
Masterarbeit
Complexity of

Parameterized Counting

Anselm Haak
Matr.-Nr.: 2790850

04.06.2015

Leibniz Universität Hannover
Institut für theoretische Informatik

Erstprüfer:
Zweitprüfer:
Betreuer:

Heribert Vollmer
Arne Meier

Heribert Vollmer



Erklärung

Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel verwendet habe.



Contents
1 Introduction 1

2 Background 2
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Function Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 The class W[P]-PFPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Parameterized Complexity of Threshold Satisfiability 7
3.1 Preliminaries and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Parameterized Complexity of ThreshSAT-problems . . . . . . . . . . . . . . . . . . . 8

3.2.1 p-WCIRCThreshSAT=(BF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 Fragments of p-WCIRCThreshSAT=(BF) and p-WThreshSAT=(BF) . . . . . 12

4 The Boolean Algebra over W[P] 19
4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 BA(W[P])⊆W[P]-PFPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 The Class W[P]-C=FPT 22

6 The Class W[P]-⊕FPT 24

7 The Parameterized Counting Hierarchy 27
7.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.3 Closure under Boolean Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.4 Machine Characterization of classes in CH[κ] . . . . . . . . . . . . . . . . . . . . . . 33

8 Conclusion and Outlook 37

9 References 38



1 Introduction

The field of parameterized complexity theory is a rather new one and has been studied quite in-
tensively in recent years. Recently, Creignou and Vollmer classified parameterized satisfiability
problems over different fragments of Post’s lattice [CV]. Beside the parameterized weighted satisfi-
ability problem and the enumeration of all of its solutions, they examined a parameterized version
of #SAT, where the number of satisfying assignments of a certain weight are counted. Chauhan
and Rao on the other hand introduced the class W[P]-PFPT [CR], which is a parameterized version
of the class PP. They studied its properties and showed that many properties of PP also apply to
W[P]-PFPT. One of the exceptions is closure under intersection.
In chapter 1 we want to classify a W[P]-PFPT-complete weighted satisfiability problem over the
fragments from Post’s lattice. Additionally, we do the same for the new class W[ThreshSAT], which
we define in analogy to W[SAT].
In chapter 2, we transfer another result from classical complexity theory which was already known
before closure of PP under intersection was shown: PP contains the Boolean algebra over NP.
We will show the parameterized analogon, that is, W[P]-PFPT contains the Boolean algebra over
W[P].
In chapter 3, we transfer two more counting classes to the parameterized world: ⊕P and C=P. For
both classes we show some basic results and build a foundation for further study.
In chapter 4 we generalize the class W[P]-PFPT by introducing the parameterized counting quanti-
fier C[κ]. A similar quantifier is used in classical complexity theory in order to define the counting
hierarchy, which is an extension of the polynomial time hierarchy. Since we focus on counting
classes in this thesis, we leave out the ∃- and ∀-quantifiers and only examine the hierarchy of
classes defined with only the C[κ]-quantifier.

1



2 Background

2.1 Preliminaries

Throughout this work, we use the common notations from complexity theory and parameterized
complexity theory. We choose to define parameterized languages such that the parameter is always
part of the input as we want to examine closure under set-operations. Although most of the
notations should be clear, we briefly introduce the most important definitions.

Definition 2.1. Let Σ be an alphabet. A parameterized problem is a set of tuples (x,k), where
x ∈ Σ∗ is the instance and k ∈ N is the parameter.

An fpt-algorithm is an algorithm that for any input (x,k) has a running time of at most f(k) · |x|c
steps, where f is a computable function and c ∈ N. The class FPT is the class of all fpt-decidable
parameterized problems.
A k-restricted nondeterministic Turing-machine (or k-restricted NTM) is a nondeterministic Turing-
machine that has fpt-runtime and uses at most f(k) · log |x| nondeterministic bits on input (x,k).
A Boolean circuit is a directed acyclic graph where the inner nodes are marked with Boolean func-
tions or families of Boolean functions, each leaf is marked with a constant or one of the input
variables and one node is marked as the output node.
Let ϕ be a Boolean circuit (or formula). Then Var(ϕ) is the set of all variables occurring in ϕ.
ϕ[a/b] is the circuit (or formula) ϕ with all occurrences of a replaced by b (a and b being variables
or constants). The weight of an assignment to the variables of ϕ is the number of variables set to
1. #Sat(ϕ) is the number of satisfying assignments of ϕ and #Satk(ϕ) is the number of satisfying
weight-k-assignments of ϕ.
Let A,B be two parameterized problems. Then

A4B := {(x,k) | ((x,k) ∈A and (x,k) /∈B) or ((x,k) /∈A and (x,k) ∈B)}

is the symmetric difference of A and B and

A]B := {(0x,k) | (x,k) ∈A}∪{(1x,k) | (x,k) ∈B}

is the marked union of A and B. The parameterized Cartesian product of A and B is

A×κB = {(x1,x2,k) | (x1,k) ∈A,(x2,k) ∈B}.

For a Turing machineM , L(M) is the language accepted byM andM(x) denotes the computation
of M on input x. If M is an oracle Turing machine and A is a language, L(M,A) is the language
accepted byM with oracle A andMA(x) denotes the computation ofM with oracle A on input x. If
M is a nondeterministic Turing machine, a subscript can be added to address specific computation
paths: My(x) denotes the computation path encoded by y ofM on input x. Furthermore, #accM (x)
and #rejM (x) denote the number of accepting and rejecting computation paths of M on input x,
respectively.
≤fpt denotes fpt-many-one-reducibility and ≤fpt-T denotes fpt-Turing-reducibility. For a complexity
class K, [K]fpt denotes the closure of K under ≤fpt.

2



2.2 Function Classes

In the following, we want to define the parameterized function classes used in this paper, recall a
few known and present some new results.

Definition 2.2. A parameterized function is a function Σ∗×N→ N, where Σ is an alphabet.

Definition 2.3. FFPT is the class of all parameterized functions computable in fpt-runtime.

Definition 2.4. A p-bounded sum (product) of parameterized functions is a sum g1 + · · ·+ gt(k)
(product g1 · · · · ·gt(k)) where t is a computable function and k is the parameter.

Definition 2.5. #W[P] is the class of all parameterized functions f for which there is a k-restricted
NTM M such that

f(x,k) = #accM (x,k).

Definition 2.6. FFPT[κ] is the class of all FFPT-functions that are bounded by |x|h(k), where h
is some computable function.

Lemma 2.7. FFPT[κ]⊆#W[P].

Proof. Let f ∈ FFPT[κ]. On input (x,k), a k-restricted NTM can guess dlog2(f(x,k))e nondeter-
ministic bits and then accept on the first f(x,k) computation paths. Since f is bounded by |x|h(k)

for some computable function h, dlog2(f(x,k))e is bounded by 2 ·h(k) · log |x|.

Lemma 2.8. #W[P] is closed under p-bounded sums and products.

Proof. For summations, the k-restricted NTMs for the different functions can be simulated in
parallel. For products, they can be simulated in succession. In both cases the running time and
the nondeterminism stay within the needed bounds.

Definition 2.9. Gap-FPT is the class of all parameterized functions f for which there is a
k-restricted NTM M such that

f(x,k) = #accM (x,k)−#rejM (x,k).

The following lemma has been shown in [CR].

Lemma 2.10. Gap-FPT is closed under p-bounded sums and products.

Analogously to the corresponding results for GapP in classical complexity theory (see e.g. [Vol]),
the following characterizations of Gap-FPT can be shown:

Lemma 2.11. Gap-FPT = #W[P]−#W[P] = FFPT[κ]−#W[P] = #W[P]−FFPT[κ]

Proof. Gap-FPT⊆#W[P]−#W[P]: Let f ∈Gap-FPT. Then there is a k-restricted NTMM such
that f(x,k) = #accM (x,k)−#rejM (x,k) ∀x,k. LetM ′ beM with swapped accepting and rejecting
states. Then we have f(x,k) = #accM (x,k)−#accM ′(x,k) and hence f ∈#W[P]−#W[P].

#W[P]−#W[P]⊆ FFPT[κ]−#W[P]: Let f ∈ #W[P]−#W[P]. There are k-restricted NTM
M1,M2 such that f(x,k) = #accM1(x,k)−#accM2(x,k) ∀x,k. W. l. o. g. we can assume that on

3



every input (x,k), M1 uses exactly g(k) · blog2 |x|c nondeterministic bits on all computation paths,
where g is some computable function. Then we have

f(x,k) = (#accM1(x,k) + #rejM1(x,k))− (#accM2(x,k) + #rejM1(x,k))
= 2g(k)·blog2 |x|c− (#accM2(x,k) + #rejM1(x,k)).

Note that 2g(k)·blog2 |x|c can be computed in FPT-time and is bounded by |x|g(k). Let M ′1 be M1
with swapped accepting and rejecting states. Now we have

f(x,k) = 2g(k)·blog2 |x|c− (#accM2(x,k) + #accM ′1(x,k))︸ ︷︷ ︸
∈#W[P]

and hence f(x,k) ∈ FFPT[κ]−#W[P].

FFPT[κ]−#W[P]⊆#W[P]−FFPT[κ]: Let f ∈ FFPT[κ]−#W[P]. There is h ∈ FFPT[κ] and
a k-restricted NTM M such that f(x,k) = h(x,k)−#accM (x,k) ∀x,k. As before, w. l. o. g. we
can assume that on every input (x,k) M uses exactly g(k) · blog2 |x|c nondeterministic bits on all
computation paths, where g is some computable function. Then we have

f(x,k) = (h(x,k) + #rejM (x,k))− (#accM (x,k) + #rejM (x,k))
= ( h(x,k)︸ ︷︷ ︸

∈FFPT[κ]⊆#W[P]

+#rejM (x,k)︸ ︷︷ ︸
∈#W[P]

)

︸ ︷︷ ︸
#W[P]

−2g(k)·blog2 |x|c.

Hence, f(x,k) ∈#W[P]−FFPT[κ].

#W[P]−FFPT[κ]⊆Gap-FPT: Let f ∈ #W[P]−FFPT[κ]. There are g(x,k) ∈ FFPT[κ] and a
k-restricted NTM M such that f(x,k) = #accM (x,k)− g(x,k). Now let M ′ be the k-restricted
NTM that guesses one of two possible computations: In the first, the whole computation of M is
done, but for each rejecting path one rejecting and one accepting path is created (via an additional
nondeterministic bit). In the second, a computation tree with g(x,k) leafs is built that rejects on
every path.

M

+ − + − − + −

+ − + − + − + −

− − − ·· · −︸ ︷︷ ︸
g(x,k)

Now we have

#accM ′(x,k)−#rejM ′(x,k) = (#accM (x,k) + #rejM (x,k))− (#rejM (x,k) +g(x,k))
= #accM (x,k)−g(x,k)
= f(x,k),

which yields f ∈Gap-FPT.

4



2.3 The class W[P]-PFPT

Beside the main classes in parameterized complexity theory like FPT andW[P], the class W[P]-PFPT
was introduced quite recently by Chauhan and Rao [CR], who investigated some of its properties.
The class can be seen as a parameterized version of the class PP. We want to define it and recall
the results that will be needed later on.

Definition 2.12. W[P]-PFPT is the class of all parameterized problems L for which there is a
k-restricted NTM M such that

x ∈ L ⇔ The majority of computation paths of M on input x accepts.

Remark 2.13. W[P]-PFPT can be equivalently defined in terms of k-restricted probabilistic Turing-
machines that accept iff the probability of reaching an accepting path is > 1

2 .

Theorem 2.14. Let L be a parameterized problem. The following statements are equivalent:

1. L ∈W[P]-PFPT

2. There is a k-restricted Turing machine M s. t.:
(x,k) ∈ L⇔#accM (x,k)−#rejM (x,k)> 0.

3. There is a function f ∈Gap-FPT s. t.: (x,k) ∈ L⇔ f(x,k)> 0

4. There is a B ∈ FPT and a computable function f : N→ N s. t.:
(x,k) ∈ L⇔ |{y ∈ {0,1}f(k)·logn | (x,y,k) ∈B}| ≥ 2f(k)·logn−1 + 1

Theorem 2.15. W[P]-PFPT is closed under complementation.

Lemma 2.16. W[P]-PFPT is closed under symmetric difference.

The following Lemma, although not shown by Chauhan and Rao, is quite obvious:

Lemma 2.17. W[P]⊆W[P]-PFPT.

Proof. Let L ∈W[P] via the k-restricted NTM M . W. l. o. g. there is a computable function f such
that on every input (x,k) M uses exactly f(k) · blog2 |x|c nondeterministic bits on all computa-
tion paths. Let M ′ be M with another nondeterministic branch added in the beginning of the
computation adding exactly 2f(k)·blog2 |x|c accepting paths. Now at least one computation path of
M accepts iff more than half of the computation paths of M ′ accept. Therefore M ′ accepts L in
PP-fashion.

For some results we will need classes defined using oracle Turing machines where the queries are
bounded in a certain way:

Definition 2.18. Let K be a complexity class. Then FPTK[f(k),κ] (resp. W[P]-PFPTK[f(k),κ])
is the class of parameterized problems that can be decided by an FPT-oracle Turing machine
(resp. W[P]-PFPT-oracle Turing machine)M with the following restriction: There is a computable
function f such that on every input (x,k) M uses at most f(k) oracle queries (per computation
path) and for every query (q,k′) it holds that k′ = f(k).

5



While many properties of the class PP could be transferred to W[P]-PFPT, there are a few excep-
tions.
The widely known proof for closure of PP under intersection by Beigel, Reingold and Spielman
uses closure of GapP under products where the number of factors is given by an FP-function. The
corresponding property does not hold for Gap-FPT due to the logarithmic factor restricting the
used nondeterminism of k-restricted NTMs:

Remark 2.19. For input (x,k), the product of fpt-many factors 2f(k) log |x| where f is a computable
function, cannot be the number of computation paths of any k-restricted NTM.

Proof. For a computable function g and a constant a, let g(k) · log |x|a be the number of factors.
Then the product has the form

2f(k)·g(k)·log |x|·|x|a ≥ 2h(k)·|x|a ,

where h(k) = f(k) · g(k). Therefore the number of needed nondeterministic bits is ≥ h(k) · |x|a,
which is not k-restricted.

Thus, the proof of Beigel, Reingold and Spielman cannot be transferred to W[P]-PFPT. Similar
considerations prevent the known proofs for the different amplification results that hold for the
class PP from working for W[P]-PFPT.
Although it may be possible that some of the results where this problem occurs in the known proofs
from classical complexity theory can be shown with different techniques, the problem is inherent
in the definition of k-restriction and cannot be solved in general. For now, closure of W[P]-PFPT
under intersection and whether some kinds of amplification apply for W[P]-PFPT remain open
problems.

6



3 Parameterized Complexity of Threshold Satisfiability

In order to better understand the complexity of satisfiability problems, an often used technique
is classifying said problems over the different clones given by Post’s lattice. By doing so, we can
identify where the difficult parts of the problems lie, such as the negation of implication for the
satisfiability problem of propositional logic.
The same has been done for some parameterized satisfiability problems. Namely, the fragments of
p-WCIRCSAT=(BF), p-WSAT=(BF) and their respective counting versions have been classified in
[CV].
In the following we will classify the fragments of a threshold-satisfiability-problem that is complete
for W[P]-PFPT. The reason we are not using some form of MajoritySAT is that showing hardness
for fragments of a version of MajoritySAT is quite difficult.
Additionally we will introduce the class W[ThreshSAT] and classify fragments of its defining pa-
rameterized threshold-satisfiability-problem.

3.1 Preliminaries and Definitions

The following result was stated in [FG] and is needed to prove hardness of circuit satisfiability
problems in parameterized complexity.

Fact 3.1. Let t : N0→ N0 be a function s. t. t(n) ≥ n ∀n ∈ N0. If L ⊆ {0,1}∗ can be decided by a
deterministic Turing machine in time t(n), then there is a uniform family (Cn)n≥0 of circuits s. t.
(Cn)n≥0 decides L and ||Cn|| ∈ O(t(n)2).

Remark 3.2. Here, uniformity means that a deterministic Turing machine can compute the circuit
Cn in time polynomial in ||Cn|| for all n. A circuit family is said to decide a language A if the
Boolean function it computes is the characteristic function of A.

We now want to introduce parameterized versions of ThresholdSAT for circuits and formulae.

Definition 3.3. The parameterized weighted threshold-satisfiability-problem over a class ofcircuits
C is defined as follows: circuits C is defined as follows:

Problem: p-WCIRCThreshSAT=(C)
Input: Circuit C ∈ C, t ∈ N, k ∈ N

Question: Does C have at least t satisfying as-
signments of weight exactly k?

Parameter: k

Definition 3.4. The parameterized weighted threshold-satisfiability-problem over a class of for-
mulae C is defined as follows:

Problem: p-WThreshSAT=(C)
Input: Propositional formula ϕ ∈ C, t ∈ N,

k ∈ N
Question: Does ϕ have at least t satisfying as-

signments of weight exactly k?
Parameter: k

7



Now we can introduce the class W[ThreshSAT] in analogy to W[SAT].

Definition 3.5. The class W[ThreshSAT] is defined as

W[ThreshSAT] := [p-WThreshSAT=(BF)]fpt

3.2 Parameterized Complexity of ThreshSAT-problems

The parameterized weighted threshold-satisfiability-problem is complete for W[ThreshSAT] by def-
inition, whereas W[P]-PFPT-completeness of p-WCIRCThreshSAT=(BF) has to be shown, which
we will do in the following.

3.2.1 p-WCIRCThreshSAT=(BF)

First, we want to combine Fact 3.1 and Lemma 2.14 into a new lemma that better serves our
purpose in proving hardness following the proof for W[P]-hardness of p-WSAT in [FG].

Lemma 3.6. Let Σ be an alphabet and M a k-restricted NTM that works on inputs (x,k)∈Σ∗×N.
Then there are a computable function f and an fpt-algorithm computing on input (x,k) ∈Σ∗×N a
circuit C(x,k) with f(k) · blog2 |x|c input nodes s. t.

#Sat(C(x,k)) = #accM (x,k)

Proof. W. l. o. g. we can assume that for all inputs (x,k) all computation paths of M use exactly
f(k) · blog2 |x|c nondeterministic bits and have a running time of at most f(k) · |x|a steps for some
constant a and computable function f . Moreover, we can assume that k is encoded unary (k is
given as the string 1k). Let B be the path language of M , that is,

B :=
{

(x,y,k)
∣∣∣∣∣ x ∈ Σ∗,y ∈ {0,1}f(k)·blog2 |x|c,k ∈ N and y encodes an

accepting computation path of M on input (x,k)

}

Obviously, B ∈ FPT. By Fact 3.1 we get a uniform family of circuits (Cm)m∈N defined for
m= n+f(k) · blog2nc+k ∀n,k ∈ N with:

(i) ∀(x,y,k) ∈ {0,1}n×{0,1}f(k)·blog2nc×{1k}: Cm((x,y,k)) = 1⇔ (x,y,k) ∈B

(ii) ||Cm|| ≤ (f(k) ·p(n))2, where p is some polynomial

Let C(x,k) be the circuit C|x|+f(k)·blog2 |x|c+k after setting the first |x| input bits to the bits of x
and the last k input bits to 1 (since k is encoded unary). Now we have ||C(x,k)|| ≤ (f(k) ·p(|x|))2

for some polynomial p and the number of assignments satisfying C(x,k) is exactly the number of
y ∈ {0,1}f(k)·blog2 |x|c such that (x,y,k) ∈B. Therefore we have

#Sat(C(x,k)) = #accM (x,k).

Furthermore, the circuit C(x,k) has f(k) · blog2 |x|c input bits and since the family of circuits
(Cm)m∈N is uniform, the mapping (x,k) 7→ C(x,k) can be computed by an fpt-algorithm.

8



Theorem 3.7. p-WCIRCThreshSAT=(BF) is W[P]-PFPT-complete under ≤fpt.

Proof. Membership: We will give an W[P]-PFPT-algorithm deciding p-WCIRCThreshSAT=(BF).
The idea is to split up the computation in two parts using a nondeterministic bit.
In the first part an assignment of weight k is guessed by nondeterministically choosing the indices
of the variables set to 1. Then the machine accepts depending on whether the circuit is satisfied
by that assignment.
In the second part equally many nondeterministic bits as in the first part are used and the needed
number of paths is accepted such that C has ≥ t satisfying assignments iff more than half of the
computation paths accept.

b0 = 0 b0 = 1

guess b1, . . . , bk·dlog2ne

accept if b1 . . . bk·dlog2ne is
a satisfying weight-k-assignment

guess b1, . . . , bk·dlog2ne

+ · · · +︸ ︷︷ ︸
2k·dlog2ne−(t−1)

− ·· · −

In the algorithm we guess all needed nondeterministic bits at the very beginning. Let n := |Var(C)|
be the number of variables in the circuit C and {x0, . . . ,xn−1} be the variables. The algorithm
works as follows:

Input: Circuit C, t ∈ N, k ∈ N
Nondeterministically guess (bi)i∈{0,...,k·dlog2ne}, bi ∈ {0,1}
if b0 = 0 then

indexi← b1+(i−1)·dlog2ne . . . bi·dlog2ne ∀1≤ i≤ k
if (indexi > n for some i) or (indexi ≤ indexj for some i > j) then

reject
end if
I ←{indexi | 1≤ i≤ k}
for i ∈ {1, . . . ,n} do

xi←
{

1, if i ∈ I
0, else

end for
if C(x1, . . . ,xn) = 1 then

accept
else

reject
end if

else
if b1 . . . bk·dlog2ne < 2k·dlog2ne− (t−1) then

accept
else

reject
end if

end if

9



We have to be careful in constructing this algorithm as not all sequences of k · dlog2ne bits corre-
spond to assignments of weight k and the elements are not ordered. We deal with this by rejecting
if the sequence does not correspond to an ordered sequence of k different variables before eval-
uating the circuit on the corresponding assignment in the first computation path (b0 = 0). The
number of accepting paths in the second computation path must be chosen accordingly: For cor-
rectness of our choice, note that we have a total of k · dlog2ne+ 1 nondeterministic bits resulting
in 2k·dlog2ne+1 computation paths. Thus, the machine accepts iff more than 2k·dlog2ne+1

2 = 2k·dlog2ne

paths accept. Since 2k·dlog2ne− (t−1) paths accept for b0 = 1, this means that it accepts iff more
than 2k·dlog2ne− (2k·dlog2ne− (t−1)) = t−1 assignments of weight k are satisfying.

Hardness: In order to show hardness, we directly reduce an arbitrary language in W[P]-PFPT to
p-WCIRCThreshSAT=(BF) by using a slight modification of the proof for W[P]-hardness of
p-WCIRCSAT=(BF ) given in [FG]. Let L ∈W[P]-PFPT be some parameterized problem.
There is a k-restricted NTM M that w. l. o. g. on any input (x,k) uses exactly f(k) · blog2 |x|c
nondeterministic bits on all computation paths. By Lemma 3.6, we can compute for any input
(x,k) a circuit C(x,k) with f(k) · blog2 |x|c input bits in fpt-runtime s. t. #Sat(C(x,k)) = #accM (x,k),
so we have

(x,k) ∈ L⇔ #accM (x,k)≥ 2f(k)·blog2 |x|c−1 + 1 (1)
⇔ #Sat(C(x,k))≥ 2f(k)·blog2 |x|c−1 + 1. (2)

Now we change C(x,k) into a new circuit D(x,k) in a way that the number of satisfying assignments
for C(x,k) is exactly the number of satisfying assignments of weight f(k) for D(x,k). This is done
with the so-called k-logn-trick:
Let n := |x|. We split the input bits into blocks of blog2nc bits. The blog2nc bits of each block can
be interpreted as the position of a single 1 in a block of 2blog2nc bits and vice versa. More precisely,
we can use blocks of 2blog2nc bits as our input and use circuits to calculate the original blog2nc bit
blocks from them. To make this work, we have to make sure that exactly one bit per block is set
to 1 for every satisfying weight-f(k)-assignment of the new circuit. We now describe in detail how
D(x,k) can be constructed.
Let the input nodes of C(x,k) be {uij | 1 ≤ i ≤ f(k),1 ≤ j ≤ blog2 |x|c} and the new input nodes of
D(x,k) be {vij | 1≤ i≤ f(k),0≤ j ≤ 2blog2 |x|c−1} (for both sets think of the first index as the block
and the second index the position within that block).

To make sure that one bit per block is set to 1, for all i ∈ {1, . . . ,f(k)} we add the circuit

Si :=
2blog2 |x|c∨
j=1

vij (3)

and conjunct the nodes computing those disjunctions with the output node of C(x,k) in order to
get the new output node of D(x,k). This suffices because now for all satisfying assignments at least
one bit per block must be set to 1, but under this condition no weight-f(k) assignment can have
more than a single 1 in any block.
Next we need circuits computing the values for the input nodes of C(x,k) from the input nodes of
D(x,k). The value of node uij can be computed as

Ui,j :=
∨

`∈{0,...,2blog2 |x|c−1},
bit(j,`)=1

vi`, (4)

where bit(i, j) is the value of the i-th bit in the binary representation of j.
Altogether, we obtain D(x,k) by replacing the input nodes of C(x,k) with the gates computing the

10



respective formula from Equation 4 and conjuncting the whole circuit with the formulae in Equation
3 as depicted in the following figure:

u1,1 · · · u1,blog2 |x|c · · · uf(k),1 · · · uf(k),blog2 |x|c

U1,1 · · · U1,blog2 |x|c · · · Uf(k),1 · · · Uf(k),blog2 |x|c

C(x,k)

∧

∧

S1 · · · Sf(k)

v1,0 · · ·v1,2blog2 |x|c · · · vf(k),0 · · ·vf(k),2blog2 |x|c

Figure 1: Circuit D(x,k)

This transformation can be done in fpt-runtime. Now we have

(x,k) ∈ L⇔ #Sat(C(x,k))≥ 2f(k)·blog2 |x|c−1 + 1 (5)
⇔ #Satf(k)(D(x,k))≥ 2f(k)·blog2 |x|c−1 + 1. (6)

Hence, (x,k) 7→ (D(x,k),2f(k)·blog2 |x|c−1 + 1,f(k)) is an fpt-reduction from L to
p-WCIRCThreshSAT=(BF).

Remark 3.8. This proof could probably be changed to work for a parameterized version of a weighted
MajoritySAT. However, after using the k-logn-trick, the number of satisfying assignments is not
equal to half of all assignments of the needed weight. The circuit would have to be adjusted to
correct this.

We want to add the completeness result for circuits over the base {∧,∨,0,1} at this point, because
the proof is only a slight modification of the proof of Theorem 3.7.

Lemma 3.9. p-WCIRCThreshSAT=({∧,∨,0,1}) is W[P]-PFPT-complete.

Proof. Membership follows directly from Theorem 3.7. For hardness, we modify the hardness proof
of Theorem 3.7 as done by Flum and Grohe. We will only explain the part that needs to be changed:
Since all circuits we add during the proof are already monotone, the only problem is that the circuit
C(x,k) contains negations. To deal with this, we first bring C(x,k) in negation normal form (NNF),
meaning that we now only have negations directly in front of variables. Then we add a new set of
inputs u′ij that serve the role of the negated inputs:
Wherever the negated input nodes occured before, we replace them with the corresponding u′ij .
This way we obtain a new circuit C ′(x,k) with 2n input nodes (n being the number of inputs of
C(x,k)). If we make sure that those new input nodes are always set to the negated value of the
corresponding old input node, this circuit behaves just as C(x,k).
We now compute D′(x,k) from C ′(x,k) in the same way we computed D(x,k) from C(x,k) before, but

11



produce the values of u′ij for 1 ≤ i ≤ f(k),1 ≤ j ≤ blog2 |x|c from the new inputs as well, which is
done for u′ij by the monotone circuit∨

`∈{0,...,2blog2 |x|c−1},
bit(j,`)=0

vi`.

Now we have

(x,k) ∈ L⇔ #Sat(C(x,k))≥ 2f(k)·blog2 |x|c−1 + 1
⇔ C ′(x,k) has ≥ 2f(k)·blog2 |x|c−1 + 1 satisfying assignments with u′ij = ¬uij ∀i, j

⇔ #Satf(k)(D′(x,k))≥ 2f(k)·blog2 |x|c−1 + 1

and D′(x,k) is a circuit over {∧,∨,0,1}.

3.2.2 Fragments of p-WCIRCThreshSAT=(BF) and p-WThreshSAT=(BF)

We have shown that the parameterized threshold-satisfiability problem over the class of all circuits
and over the class of all monotone circuits is W[P]-PFPT-complete. The same problem over the
class of all formulae is W[ThreshSAT]-complete by definition. Thus we can begin to classify both
problems over fragments from Post’s lattice (see Figure 2 and Table 1)—in Lemma 3.9 we already
started with this. Since most of the reductions given for the counting-versions in [CV] are either
parsimonious (the number of satisfying assignments is preserved) or Turing-1 reductions (Turing-
reductions using only one oracle query), we can use them here. We can even use the Turing-1
reductions as common fpt-reductions because the threshold is part of the instance for our problem.
There is one exception to this, namely completness of the clone M2 for formulae, but that can be
handled with a slight modification.

In the following, let B be a base of Boolean functions.
We begin by showing membership in W[ThreshSAT] and W[P]-PFPT, respectively, for the param-
eterized weighted threshold-satisfiability problem over arbitrary bases of Boolean functions given
as formulae and circuits, respectively.

Lemma 3.10.

p-WCIRCThreshSAT=(B) ∈W[P]-PFPT and p-WThreshSAT=(B) ∈W[ThreshSAT].

Proof. p-WCIRCThreshSAT=(B)∈W[P]-PFPT can be shown completely analogously to member-
ship in the proof of Theorem 3.7.
p-WThreshSAT=(B) ≤fpt p-WThreshSAT=(BF) via the identy as the reduction function shows
p-WThreshSAT=(B) ∈W[ThreshSAT].

12



BF

R1 R0

R2

M

M1 M0

M2 S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

C p-WThreshSAT=(C) ∈ P,
p-WCIRCThreshSAT=(C) ∈ P

C p-WThreshSAT=(C) is W[ThreshSAT]-complete,
p-WCIRCThreshSAT=(C) is W[P]-complete
under ≤fpt-T and ≤fpt, respectively

Figure 2: Post’s lattice and complexity of p-WThreshSAT=(C) and p-WCIRCThreshSAT=(C)

13



Class Definition Base
BF All Boolean functions {x∧y,¬x}
R0 {f | f is ⊥-reproducing} {x∧y,x⊕y}
R1 {f | f is >-reproducing} {x∨y,x↔ y}
R2 R0∩R1 {x∨y,x∧ (y↔ z)}
M {f | f is monotone} {x∨y,x∧y,⊥,>}
M0 M∩R0 {x∨y,x∧y,⊥}
M1 M∩R1 {x∨y,x∧y,>}
M2 M∩R2 {x∨y,x∧y}
S0 {f | f is ⊥-separating} {x→ y}
S1 {f | f is >-separating} {x9 y}
Sn

0 {f | f is ⊥-separating of degree n} {x→ y,Tn+1
2 }

Sn
1 {f | f is >-separating of degree n} {x9 y,Tn+1

n }
S00 S0∩R2∩M {x∨ (y∧z)}
Sn

00 Sn
0 ∩R2∩M {x∨ (y∧z),T3

2 } if n= 2,
{Tn+1

2 } if n≥ 3
S01 S0∩M {x∨ (y∧z),>}
Sn

01 Sn
0 ∩M {Tn+1

2 ,>}
S02 S0∩R2 {x∨ (y9 z)}
Sn

02 Sn
0 ∩R2 {x∨ (y9 z),Tn+1

2 }
S10 S1∩R2∩M {x∧ (y∨z)}
Sn

10 Sn
1 ∩R2∩M {x∧ (y∨z),T3

2 } if n= 2,
{Tn+1

n } if n≥ 3
S11 S1∩M {x∧ (y∨z),⊥}
Sn

11 Sn
1 ∩M {Tn+1

n ,⊥}
S12 S1∩R2 {x∧ (y→ z)}
Sn

12 Sn
1 ∩R2 {x∧ (y→ z),Tn+1

n }
D {f | f is self-dual} {maj{x,y,z}}
D1 D∩R2 {maj{x,y,z}}
D2 D∩M {maj{x,y,z}}
L {f | f is linear} {x⊕y,>}
L0 L∩R0 {x⊕y}
L1 L∩R1 {x↔ y}
L2 L∩R2 {x⊕y⊕z }
L3 L∩D {x⊕y⊕z⊕>}
V {f | f is a disjunction or constant} {x∨y,⊥,>}
V0 M0∩V {x∨y,⊥}
V1 M1∩V {x∨y,>}
V2 M2∩V {x∨y}
E {f | f is a conjunction or constant} {x∧y,⊥,>}
E0 M0∩E {x∧y,⊥}
E1 M1∩E {x∧y,>}
E2 M2∩E {x∧y}
N {f | f depends on at most one variable} {¬x,⊥,>}
N2 L3∩N {¬x}
I {f | f is a projection or a constant} { id,⊥,>}
I0 R0∩ I { id,⊥}
I1 R1∩ I { id,>}
I2 R2∩ I { id}

Table 1: List of all Boolean clones with their bases

14



We continue by proving two helpful lemmata that allow us to get rid of constants from a base
of Boolean functions in certain cases for both formulae and circuits. This will be needed for the
hardness proofs.

Lemma 3.11. If ∧ ∈ [B], then

p-WCIRCThreshSAT=(B∪{1})≤fpt p-WCIRCThreshSAT=(B) and

p-WThreshSAT=(B∪{1})≤fpt p-WThreshSAT=(B).

Proof. We give the proof for formulae; the result for circuits can be shown analogously.
Let ϕ be an arbitrary formula over B∪{1}. Then let ϕ′ := ϕ[1/y]∧ y, where y is a new variable.
The number of satisfying weight-k+1-assignments of ϕ′ is exactly the number of satisfying weight-
k-assignments of ϕ. Furthermore, ϕ′ can be expressed by a formula over B because ∧ ∈ [B]. Thus,
(ϕ,t,k) 7→ (ϕ,t,k+1) is an fpt-reduction from p-WThreshSAT=(B∪{1}) to p-WThreshSAT=(B).

Lemma 3.12. If ∨ ∈ [B], then

p-WCIRCThreshSAT=(B∪{0})≤fpt p-WCIRCThreshSAT=(B) and

p-WThreshSAT=(B∪{0})≤fpt p-WThreshSAT=(B).

Proof. We give the proof for formulae, the result for circuits can be shown analogously.
Let ϕ be an arbitrary formula over B ∪{0} and n := |Var(ϕ)|. Then let ϕ′ := ϕ[0/y]∨ y, where y
is a new variable. The number of satisfying weight-k-assignments of ϕ′ is exactly the number of
satisfying weight-k-assignments of ϕ (for the case y= 0) plus the number of possibilities to set k−1
out of n variables to 1 (for the case y = 1), so we have #Satk(ϕ′) = #Satk(ϕ)+

( n
k−1
)
. Furthermore,

ϕ′ can be expressed by a formula over B because ∨ ∈ [B]. Thus, (ϕ,t,k) 7→ (ϕ′, t+
( n
k−1
)
,k) is an

fpt-reduction from p-WThreshSAT=(B∪{0}) to p-WThreshSAT=(B).

We are now able to show hardness for the different clones from Post’s lattice.

Lemma 3.13. If M2 ⊆ [B], then p-WThreshSAT=(B) is W[ThreshSAT]-complete under ≤fpt-T

and p-WCIRCThreshSAT=(B) is W[P]-PFPT-complete under ≤fpt.

Proof. p-WThreshSAT=(B): Let B′ be any base of Boolean functions with [B′] = BF. Then
p-WThreshSAT=(B′)≤fpt-T p-WThreshSAT=({∧,∨,¬}) (this follows from Corollary 4.8 in [Tho]).
For hardness, we show p-WThreshSAT=({∧,∨,¬})≤fpt-T p-WThreshSAT=(B).
We start by proving p-WThreshSAT=({∧,∨,¬})≤fpt-T p-WThreshSAT=({∧,∨}). The idea for the
proof is the same as for the weighted #SAT-problem examined in [CV]: We bring the given formula
ϕ into the form

ϕ≡ α∧¬β,

where α and β are monotone formulae (an explanation of how this can be done follows). Then it
holds that #Satk(ϕ) = #Satk(α)−#Satk(α∧β) as long as both α and β use all variables. The
problem is that we cannot directly get the answer whether #Satk(ϕ)≥ t for some threshold t from
only two oracle-calls for α and β as it is done for the weighted #SAT-problem in [CV]. Instead, we
will use binary search with oracle-calls to compute #Satk(α∧β) and then use another oracle-call
for α with a modified threshold to get the answer (modifying the threshold spares us another binary
search).

15



We can bring ϕ in the desired form as follows: Let n := |Var(ϕ)| and x1, . . . ,xn be the variables in
ϕ. First we bring ϕ in negation normal form (NNF) and call the new formula ϕ′. Then we create
n new variables x′1, . . .x′n and replace every occurance of ¬xi in ϕ′ with x′i for all 1 ≤ i ≤ n. We
call the new formula ϕ′′. Now we only have to make sure that xi = ¬x′i for all 1 ≤ i ≤ n. This is
done by conjuncting the formula with

n∧
i=1

(xi∨x′i)∧¬
n∨
i=1

(xi∧x′i).

Therefore, in the notation from above we have:

α := ϕ′′∧
n∧
i=1

(xi∨x′i) and

β :=
n∨
i=1

(xi∧x′i).

We now give the fpt-Turing reduction as an algorithm using oracle-calls to
p-WThreshSAT=({∧,∨}).

Input: Formula ϕ(x1, . . . ,xn) over {∧,∨,¬}, t ∈ N, k ∈ N
Let ϕ′ be ϕ transformed to NNF
Let ϕ′′ be ϕ′, where ¬xi is replaced by a new variable x′i ∀1≤ i≤ n
α← ϕ′′∧

∧n
i=1 (xi∨x′i)

β←
∨n
i=1 (xi∧x′i)

l← 0
h←

(n
k

)
while l < h do

m← d l+h2 e
if (α∧β,m,k) ∈ p-WThreshSAT=({∧,∨}) then

l←m
else

h←m−1
end if

end while
if (α,t+ l,k) then

accept
else

reject
end if

Note that this algorithm is an fpt-Turing reduction with fpt-many oracle calls, which is an extremely
powerful form of reduction.
To conclude the proof, we now have to show p-WThreshSAT=({∧,∨})≤fpt-T p-WThreshSAT=(B).
Because M ⊆ [B∪{0,1}], there are short (B∪{0,1})-representations of ∧ and ∨ as shown in [Schn]
so we get p-WThreshSAT=({∧,∨}) ≤fpt-T p-WThreshSAT=(B∪{0,1}). Now we can use Lemma
3.11 and Lemma 3.12 to get rid of the constants, since ∧,∨ ∈M2 ⊆ [B].

p-WCIRCThreshSAT=(B): p-WCIRCThreshSAT=({∧,∨,0,1}) is W[P]-PFPT-complete by Lemma
3.9. From that point on we can reduce analogously to the formula-version:
We get p-WCIRCThreshSAT=({∧,∨,0,1}) ≤fpt p-WCIRCThreshSAT=(B∪{0,1}) because there
are short B∪{0,1}-representations of ∧ and ∨. We can then apply Lemma 3.11 and Lemma 3.12
to get rid of the constants, since ∧,∨ ∈M2 ⊆ [B].

16



Lemma 3.14. If S10 ⊆ [B], then p-WThreshSAT=(B) is W[ThreshSAT]-complete under ≤fpt-T

and p-WCIRCThreshSAT=(B) is W[P]-PFPT-complete under ≤fpt.

Proof. As seen in Post’s lattice, M1 ⊆ [B ∪{1}], so p-WThreshSAT=(B∪{1}) is W[ThreshSAT]-
complete under ≤fpt-T by Lemma 3.13. p-WThreshSAT=(B∪{1})≤fpt-T p-WThreshSAT=(B) fol-
lows by Lemma 3.11, since ∧ ∈ S10 ⊆ [B].
W[P]-PFPT-completeness under ≤fpt for p-WCIRCThreshSAT=(B) can be shown analogously -
the difference here is that Lemma 3.13 provides completeness under ≤fpt instead of ≤fpt-T.

Lemma 3.15. If S00 ⊆ [B], then p-WThreshSAT=(B) is W[ThreshSAT]-complete under ≤fpt-T

and p-WCIRCThreshSAT=(B) is W[P]-PFPT-complete under ≤fpt.

Proof. As seen in Post’s lattice, M0 ⊆ [B ∪{0}], so p-WThreshSAT=(B∪{0}) is W[ThreshSAT]-
complete under ≤fpt-T by Lemma 3.13. p-WThreshSAT=(B∪{0})≤fpt-T p-WThreshSAT=(B) fol-
lows by Lemma 3.12, since ∨ ∈ S00 ⊆ [B].
W[P]-PFPT-completeness under ≤fpt for p-WCIRCThreshSAT=(B) can be shown analogously -
the difference again is that Lemma 3.13 provides completeness under ≤fpt instead of ≤fpt-T.

Lemma 3.16. If D2 ⊆ [B], then p-WThreshSAT=(B) is W[ThreshSAT]-complete under ≤fpt-T

and p-WCIRCThreshSAT=(B) is W[P]-PFPT-complete under ≤fpt.

Proof. As seen in Post’s lattice S2
01 ⊆ [B∪{1}]. Thus, p-WThreshSAT=(B∪{1}) is W[ThresSAT]-

complete under ≤fpt-T by Lemma 3.15. By giving an fpt-reduction instead of an fpt-Turing reduc-
tion, we show p-WThreshSAT=(B∪{1})≤fpt-T p-WThreshSAT=(B), so the proof can be used for
both formulae and circuits. This can be done using the following functions gl, which are defined
differently depending on the last input bit:

gl(x1, . . . ,xl,0) :=
l∧

i=1
xi, gl(x1, . . . ,xl,1) :=

l∨
i=1

xi

These functions are self-dual due to the different definition depending on the last bit and De
Morgans law, therefore gl ∈D2. Furthermore we need the ternary majority function, denoted here
as maj. This function is self-dual as well and thus maj ∈D2.
On input (ϕ,k,t) the reduction computes the new formula

ϕ′ := maj(ϕ[1/z], z, gk+2(y1, . . . ,yk+2,z))

with new variables z and yi for 1≤ i≤ k+ 2.
We now consider #Satk+1(ϕ′). For any satisfying assignment of ϕ′, the following holds:

1. If z = 0: Both ϕ[1/z] and gk+2(y1, . . . ,yk+2,z) are true. Then by definition of gk+2, yi is true
for all 1≤ i≤ k+ 2 and this means the weight of the assignment must be ≥ k+ 2.

2. If z = 1: If gk+2(y1, . . . ,yk+2,z) is true: Then it is irrelevant whether ϕ ≡ ϕ[1/z] is satisfied
and the only further condition is that the assignment has weight k+ 1.
If gk+2(y1, . . . ,yk+2,z) is false: Then yi is false for all 1≤ i≤ k+2 and therefore the assignment
is a satisfying weight-k+1-assignment of ϕ′ iff its restriction to Var(ϕ) is a satisfying weight
k-assignment of ϕ.

17



This means that the satisfying weight-k+ 1-assignments of ϕ′ are the union of

• the satisfying weight-k-assignments of ϕ extended by z = 1 and yi = 0 for all i

• all assignments setting z = 1, yi = 1 for at least one i and the needed number of variables in
Var(ϕ) to 1 (in order to get a weight-k+ 1-assignment).

Hence,

#Satk+1(ϕ′) = #Satk(ϕ) +
k∑
j=1

(
k+ 2
j

)(
n

k− j

)
.

Therefore, (ϕ,t,k) 7→ (ϕ′, t+
∑k
j=1

(k+2
j

)( n
k−j
)
,k+ 1) is the desired fpt-reduction (note that the size

of gk+2 only depends on the parameter).
W[P]-PFPT-completeness under ≤fpt for p-WCIRCThreshSAT=(B) can be shown analogously.

Lemma 3.17. If B ⊆ V , or B ⊆ E, or B ⊆ L:

p-WThreshSAT=(B),p-WCIRCThreshSAT=(B) ∈ P.

Proof. For these cases, FP-membership has been shown for the counting-versions p-#WSAT=(B)
and p-#WCIRCSAT=(B). Hence, we can compute the number of satisfying assignments and then
accept depending on whether that number is greater or equal the threshold with a polynomial-time
algorithm.

We can now combine the results we have shown into the following theorem, classifying the weighted
threshold-satisfiability over all fragments from Post’s lattice for both circuits and formulae:

Theorem 3.18. Let B be a finite set of Boolean functions.

1. If D2 ⊆ [B] or S10 ⊆ [B] or S00 ⊆ [B], then p-WThreshSAT=(B) is W[ThreshSAT]-complete
under ≤fpt-T and p-WCIRCThreshSAT=(B) is W[P]-PFPT-complete under ≤fpt.

2. In all other cases, p-WThreshSAT=(B),p-WCIRCThreshSAT=(B) ∈ P.

18



4 The Boolean Algebra over W[P]

In classical complexity theory, a famous proof by Beigel, Reingold and Spielman shows that PP
is closed under intersection. Combined with the fact that it is closed under complementation, it
is easy to see that arbitrary Boolean combinations of languages in PP are also in PP. Before
closure under intersection was shown, it was already known, that arbitrary Boolean combinations
of languages in NP are in PP—note that NP⊆PP is easily shown. We now want to follow the lead
of those proofs and show that arbitrary Boolean combinations of languages in W[P] are contained
in W[P]-PFPT.

4.1 Definitions

For the following definitions, let K be a complexity class.

Definition 4.1. The class of complements of languages in K is

coK := {L | L ∈ K}.

Definition 4.2. BA(K) is the smallest class that contains K and is closed under union, intersection
and complementation. BA(K) is called the Boolean algebra over K.

The Boolean operators ∧ and ∨ on complexity classes are defined as follows:

Definition 4.3. Let K1 be another complexity class. Then

K∧K1 = {A∩B |A ∈ K,B ∈ K1} and

K∨K1 = {A∪B |A ∈ K,B ∈ K1}.

Definition 4.4. For n ∈ N\{0} we define the classes of the Boolean hierarchy over K as

CK2n−1 := coK∨
∨
n−1

(K∧ coK), CK2n :=
∨
n

(K∧ coK),

DK2n−1 :=K∨
∨
n−1

(K∧ coK), DC2n :=K∨ coK∨
∨
n−1

(K∧ coK).

Definition 4.5. We define the classes of the difference hierarchy over K as

DIFFK1 :=K and

DIFFKn+1 := {A4B |A ∈DIFFKn ,B ∈ K} for n ∈ N\{0}.

Definition 4.6. Let f be a k-ary Boolean function. Then we define the class f(K) as follows:

A ∈ f(K)⇔∃B1, . . . ,Bk ∈ K : cA(x) = f(cB1(x), . . . , cBk(x)) ∀x.

Beside these basic definitions we need a few more technical expressions concerning the so-called
mind change technique, which will be used for the main result of this section.

Definition 4.7. 1. v is the initial word relation, a binary relation on words defined as

uv w :⇔∃v : uv = w.

19



2. ≤, a partial order on bit-strings of length k is defined as

(a1, . . . ,ak)≤ (b1, . . . , bk) :⇔ a1 ≤ b1, . . . ,ak ≤ bk.

3. For any k-ary Boolean function f we define

c(f) :=maxv
{
f(a1)f(a2) . . .f(ar)

∣∣∣∣∣ai ∈ {0,1}k,f(ai) 6= f(ai+1),
r ≥ 1, a1 ≤ a2 ≤ . . .≤ ar

}
.

4. For any k-ary Boolean function f

mc(f) := |c(f)|−1 is the number of mind changes of f.

4.2 Preliminaries

We will now recall the known results [KSW] that allow to conclude BA(NP) ⊆ PP without using
the fact that PP is closed under intersection. Then, we will see that W[P] and W[P]-PFPT fulfill all
required preconditions and deduce the corresponding result in parameterized complexity theory.

Theorem 4.8. Let K be a class of languages that is closed under union and intersection. Then
for every k-ary Boolean function f it holds:

f(K) =
{
CKmc(f), if c(f) ends with 0
DKmc(f), if c(f) ends with 1

.

Theorem 4.9. Let K be a class of languages that is closed under union and intersection. For every
n≥ 1 it holds:

(i) CKn+1 = DKn ∧ coK

(ii) DKn+1 = CKn ∨K

(iii) CKn = coDKn
(iv) CKn ∪DKn ⊆ CKn+1∩DKn+1

(v) BA(K) =
⋃
n≥1CKn =

⋃
n≥1DKn

The following theorem has only been stated for the difference hierarchy over NP, but works iden-
tically for arbitrary classes. We will address this in Lemma 4.11.

Theorem 4.10. For every n≥ 1 it holds that:

(i) DIFFNP
2n−1 = DNP

2n−1

(ii) DIFFNP
2n = CNP

2n

Using the fact that PP is closed under symmetric difference—which was known before closure of
PP under intersection—one can directly conclude BA(NP)⊆ PP.

20



4.3 BA(W[P])⊆W[P]-PFPT

We will now show Theorem 4.10 for arbitrary classes that are closed under union and intersection,
which will then allow us to prove the main result of this chapter: Theorem 4.14.

Lemma 4.11. Let K be a class of languages that is closed under union and intersection. For every
n≥ 1 it holds:

(i) DIFFK2n−1 = DK2n−1 and

(ii) DIFFK2n = CK2n

Proof. Let dn(x1, . . . ,xn) := x1⊕·· ·⊕xn. Then DIFFKn = dn(K). We have |c(dn)| ≤ n+ 1 since dn
is n-ary. It is easy to show that |c(dn)| ≥ n+1 holds as well, because ⊕ changes its value with any
change of a variable:

dn(0,0, . . . ,0)dn(1,0,0, . . . ,0)dn(1,1,0,0, . . . ,0) . . .dn(1,1, . . . ,1) = 0101 . . . b︸ ︷︷ ︸
n+1

,

where b= 0 if n is even and b= 1 if n is odd. Furthermore,

(0,0, . . . ,0)≤ (1,0,0, . . . ,0)≤ (1,1,0,0, . . . ,0)≤ ·· · ≤ (1,1, . . . ,1).

Now we have |c(dn)|= n+ 1 and mc(dn) = n. Using Theorem 4.8, we obtain:

dn(K) =
{
DKn , if n is odd
CKn , if n is even

.

Corollary 4.12. Let K be a class of languages that is closed under union and intersection. Then:

BA(K) =
⋃
n≥1

DIFFKn .

We need the following basic closure properties of W[P] to use the previous results:

Lemma 4.13. W[P] is closed under union and intersection.

Proof. Let L1,L2 ∈W[P] via M1 and M2, respectively. For L1∪L2 (L1∩L2), M1 and M2 can be
simulated in parallel (in succession).

We are now in the position to prove the main result of this section:

Theorem 4.14. BA(W[P])⊆W[P]-PFPT, that is, the Boolean algebra over W[P] is contained in
W[P]-PFPT.

Proof. Since W[P]-PFPT is closed under symmetrice difference (Lemma 2.16),
DIFFW[P]-PFPT

n ⊆W[P]-PFPT for any n. Additionally, W[P]⊆W[P]-PFPT (Lemma 2.17) and thus
DIFFW[P]

n ⊆DIFFW[P]-PFPT
n for any n. W[P] is closed under union and intersection (Lemma 4.13),

so we can use Corollary 4.12 to get

BA(W[P]) =
⋃
n≥1

DIFFW[P]
n ⊆

⋃
n≥1

DIFFW[P]-PFPT
n ⊆W[P]-PFPT.

21



5 The Class W[P]-C=FPT

In classical complexity theory the class C=P, which is defined quite similarly to PP, is examined as
well. We want to define the corresponding parameterized class W[P]-⊕FPT and examine its basic
properties, namely closure under Boolean operations, how it is connected to W[P]-PFPT and the
existance of a complete problem for the class.

Definition 5.1. A parameterized problem L is in W[P]-C=FPT if there is a function f ∈Gap-FPT
such that (x,k) ∈ L⇔ f(x,k) = 0.

We begin by showing the closure of W[P]-C=FPT under union and intersection. The proof that
shows closure of C=NC1 under those operations [CKTV] can be used here as well.

Theorem 5.2. W[P]-C=FPT is closed under union and intersection.

Proof. Let L1,L2 ∈W[P]-C=FPT. Then there are two functions f1,f2 ∈Gap-FPT such that

(x,k) ∈ Li⇔ fi(x,k) = 0, i ∈ {1,2}.

Union: Let g1(x,k) = f1(x,k) ·f2(x,k). Then g1 ∈Gap-FPT by Lemma 2.10 and

g1(x,k) = 0 iff (f1(x,k) = 0 or f2(x,k) = 0).

Therefore we have (x,k) ∈ L1∪L2⇔ g1(x,k) = 0 and thus L1∪L2 ∈W[P]-C=FPT.

Intersection: Let g2(x,k) = f1(x,k)2 +f2(x,k)2. Then g2 ∈Gap-FPT by Lemma 2.10 and

g2(x,k) = 0 iff (f1(x,k) = 0 and f2(x,k) = 0).

Therefore we have (x,k) ∈ L1∩L2⇔ g2(x,k) = 0 and thus L1∩L2 ∈W[P]-C=FPT.

Next, we want to show how W[P]-PFPT and W[P]-C=FPT are related. For this, we need the
following characterization of the class W[P]-C=FPT (the idea for this stems from [CKTV] again).

Lemma 5.3. Let L be a parameterized problem. Then L is in W[P]-C=FPT iff there are f1,f2 ∈
#W[P] such that:

(x,k) ∈ L⇒ f1(x,k)−f2(x,k) = 0 and
(x,k) /∈ L⇒ f1(x,k)−f2(x,k)< 0.

Proof. Let L ∈W[P]-C=FPT be a parameterized problem. By Lemma 2.11, there are f,g ∈#W[P]
such that

(x,k) ∈ L⇔ f(x,k)−g(x,k) = 0.

By squaring this difference we make sure that it is always non-negative. Reordering combined with
the closure properties of #W[P] yields:

(f(x,k)−g(x,k))2 = f(x,k)2−2f(x,k)g(x,k) +g(x,k)2

= f(x,k)2 +g(x,k)2︸ ︷︷ ︸
∈#W[P]

−2f(x,k)g(x,k)︸ ︷︷ ︸
∈#W[P]

.

22



This uses closure of #W[P] under p-bounded summations and products (shown in Lemma 2.8).
Now let f1(x,k) = 2f(x,k)g(x,k), f2(x,k) = f(x,k)2 +g(x,k)2. Then we have:

(x,k) ∈ L⇒ f(x,k)−g(x,k) = 0
⇒ f1(x,k)−f2(x,k) = 0

and

(x,k) /∈ L⇒ f(x,k)−g(x,k) 6= 0
⇒ f2(x,k)−f1(x,k)> 0
⇒ f1(x,k)−f2(x,k)< 0.

Theorem 5.4. W[P]-C=FPT⊆W[P]-PFPT

Proof. By Theorem 2.14, a parameterized problem L is in W[P]-PFPT iff there is a function f ∈
Gap-FPT s. t.: (x,k) ∈ L⇔ f(x,k)> 0. Thus, using Lemma 5.3, W[P]-C=FPT is just a restriction
of W[P]-PFPT: Let L be a parameterized problem, L ∈W[P]-C=FPT. By Lemma 5.3 there are
f,g ∈#W[P] such that:

(x,k) ∈ L⇒ f(x,k)−g(x,k) = 0 ⇒ f(x,k)−g(x,k)≥ 0 and
(x,k) /∈ L ⇒ f(x,k)−g(x,k)< 0

Now h(x,k) := f(x,k)−g(x,k) ∈Gap-FPT by Lemma 2.11 and we have

(x,k) ∈ L⇔ h(x,k)≥ 0
⇔ h(x,k) + 1︸ ︷︷ ︸

∈Gap-FPT

> 0

and hence L ∈W[P]-PFPT.

23



6 The Class W[P]-⊕FPT

Another counting class examined in classical complexity theory is the class ⊕P—the class of all
problems decidable by a nondeterministic Turing machine that accepts if an odd number of com-
putation paths accept. We will now go on to define the parameterized version of this class and
examine its basic properties: We will show that like ⊕P, the parameterized version is closed un-
der all Boolean operations and define the satisfiability problem p-WCIRCOddSAT=(BF), which is
complete for said class.

Definition 6.1. A parameterized problem L is in the class W[P]-⊕FPT if there is a k-restricted
NTM M such that

(x,k) ∈ L⇔#accM (x,k)≡ 1 mod 2.

Remark 6.2. We get an equivalent definition if we use an even instead of an odd number of
accepting paths.

Proof. By adding one accepting path to all computations, one can change a machine from accepting
a language with an odd number of accepting paths to accepting the same language with an even
number of accepting paths and vice versa.

We know from classical complexity theory that P⊕P =⊕P. Although we cannot expect to achieve
an analogous result in parameterized complexity theory due to the logarithmic factor in the number
of nondeterministic bits, at least the following restricted result holds and allows us to show the
closure properties of W[P]-⊕FPT under Boolean operations.

Lemma 6.3. W[P]-⊕FPT = FPTW[P]-⊕FPT[f(k),κ].

Proof. We reproduce the proof for P⊕P =⊕P from classical complexity theory (see e.g. [Vol]). As
the other direction is trivial, we only have to show FPTW[P]-⊕FPT[f(k),κ] ⊆W[P]-⊕FPT.
Let L be a parameterized problem and L ∈ FPTW[P]-⊕FPT[f(k),κ] via the oracle Turing machine
M1 with oracle A ∈W[P]-⊕FPT. This means that (x,k) ∈ L⇔MA

1 (x,k) accepts. Let M2 be the
k-restricted nondeterministic Turing machine that accepts A in parity-fashion.
W. l. o. g. we can assume that for every input all computation paths of M2 use the same number of
nondeterministic bits and then add one rejecting path so that the number of computation paths of
M2 is always odd. This means

(x,k) ∈ L⇒ #accM2(x,k)≡ 1 mod 2 and #rejM2(x,k)≡ 0 mod 2 and
(x,k) /∈ L⇒ #accM2(x,k)≡ 0 mod 2 and #rejM2(x,k)≡ 1 mod 2.

Now we define the nondeterministic Turing machineM as follows: M behaves likeM1, but whenever
there is an oracle call to A, the whole computation ofM2 is copied. The computation then continues
on all paths assuming that the query is in fact in A iff that particular computation path of M2
accepts.
Now for every copy of M2 within the computation of M, the number of paths assuming the right
answer is odd and the number of paths assuming the wrong answer is even. Since for the acceptance
behavior in parity-fashion the number of accepting paths is only counted modulo 2, the paths
assuming the right answers contribute in the same way as if there was only one such path and the
paths assuming the wrong answer do not contribute at all. In short, M accepts L in parity-fashion.
To conclude the proof, we need to consider the running time as well as the used nondeterministic bits

24



of M : By restricting the parameter values of all oracle queries such that they must be computable
from the original parameter, we ensure that all copies of M2 within M have fpt-runtime and k-
restricted nondeterminism (cf. proof for closure of W[P] under ≤fpt in [FG]) w. r. t. the original
input. By restricting the number of oracle queries by f(k) for a computable function f , we ensure
that we get only a sum of f(k)-many fpt-runtimes and k-restricted nondeterminism, which remains
within the required bounds.

Before we show closure of W[P]-⊕FPT under all Boolean operations, we need another small
lemma:

Lemma 6.4. W[P]-⊕FPT is closed under marked union.

Proof. Let A,B ∈W[P]-⊕FPT. There are k-restricted NTMs M1,M2 that accept A and B, re-
spectively, in parity-fashion. A k-restricted NTM on input (ax,k) can simply simulate one of the
machines M1 and M2 on (x,k) depending on a:

a= 0 a= 1

M1(x,k) M2(x,k)

Theorem 6.5. W[P]-⊕FPT is closed under union, intersection and complementation.

Proof. Let A,B be two parameterized problems, A,B ∈W[P]-⊕FPT.
We show that A,A∪B,A∩B ∈ FPTW[P]-⊕FPT[f(k),κ]. An oracle Turing machine using A as its
oracle can simply query the original input and reverse the answer to decide A.
In order to decide A∪B and A∩B we use A]B as the oracle. On input (x,k) the machine then
queries (0x,k) and (1x,k) to the oracle and then accepts either if at least one of the oracle answers
is positive (for A∪B) or if both oracle answers are positive (for A∩B).
The described machine uses a constant number of queries and for all of them, the parameter
is equal to the original parameter, so it is in fact in FPTW[P]-⊕FPT[f(k),κ] and by Lemma 6.3 in
W[P]-⊕FPT.

We will now go on to define a satisfiability-problem that will turn out to be W[P]-⊕FPT-complete
under ≤fpt.

Definition 6.6. The parameterized weighted odd-satisfiability-problem over a class of circuits C
is defined as follows:

Problem: p-WCIRCOddSAT=(C)
Input: Circuit C ∈ C, k ∈ N

Question: Does C have an odd number of satis-
fying assignments of weight exactly
k?

Parameter: k

25



Theorem 6.7. p-WCIRCOddSAT=(BF) and p-WCIRCOddSAT=({∧,∨,0,1}) are W[P]-⊕FPT-
complete.

Proof. Membership: When given a circuit C, a k-restricted NTM can guess a weight-k-assignment
by guessing the indices of the variables set to 1 and then verify whether that assignment satisfies
the circuit.
Hardness: The proof for W[P]-⊕FPT-hardness of p-WCIRCOddSAT=(BF) is completely analogous
to the hardness proof of Theorem 3.7.The only difference is that the machine does not accept iff
more than half of its computation paths accept, but iff an odd number of its computation paths
accept. Therefore instead of Equivalences 1 and 2 (on page 10) we get

(x,k) ∈ L⇔ #accM (x,k)≡ 1 mod 2
⇔ #Sat(C(x,k))≡ 1 mod 2

and in the end instead of Equivalences 5 and 6 (on page 11) we get

(x,k) ∈ L⇔ #Sat(C(x,k))≡ 1 mod 2
⇔ #Satf(k)(D(x,k))≡ 1 mod 2.

For p-WCIRCOddSAT=({∧,∨,0,1}), the same modifications as in the proof for Lemma 3.9 work
again.

26



7 The Parameterized Counting Hierarchy

In classical complexity theory the polynomial hierarchy is defined, generalizing the concept of the
classes NP and coNP. This hierarchy was extended by a counting notion to obtain the counting
hierarchy. In order to define the classes in the polynomial and counting hierarchies, quantifiers
are used. We want to define a parameterized counting quantifier and show some basic results for
the hierarchy defined using only that single quantifier. Parameterized existential and universal
quantifiers could be defined analogously, providing the means to define a hierarchy corresponding
to the whole counting hierarchy from classical complexity theory. In this whole chapter we follow
the lead of [Tor].

7.1 Definitions

We begin by defining the counting quantifiers we mentioned above.

Definition 7.1. Let Σ be an alphabet, f ∈ FFPT, g : N×N→ N and Q a ternary predicate.
Furthermore, g(|x|,k)≤ h(k) · log |x| f. a. x,k for some computable function h. Then the k-restricted
counting quantifier C[κ] is defined as follows:

C[κ]gfy :Q(x,y,k) :⇔ |{y | |y| ≤ g(|x|,k) and Q(x,y,k)}| ≥ f(x,k)

Beside the k-restricted counting quantifier we want to define the k-restricted exact counting quan-
tifier, which will help to prove Theorem 7.16.

Definition 7.2. Let Σ be an alphabet, f ∈ FFPT, g : N×N→ N and Q a ternary predicate.
Furthermore, g(|x|,k)≤ h(k) · log |x| f. a. x,k for some computable function h. Then the k-restricted
exact counting quantifier C=[κ] is defined as follows:

C=[κ]gfy :Q(x,y,k) :⇔ |{y | |y| ≤ g(|x|,k) and Q(x,y,k)}|= f(x,k)

Remark 7.3. We can assume that all strings y of length exactly g(|x|,k) instead of ≤ g(|x|,k) are
counted.

Proof. This can be done by adding a new symbol to the alphabet over which y is built and use it
as padding for the shorter words.

The counting quantifiers are mainly used to define complexity classes:

Definition 7.4. Let Q ∈ {C[κ],C=[κ]} be a k-restricted quantifier. For any class of languages K,
let QK be defined as follows:
A language A is in QK if there are f ∈ FFPT with f(x,k)> 0 f. a. x,k, a computable function h,
a function g : N×N→ N with g(|x|,k)≤ h(k) · log |x| ∀x,k and a language B ∈ K s. t. f. a. (x,k):

(x,k) ∈A⇔Qgfy : (〈x,y〉,k) ∈B.

Definition 7.5. We call the hierarchy that is defined using any number of C[κ]-quantifiers on FPT
the k-restricted counting hierarchy. CH[κ] is the union of all classes in that hierarchy:

CH[κ] :=
⋃
i∈N

C[κ] . . .C[κ]︸ ︷︷ ︸
i

FPT.

27



7.2 Preliminaries

We will show a few auxiliary results, which will be needed for the following proofs and start by
showing a few simple closure properties for the classes in CH[κ].

Lemma 7.6. Let K ∈ CH[κ] be a complexity class, L1,L2 ∈ K and A ∈ FPT. Then

(i) K is closed under ≤fpt,

(ii) L1]L2 ∈ K,

(iii) L1∩A ∈ K and

(iv) L1∪A ∈ K

Proof. Let q be the length of the quantifier prefix of K.

(i): Let B ∈ FPT, f1, . . . ,fq ∈ FFPT and g1, . . . ,gq be functions that are bounded by h(k) · log |x|
for a computable function h s. t.

(x,k) ∈ L1⇔ C[κ]g1
f1
y1 . . .C[κ]

gq
fq
yq : (〈x,y1, . . . ,yq〉,k) ∈B

Let L be a parameterized language that is fpt-reducible to L1, r an fpt-reduction that shows
L≤fpt L1 and r1, r2 its two components such that r(x,k) = (r1(x,k), r2(x,k)). Then for every input
(x,k) we have

(x,k) ∈ L⇔ (r1(x,k), r2(x,k)) ∈ L1

⇔ C[κ]g
′
1
f ′1
y1 . . .C[κ]

g′q
f ′q
yq : (〈r1(x,k),y1, . . . ,yq〉, r2(x,k)) ∈B

⇔ C[κ]g
′
1
f ′1
y1 . . .C[κ]

g′q
f ′q
yq : (〈x,y1, . . . ,yq〉,k) ∈B′,

where B′ = {(〈x,y1, . . . ,yq〉,k) | (〈r1(x,k),y1, . . . ,yq〉, r2(x,k)) ∈B}.
The functions fi and gi have to be changed here, since the input is still (x,k). The new functions
are defined as

f ′i(x,k) := fi(r1(x,k), r2(x,k)) and
g′i(x,k) := gi(r1(x,k), r2(x,k)).

g′i(x,k) is still bounded as needed (this can be shown analogously to closure of W[P] under ≤fpt)
and f ′i ∈ FFPT (this can be shown analogously to closure of FPT under ≤fpt). Moreover B′ ∈ FPT,
which follows from closure of FPT under ≤fpt. Closure of W[P] and FPT under ≤fpt were shown
in [FG] for example.

(ii): Let f1, . . . ,fq ∈ FFPT and for i ∈ {1,2} let L′i ∈ FPT and gi,1, . . . ,gi,q be functions that are
bounded by h(k) · log |x| for a computable function h such that

(x,k) ∈ Li⇔ C[κ]gi,1f1
y1 . . .C[κ]

gi,q
fq

yq : (〈x,y1, . . . ,yq〉,k) ∈ L′i for i ∈ {1,2}.

Note that w. l. o. g. we can assume that for both languages the same functions fi are used when
we allow the gi to be different (later we will see that even both functions could be assumed to be
identical, see Lemma 7.8). Let

L′ :=
{

(〈ax,y1, . . . ,yq〉,k)
∣∣∣∣∣ (a= 0, |yi| ≤ g1,i(〈x,y1, . . . ,yi−1) ∀i and (〈x,y1, . . . ,yq〉,k) ∈ L′1)
or (a= 1, |yi| ≤ g2,i(〈x,y1, . . . ,yi−1) ∀i and (〈x,y1, . . . ,yq〉,k) ∈ L′2)

}
.

28



L′ is obviously in FPT and now it holds that

(ax,k) ∈ L1]L2⇔ C[κ]max(g1,1,g2,1)
f1

y1 . . .C[κ]
max(g1,q ,g2,q)
fq

yq : (〈ax,y1, . . . ,yq〉,k) ∈ L′.

(iii): Let B ∈ FPT, f1, . . . ,fq ∈ FFPT and g1, . . . ,gq be functions that are bounded by h(k) · log |x|
for a computable function h such that

(x,k) ∈ L1⇔ C[κ]g1
f1
y1 . . .C[κ]

gq
fq
yq : (〈x,y1, . . . ,yq〉,k) ∈B.

Then it holds that

(x,k) ∈ L1∩A⇔ C[κ]g1
f1
y1 . . .C[κ]

gq
fq
yq : (〈x,y1, . . . ,yq〉,k) ∈B′,

where B′ := {(〈x,y1, . . . ,yq〉,k) | (〈x,y1, . . . ,yq〉,k) ∈B and (x,k) ∈A} ∈ FPT.

(iv): This can be shown analogously to (iii).

Lemma 7.7. Let K ∈ CH[κ]. All properties from Lemma 7.6 except for (iv) also hold for C=[κ]K.

Proof. This can be shown completely analogously to Lemma 7.6. The problem for (iv) is that
we would need to change the FPT-language in the end of the quantifier characterization s. t. f. a.
(x,k) ∈A the exact number of witnesses specified by the C=[κ]-quantifier exists.

We will now show that when the C[κ]-quantifier is used on classes from CH[κ], the function f from
the definition can be changed to always be half of the strings y from the definition and that it is
directly connected to the class W[P]-PFPT.

Lemma 7.8. Let K ∈CH[κ] and f,g be functions as in the definitions above with the addition that
g ∈ FFPT. Then

(i) C[κ]gfK ⊆ C[κ]g+1
2g(|x|,k)+1K and

(ii) C[κ]FPT = W[P]-PFPT.

Proof. (i): Let L ∈ C[κ]gfK be a parameterized problem. Then there is a B ∈ K s. t.

(x,k) ∈ L⇔ C[κ]gfy : (〈x,y〉,k) ∈B.

Let B′ be the following language:

B′ := {(〈x,ay〉,k) | a= 0,(〈x,y〉,k) ∈B}
∪ {(〈x,ay〉,k) | a= 1, y < 2g(|x|,k)−f(x,k) + 1}.

Since f,g ∈ FFPT and the classes in CH[κ] are closed under union with FPT-languages and under
≤fpt—the latter allows us to add the bit a to the input—, we have B′ ∈ K and it holds that

(x,k) ∈ L ⇔ C[κ]gfy : (〈x,y〉,k) ∈B
⇔ |{y | |y| ≤ g(|x|,k) and (〈x,y〉,k) ∈B}| ≥ f(x,k)
⇔ |{ay|a ∈ {0,1}, |y| ≤ g(|x|,k) and (〈x,ay〉,k) ∈B′}| ≥ 2g(|x|,k) + 1
⇔ C[κ]g+1

2g(|x|,k)+1y : (〈x,y〉,k) ∈B′.

29



(ii): For C[κ]FPT ⊆W[P]-PFPT, let L ∈ C[κ]FPT be a parameterized problem. We first use
Remark 7.3 so that we only have to take care of strings of length exactly g(|x|,k) and then (i) to
shift the threshold to be more than half of the strings y. There are B ∈ FPT, f ∈ FFPT and a
function g that is bounded by h(k) · log |x| for some computable function h s. t.

(x,k) ∈ L⇔ C[κ]g(2g(|x|,k)/2)+1y : (〈x,y〉,k) ∈B.

Note that we can w. l. o. g. assume g ∈FFPT. Now on input (x,k), a k-restricted NTMM can guess
a binary string of length g(|x|,k) and accept iff (〈x,y〉,k) ∈B. The number of accepting paths will
then be the number of y with |y|= g(|x|,k) where (〈x,y〉,k) ∈B. Since (x,k) ∈ L iff more than half
of those y fulfill (〈x,y〉,k) ∈B, we get L ∈W[P]-PFPT via M .
For W[P]-PFPT ⊆ C[κ]FPT, let L ∈W[P]-PFPT be a parameterized problem. Then there is a
k-restricted NTM M that decides L in PP-fashion. W. l. o. g. we can assume that all computa-
tion paths of M on input (x,k) use exactly f(k) · blog2 |x|c nondeterministic bits where f is some
computable function. Let B be the path language of M , that is,

B := {(〈x,y〉,k) | y encodes an accepting computation path of M on input (x,k)}.

Now we have

(x,k) ∈ L⇔ #accM (x,k)≥ 2f(k)·blog2 |x|c−1 + 1
⇔ |{y | (〈x,y〉,k) ∈B}| ≥ 2f(k)·blog2 |x|c−1 + 1

⇔ C[κ]f(k)·blog2 |x|c
2f(k)·blog2 |x|c−1+1y : (〈x,y〉,k) ∈B.

Lemma 7.9. Let K ∈ CH[κ], L ∈ K and Σ be an alphabet. Then L×κ (Σ∗×N) and (Σ∗×N)×κL
are also in K.

Proof. Both languages only increase the input size without changing the complexity of the language.
We still want to show the result formally: Let q be the length of the quantifier prefix of K and
let B ∈ FPT, f1, . . . ,fq ∈ FFPT, and g1, . . . ,gq be functions that are bounded by h(k) · log |x| for a
computable function h such that

(x,k) ∈ L⇔ C[κ]g1
f1
y1 . . .C[κ]

gq
fq
yq : (〈x,y1, . . . ,yq〉,k) ∈B.

We define a new parameterized problem B′:

B′ := B×κ (Σ∗×N)
= {(〈x1,y1, . . . ,yq〉,x2,k) | (〈x1,y1, . . . ,yq〉,k) ∈B}.

Now we have B′ ∈ FPT and

(x1,x2,k) ∈ L×κ (Σ∗×N)⇔ C[κ]g1
f1
y1 . . .C[κ]

gq
fq
yq : (〈x1,y1, . . . ,yq〉,x2,k) ∈B′

and therefore (L×κ (Σ∗×N)) ∈ K. ((Σ∗×N)×κL) ∈ K can be shown analogously.

30



7.3 Closure under Boolean Operations

We will now go on to show the expected closure properties of the classes in CH[κ]: Like W[P]-PFPT,
all classes in the hierarchy are closed under complementation and symmetric difference.

Theorem 7.10. Let K ∈ CH[κ]. Then K is closed under complementation and symmetric differ-
ence.

Proof. We show both results by induction over the length of the quantifier prefix of K. Let q be
this length.
Complement: Induction basis: For q= 0, we have K=FPT, which is closed under complementation
as it is a deterministic class.
Induction step: q → q+ 1. Let K′ = C[κ]K. We need to show that K′ is closed under com-
plementation. Let L ∈ K′. There are B ∈ K, a computable function h and f,g ∈ FFPT with
g(|x|,k)≤ h(k) · log |x| (g ∈ FFPT is assumed w. l. o. g.) s. t. f. a. (x,k):

(x,k) ∈ L⇔ C[κ]gfy : |y|= g(|x|,k),(〈x,y〉,k) ∈B.

Now we have

(x,k) ∈ L⇔ ¬(C[κ]gfy : |y|= g(|x|,k),(〈x,y〉,k) ∈B)
⇔ C[κ]g2g(|x|,k)−f(x,k)y : |y|= g(|x|,k),(〈x,y〉,k) /∈B︸ ︷︷ ︸

(〈x,y〉,k)∈B

and by induction hypothesis, B ∈ K. Hence, L ∈ C[κ]K =K′.
Symmetric difference: Induction basis: For q= 0, we have K=FPT, which is closed under symmet-
ric difference since the sum of fpt-runtimes is still an fpt-runtime and therefore two fpt-machines
can be simulated successively.
Induction step: q→ q+1. Let K′ = C[κ]K. We need to show that K′ is closed under symmetric dif-
ference. Let L1,L2 ∈ K′. W. l. o. g., we can assume that the first quantifier for both languages uses
the same function g and that the threshold for both languages is “> half of the strings”. Further-
more, we assume that only strings of length exactly g(|x|,k) are counted and that g ∈ FFPT. This
means there are B1,B2 ∈ K′, a computable function h and g ∈ FFPT with g(|x|,k) ≤ h(k) · log |x|
s. t. f. a. (x,k) and for i ∈ {1,2}:

(x,k) ∈ Li⇔ C[κ]g2g(|x|,k)−1+1y : |y|= g(|x|,k),(〈x,y〉,k) ∈Bi

Claim. W. l. o. g. we can assume that the the number of witnesses in B1 and B2 for L1 and L2,
respectively, is never exactly half of all strings y.

Proof of claim. Assume that the condition does not hold for B1,B2. Then we can change those
languages and the functions f,g in a way that it does. This is done in the same way as when
proving closure of W[P]-PFPT (and similar classes) under symmetric difference:
We define languages B′1,B′2 as follows:

B′i := {(〈x,y1 . . .y2n〉,k) | (〈x,y1 . . .yn〉,k) ∈Bi and yn+1 . . .y2n 6= 1 . . .1︸ ︷︷ ︸
n

}, i ∈ {1,2}.

31



For a fixed (x,k), let Ai := {y | |y|= 2g(|x|,k),(〈x,y〉,k) ∈B′i}. Now we have

(x,k) ∈ Li⇒ |{y | |y|= g(|x|,k),(〈x,y〉,k) ∈Bi}| ≥ 2g(|x|,k)−1 + 1
⇒ |Ai| ≥ (2g(|x|,k)−1 + 1)(2g(|x|,k)−1)
⇒ |Ai| ≥ 22g(|x|,k)−1 + 2g(|x|,k)−1︸ ︷︷ ︸

we can assume this
is ≥2 ∀(x,k)

−1

⇒ |Ai| ≥ 22g(|x|,k)−1 + 1

and

(x,k) /∈ Li⇒ |{y | |y|= g(|x|,k),(〈x,y〉,k) ∈Bi}| ≤ 2g(|x|,k)−1

⇒ |Ai| ≤ (2g(|x|,k)−1)(2g(|x|,k)−1)
⇒ |Ai| ≤ 22g(|x|,k)−1− 2g(|x|,k)−1︸ ︷︷ ︸

we can assume this
is ≥1 ∀(x,k)

⇒ |Ai|< 22g(|x|,k)−1.

From this, for i ∈ {1,2} and for all (x,k) we get:

(x,k) ∈ Li⇔ C[κ]2g22g(|x|,k)−1+1y : (〈x,y〉,k) ∈B′i

and the number of y that fulfill the condition is never exactly half of all y. �

Now let (x,k) be fixed, Ai as in the proof of the claim and a1,a2 ∈ Z such that

|Ai|= 22g(|x|,k)−1 +ai

and let

t :=
∣∣∣∣∣
{
〈y1,y2〉

∣∣∣∣∣ ((〈x,y1〉,k) ∈B1 and (〈x,y2〉,k) /∈B2)
or ((〈x,y1〉,k) /∈B1 and (〈x,y2〉,k) ∈B2)

}∣∣∣∣∣
= (22g(|x|,k)−1 +a1)(22g(|x|,k)−1−a2) + (22g(|x|,k)−1−a1)(22g(|x|,k)−1 +a2)
= 22g(|x|,k)−1−2a1a2.

We now have

(x,k) ∈ L14L2⇒ ((x,k) ∈ L1 and (x,k) /∈ L2) or ((x,k) /∈ L1 and (x,k) ∈ L2)
⇒ (a1 > 0 and a2 < 0) or (a1 < 0 and a2 > 0)
⇒ a1a2 ≤−1
⇒ t≥ 22g(|x|,k)−1 + 2

and

(x,k) /∈ L14L2⇒ ((x,k) ∈ L1 and (x,k) ∈ L2) or ((x,k) /∈ L1 and (x,k) /∈ L2)
⇒ a1,a2 > 0 or a1,a2 < 0
⇒ a1a2 ≥ 1
⇒ t≤ 22g(|x|,k)−1−2.

32



This leads to the following characterization of L14L2:

(x,k) ∈ L14L2⇔ C[κ]2g22g(|x|,k)−1+1〈y1,y2〉 : [((〈x,y1〉,k) ∈B1 and (〈x,y2〉,k) /∈B2) or
((〈x,y1〉,k) /∈B1 and (〈x,y2〉,k) ∈B2)]

⇔ C[κ]2g22g(|x|,k)−1+1〈y1,y2〉 : (〈x,y1〉,〈x,y2〉,k) ∈B′14B′2,

where B′1 := B1×κ (Σ∗×N) and B′2 := (∆∗×N)×κB2 (∆ and Σ are the input alphabets of L1
and L2, respectively). By Lemma 7.9 B′1,B′2 ∈K and by induction hypothesis B′14B′2 ∈K. Hence,
L14L2 ∈ C[κ]K =K′.

7.4 Machine Characterization of classes in CH[κ]

In classical complexity theory, the classes in the counting hierarchy are characterized in terms of
decidability by certain oracle Turing machines. We want to transfer this result to the parameterized
version. Therefore, we need a few auxiliary results.

Lemma 7.11. Let K ∈ CH[κ]. Then C=[κ]K ⊆ C[κ]K4C[κ]K.

Proof. Let L∈C=[κ]K be a parameterized problem. Then there are functions f,g,h with f ∈FFPT,
h is computable and g(|x|,k)≤ h(k) · log |x| ∀x,k as well as A ∈ K s. t. f. a. (x,k):

(x,k) ∈ L⇔ C=[κ]gfy : (x,y,k) ∈A

We define two parameterized problems L1,L2 as follows:

L1 := {(x,k) | C[κ]gfy : (x,y,k) ∈A} and
L2 := {(x,k) | C[κ]gf+1y : (x,y,k) ∈A}.

Now we have L1,L2 ∈ C[κ]K and L= L14L2.

Corollary 7.12. Let K ∈ CH[κ]. Then it holds that C=[κ]K ⊆ C[κ]K.

Proof. C=[κ]K ⊆ C[κ]K4C[κ]K = C[κ]K by Lemma 7.11 and Theorem 7.10.

In order to prove the final result of this section, we need to show closure of classes defined with
C=[κ] under the following kind of unbounded Cartesian product:

Definition 7.13. A k-bounded Cartesian product of a language L is a language

L×κ := {(〈x1, . . . ,xn〉,k) |
∧
i

xi ∈ L,n≤ f(k)},

where f is an arbitrary computable function.

Lemma 7.14. Let K ∈ CH[κ]. Then C=[κ]K is closed under k-bounded Cartesian products.

Proof. Let L∈C=[κ]K. There are B ∈K, a computable function h and f,g ∈ FFPT with g(|x|,k)≤
h(k) · log |x| ∀x,k (g ∈ FFPT is assumed w. l. o. g.) s. t. f. a. (x,k):

(x,k) ∈ L⇔ C=[κ]gfy : (〈x,y〉,k) ∈B

33



Let f2 be the computable function bounding the number of strings xi for words in L×κ . Now let
(〈x1, . . . ,xn〉,k) be an input of L×κ . We want to quantify a single string and then count the number
of witnesses for all xi. In order to do this, we quantify not only the string y, but a number as
well. This number will be used as the index to determine for which input xi we check membership.
To get the number of witnesses for all xi seperately we multiply it for all xi by a high enough
number dependent on i so that in their binary representation the numbers of witnesses for different
xi always use different parts. For this, we assume that g is monotonously increasing. We define
f ′(〈x1, . . . ,xn〉,k) accordingly:

f ′(〈x1, . . . ,xn〉,k) = f(x1,k) +f(x2,k) ·2g(m,k)+1 + · · ·+f(xn,k) ·2(g(m,k)+1)(n−1)

with m= max{|x1|, . . . , |xn|}. Now we have

(〈x1, . . . ,xn〉,k) ∈ L×κ ⇔ C=[κ]gf(x1,k)y1 : |y1| ≤ g(|x1|,k),(〈x1,y1〉,k) ∈B ∧ . . .

∧ C=[κ]gf(xn,k)yn : |yn| ≤ g(|xn|,k),(〈xn,yn〉,k) ∈B

⇔ C=[κ]g
′

f ′(〈x1,...,xn〉,k)〈y, i,z〉 : (〈x1,x2,y, i,z〉,k) ∈B′,

where B′ is defined as

B′ :=
{

(〈x1, . . . ,xn,y, i,z〉,k)
∣∣∣∣∣ n≤ f2(k), |y| ≤ g(|xi|,k)and

(〈xi,y〉,k) ∈B and z2 < 2(g(m,k)+1)(i−1)

}

and g′(〈x1, . . . ,xn〉,k) := |〈2g(m,k),n,2(g(m,k)+1)(n−1)〉|. Since n is bounded by f2(k), g′ is bounded as
required. Note, that z2 is used to multiply the number of witnesses for the different xi as described
above.
We now need B′ ∈ K. For this, notice that almost the same quantifier-characterization as for B
can be used for B′ as well. The additional conditions can be “moved” over all quantifiers into the
FPT-language after them (cf. proof of Lemma 7.6).

Remark 7.15. We will use a slightly modified version of Lemma 7.14 where the k-bounded Carte-
sian product is not built using only one language L, but a number of languages that are uniform in
a certain way. We leave out the technical details, since closure under that operation can be shown
analogously.

Theorem 7.16. Let K ∈ CH[κ]. Then W[P]-PFPTK[f(k),κ] = C[κ]K.

Proof. For K=FPT the result is trivial using Lemma 7.8. Therefore we can assume that K=C[κ]K′
for some K′ ∈ CH[κ].

⊇: Let L ∈ C[κ]K. There are B ∈ K, a computable function h and f,g ∈ FFPT with g(|x|,k) ≤
h(k) · log |x| ∀x,k (g ∈ FFPT is assumed w. l. o. g.) s. t. f. a. (x,k):

(x,k) ∈ L⇔ C[κ]gfy : |y|= g(|x|,k),(〈x,y〉,k) ∈B

The following k-restricted nondeterministic oracle Turing machine with oracle B accepts L in PP-
fashion:

The additional nondeterministic bit is used to shift the needed number of y with (〈x,y〉,k) ∈B for
which the machine accepts to the threshold f(x,k). The machine only uses one oracle query per
computation path and the parameter of that query is the parameter of the input.

34



Input: (x,k)
Nondeterministically guess b ∈ {0,1} and y ∈ {0,1}g(|x|,k)

if b= 0 then
Query the oracle with (〈x,y〉,k)
Accept iff the oracle answer is yes

else
Accept iff y < 2g(|x|,k) + 1−f(x,k)

end if

⊆: Let L ∈W[P]-PFPTK[f(k),κ]. There are g1 ∈ FFPT with g1(|x|,k) ≤ h1(k) · log |x| for some
computable function h1, a k-restricted oracle NTM M that on every input (x,k) uses exactly
g1(|x|,k) nondeterministic bits on all computation paths and A ∈K s. t. L= L(M,A). Therefore it
holds that

(x,k) ∈ L⇔ C[κ]g1
2g1(|x|,k)−1+1y : |y|= g1(|x|,k),MA

y (x,k) accepts.

Additionally, there is a computable function f s. t. f. a. (x,k) the number of oracle queries ofM(x,k)
is exactly f(k) on each computation path regardless of the oracle answers. We now need to show
that the condition “MA

y (x,k) accepts” can be formulated as a language in K. By Theorem 7.10
and Lemma 7.6, A]A ∈ K = C[κ]K′. Hence, there are B ∈ K′, a computable function h2 and
f2,g2 ∈ FFPT with g2(|x|,k)≤ h2(k) · log |x| ∀x,k (g2 ∈ FFPT is assumed w. l. o. g.) s. t. f. a. (x,k):

(x,k) ∈A]A⇔ C[κ]g2
f2
v : (〈x,v〉,k) ∈B

Now let

B′ :=

(〈x,y,(a1,z1), . . . ,(am,zm)〉,k)

∣∣∣∣∣∣∣∣∣
m= f(k),

My(x,k) accepts iff the oracle replies with a1, . . . ,am

(∗) and for i= 1, . . . ,m : (〈aiqi,zi〉,ki) ∈B and there are
exactly f2(aiqi,ki) strings z′i ≥ zi with (〈aiqi,z′i〉,ki) ∈B

 ,
where (qi,ki) are the oracle queries of My(x,k) when the oracle answers ai are used.
(∗) in this definition for i= 1, . . . ,m means that (aiqi,ki) ∈ A]A and zi is the maximal string (in
lexikographic order) such that no witnesses ≤ zi are needed to show this. By definition, for any y
there can only be one w such that (〈x,y,w〉,k) ∈B′. This leads to

C[κ]g1
2g1(|x|,k)−1+1y :

|y|= g1(|x|,k),MA
y (x,k) accepts

⇔ C[κ]g
′
1

2g1(|x|,k)−1+1〈y,w〉 :
|y|= g1(|x|,k),(〈x,y,w〉,k) ∈B′

.

We have to make sure that the length of the quantified string is bounded as needed. For y and the
ai this is trivial; for zi it can be shown analogously to closure of W[P] under ≤fpt (see e.g. [FG]).
Since the number of strings is bounded by f(k) the length is at most multiplied by f(k), which is
not a problem. We will not go into any more detail on the function g′1.
We now rewrite (∗) for i= 1, . . . ,m as follows:

C=[κ]g2(|aiqi|,ki)
f2(aiqi,ki) z

′
i : [((〈aiqi,zi〉,ki) ∈B),zi ≤ z′i and (〈aiqi,z′i〉,ki) ∈B] .

Obviously, for all i for |z′i| the same bounds as for |zi| hold. This means that (∗) is fpt-reducible to
a k-bounded Cartesian product of C=[κ]K′-languages (the fpt-reduction is only used to transform
the input to fit for the Cartesian product). Thus, by Lemma 7.14 and closure of C=[κ]K′ under
≤fpt, (∗) is a C=[κ]K′-condition. Since C=[κ]K′ is closed under intersection with FPT-languages, we
obtain B′ ∈ C=[κ]K′.
Combining our results, we obtain L ∈ C[κ]C=[κ]K′ and by Corollary 7.12 L ∈ C[κ]C[κ]K′ = C[κ]K.

35



Remark 7.17. In classical complexity theory, the previous theorem holds without bounding the
oracle queries in any way. It is unlikely that this is possible in our case, as there could be up to
fpt-many oracle calls so that it would not even be possible to quantify the oracle answers (one bit
per query).

36



8 Conclusion and Outlook

In this work, we further studied different counting classes within parameterized complexity theory.
We began by showing a few basic properties of parameterized function classes as auxiliary results
for the later chapters.
We classified the parameterized weighted threshold-satisfiability problem over all fragments from
Post’s lattice for both circuits and formulae using the techniques from [CV]. For circuits, we even
got a slightly better result due to the nature of the problem: Over the difficult fragments, the
problem is complete under ≤fpt—compared to ≤fpt-T, which is known for the counting version
[CV].
Concerning structural properties of counting classes, we have shown that the Boolean algebra
over W[P] is contained in W[P]-PFPT. Furthermore, we introduced the classes W[P]-C=FPT and
W[P]-⊕FPT and examined their closure properties. For both classes most of the closure properties
of the analogue classes from classical complexity theory could be transferred. In addition, we gave
an ≤fpt-complete satisfiability problem for W[P]-⊕FPT and investigated the connection between
W[P]-PFPT and W[P]-C=FPT. Again, we achieved an analogous result to classical complexity
theory, that is, W[P]-C=FPT⊆W[P]-PFPT.
Finally, we generalized the class W[P]-PFPT using the counting quantifier C[κ]. We also defined the
exact counting quantifier C=[κ], which was used auxiliarily. We defined the parameterized counting
hierarchy using C[κ] and studied the closure properties of the classes in this hierarchy. The closure
under Boolean operations was the same as in classical complexity theory, again. Concerning a
characterization of the classes in CH[κ] in terms of oracle Turing machines the oracle queries had
to be bounded: We showed W[P]-PFPTK[f(k),κ] = C[κ]K.

We now want to give a few suggestions for further research concerning the topics studied in this
thesis. The parameterized weighted threshold-satisfiability problem for circuits has been classified
over all clones from Post’s lattice. For formulae on the other hand, it could be interesting to try to
show completeness under ≤fpt instead of ≤fpt-T over the clones over which we showed the latter.
The counting hierarchy in classical complexity theory is defined as an extension of the polynomial
time hierarchy using arbitrary combinations of the quantifiers ∃,∀ and C. Thus, a next step could
be to introduce parameterized versions of ∃ and ∀ in order to define a parameterized analogon of the
polynomial time hierarchy and combine it with the counting hierarchy defined here to obtain a full
counting hierarchy. It is likely that many structural properties of this hierarchy can be transferred
from the classical version. In addition, complete problems for the classes in CH[κ] (or even the full
counting hierarchy) could be defined.
Apart from this, the main open problems in this area are the results that could not be trans-
ferred from classcial complexity theory due to the k-restriction. Examples for such results are
closure of W[P]-PFPT under intersection, the different types of amplification (known from PP) for
W[P]-PFPT, W[P]-⊕FPTW[P]-⊕FPT = W[P]-⊕FPT and W[P]-PFPTK = C[κ]K. All of these have
the same problem: When directly transferring the known proofs, the number of nondeterministic
bits (or the length of the quantified string) would not be k-restricted at some point during the
proof. This problem is inherent to k-restricted machines and cannot be bypassed generally. Hence,
searching for negative results might be better in most cases.

37



9 References

[FG] Flum, J., Grohe, M.: Parameterized Complexity Theory, Springer, 2006

[CR] Chauhan, A., Rao, B. V. R.: Parameterized Analogues of Probabilistic Computation, 2014,
arxiv.org/abs/1409.7790

[CV] Craignou, N., Vollmer, H.: Parameterized Complexity of Weighted Satisfiability Problems:
Decision, Enumeration, Counting, Fundamenta Informaticae, 136(4), 2015, 297-316

[Schn] Schnoor, H.: The Complexity of Model Checking for Boolean Formulas, Int. J. Found.
Comput. Sci., 21(3), 2010, 289-309

[Tho] Thomas, M.: On the applicability of Post’s lattice, Information Processing Letters, 112(10),
2012, 386-391

[Vol] Vollmer, H.: Skript zur Vorlesung Komplexitätstheorie (Wintersemester 2013/2014)

[Tor] Torán, J.: Complexity Classes Defined by Counting Quantifiers, Journal of the ACM, 38(3),
1991, 752-773

[KSW] Köbler, J., Schöning, U., Wagner, K. W.: The Difference and Truth-table Hierarchies for
NP, RAIRO - Theoretical Informatics and Applications, 21(4), 1987, 419-435

[CKTV] Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC1 Computa-
tion, Journal of Computer and System Sciences, 57(2), 1998, 200-212

38

arxiv.org/abs/1409.7790

	Introduction
	Background
	Preliminaries
	Function Classes
	The class W[P]-PFPT

	Parameterized Complexity of Threshold Satisfiability
	Preliminaries and Definitions
	Parameterized Complexity of ThreshSAT-problems
	p-WCIRCThreshSAT=(BF)
	Fragments of p-WCIRCThreshSAT=(BF) and p-WThreshSAT=(BF)


	The Boolean Algebra over W[P]
	Definitions
	Preliminaries
	BA(W[P]) W[P]-PFPT

	The Class W[P]-C=FPT
	The Class W[P]-FPT
	The Parameterized Counting Hierarchy
	Definitions
	Preliminaries
	Closure under Boolean Operations
	Machine Characterization of classes in CH[]

	Conclusion and Outlook
	References

