
Leibniz Universität Hannover
Institut für theoretische Informatik

Bachelor Thesis

Hierarchies of recursive functions

Maurice Chandoo

February 21, 2013

Erklärung
Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst habe und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

i

Dedicated to my dear grandmother
Anna-Maria Kniejska

ii

Contents
1 Preface 1

2 Class of primitve recursive functions PR 2
2.1 Primitive Recursion class PR 2
2.2 Course-of-value Recursion class PRcov 4
2.3 Nested Recursion class PRnes 5
2.4 Recursive Depth . 6
2.5 Recursive Relations . 6
2.6 Equivalence of PR and PRcov 10
2.7 Equivalence of PR and PRnes 12
2.8 Loop programs . 14
2.9 Grzegorczyk Hierarchy . 19
2.10 Recursive depth Hierarchy . 22
2.11 Turing Machine Simulation . 24

3 Multiple and µ-recursion 27
3.1 Multiple Recursion class MR 27
3.2 µ-Recursion class µR . 32
3.3 Synopsis . 34

List of literature 35

iii

1 Preface
I would like to give a more or less exhaustive overview on different kinds of
recursive functions and hierarchies which characterize these functions by their
computational power. For instance, it will become apparent that primitve
recursion is more than sufficiently powerful for expressing algorithms for the
majority of known decidable ”real world” problems. This comes along with
the hunch that it is quite difficult to come up with a suitable problem of
which the characteristic function is not primitive recursive therefore being a
possible candidate for exploiting the more powerful multiple recursion. At
the end the Turing complete µ-recursion is introduced. It completes the
characterization of functions in terms of recursion.

If not mentioned differently, the proofs in this thesis were written from
scratch using the basic ideas of the cited sources.

In the course of writing this thesis I have gained insights beyond the
actual goal of this work. The intensive analysis of the structure of different
types of recursion has revealed to me a new way of thinking in terms of
such recursions. Although, this is something that can be hardly phrased into
definitions and theorems, I still hope some of these insights are conveyed by
reading this work.

1

2 Class of primitve recursive functions PR
When one talks about a recursive function in a general sense, it is likely to
mean a function which is defined by its predecessing function values. Appar-
ently, this somewhat vague idea leaves room for different concepts, namely
primitive, course-of-value and nested recursion as introduced by [Pet34] who
has also shown their equivalence. We start out by defining the class of primi-
tive recursive functions and gradually introduce the more sophisticated vari-
ants.

2.1 Primitive Recursion class PR
The following defintion is based on [Wag85]. The set of primitive recursive
functions embodies mappings from Nk to N for arbitrary k. The basic fami-
lies of functions contained by PR are:

Let n, n1, . . . , nk ∈ N

• Constant 0-function: 0() = 0
0 ∈ PR

• Projection function: πki (n1, ..., nk) = ni
πki ∈ PR for all k ≥ 1 and 1 ≤ i ≤ k
Note, π without indices denotes the set of all projection functions

• Successor function: suc(n) = n+ 1

Using the concept of composition and primitive recursion we inductively
define the complete set PR. To denote that function f has arity k we write
fk just as done above.

• Composition: let fm, gk1 , . . . , gkm ∈ PR, then it holds that
f(g1(n1, . . . , nk), . . . , gm(n1, . . . , nk)) ∈ PR for arbitrary k,m ≥ 1

• Primitive recursion: let gk, hk+2 ∈ PR and fk+1 is defined by:

f(n, n1, . . . , nk) =

g(n1, . . . , nk) , n = 0
h(n− 1, n1, . . . , nk, f(n− 1, n1, . . . , nk)) , else

f ∈ PR
We abbreviate this as f = REC[g, h]. Notice, the parameters n1, . . . , nk
are constant over the course of recursion.

For convenience we introduce some shortcuts which are covered by our defi-
nition in a more lengthy way.

2

• Fictive variables: let {x1, . . . , xl} ⊂ {x1, . . . , xk} and fk, gl ∈ PR:
If a function f(x1, . . . , xk) is expected, we can as well pass g(x1, . . . , xl)
since the following holds:
πk1(g(x1, . . . , xl), 0, . . . , 0) = g(x1, . . . , xl)

• Multiple application: let f 1 ∈ PR:
f (i)(x) = f(f (i−1)(x)) for all i ≥ 1
f (0)(x) = π1

1(x)

• Arbitrary Constant: we can pass any constant c ∈ N as parameter since
c = suc(c)(0)

For the sake of a better understanding of how to express functions in PR
the following basic functions will be explained in detail.

Additon

Let add(n, a) = n+ a, then its primitive recursvie definition is

add(n, a) =

π1
1(a) , n = 0

suc(add(n− 1, a)) , else

or for short
add(n, a) = REC[π1

1, suc(π3
3(x, y, z))]

This simply expresses the fact that (n− 1 + a) + 1 = n+ a and 0 + a = a.

Subtraction

Due to the fact that PR operates on N, we define subtraction as

sub(n, a) = n− a = max {0, a− n}

First, we need a predeccesor function pre(n) = max {0, n− 1}.

pre(n) = REC[0, π2
1(x, y)]

Looking at the order of parameters in the definition of primitive recursion,
we see that x = n − 1. Now our subtraction can be stated analogously to
addition as

sub(n, a) = REC[π1
1, pre(π3

3(x, y, z))]
Translated to a more readable form:

sub(n, a) =

a , n = 0
pre(sub(n− 1, a)) , else

3

Multiplication

By using addition and the obvious identity n ∗ a = (n− 1) ∗ a+ a we define
multiplication:

mult(n, a) = n ∗ a = REC[0, add(π3
3(x, y, z)), π3

2(x, y, z))]

Again, by looking at the values passed to the function h in the definition of
primitive recursion we can deduce that x = n− 1, y = a, z = mult(n− 1, a)
and can rephrase the above function as:

REC[0, add(mult(n− 1, a), a)]

To spare us from looking up the definition each time we will use the latter
form from this point on.

Binaryzation

sg(n) = REC[0, 1](n) =

0 , n = 0
1 , else

Inverted Binaryzation

sg(n) = REC[1, 0](n) =

1 , n = 0
0 , else

2.2 Course-of-value Recursion class PRcov

In the definition of PR we restricted ourselves to recursion that only used its
immediate predeccesor function value f(n−1). Instead, we would like to use
any possible predecessors; for a call f(n) these are f(0), f(1), . . . , f(n − 1).
To define the set of course-of-value recursions PRcov we will use the same
definition as for PR but substitute every occurence of PR with PRcov and
primitve recursion with

• Course-of-value recursion: let gk, µk+1
1 , . . . , µk+1

c , hk+1+c ∈ PRcov and
fk+1 is defined by:

f(n, n1, . . . , nk) =

g(n1, . . . , nk) , n = 0
h(n− 1, n1, . . . , nk,

f(µ1, n1, . . . , nk),
... , else

f(µc, n1, . . . , nk))

4

µi = µi(n− 1, n1, . . . , nk) ≤ n− 1 for all 1 ≤ i ≤ c
f ∈ PRcov for all c, k ∈ N
Notice, the parameters n1, . . . , nk are constant over the recursion.

So, with this kind of recursion we are now able to refer to a fixed number c
of arbitrary predecessors.

Lemma 2.1

PR ⊆ PRcov

Primitive recursion is a special case of course-of-value recursion with
c = 1 and µ1 = πk+1

1
�

2.3 Nested Recursion class PRnes

Yet another idea for extending PR is to allow a change of parameters over the
course of recursion. There was a remark for both previous types of recursions
which explicitly prohibited this. We define this set PRnes in the same fashion
as PRcov with the help of PR and instead of primitive recursion allow

• Nested recursion: let gk, hk+2, λk+1
i ∈ PRnes and fk+1 is defined by:

f(n, n1, . . . , nk) =

g(n1, . . . , nk) , n = 0
h(n− 1, n1, . . . , nk, f(n− 1, λ1, . . . , λk)) , else

λi = λi(n− 1, n1, . . . , nk) for all 1 ≤ i ≤ k
f ∈ PRnes for all k ∈ N

An interesting case of nested recursion is obtained by using f as definition
for some λi. Let us construct an example for this case:

f(n, a) =

g(a) , n = 0
h(n− 1, a, f(n− 1, f(n− 1, a))) , else

It is recognizable that such a function will always terminate as each recursive
step will only call predecessors. How about defining a nested recursion such
that some λi(n, n1, . . . , nk) = f(n + 1, n1, . . . , nk)? The result is a function
which will induce an infinite amount of function calls to itself thus never
terminating. We will forbid any kind of nested function definition that leads
to such a non-terminating tragedy.

5

Lemma 2.2

PR ⊆ PRnes

Primitive recursion is a special case of nested recursion with λi = πk+1
i+1 for

all 1 ≤ i ≤ k
�

2.4 Recursive Depth
We define the recursive depth |f |rd of a function f ∈ PR inductively as:

• if f ∈ {suc, 0} ∪ π then |f |rd = 0

• if f = g(h1, . . . , hk) then |f |rd = max
1≤i≤k

{|hi|rd}
for g, h1, . . . , hk ∈ PR

• if f = REC[g, h] then |f |rd = 1 + max {|g|rd, |h|rd}
for g, h ∈ PR

The recursive depth for a course-of-value recursion f ∈ PRcov is defined as:

• |f |rd = 1 +max {|g|rd, |h|rd, |µ1|rd, . . . , |µc|rd}
if f is a recursion given by g, h, µ1 . . . , µc ∈ PRcov

The recursive depth for a nested recursion f ∈ PRnes is defined as:

• |f |rd = 1 + max {|g|rd, |h|rd, |λ1|rd, . . . , |λk|rd}
if f is a recursion given by g, h, λ1, . . . , λk ∈ PRnes

Beware of the same symbol name of recursive depth for different recursion
types. This does not imply that two functions of different recursion types
which represent the same mapping have equal recursive depth.

2.5 Recursive Relations
[Pet34] has used recursive relations to demonstrate with ease that certain
number-theoretic functions, which we need to use later on, are primitive
recursive. We extend this idea to express primitive recursive functions in a
declarative manner.

• A relation Rk is a subset of Nk

6

• The characteristic function r of Rk is given by:

r(n1, . . . , nk) = JeK =

1 , (n1, . . . , nk) ∈ Rk

0 , else
with e being a boolean expression such thatR =

{
(n1, . . . , nk) ∈ Nk | e

}
• A relation Rk is recursive, iff its characteristic function r ∈ PR

• A function b is a binary function, iff its target domain is {0, 1}

• All characteristic function of recursive relations are binary functions

• Logical conjunction ∧ of two binary functions bk1, bl2:

b1 ∧ b2 =

1 , b1 + b2 = 2
0 , else

with b1 := b1(n1,1, . . . , n1,k) and b2 := b2(n2,1, . . . , n2,l)

• Logical negation ¬ of a binary function bk:

¬b(n1, . . . , nk) =

1 , b(n1, . . . , nk) = 0
0 , else

• For any binary function bk ∈ PR it holds that ¬bk ∈ PR:
¬b(n1, . . . , nk) = sg(b(n1, . . . , nk))

• Equality n = m is a recursive relation since its characteristic function
r is given by r(n,m) = sg((n−m) + (m− n))

• For any recursive relation Rk its complement Rk = Nk \Rk is recursive
as well with resp. characteristic functions r, r:
r(n1, . . . , nk) = ¬r(n1, . . . , nk)

• For any two binary functions bk1, bl2 ∈ PR it holds that b1 ∧ b2 ∈ PR
since it can be stated as recursive relation b1 ∧ b2 = 1⇔ b1 + b2 = 2
with b1 := b1(n1,1, . . . , n1,k) and b2 := b2(n2,1, . . . , n2,l)

• Binary functions in PR are closed under composition of logical con-
junction and negation

• Greather than n > m is a recursive relation since its characteristic
function r is given by r(n,m) = sg(n−m)

7

• For any binary function bk+1 ∈ PR and yk ∈ PR and the function
f(n1, . . . , nk) = max {0 ≤ x ≤ y(n1, . . . , nk) | b(x, n1, . . . , nk) = 1 ∨ x = 0}
it holds that f ∈ PR. f can be expressed as follows:
f(n1, . . . , nk) = f ′(y(n1, . . . , nk), n1, . . . , nk)
f ′(n, n1, . . . , nk) = REC[0, g](n, n1, . . . , nk)
g(n− 1, n1, . . . , nk, f

′
pre) = REC[f ′pre, n](b(n, n1, . . . , nk), n, f ′pre)

• For any binary function bk+1 ∈ PR and yk ∈ PR and the function
f(n1, . . . , nk) = min {0 ≤ x ≤ y | b(x, n1, . . . , nk) = 1 ∨ x = y}
with y := y(n1, . . . , nk) it holds that f ∈ PR. f can be expressed as:
f(n1, . . . , nk) = f ′(y, n1, . . . , nk, y)
f ′(n, n1, . . . , nk, n) = REC[n, g](n, n1, . . . , nk, n)
g(n−1, n1, . . . , nk, n, f

′
pre) = REC[f ′pre, n−n](b(n−n, n1, . . . , nk), n, n, f ′pre)

• With the above two items we have obtained an easy and compact way
to define functions in PR, for that we write:
f(n1, . . . , nk) = Jmax x ≤ y(n1, . . . , nk) : b(x, n1, . . . , nk)K
f(n1, . . . , nk) = Jmin x ≤ y(n1, . . . , nk) : b(x, n1, . . . , nk)K

For the next sections prime power decomposition is important, so we will
show that the neccessary functions lie within PR with the help of recursive
relations.

• pow(n, a) := an = REC[1,mult(a, pow(n− 1, a))]

• fac(n) := n! = REC[1,mult(n, fac(n− 1))]

• div(a, b) :=

0 , b = 0
ba
b
c , else

div(a, b) = Jmax c ≤ a : a ≥ b ∗ cK

• dvsr(a, b) := a|b =

1 , a is a divisor of b
0 , else

dvsr(a, b) = REC[1, dvsr′(a, b)](b, a)
dvsr′(a, b) = sg(Jmax c ≤ b : b = a ∗ cK)

• isprim(n) :=

1 , n is prime
0 , else

isprim(n) = sg(Jmax c ≤ n− 1 : c|n ∧ c > 1K)

8

• p(n) := pn =

2 , n = 0
min {c ∈ N | pn−1 < c ∧ c is prime} , else

p(n) = REC[2, p′(n− 1, p(n− 1))]
p′(n, ppre) = Jmin c ≤ ppre! + 1 : isprim(c) ∧ c > ppreK

• $(n, a) :=

0 , a = 0
max {c ∈ N | pcn|a} , else

$(n, a) = Jmax c ≤ a : pcn|aK

To define the sequence of prime numbers pn as primitve recursion we have
used an upper boundary for the difference between two neighboring prime
numbers, which we will proof now.

Lemma 2.3

∀ prime p ∃ prime p′ : p < p′ ≤ p! + 1
Assume that this is not true, which implies p+ 1, . . . , p! + 1 are not prime.
Let y be a prime divisor of p! + 1 ⇒ y < p + 1 ⇒ y|(p! + 1) ∧ y|p!
⇒ ∀a, b ∈ N : y|(a(p! + 1) + b ∗ p!)⇒ y|1

�

Definition by case

For g, h1, . . . , hc ∈ PR and recursive relations R2
1, . . . , R

2
c with resp. charac-

teristic functions r1, . . . , rc we say f is a definition by case if

f(n, a) =

g(a) , n = 0
h1(n− 1, a, f(n− 1, a)) , r1(n− 1, a) = 1

...
hc(n− 1, a, f(n− 1, a)) , rc(n− 1, a) = 1
0 , else

and if more than one case condition is true for some (n, a) use the first case
for which the condition is fulfilled, e.g. if ri(n, a) = rj(n, a) = 1 for i < j
then hi is applied.

Lemma 2.4

For a definition by case f given by g, h1, . . . , hc, r1, . . . , rc ∈ PR it holds that
f ∈ PR.

f(n, a) = REC[g, h]

9

h(n, a, fpre) =
c∑
i=1

t ∧
1≤j<i

rj(n, a) = 0 ∧ ri(n, a) = 1
|

∗ hi(n, a, fpre)

with the empty conjunction set to true.
�

2.6 Equivalence of PR and PRcov

Before we proof that every course-of-value recursion can be written as prim-
itive recursive function, we will show that it can be restricted to the use of
only one non-recursive parameter without loss of generality.

Lemma 2.5

For k ∈ N, fk+1, f ′2 ∈ PRcov:

∀fk+1 ∃f ′(n, a) : f(n, n1, . . . , nk) = f ′(n, pn1
1 ∗ · · · ∗ p

nk
k)

Define f ′ exactly the same as f and replace any occurence of ni with $(i, a)
for all 1 ≤ i ≤ k.

�

Theorem 2.6

PRcov ⊆ PR
This will be proven by showing that any course-of-value recursion can be
rewritten as primitve recursion by induction over the recursive depth. Our
inductive statement is

∀f(n, a) ∈ PRcov with |f |rd ≤ ` ∃f ′(n, a) ∈ PR : f = f ′

For the base case ` = 0 no recursion can occur, so the inductive hypothesis
obviously holds. For the inductive step ` + 1 we have a function f ∈ PRcov

with |f |rd = ` + 1. This f is a course-of-value recursion1 parameterized by
the functions g1, h2+c, µ2

1, . . . , µ
2
c which lie within PR as we can deduce from

our inductive hypothesis. Now we construct a f ′(n, a) such that f ′(n, a) =
f(n, a):

f ′(n, a) = $(n, f ′′(n, a))

f ′′(n, a) =

p
g(a)
0 , n = 0
h′(n− 1, a, f ′′(n− 1, a)) , else

1Actually, it could be a substitution given by some functions for which we would trans-
late each one separately

10

h′(n− 1, a, f ′′pre) = f ′′pre ∗ pow(h(n− 1, a,$(µ1, f
′′
pre), . . . , $(µc, f ′′pre)), pn)

with µi = µi(n− 1, a) for all 1 ≤ i ≤ c.
�

Proof of Correctness

Our claim is that f = f ′ which, again, is proven by induction over n. Our
base case n = 0:

f(0, a) = g(a) = $(0, pg(a)
0) = $(0, f ′′(0, a)) = f ′(0, a)

The inductive step n+ 1:

f(n+ 1, a) = h(n, a, f(µ1(n, a), a), . . . , f(µc(n, a), a))

f ′(n+ 1, a) = $(n+ 1, f ′′(n+ 1, a))

f ′′(n+ 1, a) = h′(n, a, f ′′(n, a))

f ′(n+ 1, a) = h(n, a,$(µ1(n, a), f ′′(n, a)), . . . , $(µc(n, a), f ′′(n, a)))

This leads to the question
h(n, a, f(µ1(n, a), a), . . . , f(µc(n, a), a)) ?=
h(n, a,$(µ1(n, a), f ′′(n, a)), . . . , $(µc(n, a), f ′′(n, a)))

This holds true, iff

f(µi(n, a), a) = $(µi(n, a), f ′′(n, a)) ∀ 1 ≤ i ≤ c

Due to our inductive hypothesis we can assume that

f(j, a) != f ′(j, a) = $(j, f ′′(j, a)) ∀ j < n+ 1

and the fact that f ′′ is preserving each predecessor due to h′ meaning

$(j, f ′′(j, a)) = $(j, f ′′(l, a)) ∀ l ≥ j

which conclusively proves our claim since

µ1(n, a), . . . , µc(n, a), j ∈ {0, . . . , n}

�

11

2.7 Equivalence of PR and PRnes

As for PRcov, we will show that nested recursion can be restricted to the use
of only one non-recursive parameter without loss of generality.

Lemma 2.7

For k ∈ N, fk+1, f ′2 ∈ PRnes:

∀fk+1 ∃f ′(n, a) : f(n, n1, . . . , nk) = f ′(n, pn1
1 ∗ · · · ∗ p

nk
k)

If |f |rd = 0 define f ′ exactly the same as f and replace any occurence of
ni with $(i, a) for all 1 ≤ i ≤ k. If f is a nested recursion parameterized
by gk, hk+2, λk+1

1 , . . . , λk+1
k we use an inductive argument over the recursive

depth such that g, h, λ1, . . . , λc can be assumed to be given. f ′ can be written
as:

f ′(n, a) =

g($(1, a), . . . , $(k, a)) , n = 0
h(n− 1, $(1, a), . . . , $(k, a),

f ′(n− 1,
k∏
i=1

p
λi(n−1,$(1,a),...,$(k,a))
i)) , else

�

Theorem 2.8

PRnes ⊆ PR
Again, we will use an inductive argument over the recursive depth. Our
inductive statement is

∀f(n, a) ∈ PRnes with |f |rd ≤ ` ∃f ′(n, a) ∈ PR : f = f ′

For the base case ` = 0 no recursion can occur, so the inductive hypothesis
obviously holds. For the inductive step `+ 1 we have a function f ∈ PRnes

with |f |rd = ` + 1. This f is a nested recursion2 parameterized by the
functions g1, h3, λ2 which lie within PR as we can deduce from our inductive
hypothesis. Now we construct a f ′(n, a) such that f ′ = f :

f ′(n, a) = f ′′(n, a, n)

f ′′(n, a, n) =

g(ann) , n = 0
h(n− 1, an−nn , f ′′(n− 1, a, n)) , else

2same case as in the footnote of Theorem 2.6

12

w(n, a, n) = ann =

a , n = 0
λ(n− n,w(n− 1, a, n)) , else

�

Proof of Correctness

For a nested recursion f 2 parameterized by g1, h3, λ2 we formalize the concept
of calling its predecessor:

f(n, a)→ f(n− 1, b)⇔ λ(n− 1, a) = b

The next step is to proof that the change of parameter during the nested
recursion is given by the helper function w.

∀ 1 ≤ m ≤ n : f(m, an−mn)→ f(m− 1, an−m+1
n)

f(m, an−mn) = h(m− 1, an−mn , f(m− 1, λ(m− 1, an−mn)))⇒
f(m, an−mn)→ f(m− 1, λ(m− 1, an−mn))

λ(m− 1, an−mn) = w(n−m+ 1, a, n) = an−m+1
n

Finally, we can begin to proof our claim f(n, a) = f ′(n, a) by induction. The
base case n = 0:

f(0, a) = g(a) = g(a0
0) = f ′′(0, a, 0) = f ′(0, a)

For the case n+ 1 we have to carry out another induction within our current
one:

f(n+ 1, a0
n+1)→ · · · → f(0, an+1

n+1)

= = =

f ′′(n+ 1, a, n+ 1)→ · · · → f ′′(0, a, n+ 1)
In other words, we show the following

∀ 0 ≤ m ≤ n+ 1 : f(m, an+1−m
n+1) = f ′′(m, a, n+ 1)

For the case m = 0:

f(0, an+1
n+1) = g(an+1

n+1) = f ′′(0, a, n+ 1)

For the case 0 < m+ 1 ≤ n+ 1:

f(m+ 1, an−mn+1) = h(m, an−mn+1 , f(m,λ(m, an−mn+1)))

13

f ′′(m+ 1, a, n+ 1) = h(m, an−mn+1 , f
′′(m, a, n+ 1))

f(m,λ(m, an−mn+1)) = f(m, an+1−m
n+1) ∗= f ′′(m, a, n+ 1)

For (*) we used our induction hypothesis. We finalize our proof by connecting
f ′ to f and f ′′:

f(n+ 1, a) = f ′(n+ 1, a) = f ′′(n+ 1, a, n+ 1)

�

A nested recursion with λ(n, a) = f(n, a) can be calculated by successively
evaluating f(0, a), f(0, f(0, a)), f(1, a), f(1, f(1, a)), . . . , f(n, a), f(n, f(n, a)).
This can be expressed as definition by case using the parity of the recursive
variable.

Corollary 2.9

PR= PRcov= PRnes

2.8 Loop programs
Loop programs are a well known concept in computer science which have
the nice property of always terminating. We will show that they are exactly
as powerful as primitive recursion and furthermore can be seen as nested
recursion in disguise3. We define Loop programs as in [Vol11].

Syntactical components

• Variables: x1, x2, x3, . . .

• Constants: 0, 1, 2, . . .

• Keywords: LOOP, DO, END

• Other symbols: ’+’, ’−’, ’:=’, ’;’
3This qualifies as a reason as to why a formal analysis of Loop programs is stressful in

general refering to the previous proof of correctness

14

Syntax

• If xi, xj are variables and c is a constant, then
”xi := xj + c;” and ”xi := xj − c;” are Loop programs

• If P1, P2 are Loop programs so is ”P1 P2”

• If P is a Loop program and xi is a variable, then
”LOOP xi DO P END;” is a Loop program

Semantics

A Loop program P calculates a function fP : Nk 7→ N with the input
n1, . . . , nk. It does that by setting the values of the k-first variables to its
respective input xi = ni at the beginning of the program. All other variables
used in P are set to 0 initially.

• After execution of ”xi := xj + c;” the value contained by xi = xj + c

• After execution of ”xi := xj − c;” the value contained by xi = max {0, xj − c}

• ”P1 P2” indicates to execute P1 and then execute P2 with all the
values of variables being the same as at the end of P1 when executing
P2.

• ”LOOP xi DO P END;” means to execute P xi times. Possible changes
of the value of xi during execution of the loop body P do not affect the
number of iterations

At the end of the execution of a Loop program the value of the variable x1
is returned. We call the set of all Loop programs LOOP.

Loop nesting depth

Given an arbitrary Loop program P , we define its Loop nesting depth |P |ld
as follows:

• if P = ”xi := xj + c;” then |P |ld = 0

• if P = ”xi := xj − c;” then |P |ld = 0

• if P = ”P1 P2” then |P |ld = max {|P1|ld, |P2|ld}

• if P = ”LOOP xi DO Pl END;” then |P |ld = |Pl|ld + 1

15

Theorem 2.10

LOOP ⊆ PR
A Loop program P which uses k input variables and m variables in total, can
be described as a collection of functions f1, . . . fm which calculate the value
of their respective variable after the execution of the program. The function
fP calculated by P is given by

fP (n1, . . . , nk) = f1(n1, . . . , nk, 0, . . . , 0)

To show this we prove:

∀ P ∈ LOOP and |P |ld ≤ ` : fP ∈ PR

with fP being the function calculated by the Loop program P .
For the base case ` = 0 we argue that a Loop program with nesting depth
0 can only consist of a finite sequence of arithmetic operations of either the
form ”xi := xj + c” or ”xi := xj − c”. The values of these assignments can
be simply calculated by

xj + c = suc(c)(xj) and xj − c = pre(c)(xj)

So, such an operation is determined by i, j, c and the operator ’+’ or ’−’. Let
A be the set which contains all possible arithmetic operations for a program
which uses m variables:

A =
{

(i, j, ◦) | 1 ≤ i, j ≤ m and ◦ ∈
{
f (c) | f ∈ {pre, suc} and c ∈ N

}}
For any Loop program given by a non-empty sequence ((i1, j1, ◦1), . . . , (il, jl, ◦l))
of length l we can determine f1, . . . , fm as follows:

for 1 ≤ p ≤ m , 1 ≤ q ≤ l:

fp,0 = πnp

fp,q =

◦q(fjq ,q−1) , iq = p

fp,q−1 , iq 6= p

fp(x1, . . . , xm) = fp,l(x1, . . . , xm)

To illustrate the idea behind this we will compute the function table for a
concrete example.

16

Line i Program f1,i f2,i f3,i
0 x1 x2 x3
1 x1 = x2 + 3; suc(3)(x2) x2 x3
2 x2 = x1 − 2; suc(3)(x2) pre(2)(suc(3)(x2)) x3
3 x3 = x2 + 4; suc(3)(x2) pre(2)(suc(3)(x2)) suc(4)(pre(2)(suc(3)(x2)))
4 x1 = x1 − 1 pre(suc(3)(x2)) pre(2)(suc(3)(x2)) suc(4)(pre(2)(suc(3)(x2)))

Note, for better readability the actual variables were used instead of the corresponding projection functions

For the inductive step `+ 1:

P = ”LOOP xi DO Pl END;”

we show
fP ∈ PR for |Pl|ld ≤ `

Due to the inductive hypothesis there is a collection of primitive recursive
functions which calculate the value of each of the m variables after the exe-
cution of Pl. Let these functions be fl,1, . . . , fl,m then we obtain fP as nested
recursion:

fP (x1, . . . , xm) = h1(xi, x1, . . . , xm)

hp(n, x1, . . . , xm) =

xp , n = 0
h(n− 1, fl,1(x1, . . . , xm), . . . , fl,m(x1, . . . , xm)) , else

It is noteworthy that a nested recursion is semantically equivalent to a LOOP
instruction in the following sense:

xkj := value of xj after execution of ”LOOP k DO Pl END;”

xkj = hj(k, x1, . . . , xm) ∀ 1 ≤ j ≤ m, k ≥ 0

Additionally, P ′ = ”P1;P2” is in PR. P1, P2 can be Loop programs as in
the inductive step or programs with nesting depth smaller than n + 1. By
reason of this restriction there are primitive recursive functions for P1 and
P2. Let us call them f1,1, f2,1 . . . , f1,m, f2,m with m being the maximum count
of variables used in either P1 or P2. The function fP ′ calculating P ′ is given
by:

fP ′(x1, . . . xm) = f2,1(f1,1(x1, . . . xm), . . . , f1,m(x1, . . . xm))

�

17

Theorem 2.11

PR ⊆ LOOP
First, we introduce an extension of Loop programs:
If xi, xa1 , . . . , xan are variables and P ∈ LOOP with fP being the correspond-
ing function then ”xi := fP (xa1 , . . . , xan);” means that after the execution of
this line xi = fP (xa1 , . . . , xan). Furthermore the evaluation of fP has no
meaningful side effects to the calling program. This can be accomplished by
appropriately renaming the variables occuring in P .

∀f ∈ PR with |f |rd ≤ ` ∃P ∈ LOOP s.t. fP = f

For any set of functions hk0, hn1 , . . . , hnk ∈ PR which can be calculated by
Loop programs Ph0 , . . . , Phk

the composition fn = h0(h1, . . . , hk) can also be
expressed as Loop program. Pf is given by:

xh,1 := h1(x1, . . . xn);1

...2

xh,k := hk(x1, . . . xn);3

x1 := h0(xh,1, . . . , xh,k);4

The base case ` = 0 is trivial as it just requires to express constant 0-function,
successor and projection function as Loop programs. For the inductive step
`+ 1 we show:

fn+1 = REC[gn, hn+2] with |g|rd, |h|rd ≤ ` is calculated by Pf

For that, the induction hypothesis grants us that g, h can be calculated by
some Loop programs. Pf is given by:

xf := g(x2, . . . , xn);1

LOOP x1 DO2

xf := h(xcnt, x2, . . . , xn, xf);3

xcnt := xcnt + 1;4

END;5

x1 = xf ;6

2

Corollary 2.12

PR = LOOP

18

2.9 Grzegorczyk Hierarchy
This hierarchy classifies primitive recursive functions by their growth. For its
definition we follow [Wag85] with a small adjustment. We start by recursively
defining a series of boundary functions:

B0(n, a) = n+ 1 , B1(n, a) = n+ a , B2(n, a) = n ∗ a

∀n ≥ 2 : Bn+1(n, a) = REC[1, Bn(a,Bn+1(n− 1, a))]

All boundary functions are primitive recursive and |Bi|rd = i holds for all
i ≥ 0. We define bounded primitive recursion for g1, h3, k2 ∈ PR 4 as:

f 2 = BPR[g, h, k] def⇔ f = REC[g, h] ∧ f ≤ k

Now, the Grzegorczyk Hierarchy E i for all i ≥ 0 is defined as:

• Bi ∈ E i

• if |f |rd = 0 then f ∈ E i

• if f(n, a) = g(h(n, a), k(n, a)) then f ∈ E i for g, h, k ∈ E i

• if f = BPR[g, h, k] then f ∈ E i for k ∈ E i

Lemma 2.13

∀ i ≥ 0 : E i ⊆ E i+1

To prove this we show

∀ i ≥ 0 : Bi ∈ E i+1 ⇔ ∃m ∈ E i+1 : Bi ≤ m

With that we can conclude that anything used to construct a function which
resides in E i can also be utilized in E i+1 thus justifying our statement. The
two special cases:

• i = 0: B0(n, a) ≤ B1(n+ 1, a)⇔ n+ 1 ≤ n+ 1 + a

• i = 1: B1(n, a) ≤ B2(n+1, a+1)⇔ n+a ≤ (n+1)(a+1) = na+n+a+1
4 [Wag85] has defined BPR for g, h, k ∈ µR which we have restricted to PR for the sake

of simplicity. This is justified by the result in [Grz53] that shows that the Grzegorczyk
Hierarchy coincides with PR

19

The common case using induction:
(?) ∀i ≥ 3 : Bi−1(n, a) ≤ Bi(n, a)

i = 3 : B2 ≤ B3 ⇔ a ∗ n ≤ an ∀ a, n ≥ 0
i+ 1 > 3 : Bi ≤ Bi+1

(�) ∀n ≥ 0 : Bi(n, a) ≤ Bi+1(n, a)
n = 0 : Bi(0, a) ≤ Bi+1(0, a)⇔ 1 ≤ 1
n+ 1 : Bi(n+ 1, a) ≤ Bi+1(n+ 1, a)
⇔ Bi−1(a,Bi(n, a)) ≤ Bi(a,Bi+1(n, a))
(�)⇔ Bi−1(a, x) ≤ Bi(a, x+ y) ∧ x = Bi(n, a),
∧ x+ y = Bi+1(n, a)

(?)⇔ Bi−1(a, x) ≤ Bi(a, x) ≤ Bi(a, x+ y)

Bi(a, x) ≤ Bi(a, x + y) holds because all boundary functions are obviously
montonously increasing w.r.t each variable.

�

Theorem 2.14

∀ i ≥ 0 : Bi+1 /∈ E i
This is proven by the fact that there exists no function m ∈ E i s.t. Bi+1 ≤ m.
It is obvious that without the use of substitution Bi attains the highest
functions values in E i. Using substitution only once, it can be verified that
Bi(Bi(n, a), Bi(n, a)) attains the highest function values. We generalize this
for k substitutions:

B
(0)
i = Bi(n, a) , B(k+1)

i = Bi(B(k)
i (n, a), B(k)

i (n, a))

We conclude that being able to argue that for any k ≥ 0 there exists a tuple
(n, a) such that B(k)

i (n, a) < Bi+1(n, a) implies that Bi+1 /∈ E i. We start with
our special cases B0 and B1.

B
(k)
0 (n, a) = n+ 1 + k , B

(k)
1 (n, a) = 2k(n+ a)

These identities can be easily proved by induction. Now, we can show

∀ k ≥ 0 ∃ n, a ≥ 0 : B(k)
0 (n, a) < B1(n, a)⇔ n+ 1 + k < n+ a

Possible solution: n = 0 , a = k + 2
∀ k ≥ 0 ∃ n, a ≥ 0 : B(k)

1 (n, a) < B2(n, a)⇔ 2k(n+ a) < n ∗ a

z := n = a : 2k+1z < z2 ⇔ 2k+1 < z

Possible solution: n = a = 2k+2

20

For the general case it has to be shown that

(�) ∀ i ≥ 3 ∃ n, a ≥ 0 : B(k)
i−1(n, a) < Bi(n, a)

holds for all k ≥ 0. For k = 0:

(?) ∃ n ≥ 0 ∃ a0 ≥ 0 ∀ a ≥ a0 : Bi−1(n, a) < Bi(n, a)

We proof the above statement by induction over i and start with i = 3:

∃ a0 ≥ 0 ∀ a ≥ a0 : B2(n, a) < B3(n, a)⇔ n ∗ a < an = a ∗ an−1

⇔ n < an−1 ⇔ n−1
√
n < a⇒ a0 :=

⌈
n−1
√
n

⌉
+ 1

The case i+ 1 > 3:

∃ a0 ≥ 0 ∀ a ≥ a0 : Bi(n, a) < Bi+1(n, a)

⇔ Bi−1(a,Bi(n− 1, a)) < Bi(a,Bi+1(n− 1, a))
due to (?) ∃ x0 ≥ 0 ∀ x ≥ x0 : Bi−1(n, x) < Bi(n, x)

From our previous Lemma we know that Bi ≤ Bi+1 holds for all i ≥ 2 and
furthermore that all boundary functions are strictly montonously increasing
w.r.t. to each variable for sufficiently large values.

x := Bi(n− 1, a) , y := Bi+1(n− 1, a) , x ≤ y

∀ x ≥ x0 : Bi−1(a, x) < Bi(a, x) ≤ Bi(a, y)
Therefore the statement (�) holds for k = 0. For k > 0 we will provide
no more than an informal, intuitional argument. For a formal proof of this
last part look at [Grz53]. Let us consider the example B(1)

2 (3, a) (left tree)
compared to B3(3, a) (right tree):

B2

B2

3 a

B2

3 a

B2

a B2

a B2

a 1

Since B2(n, a) = n∗a the left tree yields 32∗a2 and the right tree yields a3. In
general, B(k)

i (n, a) can be described as a balanced binary tree parameterized
by the constant k with a depth of k+1 and 2k+1−1 nodes Bi. The structure
of Bi+1(n, a) is determined by the variable n with a depth of n and n nodes

21

Bi. The intuition why Bi+1 will exceed the function value of B(k)
i at some

point, is that choosing a sufficiently large n will lead to a function which has
a higher growth rate than B

(k)
i with respect to a as seen in the example 9a2

vs. a3 for n = 3.
An interesting observation is that for i ∈ {1, 2} B(k)

i = Bi+1(2k, Bi(n, a))
which can be explained by the commutative and associative property of these
operators.

�

Corollary 2.15

∀ i ≥ 0 : E i (E i+1

Lemma 2.16⋃
i∈N E i ⊆ PR

Per definition E i ⊆ PR for all i ≥ 0. It follows that the union of subsets of
PR cannot be larger than PR.

�

Due to our adjusted definition of bounded primitive recursion this statement
is trivial, which indeed is not the case 5.

2.10 Recursive depth Hierarchy
Using the recursive depth for primitive recursion we define the hierarchy:

PRi = {f ∈ PR | |f |rd ≤ i}

Lemma 2.17⋃
i∈NPRi = PR

Per definition PRi ⊂ PR holds for all i ≥ 0. Considering the definition of
recursive depth for every f ∈ PR there is a c ∈ N s.t. |f |rd = c. Hence,
PR ⊆ ⋃

i∈NPRi

�

Lemma 2.18

∀ i ≥ 0 : PRi ⊆ E i+1

Every function f 2 ∈ PRi can be built by using bounded primitive recursion
5See footnote 4

22

avaiable to E i+1 since there must be some c ≥ 0 such that f ≤ B
(c)
i+1. To

show that it can be argued that B(c)
i is the function which attains the highest

function values in PRi for some c and conclude that B(c)
i ≤ B

(c)
i+1.

�

Lemma 2.19⋃
i∈N E i = PR

The previous Lemma implies that ⋃
i∈NPRi ⊆ ⋃

i∈N E i which further implies
PR ⊆ ⋃

i∈N E i.
�

For our next Theorem we need to distinguish the recursive depth of a nested
recursion. Let us denote it with |f |nd for f ∈ PRnes from now on. We
introduce

PRi
nes = {f ∈ PRnes | |f |nd ≤ i}

and
LOOPi = {P ∈ LOOP | |P |ld ≤ i}

Lemma 2.20

∀ i ≥ 0 : LOOPi ⊆ PRi
nes

For i = 0 this obviously holds as shown in Theorem 2.10 and 2.11. For i+1 we
look at the program P ′ = ”LOOP xk DO P END” with |P |ld = i, m variables
and 1 ≤ k ≤ m. Due to the inductive hypothesis there are λ1, . . . , λm which
each model the change of the respective variable x1, . . . xm after one iteration
of the loop. Further it holds that |λj|nd = i for all 1 ≤ j ≤ m. Using a nested
recursion as stated in Theorem 2.10 we obtain a function f s.t. f = fP ′ and
|f |nd = i + 1. For the case ”P1; P2” with |P1|ld, |P2|ld ≤ i + 1 substitution
can be used which does not affect the recursive depth.

�

Theorem 2.21

∀ i ≥ 0 : PRi
nes ⊆ PR2i

For i = 0 the statement PR0
nes ⊆ PR0 obiously holds. For the case i+ 1:

PRi+1
nes ⊆ PR2(i+1)

We show for
f 2 ∈ PRi+1

nes with |f |nd = i+ 1

23

that there exists a f ′(n, a) ∈ PR with |f ′|rd ≤ 2(i+ 1) s.t. f ′ = f .

f(n, a) =

g(a) , n = 0
h(n− 1, a, f(n− 1, λ(n− 1, a))) , else

|f |nd = 1 + max {|g|nd, |h|nd, |λ|nd} = i+ 1

⇔ i = max {|g|nd, |h|nd, |λ|nd}

Our inductive hypothesis ensures the existence of g′, h′, λ′ ∈ PR with |g′|rd, |h′|rd, |λ′|rd ≤
2i such that g = g′, h = h′, λ = λ′. Using the translation of Theorem 2.8 to
convert our nested recursion f into a primitve recursion f ′ with the help of
g′, h′, λ′ we can conclude

|f ′|rd = 1 + max {|g′|rd, |h′|rd, |w|rd}

|w|rd = 1 + |λ′|rd
⇒ |f ′|rd ≤ 1 + 1 + 2i = 2(i+ 1)

�

Corollary 2.22

LOOPi ⊆ PR2i

Stated differently, this means that any Loop program with nesting depth
i can be written as a primitive recursive function with a recursive depth of
at most 2i.

2.11 Turing Machine Simulation
We define a Turing Machine with one-sided infinite tape which always halts
based on the more general version given in [Hop79] as:

M = (Q,Γ, b,Σ, δ, q0, q+, q−)

• Q is the finite, non-empty set of states

• Γ is the finite, non-empty set of the tape alphabet

• b ∈ Γ is the blank symbol

• Σ ⊆ Γ \ {b} is the set of the input alphabet

24

• q0 ∈ Q is the initial state

• q+, q− ∈ Q where q+ is the accepting final state and q− is the rejecting
final state

• δ : Q\{q+, q−}×Γ 7→ Q×Γ×{0, 1, 2} is a computable, total transition
function with 0 being a left shift, 2 being a right shift and 1 being no
shift on the tape

The characteristic function of a Turing Machine M for some input x is defined
as:

c(x) =

0 ,M(x) stops with final state q−
1 ,M(x) stops with final state q+

A function f(n) is said to be a runtime function for a Turing Machine M , iff
for all inputs x of length n M(x) induces at most f(n) calls of the transition
function until it reaches a final state.

Theorem 2.23

Given a Turing machine M = (Q,Γ, b,Σ, δ, q0, q+, q−) with a runtime func-
tion f ∈ PR, its characteristic function c is primitive recursive.

First, we argue that the elements of the sets Q and Γ can be enumerated by
counting from 0 and we can replace the symbols with the respective number.
Let us assume that b = 0 and q0 = 0. Since the transition function δ is
computable and only has a finite definition domain the result for each input
can be computed and expressed as definition by case. This concludes that
each of the following functions is primitive recursive.

δQ(q, γ) = q′
def⇔ δ(q, γ) = (q′, x, y)

δΓ(q, γ) = γ′
def⇔ δ(q, γ) = (x, γ′, y)

δD(q, γ) = d
def⇔ δ(q, γ) = (x, y, d)

Our simulator can be defined as nested recursion with Pn being the prime
number sequence for this argumentation:

h(r, q, t, p) =

0 , r = 0
h′(q, h(r − 1, λQ(q, t, p), λT (q, t, p), λD(q, t, p))) , else

25

h′(q, hpre) =

0 , q = q−

1 , q = q+

hpre , else

λQ(q, t, p) = δQ(q,$(p, t)) , λD(q, t, p) = p+ δD(q,$(p, t))− 1

λT (q, t, p) =
⌊

t

P$(p,t)
p

⌋
∗ PδΓ(q,$(p,t))

p

For all inputs x = x0 . . . xn−1 with xi ∈ Σ for 0 ≤ i < n it holds that

c(x) = h(f(n) + 1, 0,
n−1∏
i=0
Pxi
i , 0)

The nested recursion saves the current state in q, the tape position in p and
the tape in t by utilizing prime power decomposition. λQ simulates the state
transition, λD does that for the tape position and λT modifies the current
tape cell accordingly. $(p, t) returns the current cell content. h calls f(n)+1
to ensure that h′ is always called at least once. Due to the requirement that
M has to terminate after doing at most f(n) steps, h(0, . . .) is never called.

�

Corollary 2.24

∀ L ∈ EXPSPACE with characteristic function c it holds that c ∈ PR.

Proof sketch: utilize that DSPACE(s(n)) ⊆ DTIME(2O(s(n))) as known from
introductory course to computational complexity and show that O(22nO(1)

) ⊆
PR.

26

3 Multiple and µ-recursion

3.1 Multiple Recursion class MR
The next probable ’natural’ extension to recursive functions would be instead
of only recursing over one variable to do this over r recursive variables. The
following definition is more powerful than the one stated in [Pet36] since it
inherently allows for nested and course-of-value recursion. [Pet35] has shown
that this definition does not exceed multiple recursion by the same means we
have used to show that nested and course-of-value recursion do not extend
PR. Therefore we will spare us from showing this again. This class of re-
cursive functions will be calledMR and as extension self-evidently contains
all functions of PR.

Let n1, . . . , nr, a ∈ N

• Predecessor: pre(a) ∈MR

• Composition: let fm, gr1, . . . , grm ∈MR, then it holds that
f(g1(n1, . . . , nr), . . . , gm(n1, . . . , nr)) ∈MR for m ∈ N

• Multiple recursion: let gr, hr+1+c, µr+1
i , λr+1

i,j ∈ MR for 1 ≤ i ≤ c
1 ≤ j ≤ r and f is defined by:

f(n1, . . . , nr, a) =

g(n2, . . . , nr, a) , n1 = 0
h(n1, . . . , nr, a, f1, . . . , fc) , else

fi = fi(µi, λi,1, . . . , λi,r), µi = µi(n1, . . . , nr, a) with µi < n1 and
λi,j = λi,j(n1, . . . , nr, a)
f ∈MR for all r, c ≥ 0 .

The same as for nested recursion applies for the λi functions. A λi is only
allowed to be defined in terms of f such that all calls of f induce only a finite
number of function calls, or in other words f remains total. Even though
any of the recursive variables but the first can grow during the recursion all
functions inMR still remain total since the first recursive variable is strictly
decreasing for each recursive step.
Our next step is to show that the class of multiple recursion is a strict superset
of primitive recursion. For that we use exactly the same argumentation as
in [Pet35].
As we have seen, primitive recursive functions can be restricted to the use
of only one parameter without loss of generality. Now we will show that a
primitive recursion with one parameter can be rewritten into one without
any parameters.

27

Lemma 3.1

∀ f(n, a) = REC[g1, h3] ∈ PR ∃ f ′(n) ∈ PR : f(n, a) = f ′(2n ∗ 3a)

If x = 2n ∗ 3a is divisible by 2, this implies n 6= 0 and therefore h has to
be called else g. This can be written as course-of-value recursion:

f ′(x) =

0 , x = 0
g($(1, x)) ,¬(2|x)
h($(0, x)− 1, $(1, x), f ′(

⌊
x
2

⌋
)) , 2|x

Note, that the function value of f ′(0) is not bound by f , so f(0) can be an
arbitrary value.

�

With this we state an equivalent definition of PR which we call PR2.

Let n, n1, n2 ∈ N

• {π2
1, π

2
2, pow, $} ⊂ PR2

• p(n, a) := pn ∈ PR2.
Note, that the parameter a is a fictive variable

• Composition: let f 2, g2
1, g

2
2 ∈ PR2, then

f(g1(n1, n2), g2(n1, n2)) ∈ PR2

• Primitive recursion: let h2 ∈ PR2 and f is defined by:

f(n) =

0 , n = 0
h(n− 1, f(n− 1)) , else

f 2 ∈ PR2 ; note that the second variable is fictive
for short f = REC2[h]

Since PR2 is obviously a subset of PR it just has to be shown that the
constant-0 function and the successor function can be expressed in PR2 to
show that both definitions are equivalent.

• 0 = $(n, n)

• n ∗ a = $(0, (pn0)a)

• n+ 1 = $(0, pn0 ∗ p0)

28

Now we can enumerate all functions in PR2 as a sequence

ϕ0(n, a), ϕ1(n, a), . . . , ϕm(n, a)

such that every function in PR occurs at least once in this series. In other
words ϕ is a valid enumeration. Examing the function φ(m,n, a) := ϕm(n, a)
leads us to a diagonalization argument.

Theorem 3.2

φ(m,n, a) /∈ PR
Assume the opposite: φ(m,n, a) ∈ PR ⇒ φ(n, n, a) = ϕn(n, a) ∈ PR ⇒
φ(n, n, a)+1 ∈ PR ⇒ ∃m : ϕm(n, a) = φ(n, n, a)+1⇒ for the function value
with n = m: ϕm(m, a) = φ(m,m, a) + 1⇒ φ(m,m, a) = φ(m,m, a) + 1

2

To argue that φ(m,n, a) ∈ MR we need to state a concrete enumeration.
The first five functions are defined as:

• ϕ0(n, a) = π2
1(n, a)

• ϕ1(n, a) = π2
2(n, a)

• ϕ2(n, a) = p(n, a)

• ϕ3(n, a) = pow(n, a)

• ϕ4(n, a) = $(n, a)

For k > 4 and k ≡2 0 primitive recursion is used:

• ϕk(n, a) =

0 , n = 0
ϕ$(0,k)(n− 1, ϕk(n− 1, a)) , else

For k > 4 and k ≡2 1 substitution is used:

• ϕk(n, a) = ϕ$(1,k)(ϕ$(2,k)(n, a), ϕ$(3,k)(n, a))

Lemma 3.3

ϕ is a valid enumeration
To show that this is a valid enumeration which covers all functions in PR at
least once, for any given k there needs to be an r such that ϕr = REC2[ϕk].
A possible solution is r = 2k ∗ 5. Obviously, we cannot find an r for k = 0
since r needs to be even and bigger than 4. However, this isn’t bad as

29

REC2[ϕ0] = REC2[π2
1] = n thus not foiling our argumentation.

This needs to hold for substitution as well; explicitly stated: given k1, k2, k3
there has to exist a s s.t. ϕs = ϕk1(ϕk2 , ϕk3). A valid relation would be
s = 3k1 ∗ 5k2 ∗ 7k3 ∗ 11.

�

Finally, we separate MR from PR with the help of the aforementioned
function φ.

φ(m,n, a) =

n ,m = 0
a ,m = 1
p(n) ,m = 2
pow(n, a) ,m = 3
$(n, a) ,m = 4
0 ,m > 4 ∧m ≡2 0 ∧ n = 0
φ($0(m), n− 1, φ(m,n− 1, a)) ,m > 4 ∧m ≡2 0 ∧ n > 0
φ($1(m), φ($2(m), n, a),

φ($3(m), n, a)) ,m > 4 ∧m ≡2 1

Theorem 3.4

φ(m,n, a) ∈MR

φ(m,n, a) = φ′(m,n, pa1)

φ′(m,n, b) =

φ′($0(m+ 1), n, b2) ,M = 1
φ′($1(m+ 1), n, b4) ,M = 2
n ,m = 0
a′ ,m = 1
p(n) ,m = 2
pow(n, a′) ,m = 3
$(n, a′) ,m = 4
0 ,m > 4 ∧m ≡2 0 ∧ n = 0
φ′(m− 1, n− 1, p1

0 ∗ p
φ′(m,n−1,b)
1) ,m > 4 ∧m ≡2 0 ∧ n > 0

φ′(m− 1, φ′($2(m), n, b),
p2

0 ∗ p
φ′($3(m),n,b)
1) ,m > 4,m ≡2 1

M = $(0, b) , a′ = $(1, b)

30

Why is this a valid multiple recursion? For the case M = 1 and M = 2
we use course-of-value recursion to obtain the predeccesor $0(m + 1) resp.
$1(m + 1) and a nested recursion to modify the non-recursive parameter b.
Note, that $i(m+1) < m for all m > 4 and i ∈ {0, 1} thus not contradicting
the necessity of a strictly decreasing first recursive variable. The case of
primitive recursion(m > 4∧m,m ≡2 0, n > 0) uses a nested recursion which
is validly defined in terms of φ′. For the substitution case(m > 4∧m,m ≡2 1)
two self-refering nested recursions are used as well.

�

Proof of Correctness

We show
(�) ∀ i ≥ 0 : φ(i, n, a) = φ′(i, n, b) with b = pa1

For 0 ≤ i ≤ 4 this obviously holds. For the case of recursion, namely
i + 1 > 4 ∧ i + 1 ≡2 0 it holds for the special case n = 0. So per induction
we can assume

(?) φ(i+ 1, n, a) = φ′(i+ 1, n, b)
for proving

φ(i+ 1, n+ 1, a) ?= φ′(i+ 1, n+ 1, b)
φ(i+ 1, n+ 1, a) = φ($0(i+ 1), n, φ(i+ 1, n, a))

φ′(i+ 1, n+ 1, b) = φ′(i, n, p1
0 ∗ p

φ′(i+1,n,b)
1) = φ′($0(i+ 1), n, pφ

′(i+1,n,b)
1)

Using (�) this is true, iff

φ′(i+ 1, n, b) = φ(i+ 1, n, a)

which holds due to (?). For substitution we show this for all i + 1 > 4 and
i+ 1 ≡2 1.

φ(i+ 1, n, a) = φ($1(i+ 1), φ($2(i+ 1), n, a), φ($3(i+ 1), n, a))

φ′(i+ 1, n, b) = φ′(i, φ′($2(i+ 1), n, b), p2
0 ∗ p

φ′($3(i+1),n,b)
1)

= φ′($1(i+ 1), φ′($2(i+ 1), n, b), pφ
′($3(i+1),n,b)

1)
Due to the fact that $j(i + 1) < i + 1 for i > 3, j ≥ 1 we can use (�).
Therefore

zj := φ′($j(i+ 1), n, b) = φ($j(i+ 1), n, a) for j ∈ {2, 3}

φ′($1(i+ 1), z2, p
z3
1) = φ($1(i+ 1), z2, z3)

�

31

Remarks

The set of multiple recursionMR can be divided into subsetsMRi for all i >
0. Such a subset contains only functions with at most i recursive variables.
The set MR1 = PR and we have just shown that MR1 (MR2. [Pet36]
has generalized this diagonalization argument to prove that indeed MRi (
MRi+1 for all i > 0 holds. In [Pet50] transfinite recursion is introduced and
shown to be a strict superset of MR, again by diagonalization. For that,
the number of recursive variables for the diagonalization function of MR is
determined by a variable of the function itself. For an eventual reference we
denote the set of transfinite recursive functions with T R.

3.2 µ-Recursion class µR
The class of µR as shown in [Wag85] is defined as follows:
• f ∈ PR ⇒ f ∈ µR

• µ-recursion: for total fk+1 ∈ µR let
µ[f](n1, . . . , nk) = min {x ≥ 0 | f(x, n1, . . . , nk) = 0}
µ[f] ∈ µR for all k ≥ 0

To prove that µ-Recursion is Turing complete we will use While programs
for which this property is known.

Definition of While programs

For the definition of While programs we refer to section 2.8 Loop programs.
A While program is semantically and syntactically defined in the same way
as a Loop program with the following exception:
• If P is a While program and xi is a variable, then ”LOOP xi DO P

END;” is not a While program

• If P is a While program and xi is a variable, then ”WHILE xi 6= 0
DO P END;” is a While program. This statement means to succesively
execute P as long as xi doesn’t contain the value 0.

We call the set of all While programs WHILE. A While program can be
interpreted as a set of functions for each variable just as for a Loop program.
If a While program does not terminate for a certain input the corresponding
function value is undefined for this case.
The While nesting depth |P |wd is determined in the same way as the Loop
nesting depth with the addition:
• if P = ”WHILE xi 6= 0 DO Pl END;”, then |P |wd = |Pl|wd + 1

32

Lemma 3.5

WHILE ⊆ µR
Our inductive hypothesis:

∀ P ∈WHILE and |P |wd ≤ ` : fP ∈ µR

with fP being the function calculated by the While program P .
The base case ` = 0 is the same as in Theorem 2.10 because the set of While
programs equals the set of Loop programs if both are restricted to a nesting
depth of 0 and PR is a subset of µR per definition.
For `+ 1 :

”WHILE xi 6= 0 DO Pl END;”
The inductive hypothesis grants us as set of functions f1, . . . , fm which cal-
culate the value of their respective variable x1, . . . , xm after the execution of
Pl. For 1 ≤ j ≤ m:

hj(n, x1, . . . , xm) =

xj , n = 0
hj(n− 1, f1(x1, . . . , xm), . . . , fm(x1, . . . , xm)) , else

With that fP can be expressed as

fP = h1(z, x1, . . . , xm)

z := µ[hi](x1, . . . , xm)
z is the smallest number such that executing Pl z times leads to xi = 0. This
is exactly the number of iterations induced by the ”WHILE” instruction. If
z is undefined for a particular input, so is fP . For the While program P =
”P1 P2” the same argumentation as in Theorem 2.10 can be applied.

�

Lemma 3.6

µR ⊆WHILE
For this we simply proof that

∀ f ∈ µR ∃ P ∈WHILE : µ[f](x1, . . . , xm) = fP

with fP being the function calculated by the While program P . Essentially,
this is yet another inductive argument over the recursive depth such that f
can be assumed to be calculated by some While program. The wanted While
program P is:

33

xcnt := 0; xf := f(0, x1, . . . , xm);1

WHILE xf 6= 0 DO2

xcnt := xcnt + 1;3

xf := f(xcnt, x1, . . . , xm);4

END;5

x1 = xcnt;6

2

Corollary 3.7

µR is Turing complete.

3.3 Synopsis
To adequately classify the different types of recursion we have encountered
in terms of complexity classes we only look at binary functions and introduce
following known complexity classes.

RE = {L ⊆ N | ∃ Turing Machine M which halts on some input n, iff n ∈ L}

coRE = {L ⊆ N | N \ L ∈ RE}
Now, the results can be subsumed in the following figure:

RE
RE coRE= µR

PR

MR

EXPSPACE

T R

34

List of literature
[Grz53] A. Grzegorczyk (1953). Some classes of recursive functions. Rozprawy
Matematyczne. Pages 32–33, 39–40

[Hop79] J. Hopcroft and J. Ullman (1979). Introduction to Automata The-
ory, Languages and Computation. Addison-Wesley. Page 148

[Pet34] R. Peter (1934). Über den Zusammenhang der verschiedenen Begriffe
der rekursiven Funktion. Mathematische Annalen 110. Pages 613–623

[Pet35] R. Peter (1935). Konstruktion nichtrekursiver Funktionen. Mathe-
matische Annalen 111. Pages 45–53

[Pet36] R. Peter (1936). Über die mehrfache Rekursion. Mathematische An-
nalen 113. Pages 490, 495

[Pet50] R. Peter (1950). Zusammenhang der mehrfachen und transfiniten
Rekursion. The Journal of Symbolic Logic, Vol. 15. Pages 248–249

[Vol11] H. Vollmer (2011). Skript zur Vorlesung Grundlagen der Theoretis-
chen Informatik, Wintersemester 2011/2012. Leibniz Universität Hannover.
Pages 33–34

[Wag85] K. Wagner and G. Wechsung (1985). Computational Complexity.
D. Reidel Publishing Company. Pages 39–46

35

	Preface
	Class of primitve recursive functions PR
	Primitive Recursion class PR
	Course-of-value Recursion class PRcov
	Nested Recursion class PRnes
	Recursive Depth
	Recursive Relations
	Equivalence of PR and PRcov
	Equivalence of PR and PRnes
	Loop programs
	Grzegorczyk Hierarchy
	Recursive depth Hierarchy
	Turing Machine Simulation

	Multiple and -recursion
	Multiple Recursion class MR
	-Recursion class R
	Synopsis

	List of literature

