
Complexity in Dependence Logic

Diplomarbeit
von

Johannes Ebbing

Leibniz Universität Hannover
Fakultät für Elektrotechnik und Informatik

Institut für Theoretische Informatik

July 14, 2010

Erklärung

Hiermit versichere ich, dass ich die vorliegende Diplomarbeit selbstständig verfasst und
keine anderen Quellen und Hilfsmittel als die angegebenen benutzt habe.

Johannes Ebbing

Abstract. In this thesis, we will investigate the complexity of model checking on an
extended version of modal logic ML, called modal dependence logic (MDL). MDL is the
extension of ML by the so called dependence atom denoted by =(·). It was introduced in
2007 by Jouko Väänänen. Let p1, . . . , pn, q be atomic propositions, then =(p1, . . . , pn; q)
means that the value of q is determined solely by p1, . . . , pn. The model checking problem
for modal logic in general is solvable in polynomial time. We will see that the MDL
model checking problem (MDL-MC) in gerneral is NP-complete. In the second part we
will restrict the set of operators {¬(atomic),∨,∧,�,♦,=(·)} and we will show, that the
complexity of MDL-MC stays NP-complete if we leave at least {∨,∧,=(·)}, {∨,�,=(·)}
or {♦,=(·)} in set of operators. Furthermore we will show that there are some tractable
cases. MDL-MC is tractable if we leave out either the =(·) atom or if we leave out the
disjunction ∨ and the ♦ operator. The case where we have some subset of {¬,∨,=(·)}
is only shown for dependece atoms of the form =(p1, . . . , pk; q) where k ∈ N is fixed in
advance.

Acknowledgements

First of all I would like to thank Professor Heribert Vollmer for the supervision and the
support of my diploma thesis. I thank Michael Thomas, Arne Meier, and Peter Lohmann
for their help, especially I thank Peter for his support in developing the results of this
thesis and for proofreading.
I thank my wife Melanie and my parents for motivating and supporting me during my
studies of mathematics. For proofreading I also want to thank Ulrich von der Ohe, Kai
Lämmle and my wife Melanie.
But most of all I want to thank the one who made all this possible. My God Jesus
Christ.

Männer werden müde und matt, und Jünglinge straucheln und fallen;
aber die auf den HERRN harren, kriegen neue Kraft,

dass sie auffahren mit Flügeln wie Adler, dass sie laufen und nicht matt werden,
dass sie wandeln und nicht müde werden.

Jesaja 40 Vers 30 + 31

Contents

1 Introduction 8

2 Preliminaries 10
2.1 Modal Logic . 10

2.1.1 Syntax . 11
2.1.2 Semantics . 11
2.1.3 Example . 11

2.2 The Concept of Dependence . 13
2.3 Modal Dependence Logic . 15

2.3.1 Syntax . 15
2.3.2 Semantics . 15
2.3.3 Example . 16

2.4 Model Checking . 18
2.4.1 Examples . 18

3 Complexity Results on MDL-MC 20
3.1 The Model Checking Problem on MDL is in NP 20
3.2 The Model Checking Problem for MDL is NP-hard 21

4 Complexity Results on Operator Fragments for MDL-MC 25
4.1 NP-hard Fragments . 25
4.2 Fragments in P . 34

5 Conclusion and Open Problems 42

Bibliography 43

7

1 Introduction

Model Checking is a method to automatically verify systems. It has become more
important to computer science because many systems such as integrated circuits can be
modeled as so called Kripke structures which are also called transition systems in the
literature. The behavior of systems is described by logics like CTL (computation tree
logic) or LTL (linear temporal logic). For further information about model checking over
CTL see [CGP99].
In this thesis we will consider a new kind of logic, the so called modal dependence logic
(MDL). MDL is an extension of modal logic (ML), where modal logic is extended by the
so called dependence atom denoted by =(p1, . . . , pn; q). The concept of dependence in
first order logic was first introduced by Jouko Väänänen in [Vää07]. Later he combined
the concept of dependence with modal logic in [Vää08]. Modal logic itself can be seen
as a restriction of CTL where only the operators AX (which corresponds to � in this
thesis) and EX (which corresponds to ♦ in this thesis) are allowed.
With the dependence atom, we can make statements about dependencies in different
worlds or situations. =(p1, . . . , pn; q) means, that the value of q only depends on the
vector (p1, . . . , pn). For this purpose we consider sets of situations or worlds, the so
called teams. We use the words world and situation synonymously.
For example, if we play roulettes, we play a round, setting on red and we notice that we
win. In this case, it makes no sense, to state a dependence on this single round like “The
win of a round is determined by whether I set my money on the color red.” as a formula
=(set money on red; win). On a single round this would be always true. Of course it
is possible, to set the money on red and to lose the round. So we would have to make
more observations on the game to verify, whether the formula holds or not. Consider
the table which represents a team of game situations

round set money on red win

1 true true

2 false false

3 true false

In round 3 our formula would not hold any longer. What we do is checking a formula
on a given model, in this case a team of game situations.
In the so called satisfiability problem of modal dependence logic (MDL-SAT) we want
to determine whether a given MDL formula is satisfiable. Sevenster showed in [Sev09]
that the satisfiability problem is complete for nondeterministic exponential time and in
[LV10] Peter Lohmann and Heribert Vollmer give results about operator fragments of
MDL-SAT obtained by restricting the set of allowed operators.
In this thesis, we will consider the computational complexity of model checking over

8

MDL. Because ML is a restriction of CTL, we have that MDL is a restriction of a kind of
CTL where we add the dependence atom to get DCTL the so called dependence CTL. In
this way this thesis can be seen as a first approach to examine fragments of DCTL. In
[CGP99] it is shown, that model checking over CTL is tractable. We will show, that it
is in general no longer tractable with dependence. In the following table, we have listed
the comlexity of model checking over MDL. The MDL formulas are built over a set of
operators {¬,∨,∧,�,♦,=(·)}. In the table a “+” means, that we allow this operator
in the formula, a “−” means, that all considered formulae do not contain this operator,
and an “∗” means that it does not matter whether this operator is in the formula or not.
In the first row, we have all operators allowed, what would correspond to the MDL
model checking problem (MDL-MC) where all operators are allowed. The second row
corresponds to the model checking problem on operators without =(·), i.e. model check-
ing on modal logic formulas, which is in P as we mentioned above.

Operators Complexity Reference

¬ ∨ ∧ � ♦ =(·)
+ + + + + + NP-complete Theorem 3.1

∗ ∗ ∗ ∗ ∗ − ∈ P Theorem 4.8

∗ + + ∗ ∗ + NP-complete Theorem 3.1

∗ + ∗ + ∗ + NP-complete Theorem 4.4

∗ ∗ ∗ ∗ + + NP-complete Theorem 4.2

∗ − ∗ ∗ − ∗ ∈ P Theorem 4.6

∗ + − − − (+)1 ∈ P Theorem 4.20

∗ + − − − + open

In the following part of this thesis, we restrict the set of operators {¬,∨,∧,�,♦,=(·)}
to so called operator fragments to determine the complexity of model checking over these
operator fragments. It turns out, that we have three operators ∨,♦ and =(·) which make
the problem NP-hard and we have to banish at least one of them to get model checking
complexities that are tractable.

1We limit the dependence atom to constant length, i.e. all dependence atoms are of the form
=(p1, . . . , pk; q) where k ∈ N is fixed and p1, . . . , pk, q are atomic propositions.

9

2 Preliminaries

At first we will examine the fundamentals which will be used in this thesis. We begin by
the definition of modal logic (ML). We explain Kripke structures over which modal logic
is interpreted. As we will see, modal logic itself can be interpreted as a special restriction
of computation tree logic (CTL). The next step is to introduce the concept of dependence.
We get a new operator, called the dependence atom, denoted by =(p1, . . . , pn; q), where
p1, . . . , pn, q are atomic propositions. That means, that the value of q only depends on
the pi. We combine the concept of dependence with modal logic, and we obtain a new
form of logic, called modal dependence logic (MDL). Then we will introduce the concept
of model checking. Model checking works on so called initial sets of states in the Kripke
structure. The task is to determine whether a given formula is satisfied by a given initial
set of the Kripke structure.

Definition 2.1. (Kripke structure)
A Kripke structure (or frame) over a set of atomic propositions AP (or AP -Kripke

structure) is a tuple W = (S,R, π), where

1. S 6= ∅

2. R ⊆ S × S

3. π : S → P(AP)

If s ∈ S, s is called world, state, node, or situation. We call S the set of worlds. R is
called the transition relation between the worlds, and π is called the labeling function.

2.1 Modal Logic

As CTL formulas, modal logic formulas describe properties of Kripke structures. Modal
logic can be considered as an extension of propositional logic. Similar to propositional
logic, the formulas of modal logic are built from a set of atomic propositions AP , the
operators ¬,∨,∧, but moreover ML also contains temporal quantifiers �,♦. With these
operators, we can make statements that a ML formula can be possibly true (denoted by
the ♦ operator) or that a formula will be true in any case (denoted by �).
Modal logic also can be understood as a constrained form of CTL. In CTL, we have more
quantifiers, allowing us to make statements e.g. whether a formula will be true at some
state in the future. In ML we only consider quantifiers (� and ♦), that allow to make
statements about the next step2.

2For this reason in some literature � is called AX that means for all states in the next step, and ♦ is
called EX, which means there exist states in the next step.

10

2.1.1 Syntax

Definition 2.2. (The syntax of modal logic)
Let AP be a set of atomic propositions and p ∈ AP . The syntax of modal logic formulas
is defined by the grammar:

ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | ♦ϕ

Note, that ¬ is only used for atomic propositions in ML.

2.1.2 Semantics

Definition 2.3. (Truth of teams)
Let W = (S,R, π) an AP -Kripke structure, A ⊆ S a set of initial states, and ϕ a ML
formula over AP and p ∈ AP . A successor of T ⊆ S is an element r ∈ R[T] := {a ∈
S|∃a′ ∈ T, (a′, a) ∈ R}. Inductive over the structure of ϕ we define

W,A |= p :⇔ p ∈ π(s),∀s ∈ A
W,A |= ¬p :⇔ p /∈ π(s),∀s ∈ A
W,A |= ϕ ∨ ψ :⇔ ∃A1, A2 ⊆ A,A1 ∪A2 = A,

W,A1 |= ϕ and W,A2 |= ψ
W,A |= ϕ ∧ ψ :⇔ W,A |= ϕ and W,A |= ψ
W,A |= �ϕ :⇔ W,R[A] |= ϕ
W,A |= ♦ϕ :⇔ ∃A′ ⊆ R[A] s. t. A′ |= ϕ and

∀a ∈ A∃a′ ∈ A′ with (a, a′) ∈ R.

We call a formula ϕ with K,A |= ϕ K,A-true or true on K and A. On a K,A-true
formula ϕ, we also say K,A satisfy ϕ. When is is clear from the context on which Kripke
structure we operate, we leave out K and only say ϕ is true on A or A |= ϕ.

Note that the definition of ∨ differs from the “classical” disjunction, defined by

K,A |= ϕ ∨̃ψ iff K,A |= ϕ or K,A |= ψ.

It holds that K,A |= ϕ ∨̃ψ ⇒ K,A |= φ ∨ ψ, because the subsets A1 and A2 are chosen
either A1 = A and A2 = ∅ in the case of K,A |= ϕ, or A1 = ∅ and A2 = A in the case
of K,A |= ψ. As we can easily verify K, ∅ |= ψ for any modal logic formula ψ holds.

2.1.3 Example

We interpret the states of the Kripke structure as situations in a game. The elements of
the transition relation can be interpreted as moves. In this way � f would mean “For
every move a player does, f will be true”. The other quantifier ♦ f means “There is a
way to move so that f will be true.”. Initially, we designate which player begins moving,
and then we process the formula step by step. We can interpret this formula in the “Nine
Men’s Morris” game in the placing phase. Consider the following modal logic formula

F := �♦ϕ.

11

Figure 2.1: A “Nine Men’s Morris” game, with a double bind in the placing phase.

When it is white’s turn F would mean:

For every move white does, there is a way for black to get a mill.

In this case, ϕ is true if and only if there is a mill of black tokens. Consider the initial
situation as shown in figure 2.1, where we have a Nine Men’s Morris game in the placing
phase. Here we see, that no matter what move white draws, black can get a mill. We
construct a Kripke structure, representing the possible moves of the players. Remember,
that a move of any player represents a transition between two nodes in the structure
and the initial situation in this picture is represented by the root of the structure, node
a. Now it is the white player’s turn. Consider the labeled Kripke structure in figure 2.2
over the variable set {ϕ}. Negated variables are not labeled in this structure.

12

a

l1 . . .

m1 . . .

Black draws

m15 m16

ϕ

m17

ϕ

White draws

l18

n1 . . . n15 n16

ϕ

n17

ϕ

Figure 2.2: The Kripke structure K, representing the possible moves of the “Nine Men’s
Morris” game situation.

Note that there are many moves for the white player, for simplification we do not ex-
plicitely display them, but indicate them by dots.
In this structure the following formulas hold:

K, {a} |= F (= �♦ϕ)
K, {li} |= ♦ϕ for i ∈ {1, . . . , 18}
K, {mi} |= ϕ for i ∈ {16, 17}
K, {mi} |= ¬ϕ for i ∈ {1, . . . , 15}
K, {ni} |= ϕ for i ∈ {16, 17}
K, {ni} |= ¬ϕ for i ∈ {1, . . . , 15}

Of course, not all strategies appear useful, e.g. ni for i ∈ {1, . . . , 15} would mean, that
although there was an opportunity to get a mill, but the player moving the black tokens
did not use it.
This example illustrates the expressive power of modal logic compared with propositional
logic, where it is not possible to express future situations.

2.2 The Concept of Dependence

In dependence logic we want to express whether atomic propositions determine each
other. For this purpose, we consider sets of different worlds for making statements about
dependence. We introduce a new operator, called the dependence atom =(p1, . . . , pn; q).
That means, that the value of the variable q depends only on the vector p = p1, . . . , pn
in all worlds considered. Now it becomes clear why we consider more than one world.
If we did not, we would look statically at a configuration of atomic propositions and
it would not make sense to make statements about dependence if we do not have any
comparative configurations.

We will give a formal definition of the truth of the dependence atom.

13

Definition 2.4. (The dependence atom)
Let K = (S,R, π) an AP -Kripke structure, A ⊆ S. Let p1, . . . , pn, q ∈ AP . Then
=(p1, . . . , pn; q) is called a dependence atom. The truth of the dependence atom on K,A
is defined by

K,A |= =(p1, . . . , pn; q) iff ∀m1,m2 ∈ A with

π(m1) ∩ {p1, . . . , pn} = π(m2) ∩ {p1, . . . , pn} :

q ∈ π(m1)⇔ q ∈ π(m2)

For example, consider a game of Blackjack, where the goal is to get an entire card
value of 21, which is the maximum that may not be exceeded. In a certain game we
might notice, that we won a round and we have a total card score of 21, but from this
single observation, we can not make a statement of dependence just like

If you get 21 in a Blackjack game, you automatically win.

There is a small chance that the croupier also gets an overall card value of 21, in this
situation we would not have won. That makes clear, that it takes more than one event
or observation or world to make a non-trivial statement about the game rules using the
dependence atoms.
But we could make a statement about several games. The possibility of winning a round
in Blackjack depends on more than the simple total score. There is a probability of
getting more than 21, which is called “breaking”. In this case, we lose automatically.
There is also a chance that the croupier gets a higher total card score, in this case we
also lose. So we might want to express victory of a round as follows:

=(break, higher score; win)

This formula is interpreted as

“The win of this round depends only on having a higher total card score than the croupier,
and on whether our score is higher than 21 or not.”.

Example 2.5. (The Dependence operator)
Let P be the total card value of the player, and C be the total card value of the croupier.
Moreover p1 denotes, whether our score is higher than 21, and p2 denotes, whether we
have a higher score than the croupier. q displays whether we have won this round.
Consider the following table:

P C P > 21 P > C victory
p1 p2 q

r1 18 20 false false false
r2 18 17 false true true
r3 22 19 true true false
r4 19 23 false false true

14

In this example, our formula F would be

=(p1, p2; q) .

Now, if our observation consists of the rounds {r1, r2, r3}, the formula would hold. But
the last round conflicts with the formula, because in round 1, we have the same config-
uration of variables p1, p2, but the value of the variable q differs. The reason for this
conflict is that we did not considered the possibility, that the croupier can also break.
We see that we have to modify our formula again to make it fit to the rules. We have

{r1, r2, r3} � =(p1, p2; q)
{r1, r2, r3, r4} 2 =(p1, p2; q)
{r2, r3, r4} � =(p1, p2; q) .

2.3 Modal Dependence Logic

Modal dependence logic can be considered as an extension of modal logic. It combines
dependence logic and modal logic. As modal logic it works on Kripke structures, and
we can make statements about dependence in Kripke structures.

2.3.1 Syntax

According to the definition of the modal logic syntax, we define the syntax of modal
depencence logic (MDL).

Definition 2.6. (MDL syntax)
Let AP be a set of atomic propositions and q1, . . . , qn, p ∈ AP . Then the following
grammar defines the MDL syntax:

ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | ♦ϕ | =(q1, . . . , qn; p)

From this, we can make statements, about a dependence over different worlds in Kripke
structures. As an example, we could state

Ψ := ♦�=(a; b) .

We could interpret this statement for example in a game as

“There is a way to move, so that it does not matter how all the other players interact,
if player b wins depends only on how player a interacted.”.

2.3.2 Semantics

The truth of a formula is very similar to the modal logic truth definition. In an intuitive
way, we can see the definition of truth in MDL as an extension of the modal logic

15

truth. The truth of a formula ϕ is denoted in a set of worlds A ⊆ S of the structure
K = (S,R, π) by K,A |= ϕ. Let p1, . . . , pn, q ∈ AP .

K,A |= q :⇔ q ∈ π(s), ∀s ∈ A
K,A |= ¬q :⇔ q /∈ π(s), ∀s ∈ A
K,A |= ϕ ∨ ψ :⇔ ∃M1,M2 ⊆ A,M1 ∪M2 = A,

K,M1 |= ϕ and K,M2 |= ψ
K,A |= ϕ ∧ ψ :⇔ K,A |= ϕ and K,A |= ψ
K,A |= �ϕ :⇔ K,R[A] |= ϕ
K,A |= ♦ϕ :⇔ ∃A′ ⊆ R[A]

so that A′ |= ϕ
K,A |= =(p1, . . . , pn; q) :⇔ ∀s, s̄ ∈ A where

π(s) ∩ {p1, . . . , pn} = π(s̄) ∩ {p1, . . . , pn} :
pn ∈ π(s)⇔ pn ∈ π(s̄)

2.3.3 Example

Now we are able to combine statements about moves that can happen, or about events
that will happen in the next step with dependence statements. Consider the formula
�♦=(p; q). We interpret the formula as follows:

“For every move the player makes (whether he draws a card or not), it is possible that
the players victory only depends on whether the croupier’s total card value is smaller
than the one of the player.”

As in example 2.5 above, p stands for the proposition that the total card value of the
player is higher than the total card value of the croupier, and q stands for the proposition
that the player wins this round.
If this formula is true for a certain game situation, the player should be intended to draw
a card. Consider the initial situation, that the player has a total score of 11. In this case
it is not possible to break (having a card score of more than 21), because, the highest
card value is 10 (aces count 11 or 1, which the player decides). Consider figure 2.3,
where P is the player’s score, and C is the croupier’s score. We have labeled p, q and
the ratio of P and C. Note that a node b3 does not exist, because it is not possible to
get more than 21 points by drawing one card if the player has 11.
We want to check, whether �♦=(p; q) is true or not on the initial set A := {a}. It
follows, that ♦=(p; q) has to be true on R[A] = {b1, b2}, and =(p; q) has to be true on
some subset of R[R[A]]. The set R[R[A]] with its labeling is listed in table 2.1. We have,
that

Smax(�♦=(p; q)) = {{c1, c3, c4, d1, d3}, {c2, c3, d1, d2}, {c1, c3, c4, d1, d3}}

on A. Because Smax(�♦=(p; q)) 6= ∅, �♦=(p; q) is true on the initial set A over this
Kripke structure.

16

state p q

c1 false false

c2 false true

c3 true true

c4 false false

d1 true true

d2 false true

d3 false false

Table 2.1: List of states of R[R[{a}]] of figure 2.3 on which =(p; q) has to be evaluated.

a

P = 11

b1

P < 21

c1

P < C < 21
c2

P < 21 < C

q c3

C < P < 21

p, q

c4

P = C

b2

P = 21

d1

C < P

p, q

d2

C > 21

q

d3

C = P = 21

Figure 2.3: The Kripke structure K, representing the possible draws in a Black Jack
game situation.

17

a

n1ψ

p

n2ψ

p

n3ψ n4

p

n5

p

n6 ψ

Figure 2.4: Model Checking example, where A = {a} and F = ♦(=(p)∨q).

2.4 Model Checking

Model checking in modal dependence logic is a technique for verifying MDL formulas in
Kripke structures from a set of initial states. Given a Kripke structure K = (S,R, π),
representing a finite-state concurrent system and a modal dependence logic formula F ,
expressing some desired specification. The task is to find the set of all sets of states that
satisfy F :

M = {s ∈ P(S)|K, s |= F}.

Normally, one set of states of the concurrent system is designated as initial state set.
The system satisfies the specification provided if the initial set of states is in the set M .

2.4.1 Examples

We will illustrate model checking on a small example. The formula is F := �(=(p)∨q).
The meaning of the formula is, that there is a successing set A′ of our initial set A and
there is a decomposition into two subsets A1 and A2 of A′, such that p is constant in
A1, and ψ is true in A2. Formally

∃A1, A2 ⊆ A′, A1 ∪A2 = A′ : (K,A1 |= =(p)) and (K,A2 |= q).

Let K be the Kripke structure corresponding to figure 2.4.

First of all, we can list those states, that are labeled with q. Next, we determine those
states, which satisfy =(p). Let us define a set Smax(ϕ), that contains all maximal sets
M with M |= ϕ. (We will later define the Smax sets formally.) From this, we have

Smax(ψ) = {{n1, n2, n3, n6}}
Smax(=(p)) = {{n1, n2, n4, n5}, {n3, n6}}

18

Now we have to choose one of the sets {n1, n2, n4, n5} or {n3, n6} and join it with
{n1, n2, n3, n6} from Smax(ψ) to obtain a successing set A′. That leads us to

{n1, n2, n3, n6} ∪ {n1, n2, n4, n5} = {n1, n2, n3, n4, n5, n6}
{n1, n2, n3, n6} ∪ {n3, n6} = {n1, n2, n3, n6}.

Because Smax(�(=(p)∨ψ)) 3 A′ with {a} ⊆ A′ follows, that K, {a} |= �(=(p)∨ψ).

19

3 Complexity Results on MDL-MC

The main result of this section is that model checking on modal dependence logic is
NP-complete. We split the proof up into two smaller propositions: the upper bound,
that MDL-MC is not more complex than NP and the hardness, by reducing 3-SAT.

Theorem 3.1. Model checking for modal dependence logic is NP-complete.

3.1 The Model Checking Problem on MDL is in NP

It is easy to see, that MDL-MC ∈ NP by considering the following top-down algorithm,
checking the formula F on the Kripke structure S, with the initial set of states M .

Algorithm 3.2. (MDL-MC ∈ NP)

bool check(S,F,M)

if F = A ∨B
guess a fragmentation Ā,B̄ with Ā ∪ B̄ = M ;

return (check
(
S,A, Ā

)
and check

(
S,B, B̄

)
);

endif

if F = A ∧B
return check((S,A,M) and check (S,B,M));

endif

if F = �A
find all successing states M ′ of M ;

return check (S,A,M ′) ;
endif

if F = ♦A
guess successing set of states M ′ ;
return check (S,A,M ′) ;

endif

20

if F = =(p1, . . . , pn; q)
for 1 ≤ i ≤ |M |
Save for vertice si ∈M the tuple (p1, . . . , pn, q) ;
for i ≤ j ≤ |M |
if the values for p′1, . . . , p

′
n from sj = (p′1, . . . , p

′
n, q
′) fit

the saved ones, check that q′ = q. ;
if q′ 6= q ⇒ return false;

end

end

return true;

endif

if F = p
for each si ∈M check that p ∈ π(si)
if p /∈ π(si)⇒ return false;

return true;

endif

if F = ¬p
for each si ∈M check, if p /∈ π(si)
if p ∈ π(si)⇒ return false;

return true;

endif

end

Thereby, we have shown

Proposition 3.3. MDL-MC is in NP.

3.2 The Model Checking Problem for MDL is NP-hard

Now we have to show the NP-hardness of the problem.

Proposition 3.4. MDL-MC is NP-hard.

Proof. We reduce 3-SAT onto MDL-MC. The 3-SAT-problem is the decision, if a 3-CNF
formula is in the set

3-SAT := {ϕ|ϕ is a 3-CNF formula, that is satisfiable}.

To show: 3-SAT ≤pm MDL-MC.
Let Φ be a 3-CNF formula:

Φ := C1 ∧ . . . ∧ Cn, Ci :=

3∨
k=1

Lk,i.

21

with variables x1, . . . , xm. We construct a Kripke structure, a formula we have to check
and a set of states for the MDL-MC problem. The following sets are defined:

x̃i := ({j|xi occurs in Cj positive.} , {j|xi occurs in Cj negative.})

Let the Kripke structure W = (S,R, π) be defined as S = {s1, . . . , sn} and

π(si) ⊇

{
{rj , pj}, iff xj occurs in Ci positive.

{rj ,¬pj} iff xj occurs in Ci negative.
(3.1)

Now we define the formula

Ψ :=
m∨
j=1

γj with γj := rj ∧=(pj) .

Moreover, let A := {s1, . . . , sn} be the set, which we have to check under Ψ into the
given Kripke structure.
Smax(φ) is the set of valid maximal teams of φ. Generally speaking, in MDL it is a

set of state-sets. Smax(φ) := {M |W,M |= φ, and (M ⊆M ′ |= φ ⇒M ′ = M)}
From the definition of the ∨ operator follows:

A |= φ ∨ ψ ⇔ ∃B ∈ Smax(φ),∃C ∈ Smax(ψ) with A ⊆ B ∪ C.

We also have to show, that for every satisfying configuration of Φ, a choice of state sets
Mi ∈ Smax(γi) exists, so that

⋃m
i=1Mi ⊇ A hold and vice versa.

Example 3.5. Let Φ be the 3-CNF formula, (x̄1 ∨ x2 ∨ x3) ∧ (x2 ∨ x̄3 ∨ x4) ∧ (x1 ∨ x̄2).
The associated Kripke structure would be as follows:

c3

r1, p1; r2

c2

r2, p2; r3; r4, p4

c1

r1; r2, p2; r3, p3

Note, that in this special case, we do not need any edges at all. The reason is, that we
do not need the operators � and ♦.
A satisfying configuration of Φ would be x1 = 1, x2 = 0, x3 = 1, x4 = 1 and the formula,
we have to check is F =

∨4
i=1 ri ∧=(pi). The sets x̃1, . . . , x̃4 are:

x̃1 = ({3}, {1})
x̃2 = ({1, 2}, {3})
x̃3 = ({1}, {2})
x̃4 = ({2}, ∅)

22

Along these sets we can see, which clause will be satisfied, by choosing a variable to be
1 or 0. If we assign the configuration above, we set x1 = 1, so we can see in x̃1, that C3

will be true. The sets associated with the configuration are {3}, {3}, {1}, {2}. And we
can see, that the union of all of these sets is {1, 2, 3}, what means, that every clause is
satisfied. Thereby we have, that Φ is satisfied.
On the other hand, we can choose some subsets, whose union is {1, 2, 3}, and show, that
this choice has a corresponding configuration, satisfying Φ. For example let us choose
from x̃1 the second set {1}, as well as for x̃2 and x̃3. The choice of the set of x̃4 does not
matter, so we choose ∅. The union of the set we have chosen is {1, 2, 3} and by definition
the corresponding configuration to this choice is x1 = x2 = x3 = x4 = 0. Now we can
easily verify, that this is a valid configuration.

Claim (Correctness)
Φ ∈ 3-SAT⇔W,A |= Ψ.

Proof.“ ⇒′′ Let I be a valid configuration for Φ. Now there are two cases for each
variable to choose a set, satisfying γi.
Case I: On one hand if I(xi) = 1, it follows, that all clauses containing xi not negated
are true. Let Cl1 , . . . , Clk be these Clauses, l1, . . . , lk ∈ {1, . . . , n}. From (3.1) we have,
that π(sli) ⊇ {r, p}, i ∈ {1, . . . , k}. We choose pi = 1, such that

∀sj ∈Mi : π(sj) ⊇ {ri, pi}

holds.
According to the definition of the π function, these Mi match the choice of the tuple
x̃i. For this reason such a Mi can always be found. Note, that if there is an i for which
xi does not satisfy any clause (no matter if I(xi) = 1 or I(xi) = 0), the formula Φ is
equivalent to a formula Φ′, where we just leave the variable xi out.
Case II: On the other hand if I(xi) = 0, we choose analog for every i the sets Mi ∈
Smax(γi) for which

∀sj ∈Mi : π(sj) ⊇ {ri,¬pi}

holds. For every sj , we have found a containing set Mi. Since I |= Φ, every clause Cj in
Φ has to be true. From this we have:

m⋃
i=1

Mi = A.

Hence ∀i : Mi ∈ Smax(γi) it follows

Mi |= γi and W,A |= Ψ, i ∈ {1, . . . ,m}.

“ ⇐′′ Let Mi ∈ Smax(γi) mit
⋃m
i=1Mi ⊇ A be given. Because every γi are built like

ri ∧=(pi), for every set Mi ∈ Smax(γi) holds: ∀sj ∈Mi : ri ∈ π(sj). Moreover pi has to
be constant because of the =(pi) operator. From this we have either:

∀sj ∈Mi : ri, pi ∈ π(sj)

23

or
∀sj ∈Mi : ri,¬pi ∈ π(sj).

Now we check, if ∀sj ∈ Mi : π(sj) ⊇ {ri,¬pi} holds. In this case, let I(xi) = 0. In
every other case let I(xi) = 1. Hence, I is a valid configuration, because from definition
follows

π(sj) ⊇ {ri, pj} ⇔ xi occurs in clause Ci positive. ⇒ Ci comes true.

π(sj) ⊇ {ri,¬pj} ⇔ xi occurs in clause Ci negative. ⇒ Ci comes true.

Altogether the configuration I is chosen for every variable xi in a way, that Ci comes
true. It follows

∀i : I satisfies Ci ⇒ I satisfies Φ.

24

4 Complexity Results on Operator
Fragments for MDL-MC

We have seen, that MDL-MC is NP-complete. The proof is based mainly on the property
of guessing sets to satisfy the disjunction. In the following section, we will examine
some cases, where only fragments of the operator set {¬,∨,∧,�,♦,=(·)} are allowed.
Especially the case, where no disjunction is allowed is interesting, because the NP-
hardness proof will not work in the above way without disjunction.

4.1 NP-hard Fragments

To introduce the operator fragments, we will define it in an intuitional way.

Definition 4.1. (Operator fragments)
Let M ⊆ {¬,∨,∧,�,♦,=(·)}, then MDL(M) is the set of formulas over AP built from
the operators in M . The MDL-MC(M)-problem is the problem of model checking over
formulas of MDL(M).

Let M := {¬,∧,�,♦,=(·)}, then MDL-MC is NP-hard, as we see in the next Theorem.
This is the interesting case, because here, we do not need the disjunction.

Theorem 4.2. MDL-MC({♦,=(·)}) is NP-complete.

Proof. We have already shown, that MDL-MC is in NP. Because MDL-MC(M) is a
subproblem of MDL-MC, it is also in NP.

To show: MDL-MC is NP-hard.

Again we reduce 3-SAT ≤pm MDL-MC(M). Let Φ be a given 3-CNF-formula.

Φ := C1 ∧ . . . ∧ Cn with Ci := Li1 ∨ Li2 ∨ Li3 for i = 1, . . . , n.

∀i : Li ∈ {x1, . . . , xm}.

The structure K = (S,L, π) is defined as follows:

S := {c1, . . . , cn, s1, . . . , sm, s̄1, . . . , s̄m}, thus card(S) = 2m+ n.

S × S ⊇ L ⊇

{
{(ci, sj)}, if in clause Ci the literal xj occurs.

{(ci, s̄j)}, if in clause Ci the literal x̄j occurs.

25

ci

s̄j sj

Φ1 = (L1 ∨ L2 ∨ L3) ∧ . . . ∧ (. . . ∨ xj ∨ . . .)︸ ︷︷ ︸
Ci

∧ . . . ∧ (Lk ∨ Ll ∨ Lm)

ci

s̄j sj

Φ2 = (L1 ∨ L2 ∨ L3) ∧ . . . ∧ (. . . ∨ x̄j ∨ . . .)︸ ︷︷ ︸
Ci

∧ . . . ∧ (Lk ∨ Ll ∨ Lm)

π is defined by

π(si) ⊇ {pi, q}
π(s̄i) ⊇ {pi}

The formula F we have to check is

Ψ := ♦=(p1, . . . , pm; q) .

Moreover let A := {c1, . . . , cn} bet the set of initial states which we want to check on
the formula F .

Example 4.3. Let Φ be the 3-CNF formula, given by Φ = (x̄1∨x2∨x3)∧(x2∨ x̄3∨x4)∧
(x1 ∨ x̄2). The MDL(M)-formula we have to check unfolds to F = ♦=(p1, p2, p3, p4; q).
The labeled Kripke structure would be:

26

c1 c2 c3

s̄1

p1

s1

p1, q

s2

p2, q

s̄2

p2

s3

p3, q

s̄3

p3

s4

p4, q s̄4

p4

A satisfying configuration for Φ could be e.g.: x1 = 1, x2 = 0, x3 = 1, x4 = 1.
Now, there has to be a successor set of states B for the set of blue colored states
A = {c1, c2, c3} |= F and B |= =(p1, . . . , p4; q). In this case this set would be the set of
red colored nodes B = {s1, s̄2, s3, s4}.

Claim (Correctness)
Φ ∈ 3-SAT⇔ K,A |= Ψ.

Proof. “ ⇒′′: Let Γ be a configuration, that satisfies Γ |= Φ. It follows ∀i : Γ |= Ci.
Choose as a successing set B of A as follows:

B ⊇

{
{xk}, iff. ∃l : (cl, xk) ∈M and Γ(xk) = 1

{x̄k}, iff. ∃l : (cl, x̄k) ∈M and Γ(xk) = 0

From this we have, that every element in B has a predecessor cl for applicable l.
Now we have to show, that every state ci has a successor in B. Hence, every clause
has a literal Lk with Γ(Lk) = 1, every state ci has to have a successor in B. Of course
B |= =(p1, . . . , pm; q) has to hold. Hence, ∀k : Γ(sk) = 0 oder Γ(sk) = 1 holds, B
contains either xk or x̄k. From the definition of π it is necessary, that

π(sk) ∩ {p1, . . . , pm} = π(s̄l) ∩ {p1, . . . , pm} ⇔ k = l.

That means, that the configuration of the pi for two different elements of B can not
be the same. It follows

B |= =(p1, . . . , pm; q)⇒ K,A |= F.

“ ⇐′′ Assuming K,A |= F . Let B be a set of successing states of A, for wich is true
B |= =(p1, . . . , pm; q). According to the above argument B never contains sk and s̄k.
Define Γ as follows:

27

Γ(xk) =

{
1, iff. xk ∈ B
0, iff. xk /∈ B.

Let ci be the predecessor node of sk. It follows, that Γ(xk) = 1 ⇒ Γ |= Ci. Let cl be
the predecessor node of s̄t. In this case follows Γ(xt) = 0⇒ Γ |= Ci.
Hence K,A |= F altogether it follows

∀i : Γ |= Ci ⇒ Γ |= Φ.

Theorem 4.4. Let M be {∨,�,=(·)}. Then MDL-MC(M) is NP-complete.

Proof. Again it is clear, that MDL-MC(M) ∈ NP, using the subset argument. To prove
the hardness, we will reduce 3SAT onto this problem, analogously to the theorems above.
To show: 3SAT ≤pm MDL-MC(M).
Let Φ be a given 3CNF -formula, defined similar as above with

Φ := C1 ∧ . . . ∧ Cn with Ci := Li1 ∧ Li2 ∧ Li3 , for i = 1, . . . , n.

∀i, j : Lij ∈ {x1, . . . , xm, x̄1, . . . , x̄m}.

We define the structure K = (S,R, π) as follows:

S := { s1, . . . , sn,
r1

1, . . . , rm1 ,
...

...
r1
n, . . . , rmn ,
r̄1

1, . . . , r̄m1 ,
...

...
r̄1
n, . . . , r̄mn }.

R ⊇



{(si, r1
i)} if x1 or x̄1 occur Ci. Case I

{(si, r1
i), (si, r̄

1
i)} if x1 and x̄1 does not occur in Ci. Case II

{(rji , r
j+1
i)} if (xj+1 or x̄j+1) and (xj or x̄j) occur in Ci. Case III

{(rji , r
j+1
i), (rji , r̄

j+1
i)} if xj+1 and x̄j+1 do not occur

in Ci but xj or x̄j do occur in Ci. Case IV

{(rji , r
j+1
i), (r̄ji , r

j+1
i)} if xj and x̄j does not occur

in Ci, but xj+1 or xj+1 does occur in Ci. Case V

{(rji , r
j+1
i), (r̄ji , r̄

j+1
i)} if bothxj and x̄j

and xj+1 and xj+1 do not occur in Ci. Case VI

28

Case I:

si

r1
i

Figure 4.1: x1 occurs in Ci.

Case II:

si

r1
ir̄1

i

Figure 4.2: x1 does not occur in Ci.

Case III:

rj+1
i

rji

Figure 4.3: xj and xj+1 occur in Ci.

29

Case IV:

rji

r̄j+1
i rj+1

i

Figure 4.4: xj occurs in Ci, but xj+1 does not occur in Ci.

Case V:

rj+1
i

rjir̄ji

Figure 4.5: xj does not occur in Ci, but xj+1 does occur in Ci.

Case VI:

rjir̄ji

rj+1
ir̄j+1

i

Figure 4.6: xj and xj+1 do not occur in Ci.

30

The labeling function π denotes, if a variable occurs negated or not negated in some
clause or even if it does not occur anyway in a specific clause. We define π accordingly
to the negation of the variables in the clauses. In the cases II, IV, V, VI, where we
have more than one state in one variable level at one clause, we will label one of the
states with pi, and the other one with p̄i. This guarantees, that if a variable xj does not
occur in a clause Ci, there will be no configuration found, satisfying Ci, because =(pi)
for both of these states will not hold. The formal defininition of π is given by

π(si) := ∅ (4.1)

π(rji) :=

{
∅ iff xj occurs negated in Ci.

{pj} otherwise.
(4.2)

π(r̄ji) := ∅. (4.3)

The formula we have to check is

Ψ :=
m∨
i=1

γi with γi := �i =(pi) .

with the initial state set A := {s1, . . . , sn}.
Consider the next example, where the structure is labeled. The blue colored states cor-

respond to the clauses in the 3-CNF formula. Some of the states {r1
1, r

2
1, r

3
1, r

2
2, r

3
2, r

1
3, r

2
3}

do not matter, so we left them out.

Example 4.5. Let Φ be a 3-CNF-formula:

Φ := (x̄1 ∨ x2 ∨ x3) ∧ (x2 ∨ x̄3 ∨ x4) ∧ (x1 ∨ x̄2)

The corresponding structure would have four “levels”. Propositions, which are false in
any state are not labeled. In this case Ψ would be

Ψ = �=(p1)︸ ︷︷ ︸
γ1

∨��=(p2)︸ ︷︷ ︸
γ2

∨���=(p3)︸ ︷︷ ︸
γ3

∨����=(p4)︸ ︷︷ ︸
γ4

.

31

s1 s1 s2 s1 s3

r1
1

p1

r̄1
2 r1

2
p1

r1
3

p1

r2
1

p2

r2
2

p2

r2
3

r3
1

p3

r3
2

r̄3
3 r3

3
p3

r4
1

p4r̄4
1

r4
2

p4

r4
3

p4r̄4
3

A satisfying configuration for example could be x1 = x3 = x4 = 1 and x2 = 0. Surely
Smax(Ψ) =

⋃m
i=1 Smax(γi). We have to find nodes ni in every tree Ti, so that ni ∈

Smax(Ψ). Smax(γi) := Simax. The Smax sets for this example are

S1
max = {{s1}︸︷︷︸

M1

, {s3}}

S2
max = {{s1, s2}︸ ︷︷ ︸

M2

, {s3}}

S3
max = {{s1}, {s2}︸︷︷︸

M3

}

S4
max = {{s2}︸︷︷︸

M4

, ∅}.

We see, that M1, . . . ,M4 ⊆ A and M1∪M2∪M3∪M4 = A as required from the definition
of disjunction to satisfy Ψ.
The green colored states indicate, which variable satisfies the associated clause. To
satisfy Φ, we must have a green colored state in every tree. The � operator allows only
to color every state in a specific level of a clause green, or no one.

Claim (Correctness)
Φ ∈ 3-SAT⇔ K,A |= Ψ.

32

Proof. “⇒”: Let Γ be a configuration with Γ |= Φ. For every Γ(xj) = 1 set for the
corresponding =(pj) term pj = 1 in Ψ. Analog set for every Γ(xj) = 0 in the =(pj)
term pj = 0. Because Γ |= Φ ⇒ Γ |= Ci, for every i ∈ {1, . . . , n} there exists variables
xj satisfying Ci. We will show now, that for every tree Tk in our structure, there is at
least one node sk with sk ∈ Smax(Ψ).
As we found a union of sets for the disjunction in the NP-hardness proof of proposition
3.4, again we have to find a union of sets, satisfying the disjunction:

K,A |= Ψ =
m∨
i=1

γi ⇒ ∃M1, . . . ,Mm ⊆ A :
m⋃
i=1

Mi = A and K,Mi |= γi.

From the definition of γ = �i =(pi), we have the possibility of choosing states in a way
that pi is true in all states considered, or choosing states in a way that ¬pi is true in
all states considered. For this purpose, we define an abbreviation γ0

j := �j ¬pj and

γ1
j := �j pj .

We choose these sets as follows:

∀j ∈ {1, . . . ,m} : Mj ⊇

{
{s|{s} |= γ0

j } ∈ Smax(γj) iff xj occurs in Ci and Γ(xj) = 0

{s|{s} |= γ1
j } ∈ Smax(γj) iff xj occurs in Ci and Γ(xj) = 1

Clearly, M1, . . . ,Mm ⊆ A. We have to show, that M1 ∪ . . .∪Mm = A. For this purpose,
we show

∀i ∈ {1, . . . , n} : si ∈ A⇒ ∃j ∈ {1, . . . ,m} : si ∈Mj .

Let i ∈ {1, . . . , n} be arbitrary, si ∈ A = {s1, . . . , sn} a state and Lj a literal, satisfying
the corresponding Ci, Γ(Lj) = 1.
W.l.o.g. let Lj = xj . in this case, we choose pj to be true. From the definition of π (4.2)
follows, that in the i-th level of the structure, there is a node labeled pj .
The other case, where Lj = x̄j , we choose pj to be false, and in the i-th level of the
structure is a node, labeled with ¬pj . From this follows, that si ∈Mj .

“⇐”: Let M1, . . . ,Mm ⊆ A be a decomposition of A with M1 ∪ . . . ∪Mm = A and
K,Mj |= γi. Let si ∈ Mj be arbitrary. If π(rji) = p̄j set xj = 0, else if π(rji) = pj set

xj = 1. Let π(rji) = p̄j . From (4.2) we know, that in this case, xj occurs in negated form

in Ci. Then xj = 0 |= Ci ⇒ Γ |= Ci. On the other hand, let π(rji) = pj , then we know
from (4.2), that xj occurs in Ci not negated. Then xj = 1 |= Ci ⇒ Γ |= Ci. Because
M1 ∪ . . . ∪Mm = A = {s1, . . . , sn} follows, that

∀i ∈ {1, . . . , n} :Γ |= Ci

⇔Γ |= Φ

⇔Φ ∈ 3-SAT.

33

4.2 Fragments in P

In the section above we discussed the NP-hard operator fragments of {¬,∨,∧,�,♦,=(·)}.
The obvious question is, if there are fragments, that are efficiently solvable. This section
is about such efficiently solvable operator fragments. We will give polynomial model
checking algorithms for these operators.

Theorem 4.6. Let M ⊆ {¬,∧,�,=(·)}. Then MDL-MC(M) is solvable in polynomial
time.

Proof. As we have seen in the proof of proposition 3.3, there is an NP-top down algo-
rithm for the MDL-MCproblem. To verify the MDL-MC({¬,∧,�,=(·)}) problem, we will
consider algorithm 3.2 and leave out all nondeterministic steps to obtain a P-algorithm
for the subset. We will see, that the following algorithm fits the fragment {¬,∧,�,=(·)}.

Algorithm 4.7. (MDL-MC({¬,∧,�,=(·)}) ∈ P)
bool check(S,F,M)

if F = A ∧B
return check((S,A,M) and check (S,B,M));

endif

if F = �A
for all s′ ∈ S
if (s, s′) ∈ R
M ′ <- M ′ ∪ {s′}

end;

end;

return check (S,A,M ′) ;
endif

if F = =(p1, . . . , pn; q)
for 1 ≤ i ≤ |M |
Save for vertice si ∈M the tuple (p1, . . . , pn, q) ;
for i ≤ j ≤ |M |
if the values for p′1, . . . , p

′
n from sj = (p′1, . . . , p

′
n, q
′) fit

the saved ones, check that q′ = q. ;
if q′ 6= q ⇒ return false;

end

end

return true;

endif

34

if F = p
for each si ∈M check that p ∈ π(si)
if p /∈ π(si)⇒ return false;

return true;

endif

if F = ¬p
for each si ∈M check, if p /∈ π(si)
if p ∈ π(si)⇒ return false;

return true;

endif

end

Model checking on teams works with this top down algorithm, because we have a
given set M , where we determine whether the formula F holds or not. In the algorithm
above we change this set and again determine whether F is true on al successing set of
M . Model checking with a bottom up algorithm as it is given in [CGP99] does not work
on teams. For a dependence atom the algorithm had to find all sets on which it is true,
but there can be up to 2|S| many teams the algorithm had to check.

In the next Theorem 4.8, we leave the dependence operator out. For this reason, it is
useful to consider only singleton sets as initial states. For succinctness, we will leave the
brackets { and } out. On this note, K, a |= F means K, {a} |= F .
Remember, that in case of singleton sets, there is no difference between the classical
disjunction and the disjunction we defined by ∨.

Theorem 4.8. Let M ⊆ {¬,∨,∧,�,♦} then MDL-MC(M) is in P .

Proof. We will first show, that MDL-MC(M) ∈ P for singleton sets, and then we gener-
alize the theorem to arbitrary initial sets. The algorithms differ in that they are bottom
up and we do not have sets of states as argument, but single states.

Algorithm 4.9. (ψ = ¬ψ1 on singletons)
void check_psi_Eq_Not_psi1(K,ψ1,a)

if not label(a) 3 ψ1

label(a) <- label(a) ∪ ψ
endif;

end;

35

Algorithm 4.10. (ψ = ψ1 ∧ ψ2 on singletons)
void check_psi_Eq_psi1_and_psi2(K,ψ1, ψ2,a)

if label(a) 3 ψ1 and label(a) 3 ψ2

label(a) <- label(a) ∪ ψ ;

endif;

end;

Remember, from the definition of ∨ follows, that

K,M |= Ψ1 ∨Ψ2 iff ∃M1,M2⊆M,M1∪M2=M : K,M1 |= Ψ1 and K,M2 |= Ψ2.

Considering singleton sets {a} leads us to either M1 = {a} so that K, a |= Ψ1 or
M2 = {a} so that K, a |= Ψ2. Here we see, that this is similar to

a |= Ψ1 ∨Ψ2 iff a |= Ψ1 or a |= Ψ2.

From this point it is possible, to give an P algorithm, analog to algorithm 4.10.

Algorithm 4.11. (Ψ = Ψ1 ∨Ψ2 on singletons)
void check_psi_Eq_psi1_or_psi2(K,ψ1, ψ2,a)

if label(a) 3 ψ1 or label(a) 3 ψ2

label(a) <- label(a) ∪ ψ ;

endif;

end;

The following algorithm processes every possible successor in S, and if there is any
successor s ∈ S, where ψ1 ∈ π(s) is not true, we notice, that K, a 2 ψ by setting the
variable successors to false.

Algorithm 4.12. (ψ = �ψ1)
void check_psi_Eq_Box_psi1(K,ψ1,a)

boolean successors = true;

forall s ∈ S do

if (a, s) ∈ R and ψ1 /∈ label(s)
successors = false;

endif;

end;

if successors == true

label(s) <- label(s) ∪ ψ ;

endif;

end;

36

Now we define an algorithm, that never occured in the proofs of the fragments above,
because every fragment containing the ♦ operator, has been NP-complete. Only on
singleton intial state sets, the complexity falls to at least P. Since we only examine
singleton sets, the P-algorithm resembles the algorithm 4.12.

Algorithm 4.13. (ψ = ♦ψ1)
void check_psi_Eq_Diamond_psi1(K,ψ1,a)

boolean successors = false;

forall s ∈ S do

if (a, s) ∈ R and ψ1 ∈ label(s)
successors = true;

endif;

end;

if successors == true

label(s) <- label(s) ∪ ψ ;

endif;

end;

Now we want to generalize these algorithms, so that they work over countable sets.
For this purpose, we will create a preprocessing algorithm, which processes every node
of M one by one.

Algorithm 4.14. (Generalizing algorithm, over state set M)
void check_F (K,F,M)
if F = ¬ψ
for every m ∈M do

check_psi_Eq_Not_psi1 (K,ψ,m)
end;

endif;

if F = ψ1 ∧ ψ2

for every m ∈M do

check_psi_Eq_psi1_and_psi2 (K,ψ1, ψ2,m)
end;

endif;

if F = ψ1 ∨ ψ2

for every m ∈M do

check_psi_Eq_psi1_or_psi2 (K,ψ1, ψ2,m)
end;

endif;

37

if F = �ψ1

for every m ∈M do

check_psi_Eq_Box_psi1 (K,ψ1,m)
end;

endif;

if F = ♦ψ1 for every m ∈M do

check_psi_Eq_Diamond_psi1 (K,ψ1,m)
end;

endif;

end;

This algorithm decides which of the above algorithms to take and also generalizes the
buttom up singleton algorithms above, by processing a set of states M one by one.

We will show now, that MDL-MC({¬,∨,=(·)}) is in P, when we make a constraint on the
dependence atom, that all dependencies in the formula F are of the form =(p1, . . . , pj ; p)
with p ∈ P, j ≤ k and fixed k ∈ N. To show this theorem, we will decompose it into two
smaller propositions.

Theorem 4.15. Let us assume, that every =(·) atom is of the form =(p1, . . . , pj ; q), k ∈
N, j ≤ k fixed with q ∈ AP and M := {¬,∨,=(·)}. Then MDL-MC(M) is in P.

We show, that even the whole {¬,∨,=(·)} fragment with unrestricted =(·) atoms is in
P as long as a specific number of dependence atoms depending on the size of the Kripke
structure is not exceeded.

Lemma 4.16. Let F := =(p1, . . . , pn; q) and A the set of initial states. Then follows

∃M1,M2∈Smax(F) : M1 ∪M2 = A.

Proof. Choose a state s1 ∈ A. If A |= =(p1, . . . , pn; q), there is nothing more to show.
Otherwise there is a set M1 ∈ Smax(F) with s ∈ M1 (at least M1 = {s1}). Define
M2 := A\M1. Clearly A = M1 ∪M2, so we have to show, that ∃M ′

2⊇M2
: M ′2 ∈ Smax(F).

For all states s2 ∈M2 with π(s2) ∩ {p1, . . . , pn} 6= π(s) ∩ {p1, . . . , pn} follows {s2} |= F .
For all other states s′2 ∈M2 with π(s2)∩ {p1, . . . , pn} = π(s)∩ {p1, . . . , pn} follows, that
π(s′2) ∩ {q} 6= π(s1) ∩ {q}. It follows

∀s1,s2∈M2 : π(s1) ∩ {p1, . . . , pn} = π(s2) ∩ {p1, . . . , pn} ⇒ π(s1) ∩ {q} = π(s2) ∩ {q}.

Altogether follows M2 |= F .

Lemma 4.17. Let γ1 := =(p1, . . . , pn; qi), γ2 := =(p′1, . . . , p
′
m; qk) and Γ := γ1 ∨ γ2.

Then it follows, that ∀M∈Smax(γj),N∈Smax(Γ) : |M | ≤ |N | for j ∈ {1, 2}.

38

Proof. From the definition we have, that A |= Γ iff ∃M1,M1∈A,M1∪M2=A : M1 |= γ1 and
M2 |= γ2. Moreover we have, that Smax(γj) := {M ⊆ A|M |= γj and (M ⊆ M ′ |=
γj ⇒ M = M ′)}, j ∈ {1, 2}. So for every Smax(Γ) 3 M there exists two sets Mj ∈
Smax(γj), j ∈ {1, 2}. It follows, that M1 |= γ1, M2 |= γ2 and M1 ∪M2 = M . Altogether
we have, that |M1| ≤ |M | and |M2| ≤ |M |.

Proposition 4.18. Let M := {¬,∨,=(·)}. Let m be the number of dependence atoms
in the formula F , and n := |S| of the Kripke structure K := (S,A, π). If n < 2m,
MDL-MC(M) is in P.

Proof. To prove the statement, we have to find a decomposition for all the ∨ operators
in the formula. We show now, that every dependence atom covers at least half of the
states in our initial set, that have not been covered yet.
Initially, we will process the atomic propositions in the formula. Let p1, . . . , pn ∈ AP
be all atomic propositions of the formula F . Clearly, it is possible to write every
MDL({¬,∨,=(·)}) formula in the form

F = p1 ∨ . . . ∨ pk ∨ ¬pk+1 ∨ . . . ∨ ¬pn︸ ︷︷ ︸
F ′′

∨F ′,

where F ′ is the part of the formula containing the dependence operators and 1 ≤ k ≤ n
is the number of positive atomic propositions. Hence F ′′ is an MDL({¬,∨,∧,�,♦})
formula, and from theorem 4.8 we have that MDL-MC({¬,∨,∧,�,♦}), F is processable
in P.
We have to examine F ′ on the Kripke structure. We consider all dependence atoms
=(pi1, . . . , p

i
ni

; qi), i ∈ {1, . . . ,m} of F . From lemma 4.16 we have, that fo every γi :=
=(pi1, . . . , p

i
ni

; qi), i ∈ {1, . . . ,m} atom, there exists at least two sets M1 and M2 in
Smax(γi) with M1 ∪M2 = A. We want to choose the set, containing the more uncovered
states of A. We can do this in P, by counting the number of qi.

For the disjunction of two dependence atoms Γ := γ1∨γ2 with γ1 := =(p
(1)
1 , . . . , p

(1)
ni ; q(1))

and γ2 := =(p
(2)
1 , . . . , p

(2)
ni ; q(2)) we have from lemma 4.17, that the setsM1,M2, we choose

for γ1, γ2 are contained in Smax(Γ).
Note, that we can only cover the whole set A by convering at least half of the remainder
set, because if there are only two sets left to cover, we have at least one set in Smax(F ′′),
that contains this last node. We show by induction over m, that it is possible to cover
all nodes in this way.
Induction basis: In the case of m = 0 we have from n < 2m that we have no nodes.
In this case there is nothing to show. Even in the case m = 1 we have only one single
world, where every dependence atom is true, as mentioned in the fundamentals.
Induction hypothesis: We assume, that there are less than 2m worlds for which a
valid fraction A1, . . . , Am = A exists.
Induction step: We make the step from m→ m+ 1. We have to show, that there is a
covering A0, . . . , Am of A, that means A0∪. . .∪Am = A. So we have one more dependence
atom, and from n < 2m ⇒ 2 · n < 2m+1 follows, that we have up to double as many
worlds. From lemma 4.16 we have, that we can chosse a set A0 ⊆ A with 2 · |A0| ≥ A. So

39

there are at most b|A|/2c many worlds left to be covered by the remaining dependence
atoms. With the induction hypothesis follows, that A0 ∪ . . . ∪Am = A.

We have seen, that if we have enough dependence atoms in our formula, we can solve
it in P. Now we consider the case, in which we have fewer dependence atoms in our
formula than states in the Kripke structure. We use this fact, that there are only a few
dependence atoms, by testing all possible configuration for the dependence atoms. We
call a dependence atom k-ary if it is of the form =(p1, . . . , pk; q) where p1, . . . , pn are
atomic propositions and k ∈ N fixed. If all of the dependence atoms are k-ary then it is
possible to do model checking in P as we will see in the next proposition.

Proposition 4.19. Letm be the number of dependence atoms in the formula F , n := |S|
and assume that 2m ≤ n. Moreover, let us assume, that all dependence atoms in our
formula F are k-ary of the form =(p1, . . . , pk; q) with p1, . . . , pk, q ∈ AP and k ∈ N fix.
Then MDL-MC({¬,∨,=(·)}) is in P.

Proof. Let Fk = =(p1, . . . , pk; q) be a k-ary dependence atom. We show by induction

over k, that |Smax(Fk)| ≤ 22k .
Induction basis: k = 0 ⇒ F0 = =(q). Smax(F0) consists at most of two sets,
M1 = {s ∈ S|q ∈ π(s)} and M2 = {s ∈ S|q /∈ π(s)}. Note that |S| < 2 if M1 = M2 = ∅.
Induction hypothesis: Assume for fix k ∈ N there is |Smax(Fk)| = 22k so we have 2k

ways to choose a configuration for pk := (p1, . . . , pk).
Induction step: Let Fk+1 = =(p1, . . . , pk+1; q) the dependence atom. From the induc-
tion hypothesis we have 2k+1 = 2 · 2k ways to choose the vector pk+1 = (p1, . . . , pk+1).
For every configuration of the vector p, q can be either 0 or 1. It follows that we have
up to 22·2k = 22k+1

different sets in Smax(Fk+1).
From 2m ≤ n follows that m ≤ dlog(n)e. So we have less or equal dlog(n)e many

dependence atoms. Let Simax be the Smax set of the i-th dependence atom. We now
have to check every combination of elements of Simax if

∀i ∈ {1, . . . ,m}∃Mi :

m⋃
i=1

Mi = A

is possible. The number of these combinations is

(22k)dlog(n)e

=22k·dlog(n)e

=22k·dlog(n)e

=(2·dlog(n)e)2k

∈nO(1).

40

With the proposition 4.18 and proposition 4.19 we have shown the following theorem.

Theorem 4.20. Let M := {¬,∨,=(·)} be the operator fragment where all dependence
atoms are k-ary, with a fixed k ∈ N. Then MDL-MC(M) is in P.

Proof. Let K = (S,R, π) be an AP -Kripke structure, m the number of dependence
atoms of the given formula and n := |S|. Then there are two cases to check.
Case I: n < 2m. This is proposition 4.18.
Case II: n ≥ 2m. This is proposition 4.19.

41

5 Conclusion and Open Problems

We have shown in theorem 3.1 that the MDL-MC problem in general is NP-complete.
There are some operator fragments such as {∨,∧,=(·)}, {∨,�,=(·)}, and {♦,=(·)}
where model checking stays NP-complete (shown in 3.1, 4.2, and 4.4). In the cases where
we disallow ∨ and ♦ the fragment becomes tractable. In theorem 4.20 we only were able
to show the tractability for the fragment {¬,∨,=(·)} on k-ary dependence atoms, k ∈ N.
It would be interesting to investigate the complexity over the unrestricted fragment
{¬,∨,=(·)}. On the other hand a further step could be to analyse the complexity by
only allowing k-ary dependence atoms in other fragments as well. Furthermore we could
make restrictions on the length of the considered formula or on the size of the Kripke
structure.
We have shown the completeness for the NP cases, so one possibility for further research
would be the hardness of the P fragments.
As we mentioned above MDL can be seen as a restriction of DCTL which we obtain by
combining the concept of dependence with CTL. A next step would be to expand the
complexity analysis onto DCTL. In DCTL we have a higher expressive power. By this
we would have a statement aboud model checking on logics that are used in practice as
it is the case in [CGP99].

42

Bibliography

[CGP99] E.M. Clarke, O. Grumberg, and D.A. Peled, Model checking, Springer, 1999.

[LV10] Peter Lohmann and Heribert Vollmer, Complexity results for modal dependence
logic, 19th EACSL Annual Conference on Computer Science Logic (A. Dawar
and H. Veith, eds.), LNCS, vol. 6247, Springer, 2010, To appear, pp. 411–425.

[Sev09] Merlijn Sevenster, Model-theoretic and computational properties of modal de-
pendence logic, Journal of Logic and Computation 19 (2009), no. 6, 1157–1173.

[Vää07] Jouko Väänänen, Dependence logic: A new approach to independence friendly
logic, London Mathematical Society student texts, no. 70, Cambridge Univer-
sity Press, 2007.

[Vää08] , Modal dependence logic, New Perspectives on Games and Interaction
(Krzysztof R. Apt and Robert van Rooij, eds.), Texts in Logic and Games,
vol. 4, Amsterdam University Press, 2008, pp. 237–254.

43

	Introduction
	Preliminaries
	Modal Logic
	Syntax
	Semantics
	Example

	The Concept of Dependence
	Modal Dependence Logic
	Syntax
	Semantics
	Example

	Model Checking
	Examples

	Complexity Results on MDL-MC
	The Model Checking Problem on MDL is in NP
	The Model Checking Problem for MDL is NP-hard

	Complexity Results on Operator Fragments for MDL-MC
	NP-hard Fragments
	Fragments in P

	Conclusion and Open Problems
	Bibliography

