
Institut für theoretische Informatik

Leibniz Universität Hannover

Masterarbeit

Completeness Results for
Graph Isomorphism on

Restricted Graph Classes

von Maurice Chandoo

Oktober 2014

Erstprüfer: Prof. Dr. Heribert Vollmer
Zweitprüfer: Dr. Arne Meier

Selbstständigkeitserklärung
Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und ohne fremde Hilfe
verfasst habe und keine anderen Hilfsmittel und Quellen als angegeben verwendet habe.

Maurice Chandoo

Contents

Preface . 2

1 Preliminaries . 4

2 Trees . 7
2.1 Tree Representations . 7
2.2 Linear order on tree isomorphism classes 10
2.3 Undirected trees, forests, colored trees 16
2.4 Hardness results . 18

3 k-Trees . 22
3.1 Canonically labeling k-Trees . 23
3.2 Logspace implementation . 28
3.3 Hardness results . 29

4 Helly Circular-Arc graphs . 32
4.1 Turning HCA graphs into interval matrices 34
4.2 Calculating the ∆ Tree of an interval matrix 41
4.3 Canonically choosing an interval orientation 49
4.4 CA graph isomorphism . 53

List of Figures, Tables and Algorithms . i

Bibliography . iii

1

Preface
The graph isomorphism problem Gi is to decide whether two graphsG,H are isomorphic.
Formally, this means to determine if there exists a bijection π from the vertex set of G to
the vertex set of H such that there is an edge between u and v in G if and only if there
is one between π(u) and π(v) in H as well. Such a bijection π is called an isomorphism
between G and H. From the perspective of computational complexity it is clear that
Gi is in NP since a witness of polynomially bounded length is given by an isomorphism.
However, despite much research effort since one of the first mentions of this problem by
[Kar72] neither a proof for NP-hardness nor a polynomial-time algorithm for Gi have
been found. One of the reasons for the enticing nature of this problem can be attributed
to the fact that it is not only easy to state and understand but also appears as very
approachable and deceivingly promising to resolve at first glance. So much in fact that
it has been labeled as the graph isomorphism disease because of its contagious nature
in [RC77] which evidently has infected me as well.
The algorithm with the best known asymptotic runtime for solving Gi is mentioned

in [BL83] and runs in 2c
√
n logn for some constant c. The best known hardness result

states that Gi is hard for the class DET which is the class of problems NC1 reducible
to the determinant [Tor04]. Here is an overview of the complexity classes mentioned in
this thesis and related ones; partially taken from [Köb06]:

AC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ DET ⊆ TC1 ⊆ AC1 ⊆ NC ⊆ P

Another remarkable result reveals that the polynomial-time hierarchy collapses to its
second level if Gi happens to be NP-hard [Sch88]. If one believes such a collapse to be
unlikely then one must consequently reckon that P 6= NP and Gi is in the class of NP
intermediate problems, also known as NPI. This class consists of the problems which
are in NP but neither in P nor NP-hard. In the context of the possibility that Gi ∈ NPI
it seems reasonable to define a complexity class GI that contains every problem which
is polynomial-time Turing-reducible to Gi. Additionally, a problem is GI-complete if
it is in GI and there is a polynomial-time Turing reduction from Gi to that problem.
That means a problem A is GI-complete if and only if PA = PGi in oracle notation.
It has been shown that the isomorphism problem for various other structures is GI-
complete, for instance hypergraphs, finite automata and context-free grammars [ZKT85].
Analogously, it has been shown that there are restricted classes of graphs for which the
isomorphism problem remains GI-complete. An example for which this can be easily
seen is the class of connected graphs.
Fortunately, for sufficiently restricted graph classes it can be shown that the isomor-

phism problem is tractable. In this thesis we shall consider three graph classes for which

2

the isomorphism problem is L-complete. These three classes are trees, k-trees and the
somewhat exotic sounding class of Helly circular-arc (HCA) graphs. We will see that
we are not only able to test if two members of one of these classes are isomorphic but
that we can compute a canonical form for them, which is also useful from a practical
point of view. Imagine you have a database table where one of the columns contains
a tree and you want to query if any two rows have isomorphic trees. By precomputing
the canonical form and storing it in the database the expensive operation of testing two
trees for isomorphism can be replaced by simply comparing the strings of their canonical
forms.
The fact that trees can be canonically labeled space-efficiently is a fundamental insight,

which has proven to be a very useful tool in this research branch. For instance, both of
the two subsequent results about k-trees and HCA graphs make use of it. Moreover, the
algorithm which computes the canonical form of a tree employs the resources available
in logspace in a novel and witty way to execute a recursion of linear depth which would
normally be considered to be a prohibitive operation in a logspace setting. Thus, this
idea might be relevant in itself when searching for new logspace algorithms.
The class of k-trees can be seen as generalization of trees such that for k = 1 both

classes coincide. Usually, they are described as graphs with tree width k such that adding
any new edge leads to a graph with tree width k+ 1. For unbounded k the isomorphism
problem for k-trees is GI-complete [ADKK12] which makes this class interesting from
a fixed-parameter tractable point of view. Indeed, [ADKK12] have also supplied an
implementation of their algorithm which runs in O((k + 1)!n) time. Furthermore, a
partial k-tree is a subgraph of a k-tree and the set of all partial k-trees is the set of
graphs with tree width at most k. An extension of this result to partial k-trees would
therefore imply that Gi is fixed-parameter tractable with respect to tree width. It
should be mentioned that a quite recent result has possibly shown that Gi is in fact
fixed-parameter tractable w.r.t. tree width [LPPS14]. Another result in this regard is
that the class of partial 2-trees – which happens to coincide with the class of series-
parallel graphs – can be canonized in logspace [ADK08].
HCA graphs belong to the broader class of geometric intersection graphs where ver-

tices are associated with certain geometrical objects – in this case circular arcs arranged
on a circle – and there is an edge between two vertices if their respective geometri-
cal objects intersect. To arrive at the conclusion that HCA graphs can be canonically
labeled in logspace various interesting concepts such as transitive orientations and mod-
ular decompositions had to be adequately modified and combined. The two mentioned
concepts have been previously applied in the context of permutation and comparability
graphs in [MS99]. For the more general class of circular-arc graphs tractability of the
isomorphism problem still remains an intriguing open problem which we will address at
the end of the last chapter.

3

1 Preliminaries
A directed graph D is a tuple (V,E) with vertex set V and edge set E ⊆ V ×V without
loops, i.e. (v, v) /∈ E. We also write V (D), E(D) for V,E. An undirected graph G is
a directed graph with symmetric edge relation. The vertex set of any graph can be
assumed to be linearly ordered. The set of all undirected graphs is denoted by G. A
square matrix A = (Au,v)u,v∈V with entries 0 and 1 on a vertex set V is the adjacency
matrix of a digraph D = (V,E) if for all vertices u, v ∈ V it holds that Au,v = 1 iff
(u, v) ∈ E. The vertex set of a square matrix A is also denoted by V (A). As only square
matrices are considered the qualifier square will be omitted henceforth.
Hypergraphs are a generalization of graphs such that for a hypergraph H = (V,E)

the set E is a family of sets over V , i.e. a subset of the power set of V excluding the
empty set.
Two matrices A,B are isomorphic, in symbols A ∼= B, if there exists a permutation

π : V (A) → V (B) such that Au,v = Bπ(u),π(v) for all u, v ∈ V (A). The permutation
π is called an isomorphism. Two graphs G,H are isomorphic, in symbols G ∼= H,
iff their adjacency matrices are isomorphic. If π is an isomorphism from G to itself
then π is called an automorphism of G. The identity permutation is called the trivial
automorphism. A graph G is called rigid if it has only the trivial automorphism. For a
permutation π on the vertex set of G we write π(G) to denote the graph obtained after
relabeling G according to π.
A graph property f : G → N is called an invariant if f(G) = f(H) whenever G ∼= H

for all graphs G,H. If the reverse directions holds as well, i.e. G ∼= H whenever
f(G) = f(H), then f is called a complete invariant. Additionally, if the image of a
complete invariant f can be interpreted as graph f(G) = G′ and G′ ∼= G then G′ is a
canonical form of G and f is a canonization function. A canonical labeling is an
isomorphism between G and its canonical form G′.
An example of a canonization function is a function f which given a graph G returns

the lexicographically smallest graph G′ in the isomorphism class of G with respect to a
certain graph encoding.
The graph isomorphism problem Gi is to decide for two given graphsG,H whether

they are isomorph. The graph automorphism problem Ga is to decide whether a given
graph G has a non-trivial automorphism. The complete invariant problem Cinv is to
compute a complete invariant. Analogously, the canonization problem Canon is
to compute a canonization function. Obviously, Gi is reducible to Cinv and Cinv to
Canon using constant-depth reductions. It is also not hard to show that Ga is logspace
Turing-reducible to Gi, in fact even polynomial-time many-to-one reducible [KST93].

Gi and Ga can also be defined for restricted graph classes. Let C ⊂ G be a graph
class, then for instance a pair of graphs G,H is in Gi(C) iff G and H are in C and both

4

are isomorphic. The recognition problem for a graph class C is to decide whether a
given graph G belongs to C. In the following two chapters we investigate the complexity
of the restricted versions of the graph isomorphism problem for trees, k-trees and HCA
graphs.
An extension of the graph isomorphism problem is the isomorphism problem for

vertex-colored graphs. A colored graph is a tuple (G, c) with graph G and color-
ing c : V (G)→ {0, 1}∗. Two colored graphs (G, c), (H, d) are isomorphic iff there exists
an isomorphism π : V (G) → V (H) between G and H such that c(v) = d(π(v)) for all
v ∈ V (G). We say π respects the coloring. The same definition of isomorphism can be
applied to vertex-colored matrices.
We say two sets A,B intersect if they have a non-empty intersection. Two sets A,B

overlap, in symbols A G B, if A∩B, A\B, B \A are all non-empty. The set {1, . . . , n}
for any natural number n is abbreviated with [n].
Given a graph G and a subset V ′ ⊆ V (G) we say that G′ is the vertex-induced sub-

graph of G for the vertex set V ′ if G′ = (V ′, E(G)∩ (V ′ × V ′)). A connected component
C ⊆ V (G) of a graph G is an inclusion-maximal set of vertices such that there is a
path between every pair of vertices in C. The neighborhood of a vertex v in a graph
G is denoted by N(v) and consists of all vertices that are adjacent to v. The closed
neighborhood of a vertex v in G is denoted by N[v] and defined as N(v) ∪ {v}. The
common neighborhood of two vertices u, v denoted by N[u, v] is N[u] ∩ N[v]. Two
vertices u, v of a graph G are said to be twins if N[u] = N[v]. The inclusion-maximal set
of all twins is called a twin class, i.e. a set of all vertices which have the same closed
neighborhood. The set of all twin classes form a partition of the vertex set of a graph.
A graph G is twin-free if every twin class consists of exactly one vertex. A universal
vertex v of a graph G is a vertex such that N[v] = V (G) and an independent vertex v
of G is a vertex such that N(v) = ∅. Given two vertices u, v of a graph G the distance
dG(u, v) between u and v is the the length of the shortest path between u and v. The
eccentricity of a vertex u ∈ V (G) is the longest distance to another vertex v, which is
eccG(u) = max {dG(u, v) | v ∈ V (G)}. The center of a graph G consists of all vertices
with minimal eccentricity.
A logspace transducer is a Turing machine with a read-only input tape, a work tape

and a write-only output tape such that the work tape requires only logarithmic space
with respect to the input size. Notice that such a transducer can have a polynomially
sized output. A function f is said to be logspace computable if there exists a logspace
transducer which outputs f(x) on input x for all inputs x. The complexity class L
contains all languages whose characteristic function is logspace computable. In abuse of
notation we say f is in L to denote that f is logspace computable.
Let f and g be two logspace computable functions, then their composition f ◦ g is

logspace computable as well. This will be used to present logspace algorithms in a
modular way. The idea to compute f(g(x)) is to combine the logspace transducers
Mf ,Mg for f and g such that Mf is executed until a bit of g(x) is needed. In that case
halt the execution of Mf and execute Mg until the desired output bit is computed and
then resume Mf . This construction can be iterated a constant number of times without
violating the logspace restriction. Whenever we present a logspace algorithm that seems

5

to require to store more than is possible, e.g. the algorithm states to compute f(x) which
is of polynomial size and then to do further operations on f(x), it is meant that there
exists a logspace transducer which can compute f(x) and if certain information of f(x)
is required it can be computed on the fly.
It is presumed that addition, subtraction and multiplication are known to be logspace

computable. Additionally, we utilize the fact that [Rei05] has shown that given an
undirected graph G and two vertices u, v ∈ V (G) it can be decided in L whether there
is a path between u and v. It follows that the connected components of an undirected
graph can be calculated in logspace as well.
As we will talk about completeness results for L we need to specify with respect to

what type of reduction the lower bounds hold. Unless stated otherwise the hardness
results will hold under constant-depth reductions also known as L-uniform AC0 re-
ductions, i.e. decision problem A reduces to decision problem B if there exists a family
of polynomially-sized circuits (Cn)n∈N with constant depth which may use oracle gatters
for B such that for an input x of length n the output of Cn on x is 1 iff x ∈ A. The
uniformity condition means that there exists a logspace transducer M which on input
1n outputs Cn.

6

2 Trees
In this chapter we show how to canonize directed trees in logspace following the ideas
of [Lin92]. This result can be easily extended to undirected trees, forests and colored
trees. This is shown in the third section. At the end the logspace hardness for tree
isomorphism and tree automorphism is shown.
For a directed tree T we write |T | to denote its size |V (T)|. For a node v of T we write

Tv to denote the subtree induced by v. We use #v to denote the number of children of
v.

2.1 Tree Representations
Graphs in general can be represented either by their adjacency matrix or their edge
relation as list along with the number of nodes (to represent isolated vertices). We call
the second kind pointer list representation. It is not hard to see that adjacency matrix
and pointer list representation are logspace equivalent. That means that given either
one we compute the other representation in L.
For trees there is yet another representation which is called string (of balanced paren-

theses) representation. It’s inductive definition will help us to compute a canonical form
of trees later on.

Definition 2.1. Given a directed tree T with root node t and children t1, . . . , tk ordered
according to their labels its string representation is inductively defined as

str(T) =

〈〉 , if T is the single node tree〈
str(Tt1)str(Tt2) . . . str(Ttk)

〉
, otherwise

We remark that the complexity of deciding whether two trees given in their string
representation are isomorphic is NC1-complete. Membership was shown in [Bus97] and
the hardness was proved in [JKMT03].

1

2 3 4

5 6 7

〈〈〈〉〉 〈〈〉 〈〉〉 〈〉〉

Figure 2.1: Exemplary directed tree T and its string representation str(T)

7

It is not quite obvious that the pointer list and string representation are logspace
equivalent, which is in fact true. First, let us show how to compute the pointer list
representation of trees that are given in string representation. As input we assume a
string S of length |S| with S[i] being the i-th character of S.

Algorithm 2.1 Convert tree from string to pointer representation
1: function stringToPointer(S)
2: n← nodeLabel(|S|, S)
3: print ”n; ”
4: for i = 1 . . . n do
5: for pos = 1 . . . |S| do
6: if nodeLabel(pos, S) = i then break
7: if S[pos]S[pos+ 1] = ”〈〉” then continue
8: opened← 0
9: for j = pos+ 1 . . . |S| do

10: if S[j] = ”〈” then
11: if opened = 0 then print ”(i,nodeLabel(j))”
12: opened← opened+ 1
13: else if S[j] = ”〉” then
14: opened← opened− 1
15: function nodeLabel(k, S)
16: counter ← 0
17: for i = 1 . . . k do
18: if S[i] = ”〈” then counter ← counter + 1
19: return counter

The function nodeLabel in Algorithm 2.1 counts the number of occurrences of ”〈”
in S up to the k-th character. For k = |S| this number coincides with the the number
of nodes that the tree represented by S has. The i-th node of S can be associated with
the i-th opening bracket in S for 1 ≤ i ≤ n.
In line 4 we iterate over all nodes i and look for directed edges from i to some other

node x. Note that in the string representation such a node x can only occur after the
opening bracket of the i-th node. Therefore we calculate the position pos of the opening
bracket associated with the i-th node in line 5 to 6. In line 7 we check whether the i-th
node is a leave in which case we can continue with the next node. In line 9 – 14 we
iterate over the part of S which comes after the opening bracket of the i-th node and
keep a counter opened which keeps track of how many brackets have been opened but
not yet closed. If this counter is 0 and we encounter an opening bracket the edge from
i to the node associated with the opening bracket at position j is printed in line 11.
It should be remarked that the labels of the nodes of S are ordered by a depth-

first traversal. To show that the pointer list of a tree T can be converted to its string
representation in L we employ a depth-first traversal.
In order to navigate through T the following functions are needed:

8

– Parent(v) returns the parent of v and ∅ if v is the root node. To implement this
iterate through all vertices of T and return the unique node u which has a directed
edge to v

– FirstChild(v,<) returns the first child of v according to the order specified by
< and ∅ if v has no children. To implement this find the smallest node u which
has v as its parent

– NextSibling(v,<) returns the next sibling of v w.r.t. < and ∅ if v was the last
sibling. To implement this search for the smallest node u which is larger than v
and a child of v’s parent

Algorithm 2.2 Convert tree from pointer to string representation
1: function pointerToString(T,<)
2: cur ← root(T) ; state← ”down”
3: while cur 6= ∅ do
4: if cur has no children then print ”〈〉”
5: else if state ∈ {”down”, ”over”} then print ”〈”
6: else if state = ”up” then print ”〉”
7: if state = up or cur has no children then
8: if NextSibling(cur,<) 6= ∅ then
9: cur ← NextSibling(cur,<) ; state← ”over”

10: else
11: cur ← Parent(cur) ; state← ”up”
12: else
13: if FirstChild(cur,<) 6= ∅ then
14: cur ← FirstChild(cur,<) ; state← ”down”
15: else if NextSibling(cur,<) 6= ∅ then
16: cur ← NextSibling(cur,<) ; state← ”over”
17: else
18: cur ← Parent(cur) ; state← ”up”

The algorithm performs a depth-first traversal in logspace by remembering whether
the last move was ”up” in order to prevent retracing an already visited path. For < we
use the order induced by the labeling of T .

Table 2.1: Applying Algorithm 2.2 to the directed tree in Figure 2.1
cur 1 2 5 2 3 6 7 3 4 1 ∅
state down down down up over down over up over up up
Print 〈 〈 〈〉 〉 〈 〈〉 〈〉 〉 〈〉 〉

9

2.2 Linear order on tree isomorphism classes
To canonize trees we define a linear order <T on tree isomorphism classes. This means
the order relation is only defined for non-isomorphic pairs of trees. Otherwise, i.e. for
two isomorphic trees S, T , neither S <T T nor T <T S holds and we will write S =T T .
Similarly, S ≤T T is used if either S <T T or S =T T .

Definition 2.2. Let S, T be two directed trees with root nodes s, t. The relation S <T T
holds if

(i) |S| < |T |, or

(ii) |S| = |T | and #s < #t, or

(iii) |S| = |T |, #s = #t = k and (S1, . . . , Sk) <T (T1, . . . , Tk)
where S1, T1, . . . , Sk, Tk denote the subtrees induced by the children of s, t respec-
tively and <T in this context is meant as lexicographic order using <T to compare
two subtrees. Furthermore, the sequences of subtrees are ordered according to ≤T ,
e.g. Si ≤T Sj whenever i < j

Notice, the ordering of the sequences of subtrees is not unique whenever there are at
least two subtrees which are isomorphic but the third condition is well-defined nonethe-
less if we can show that

Lemma 2.3. The relation <T is a linear order on tree isomorphism classes

Proof. This statement is equivalent to <T being transitive and S =T T iff S ∼= T . We
will prove this statement by induction over tree depth. Our inductive hypothesis for
trees S, T,R of depth at most d consists of two parts and states

(1) S =T T ⇐⇒ S ∼= T

(2) S <T T and T <T R =⇒ S <T R

For the base case we look at trees of depth at most 1. For this narrow class of trees the
number of children of the root node is a complete invariant and thus totally characterizes
all trees in this class. Therefore the third condition of Definition 2.2 never applies. It is
immediate that both parts of the inductive hypothesis hold in this case.
Now, let us consider trees S, T,R of depth at most d+ 1 with d > 0. To show the first

part of our inductive hypothesis we distinguish between two cases. The first case is that
S has depth d + 1 and T has depth at most d. As S and T have different depth they
cannot be isomorphic. Thus we have to show that either S <T T or T <T S. Assume
the opposite S =T T and therefore (S1, . . . , Sk) =T (T1, . . . , Tk). However, the sequences
of subtrees can never match as there exists an Si in the sequence which isn’t isomorphic
to any Tj for 1 ≤ j ≤ k and by inductive hypothesis it follows Si 6=T Tj. This Si is a
subtree with depth d as any subtree Tj can have depth at most d− 1.
For the second case S and T both have depth d + 1. Here we need to show both

directions of the equivalence. First, let us show that if S ∼= T then S =T T must hold.

10

This boils down to arguing why (S1, . . . , Sk) =T (T1, . . . , Tk). As S and T are isomorphic
there exists an isomorphism π s.t. Si ∼= Tπ(i) for all 1 ≤ i ≤ k. By inductive hypothesis
it must hold that Si =T Tπ(i) and that (Tπ(1), . . . , Tπ(k)) is a sequence ordered according
to ≤T . Therefore we can conclude that S =T T . For the other direction S =T T and
(S1, . . . , Sk) =T (T1, . . . , Tk). Again, by inductive hypothesis Si ∼= Ti for all 1 ≤ i ≤ k.
Let si, ti be the root nodes which correspond to Si, Ti. With that we can construct a
partial isomorphism between S and T by mapping si to ti. Successively applying this
method enables us to construct a complete isomorphism between S and T .
Finally, we show that transitivity holds in the inductive step. Let S <T T and

T <T R. Whenever the first or second condition of Definition 2.2 holds for any of the
two comparisons it is clear that S <T R must hold as well. For the other case this means
that S, T,R have the same number of nodes and their roots have the same number k of
children, i.e.

(S1, . . . , Sk) <T (T1, . . . , Tk) and (T1, . . . , Tk) <T (R1, . . . , Rk)

There must be minimal indices 1 ≤ i, j ≤ k s.t. Si <T Ti and Tj <T Rj. Notice that for
any l < i it must hold that Sl =T Tl and the same applies to j and T,R. It remains to
verify for the three cases i < j, i = j,i > j that transitivity holds.

The next crucial step is to show that given two directed trees S, T we can compute
this order relation in logspace. Given a node v of a tree T we need to count #v, the
number of children of v, and the number of nodes in the subtree Tv induced by v in L.
To compute #v we iterate through all children of v by calling FirstChild(v) and then
repeatedly calling NextSibling. To count |Tv| iterate through all nodes of T and check
whether the current node is a descendant of v, i.e. if repeatedly calling Parent returns
v. Also add 1 to the counter for v itself.
The algorithm to compute <T requires us to partition the children of a given node v

in T into so called equicardinality blocks.
Definition 2.4. For a directed tree T and a node v of T we call a non-empty subset
B = {v1, . . . , vl} of the children of v an equicardinality block if the size of the induced
subtree of every element in B has the same size k, i.e.

|Tv1 | = · · · = |Tvl
| = k

and B is inclusion-maximal. We say B has block size k and cardinality l. As k uniquely
determines B we also write B(k) to refer to B
We need to be able to determine the block size and cardinality of every equicardinality

block for a given node. Furthermore, we need to iterate through all equicardinality blocks
in ascending order of their block size and through all elements of a block in arbitrary
order. For example, let T be a tree with a node t which has children t1, . . . , t6 with

(|Tt1|, . . . , |Tt6|) = (2, 5, 2, 4, 4, 2)

then t has equicardinality blocks B(2), B(4), B(5) with respective cardinalities 3, 2, 1.
For a given tree T the following functions enable us to do all these operations on the
equicardinality blocks:

11

– minSubtreeSize(v, k′) := min {|Tvi
| | |Tvi

| > k′ and vi is a child of v} and ∅ if
such a minimum does not exist. It returns the smallest block size k larger than k′
w.r.t. node v.

– kSizedSubtrees(v, k) := | {vi is a child of v | |Tvi
| = k} |. Returns the cardinal-

ity of B(k)

– kBlockMember(v, k, u) returns the smallest child which comes after u in B(k)
w.r.t. the order induced by the labeling and ∅ if there is no such successor. If
u = ∅ then the first child is returned.

These three functions can be easily implemented in logspace by iterating over the sets
specified in their definition using the previously defined functions.
The main function to compute our linear oder for two trees S, T and s ∈ V (S), t ∈

V (T) is defined as

compare(s, t) :=

−1 , if Ss <T Tt

0 , if Ss =T Tt

1 , if Tt <T Ss

Let us consider the implementation of compare in Algorithm 2.3. In line 2 we check
whether the induced subtrees Ss and Tt are both the single node tree in which case they
are isomorphic. In line 3 the first two conditions of Definition 2.2 are verified. If the
sizes don’t match the according result is returned, i.e. if |Ss| < |Tt| or #s < #t return
-1 and vice versa. In line 5 we iterate over all block sizes k in ascending order. In line
8 we check that the block size and cardinality of the current blocks under consideration
match. If this isn’t the case then we know that Ss, Tt can’t be isomorphic. If k < kt
then return -1 as the (next) smallest subtree of the children of s is smaller than that for
t. The case l 6= lt is special as it needs further recursive calls to decide the result which
will be elaborated later.
If the current blocks match, i.e. we pass line 8, then there are two cases. For l = 1

this means both blocks consists of only one child s′, t′. If their subtrees don’t match
then the same result applies to Ss and Tt. Otherwise, we continue with the next block.
If l > 1 then we have l children s1, t1, . . . , sl, tl. One might think that we need to
order both sequences of children and then compare them pairwise to check whether the
third condition of Definition 2.2 is satisfied. However, there exists a smarter way to
accomplish this. For a child si let (si,gt, si,eq) be its order profile. Then si,gt is defined as
the number of children tj for which it holds that tj <T si with 1 ≤ j ≤ l. Analogously,
si,eq is the number of children for which tj =T si holds and similarly the order profile
for a child ti is defined. Then we search for a child si with si,gt = 0. If such a child
doesn’t exist we know that there must be a child tj such that its induced subtree is
smaller than (<T) any induced subtree of the children of s and therefore Tt <T Ss. If
such an si exists then let us call it smin. In the same fashion we look for a tmin. If it
exists as well then by minimality it must hold that Ssmin

and Ttmin
are isomorphic and

thus Ssmin
=T Ttmin

. Next, we need to check whether smin,eq = tmin,eq. If this isn’t the
case, e.g. smin,eq < tmin,eq then Tt <T Ss. If they happen to be equal we look for the

12

Algorithm 2.3 Given trees S,T compute <t-relation for the subtrees induced by s,t
1: function compare(s,t)
2: if #s = #t = 0 then return 0
3: if |Ss| 6= |Tt| or #s 6= #t then return . . .
4: k, kt ← 0
5: while k 6= ∅ do
6: k ← minSubtreeSize(s, k) ; kt ← minSubtreeSize(t, kt)
7: l← kSizedSubtrees(s, k) ; lt ← kSizedSubtrees(t, kt)
8: if k 6= kt or l 6= lt then return . . .
9: if l = 1 then

10: s′ ← kBlockMember(s, k,∅)
11: t′ ← kBlockMember(t, k,∅)
12: if compare(s′, t′) 6= 0 then return compare(s′, t′)
13: else if l > 1 then
14: h← 0
15: repeat
16: smin, tmin ← ∅
17: for (p, q) ∈ {(s, t), (t, s)} do
18: pi ← ∅
19: while (pi ← kBlockMember(p, k, pi)) 6= ∅ do
20: peq, pgt ← 0
21: qi ← ∅
22: while (qi ← kBlockMember(q, k, qi)) 6= ∅ do
23: res← compare(pi, qi)
24: if res = 1 then pgt ← pgt + 1
25: else if res = 0 then qeq ← qeq + 1
26: if pgt = h then pmin ← si ; break
27: if pmin = ∅ then return . . .
28: if seq 6= teq then return . . .
29: h← h+ seq
30: until h = l
31: return 0

13

next minimal pair of children. For that purpose we keep a counter h which starts with
0 and every iteration is incremented with smin,eq (or tmin,eq). If h = l we know that
the children of s can be bijectively mapped to the children of t such that their induced
subtrees are isomorph. In line 17 we use the tuple (p, q) in the sense of a preprocessor
macro since the procedure to find smin is the same as the one to find tmin. For instance,
if (p, q) = (s, t) then pi means si and qi means ti.
For the special case l 6= lt mentioned above we basically apply the same method as for

l = lt. We compute the order profiles and compare them. W.l.o.g. assume that l < lt.
We need to figure out if the children s1, . . . , sl can be injectively mapped to t1, . . . , tlt
such that their induced subtrees are isomorph. If that is the case(∗) then we know that
Tt <T Ss since we are forced to compare two children ti, sj with k = |Tti | < |Ssj

| where k
refers to the block size last assigned in line 6. This is not necessarily the case. Therefore
we need to verify whether the above mentioned mapping exists. To do this we apply the
same routine as in line 15 – 30 with an exception in the case that our current smin is
the last smin, i.e. smin,eq + h = l. If no matching tmin exists we return -1 (Ss <T Tt) as
usual. Otherwise we return 1, which is clear if tmin,eq < smin,eq. If tmin,eq ≥ smin,eq then
the above argumentation(∗) applies.

Theorem 2.5. Given two directed trees S, T with two nodes s ∈ V (S), t ∈ V (T) calling
the recursive procedure compare(s, t) described in Algorithm 2.3 works in L

Proof. To prove that this algorithm works in L w.r.t. S, T as input let us first explain
how a usual implementation of this recursion would work and where it fails. What
happens if a call compare(s, t) induces a recursive call compare(s′, t′)? Let us name
the first call the parent call and the second one the child call. Then all variables which
have been assigned in the parent call along with a pointer to the line at which the child
call has been made are pushed onto a global stack S. In this case the pointer would
either point to line 12 or 23. After that the child call is executed, returns its result
and the environment of the parent call is restored by popping the necessary information
from S. So, for each recursive call some information needs to be pushed onto S. As the
recursive depth can be linear w.r.t. the tree size it is prohibitive to store information for
every recursive call. Therefore we need a more subtle way to restore the environment
of the parent call. Let us begin with the simple observation that the parents of s′ and
t′ are s and t hence we can recompute s and t without storing anything. Next, let us
consider the lines 12 and 23 at which the recursive calls are made. We know that k = kt
and l = lt in the parent call as we must have passed line 8 before the child call. Since
k = |Ss′ | and l = kSizedSubtrees(s, k) we can recompute this information without
additional storage as well. By knowing l we can deduce whether the child call was made
in line 12 or 23. If l = 1 we can check the condition in line 12 and continue with the
parent call. Notice, how no information at all needs to be pushed onto S. If l > 1 then
we need to push smin, seq, sgt, si, tmin, teq, tgt, ti, h and (p, q) onto S before the child call.
We only need 1 bit to restore (p, q) and log l bits for each of the other variables as they
range between 0 and l.
Therefore if storing O(log l) bits on S for each parent call doesn’t exceed the logarith-

mic space bound w.r.t. n = |S| = |T | this algorithm works in L. The worst case is if we

14

travel from the root nodes all the way down to some leaves as we execute the recursion
since the most information needs to be stored in S. Let (l1, . . . , lr) be the sequence of
l values which we encounter for each recursive call. The first call compare(s, t) deals
with the whole trees S and T and therefore with n nodes. For the second call we con-
sider subtrees of size at most n/l1. For example, assume l1 = 2 then the root nodes of
S and T have two children whose induced subtrees have the same size. It follows that
these subtrees can be of size n/2 at most. For the third call only subtrees of size at
most n/(l1l2) are considered and so forth. For the last call we reach the leaves and thus
consider single node trees:

n

l1l2 · · · lr
= 1 ⇐⇒ n = l1l2 · · · lr

For each call i at most 10 log li bits need to be stored on the stack (the 10 variables in
the case that li > 1). Therefore we need to show that

10
r∑
i=1

log li ≤ c log n

This follows from applying the logarithm to the previous equation

log n = log(l1l2 · · · lr) =
r∑
i=1

log li

It is worth noting that to perform this recursion in logspace as described above one
has to adequately replace the recursive calls in Algorithm 2.3 with multiple Gotos.
Unfortunately, the readability of the resulting code decreases dramatically.
It remains to verify the correctness of Algorithm 2.3 which can be done by induction

over tree depth.
Now, to compute a canonical form of a tree we extend the order <T to nodes.

Definition 2.6. Given a tree T and two nodes u, v ∈ V (T) we define a total linear
order u <t v which holds if

1. Tu <T Tv, or

2. Tu =T Tv and u < v

Corollary 2.7. A canonical form of directed trees can be computed in L

Proof. Given a directed tree T compute its string representation T ′ using Algorithm 2.2
and <t as order. It follows that T ′ is a canonical form in string representation (if we need
to distinguish two nodes u, v using their labels we know that their induced subtrees are
isomorphic and therefore their order is irrelevant). Using Algorithm 2.1 we can convert
T ′ back into its pointer list representation.

15

Corollary 2.8. A canonical labeling for directed trees can be computed in L

Proof. Recall that a canonical labeling is an isomorphism between a given tree T and its
canonical form T ′. Concurrently perform a depth-first traversal on T and T ′ as employed
in Algorithm 2.2 and use <t as order. As T ∼= T ′ the nodes which are visited at the
same time can be mapped to each other to obtain the wanted isomorphism.

2.3 Undirected trees, forests, colored trees
The result of canonizing directed trees in logspace can be extended to undirected trees,
colored trees, forests and combinations thereof using some simple ideas.
To show that an undirected tree can be canonized in L we need to introduce the

concept of rooting a tree. Given an undirected tree T and a vertex t of T we say that
we root T at t if we orient an edge {u, v} ∈ T as (u, v) iff u is closer to t than v,
i.e. dT (u, t) < dT (v, t). It is clear that the resulting tree is a directed version of T with
root node t.

Lemma 2.9. Given an undirected tree T and a vertex v of T the tree T can be rooted
at v in L

Proof. It suffices to show that the distance between any two nodes s, t in an undirected
tree T can be computed in L.

Algorithm 2.4 Compute distance between two nodes s, t in an undirected tree T
1: function distance(T ,s,t)
2: cur ← s ; d← 0
3: while cur 6= t do
4: for each neighbor v of cur do
5: if there is a path from v to t in T − {cur, v} or v = t then
6: cur ← v ; d← d+ 1
7: break
8: return d

The correctness of this algorithm is due to the fact that there is exactly one path
between any two nodes s, t of a tree. It follows that there can be only one neighbor v of
s which is still connected to t when removing the edge {s, v} in T .

We remark that there is an alternative way to root undirected trees which does not
rely on the complex result of [Rei05]. This method can be found in [ADKK12, Fact 4.2].

Corollary 2.10. Given an undirected tree T it can be canonized in L

Proof. Any node of T can be considered to be the root. Therefore find the minimal
vertex v of T w.r.t. <t, root T at v and proceed to apply the canonization algorithm for
directed trees.

16

ε

010

f

Figure 2.2: Mapping f described in the proof of Corollary 2.12

Corollary 2.11. Given a directed forest T it can be canonized in L

Proof. Iterate over all root nodes of T in ascending order w.r.t. <t and canonize them.
To do this remember the last minimal root node and find the next larger one.

Corollary 2.12. Given a colored directed tree (T, c) with c : V (T) → {0, 1}∗ it can be
canonized in L

Proof. We provide an injective mapping f from colored directed trees to directed trees
with the property that two colored directed trees (T, c), (S, d) are isomoprhic iff f(T, c)
and f(S, d) are isomorphic. Then to canonize a colored tree (T, c) we compute T ′ =
f(T, c), apply the tree canonization algorithm to obtain the canonical form T ′′ of T ′
and finally return f−1(T ′′). It is not hard to verfiy that this yields a canonical form for
colored directed trees as we will argue later on.
We constructively define f(T, c) = T ′. To obtain T ′ take T and for each node u of

T add 4 new nodes which are only connected to u. Let c(u) = c1c2 . . . ck be the color
associated with u. For every 1 ≤ i ≤ k attach a new path of the same depth to u, i.e. T ′
has a path (u, x1, . . . , xi). Attach two new vertices to xi if ci = 0 otherwise if ci = 1
attach three new vertices to xi. If c(u) is the empty word ε no paths are attached to u,
see Figure 2.2.
It is easy to recognize that f is an invariant since the labeling is ignored. To see that

f is a complete invariant we show how to compute f−1(T ′). Additionally, it holds that
whenever f(T, c) ∼= f(S, d) via π the same isomorphism π proves that (T, c) and (S, d)
are isomorphic, of course ignoring the newly added vertices for the uncolored trees.
To compute f−1(T ′) notice that the maximal out-degree of the newly added vertices in

T ′ is 3. As we have attached four new nodes to every old node we can easily distinguish
between these two kinds. To reconstruct the color associated with an old node u we
decode the paths in an obvious way.
As f and f−1 can be computed in L this concludes our proof.

A simpler way of showing that colored directed trees can be canonized in logspace is
to incorporate the coloring as additional condition in Definition 2.2, i.e. check whether

17

the color of the root node of S is lexicographically smaller than that of the root node
of T before the first condition. From that it also conveniently follows that a canonical
labeling for colored directed trees can be computed in L.
So, why have we bothered showing the previous reduction? The reason is that the

general proof concept employed in this example is essentially the same one used in the
following two chapters and can be easily explained using this example. Let us outline
the argument in a general setting where C is the class of graphs we want to canonize
and T is a class of graphs which we can already canonize via a function canon(·). We
need a complete invariant f : C → T , i.e. for all G,H ∈ C it holds that G ∼= H iff
f(G) ∼= f(H) and the image of f is a graph of the class T . Let class(·) denote the
set of isomorphism classes of a graph class. Notice how f induces an injective mapping
γ : class(C) → class(T). In our example this means that every isomorphism class of
colored directed trees is uniquely associated with an isomorphism class of directed trees
but not all isomorphism classes of directed trees have a preimage in γ, for example
consider the trees where every node has degree at most 3.
Furthermore, we need a function g : T → C which given an isomorphic copy T̂ of

TG = f(G) returns a graph g(T̂) isomorphic to G. In terms of Figure 2.3 this means
that g must map its input to the same isomorphism class that the preimages of TG
and TH had. In the context of our example g = f−1 and therefore this requirement
immediately follows. The canonical form of G ∈ C is given by

g(canon(f(G)))

2.4 Hardness results
To show that the isomorphism and automorphism problem for directed and undirected
trees is logspace-hard we introduce the following L-complete problem

Problem Ord
Input Directed path P , vertices s, t ∈ V (P)
Question Is there a path from s to t in P?

A directed path can be seen as directed tree with exactly one leave. Likewise, an
undirected path can be seen as an undirected tree with at most two leaves. Obviously,

class(C):

class(T):

. . .

. . .

G H Ĝ

f g

TG TH

canon

T̂

γ

Figure 2.3: Canonization reduction argument

18

Ord can be decided in L. The hardness for this problem was shown in [Ete97] via
quantifier-free projections which are an even weaker type of reductions than constant-
depth reductions.
We show that the following problem is L-complete as well using Ord.

Problem PathCenter
Input Undirected path P , vertex v ∈ V (P)
Question Is |V (P)| odd and v the unique center of P?

The logspace upper bound for this problem is clear since the eccentricity of vertices
in paths can be easily computed in logspace.

Lemma 2.13. PathCenter is L-complete

Proof. For the hardness we use the reduction given in [ADKK12]. Let the mapping
(P, s, t) 7→ (P ′, n) be the reduction from Ord to PathCenter where n denotes the last
vertex of the directed path P with no outgoing edges

V (P ′) = V (P) ∪ {i′ | i ∈ V (P)} ∪ {s′′}
E(P ′) = E1 ∪ E2 ∪ E3 ∪ E4

E1 = {{i, j} | (i, j) ∈ E(P) and j 6= t}
E2 = {{i′, j′} | (i, j) ∈ E(P) and j /∈ {s, t}}
E3 = {{i′, s′′} | (i, s) ∈ E(P)} ∪ {{s′′, s′}}
E4 = {{i, t′} | (i, t) ∈ E(P)} ∪ {{i, t′} | (i, t) ∈ E(P)} ∪ {{n, n′}}

We basically take the path P and copy it twice and undirect its edges (E1, E2). Addition-
ally, we insert a new vertex s′′ in the second copy of P in-between s′ and its predecessor
(E3). Let x and x′ be the vertices that come right before t and t′. Then we swap the
edges, i.e. instead of {x, t} and {x′, t′} we choose the edges {x, t′} and {x′, t}. Lastly,
we connect n and n′.
To prove the correctness we show that if s comes before t, i.e. we have an instance

of Ord, then n is the center of P ′ and if s doesn’t come before t this isn’t the case.
Because |V (P ′)| = 2|V (P)| + 1 the undirected path P ′ always has an odd number of

P1:
s t n

P ′1:

s t n

s′′ s′ t′ n′

P ′2:

t s n

t′ s′′ s′ n′

P2:
t s n

Figure 2.4: Reduction from Ord to PathCenter

19

vertices. In an undirected path a node v is the center node iff the distance from both
ends to v is equal. Let dt and dt′ be the distances of the path between n and the end
node which goes over t and t′ respectively. Assume s comes before t in P and a is the
first node in P . Then these distances are given by

dt = dP (n, t) + dP (t, s) + dP (s, a) + 1
dt′ = 1 + dP (n, t) + dP (t, s) + dP (s, a)

Obviously, dt = dt′ in this case. In dt the plus one comes from the additional edge caused
by s′′ whereas in dt′ the plus one comes from the edge from n to n′. Now, assume that
t comes before s. Then we have

dt = dP (a, n)
dt′ = 2 + dP (a, n)

For dt′ the edge between n and n′ as well as the edge from s′ to s′′ occurs thus the plus
two.

Finally, we can prove that the automorphism and isomorphism problem for directed
and undirected trees is L-complete. It should be mentioned that to solve the tree auto-
morphism problem for a tree T in logspace it suffices to iterate over all pairs of nodes
u 6= v of T and check if Tu and Tv are isomorph.
Theorem 2.14. The graph isomorphism and automorphism problem for directed and
undirected trees is L-complete
Proof. We show that PathCenter can be reduced to all these problems. First, let us
consider the case of automorphism for undirected trees. The reduction is given by the
mapping (P, c) 7→ (T, c)

V (T) = V (P) ∪ {c′} , E(T) = E(P) ∪ {{c, c′}}

To understand the correctness the key fact is that every isomorphism and thus every
automorphism must respect all invariants. In our case this means that cmust be mapped
to itself in every automorphism as it is the only vertex with degree three. As the distance
between two vertices is an invariant as well and the ends of P can be only mapped to
their kind as they have degree one (with an exception being that c is one of the end
nodes) it follows that one end can be mapped to the other in an automorphism only if
they have the same distance to c. This means that c is the center node of P iff T has a
non-trivial automorphism.
For the isomorphism of undirected trees the following mapping (P, c) 7→ (T1, T2) works.

Let e1, e2 be the end nodes of P .

V (T1) = V (P) ∪ {c′, e′1, e′′1} , E(T1) = E(P) ∪ {{c, c′} , {e1, e
′
1} , {e1, e

′′
1}}

V (T2) = V (P) ∪ {c′, e′2, e′′2} , E(T1) = E(P) ∪ {{c, c′} , {e2, e
′
2} , {e2, e

′′
2}}

In essence, for the correctness of this reduction the same arguments as before apply.
For the case of directed trees simply choose c to be the root node in the reductions.

20

Note, that the set of graphs constructed in the reductions of Theorem 2.14 can be
exactly characterized as the set of undirected trees which become a path when all leaves
are removed. This class of graphs is also known as caterpillars. It follows that every
graph class which is a superset of caterpillars must be logspace-hard due to the same
reductions. The graph classes (CA, HCA, interval) considered in the last chapter fulfill
this property and thus are logspace-hard.

P :
ce1 e2

T1: e1

e′1

e′′1

e2
c

c′

T2: e1 e2

e′2

e′′2

c

c′

Figure 2.5: Reduction from PathCenter to isomorphism of undirected trees

21

3 k-Trees
In an informal sense the tree width is a measure of how much a graph resembles a tree.
k-Trees can be described as the set of maximal graphs with tree width k such that adding
another edge leads to a tree width of k + 1. In this chapter we show how to canonically
label k-trees in L and why deciding isomorphism for this class is logspace-hard following
[ADKK12].

Definition 3.1 ([Die12, cf. p. 337]). Given a graph G and a tree T = (V , E) such that
V is a family of vertex sets, i.e. Vt ⊆ V (G) for all Vt ∈ V. The tuple (T,V) is called a
tree decomposition of G if the following holds

1. V (G) = ⋃
Vt∈V Vt

2. for all {u, v} ∈ E(G) there exists a Vt ∈ V s.t. {u, v} ⊆ Vt

3. for all V1, V2, V3 ∈ V it holds that whenever V2 is a node on the unique path from
V1 to V3 in T then V1 ∩ V3 ⊆ V2

A vertex set Vt ∈ V is called a bag. The width of (T,V) is defined as the size of the
largest bag minus one, i.e.

max
Vt∈V
{|Vt|} − 1

The third condition can be reformulated as the requirement that whenever two bags
Vt, Vs have non-empty intersection then for all nodes Vr on the unique path between Vt
and Vs in T it must hold that Vr contains all nodes of this intersection Vt ∩ Vs.
The tree width of a graph G is defined as the minimum width among all possible tree

decompositions of G. For a tree S its tree width is always one (with exception of the
single node tree) and the obvious tree decomposition (T,V) has V = E(S) as its bags
and there is an edge between two nodes Vs, Vt of T if they have non-empty intersection.
The purpose of the minus one in the definition of the width of tree decompositions is to
associate trees with a tree width of one instead of two as this is arguably more natural.
As already mentioned a k-tree is a graph G with tree width k such that adding any

new edge to G leads to an increased tree width k + 1. For example, trees are exactly
the class of 1-trees. A forest F , which is a graph whose connected components are trees,
has tree width one as well. However, connecting two disjoint trees of F doesn’t increase
the tree width therefore F isn’t a 1-tree. In [AP89] the following inductive definition
has been given for k-trees.

22

1

2

3

4

7

5

6

8

1,2,3

1,2

1,2,4

2,3

2,3,5 2,3,6

1,3,7,8

Figure 3.1: Example of a 2-tree and its tree decomposition

Definition 3.2. A k-clique is a k-tree. Let G be a k-tree and M is a k-clique in G.
If a new vertex v is added to G such that v is connected to all vertices of M then the
resulting graph remains a k-tree. M is called support of v. The initial k-clique is called
the base of G

Any k-clique in G can be chosen as base from which point on the support of every
newly added vertex is unambiguous.
In Figure 3.1 a 2-tree G along with a possible tree decomposition is shown. Notice

that the given tree decomposition of G has width 3 and therefore isn’t minimal due to
the bag {1, 3, 7, 8}.

3.1 Canonically labeling k-Trees
To show how to canonically label k-trees in L we will first describe the algorithm and
show its correctness in this section. In the next section a logspace implementation is
described.

Definition 3.3. For a graph G we define T (G) by

– V (T (G)) =
{
M ⊆ V (G)

∣∣∣∣∣ M is a (k + 1)-clique in G or M is a k-clique in G
that is not contained in exactly one (k + 1)-clique

}

– {M1,M2} ∈ E(T (G)) ⇐⇒ M1 (M2

We show that T (G) is a tree decomposition of G. But since T (G) doesn’t contain
enough information such that its canonical form can be used as complete invariant the
kernel K of G is computed in Algorithm 3.5. The invariant kernel K allows us to root
T (G) and encode additional information into the so called colored rooted tree T (G, π̂).
The canonized form of this tree T̂ (G, π̂) then satisfies the requirements of a complete
invariant.

Lemma 3.4. G is a k-tree iff T (G) is a tree decomposition of G

23

Algorithm 3.5 Canonically label k-trees (cf. [ADK12, Algorithm 3.1])

1. Compute the graph T (G) (Definition 3.3) and check that it is a tree decomposi-
tion of G. If this is the case then let us call T (G) the tree representation of G.
Otherwise, reject since G is no k-tree (Lemma 3.4)

2. Compute the kernel K of G, which is a k- or (k + 1)-clique (Definition 3.6)

3. For each labeling π of the kernel K, i.e. a bijection π : K → {1, . . . , |K|}, do the
following steps
a) Compute the colored rooted version T (G, π) of T (G) (Definition 3.7)
b) Among the labelings π choose the one which leads to the lexicographically

smallest canonical form of the colored tree T (G, π). Let us denote this labeling
with π̂ and let T̂ (G, π̂) be this smallest canonical form

4. Compute a canonical labeling ϕ from T (G, π̂) to its canonical form T̂ (G, π̂)

5. Let Ĝ be the canonical form of G which is derived from T̂ (G, π̂) according to
Theorem 3.9 . Compute an isomorphism ϕ′ between G and Ĝ using ϕ, again due
to Theorem 3.9. Then ϕ′ is the wanted canonical labeling

Proof. First, we show that if G is a k-tree then T (G) is a tree decomposition of G. Let
G be a k-tree with base clique B = {v1, . . . , vk} and let (vk+1, . . . , vn) be the rest of
the vertices added to G in that order. Let us write Gi for the vertex-induced subgraph
G[v1, . . . , vi]. For Gk it is clear that it is a k-tree and the single node tree T (Gk) is a tree
decomposition thereof. Now, for i > k + 1 let the k-clique Si be the support of vi. We
can inductively assume that T (Gi−1) is a tree decomposition of Gi−1. If the support Si
is a node in T (Gi−1) then it occurs in more than one (k + 1)-cliques. For T (Gi) we add
the node Mi = Si ∪{vi} and connect it with Si. Otherwise, we need to add not only Mi

as node to T (Gi) but also Si. In this case Si must be connected to Mi and the unique
(k + 1)-clique in which it was previously contained. It is simple to check for both cases
that the conditions of Definition 3.1 still hold for T (Gi+1).
For the other direction we show that if T (G) is a tree decomposition of G then G is a

k-tree by constructing G from T (G) as described in Definition 3.2. If T (G) consists of a
single node of size k or k+ 1 then these vertices must form a clique in G and thus G is a
k-tree. Otherwise, letM be a k-clique node in T (G). We can useM as base to construct
G iteratively by adding all vertices u ∈ V (G) \M . Let Mu be the (k + 1)-clique node
that contains u and is closest to M . To add u we choose the first k-clique S on the path
from Mu to M in T (G) as support of u. Since T (G) is a tree there is only one path from
Mu to M .

Observe that the number of vertices of T (G) is polynomially bounded w.r.t. n =
|V (G)| as there can be at most nk+1 +nk (k+1)- and k-cliques in G. This is a necessary
condition to be able to compute T (G) in logspace.

24

Next, we explain how the kernel of a k-tree is defined using the unique center node of
T (G).

Lemma 3.5. If G is a k-tree then the center of T (G) is a single node

Proof. Assume this is not the case. Then the center must consist of two adjacent nodes.
One must be a k-clique and the other a (k + 1)-clique because k- and (k + 1)-cliques
must alternate in T (G). Additionally, a k-clique must be always connected to at least 2
other nodes in T (G). Therefore no leave of T (G) can be a k-clique. It follows that the
eccentricity of a k-clique must be odd whereas for a (k+ 1)-clique it must be even. This
contradicts that both center nodes have the same eccentricity.

Definition 3.6. The kernel of a k-tree G is defined as the set of vertices in the center
node of T (G)

Depending on the structure of G its kernel K can be either a k- or a (k+ 1)-clique. It
is not hard to see that the kernel of a k-tree must be an invariant. We choose K as root
node to convert T (G) into a directed tree. This enables us to uniquely associate every
(k+ 1)-clique M in V (T (G)) \K with the vertex v ∈ V (G) \K which is contained in M
but not in any ancestor ofM , i.e. a node on the path from K toM . Consider Figure 3.3
for an example. Given a vertex v ∈ V (G) \K we write Mv to denote its corresponding
(k+ 1)-clique and v(M) is defined as v such that M = Mv for any (k+ 1)-clique M but
K.
Before we define the colored rooted tree T (G, π) let us consider why a canonical form

of T (G) fails to be a complete invariant. In Figure 3.2 we see two non-isomorphic 2-
trees which have isomorphic tree representations, i.e. both have a path with 7 vertices
as tree representation. The reason for this is that the labels of T (G) contain necessary
information to reconstruct G which is lost when one simply canonizes T (G). Given a
(k + 1)-clique node in T (G) one has k + 1 possible choices to select a support for a new
(k + 1)-clique in G. This is encoded in the labels of the k-cliques of T (G). Using the
following method to color T (G, π) this information can be preserved.
Besides, one could ask what is the purpose of considering every possible labeling

π : K → {1, . . . , |K|} for the kernel K of G. The reason is that the vertices in K act as
an anchor in the canonization process. More specifically, given a k-tree G the vertices
of its kernel can be canonically labeled via π̂. The labeling π̂ is then used to extend this
canonical labeling to all vertices of G.

3

2 6

1

4 5

3

2 6

1

45

Figure 3.2: Two non-isomorphic 2-trees that have isomorphic tree representations

25

1

2 3

4

56

7

0

8 9

1,2

1,2,4

1,4

1,4,5

4,5

4,5,6

1,2,3

1,3

1,3,7

1,7

1,7,8 1,7,9

3,7

3,7,0

M4 M3

M5

M6

M7

M8 M9 M0

Figure 3.3: A 2-tree G and its tree representation T (G) rooted at its center

Definition 3.7. Given a k-tree G with kernel K and a bijection π : K → {1, . . . , |K|}
we define the colored rooted tree representation T (G, π) as follows. T (G, π) is the same
tree as T (G) with the exception that it is directed with K as its root node.
Given a vertex v ∈ V (G) \K let the level of v in G be

lG(v) = ddT (G)(K,Mv)/2e

The color of a node M in T (G, π) is given by the set c(M) = {c(v) | v ∈M} with

c(v) =

π(v) , if v ∈ K
lG(v) + |K| , else

Let us consider what the color mapping c for the vertices of the 2-tree G in Figure 3.3
looks like given a labeling π : {1, 2} → {1, 2} of its kernel. The mapping for c(v) is then
given by (

1 2 3 4 5 6 7 8 9 0
π(1) π(2) 3 3 4 5 4 5 5 5

)
We continue with proving that the colored rooted tree is a complete invariant.

Lemma 3.8. Let G,H be two isomorphic k-trees with an isomorphism ϕ : V (G) →
V (H). Then T (G, πG) and T (H, πH) are isomorphic via ϕ′(M) = {ϕ(v) | v ∈M} for
M in V (T (G)) provided that πG agrees with πH through ϕ, i.e.

πG(u) = πH(ϕ(u)) for all u in the kernel of G

Proof. It is not hard to see that an isomorphism between G and H leads to an iso-
morphism of T (G) and T (H) as well since the tree representations are invariant. It

26

remains to show that the colors are respected, i.e. for each M in V (T (G, πG)) it holds
that c(M) = c(ϕ′(M)) To show this we prove that the colors of the vertices of G and H
coincide, which means c(v) = c(ϕ(v)). If v is a vertex in the kernel of G then

c(v) = πG(v) = πH(ϕ(v)) = c(ϕ(v))

holds by assumption. Let k′ be the size of the kernels of G and H. If v is not part of
the kernel of G then

c(v) = lG(v) + k′ = lG(ϕ(v)) + k′ = c(ϕ(v))

since the level of a vertex is an invariant and hence must be preserved by an isomorphism.

The more demanding part of our claim is to prove that this invariant is complete. As
usual, this is shown constructively.

Theorem 3.9. Given a k-tree G, its colored rooted tree T (G, π) and an isomorphic
copy T ′ of T (G, π). A k-tree G′ can be constructed from only T ′ such that G ∼= G′.
Additionally, given an isomorphism between T (G, π) and T an isomorphism between G
and G′ can be constructed

Proof. Let K be the kernel of G and Mr the root node of T ′. The size of the kernel
|K| is given by k′ = |c(Mr)|. Then the number of vertices n in G′ is given by k′ plus
the number of (k + 1)-clique nodes in T ′ excluding the root node where M is called an
l-clique node in T if |c(M)| = l. The correctness follows from the fact that there is a
one-to-one correspondence between every vertex v ∈ V (G) \ K and the (k + 1)-clique
nodes via the mapping Mv. Let {v1, . . . , vn} be the vertex set of G′ and let {v1, . . . , vk′}
be a clique in G′. Furthermore, let (Mk′+1, . . . ,Mn) be the ordered set of (k+ 1)-cliques
in T ′ excluding the root node using the ordering induced by the labeling of T ′. Then we
can associate the (k + 1)-clique node Mi with the vertex vi in G for all k′ + 1 ≤ i ≤ n.
Now, for every vertex vi with k′ + 1 ≤ i ≤ n we add the following edges. For each color
ci in c(Mi) with ci < k′ add an edge between vci

and vi. Since every vertex in the kernel
can be distinguished from all other vertices by its color (consider the offset k′ = |K| in
Definition 3.7 of c(v)) it follows that all edges between a vertex in the kernel and one
outside of the kernel can be reconstructed by this part.
For each color ci ∈ c(Mi) with k′ < ci < cmax = max {cj | cj ∈ c(Mi)} let Mj be the

(ci − k′)-th node on the path from the root node to Mi counting only (k + 1)-clique
nodes. Notice how for cmax this (ci − k′)-th node is Mi itself. It can be shown that the
color of a vertex v ∈ V (G) \K along with one of the descendants of Mv unambiguously
references Mv itself.
A witnessing isomorphism ϕ : G → G′ can be derived from an isomorphism

φ : T (G, π)→ T ′ as

ϕ(v) =

π(v) , if v ∈ K
v(φ(Mv)) , else

27

By an inductive argument over the level of a vertex v it can be shown that this is
indeed a valid isomorphism.

This directly implies that our invariant is complete.

Theorem 3.10. Algorithm 3.5 works correctly, i.e. given two isomorphic k-trees G,H
they receive canonical labelings ψG, ψH such that ψG(G) = ψH(H)

Proof. Let π̂G, π̂H be the two labelings of the kernels of G and H respectively which give
rise to the lexicographically smallest canonical rooted trees. The colored rooted tree
representations T (G, π̂G) and T (H, π̂H) are isomorphic due to Lemma 3.8. It follows
that they have identical canonical forms T̂ = T̂ (G, π̂G) = T̂ (H, π̂H). Let ϕG, ϕH be the
canonical labelings for T (G, π̂G) and T (H, π̂H) to their canonized colored rooted tree
representation T̂ . By Theorem 3.9 we can compute a G′ from T̂ which is isomorphic to
both G and H. The canonical labelings ψG, ψH are constructed with the help of ϕG and
ϕH . It follows that

ψG(G) = G′ = ψH(H)

3.2 Logspace implementation
It remains to show that each step of the presented algorithm can be performed in
logspace. First, we show that this is the case for computing the tree representation
T (G).

Lemma 3.11. Given a graph G the tree representation T (G) can be computed in logspace.
Additionally, it can be checked that T (G) is a tree decomposition of G in L

Proof. Consider Algorithm 3.6. For brevity the part where the number of vertices of
T (G) is counted has been omitted but can be easily added. The function isKNode
counts in how many (k + 1)-cliques the given k-clique occurs and concludes if the k
vertices form a k-clique node in T (G). Since we know that every edge in T (G) is given
by a (k+ 1)-clique node and a k-clique node we can iterate over all (k+ 1)-clique nodes
and check which k-clique nodes in T (G) are a proper subset thereof. The condition that
vi < vi+1 in the loop ensures that the same edge isn’t printed multiple times.
To verify that T (G) is a tree decomposition we have to check that T (G) constitutes a

tree and the conditions of Definition 3.1 hold, which is not difficult. To see that T (G)
is a tree consider the characterization that an undirected tree is a graph for which there
is exactly one path between any two vertices. This condition can be restated as follows.
Given an undirected graph G for any two vertices s 6= t ∈ V (G) it must hold that t is
either a neighbor of s or there exists exactly one neighbor s′ of s such that there is a
path from s′ to t in the graph G without the edge {s, s′}. Clearly, this can be checked
in logspace. Obviously, when G is a tree then this condition holds for the same reasons
that Algorithm 2.4 – computing the distance between two nodes in an undirected tree –

28

is correct. For the other direction we first argue that G must be connected. If this isn’t
the case then there are two vertices s, t for which there is no path and thus no suitable
s′. If G is connected but no tree then there must be a cycle s− s′− · · ·− t− · · ·− s′′− s
in G. The vertices s′, s′′ are both neighbors of s for which there is a path to t when
removing the edge between s and s′ or s′′ and therefore the condition fails again. For a
triangle in G notice that t must be either a neighbor of s or connected to s via a path
of length at least two.

Algorithm 3.6 Compute tree representation T (G) on input G for fixed k
1: function T(G)
2: for v1 < v2 < · · · < vk+1 ∈ V (G) do
3: if {v1, . . . , vk+1} is clique in G then
4: if isKNode(G, v1, . . . , vk) then
5: print ” {{v1, . . . , vk} , {v1, . . . , vk, vk+1}} ”
6: function isKNode(G, v1, . . . , vk)
7: i← 0
8: for v ∈ V (G) \ {v1, . . . , vk} do
9: if {v, v1, . . . , vk} is clique in G then i← i+ 1

10: return true iff i 6= 1

Lemma 3.12. The colored rooted tree T (G, π) for a k-tree G and a labeling π of its
kernel can be computed in L

Proof. First, observe that the center of an undirected tree can be computed in logspace
as this basically only involves computing the eccentricity of each node which in turn
means to compute the distance between all pairs of nodes. This is covered by Algorithm
2.4. Therefore we can also find the kernel of a k-tree. For the same reason we can also
compute the colors of each vertex in the nodes of T (G) and by Lemma 2.9 we can root
T (G, π) at its center node.

It is not difficult to see that the rest of Algorithm 3.5 can be computed in L as well.
For step 4 we use Corollary 2.8 and the computation of step 5 is clear.

Corollary 3.13. k-Trees can be canonically labeled in L for a fixed k using Algorithm
3.5

3.3 Hardness results
We show that the automorphism and isomorphism problem for k-paths is L-hard. A
k-path is a k-tree for which there exists a tree decomposition that is a path. As k-paths
are a subset of k-trees it follows that the hardness applies to k-trees as well.

Lemma 3.14. The automorphism problem for k-trees is L-hard for a fixed k

29

Proof. We show this by reducing from the problem PathCenter, which was introduced
in the last chapter. The reduction mapping (P, c) 7→ P ′ where the neighbors of c are n1
and n2 is defined by

V (P ′) = V (P) ∪ {c1, c2}
E(P ′) = {{u, v} | 1 ≤ dP (u, v) ≤ k for u, v ∈ V (P)}

∪ {{u, ci} | 0 ≤ dP−ni
(u, c) < k for u ∈ V (P), i ∈ {1, 2}}

where P − ni refers to the vertex-induced subgraph after removing the vertex ni. In
Figure 3.4 an example is shown. The path P is copied and two new vertices c1, c2 are
added. The first part of the edge relation forces every (k + 1) consecutive nodes in P
to be a (k + 1)-clique. The second part of E connects c1 and c2 with c and the (k − 1)
vertices to left and to the right of c respectively.
To see that P ′ is a k-tree verify that T (G) defines a tree decomposition of P ′. To

see that P ′ is a k-path we show how to construct a tree decomposition T of P ′ which
is a path. LetM be the set of all (k + 1)-cliques in the vertex-induced subgraph of P ′
after removing c1 and c2. Let Mci

be the unique (k + 1)-clique which contains ci for
i ∈ {1, 2}. Let T be a tree which has M ∪ {Mc1 ,Mc2} as its nodes. For two nodes
Ma,Mb ∈ M connect them if they share k common vertices, i.e. |Ma ∩Mb| = k. Now,
let Ma,Mb ∈ M be the two connected nodes which both share k vertices with Mci

and
insert Mci

between Ma and Mb, i.e. Ma −Mb becomes Ma −Mci
−Mb for i ∈ {1, 2}. In

the case that k = 1 it holds that for Mc1 and Mc2 the same pair of vertices Ma,Mb ∈M
is selected. In this case replace Ma −Mb with Ma −Mc1 −Mc2 −Mb.
We assume that the distance between c to one of the both end nodes of P is larger

than k. Otherwise, we can trivially check the instance as k is a constant and map it
appropriately. For a path P on n vertices the only automorphism besides the trivial
one is the mapping

(
1 2 ... n−1 n
n n−1 ... 2 1

)
. If P consists of an even number of vertices this

mapping has no fix point, i.e. a vertex which is mapped onto itself. If P has an odd
number of vertices then this single fix point is always the center node. The node c
has a distinguished degree from all other vertices in P ′ and therefore must be mapped
onto itself for a valid automorphism. It follows that P ′ can only have a non-trivial
automorphism iff c is the center of P .

Lemma 3.15. The isomorphism problem for k-trees is L-hard for a fixed k

cn1 n2

c2 c1

cn1 n2

c2 c1

Figure 3.4: Reduction from PathCenter to automorphism of k-trees
Resulting k-paths for path on 7 vertices for k = 1 (left) and k = 2 (right)

30

Proof. We slightly modify the previous reduction as follows. Given a path P and a node
c ∈ V (P) let n1, n2 again refer to the neighbors of c and let e1, e2 be the both end nodes
of P . The reduction mapping (P, c) 7→ (P1, P2) is given by

V (Pj) = V (P) ∪ {c1, c2, e}
E(Pj) = {{u, v} | 1 ≤ dP−ni

(u, v) ≤ k for u, v ∈ V (P)}
∪ {{u, ci} | 0 ≤ dP−ni

(u, c) < k for u ∈ V (P), i ∈ {1, 2}}
∪ {{u, e} | 0 ≤ dP (u, ej) < k for u ∈ V (P)}

for j ∈ {1, 2}.
This is basically the same reduction as before with an additional vertex. Given the

input (P, c) compute the k-path P ′ as before. Then create two copies P1, P2 of P ′ with an
additional vertex e. For Pi this vertex e is connected to the end of P ′ given by the node ei
such that a (k+1)-clique is formed and i ∈ {1, 2}. This forces any isomorphism between
P1 and P2 to swap the end nodes of P ′ and thus represent a non-trivial automorphism
for P ′. This is similar to the construction in Theorem 2.14 shown in Figure 2.5.

Corollary 3.16. The isomorphism and automorphism problem for k-trees is L-complete
for a fixed k

31

4 Helly Circular-Arc graphs
A graph is called an interval graph if each of its vertices can be assigned to an interval
on a line such that two vertices are adjacent if and only if their intervals have non-empty
intersection. An extension of this concept is to assign the vertices to intervals on a circle
instead. The corresponding graph is called a circular-arc (CA) graph. Additionally, if
such a set of circular arcs abides by a certain property the graph is called Helly circular-
arc (HCA) graph. The class of interval graphs is a subclass of HCA graphs.
Fields of application for these graph classes are, among others, scheduling problems

and computational tasks related to DNA due to the fact that "the set of intersections
of a large number of fragments of genetic material in a virus [is] an interval graph" and
"genetic information [is] arranged inside a linear structure[. . .]" [McC03].
The recent result of [KKV13] – whom we will closely follow in this chapter – has re-

vealed how to canonize HCA graphs in L. As byproduct this algorithm allows recognition
of HCA graphs in L as well. The matching lower bound for the isomorphism problem
for HCA and interval graphs follows from the remark made after Theorem 2.14.
Let us start by formally introducing HCA graphs and their related concepts.

Definition 4.1. A set system S consists of a set of subsets w.r.t. some set A, i.e. for
all X ∈ S it holds that X ⊆ A

Definition 4.2. A set system S is Helly if for every subset S ⊆ S it holds that⋂
X∈S

X 6= ∅ whenever X ∩ Y 6= ∅ for all X, Y ∈ S

Definition 4.3. The intersection graph I(S) of a set system S is the graph (S, E) with
the edge relation being defined by {X, Y } ∈ E iff X ∩ Y 6= ∅

A circular-arc (CA) system A is a set system of arcs on a circle. Additionally, if A is
Helly then it is an HCA system. Likewise, an interval system I is a set of intervals on
a line. Observe that every interval system is Helly and can be seen as a special case of
a CA system which doesn’t cover the whole circle.

a

b c

d e a

b c
d,e

Figure 4.1: HCA graph and a non-Helly
CA representation

Figure 4.2: Two different interval mod-
els of the same graph

32

Definition 4.4. A graph G is a CA graph (HCA graph, interval graph) if there exists
a CA system (resp. HCA system, interval system) S such that G ∼= I(S)

By the above remarks it follows that every interval graph is an HCA graph which in
turn must be a CA graph. As a side note, given a CA system we will sometimes talk
about it in graph theoretical terms because its intersection graph is unambiguous. For
instance, a subset of arcs is naturally a clique if the respective vertices in its intersection
graph form a clique.

Definition 4.5 ([KKV13, p. 3]). A CA representation of a graph G is a function ρ :
V (G)→ A which maps each vertex of G to an arc such that two arcs intersect iff their
vertices are adjacent. The CA system ρ(G) = {ρ(v) | v ∈ V (G)} is said to be a CA
model of G. If ρ(G) is Helly (an interval system) then ρ is an HCA representation
(resp. interval representation)

To verify whether the CA representation of a CA graph is Helly one can check if for
every maxclique in the graph the corresponding arcs have overall non-empty intersection.
Look at Figure 4.1 and observe how this condition fails for the maxclique {a, b, c}.
Imposing certain restrictions on the considered CA systems helps us in reducing the

complexity of later arguments. One such restriction is that we don’t consider arcs which
are empty or cover the whole circle. The justification for that is that the corresponding
vertices in the intersection graph must be independent or universal. These types of
vertices can be counted and removed before applying the canonization. Therefore, each
arc can be defined by its two different endpoints. So a CA system A with n arcs can
be described by its 2n endpoints on the circle. For two given endpoints a, b the arc
A = [a, b] is obtained by going in clockwise direction starting from a until point b is
reached. Hence, [a, b] and [b, a] cover exactly opposing parts of the circle. We also say
that Ā = [b, a] is obtained by flipping the arc A = [a, b].
It is not hard to see that restricting the list of endpoints to be all pairwise different

does not leave any CA graph without a CA model thus being a legitimate limitation.
This especially means that each arc in a CA system is unique.
Obviously, only the relative position of the endpoints to each other is relevant when

considering the structure of the CA system. Assuming the reference point 12 o’clock on
the circle we can now describe any positioning of endpoints as list by going in clockwise
direction, starting from our reference point, and writing down each endpoint as it occurs.
For an arc A = [a, b] let us say a is the left endpoint l(A) of A and b is the right endpoint
r(A). For Figure 4.1 this position list(sequence) is r(b), r(e), r(d), l(a), r(c), l(b), . . . as-
suming that e refers to the innermost arc. This leads to the following definition

Definition 4.6. A CA system A with pairwise different arcs (A1, . . . , An) of which non
is empty or covers the whole circle is determined by a position list M , i.e. l(Ai) and
r(Ai) occur exactly once in M for all 1 ≤ i ≤ n

Using this definition a representation ρ of a graph G with n vertices can be described as
tuple (f,M) with f : V (G)→ [n] bijectively mapping the vertices to the arcs A1, . . . , An
and position list M being the underlying model ρ(G).

33

To canonize an HCA graph a canonical HCA representation of it is computed. A repre-
sentation, or more accurately a function assigning graphs to representations, is canonical
if two isomorphic graphs G and H always receive representations ρG and ρH such that
their underlying models ρG(G) and ρH(H) are identical. Taking the intersection graph
of the underlying model then enables us to canonize the graphs.
In order to demonstrate how to obtain a canonical HCA representation in L we proceed

in three steps. First, we show that finding a canonical HCA representation of a graph G
can be reduced to finding a canonical interval representation of a certain matrix λ(M)

G .
Next, we calculate a ∆ tree which contains all possible interval representations for a
given interval graph. And in the final step we show how to canonically choose one of
these interval representations.

4.1 Turning HCA graphs into interval matrices
In Figure 4.2 it becomes apparent that a CA graph can have structurally different mod-
els. This concept will be formalized as intersection matrix of a CA system. An analogous
idea, namely neighborhood matrices, for graphs is introduced. Linking these both con-
cepts enables us to unambiguously associate certain CA systems with CA graphs.
In [Hsu95] it was observed that the relation between two circular arcs A,B can be

described as one of the following: disjoint(di), A contains B(cs), A is contained by
B(cd), both overlap(ov) or both jointly cover the circle(cc).

Definition 4.7. An intersection matrix is a matrix µ with entries µu,v ∈ {di, cd, cs, ov, cc}
such that if µu,v = cs then µv,u = cd and else µu,v = µv,u for all u 6= v ∈ V (µ)

Definition 4.8 ([KKV13, Def. 2.1]). Let A be a CA system. The intersection matrix
induced by A is denoted by µA = (µA,B)A 6=B∈A and defined by the entries

µA,B =

di , if A ∩B = ∅
cd , if A (B

cs , if B (A

cc , if A G B and A ∪B covers the whole circle
ov , ifA G B and A ∪B does not cover the whole circle

The intersection matrix induced by an interval system is also covered by this definition,
however the case cc can’t occur.

Definition 4.9. An intersection matrix µ is called a CA matrix (HCA matrix, interval
matrix) if there exists a CA system (resp. HCA system, interval system) S such that
µ ∼= µS

Definition 4.10. A CA representation (HCA representation, interval representation) ρ
with underlying model A is a representation of a CA matrix (resp. HCA matrix, interval
matrix) µ if µ ∼= µA via ρ

34

1

2

4

3

5 1

2
3 451

2 3

4 5

Figure 4.3: Normalized and non-normalized representation of an HCA graph

The next step is to transfer the concept of intersection matrices to graphs. Given a
graph we define its intersection matrix that is called the neighborhood matrix of the
graph.

Definition 4.11. The neighborhood matrix λG = (λu,v)u6=v∈V (G) of a graph G is defined
by the entries

λu,v =

di , if {u, v} /∈ E(G)
cd , if N[u] (N[v]
cs , if N[v] (N[u]
cc , if N[u] G N[v] and N[u] ∪ N[v] = V (G)

and ∀w ∈ N[u] \ N[v] : N[w] ⊂ N[u]
and ∀w ∈ N[v] \ N[u] : N[w] ⊂ N[v]

ov , otherwise

The neighborhood matrix can be seen as augmented adjacency matrix where 0 entries
correspond to di and 1 entries to cd, cs, cc or ov. If the intersection matrix is clear from
the context we also write u cs v for λu,v = cs, u cd v for λu,v = cd and so on.
Linking these both ideas gives rise to normalized representations.

Definition 4.12. A CA representation ρ of a CA graph G is called normalized if ρ is
an isomorphism between the neighborhood matrix λG and the intersection matrix µρ(G)
induced by the underlying model of ρ

In Figure 4.3 the intersection matrix of the left representation equals the neighborhood
matrix of the depicted graph. Therefore this is a normalized representation. For the right
representation there is a mismatch between the neighborhood matrix and the intersection
matrix. For example, the vertices 1, 3 in the neighborhood matrix are associated with the
entry cd, i.e. 1 is contained by 3, whereas the intersection matrix of the representation
contains an ov entry meaning the arcs 1 and 3 overlap. Thus it isn’t a normalized
representation.
Hsu investigated under what circumstances such a normalized representation can exist

and provided a constructive proof of the fact that

Lemma 4.13 ([KKV13, Lem. 2.3]). Any twin-free CA graph G without universal ver-
tices has a normalized CA representation

Because we are particularly interested in HCA graphs it is of importance that:

35

Lemma 4.14 ([KKV13, Lem. 2.4]). Any normalized CA representation of a twin-free
HCA graph G without universal vertices is also an HCA representation of G

Proofs for these Lemmas can be found in [Hsu95] and [JLM+11, Thm. 4.1].
As a consequence of Lemma 4.14 we just need to argue that the calculated CA rep-

resentation of the input HCA graph is normalized which implies that it must be Helly.
Using this fact we will reduce the canonical HCA representation problem for HCA graphs
to the canonical CA representation problem for vertex-colored HCA matrices.

Problem Canon-HCA-Repr(HCA Graph)
Input HCA graph G
Output Canonical HCA representation of G

Problem Canon-CA-Repr(Col. HCA Matrix)
Input HCA matrix µ, coloring c : V (µ)→ N
Output Canonical CA representation (ρ, cρ) of (µ, c)

Recall Definition 4.10, a CA representation ρ with underlying model A is a represen-
tation of a CA matrix µ if µ ∼= µA via ρ. This means that the arcs of A have the pairwise
relations specified by the intersection matrix µ. For a colored CA matrix (µ, c) the tuple
(ρ, cρ) is a CA representation if the previous holds and additionally c(v) = cρ(ρ(v)) for
all v ∈ V (µ).

Lemma 4.15. The Canon-HCA-Repr(HCA Graph) problem can be solved in L
using a Canon-CA-Repr(Col. HCA Matrix) oracle

Proof. Let G be the input HCA graph without universal vertices. For every twin class
in G choose the smallest vertex as representative of this class and remove the other ones
from G. Color the representative with the number of vertices that used to be in its twin
class. Let us call this modified graph G′ and the accompanying coloring c. Calculate
a canonical CA representation (ρ, cρ) for the neighborhood matrix λG′ of G′ using the
oracle. Now, given a vertex v of G let v̂ denote its twin representative we have chosen
before. With that we define the final canonical CA representation ρ′ as

ρ′(v) = ρ(v̂) for all v ∈ V (G)

To understand why this algorithm works as intended the following questions need to
be accounted for

1

1 3 1

Figure 4.4: Reducing twins as described in Lemma 4.15
The labels of the right graph correspond to the coloring

36

1. Is λG′ a correct input to the oracle?

2. Is ρ′ an HCA representation of G?

3. Is ρ′ canonical?

4. Why does this work in L?

The neighborhood matrix λG′ must be an HCA matrix in order to be a correct input
to the oracle. That means there exists an HCA system A such that λG′ is isomorphic
to its intersection matrix µA. Since G′ has no universal vertices and twins there exists
a normalized CA representation ρ with underlying CA model A due to Lemma 4.13.
Lemma 4.14 states that A is also an HCA model. Per definition λG′ is isomorphic to µA
via ρ and therefore must be an HCA matrix thus answering the first question.
Due to the same arguments ρ must be an HCA representation of G′. ρ′ is computed by

duplicating certain arcs according to the size of the twin classes encoded in the coloring.
It is not hard to see that the Helly property is preserved and that ρ′ must be a correct
representation of G therefore concluding the second question.
To see that ρ′ is canonical assume that two isomorphic HCA graphs G andH are given.

By construction the twin-free colored graphs (G′, cG), (H ′, cH) of G and H respectively
are isomorphic iff G ∼= H. Therefore G and H receive representations with identical
underlying models.
Lastly, we argue why this algorithm can be implemented in logspace. Computing the

twin-free graph G′ and its coloring can be accomplished using the following subroutines:
determine whether two vertices are twins, determine the twin class and its size for a
given vertex, choose the smallest twin of a twin class as representative. All of these
routines are logspace computable. For the second one can simply derive ρ′ from ρ.
As stated in the beginning of this chapter universal vertices can be excluded w.l.o.g.

since they can be treated before applying this algorithm

In the next step we show how to convert an HCA system into an interval system
by flipping certain arcs. More formally, the problem of canonical CA representation
for vertex colored HCA matrices is reduced to the canonical representation problem for
vertex colored interval matrices.

Problem Canon-Intv-Repr(Col. Interval Matrix)
Input Interval matrix µ, coloring c : V (µ)→ N
Output Canonical interval representation (ρ, cρ) of (µ, c)

Consider a CA systemA and an arbitrary point x on the circle. LetX = {A ∈ A | x ∈ A}
denote the set of arcs in A which contain this point x. Let A(X) be the CA system which
is obtained by flipping all arcs which contain the point x

A(X) = (A \X) ∪
{
Ā
∣∣∣ A ∈ X}

It is not hard to see that A(X) must be an interval system as no arc covers the point
x. However, we want to transform an HCA matrix µ into an interval matrix. So, a

37

Table 4.1: Effects of flipping arcs in the intersection matrix
µA,B di cd cs cc ov
µĀ,B cs cc di cd ov
µA,B̄ cd di cc cs ov
µĀ,B̄ cc cs cd di ov

representation of µ is not at our disposal. Therefore we have to determine how an
intersection matrix changes if an arc is flipped and how a set X of arcs can be found
that share a common point x using only the information of the HCA matrix.
The first difficulty can be solved in a straightforward fashion. Given an intersection

matrix µ of a CA system A and a set of arcs X ⊆ A to be flipped then Table 4.1
describes a mapping from µ to µ(X) which is the intersection matrix of A(X).
The second difficulty is to obtain an appropriate subset X of arcs that when flipped

lead to an interval system. This can be accomplished by finding an inclusion-maximal
subset of arcs which share a common point on the circle. Maximality here means that
no other arc can be added to X such that the previously common point remains.

Lemma 4.16. For any maxclique M of an HCA system A there exists a point which
all the arcs of M have in common

Proof. Since all arcs ofM have pairwise non-empty intersection and A is Helly it follows
that they have overall non-empty intersection which yields a common point.

Further, it is not hard to see that any such maxclique is maximal in the above sense.
Unfortunately, finding a maxclique for a graph is well-known to be a difficult task in
general. Luckily, for the case of HCA graphs at least one of the maxcliques can be
characterized as the common neighborhood of two vertices.

Theorem 4.17. For an HCA graph G there exist two vertices u, v ∈ V (G) (possibly
u = v) such that N[u, v] is a maxclique

Proof. For an HCA graph G with vertex set V let λ be the neighborhood matrix of G
and ρ be a normalized representation of G.
To find the wanted maxclique we look for a vertex v such that there is no vertex x

with v cs x. This implies that there cannot be a vertex x′ with v cc x′ as this would
require a vertex which is contained by v thus contradicting the non-existence of x stated
previously. If there isn’t a vertex u such that v ov u then N[v] is a maxclique. By
method of elimination it follows that for all vertices x ∈ N[v] it must hold that v cd x
which means N[v] ⊂ N[x]. Therefore for x, x′ ∈ N[v] we get x′ ∈ N[v] ⊂ N[x] showing
that N[v] indeed constitutes a clique for which maximality can be easily seen.
Otherwise, there is a vertex u with u ov v. Choose such a u that N[u, v] is inclusion-

minimal, which means that for any other u′ that overlaps with v it holds that N[u, v] ⊂
N[u′, v]. We claim that N[u, v] is a maxclique. To show maximality assume there is a
vertex x /∈ N[u, v] such that N[u, v] ∪ {x} is still a clique. The clique property implies
that x must be in the neighborhood of u and v which is a contradiction.

38

To show that N[u, v] is a clique as claimed we derive a contradiction from the statement
that there exist two vertices x, x′ ∈ N[u, v] such that x′ /∈ N[x]. Recall that for any
y ∈ N[v] it holds that λv,y ∈ {cd, ov}. Therefore we have three cases on our hands

1. x cs v, x′ cs v

2. x ov v, x′ ov v

3. x cs v, x′ ov v

A fourth case obtained by swapping x and x′ in the third case is redundant as x /∈ N[x′]
iff x′ /∈ N[x]. In the first and third case it is apparent that x and x′ must be adjacent for
the same reasons. If ρ(x′) intersects with ρ(v) it must intersect with ρ(x) as well since
ρ(v) ⊂ ρ(x). This leaves us with the second case. There are three ways for an arc ρ(y)
to overlap with ρ(v) and intersect with ρ(u) at the same time. One possibility is that
exactly all three arcs ρ(y), ρ(u), ρ(v) and no less jointly cover the circle. This contradicts
the Helly property and thus cannot be the case. The second possibility is that ρ(y) and
ρ(u) jointly cover the circle and the third one is that ρ(y) overlaps with ρ(v) from the
same side as ρ(u) does; consider Figure 4.5 for these three cases in the same order. The
only non-trivial case to be accounted for is if ρ(x) covers the circle with ρ(u) and ρ(x′)
simply overlaps with ρ(v) from the same side as ρ(u) does. In that case N[x′, v] ⊂ N[u, v]
thus contradicting our choice of u which is depicted in Figure 4.5 as well.

Equipped with the last Theorem 4.17 we can formulate the proof for the final reduction
of this section.

Theorem 4.18. The Canon-CA-Repr(Col. HCA Matrix) can be solved in L using
a Canon-Intv-Repr(Col. Interval Matrix) oracle

Proof. Given a colored HCA matrix (µ, c) with vertex set V Algorithm 4.7 solves the
problem. Correctness follows from answering the following questions

1. Why is ρµ,M a CA representation of µ?

2. Why is the outputted representation canonical?

3. Why does this work in L?

y

vu

y

vu
y

vu
x’

x

vu

Figure 4.5: Cases occurring in the last step of the proof for Theorem 4.17
ρ(·) has been omitted

39

Algorithm 4.7 Find canonical CA representation for a given colored HCA matrix (µ, c)

1. Find all pairs u, v ∈ V (µ) s.t. N[u, v] is a maxclique in the graph given by µ when
considering all non-disjoint entries to represent an edge. LetM denote the set of
all the respective maxcliques

2. For each M ∈ M calculate µ(M) and mark the vertices in M by modifying the
coloring, i.e. for v ∈ M let the new color be c′(v) = 2c(v) and for v /∈ M let it be
c′(v) = 2c(v) + 1
2.1. Compute a canonical interval representation of µ(M) and its modified coloring

c′ using the oracle and flip back all marked arcs in the underlying model of
the canonical representation. This yields a CA representation ρµ,M of µ. To
reconstruct the coloring c from c′ simply halve even colors and for odd colors
subtract one and halve them

3. Return the CA representation with the lexicographically smallest model among
{ρµ,M |M ∈M} along with its coloring

Let µ be an HCA matrix with a maxclique M and ρ is an interval representation of
µ(M). Let ρ′ be the same representation as ρ but for every v ∈ M ρ′(v) is exactly the
flipped arc of ρ(v). Consider the relation between µ, µ(M), ρ and ρ′.

(µ(M))u,v =

µu,v , if u ∈M, v /∈M
µu,v , if v ∈M,u /∈M
µu,v , if u, v ∈M
µu,v , else

The overlines above the indices in the three cases refer to the mapping induced by Table
4.1. Let µρ, µρ′ be the intersection matrices induced by the underlying models of ρ and
ρ′ respectively. Then µ(M) and µρ are isomorphic via ρ. The matrices µρ and µρ′ have
the same relation as µ and µ(M):

(µρ′)u,v =

(µρ)u,v , if u ∈M, v /∈M
(µρ)u,v , if v ∈M,u /∈M
(µρ)u,v , if u, v ∈M
(µρ)u,v , else

Since flipping the same arc twice doesn’t change the arc it holds that (µ(M))(M) = µ
and thus

µ = (µ(M))(M) ∼= (µρ)(M) = µρ′

which shows that ρ′ is a CA representation of µ.

40

Given two isomorphic HCA matrices G,H they lead to the same set of maxcliquesM.
It follows that G and H receive identical models in their representations which respect
the modified colorings.
Obviously, the first and second step can be accomplished in logspace. To find the lexi-

cographically smallest model consider the ordered version ofM as induced by the graph
labeling. We introduce two pointers with initial values 1 and 2 which refer to the max-
cliques inM by their position. Whenever the model induced by the maxclique referred
to by pointer 1 is larger than the other then advance pointer 1 and vice versa. Repeat
this until one pointer leaves the valid range. The other pointer yields the maxclique
leading to the smallest model.

4.2 Calculating the ∆ Tree of an interval matrix
Due to the last reduction it remains to show that a canonical interval representation
for colored interval matrices can be computed in L. We start by describing interval
orientations and how they correspond to interval representations. For an intersection
matrix λ let Gov,di be the graph on the vertex set V (λ) with an edge between u and v
whenever λu,v ∈ {di, ov}.

Definition 4.19. A transitive orientation of an undirected graph G = (V,E) is a di-
rected graph D = (V,E ′) which is obtained by assigning each edge of G a direction such
that D is transitive. This means E ′ must obey

{u, v} ∈ E ⇐⇒ either (u, v) ∈ E ′ or (v, u) ∈ E ′

and
(u, v), (v, w) ∈ E ′ =⇒ (u,w) ∈ E ′

Definition 4.20. An interval orientation of an interval matrix λ is a transitive orienta-
tion Dov,di of Gov,di that remains transitive when all edges (u, v) in Gov,di with λu,v = ov
are removed and furthermore it holds that

λu,v = di ∧ λu,w = λv,w = ov =⇒ either (u,w) ∈ E(Dov,di) or (v, w) ∈ E(Dov,di)

a d

c

ba bd
c

Figure 4.6: Interval orientation induced by interval representation

41

It is not hard to see that any interval representation ρ of an interval matrix λ induces
an interval orientation Dov,di. An edge {u, v} ∈ Gov,di is oriented as (u, v) in Dov,di

iff ρ(u) is left of ρ(v). An example is given in Figure 4.6. Every interval orientation
is a partial order on the set of vertices due to the transitivity requirement. The last
condition of Definition 4.20 states that whenever there is an interval (resp. vertex) w
which is placed in between two disjoint intervals u, v then in the order defined by the
interval orientation w must lie between u and v as well. Considering Figure 4.6 this
means that there cannot be an interval orientation such that there is an edge from d to
a and from d to b for the intersection matrix specified by the interval model.
Not only does every interval representation induce an interval orientation but the

converse holds as well.

Lemma 4.21. For an interval matrix λ with interval orientation Dov,di there exists an
interval representation ρ which induces Dov,di

Proof. Given an interval matrix λ with vertex set V and an interval orientation Dov,di

of it. Let Dov,di,cs be the directed graph Dov,di with additional edges from u to v for
u, v ∈ V whenever u cs v. Analogously defineDov,di,cd with an edge from u to v whenever
u cd v. We claim that Dov,di,cs and Dov,di,cd define total orders on V . As stated before
Dov,di defines a partial order. Any pair of vertices which is incomparable in this partial
order must be in a containment relation. Adding edges as described by Dov,di,cs (or
Dov,di,cd) leads to a total order. It remains to check case-by-case that the transitivity
property is maintained.
Now, the relative order of the left endpoints of the intervals in representation ρ is

given by the total order defined by Dov,di,cs and similarly for the right endpoints the
relative order is determined by Dov,di,cd. Interleaving both orders such that the entries
of λ are obeyed yields ρ.
For correctness the following easy claim has to be verified. Given an interval repre-

sentation ρ which induces Dov,di it holds for any two intervals u and v that l(u) is left
of l(v) iff u comes before v in the order given by Dov,di,cs. An analogous claim for the
right endpoints and Dov,di,cd has to be made. It follows that there is an interleaving of
both order sequences such that the entries of λ are obeyed and thus the constructed ρ
must be correct.

Let us apply this construction to the interval orientation Dov,di displayed in Figure
4.6 to reconstruct its interval representation ρ. Let λ be the intersection matrix of
the underlying model of ρ. The directed graph Dov,di,cs is the same as Dov,di with an
additional edge from d to c since d contains c. The order of Dov,di,cs is (a, d, c, b) thus
the relative order of the left endpoints is l(a) < l(d) < l(c) < l(b). The order of Dov,di,cd

is (a, c, d, b) which implies r(a) < r(c) < r(d) < r(b). To obtain the representation
we start with the sequence of left endpoints and insert the right endpoints successively
in a suitable position. Obviously, for any interval the left endpoint comes before the
right endpoint. This means r(a) must be placed after l(a). As a overlaps with d and is
disjoint with c it follows that r(a) must be placed between l(d) and l(c). Completing this
construction by placing each right endpoint at the first possible place that is conform

42

0

1

2
3

4
0

1

3

2

4

1,30,30,20,1

0,4

1,2 1,4

3,44,0

3,0 2,0 1,03,12,14,1

4,3

Figure 4.7: Interval system with its ∆ implication classes and an interval orientation

with the entries of the intersection matrix λ leads to the same interval representation as
shown in Figure 4.6. This construction enables us to calculate an interval representation
in L given an interval matrix and an interval orientation as input. Therefore the next
step is to obtain such an interval orientation for a given interval matrix.

Definition 4.22 ([KKV13, Def. 4.2]). Let λ be an intersection matrix and let {u, v}
and {u,w} be edges in Gov,di. The binary relation ∆ contains the entries (u, v)∆(u,w)
and (v, u)∆(w, u) iff one of the following holds

(1) u di v, u di w and λv,w 6= di

(2) λv,w ∈ {cs, cd}

(3) u di v, u ov w, w ov v

The idea behind this definition is that for an entry (u, v)∆(u,w) w.r.t. some interval
matrix λ it must hold that in any interval representation ρ of λ ρ(v) and ρ(w) must be
on the same side of ρ(u). In the first case u is disjoint from v and w which both have
non-empty intersection. In the second case v is contained by w (or vice versa) and as
{u, v} , {u,w} are edges in Gov,di none of them contains or is contained by v. In the
third case w is placed in between u and v. It easily follows that for every case ρ(v) and
ρ(w) must be on the same side of ρ(u) indeed.
When trying to construct an interval representation of an interval matrix λ one has

to decide for two adjacent vertices u, v in Gov,di which one is put on the left side of the
other. This decision has implications on the positioning of the other intervals which are
captured by the following definition.

Definition 4.23. The ∆ implication classes are the equivalence classes of the symmetric
transitive closure of ∆

43

Definition 4.24. A ∆ color class is the union of a ∆ implication class and its transpose

In Figure 4.7 let λ be the intersection matrix of the shown interval system. The
bottom graph G has E(Gov,di) as its vertex set and the symmetric closure of ∆ as its
edge relation. The connected components of G are exactly the ∆ implication classes.
Let us denote the connected components containing the vertex (x, y) with Cx,y. Then
C4,3 is the transpose of C3,4 and the union of both form a ∆ color class.

Lemma 4.25 ([McC03, Thm. 6.4]). Each interval orientation of an interval matrix λ
contains exactly one ∆ implication class from each ∆ color class

However, not every selection of one ∆ implication class from each ∆ color class leads
to an interval orientation. In the case of Figure 4.7 this difficulty doesn’t occur as the
interval model only consists of one ∆ color class. Therefore the two possible interval
orientations are given by C4,3 and C3,4 with the nodes of the connected components
corresponding to the edge relation of the interval orientation. The interval orientation
shown in Figure 4.7 is obtained by picking C3,4.
The set of all valid selections of ∆ implication classes is supplied by an object called

∆ tree. In the following, a number of hardly digestible definitions describing the ∆ tree
along with its relation to the ∆ color classes are given. A concrete example of such a ∆
tree is shown at the end.

Definition 4.26. A module of a matrix λ is a set U ⊆ V (λ) such that λu,v = λu′,v and
λv,u = λv,u′ for all u, u′ ∈ U and v ∈ V (λ) \ U

In the case of an adjacency matrix of an undirected graph G this means that for any
pair of vertices u, u′ in a module U of G there is an edge between u and v iff there is
one between u′ and v for all v not in the module U . One could say that the vertices of
the module U are not distinguishable from the outside of the graph, i.e. V \ U .

Definition 4.27. A module U of an intersection matrix λ is a ∆ module if it is a clique
in the corresponding intersection graph or if there is no v ∈ V (λ)\U such that λv,u = ov
for all u ∈ U

The intuition is that a ∆ module can be seen as the result of two kinds of substitution
operation on interval systems as remarked in [McC03, p. 107]. Consider two interval
systems I, I ′. Let x ∈ I be an interval such that its two endpoints are consecutive.
That means no interval overlaps with x and x contains no interval. Now, replace the
single interval x with the set of intervals in I ′, i.e. replace the both endpoints of x with

y

x

I I ′ I(x→ I ′) I ′′ I(y → I ′′)

Figure 4.8: Two kinds of substitution operations leading to ∆ modules

44

the position list of I ′. The result is denoted by I(x → I ′). Next, consider an interval
system I ′′ such that the left endpoints and right endpoints of its intervals are consecutive
(I ′′ satisfies this condition iff all intervals have overall non-empty intersection and hence
form a Helly clique). For an arbitrary y ∈ I we can now replace y’s left endpoint with the
position list of left endpoints in I and do the same for the right endpoints. An example
of both operations can be seen in Figure 4.8 with respective resulting interval systems
I(x → I ′) and I(y → I ′′). The second kind of operation leads to a module which
must be a clique and the first one to a module such that there is no interval outside
of the module which overlaps with one of its intervals as described in the definition.
Additionally note that if Ir is the result of any such substitution operation involving
interval systems I1, I2 then two interval orientations for I1 and I2 induce an interval
orientation for Ir. Stated differently, we can calculate independent interval orientations
for I1 and I2 to obtain one for Ir.
The set of ∆ modules are a tree-decomposable family which leads to the ∆ tree.

Definition 4.28 ([McC03, cf. Def. 6.7]). A set system S w.r.t. some set V is called a
tree-decomposable family if it satisfies the following properties

1. V and its singleton subsets, i.e. {x} for all x ∈ V , are in S

2. Overlap closure: If X, Y ∈ S overlap, i.e. X G Y , then X ∪ Y,X ∩ Y,X \ Y, Y \
X, (X \ Y) ∪ (Y \X) are members of S as well

A member X of such a tree-decomposable family S is called strong if it does not
overlap with any other member.

Lemma 4.29 ([McC03, cf. Thm. 6.8]). If S is a tree-decomposable family then the
transitive reduction of the containment relation on strong members of S is a tree

Lemma 4.30 ([KKV13, p. 9]). The ∆ modules of an interval matrix λ form a tree-
decomposable family

Altogether, a ∆ tree T has the set of strong ∆ modules of an intersection matrix λ as
its vertex set. The transitive reduction of the containment relation among these strong
∆ modules constitutes the edge relation. This means there is an edge (A,A′) ∈ E(T)
iff A is the smallest superset of A′. Such a smallest superset is unique as otherwise the
supersets in question must overlap and therefore wouldn’t be strong. Every ∆ tree of
an intersection matrix λ has V (λ) as its root node and the singleton subsets of V (λ) as
its leaves. These are also called the trivial nodes of T .
We will refer to the inner nodes, which are all but the leaves, as either prime or

degenerate nodes according to

Definition 4.31 ([MS99, cf. Thm. 2.2]). Let U be an inner node with children C =
{W1, . . . ,Wk} of a ∆ tree T w.r.t an intersection matrix λ. U is called prime iff there
doesn’t exist a strict subset C ′ of C consisting of at least two elements such that the
union of its members ⋃U ′∈C′ U ′ is a ∆ module. Otherwise, U is called degenerate

45

A degenerate node can be further classified as either overlap, disjoint or containment
node.

Definition 4.32. If U is an inner node with children W1, . . . ,Wk in the ∆ tree of λ
then the quotient of λ at U is the submatrix λ[U] = (λu,v)u6=v∈W with W = {w1, . . . , wk}
and wi ∈ Wi for all 1 ≤ i ≤ k

Notice, since W1, . . . ,Wk are strong modules and therefore don’t overlap pairwise.
The choice of wi’s in Wi doesn’t affect the quotient matrix. It can be seen as operation
where the vertex set of each child module is shrunk into a single vertex.

Lemma 4.33 ([McC03, p. 110]). A degenerate node U of a ∆ tree of an interval matrix
λ can be classified as one of the following according to its quotient λ[U]:

– Overlap node: λ[U] consists of only ov entries

– Disjoint node: λ[U] consists of only di entries

– Containment node: λ[U] consists of only cs and cd entries

McConnell has proven the following results which show that ∆ trees enable us to
compactly represent all interval representations.

Lemma 4.34 ([McC03, Lem. 6.14]). The set of vertices spanned by a ∆ color class in
an interval matrix λ is a ∆ module of λ

Lemma 4.35 ([McC03, Thm. 6.15]). A set of edges of Gov,di is a ∆ color class iff it
is the set of edges connecting all children of a prime node or a pair of children of a
degenerate node in the ∆ tree

Lemma 4.36 ([McC03, Thm. 6.19]). Any acyclic union of ∆ implications classes from
each ∆ color class gives an interval orientation of λ

Let us take a look at Figure 4.9 to visualize the new definitions and lemmas. The
intersection matrix of the interval system is called λ with V (λ) = {1, . . . , 13}. The
graph underlying λ consists of three connected components to which the three children
of the root node in the ∆ tree correspond. It is not hard to see that for any connected
component the interval orientation can be chosen independently. It remains to select a
linear order of the connected components as whole. Every connected component is a ∆
module because it is disjoint from the rest and therefore doesn’t overlap with any other
interval. It remains to be checked that these are strong ∆ modules. The root node V is
degenerate because the union of any of its children is a ∆ module as well. Furthermore,
V is a disjoint node because its quotient λ[V] consists of three pairwise disjoint intervals.
The rest of the inner nodes happen to be prime in this case. To see that 6-9 and 8-9 are
∆ modules recall that ∆ modules can be seen as result of an substitution operation as
shown in Figure 4.8. We show the reverse operations. Take the intervals 8 and 9 and
shrink them into the interval 8 ∪ 9. The substitution of 8 ∪ 9 with the interval system
I = {8, 9} is of the second type, i.e. the left and right endpoints of I are arranged

46

1-13

4-101-3 11-13

21 3 1211 136-9 1054

8-976

8 9

765 8 9

4

10

Figure 4.9: An interval system, its ∆ tree and a ∆ color class
The intervals are labeled according to the order of their left endpoints from 1 to 13

consecutively. Now, shrink 6, 7 and 8∪9 into the single interval 6 . . . 9. The substitution
here is of the first type which means the endpoints of 6 . . . 9 are consecutive.
For Lemma 4.35 let us consider the node 4-10. Since 4-10 is a prime node a ∆ color

class is given by the edges in the graph Gov,di of the quotient λ[4 − 10]. The graph
shown in the bottom right of Figure 4.9 can be obtained by constructing Gov,di of the
quotient λ[4-10] and then replacing each non-trivial child with its members such that
they inherit the edge relation. By doing the reverse, that is merging the vertices 6, 7, 8, 9
into a single one, the graph Gov,di of the quotient λ[4-10] is obtained.
An example of Lemma 4.34 can be seen in the previous Figure 4.7 for which the ∆

tree consists of only trivial nodes and the vertex set spanned by the sole ∆ color class
is the whole vertex set and therefore the root node.
Now, we can show how to extract the different interval orientations of λ from a ∆

tree.

Lemma 4.37. For an interval matrix λ with U1, . . . , Uk as the inner nodes of its ∆
tree a set of interval orientations D1, . . . , Dk for the quotient matrices λ[U1], . . . , λ[Uk]
induces an interval orientation D for λ. The induced D can be computed in L

Proof. We start off by specifying the induced D for λ. For an inner node Ui with children
W1, . . . ,Wk and interval orientation Di for λ[Ui] the interval orientation D receives the
following edges. Whenever (Wi,Wj) ∈ E(Di) then (u, v) ∈ E(D) for all u ∈ Wi and
v ∈ Wj. This can be calculated in L.
D contains a ∆ implication class from every ∆ color class because of Lemma 4.35. It

remains to argue that D is acyclic. This implies that D is an interval orientation of λ
due to Lemma 4.36.
We show that for two edges (u, v), (v, w) in D it follows that there is an edge (u,w).

Therefore, a directed cycle C in D would imply that there is a directed cycle between any
pair of vertices participating in C. This would contradict that D1, . . . , Dk are interval
orientations and therefore only contain one ∆ implication class of each ∆ color class.

47

Let Uu,v, Uv,w be the inner nodes that contain u, v resp. v, w in different children. There
must be a path from Uu,v to Uv,w or vice versa in the directed ∆ tree. Let us assume
that there is a path from Uv,w to Uu,v, that means Uv,w is on a higher level. Because
there is an edge from v to w in D there is an edge from the child containing v to the
child containing w in the interval orientation associated with the quotient matrix λ[Uv,w].
Since u and v occur in the same child module w.r.t. Uv,w it follows that (u,w) ∈ E(D)
by construction. The same argument can be made in the case that Uu,v is on a higher
level than Uv,w.

Given the ∆ tree of an interval matrix λ interval orientations for the quotient matrices
of the inner nodes can be easily calculated. If U is a prime node then choose one of the
two possible ∆ implication classes from the ∆ color class connecting U ’s children. For
a degenerate U of type disjoint or overlap any linear ordering of its children is a valid
interval orientation. If U is of type containment no edges have to be oriented.
Finally, we prove that the ∆ tree can be computed in L.

Theorem 4.38. The ∆ implications classes, the ∆ color classes and the ∆ tree can be
computed in L
Proof. The ∆ implication and ∆ color classes of an interval matrix λ are given by the
connected components of the graph G = (E(Gov,di), E) with E being the symmetric
closure of the binary relation ∆. This is the same construction as shown in Figure 4.7.
Consider the overlap graph O which has the vertex sets spanned by the ∆ color classes

as its node set and the edges are given by the overlap relation on these vertex sets. By
Lemma 4.34 the nodes of O are ∆ modules. The connected components of O are also
∆ modules due to the fact that the union of two overlapping ∆ modules U1 G U2 is a
∆ module as well, which follows from the overlap closure of tree-decomposable families,
see Definition 4.28. The ∆ modules given by the connected components of O are strong
since they don’t overlap with any other ∆ module and therefore are nodes of the ∆ tree.
The connected components of O correspond to the nodes of the type prime, disjoint

and overlap in the ∆ tree because they don’t overlap with any other ∆ module and thus
must be strong ∆ modules.
It remains to calculate the nodes of type containment for the ∆ tree. First, we show

that every containment node is the union of some non-containment nodes which have
been already calculated. Let U be an inner node of type containment. The structure of
its quotient matrix λ[U] induces a linear order on its children. Let its children U1, . . . , Uk
be ordered accordingly, i.e. for all ua ∈ Ua and ub ∈ Ub with 1 ≤ a < b ≤ k it holds that
ua cd ub. Note that no child Ua of U can be a containment node. Otherwise we could
construct an overlapping ∆ module by taking the union of the children of Ua and one of
the siblings of Ua right next to it in the linear order. This contradicts that Ua must be
a strong ∆ module.

∀u1 ∈ U1, u2 ∈ U2, u3 /∈ U1 ∪ U2 : u1 cd u2 ∧ λu1,u3 = λu2,u3

There is an edge from Ua to Ub in C iff they both occur in the same containment node
and Ua comes right before Ub in the order mentioned above. Therefore the connected
components of C correspond to the containment nodes.

48

At last, add the leaf nodes, which are the singleton subsets of V (λ), and calculate the
edge relation of the ∆ tree as transitive reduction of the containment relation among the
given nodes. More precisely, there is and edge between Ua and Ub iff Ub is the smallest
superset of Ua as argued in the paragraph after Lemma 4.30.

Corollary 4.39. For a given interval matrix λ an interval representation can be calcu-
lated in L

This is accomplished by computing the ∆ tree of an interval matrix λ using Theorem
4.38 and arbitrary interval orientations for the quotient matrices of the inner nodes.
Then the interval representation is induced by the interval orientation according to
Lemma 4.21.

4.3 Canonically choosing an interval orientation
To obtain a canonical interval representation we will canonize interval matrices. The
idea is to enrich the ∆ tree with enough information such that its interval matrix can
be reconstructed. This enriched ∆ tree will be called the colored ∆ tree T(λ) of an
interval matrix λ. Using the remark after Corollary 2.12 the colored tree T(λ) can be
canonically labeled, which is denoted by T̂(λ). Constructing the intersection matrix λ′
of T̂(λ) yields the canonical form of λ. The use of Corollary 4.39 leads to a canonical
interval representation.
First, let us consider for each type of inner node U of a ∆ tree of an interval matrix λ

what kind of different interval models MU for the quotient matrix λ[U] are possible and
how the children of U have to be mapped to the intervals in MU .
If U is a prime node then λ[U] consists of exactly one color class due to Lemma 4.35.

This means there can be at most two interval models (and interval representations) for U
given by the two ∆ implications classes. If these two interval models happen to be equal
then U is called symmetric and its interval model admits two mappings of the children
to the intervals. Otherwise, each of the two models for U allows only one mapping of
the children to its intervals.
Consider the ∆ tree of the intersection matrix λ of the interval system in Figure 4.7.

The root node is clearly a prime node whose children are all leaves. In an interval system
it is clear that the left endpoint comes always before the right endpoint, therefore we
can omit l(·), r(·) in the position list. For an interval model let us fix the labeling of the
intervals by the order of appearance from left to right starting with 1. For the interval
system of Figure 4.7 its interval model would be

M1 = 1, 2, 1, 3, 4, 2, 5, 4, 5, 3

If one takes the other ∆ implication class this yields

M2 = 1, 2, 3, 2, 4, 3, 1, 5, 4, 5

49

as model. Let the tuples (f1,M1), (f2,M2) be interval representations of λ with bijections
f1, f2 : {0, . . . , 4} → {1, . . . , 5}. In this case the prime root node isn’t symmetric as
M1 6= M2. Additionally, f1 and f2 are unique. This means that both models allow only
one mapping of the children to the intervals.
For an example of a symmetric prime node consider node U = 11-13 in Figure 4.9.

It is not hard to verify that U has exactly one model M = 1, 2, 1, 3, 2, 3. The two
possible mappings of U ’s children to M allow 11, 13 to be mapped either to 1, 3 or 3, 1
respectively.
Notice, for every prime node U the interval model(s) of its quotient matrix λ[U] and

one (resp. both) mappings of the children to the intervals can be computed in L.
For any degenerate node U with n children its model and mapping is uniquely deter-

mined by its type and n. If U is of type disjoint then its model M is given by n pairwise
disjoint intervals, i.e. 1, 1, 2, 2, . . . , n, n. If U is of type overlap the M is given by n
pairwise overlapping intervals, i.e. 1, 2, . . . , n, 1, 2, . . . , n. In both cases the mapping of
U ’s children to the intervals of the model can be arbitrary. If U is of type containment
then M = 1, 2, . . . , n, n, . . . , 2, 1 and the mapping of the children to the intervals is fixed
by the containment order.
A subsumption of the previous observations

1. symmetric prime U : one model MU , two mappings from U ’s children to MU

2. asymmetric prime U : two models MU,1,MU,2, one mapping for each model

3. overlap or disjoint U : one model, arbitrary mapping

4. containment U : one model, one mapping

Definition 4.40. Given an interval matrix λ its colored ∆ tree T(λ) is defined as fol-
lows. T(λ) has all of the nodes of the ∆ tree of λ. Additionally, for each symmetric
prime node U there are three nodes loU ,miU , hiU between U and its children. Each inner
node U receives a tuple (pU ,MU) as color, where MU is the interval model of the quotient
λ[U] (if there are two different models take the smaller one) and pU is the position of
U among the children of its parent: If U is the root or if the parent of U admits an
arbitrary mapping of its children to the quotient intervals then pU = 0. If the parent of
U has a fixed assignment of its children to the intervals then let pU be the position of the
interval corresponding to U in the quotient of its parent. If the parent U ′ of U allows
two assignments of its children, let pU,1, pU,2 be the positions of U under the two assign-
ments, respectively. If pU,1 < pU,2 make U a child of loU ′ and define pU = (pU,1, pU,2), if
pU,1 = pU,2 make U a child of miU ′ and pU = (pU,1, pU,2), otherwise let U be a child of
hiU ′ and pU = (pU,2, pU,1). Finally, color all loU , hiU nodes with −1 and all miU nodes
with −2

With the help of Theorem 4.38 we can calculate the colored ∆ tree for a given interval
matrix in L.

Lemma 4.41. If λ and λ′ are isomorphic interval matrices, then T(λ) ∼= T(λ′)

50

V

miVloV hiV

cba d e

(1,5) (2,4) (3,3) (2,4) (1,5)

a
b c

d e

Figure 4.10: Colored ∆ tree with symmetric node and its children’s position tuples

Proof. For two isomorphic interval matrices λ, λ′ let π : V (λ) → V (λ′) be an isomor-
phism between them. We construct an isomorphism ϕ between T(λ) and T(λ′).
Observe that π induces a bijection between the ∆ modules of λ and λ′, i.e. U =
{v1, . . . , vk} is a ∆ module of λ iff ϕ(U) = U ′ = {π(v1), . . . , π(vk)} is a ∆ module of λ′.
It follows that the ∆ trees of λ and λ′ are isomorphic as well as the quotient matrices λ[U]
and λ′[U ′]. Therefore the models MU ,MU ′ chosen for the colored ∆ trees T(λ),T(λ′)
are identical. It can be easily seen that the positions for U and U ′ are equal if U is a
degenerate or asymmetric prime node. If U is a symmetric prime node then ϕ has to be
extended with either (loU miU hiU

loU ′ miU ′ hiU ′

)
or
(loU miU hiU
hiU ′ miU ′ loU ′

)
For a symmetric prime node U the two possible mappings to its model MU are the
reverse of each other. More precisely, if U has k children then for a child Ux which has
position px in the first mapping to model MU it must have position k − px + 1 in the
other mapping to MU . Thus, in the relabeling of λ given by π it is possible that the
children of loU and hiU have been swapped. Otherwise, the children of the loU and hiU
node must be the same in T(λ′).

Consider the intersection matrix λ with V = {a, . . . , e} of the interval system shown
in Figure 4.10. Let λ′ be an isomorphic copy of λ via π =

(
a b c d e
e d c b a

)
. In the colored

∆ tree of λ′ the nodes a, b are connected to the hi node and d, e to the lo node. Thus,
when trying to construct an isomorphism ϕ between λ and λ′ the nodes loV , hiV have
to be swapped in ϕ.

Lemma 4.42. Let λ be an interval matrix. Given an isomorphic copy T of T(λ) with
an isomorphism ϕ : T(λ) → T , an isomorphic copy λ′ of λ along with an isomorphism
π : λ→ λ′ can be computed in L depending only on T

Proof. The first step in reconstructing λ′ from the colored ∆ tree T is to define the
vertex set of λ′ as the leaves of T . Since the leaves of T correspond to the vertices of
λ via ϕ this already yields π. More specifically, let π(v) = v′ iff ϕ({v}) = {v′}. This
means for all u, v ∈ V (λ) λ′ needs to satisfy

λu,v = λ′π(u),π(v)

51

To construct λ′ using only T we proceed as follows. Let U ′ be an inner node of T
that isn’t colored -1 or -2, i.e. isn’t a loU ,miU , hiU node, such that ϕ(U) = U ′. This
means that U is the corresponding inner node in T(λ). Let λ′[U ′] denote the intersection
matrix of the model MU associated with U ′ via the coloring. Since U and U ′ share the
same model MU it holds that λ[U] is isomorphic to λ′[U ′]. Let aU be the mapping which
assigns the children of U to the intervals in MU . Observe that if we can compute this
mapping then we obtain an isomorphism between λ[U] and λ′[U ′]

λ[U]U1,U2 = λ′[U ′]aU (ϕ(U1)),aU (ϕ(U2))

This enables us to construct all entries of λ′. For any two vertices u′, v′ of λ′ let U(u′, v′)
denote the inner node in T which has u′ and v′ in different children. The entry λ′u′,v′ is
given by λ[U(u′, v′)]U ′,V ′ where U ′, V ′ are the children which contain u′, v′ respectively.
To compute the the mapping aU for an inner node U ′ one needs to consider the

positions of the children of U ′:

– If the children of U ′ all have position 0 (U ′ is an overlap or disjoint node), then
the mapping aU can be arbitrary. Define aU such that it preserves the order of U ′s
children, that is if child Ui comes before Uj then aU(Ui) < aU(Uj).

– If the chidren of U ′ all have pairwise different positions (U ′ is an asymmetric prime
or containment node), then aU is directly given by the positions of the children

– If U ′ has three children of which two have color −1 and one has color −2 (U ′ is a
symmetric prime node) then let miU ′ be the node with color −2 and loU ′ , hiU ′ be
the nodes with color −1 such that loU ′ comes before hiU ′ in the order of V (T). For
the children of loU ′ and miU ′ use the first entry of the position tuple as mapping
in a′U . For the children of hiU ′ use the second entry of the position tuple. This
leads to one of two possible assignments.

Algorithm 4.8 Compute canonical representation for interval matrix λ
1. Compute the colored ∆ tree T(λ) (Theorem 4.38 and Definition 4.40)

2. Compute the canonized version T̂(λ) of T(λ) along with an isomorphism ϕ :
V (T(λ))→ V (T̂(λ)) (Corollary 2.8)

3. Obtain a canonical form λ′ of λ along with an isomorphism π : λ→ λ′ using T̂(λ)
and ϕ (Lemma 4.42)

4. Compute an interval representation ρ′ = (f ′,M) of λ′ (Corollary 4.39). Then
(f,M) with f(v) = f ′(π(v)) for all v ∈ V (λ) is a canonical interval representation
of λ.

52

Theorem 4.43. The canonical representation problem for interval matrices can be
solved in L

Proof. Algorithm 4.8 computes such a canonical interval representation in L.

Corollary 4.44. The canonical representation problem for colored interval matrices can
be solved in L

Proof. Let (λ, c) be the colored interval matrix and T(λ) is the colored ∆ tree of λ.
There is an obvious one-to-one correspondence between the vertex set of λ and the leave
nodes of T(λ). For a vertex v ∈ V (λ) let Uv denote the corresponding leave node in T(λ).
To incorporate the coloring c into the ∆ tree append the color of a vertex v ∈ V (λ) to
the color of Uv, i.e. if Uv already has the color x then make it (x, c(v)).

Corollary 4.45. The canonical HCA representation problem for HCA graphs can be
solved in L

Corollary 4.46. The isomorphism and automorphism problem for HCA and interval
graphs are L-complete

Corollary 4.47. The recognition of HCA graphs can be solved in L

If a graph G isn’t an HCA graph the presented algorithm to calculate an HCA repre-
sentation will either fail at one of the steps, for example no suitable maxclique M can
be found, or the returned CA representation ρ is no representation of G, which can be
easily checked, or it isn’t Helly. It is shown in [JLM+11, Thm. 3.1] how to check whether
a given CA system is Helly.

4.4 CA graph isomorphism
As mentioned in the preface it is still unknown whether isomorphism for CA graphs
can be decided in polynomial time. It was shown in [McC03] that CA graphs can
be recognized in linear time and for a given CA graph a CA representation can be
computed in linear time. However, the representation isn’t canonical as this would
imply a canonization algorithm.
Considering that we have just proved that HCA graphs can be canonized one might

wonder wherein lies the difficulty in adapting this method to the general class of CA
graphs? Recall that the canonical representation problem for HCA matrices (and there-
fore HCA graphs) is reduced to the canonical representation problem for interval matri-
ces in Section 4.1 by finding a suitable set of vertices which can be flipped to obtain an
interval matrix. The crux here is that every maxclique in an HCA graph must share a
common point in the normalized representation of that graph due to the Helly property,
see Lemma 4.16. Furthermore, at least one maxclique of an HCA graph can be found
by checking the common neighborhood of all pairs of vertices as stated in Theorem
4.17. For CA graphs both statements fail, see Figure 4.11 for a counterexample to the

53

first statement (add additional arcs to force this to be a normalized representation) and
[KKV13, Fig. 2(c)] for the latter.
An alternative approach is to study what makes a CA graph non-HCA. Luckily, this

has been already answered by [JLM+11].

Definition 4.48. A CA system A is called non-Helly triangle if it consists of three arcs
such that all three arcs and no less jointly cover the circle

Theorem 4.49 ([JLM+11, cf. Thm. 3.1]). Let A be a CA system and M` is the position
list of A after removing the right endpoints. Then A is minimally non-Helly iff either
it is a non-Helly triangle or A consists of at least four arcs and for every pair of arcs
in A it must hold that they cover the circle precisely when their (left) endpoints are not
consecutive in M`

Minimality here means that no arc in a minimally non-Helly CA system can be re-
moved without making it Helly. Consider Figure 4.11 again for an example of two such
minimally non-Helly culprits. For a CA graph G this means it isn’t an HCA graph if
and only if for all CA representations ρ of G there exists a subset V ′ ⊆ V (G) such that
the arcs in ρ corresponding to V ′ form a minimally non-Helly CA system.
In the following we show how to recognize non-Helly triangles in graphs and why this

might be of interest when trying to solve the isomorphism problem for CA graphs.

Definition 4.50. For a CA graph G that is no interval graph we call a triangle {u, v, w} ⊆
V (G) non-Helly if the following holds

1. N[u] ∪ N[v] ∪ N[w] = V (G)

2. N[x] \ (N[y] ∪ N[z]) 6= ∅ for all x 6= y 6= z ∈ {u, v, w}

Lemma 4.51. Let G be a CA graph which is no interval graph. A triangle {u, v, w} ⊆
V (G) is non-Helly in G iff in every CA representation ρ of G it holds that {ρ(u), ρ(v), ρ(w)}
is a non-Helly triangle.

Proof. Let T = {u, v, w} be a triangle in G. As G is no interval graph it holds that in
every CA representation ρ of G the arcs of ρ(G) cover the whole circle. Let us write
ρ(T) to refer to the arcs ρ(u), ρ(v), ρ(w).
We start by showing the direction "⇒". Assume that there exists a CA representation

ρ of G such that the arcs ρ(T) don’t cover the whole circle and hence are three pairwise

Figure 4.11: Two minimally non-Helly CA systems

54

overlapping intervals. This implies that ρ(x) ⊆ ρ(y) ∪ ρ(z) for some x 6= y 6= z ∈ T and
therefore N[x] ⊆ N[y] ∪ N[z] which contradicts the second condition in Definition 4.50.
Next, assume there exists a CA representation ρ of G in which less than all three

arcs ρ(u), ρ(v), ρ(w) jointly cover the circle. This implies that there is a x such that
ρ(x) ⊆ ρ(y) ∪ ρ(z) for x 6= y 6= z ∈ T . Again, this contradicts the second condition of
Definition 4.50.
For the other direction "⇐" assume that the first condition of Definition 4.50 fails.

This means there exists a vertex x ∈ V (G) such that it isn’t connected to any vertex in
T . Because the arcs ρ(T) must cover the whole circle in every CA representation this
is obviously false. Next, assume that the second condition fails, i.e. there is a vertex x
such that N[x] ⊆ N[y] ∪ N[z] for x 6= y 6= z ∈ T . Let ρ be a CA representation of G.
By assumption the arcs ρ(T) must be a non-Helly triangle in this representation. With
ρ we can construct a CA representation ρ′ of G by extending the arcs ρ(y), ρ(z) such
that they form a circle cover. As x has no exclusive neighbor it holds that ρ′ is a CA
representation of G as well. Clearly, this contradicts the initial assumption that T must
be represented as non-Helly triangle in every representation.

Corollary 4.52. If a CA graph G contains no circle covers and non-Helly triangles it
must be an HCA graph

Two vertices u, v of a graph G form a circle cover if λu,v = cc in the neighborhood
matrix λ of G as formulated in Definition 4.11.
It is imaginable that the same concept as used in the proof of Corollary 2.12 can be

employed for CA graphs. That means converting a CA graph G into an HCA graph f(G)
by adequately replacing all non-Helly triangles and circle covers. Then we could use the
canonization algorithm for HCA graphs to solve the problem. Consider Figure 4.12 for
an idea on how to replace these structures by assuming the normalized representation
for CA graphs. A problem for circle covers is that their intersection consists of two non-
consecutive parts. This means we need to introduce two new vertices and adequately
connect the common neighbors of the circle cover to these two new vertices. It is not
clear how to decide to which of the both new vertices a neighbor should be connected.
For a non-Helly triangle this ambiguity doesn’t exist. Let T1 and T2 be two non-Helly

triangles in a CA graph G. If T1 and T2 don’t share a common vertex then the two
substitutions can be performed in arbitrary order. However, if they share a common
vertex it isn’t clear what to do. This motivates the following definitions.

Definition 4.53. For a CA graph G the set ∆G is defined as the set of non-Helly

Figure 4.12: Helly substitutes for non-Helly triangles and circle covers

55

triangles in G. Two non-Helly triangles T1, T2 ∈ ∆G are said to be related if T1 ∩ T2 is
not empty

Definition 4.54. Let R be a binary relation on the set of non-Helly triangles ∆G of a
CA graph G. Then xRy holds iff the non-Helly triangles x and y are related. Let R∗
be the transitive closure of R. We call an equivalence class of R∗ a family of non-Helly
triangles

A family of non-Helly triangles can also be understood as certain subset of ∆G. The
families of non-Helly triangles partition ∆G.
Let us write V (∆G) to denote the set of vertices spanned by ∆G, i.e. v ∈ V (∆G)

if there exists a T ∈ ∆G with v ∈ T . Then we can define isomorphism for non-Helly
triangles as

Definition 4.55. Let G,H be CA graphs. We say ∆G and ∆H are isomorphic if there
exists a bijection π : V (∆G)→ V (∆H) such that

{u, v, w} ∈ ∆G ⇐⇒ {π(u), π(v), π(w)} ∈ ∆H

Can we efficiently decide the isomorphism for non-Helly triangles? This boils down to
deciding the isomorphism for two families of non-Helly triangles for the same reason Gi
reduces to isomorphism of connected graphs by matching the connected components of
both graphs. Notice that the intersection structure among the vertices spanned by the
set of non-Helly triangles is ignored by this definition. This additional requirement can
be incorporated as follows.

Definition 4.56. Let G,H be CA graphs with neighborhood matrices λG, λH . We say
∆G and ∆H are strongly isomorphic if they are isomorphic via π and for all u 6= v ∈
V (∆G) the following holds

(λG)u,v = (λH)π(u),π(v)

The previous definitions can be slightly modified to adjust them to circle covers and
the same question about isomorphism for circle covers can be asked.

56

List of Figures

2.1 Exemplary directed tree T and its string representation str(T) 7
2.2 Mapping f described in the proof of Corollary 2.12 17
2.3 Canonization reduction argument . 18
2.4 Reduction from Ord to PathCenter 19
2.5 Reduction from PathCenter to isomorphism of undirected trees 21

3.1 Example of a 2-tree and its tree decomposition 23
3.2 Two non-isomorphic 2-trees that have isomorphic tree representations . . 25
3.3 A 2-tree G and its tree representation T (G) rooted at its center 26
3.4 Reduction from PathCenter to automorphism of k-trees 30

4.1 HCA graph and a non-Helly CA representation 32
4.2 Two different interval models of the same graph 32
4.3 Normalized and non-normalized representation of an HCA graph 35
4.4 Reducing twins as described in Lemma 4.15 36
4.5 Cases occurring in the last step of the proof for Theorem 4.17 39
4.6 Interval orientation induced by interval representation 41
4.7 Interval system with its ∆ implication classes and an interval orientation 43
4.8 Two kinds of substitution operations leading to ∆ modules 44
4.9 An interval system, its ∆ tree and a ∆ color class 47
4.10 Colored ∆ tree with symmetric node and its children’s position tuples . . 51
4.11 Two minimally non-Helly CA systems . 54
4.12 Helly substitutes for non-Helly triangles and circle covers 55

List of Tables

2.1 Applying Algorithm 2.2 to the directed tree in Figure 2.1 9

4.1 Effects of flipping arcs in the intersection matrix 38

i

List of Algorithms

2.1 Convert tree from string to pointer representation 8
2.2 Convert tree from pointer to string representation 9
2.3 Given trees S,T compute <t-relation for the subtrees induced by s,t . . . 13
2.4 Compute distance between two nodes s, t in an undirected tree T 16

3.5 Canonically label k-trees (cf. [ADK12, Algorithm 3.1]) 24
3.6 Compute tree representation T (G) on input G for fixed k 29

4.7 Find canonical CA representation for a given colored HCA matrix (µ, c) 40
4.8 Compute canonical representation for interval matrix λ 52

ii

Bibliography
[ADK08] Arvind, Vikraman ; Das, Bireswar ; Köbler, Johannes: A Logspace

Algorithm for Partial 2-tree Canonization. In: Proceedings of the 3rd Inter-
national Conference on Computer Science: Theory and Applications. Berlin,
Heidelberg : Springer-Verlag, 2008 (CSR’08). – ISBN 3–540–79708–4, 978–
3–540–79708–1, 40–51

[ADKK12] Arvind, V. ; Das, Bireswar ; Köbler, Johannes ; Kuhnert, Sebastian:
The Isomorphism Problem for K-trees is Complete for Logspace. In: Inf.
Comput. 217 (2012), August, S. 1–11

[AP89] Arnborg, Stefan ; Proskurowski, Andrzej: Linear time algorithms for
NP-hard problems restricted to partial k-trees. In: Discrete Applied Mathe-
matics 23 (1989), Nr. 1, S. 11 – 24. – ISSN 0166–218X

[BL83] Babai, László ; Luks, Eugene M.: Canonical Labeling of Graphs. In: Pro-
ceedings of the Fifteenth Annual ACM Symposium on Theory of Computing.
New York, NY, USA : ACM, 1983 (STOC ’83). – ISBN 0–89791–099–0, S.
171–183

[Bus97] Buss, Samuel R.: Alogtime algorithms for tree isomorphism, compari-
son, and canonization. In: Gottlob, Georg (Hrsg.) ; Leitsch, Alexander
(Hrsg.) ; Mundici, Daniele (Hrsg.): Computational Logic and Proof Theory
Bd. 1289. Springer Berlin Heidelberg, 1997, S. 18–33

[Die12] Diestel, Reinhard: Graduate texts in mathematics. Bd. 173: Graph Theory,
4th Edition. Springer, 2012. – ISBN 978–3–642–14278–9

[Ete97] Etessami, Kousha: Counting Quantifiers, Successor Relations, and Loga-
rithmic Space. In: Journal of Computer and System Sciences 54 (1997), Nr.
3, S. 400 – 411. – ISSN 0022–0000

[Hsu95] Hsu, Wen-Lian: $O(M.N)$ Algorithms for the Recognition and Isomor-
phism Problems on Circular-Arc Graphs. In: SIAM J. Comput. 24 (1995),
Juni, Nr. 3, S. 411–439. – ISSN 0097–5397

[JKMT03] Jenner, Birgit ; Köbler, Johannes ; McKenzie, Pierre ; Torán, Jacobo:
Completeness Results for Graph Isomorphism. In: J. Comput. Syst. Sci. 66
(2003), Mai, Nr. 3, S. 549–566

iii

[JLM+11] Joeris, BensonL. ; Lin, MinChih ; McConnell, RossM. ; Spinrad, Jere-
myP. ; Szwarcfiter, JaymeL.: Linear-Time Recognition of Helly Circular-
Arc Models and Graphs. In: Algorithmica 59 (2011), Nr. 2, S. 215–239. –
ISSN 0178–4617

[Kar72] Karp, R.: Reducibility among combinatorial problems. In: Miller, R.
(Hrsg.) ; Thatcher, J. (Hrsg.): Complexity of Computer Computations.
Plenum Press, 1972, S. 85–103

[KKV13] Köbler, Johannes ; Kuhnert, Sebastian ; Verbitsky, Oleg: Helly
Circular-Arc Graph Isomorphism Is in Logspace. In: Chatterjee, Krish-
nendu (Hrsg.) ; Sgall, Jirí (Hrsg.): Mathematical Foundations of Computer
Science 2013 Bd. 8087. Springer Berlin Heidelberg, 2013, S. 631–642

[Köb06] Köbler, Johannes: Complexity of Graph Isomorphism for Restricted Graph
Classes (Presentation). 2006

[KST93] Köbler, Johannes ; Schöning, Uwe ; Torán, Jacobo: The Graph Isomor-
phism Problem: Its Structural Complexity. Basel, Switzerland, Switzerland
: Birkhauser Verlag, 1993

[Lin92] Lindell, Steven: A Logspace Algorithm for Tree Canonization (Extended
Abstract). In: Proceedings of the Twenty-fourth Annual ACM Symposium
on Theory of Computing. New York, NY, USA : ACM, 1992 (STOC ’92), S.
400–404

[LPPS14] Lokshtanov, Daniel ; Pilipczuk, Marcin ; Pilipczuk, Michal ;
Saurabh, Saket: Fixed-parameter tractable canonization and isomorphism
test for graphs of bounded treewidth. In: CoRR abs/1404.0818 (2014)

[McC03] McConnell, Ross M.: Linear-Time Recognition of Circular-Arc Graphs.
In: Algorithmica 37 (2003), Nr. 2, S. 93–147

[MS99] McConnell, Ross M. ; Spinrad, Jeremy P.: Modular decomposition and
transitive orientation. In: Discrete Mathematics 201 (1999), Nr. 13, S. 189
– 241

[RC77] Read, Ronald C. ; Corneil, Derek G.: The graph isomorphism disease.
In: Journal of Graph Theory 1 (1977), Nr. 4, S. 339–363

[Rei05] Reingold, Omer: Undirected ST-connectivity in Log-space. In: Proceed-
ings of the Thirty-seventh Annual ACM Symposium on Theory of Comput-
ing. New York, NY, USA : ACM, 2005 (STOC ’05), S. 376–385

[Sch88] Schöning, Uwe: Graph isomorphism is in the low hierarchy. In: Journal
of Computer and System Sciences 37 (1988), Nr. 3, S. 312 – 323. – ISSN
0022–0000

iv

[Tor04] Torán, Jacobo: On the Hardness of Graph Isomorphism. In: SIAM J.
Comput. 33 (2004), Mai, Nr. 5, S. 1093–1108. – ISSN 0097–5397

[ZKT85] Zemlyachenko, V.N. ; Korneenko, N.M. ; Tyshkevich, R.I.: Graph
isomorphism problem. In: Journal of Soviet Mathematics 29 (1985), Nr. 4,
S. 1426–1481. – ISSN 0090–4104

v

	Preface
	Preliminaries
	Trees
	Tree Representations
	Linear order on tree isomorphism classes
	Undirected trees, forests, colored trees
	Hardness results

	k-Trees
	Canonically labeling k-Trees
	Logspace implementation
	Hardness results

	Helly Circular-Arc graphs
	Turning HCA graphs into interval matrices
	Calculating the Tree of an interval matrix
	Canonically choosing an interval orientation
	CA graph isomorphism

	List of Figures, Tables and Algorithms
	Bibliography

