D
for the variables to some finite domain D. We say that A is permutative, if it is
closed under permutations, i.e., if for every I ∈ A, and every bijection Π ∈ SD the
function Π ◦ I is a member of A.

• For a permutative set A of assignments from X to D, we say that two assignments
I1 and I2 are equivalent, if there is a permutation Π of the domain D such that
I1 = Π ◦ I2.

• The set of equivalence classes of a set A under the equivalence relation defined
above is denoted with SOL(ϕ)/SD.

Note that a Boolean constraint language is permutative if and only if it is comple-
mentive. For a permutative constraint language Γ and a natural number k, we define the
following problem:
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Problem: #EQCSPk(Γ)
Input: A QCSPk(Γ)-formula ϕ
Output: |SOL(ϕ)/SD|

For this problem to be well-defined, we need to prove the following Proposition:

Proposition 5.3.1 Let Γ be a permutative constraint language, let k ≥ 1, and let ϕ be
a QCSPk-formula. Then SOL (ϕ) is permutative.

Proof. In [Jea98] (also see [BBJK03]), it was show that any relation which can be de-
scribed by a QCSP(Γ)-formula inherits all surjective polymorphisms of Γ. Since permu-
tations on the domain D are by definition surjective on D, this in particular applies to
permutations of the domain. �

As mentioned before, the other option instead of considering the number of equiva-
lence classes is to consider the number of solutions divided by 2 in the case of a Boolean
constraint language which is complementive. For the case of arbitrary finite domains D,
the canonical generalization is to consider the number of solutions divided by |SD| = |D|!
However, unlike in the Boolean case, these problems are not the same. Consider, for ex-
ample, a domain D with cardinality 3, and a formula in which only one variable occurs.
Then the number of solutions will never be a multiple of |D|! = 6, since there are only
3 possible assignments. In general, for an assignment I for the free variables of some
formula, if two permutations Π1,Π2 of D only differ for values which do not appear in I,
then Π1 and Π2 applied to I give the same solution. Therefore, the question for satisfying
solutions divided by the number |D|! gives a different problem. This cannot happen in
the Boolean case, since there are only two permutations on the Boolean domain, and
they differ for all values. This problem also only makes sense to consider for formulas in
which the solution set is indeed a multiple of |D|!. This obviously holds for formulas which
have |D| free variables which are forced to take different values using disequality con-
straints. For some assignment I to these variables which satisfies the inequality clauses
and two different permutations Π1 and Π2 on the domain D, it is obvious that Π1 ◦ I and
Π2 ◦ I differ. Therefore, one could study the problem to compute, for such a formula, the
number of its solutions divided by |D|!. This problem seems too artificial to consider it,
but for completeness, the reduction in Theorem 5.5.2 shows that for these formulas, the
mentioned problem is also complete for the corresponding level of the counting hierarchy
under parsimonious reductions.

However, for Boolean constraint languages which are complementive, the problems to
consider the number of solutions divided by two and the number of equivalence classes
of solutions are indeed the same. This follows directly from the above discussion.

Proposition 5.3.2 Let Γ be a constraint language over a Boolean domain D such that Γ
is complementive, and let ϕ be a QCSPk(Γ)-formula for some k ∈ N. Then |SOL (ϕ) | =
2 · |SOL(ϕ)/SD|.

We now show that the algebraic framework applied to the unquantified constraint
satisfaction problem in Chapter 4 also works for quantified problems. Similarly as in
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Chapter 4, we will have to be careful with the equality constraints resulting from the
application of the Galois connection. In the problems we consider here, the equality
relation does not give problematic complexity in the reductions themselves (since we are
talking about classes in the polynomial hierarchy, logspace reductions are strict enough for
our study), but other than in the satisfiability context, removal of equality constraints
by identifying variables does not preserve all properties of the formulas which we are
interested in. However, if our constraint languages can implement the equality relation
as defined in Chapter 4, then these problems do not arise, as the following Proposition
shows:

Proposition 5.3.3 Let Γ1 and Γ2 be constraint languages such that Γ2 implements equal-
ity and Pol (Γ2) ⊆ Pol (Γ1) holds. Then for any k ≥ 1, the following holds:

1. QCSPk(Γ1) ≤log
m QCSPk(Γ2),

2. QMCKk(Γ1) ≤log
m QMCKk(Γ2),

3. QEQUIVk(Γ1) ≤log
m QEQUIVk(Γ2),

4. #QCSPk(Γ1) reduces to #QCSPk(Γ2) with a parsimonious reduction (which can be
computed in logspace).

5. #EQCSPk(Γ1) reduces to #EQCSPk(Γ2) with a parsimonious reduction (which can
be computed in logspace).

Proof. We show how we can transform a quantified Γ1-formula ϕ1 into a quantified Γ2-
formula ϕ2. Since Pol (Γ2) ⊆ Pol (Γ1) , we can express every relation from Γ1 appearing in
ϕ1 equivalently as a conjunction of relations from Γ2 ∪ {=} with additional existentially
quantified variables, due to Theorem 1.5.2. The additional existential variables can be
put into the last quantifier block of the resulting formula ϕ2, which contains existentially
quantified variables due to the definition of QCSPk(Γ)-formulas. The formula ϕ2 con-
structed in this way obviously is equivalent to ϕ1. Any occurring equality constraints can
be removed by using the Γ2-implementation of the equality relation which exists due to
the prerequisites. Since the resulting formula is equivalent to the original, it is obvious
that this is a correct reduction for all of the involved problems. �

The above proposition in particular shows that if Pol (Γ2) ⊆ Pol (Γ1) , then we can
reduce our problems over the constraint language Γ1 to the same problem over the con-
straint language Γ2∪{=} .We now need to remove the occurrences of the equality relation.
This can easily be done for all of our problems, except for the equivalence problem.

Lemma 5.3.4 Let Γ1 be a constraint language over the domain D, and let k ≥ 1. Then
the following holds:

1. QCSPk(Γ ∪ {=}) ≤log
m QCSPk(Γ),

2. QMCKk(Γ ∪ {=}) ≤log
m QMCKk(Γ),

3. #QCSPk(Γ ∪ {=}) reduces to #QCSPk(Γ) with a parsimonious reduction (which
can be computed in logspace).
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4. #EQCSPk(Γ∪{=}) reduces to #EQCSPk(Γ) with a parsimonious reduction (which
can be computed in logspace).

Proof. We show how equality constraints from a given formula ϕ can be removed in a
way which preserves the properties of ϕ which are relevant to the considered problems.
We first check if in ϕ, there are variables x and y such that y is a universally quantified
variable, and x <ϕ y, and there is a clause x = y in ϕ. If this is the case, ϕ is clearly
unsatisfiable, and we print out the clause ∀x1 . . . xnR(x1, . . . , xn) for a non-full relation
R ∈ Γ (which we can assume to exist without loss of generality, otherwise all of our
problems are trivial). If the case above does not appear, then all cliques of variables
connected with equality clauses in ϕ consist of variables where at most the first one,
which we denote by x, is universally quantified. Hence, the following is an equivalent
transformation of the formula: remove the existential variables appearing in the clique
from the quantifier block, and in the formula, replace them with x.

The resulting formula ϕ′ can be computed in logarithmic space, since the dominating
procedure here is graph accessibility in an undirected graph, and this can be performed in
logspace due to Theorem 1.3.5. It now remains to remove equality occurrences between
free variables. We do this by identifying variables which are connected with equality
constraints. For the counting problems, it is obvious that identifying variables which are
forced to take the same value with equality constraints does not change the number of
solutions of a formula, or the number of equivalence classes of solutions. In particular,
the truth value of a closed formula is invariant under this transformation.

For the model checking problem, if we identify two variables x and y in renaming
every occurrence of y to x, and the assignment I given in the instance does not give
the same value to x and y, we produce a false instance. In this way we ensure that the
original assignment is a solution for the original formula if and only if it is one for the
new formula. �

The combination of the results above gives the following corollary:

Corollary 5.3.5 Let Γ1 and Γ2 be constraint languages over the domain D such that
Pol (Γ2) ⊆ Pol (Γ1) . Then the following holds:

1. QCSPk(Γ1) ≤log
m QCSPk(Γ2),

2. QMCKk(Γ1) ≤log
m QMCKk(Γ2),

3. #QCSPk(Γ1) reduces to #QCSPk(Γ2) with a parsimonious reduction (which can be
computed in logspace).

4. #EQCSPk(Γ1) reduces to #EQCSPk(Γ2) with a parsimonious reduction (which can
be computed in logspace).

Proof. By Proposition 5.3.3, and since Γ2 ∪ {=} obviously implements equality, we con-
clude that the reductions in all cases can be constructed for reducing the problem over
the constraint language Γ1 to the problem over the language Γ2 ∪ {=} . Now an appli-
cation of Lemma 5.3.4 shows that this problem can be reduced to the problem over the
constraint language Γ2, as claimed. �
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Note that the equivalence problem is absent from the above list. This is because for
this problem, variable identification does not necessarily preserve the properties of the
formulas which we are interested in: If we identify the variables x and y, in renaming every
occurring y to x, then the new formula is completely independent of the variable y, while
the old formula might not be. However, we will see that this is not a major problem, and
we can still achieve a full complexity classification for the Boolean quantified equivalence
problem.

For the other problems, the results above show that the logspace complexity of our
problems depends only on the set of polymorphisms of the constraint languages, and
again it suffices to show the complexity results for a single representative of a given co-
clone. In most cases, the relations from Table 1.2 serve as members of these representative
constraint language. For the non-Boolean case, we need a generalization of the Boolean
relation NAE to arbitrary domains: for a finite domain D, the relation NAED consists
of the three-tuples over the domain D where not all elements take the same value, i.e.,
NAED =def {(x, y, z) ∈ D3 | | {x, y, z} | ≥ 2} .

Since for two domains with the same cardinality, all constraint satisfaction problems
over these domains have the exact same structure, we often only write =m, 6=m or NAEm

to denote the relations =D, 6=D, or NAED over an arbitrary but fixed domain D with
|D| = m.

As a start, we prove general complexity bounds for the problems we consider. Canon-
ical upper bounds easily follow from Theorem 1.3.2, and previous work done in this area
shows that there are constraint languages for which lower bounds matching these upper
bounds can be proven. Note that depending on whether our formulas start with an exis-
tential or with a universal quantifier, our problems QCSPk(Γ) are in Σp

k or in Πp
k, due to

Theorem 1.3.2. For easier notation and to avoid case distinctions, we define the following:
For k odd, let QPHk =def Σp

k, and for k even, let QPHk =def Πp
k.

Proposition 5.3.6 Let k be a natural number. Then the following holds:

1. Let Γ be a constraint language on the finite domain D.

• QCSPk(Γ) ∈ QPHk,

• QMCKk(Γ) ∈ QPHk,

• QEQUIVk(Γ) ∈ Πp
k+1,

• #QCSPk(Γ) ∈ # ·QPHk,

• If Γ is permutative, then #EQCSPk(Γ) ∈ # ·QPHk,

2. #QCSPk(Γ3SAT) is # ·QPHk-complete.

Proof. 1. For both QCSPk and QMCKk the upper complexity bound is clear, since
evaluating formulas with k−1 alternations is a typical problem for the correspond-
ing level of the polynomial hierarchy due to Theorem 1.3.2. The upper bound for
#QCSPk is obvious for the same reason: by the very definition of the counting
classes, and with the observation that a solution to a formula can always be rep-
resented in polynomial length, it follows that for any constraint language Γ, if C is
a complexity class such that QMCKk(Γ) is in C, then #QCSPk(Γ) ∈ # · C. For the
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problem #EQCSPk, the witnesses consist of the equivalence classes from SOL(ϕ)/SD.
Since the size of the domain D is a constant, so is |D|!, and therefore these classes,
containing at most |D|! elements, are polynomial in the length of ϕ. Since the set
of solutions is permutative due to Proposition 5.3.1, it suffices to check for one of
the assignments contained in the class if it is a solution for the formula. This test
can be performed in QPHk.

For the QEQUIVk(Γ) upper bound, observe that two QCSPk(Γ)-formulas ϕ1 and ϕ2

are equivalent if and only if for all (α1, . . . , αn), it holds that (α1, . . . , αn) is a model
for ϕ1 if and only if the tuple is a model for ϕ2. Since this condition can be checked
in Σp

k or Πp
k, it follows that equivalence can be tested in Πp

k+1.

2. It is well-known that the problem #3SATk to compute the number of solutions of a
3CNF-formula with at most k− 1 quantifier alternations, where the last quantifier
is ∃, is complete for # · QPHk. The result was stated for arbitrary CNF-formulas
in [DHK05], and can be derived from the proofs in [Wra77]. In the same way as
Corollary 1.5.1, this is exactly the same problem as #QCSPk(Γ3SAT).

�

The following result was stated in [Sch78] without proof. A proof can be found in
[CKS01], where the theorem appears as Theorem 6.12. Note that the theorem shows that
the problem is still solvable in polynomial time even if the number of alternations is not
bounded by a constant.

Theorem 5.3.7 ([Sch78],[CKS01]) Let Γ be a Boolean constraint language such that Γ
is Schaefer. Then there is a polynomial time algorithm, which for any QCSP(Γ)k-formula
decides if it is true.

5.4 Affine Constraint Languages

Affine constraint languages play a special role in our problems. As it will turn out
later, these are the only Boolean cases where our counting problems can be solved in
polynomial time (unless # · P = FP). Since the algorithm for the counting and for the
equivalence problem use the same construction, we present our methods for dealing with
affine languages in this section.

In the non-quantified case, affine languages lead to tractable cases because a formula
over an affine language Γ can be seen as a system of linear equations over the field of
natural numbers modulo 2. The well-known Gaussian elimination algorithm can be used
to solve such equation systems, and hence can be applied to solve various constraint
problems for these languages.

We now show how we can apply these methods to quantified formulas. The set of
solutions of an (inhomogeneous) linear equation system with n variables is either empty
or an affine subscape of {0, 1}n , i.e., of the following form:

S = {v + α1 · b1 + · · ·+ αk · bk | α1, . . . , αk ∈ {0, 1}} ,
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where v,b1, . . . ,bk are vectors from {0, 1}n , and the set {b1, . . . ,bk} is linear inde-
pendent, i.e., none of the bi is the all-zero vector, and none of them can be written as the
sum of a selection of other bis. We call the set {b1, . . . ,bk} the base vectors of S, and the
vector v the affine point of S. The number k is the dimension of the space S. We call this
representation the affine representation of SOL (ϕ) , and we say that S is generated by
the affine point v and the base vectors b1, . . . ,bk. The linear independence ensures that
different choices of α1, . . . , αk lead to different vectors in the sum v+α1 ·b1+ · · ·+αk ·bk,
and hence the cardinality of S is exactly 2k. Therefore, counting problems can easily be
solved if we can determine this representation of the set SOL (ϕ) for some Γ-formula.

Similarly, equality can efficiently be tested for two such sets S1 and S2 when given in
the above representation as an affine vector space: S1 ⊆ S2 holds if and only if the vector v
in the defining equation for the set S1 is a member of S2, and each base vector of S1 can be
written as sum of base vectors from S2. Both of these conditions can be solved by simply
solving a system of linear equations. Hence, equivalence for Γ-formulas can be tested in
polynomial time as well, if we can generate the affine representation of the solution set for
any Γ-formula in polynomial time. Obviously, the question if a formula without any free
variables evaluates to true can be solved with the same procedure. Hence, the following
theorem is the key to all of our tractability results for affine constraint languages:

Theorem 5.4.1 Let Γ be an affine Boolean constraint language. Then there exists a
polynomial-time procedure which computes, for a given QCSPk(Γ)-formula ϕ, the affine
representation of SOL (ϕ) , or decides that the set is empty.

Proof. Since the proof of Proposition 5.3.3 gives an equivalent transformation of the
involved formulas, we can assume that Γ = {EVEN4, x, x,=} . We now rewrite the kernel
of ϕ as a system of linear equations over GF (2) as follows: For variables z1, z2, z3, z4,
the clause EVEN4(z1, z2, z3, z4) is equivalent to z1 + z2 + z3 + z4 = 0, where addition is
over GF (2) . A clause z1 = z2 can be rewritten as z1 + z2 = 0. The clause z1 obviously
is equivalent to z1 = 1, and the clause z1 is equivalent to z1 = 0. Hence, we can assume
that the kernel of ϕ is given as a set of linear equations.

We now describe an iterative transformation procedure converting the system given
by ϕ into an equivalent system ψ which only contains free variables. For every equation
in the kernel of ϕ, and let z be the <ϕ-maximal variable appearing in the equation, where
<ϕ is the order of variables in the quantified formula ϕ as defined previously. If z is a
free variable, then this equation only contains free variables, and we do not perform any
operation on this equation. If z occurs an even number of times, we can simply remove
it and get an equivalent equation. Otherwise, if z is universally quantified, then this
equation is contradictory, and hence ϕ is unsatisfiable. In this case, let ψ be the equation
system containing the single equation 0 = 1.

Now, assume that z is an existentially quantified variable, and let the equation be
t1 + · · · + tk + z = t, where t1, . . . , tk and t are variables or constants. Now, since
z is maximal in the <ϕ-order, an assignment to the existentially quantified variables
of ϕ assigns the value to z as the “last” value, i.e., depending on all variables before.
Therefore, in order to satisfy the equation, the only possible assignment for z is the value
t1 + · · ·+ tk + t. Therefore, the variable z is redundant, since its assignment is completely
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determined by the assignment of the preceding variables. We can therefore remove z from
the quantifier block, and replace z with the sum t1 + · · ·+ tk + t in every equation where
z appears. Afterwards, in any equation, using that z + z is equivalent to 0, we remove
multiple occurrences of any variables or constants. Finally, we remove any variable which
does not appear in any equation anymore from the quantifier block.

We perform these steps until no changes occur in the formula anymore. In each step,
at least one quantified variable is removed. Hence the process terminates after linearly
many steps. Each step can clearly be performed in polynomial time: since each variable
and constant only appears once in each equation, the equations themselves are short. The
number of equations is not increased at any time. It is obvious that each step performed
by the algorithm does not change the solution set of the equation system.

After the algorithm finishes, we end up with an equation system in which no quantified
variable appears anymore: As long as some quantified variable remains, there is an
equation on which an operation is performed by the above steps. Therefore, we have
constructed a system of linear equations in which only the free variables from ϕ occur.
For this system, using the classical Gaussian elimination algorithm from linear algebra,
it is easy to determine an affine representation of the solution set of ϕ. �

Note that the above proof, although removing all quantifiers from a given formula,
does not directly provide a reduction to the unquantified case of the problems we are in-
terested in, since the length of the equations appearing cannot be bounded by a constant,
and hence cannot be expressed by a finite, fixed constraint language. Theorem 5.4.1, the
discussion above, and Proposition 5.3.2 imply the following Corollary. Again, note that
the polynomial determining the running time of the algorithm is independent of the
number k.

Corollary 5.4.2 Let Γ be a Boolean constraint language, such that Γ is affine. Then
there is a polynomial-time algorithm which for all k ∈ N, solves QCSPk(Γ), #QCSPk(Γ),
and QEQUIVk(Γ). If Γ is complementive, then #EQCSPk(Γ) can be solved in polynomial
time.

5.5 Complexity Results for Counting

Proposition 5.3.6 shows that the counting problem for the constraint language Γ3SAT is
hard for the corresponding level of the counting hierarchy. Due to Corollary 5.3.5, and
since I2 is a subset of every clone appearing in Post’s lattice, this implies that this problem
is hard for any constraint language Γ which is invariant only under the functions from
the clone I2. We now show that if we add negation to the invariants, then the problem
#EQCSP is hard for the corresponding class. As mentioned in our earlier discussion, this
is the best result that we can hope for in this context, since the problem #QCSP(Γ)k is
not even hard for FP under parsimonious reductions.

Lemma 5.5.1 Let Γ be a Boolean constraint language such that Pol (Γ) = N2, and let k
be a natural number. Then #EQCSPk(Γ) is complete for # · QPHk under parsimonious
reductions,
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Proof. The upper complexity bound follows from Proposition 5.3.6. For the lower bound,
due to Corollary 5.3.5, it is sufficient to show that there is one Boolean relation R such
that Pol (R) ⊇ N2, and the hardness result holds. Due to Proposition 5.3.6, we know that
#QCSPk(Γ3SAT) is hard for # · Σp

k under parsimonious reductions. Since Pol
(
R1/3

)
= I2

(see Table 1.2), Corollary 5.3.5 implies that #QCSPk(R1/3) is hard for # · Σp
k under

parsimonious reductions as well. We show that #QCSPk(R1/3) reduces to #QCSPk(R2/4)
with a reduction which doubles the number of solutions. Since R2/4 is obviously invariant
under negation, Pol

(
R2/4

)
⊇ N2, and therefore this reduction, with an application of

Proposition 5.3.2, concludes the proof.
The reduction is as follows. Let ϕ be a QCSPk(R1/3)-formula, and define Y =def

FVAR (ϕ) . We first construct a formula ϕ′, which is defined by ϕ ∧ R1/3(y1, y2, y2) for
new free variables y1, y2 ∈ Y, which do not appear in any other clause. It is obvious that
any solution for ϕ can be extended to a solution of ϕ′, by setting y1 to true and y2 to
false. On the other hand, any solution to ϕ′ must assign these values to y1 and y2, and
the restriction of a solution for ϕ′ to the variables in ϕ obviously gives a solution to the
latter formula. Thus, #SOL (ϕ′) = #SOL (ϕ) holds. Assume that ϕ′ is of the following
form:

ϕ′ = Q1X1 . . . ∃Xi ∧
m∧
j=1

R1/3(z
j
1, z

j
2, z

j
3),

where zjl ∈ Y ∪ {y1, y2} ∪X1 ∪ · · · ∪Xi for all relevant j, l.
We now construct a R2/4-formula ψ: ψ has the free variables Y ∪ {y1, y2} appearing

in ϕ′, and additionally a free variable t. We define the formula ψ as follows:

ψ′ = Q1X1 . . . ∃Xi ∧
m∧
j=1

R2/4(z
j
1, z

j
2, z

j
3, t) ∧ R2/4(y1, y2, y2, t),

We claim that #SOL (ψ) = 2#SOL (ϕ′) . To prove this, we show the following claim:

Claim An assignment I : FVAR (ψ) → {0, 1} such that I(t) = 1 is a solution for ψ if
and only if I, restricted to the variables in ϕ′, is a solution for ϕ′.

Since R2/4 is invariant under negation, so is the set of solutions for ψ (this follows
from Proposition 5.3.1). Hence, exactly half of the solutions for ψ fulfill the condition
that t is assigned the value 1, and thus the claim proves the first of the above equations.
We now give the proof of the claim:

Proof. It is easy to see that if we assign the value 1 to the variable t, then the variables
y1 and y2 must be assigned the values 1, resp 0 in any satisfying solution I for ψ, and
the clause R2/4(z

j
1, z

j
2, z

j
3, t) is satisfied by such an I if and only if the clause R1/3 is. This

immediately implies the claim. �

The above claim immediately implies that the set of solutions is doubled in the trans-
formation from ϕ to ψ. Therefore, Proposition 5.3.2 shows that the transformation gives
a parsimonious reduction to the problem #EQCSPk(Γ), proving the lemma. �
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For a Boolean constraint language to be invariant under N2 in the Boolean case means
that the relations in the constraint language are invariant under every permutation of the
domain {0, 1} . It is natural to expect that the counting problems we just proved to be
hard for the Boolean domain are not easier when we generalize this notion to arbitrary
domains. This is proven in the following theorem:

Theorem 5.5.2 Let Γ be a constraint language over a finite domain D such that |D| ≥ 2,
and every polymorphism of Γ is a permutation of D. Then for any k ≥ 2, #EQCSPk(Γ)
is complete for # · Σp

k under parsimonious reductions, and #QCSPk(Γ) is complete for
# · Σp

k under counting reductions.

It should be noted that hardness results for the counting hierarchy under counting
reductions is not a very strong result, since the closure of # ·P under counting reductions
already gives the entire counting hierarchy ([TW92]). However, since our construction
gives the result “for free,” we mention it here.

Proof. We show the theorem by induction on |D|. For |D| = 2, the result follows from
Lemma 5.5.1. Due to Table 1.2, this implies that hardness holds for the constraint
language containing only the Boolean NAE-relation. Assume that the claim holds for
|D| = m, and observe that the relations NAEm and NAEm+1 are invariant under any
permutation of their respective domains. Hence, due to Corollary 5.3.5, it suffices to
show that #EQCSPk(NAEm) can be reduced to #EQCSPk(NAEm+1) with a parsimonious
reduction. We denote the m-element domain {0, . . . ,m− 1} with Dm, and the m + 1-
element domain {0, . . . ,m} with Dm+1. Further note that we can express the clause
6=m+1 (x, y) as NAEm+1(x, x, y). Therefore, it suffices to construct a

{
NAEm+1, 6=m+1

}
-

formula in our reduction.
Let ϕ be a NAEm-formula, with FVAR (ϕ) = X = {x1, . . . , xnx} , existentially quanti-

fied variables Y =
{
y1, . . . , yny

}
, and universally quantified variables Z = {z1, . . . , znz} .

We construct an intermediate formula ϕ′ as follows:

ϕ′ =def ϕ ∧
∧

1≤i<j≤m

(xnx+i 6=m xnx+j),

where xnx+1, . . . , xnx+m are new free variables, which do not appear anywhere else in
the formula. It is obvious that an assignment I : FVAR (ϕ′) → Dm is a solution for ϕ′ if
and only if the following points hold:

• I, restricted to the variables appearing in ϕ, is a solution for ϕ.

• I assigns every variable xnx+1, . . . , xnx+m a distinct value, which is equivalent to
{I(xnx+1), . . . , I(xnx+m)} = Dm.

These points imply that |SOL(ϕ)/SD| = |SOL(ϕ′)/SD|. We now construct the reduction
formula ψ as follows:

• Copy the formula ϕ′, and replace every relation symbol NAEm with the symbol
NAEm+1

• For each variable v which is free or existentially quantified, add a new clause
(v 6=m+1 w), for a single new free variable w.
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• For each universally quantified variable zi, introduce a new variable z′i, and replace
∀zi with ∀z′i. In the block of existential quantifiers following the quantification of
∀z′i, add ∃ti,1 . . . ∃ti,m−1∃zi for new variables ti,1, . . . , ti,m−1. For these variables, add
inequality clauses (ti,j 6=m+1 ti,k) for all relevant j 6= k, and clauses (ti,j 6=m+1 w)
for all relevant j.

For the formula ψ constructed above, Proposition 5.3.1 implies that its set of solutions
is invariant under all permutations of the domain. Additionally, any solution I for ψ needs
to assign m different values to the variables x1, . . . , xnx+m.

We now show that |SOL(ϕ′)/SD| = |SOL(ψ)/SD|. Instead of talking about equivalence
classes for solutions, we talk about canonical representatives of classes. For each equiva-
lence class I, let I0 be a canonical representative chosen in a unique way which ensures
that I0 does not assign the value m to any of the variables x1, . . . , xnx+m, and assigns
the value m to the variable w. Since the involved relations are invariant under every
permutation of the domain, such a representative always exists, for example, let I0 be
minimal in its equivalence class with respect to lexicographical ordering.

Claim Let I0 be a canonical representative as defined above. Then I0 |= ϕ′ if and only
if I ′0 |= ψ, where I ′0 is the assignment I0 augmented with the assignment I0(w) = m.

Proof. The idea to obtain the assignment is the following: since I0 is a solution for ϕ′,
we can, for any assignment Um to the universal variables in ϕ′, obtain an existential
assignment Em that satisfies the kernel of ϕ′, which we will denote with ϕ′k. Now we only
need to choose an assignment Um which “simulates” the assignment Um+1 closely enough.
We define this assignment as follows: for a universally quantified variable zj in ϕ′, let

Um(zj) =def

{
Um+1(z

′
j), if Um+1(z

′
j) ∈ {0, . . . ,m− 1} ,

m− 1, otherwise.

Then Um only assigns values from the domain Dm, and hence is a valid universal
assignment for ϕ′. Since I0 is a solution for ϕ′, there is an existential assignment Em,
which assigns every existentially quantified variable appearing in ϕ′ a value from the
domain Um, depending only on the assignment for the free variables and the universal
variables quantified earlier, such that I0 ∪ Um ∪ Em |= ϕ′k. Based on this assignment,
we define an existential assignment Em+1 for the formula ψ as follows: for an existential
variable zj appearing in ϕ′ as well, simply define Em+1 =def Em(zj). For a variable zi
which is universally quantified in ϕ′ and existentially quantified in ψ, define Em+1(zi) =
Um(zi). For each group ti1 , . . . , ti,m−1, assign these the m− 2 distinct values from Dm+1 \
{m,Em+1(zj)} .

We claim that the assignment Im+1 =def I
′
0∪Um+1∪Em+1 satisfies ψk.We first consider

the inequality clauses added in the step from ϕ′ to ψ. By construction, every inequality
constraint involving the variable w is satisfied: by choice of I ′0, it holds that I ′0(w) = m,
and I0 does not assign this value to any other of the free variables. By construction of
the Em+1-assignment, none of the existentially quantified variables is assigned the value
m. The universally quantified variables do not appear in a disequality clause with w.
Hence, all of the clauses involving w are satisfied. Further, the inequalities between the
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ti,j-variables are satisfied by construction of Em+1 as well. Again by construction of Em+1,
the inequality clauses between zi and the corresponding tj,k-variables are satisfied.

It remains to consider the clauses which are already present in the formula ϕ′. Let
Im =def I0∪Um∪Em, and let Im+1 =def I

′
0∪Um+1∪Em+1. We claim that for any variable v

appearing in ϕ′, it holds that Im(v) = Im+1(v). This implies that all NAEm+1-constraints
in the formula ψ′ are satisfied by the assignment Im+1, since NAEm ⊆ NAEm+1.

For free variables, this equality holds by definition. For variables v which are exis-
tentially or universally quantified in ϕ′, this holds by construction of Em+1 (remember
that a variable which was universally quantified in the ϕ′ is existentially quantified in
ψ). Therefore, the claim holds for all variables, and we conclude that Im+1 satisfies the
kernel of ψ, and thus we know that I ′0 is a solution for ψ, as claimed.

For the other direction, assume that I ′0 is a canonical representative of a class of so-
lutions for ψ. We show that I0 is a solution for ϕ′. Similarly, let Um be an assignment to
the universal variables appearing in ϕ′. Since I ′0 is a solution for ψ, there is an assignment
Em+1 to the existentially quantified variables of ψ, such that for each such variable z,
the value Em+1(z) depends only on the values of the free variables and of the universal
variables quantified before z in ψ, and such that Im+1 defined as I ′0 ∪Em+1 ∪Um satisfies
the kernel of ψ. By definition, it holds that Im+1(w) = m. Hence, due to the inequality
constraint between all free and existentially quantified variables and w, all of these vari-
ables except w must be assigned a value different from m by I0. In particular, it holds
that Im+1(zj) = Im+1(z

′
j) for every zj which is universally quantified in ϕ′. Hence, we can

define Em =def Em+1, and the assignment I0 ∪ Um ∪ Em satisfies the kernel of ϕ′. �

Since for any canonical representative I0 which is a solution for ψ, it must hold that
I(w) = m, this proves the correctness of the reduction: due to the above, it holds that
|SOL(ψ)/SD| = |SOL(ϕ′)/SD|, and earlier we proved that |SOL(ϕ′)/SD| = |SOL(ϕ)/SD|. Therefore,
the transformation is a parsimonious reduction. Considering the problem of computing
the number of solutions divided by the constant |D|!, observe that for the formulas ψ
and ϕ′, it holds that since there appear |D| + 1, resp. |D| many free variables which
are forced to take different values, these formulas match the properties from discussion
above Proposition 5.3.2. It is obvious by construction that #SOL (ϕ′) = m! ·#SOL (ϕ) ,
and #SOL (ψ) = (m + 1) · #SOL (ϕ′) = (m + 1)! · #SOL (ϕ) . Now note that if ϕ
already contains m free variables which are forced to take different values with inequality
constraints, then the step from ϕ to ϕ′ can be omitted, and we get #SOL (ψ) = (m+1) ·
#SOL (ϕ) . Therefore, inductively, the reduction can be made parsimonious if we consider
the problem to compute the number of solutions divided by |D|!. The construction also
immediately gives a counting reduction to the problem #QCSPk(Γ), since the number of
satisfying solutions of the original formula can be obtained from the number of solutions
of the resulting formula by a simple division. �

The above Lemma 5.5.1 and Theorem 5.5.2 show that for any finite domain of size at
least 2, if all polymorphisms are essentially unary permutations, then our counting prob-
lems are hard for the corresponding level of the polynomial hierarchy. For the Boolean
case, it is not surprising that we can extend this hardness result to the case where our
relations are also invariant under the constant functions, since this property only adds
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very few additional solutions. This gives the corresponding hardness result for the case
where all polymorphisms are unary. For the non-Boolean case, there are more additional
functions than just the constants. However, we still can prove a similar result: if for a
constraint language Γ, its set of polymorphisms contains only essentially unary functions
or constants, then the counting problems we consider are hard for the corresponding class
in the polynomial hierarchy. The following lemma proves this for both the Boolean and
for arbitrary finite domains:

Lemma 5.5.3 Let Γ be a constraint language over a finite domain D such that |D| ≥ 2,
and every polymorphism of Γ is essentially unary or a constant. Then for any k ≥ 2,
#EQCSPk(Γ) is complete for # · Σp

k under parsimonious reductions.

Proof. Lemma 5.5.1 (for the Boolean case) and Theorem 5.5.2 (for the non-Boolean case)
show that for a relation R over the domain D such that the set of polymorphisms of R
only contains unary permutations, the hardness result holds. In particular, the proofs
show that the hardness results hold for the relation NAEm, where m is the cardinality of
the domain D. We now construct a relation R with the desired closure properties which
still allows us to prove hardness results. We define R to be the m+ 3-ary relation

R =def

{
(α1, . . . , αm, β1, β2, β3) | | {α1, . . . , αm} | ≤ m− 1 or (β1, β2, β3) ∈ NAED

}
.

We claim that R is closed under every unary function on D. Let f : D → D, and
let (α1, . . . , αm, β1, β2, β3) be a tuple from R. If | {α1, . . . , αm} | ≤ m − 1, then ob-
viously, | {f(α1), . . . , f(αm)} | ≤ m − 1 holds as well, and therefore it follows that
(f(α1), . . . , f(αm), f(β1), f(β2), f(β3)) ∈ R. Therefore assume that | {α1, . . . , αm} | = m,
and hence (β1, β2, β3) ∈ NAED, without loss of generality, assume that β1 6= β2. We now
make a case distinction. If the function f is a permutation, then obviously f(β1) 6= f(β2),
and therefore (f(β1), f(β2), f(β3)) ∈ NAED. On the other hand, if f is not a permutation,
and since the variables αi take all possible values of the domain, there are indices 1 ≤ i <
j ≤ m, such that f(αi) = f(αj). Therefore, it follows that | {f(α1), . . . , f(αm})| ≤ m−1.
In both cases, we conclude that (α1, . . . , αm, β1, β2, β3) ∈ R, and therefore, f is a poly-
morphism of R.

We now show that #EQCSPk(NAED) reduces to #EQCSPk(R) with a parsimonious
reduction. Let ϕ be a QCSPk(NAED)-formula, and let ϕ be of the form

ϕ = Q1X1 . . . ∀Xi−1∃Xi

p∧
j=1

NAED(xj1, x
j
2, x

j
3).

We construct a #EQCSPk(R)-formula ψ as follows: let t1, . . . , tm be new variables, and
define

ψ =def Q1X1 . . . ∀Xi−1∀t1 . . . ∀tm∃Xi

p∧
j=1

R(t1, . . . , tm, x
j
1, x

j
2, x

j
3).

We show that these formulas are equivalent, which establishes the reduction. First,
assume that I : FVAR (ϕ) → D is a solution for ϕ, and let U be an assignment to
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the universal variables in ψ. If U does not assign the ti distinct values, then, by def-
inition of R, every clause is satisfied, and so is the formula ψ. Therefore assume that
| {U(t1), . . . , U(tm)} | = m, and let U ′ denote the restriction of U to the variables appear-
ing in ϕ. Since I is a solution for ϕ, let E be an assignment for the existential variables
appearing in ϕ, such that I ∪E ∪U ′ satisfies the kernel of ϕ. It is obvious that I ∪E ∪U
also is a solution for ψ, since all NAED-clauses are satisfied.

For the other direction, let I : FVAR (ϕ) → D be a solution for ψ, and let U be
an assignment for the universal variables in ϕ. Define U ′ as the extension of U to the
variables appearing in ψ in such a way that U ′(ti) = i − 1. In particular, this implies
| {U ′(t1), . . . , U

′(tm)} | = m. Now, let E be an assignment to the existential variables in ϕ
such that I ∪E ∪U ′ satisfies the kernel of ψ. Since the values assigned to the variables ti
by this assignment are fixed, any dependence of the values given by E to the existentially
quantified variables in Xi can be avoided by hard-coding this dependence in the assign-
ment function. Therefore, E also is an assignment for the existential variables appearing
in ϕ satisfying the necessary dependence conditions. Since | {U ′(t1), . . . , U

′(tm)} | = m,
we know that the assignment I ∪E ∪U ′ must satisfy NAED(xj1, x

j
2, x

j
3) for all relevant j,

and therefore, this is also a satisfying assignment to the kernel of ϕ. Thus, I is a solution
of ϕ. �

For Boolean constraint languages which are Schaefer, the complexity is significantly
lower:

Theorem 5.5.4 Let Γ be a Boolean constraint language which is Schaefer, and not
affine. Then, for any k ∈ N, the problem #QCSPk(Γ) is # · P-complete under counting
reductions.

Proof. Due to Theorem 5.3.7 and Proposition 1.5.5, the problem to decide, for a given
QCSPk(Γ)-formula with constants if it is true, can be solved in polynomial time. This
obviously puts the corresponding counting problem in # ·P, since the witnesses consist of
truth assignments, which can be encoded as strings of polynomial length. The hardness
result follows directly from [CH96], since this paper gives the result that already the
counting problem for Γ-formulas without quantifiers is hard for # · P under counting
reductions, and this problem trivially reduces to #QCSPk(Γ). �

For the Boolean case, the results just presented and Corollary 5.4.2 give a complete
picture. A graphical representation of the result can be found in Figure 5.1.

Theorem 5.5.5 Let Γ be a Boolean constraint language, and let k be a natural number.
Then the following holds:

• If Γ is affine, then #EQCSPk(Γ) can be solved in polynomial time. Further, if Γ is
also complementive, then #QCSPk(Γ) can be solved in polynomial time.

• Otherwise, if Γ is Schaefer, then #QCSPk(Γ) is complete for # · P under counting
reductions.

• Otherwise, if Γ is complementive, then #EQCSPk(Γ) is complete for #·QPHk under
parsimonious reductions, and #QCSPk(Γ) is complete for # ·QPHk under counting
reductions.
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• Otherwise, #QCSPk(Γ) is complete for # ·QPHk under parsimonious reductions.

5.6 Decision Problems

We now consider the decision problems defined for our quantified formulas. We will see
that many of the results easily follow from the results on the counting problems just
considered.

5.6.1 Quantified Formula Evaluation

The following observation shows how our results for counting can be applied to our
decision problems:

Proposition 5.6.1 Let Γ be a constraint language over the finite domain D, such that
#QCSPk(Γ) or #EQCSPk(Γ) are hard for # ·QPHk under parsimonious reductions which
can be computed in logarithmic space. Then QCSPk(Γ) is hard for QPHk under ≤log

m -
reductions.

Proof. From prerequisites, it follows that #QCSPk(Γ3SAT) reduces to #QCSPk(Γ), or to
#EQCSPk(Γ) under a parsimonious reduction which can be computed in logarithmic
space. It is obvious that a reduction which preserves the number of solutions or the num-
ber of classes of solutions also preserves truth of a given formula. Hence, this reduction
is a ≤log

m -reduction. The claim then follows from Proposition 5.3.6. �

For the Boolean domain, this suffices to prove a complete classification of the problem.
A representation of the complexities for the classes in Post’s lattice can be found in
Figure 5.2.

Theorem 5.6.2 Let Γ be a Boolean constraint language, let k ≥ 2. Then the following
holds:

• If Γ is Schaefer, then QCSPk(Γ) ∈ P.

• Otherwise, QCSPk(Γ) is complete for QPHk under ≤log
m -reductions.

Proof. The polynomial time result follows directly from Theorem 5.3.7. The QPHk upper
bound follows from Proposition 5.3.6. Note that if Γ is not Schaefer, then Pol (Γ) ⊆
N. Therefore, Lemma 5.5.3 implies that #EQCSPk(Γ) or #QCSPk(Γ) is complete for
# · QPHk under parsimonious reductions, and thus the above Proposition 5.6.1 states
that QCSPk(Γ) is hard for QPHk under ≤log

m -reductions. �

For non-Boolean domains, Proposition 5.6.1 and Lemma 5.5.3 yield the following
hardness result:

Corollary 5.6.3 Let Γ be a constraint language over a finite domain D such that |D| ≥
2, and every polymorphism of Γ is essentially unary or a constant. Then for any k ≥ 2,
QCSPk(Γ) is complete for QPHk under ≤log

m -reductions.
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Figure 5.1: The complexity of #QCSPk(Γ) or #EQCSPk(Γ)
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5.6.2 Quantified Model Checking

The model checking problem is of course closely related to the formula evaluation problem.
For Boolean constraint languages, our results for the latter immediately give a complete
classification of the model checking problem as well, and in fact, the same complexity
cases arise here. The following theorem states the result, a graphical representation of
both results can be found in Figure 5.2

Theorem 5.6.4 Let Γ be a Boolean constraint language, and let k be a natural number.
Then the following holds:

• If Γ is Schaefer, then QMCKk(Γ) ∈ P.

• Otherwise, QMCKk(Γ) is complete for QPHk under ≤log
m -reductions.

Proof. We first consider the polynomial time cases. Due to Proposition 1.5.5, the con-
straint language Γ ∪ {x, x} is Schaefer as well. Now, let ϕ be a QCSPk-formula, and let
I : FVAR (ϕ) → {0, 1} be an assignment to the free variables. We construct a formula
ψ as follows: For each variable z ∈ FVAR (ϕ) , add ∃z in an arbitrary existential part of
quantifier block into ϕ. Further, if I(z) = 0, add a clause z, and if I(z) = 1, add a clause
z. It is obvious that I is a solution for ϕ if and only if the formula ψ constructed in this
way evaluates to true. Hence, this problem can be decided in polynomial time due to
Theorem 5.3.7.

Now assume that Γ is not Schaefer. Since QCSPk(Γ) trivially reduces to QMCKk(Γ),
the hardness result is immediate. The upper bound follows from Proposition 5.3.6. �

For non-Boolean domains, Corollary 5.6.3 and the obvious reduction from QCSPk(Γ)
to QMCKk(Γ) give the following result:

Corollary 5.6.5 Let Γ be a constraint language over a finite domain D, such that |D| ≥
2, and every polymorphism of Γ is essentially unary or a constant. Then for any k ≥ 2,
QMCKk(Γ) is complete for QPHk under ≤log

m -reductions.

5.6.3 The Equivalence Problem

For the study of the complexity of the equivalence problem, we can again take advantage
of the duality in Post’s lattice. Remember that in Chapter 4, we defined for a Boolean
relation R, the relation R to contain the set of negations of tuples from R, and for a
Boolean constraint language Γ, the language Γ contains the relation R for every relation
R in Γ.

Proposition 5.6.6 Let Γ be a Boolean constraint language, and let k be a natural num-
ber. Then QEQUIVk(Γ) ≡AC0

m QEQUIVk(Γ).

Proof. The proof is very similar to the proof for Corollary 4.2.9. Let ϕ and ψ be
QCSPk(Γ)-formulas. We compute the formulas ϕ′ and ψ′, obtained from the original
formulas by replacing each application of a relation R with the application of the relation
R to the same variables. We claim that ϕ is equivalent to ψ if and only if ϕ′ is equivalent
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to ψ′. Due to symmetry, since R = R, it suffices to show one of these implications. We
claim that for any assignment I : FVAR (ϕ) → {0, 1} , it holds that I |= ϕ if and only
if I |= ϕ′, where I(x) =def I(x) for all free variables x of ϕ. This clearly completes the
proof.

We show the claim by induction over the quantifier structure of ϕ. Again, due to
symmetry, it suffices to show one implication. If no quantifiers appear, then the claim
holds by definition of R. Now let ϕ be a formula for which the claim holds, and let z be a
variable appearing in ϕ. We show that it also holds for ∃zϕ and ∀zϕ. Let I be a solution
for ∃zϕ. Then there is some α ∈ {0, 1} , such that the assignment I, augmented with the
assignment I(z) = α, is a satisfying model for ϕ. Since the claim holds for ϕ, this implies
that the assignment I with an additional assignment I(z) = α satisfies ϕ′, and hence,
I satisfies ∃zϕ′. Finally, let I be a solution for ∀zϕ. This is equivalent to the following:
both I0 and I1, where Iα is the assignment I augmented with I(z) = α, are satisfying
solutions for ϕ. Due to induction, we know that both assignments Iα are solutions for ϕ′.
This means that I is a solution for ∀zϕ′, as claimed. �

We now give an upper complexity bound for the Schaefer cases, which basically holds
for the same reason as the general coNP-bound for equivalence in the unquantified formula
case.

Lemma 5.6.7 Let Γ be a Boolean constraint language which is Schaefer, and let k ∈ N.
Then QEQUIVk(Γ) ∈ coNP.

Proof. Due to Theorem 5.6.4, we know that the model checking problem for QCSPk(Γ)-
formulas can be solved in polynomial time. Now given two Γ-formulas ϕ1 and ϕ2, we
can guess an assignment which is a model for ϕ1 but not for ϕ2 (or vice versa) in NP.
Hence, the “non-equivalence problem” is in NP, and therefore the equivalence problem
is in coNP. �

For Horn- and anti-Horn formulas, we also get the corresponding hardness result:

Theorem 5.6.8 Let Γ be a Boolean constraint language such that Pol (Γ) ∈ {E2,V2} ,
and let k ∈ N. Then QEQUIVk(Γ) is coNP-complete under ≤log

m -reductions.

Proof. We show the theorem for the case Pol (Γ) = E2. The case Pol (Γ) = V2 then
follows from Proposition 5.6.6 and Lemma 4.2.8, since dual (E2) = V2. The upper bound
follows directly from Lemma 5.6.7. Now observe that relations invariant under E2 are
exactly those which can be expressed by Horn formulas. Hence, the result follows from
Theorem 7.5.4 in [BL99], if we can show that any Horn-formula in the usual sense with
existentially quantified variables can be re-written as one where only clauses of bounded
arity occur. It then follows that there is a finite constraint language Γ, which can be used
to express these clauses with bounded arity, which has the required set of polymorphisms,
and for which the equivalence problem is coNP-hard. From Proposition 5.3.3, it then
follows that hardness holds for any constraint language Γ such that Pol (Γ) = E2, and
Γ can express equality. Due to Lemma 4.4.1, and since E2 ⊆ M, we know that every
constraint language with this set of polymorphisms can express equality, and hence we
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have shown that the hardness result holds for arbitrary constraint languages fulfilling the
requirement.

Let ϕ be a Horn-formula without restriction on the arity of the clauses, i.e., a formula
in conjunctive normal form where each clause is a disjunction of literals, where at most
one literal per clause is positive. We show how to rewrite individual clauses with bounded
arity Horn clauses, this can obviously be used to re-write the entire formula.

Assume that a clause without a positive literal occurs, i.e., a clause C = x1∧ · · ·∧xn.
For such a clause, we introduce a new existentially quantified variable tC , and change the
clause into C ′ = x1∧ · · · ∧xn∧ tC and add a clause tC to the entire formula. It is obvious
that this is an equivalent transformation, and therefore we can assume that each of the
clauses contains exactly one positive literal, or is a single negative literal. Now such a
clause C can be written as

C = x1 ∧ · · · ∧ xn → y.

If n ≤ 2, then we leave this clause unchanged. Otherwise, we can split up C into two
clauses of smaller arity, with the help of a new existentially quantified variable tC , and
is equivalent to the following (where l is some number such that 1 < l < n, for example
choose l = bn

2
c):

C ′ = ∃tC(x1 ∧ · · · ∧ xl → tC) ∧ (xl+1 ∧ · · · ∧ xn ∧ tC → y).

By repeatedly applying this splitting procedure, we can rewrite each clause with
bounded arity. The procedure needs to be applied at most once for every variable appear-
ing in the original formula, and obviously each step can be performed in polynomial time.
Hence, this gives a polynomial-time transformation. We now prove that the clauses C and
C ′ are in fact equivalent. Assume that there is an assignment I : {x1, . . . , xn, y} → {0, 1}
which satisfies C. We have several cases to consider:

If I(y) = 1, then the clause C ′ can obviously be satisfied by choosing the value 1 for
the existentially quantified variable tC . If I(xi) = 0 for some i ≤ l. Then the clause C ′

can be satisfied by choosing 0 for the variable tC . Finally, if I(xi) = 0 for some i ≥ l,
then C ′ can be satisfied by choosing 1 for tC .

For the other direction, assume that an assignment I satisfies the clause C ′, and
assume that it does not satisfy C. In this case, it follows that I(xi) = 1 for each relevant
i, and I(y) = 0. In order to satisfy the first clause of C ′, the variable tC then needs to
take the value 1. But this assignment does not satisfy the second clause, hence we have
a contradiction.

The above shows that each Horn formula can be rewritten into one where only lit-
erals, and Horn clauses of bounded arity appear, by only adding existentially quantified
variables to the formula, which are quantified at the very end of the quantifier block.
The transformation above converts the formulas into equivalent ones where each clause
is either a literal, or an implication of the form x1 → y or x1∧x2 → y. Hence the hardness
result holds for the constraint language Γ containing the relations representing literals,
and the relations represented by the clauses just mentioned. It is easy to see that these
are closed under conjunction, and hence this concludes the proof. �
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Similarly as for the counting problems studied earlier, we can show here as well that
the constant polymorphisms do not “help us to solve the equivalence problem:”

Theorem 5.6.9 Let Γ be a constraint language such that Pol (Γ) ⊆ E, or Pol (Γ) ⊆ V.
Then QEQUIVk(Γ) is coNP-hard for any k ∈ N.

Proof. We prove the Theorem for the case Pol (Γ) ⊆ E. Again, the dual case Pol (Γ) ⊆ V
then follows from Proposition 5.6.6 and Lemma 4.2.8. Let Γ be a constraint language
such that Pol (Γ) = E2. We show that QEQUIV1(Γ) ≤p

m QEQUIVk(Γ
′) for some constraint

language Γ′ for which Pol (Γ′) ⊇ E holds. The result then follows from Theorem 5.6.8
and Proposition 5.3.3, since due to Lemma 4.4.1, the involved constraint languages here
can express equality.

For an n-ary relation R ∈ Γ, we construct a n + 2-ary relation R which can be used
to express R for our purposes, and which has both constant polymorphisms. We define

R′ =def {(α1, . . . , αn+2) | (α1, . . . , αn) ∈ R or α1 = · · · = αn+2} .

It is obvious that R′ is closed under both constant polymorphisms. We claim that
R′ is also closed under conjunction, and hence under every function from E. Therefore,
let (α1, . . . , αn+2), (β1, . . . , βn+2) be tuples from R′. There are several cases to consider.
If one of these tuples is the constant 0-tuple, then the result of the conjunction again is
this constant tuple, and therefore is an element of the relation R′. If one of these is the
constant 1-tuple, then the result gives the second tuple, and this is an element of R′ as
well. Therefore, assume that both tuples are non-constant. Due to the definition of R′,
this implies that (α1, . . . , αn) and (β1, . . . , βn) are elements of R, and since R is closed
under conjunction, it follows that (α1 ∧ β1, . . . , αn ∧ βn) is an element of R′. Hence, the
conjunction of the n+ 2-tuples is an element of R′.

Now, let Γ′ be defined as {R′ | R ∈ Γ}∪{→} . As mentioned above, it suffices to prove
hardness for this special choice of Γ. The relation → is invariant under conjunction, since
conjunction is in the clone M, and due to Table 1.2, → is invariant under M. Obviously,
→ contains both constants. Now let ϕ1 and ϕ2 be QCSP1(Γ)-formulas with the same set
of free variables, i.e., let

ϕ1 = ∃x1, . . . , xn

l1∧
i=1

R1
i (u

i
1, . . . , u

i
ki

),

ϕ2 = ∃y1, . . . , ym

l2∧
i=1

R2
i (v

i
1, . . . , v

i
ki

),

where the occurring R1
i and R2

i are ki-ary relations from Γ, the occurring variables
uit are either from {x1, . . . , xn} , or from the set (z1, . . . , zk) of free variables of ϕ1, and
similarly the variables vit are from {y1, . . . , ym, z1, . . . , zk} .

We define formulas ψ1 and ψ2 as follows:

ψ1 = ∃x1, . . . , xn

l1∧
i=1

R′1
i (ui1, . . . , u

i
ki
, t1, t2),



102 Chapter 5. Quantified CSP

ψ2 = ∃y1, . . . , ym

l2∧
i=1

R′2
i (vi1, . . . , v

i
ki
, t1, t2),

where t1 and t2 are additional free variables. Further, we add, for each free variable
z, the clause z → t1 and the clause t2 → z to both formulas. Then, by definition, ψ1 and
ψ2 are QCSPk(Γ

′)-formulas. The relationship between these formulas is as follows:

Claim For i ∈ {1, 2} , an assignment I satisfies ψi if and only if I is constant, or I
restricted to the variables appearing in ϕi satisfies ϕi, and I(t1) = 1, I(t2) = 0.

Proof. First assume that I satisfies one of the two conditions. If I is constant, then the
existential variables in ψi can be assigned the same value as I assigns to the free variables,
and therefore, ψi is satisfied. If I(t1) = 1 and I(t2) = 0, then obviously, the implication
clauses added in the transformation from ϕi to ψi are satisfied. For the clauses involving
the relations from Γ, note that the “or α1 = · · · = αn+2” case never occurs, and therefore
it holds that I is a satisfying assignment to ψi if and only if I restricted to the variables
occurring in ϕi satisfies the latter formula.

Now for the other direction, assume that I is a satisfying assignment for ψi. If I(t1) 6=
I(t2), then as above, it follows that the restriction of I is a solution for ϕi. Therefore,
assume that I(a) = I(b). If I is constant, then the claim holds. Now assume that I is
not constant. Since I(t1) = I(t2), this implies that there is some free variable z such that
I(z) 6= I(t1). We make a case distinction:

If I(z) = 0, then, since the clause t2 → z appears in ψi, and I satisfies the formula,
we know that I(t2) = 0. This is a contradiction to the assumption I(z) 6= I(t2). Similarly,
if I(z) = 1, then due to the clause z → t1, we know that I(t1) = 1 must hold, again a
contradiction. Therefore, we conclude that I is constant. �

We now show that ϕ1 and ϕ2 are equivalent if and only if ψ1 and ψ2 are. Since the
formulas can obviously be computed in polynomial time, this concludes the proof.

First, assume that ϕ1 and ϕ2 are equivalent, and let I be some assignment to the free
variables of ψ1 such that I |= ψ1. We show that I is also a solution for ψ2, the equivalence
of the formulas then follows due to symmetry. Due to the claim above, we have two cases
to consider: if I is a constant assignment, then, by the claim above, we know that I is
a solution for ψ2. Otherwise, due to the claim above, we know that I(t1) = 1, I(t2) = 0,
and I restricted to the variables appearing in ϕ1 is a solution to the latter formula. Since
ϕ1 and ϕ2 are equivalent, this implies that the restriction of I is a solution for ϕ2 as well,
and due to the claim above, it follows that I is a solution of ψ2.

Now assume that ψ1 and ψ2 are equivalent, and let I be a solution for ϕ1. Again,
due to symmetry, it suffices to show that I is a solution for ϕ2 as well. Due to the
claim above, we know that the solution I ′ obtained from I by augmenting it with the
assignments I ′(t1) = 1, and I ′(t2) = 0, is a solution for ψ1. Since ψ1 and ψ2 are equivalent,
this implies that I ′ is also a solution for ψ2. Therefore, due to the claim above, it follows
that I is a solution for ϕ1, as claimed. �

For languages restricted even more than Schaefer, we even can solve the problem in
polynomial time:
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Theorem 5.6.10 Let Γ be a Boolean constraint language such that S10 ⊆ Pol (Γ) , S00 ⊆
Pol (Γ) , or D2 ⊆ Pol (Γ) , and let k be a natural number. Then QEQUIVk(Γ) can be solved
in polynomial time.

Proof. We want to apply quantified resolution to convert the formulas into equivalent
ones over the same constraint languages which are quantifier-free. The procedure relies on
Theorem 7.4.6 in [BL99], which shows the correctness of the transformation we describe.
In order to apply this theorem to our case, we need to prove two facts: first, we show
that the transformation produces a formula of the same constraint language. Second, we
show that the procedure can be computed in polynomial time. Since for quantifier-free
formulas over these constraint languages equivalence can be checked in polynomial time
due to [BHRV02], this finishes the proof.

We first describe how quantified resolution works. We follow the presentation in
Section 7.3 of [BL99]. Starting with a quantified formula ϕ whose kernel is in CNF, new
clauses are generated with the following rules:

1. In each clause of the kernel of ϕ, remove all literals over universally quantified
variables which are <ϕ-maximal in the variables occurring in the clause.

2. For two clauses α1 and α2, if y is a variable which is free or existentially quantified,
and y appears positively in α1, and negatively in α2, obtain a new clause α, which
is the disjunction of all literals occurring in α1 except the positive occurrences of
y, and all literals occurring in α2 except the negative occurrence of y.

The formula ψ we construct contains of all clauses which are contained in the original
formula ϕ, or which can be generated with the above procedure, and which only contain
free variables. Therefore, by definition, ψ is an unquantified formula. Due to Theorem
Theorem 7.4.6 in [BL99], ψ is equivalent to ϕ. Therefore it remains to prove the above
points.

If S10 ⊆ Pol (Γ) holds, then, by Lemma 1.5.6, we know that Sm10 ⊆ Pol (Γ) holds for
some natural number m. Due to Proposition 5.3.3, and the results from Table 1.2, we
can therefore assume that Γ is the set {NANDm, x, x, x→ y, x = y} . Note that x = y
can be written as (x → y) ∧ (y → x), and x → y can be written as x ∨ y. We now
show that applying the above resolution rule to Γ-clauses again gives a Γ-clause. When
applying the rule, at least one of the clauses must contain a positive literal. This means
that not both of them can be NANDm-clauses, since NANDm(x1, . . . , xm) is the same
as x1 ∨ · · · ∨ xm. It is obvious that removing ∀-quantified variables from Γ-clauses again
gives a Γ-clause (in the case of NANDm, simply repeat one of the remaining variables to
match the arity, and we can obviously disregard empty clauses). Therefore, we have the
following cases to consider:

• Let α1 be a NANDm-clause in which y appears, and let α2 be the positive literal
y. Assume that α1 = (x1 ∨ · · · ∨ xm−1 ∨ y), and α2 = y. Then the clause generated
is simply (x1 ∨ · · · ∨ xm−1), this can be written as (x1 ∨ · · · ∨ xm−1 ∨ xm−1) to give
again a clause of arity m.

• Let α1 be a NANDm-clause in which y appears, and let α2 be the clause y ∨ x
for some variable x. Then, if α1 = (x1 ∨ · · · ∨ xm−1 ∨ y), the resulting clause from
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quantified resolution is the clause (x1 ∨ · · · ∨ xm−1 ∨ x), and therefore, again a
Γ-clause.

• Let α1 and α2 both be implications. If y appears negatively in α1 and positively in
α2, then α1 is of the form y ∨ x, and α2 is of the form y ∨ z. Hence, the generated
clause is x ∨ z, and can again be written as an implication.

• Let α1 be an implication, and let α2 be a literal, such that y appears negatively in
α1, and positively in α2, or vice versa. It is obvious that the resulting clause is a
literal.

• If α1 and α2 are both literals, then the only case where the rule can be applied is
if they are contradictory. In this case, we simply generate an unsatisfiable formula,
i.e., let ψ = y ∧ y, and finish the algorithm.

The case analysis above shows that the resolution procedure again produces a Γ-
formula. It remains to show that we can, in polynomial time, produce all of the clauses
involving only free variables which can be obtained in this way. However, this is obvious,
since the generated clauses are of constant length, bounded by m. Therefore, there are
only polynomially many possible clauses, and since each resolution step clearly can be
performed in polynomial time, this means that the set of clauses which can be obtained
by resolution can be polynomially computed.

The case S00 ⊆ Pol (Γ) is also solvable in polynomial time, since dual (S00) = S10.
Hence the result follows from Proposition 5.6.6 and Lemma 4.2.8. It remains to consider
the case Pol (Γ) ⊇ D2.

It can easily be verified that every Boolean relation which is at most binary is invariant
under D2. Hence, we can assume, without loss of generality, that Γ consists of all these
relations. Note that each of these can be written as a conjunction of clauses which are
disjunctions of at most two literals. Now for these types of clauses, it is obvious that an
application of the quantified resolution procedure again gives a clause from this language.
Therefore, clauses generated by quantified resolution are again Γ-clauses. Since the arity
of the clauses is restricted by 2, it again follows that there are only polynomially (in fact,
quadratic) many clauses which can be generated, and by the same reasoning as above,
this allows all clauses to be generated in polynomial time, thus finishing the proof. �

Note that the argument from the above proof fails for Horn clauses: if we consider two
Horn clauses (x1∨x2∨y) and (y∨x3∨x4), then the resulting clause is (x1∨x2∨x3∨x4).
Inductively, we can generate clauses with as many literals as there are variables in the
formula, and in particular, we cannot restrict the length of the occurring clauses with a
constant. This is the reason why the problem is coNP-complete for Horn formulas, and
solvable in polynomial time for the restricted classes covered by Theorem 5.6.10.

For the non-Schaefer cases, we can establish lower bounds which match the general
upper bound.

Theorem 5.6.11 Let Γ be a constraint language over a domain D, |D| ≥ 2, such that all
polymorphisms of Γ are constant or essentially unary. Then, for any k ∈ N, the problem
QEQUIVk(Γ) is complete for Πp

k+1.
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Proof. The upper bound follows from Proposition 5.3.6. If suffices to show that if k
is even, then QCSPk+1(Γ) ≤p

m QEQUIVk(Γ) and if k is odd, then QCSPk+1(Γ) ≤p
m

QEQUIVk(Γ) : If k is even, then by definition, QPHk+1 is the class Σp
k+1. Due to Corol-

lary 5.6.3, we know that the problem QCSPk+1(Γ) is complete for Σp
k+1. Therefore, the

problem QCSPk+1(Γ) is complete for Πp
k+1, and hence the result follows. Similarly, if k

is odd, then QPHk+1 is the class Πp
k+1, and thus QCSPk+1 is complete for Πp

k+1, and the
result follows in the same way. Hence, it remains to prove the above-mentioned reduction.

If k is even, a QCSPk+1-formula is of the form ϕ = ∃X1∀X2 . . . ∃Xk+1ψ for a Γ-
formula ψ. It is obvious that this formula is false, and hence in QCSPk+1(Γ), if and only
if ∀X2 . . . ∃Xk+1ψ is equivalent to a false Γ-formula, which exists due to the above. Now,
assume that k is odd. Then a QCSPk+1-formula starts with a ∀-quantifier. Hence, let
ϕ = ∀X1 . . . ∃X2 . . . ∃Xk+1ψ, for some Γ-formula ψ. Then this formula is true if and
only if ∃X2 . . . ∃Xk+1ψ is equivalent to a Γ-tautology, which easily can be constructed.
Therefore, in both cases the reduction is complete. �

For the Boolean case, our results give a complete classification of the problem. A
graphical representation can be found in Figure 5.3.

Theorem 5.6.12 Let Γ be a Boolean constraint language, and let k be a natural number.
Then the following holds:

• If Γ is affine, S01 ⊆ Pol (Γ) , S00 ⊆ Pol (Γ) , or D2 ⊆ Pol (Γ) , then QEQUIVk(Γ) can
be solved in polynomial time.

• Otherwise, if Γ is Schaefer, then QEQUIVk(Γ) is coNP-complete.

• Otherwise, QEQUIVk(Γ) is complete for Πp
k+1.

5.7 Conclusion

For quantified constraint formulas, we have studied the natural problems of truth eval-
uation, model checking, equivalence, and counting of satisfying assignments. For the
Boolean case, we showed that the characteristic property of constraint problems, which
in many cases leads to dichotomy results, again holds for these problems. In the case of
counting problems, the lower bounds could not be proven using the usual parsimonious
reduction in the case where the constraint language is complementive. However, with
showing that one bit of the resulting natural number is fixed, and the problem to com-
pute the remaining bits is complete for the corresponding counting class, we feel that the
complexity of this problem is, for all intents and purposes, equivalent to the usual com-
plete problems for these classes under parsimonious reductions. For the Schaefer cases,
hardness could only be proven using counting reductions. While these reductions are not
sufficiently strict to compare the different levels of the counting hierarchy, they still allow
to distinguish the classes FP and # · P. Therefore, we consider the Boolean case to be
solved in a satisfying way.

The picture is less clear for non-Boolean domains. Unlike in the Boolean case, the
two possible ways to deal with permutative constraint languages that we discussed do not
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coincide here. We found the counting of equivalence classes to be a more natural problem
than the other possible solution, where we need to demand very artificial properties of the
formulas involved. For both of these problems, we achieved tight hardness results under
parsimonious reductions. However, we consider our hardness results for non-Boolean
domains extremely unlikely to cover all cases.

In addition, there are obvious possible generalizations of the polynomial time result for
affine constraint languages to the non-Boolean case: it is easy to identify relations which
basically express liner equations. An n-ary relation R over the domain {0, . . . ,m− 1}
has this property if and only if R is of the form {(α1, . . . , αn) | α1 + · · ·+ αn = α} for
some α ∈ {0, . . . ,m− 1} , where the addition is the addition of natural numbers modulo
m. If m is a prime, then these relations again describe linear equations over a finite field,
and the methods used for affine constraint languages can be used without modification.
However, it is very much possible that in the non-Boolean case, more tractable cases for
both the decision and the counting problems considered here can exist. Hence, in contrast
to the Boolean case, it is unclear where the boundary between tractable and intractable
cases lies, and our results do not lead to a natural conjecture. It is conceivable to obtain
a full complexity classification of quantified problems for the case of 3-element domains,
since such a result was achieved for unquantified formulas by Andrei Bulatov in [Bul06].

In addition to the formulas with bounded quantifier alternation that we considered
here, it is also interesting to look at the case where we make no restrictions to the structure
or length of the quantifier block of a formula at all. For the satisfiability problem, this
already has been considered in Thomas Schaefer’s original article [Sch78]. For the other
problems that we defined, a classification for the unrestricted case easily follows from
the proofs in this chapter. It is well-known that the satisfiability or truth evaluation
problem for unrestricted quantified propositional formulas is PSPACE-complete (by again
considering the problem for the constraint language Γ3SAT). In light of Theorem 1.3.2, it
is to be expected that the relationship of formulas with bounded quantifier alternation
to the unrestricted case is similar to the relationship of the classes in the polynomial
hierarchy to the class PSPACE, and this similarity is in fact mirrored by the complexity
of the problems we studied in this chapter. It is obvious that PSPACE, or # · PSPACE
is an upper bound for the decision and counting problems we considered in the case
of formulas with unrestricted quantifiers. Evidently, the hardness proofs we gave in
this chapter also yield hardness proofs for the class PSPACE if we study the problems
for unrestricted formulas instead. However, results for this case can be obtained more
easily by applying the algebraic connection between quantified constraints and surjective
polymorphisms [Jea98], which we briefly mentioned in the proof for Proposition 5.3.1. A
close inspection of our proofs for the polynomial time and coNP results shows that these
results also hold if the quantifier structure is unrestricted. Therefore, our proofs give
dichotomy theorems for the cases with unrestricted quantifiers, and hence we achieve a
complete classification of the complexity in the Boolean case.

In Chapter 4, the complexity classification immediately implied the isomorphism of
the involved problems to the standard complete problems, or in fact any complete prob-
lem of the corresponding complexity classes (see Corollary 4.6.2). Therefore, it is natural
to ask if an analogous result easily follows from our complete complexity classifications
for the Boolean case in this chapter. Questions like these have in fact been considered for
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the class NP and polynomial time many-one reductions: The famous Berman-Hartmanis
conjecture aims for a polynomial-time computable bijection between any two languages
which are complete for NP under ≤p

m-reductions. This was suggested to hold in general
and indeed proven for many well-known NP-complete problems in [BH77]. But as the
name suggests, this conjecture is unproven. It is immediately clear that the conjecture
implies that the classes P and NP indeed differ, since otherwise, there would be a finite
language which is isomorphic to an infinite one, and this obviously cannot happen. Al-
though analogous results of the conjecture hold for stricter types of reductions (see the
proof of Corollary 4.6.2) and also for the many-one reduction usually applied in recursion
theory [Myh55], it is unclear if this can be indeed proven for ≤p

m-reductions. In fact, it is
widely believed today that the conjecture does not hold (for example, it fails relative to
random oracles [KMR95], also see [You88]). Also, this conjecture would not even suffice
to prove an analogous result to Corollary 4.6.2, since this would require an analogous
result to the Berman-Hartmanis conjecture for all the involved classes of the polynomial
hierarchy.



Concluding Remarks

We have studied restricted satisfiability problems in two contexts, that of formulas re-
stricted by the set of propositional operators appearing, and that of constraint formulas.
We studied different problems for these restriction types: the formula value problem
and the enumeration problem for the first, and a refinement of the complexity of the
satisfiability problem for the second type.

We showed that Schaefer’s famous dichotomy, Theorem 1.5.4, can be generalized
in many ways. Constraint satisfaction problems retain their dichotomy-like behavior
if we refine the reductions to ≤AC0

m -reductions, as shown in Chapter 4, lift the typical
NP-complete or coNP-complete problems to the polynomial hierarchy using quantifiers,
and also if we study other computational goals, even if we leave the context of decision
problems, as shown in Chapter 5. In all of our dichotomy results for the Boolean domain,
there is an algorithm which can be used to determine the complexity of the problem
induced by a given constraint language Γ or set of functions B. The reason for this is
that given Post’s finite bases for the clones from Table 1.1, it easily can be tested which
clone is generated by the set B, or what the clone of polymorphisms of Γ is. Additionally,
the criterion from Lemma 4.4.2 can be tested by an algorithm.

For the problems considered in this thesis, we have shown that the algebraic closures
given by the [.]-operator in the B-formula case, and the 〈.〉-operator in the constraint
formula case determine the complexity of the problems in question. However, there are
limitations to this result. As shown in Chapter 4, the closure operator fails to pre-
cisely determine the complexity of constraint satisfaction problems for complexity classes
beyond LOGSPACE. In Chapter 5, we saw that similar issues arise when studying prob-
lems other than satisfiability. For the formula case, in order to achieve the result that
the complexity of the formula value problem considered in Chapter 2, several technical
restrictions on the set of Boolean functions considered were necessary.

An obvious question that our work leaves open is the question to study the “reverse
combinations,” of computational problems and restrictions. However, most of these prob-
lems already have been solved in the literature: The “formula value problem” for con-
straint formulas can be solved by a finite state machine for a fixed constraint language
Γ (see the remarks at the beginning of Chapter 4). The question of enumeration algo-
rithms in the constraint context was completely answered for the Boolean case by Nadia
Creignou and Jeans-Jaques Hébrard in [CH97], and results for the non-Boolean case can
be found in [SS06a]. As mentioned before, a finer analysis of the satisfiability problem
for Boolean circuits, which are closely related to Boolean formulas, has been studied in
[RW00]. The complexity of determining truth of quantified propositional formulas and
counting problems for propositional formulas were classified by Steffen Reith in his PhD
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thesis [Rei01], the classification of the counting problem for the quantified case remains
open.

Another problem which might seem interesting is enumeration for quantified Boolean
constraint formulas. However, it is easy to see from the results in [CH97] that in the case
where Γ is Schaefer, efficient algorithms always exist. The reason for this is basically
that since due to Theorem 5.6.4, we can solve the question if for a given Γ-formula ϕ,
the formulas ϕ[x/0] and ϕ[x/1] are satisfiable in polynomial time. Hence, an algorithm
exactly like the one presented in the proof for Theorem 3.3.1 can be shown to work here,
and hence we get positive enumeration results even for the strictest notions of efficiency
considered in Chapter 3. In the case where Γ is not Schaefer, an efficient enumeration
algorithm cannot exist, unless the polynomial hierarchy collapses, since the question if a
given QCSPk(Γ)-formula has a solution at all is complete for a class in the k-th level of the
polynomial hierarchy. Therefore, enumeration results for Boolean quantified constraint
formulas easily follow from known results.

There is an interesting difference between the behavior of the closure operators with
respect to complexity in the different formula restriction contexts we considered: for
constraint formulas, the Galois connection allows to give a general and usually quite
easy proof for the fact that the complexity depends only on the closure 〈Γ〉 of a given
constraint language - the closure operator works “a priori .” for the formulas considered
in Chapters 2 and 3, such a general result was not proven. Rather, it follows from the
individual cases (the closure operator works “a posteriori”). These examples are typical
for the complexity analysis of B-formulas, see for example the proof of the main theorem
from [Lew79], results about formulas in [Rei01], and a complexity classification for B-
formulas in the context of modal logic [BHSS06]. It would be very interesting to come
up with a systematic way to show these “independence” results here. Lemma 1.4.4 by
Lewis and our extension, Lemma 1.4.5 give a few ideas on how the way to such a general
theorem might look like. It is however unclear if an analogous statement can be proven for
other clones, and it seems highly unlikely that it can be achieved for all clones, since the
proofs for the mentioned Lemmas heavily rely on the presence of both constant functions.
A systematic study of these issues would be very interesting.
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