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Kurzzusammenfassung
Meine Dissertation befasst sich mit Boole’schen Constraint Satisfaction Problemen (kurz:
CSP). Ein Constraint besteht aus einer Menge von Variablen und einer (Boole’schen)
Relation, die die Belegungen bestimmter Tupel von Variablen einschränkt. Ein CSP ist
dann die Frage, ob es zu einer gegebenen Menge von Constraints eine Belegung aller
Variablen gibt, die alle Constraints gleichzeitig erfüllt. Dieses CSP und einige seiner
Derivationen werden unter komplexitätstheoretischen Aspekten betrachtet.

Als wichtiges Instrument zur Bestimmung der Komplexität von CSP wird die alge-
braische Methode verwendet. Diese nutzt die von Emil Post gefundene vollständige
Klassifikation aller unter Superposition abgeschlossener Klassen Boole’scher Funktionen
(Clones). Der Abschluss einer Menge von Funktionen unter Superposition bedeutet
dabei, dass die Menge der Funktionen unter beliebigen Kompositionen abgeschlossen ist.
Der nach ihm benannte Post’sche Graph zeigt die vollständige Inklusionsstruktur der
Clones. Hiermit konnten in Verbindung mit der Galoistheorie schon viele elegante Beweise
geführt werden. Unter anderem wurde so auch das Dichotomieergebnis von Thomas
Schaefer erneut bewiesen. Dieses besagt, dass das Boole’sche CSP in Abhängigkeit von
den zugelassenen Boole’schen Constraints entweder in P oder NP-vollständig ist. Die
behandelten Themen der Arbeit sind dabei im Einzelnen:

• Im ersten Teil dieser Arbeit wird das Resultat von Schaefer genauer untersucht. Es
werden hierbei alle in P liegenden Fälle bis zur L-Isomorphie betrachtet, um so
eine vollständige Klassifikation der Komplexität zu erhalten.

• Im Weiteren werden quantifizierte CSP (QCSP) betrachtet. Der Unterschied zu
CSP liegt darin, dass bei QCSP die Variablen entweder existentiell oder universell
quantifiziert sind. Als Spezialfall treten dabei auch die aus der Datenbanktheorie
bekannten Conjunctive Queries auf, bei denen es keine universell quantifizierten
Variablen gibt. Diese Arbeit untersucht dabei zum einen die Komplixität des QCSP
sowie zum anderen die des Counting-Problems für QCSP (#QCSP). Letzteres
stellt sich der Frage, wie viele erfüllende Belegungen ein quantifiziertes Constraint
mit zusätzlichen freien Variablen hat.

• Abschließend wird eine Reihe von Äquivalenz- und Isomorphieproblemen komple-
xitätstheoretisch bestimmt. Dabei wird vor allem das Problem der isomorphen
Implikation (gegeben zwei Constraintformeln, gibt es eine Permutation der Vari-
ablen, so dass die eine Formel die andere impliziert) als natürliche Erweiterung
des Äquivalenzproblems (gegeben zwei Constraintformeln, ergibt sich bei allen
möglichen Belegungen der Variablen der gleiche Wahrheitswert) näher betrachtet.
Weiterhin werden die Probleme der Äquivalenz und der Implikation detaillierter
untersucht, indem die zu vergleichenden Constraintformeln aus unterschiedlichen
Relationsklassen stammen können.



Abstract
My thesis is concerned with Boolean constraint satisfaction problems (CSP). A constraint
consists of a set of variables and a (Boolean) relation, which restricts the assignment of
certain tuples of variables. A CSP then is the question, whether there is an assignment
for all variables to a given set of constraints, such that all constraints are satisfied
simultaneously. We examine this CSP and some of its derivations from a complexity
theoretical point of view.

As the most important tool to determine the complexity of CSP we employ the algebraic
method. It uses the complete classification of all classes of Boolean functions that are
closed under superposition (clones). This classification has been obtained by Emil Post.
The closure of a set of functions under superposition means, that the set of functions is
closed under arbitrary composition. Post’s lattice shows the complete inclusion structure
of all clones. Hereby and in connection with the Galois theory it has been possible to
obtain elegant proofs for several problems. Among others, it has been possible to reprove
a dichotomy result first obtained by Thomas Schaefer. His result states that the Boolean
CSP is either in P or NP-complete, depending on the set of constraints allowed. An
outline of the topics of this thesis follows.

• In the first part of this thesis we examine the result by Schaefer in more detail.
We look at all cases in P up to L-isomorphism, in order to obtain a complete
classification of the complexity of CSP in the Boolean case.

• Further, we look at quantified CSP (QCSP). The distinction to CSP is, that
variables are universally and existentially quantified. As a special case conjunctive
queries, known from database theory, will occur. These are quantified formulae
without universal quantifiers. This section of the thesis examines on the one
hand the complexity of QCSP and on the other hand also the complexity of the
corrresponding counting version #QCSP, which is the problem to find out how
many satisfying assignments there are to a quantified formula with additional free
variables.

• Finally, we determine the complexity of some equivalence and isomorphism problems
in the constraint context. Our main attention is directed to the problem of
isomorphic implication (given two constraint formulae, is there a permutation of the
variables such that the first one implies the second one), which is a natural extension
of the equivalence problem (given two constraint formulae, do they evaluate to the
same value for all possible variable assignments). Further, we look at the problems
of equivalence and implication in more detail, in such a way that the constraint
formulae to be compared may originate from different sets of relations.
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This thesis is about all kinds of beautiful problems. Beautiful problems are very
important for complexity theory, since they allow to prove beautiful theorems, and
publish beautiful papers.

The need for more beauty in complexity theory was first examined by Cook. In his
seminal paper [Coo71], he showed that the most beautiful problem in the world is the
satisfiability problem.

Building on his result, many more problems were proven to be incredible beautiful.
The main tool used for this is the beauty reduction, which is a polynomial-time procedure
making every problem at least as beautiful as this introduction.

Henning Schnoor (when asked, how to write an introduction)
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1 Introduction

Computer science as a whole contains many fields. They can be very broadly divided into
practical and theoretical areas. A member of the former area, for example, is the field of
software engineering, of designing and implementing specific software and tools that are
of direct use for people or companies. Another example of practical computer science is
the field of computer graphics and multimedia, where one goal might be the modeling of
three dimensional objects in computers or the automatic recognition of people’s faces
by computer programs. In the area of theoretical computer science most research is
not directly useful for everyday life; however, it forms a basis for most other fields of
computer science. Developing computer software would be less advanced if it were not
for the research in the theory of programming languages. Similarly the complexity theory
is a broad field, that allows people to know in advance, for example, whether it makes
sense to tackle a certain problem or whether the problem simply cannot ever be solved
by any computers, no matter how advanced they may become. That is the field, where
this thesis is located.

The general idea behind complexity theory is to analyze different problems or tasks a
computer might encounter, and compare them to one another. For this, many so called
complexity classes have been introduced, which incorporate problems that are similar to
each other in the way computers deal with them; that is, they have a resembling running
time or they utilize similar amounts of memory space. Two very famous complexity
classes are P and NP. The former contains, colloquially spoken, all problems that are
easy to solve, whereas the latter contains all problems where it is easy to verify, whether
a given solution is correct. A formal definition of these and other complexity classes will
be given later in this thesis. Trivially, all problems in P are also in NP. The question,
whether also all problems in NP are in P (thus making the two classes equal), is probably
the best examined yet still unsolved problem in computer science. Though most people
believe the two classes to be different, nobody has yet been able to prove or disprove
their equality.

Of course, complexity theory is a very broad area in itself, since there is a vast
number of different problems to consider. To name only a few, there are, for example,
cryptographic problems and their protocols, optimization problems, interactive proof
systems, probabilistic algorithms, and so forth. It is way beyond the scope of this thesis
to discuss all of them. Though, another major issue in complexity theory, which we will
take a closer look at, are Boolean formulae. A Boolean formula is a mapping from a
list of input variables to one output variable, with the restriction that only values from
{0, 1} are allowed. Instead of 0 one often uses false and 1 is often identified with true.
So, a very obvious question is to decide, given a certain input to the variables, whether a
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1 Introduction

Boolean formula evaluates to true or false. Another, related question is, whether there
exists any input to the variables such that a given formula evaluates to true. The latter
one is well-known under the name satisfiability problem for Boolean formulae. These
formulae are the most natural kind of problems in complexity theory when dealing with
the polynomial hierarchy, which is a hierarchy of complexity classes based upon the
classes NP and P, because they provide – in different variations – complete problems
for most classes of the polynomial hierarchy. For instance, Stephan A. Cook showed
already in 1971, that the above mentioned satisfiability problem (known as SAT) is, in its
general version, one of the most difficult problems in the class NP [Coo71]. Those most
difficult problems will be called NP-complete. Naturally, the complexity of such problems
depends to a large extend on the type of Boolean formula that is used. Even though
SAT without any restrictions is NP-complete, the problem becomes trivial, when we
only allow the formulae to be a conjunction of positive literals. Then, any such formula is
always satisfiable. The questions that arise are: For what type of formulae is the problem
still difficult? What changes it to become easy? And where exactly is that borderline?
Another interesting question that comes to mind is, whether this borderline is sharp, or
what kind of complexity classes between the “difficult” (NP-complete) and “easy” (in P)
ones can be assumed by Boolean formulae. This question is especially reasonable, because
Richard E. Ladner proved that unless P = NP, there are infinitely many complexity
classes between P and NP [Lad75]. However, an intricacy is, that there are, of course,
infinitely many different kinds of Boolean formulae; and it is not clear, how to look at all
of these at the same time.

A good way to get to work with this infinite number of Boolean formulae is with the
help of constraints . Basically, a constraint is simply a relation; and a constraint formula is
the conjunction of such constraints. A set of constraints will be called constraint language.
The disadvantage of using constraints is, that it is not possible to express every Boolean
formula with the help of constraints. However, this drawback is compensated on the
one hand by the fact that constraints still cover an infinite number of Boolean formulae,
and most of the “important” problems, that have already been analyzed through other
means, can be modeled by a constraint formula (e. g., 3-SAT, 2-SAT, Horn-formulae, etc.).
On the other hand a great advantage of constraint formulae in comparison to “usual”
Boolean formulae (of course, every constraint formula is also a Boolean formula, just a
restricted version) is, that it is possible to analyze the complexity of constraint formulae
in a very succinct way. As we will see, there are several properties of constraints (or
constraint languages) and the complexity of all problems, that we will examine, depends
solely on these properties. This allows us to state complexity results for an infinite
number of Boolean formulae. This method has first been used by Thomas Schaefer in
1978. He classified the constraint satisfaction problem (CSP), which is the constraint
version of SAT. Surprisingly, he found out, that the problem is in P, if the constraint
language has some certain well-defined properties, and in all other cases, the CSP is
already NP-complete [Sch78]. This theorem of his will be used as a starting point for
this thesis, which is organized as follows:

After we have introduced all necessary notations and definitions in Chapter 2, we will

2



refine Schaefer’s Theorem in Chapter 3 in such a way that we will take a closer look at
the Boolean constraint satisfaction problem. Schaefer obtained a dichotomatic complexity
result by separating the problem into P and NP-complete cases. We will examine the
tractable cases in more detail and show that these can be divided further into four cases
(or five, if we count the trivial ones as a case of their own).

In Chapter 4 we generalize the constraint satisfaction problem by introducing quantifiers
for the variables. Then the question is not anymore, whether there is a satisfying
assignment for a given formula, but whether the variables are quantified in such a way,
that the formula is true. In addition to the decision problem, we also consider its
corresponding counting version: There not all variables need to be quantified and we are
interested in the number of solutions for the not quantified variables.

Finally, we consider graph related problems in Chapter 5. We start with the constraint
analogon to graph isomorphism – the equivalence problem – and its one-sided version
– implication. Then, we move on to the isomorphic implication problem, which is the
constraint counterpart to subgraph isomorphism. Incidentally, the isomorphic implication
problem discloses an interesting and new approach, which could lead to a proof that
graph isomorphism is in P, which it is not known to be.

The results of Chapter 3 are based on a joint work with Eric Allender, Neil Immerman,
Henning Schnoor, and Heribert Vollmer [ABI+05]. Chapter 4 relies on the previous
publications [BCC+04] and [BBC+05], which are joint works with Elmar Böhler, Philippe
Chapdelaine, Nadia Creignou, Steffen Reith, Henning Schnoor, and Heribert Vollmer.
Parts of Chapter 5 have been obtained together with Edith Hemaspaandra and have
been published in [BH05].
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2 Preliminaries

This chapter contains definitions and theorems, which will be used extensively throughout
the paper. We will start with some basic mathematical definitions including Boolean
formulae. Then follows an introduction to complexity classes and reductions. Thereafter
we will define constraints and finally we will introduce some closure properties, which
will enable us to give short and elegant proofs as we will see in Chapters 3 and 4.

2.1 Basics

A basic mathematical object is the set , which is a collection of elements. Each such element
in a set is called a member of that particular set. There are two different ways to describe a
set. One is to list all of its elements (e. g., A = {a1, a2, a3, a4}) and the other is to describe,
what properties all elements in the set possess (e. g., A = {a | a has property E}). Instead
of listing each and every element, which is not possible for infinite sets and infeasible
for very large sets, one can also use ellipses (. . . ). If an element a is a member of a set
A, we also write a ∈ A, and accordingly a 6∈ A, if a is not a member of A. Further, we
will write A ⊆ B if every member of A is also a member of B, and say A is a subset of
B; we write A ⊂ B if A ⊆ B, but not B ⊆ A, and say A is a proper subset of B. If on
the other hand A ⊆ B and B ⊆ A, we say that A equals B, denoted by A = B. The set
with no elements is called the empty set and will be denoted by ∅. The number of the
elements in a set is called its cardinality and is denoted by |A| for a set A.

Example 2.1.1 The sets A, B, and C will be defined by listing all elements, whereas D
and E use the description technique: A = {2, 3, 5}, B = {1, 2, . . . }, C = {1, . . . , 131072},
D = {a | a is a natural number}, E = {a | a is prime}. Obviously, the following holds:
1 6∈ A, 2 ∈ A, A ⊂ E ⊆ B = D, |A| = 3, and |∅| = 0. The set D of natural numbers will
be used quite often and is usually denoted by N.

There are three basic operations on sets: the union (∪), intersection (∩), and the
difference (\). The union of A and B is defined to be the set of elements, which are in A
or in B or in both. An element is in the intersection of A and B, if and only if it is an
element of A and an element of B. And finally, a ∈ A \B if and only if a ∈ A and a 6∈ B.

An object similar to the set is the tuple. It is also a collection of elements; however,
contrary to a set, a tuple has to be finite and all elements are ordered. Tuples are written
in parentheses (e. g., (1, 3, 1)). If n is the number of elements in a tuple u, we also call
it an n-tuple or an n-ary tuple. For n = 2 and n = 3 we use the short forms of pair
and triple. Similarly to sets, the number of elements in a tuple u is also denoted by |u|.

5



2 Preliminaries

Instead of tuple, we sometimes also use the more general expression vector, which, for
the scope of this thesis, should always denote a tuple.

There exists a direct connection between sets and tuples, namely the cross product
(also called Cartesian product) of sets, which yields a set of tuples. For A1, . . . , An sets,
define A1× · · · ×An = {(a1, . . . , an) | a1 ∈ A1, . . . , an ∈ An}. As a special case, An for A
a set and n ∈ N is, analogously to the power of numbers, defined as A× · · · ×A. Hereby
A0 = {()} and A1 formally is {(a) | a ∈ A}; however, to simplify matters we will define
A1 = A.

An n-ary Boolean relation R is a subset of {0, 1}n. An n-ary Boolean function
(sometimes also called mapping) f is a subset of {0, 1}n+1 with the additional property that
if (a1, . . . , an, b) ∈ f and (a1, . . . , an, b

′) ∈ f , then b = b′, where a1, . . . , an, b, b
′ ∈ {0, 1}.

Instead of (a1, . . . , an, b) ∈ f we also write f(a1, . . . , an) = b and say that f maps
(a1, . . . , an) to b. Accordingly, instead of f ⊆ {0, 1}n+1 we mainly write f : {0, 1}n →
{0, 1}, where {0, 1}n is the input and {0, 1} is the output . As a generalization of the
Boolean function we allow the input and output to be arbitrary sets A and B instead
of {0, 1}n; thus, yielding a function f : A → B. A function f is called injective, if it
has the property that f(a) = f(b) implies a = b for any a, b ∈ A. An injective function
f : A→ B is called bĳective, if for all b ∈ B there is an a ∈ A such that f(a) = b, that is,
every element from B is mapped to. A permutation π is a special kind of function, that
maps from one set A to itself, such that A = {π(a) | a ∈ A}.

In the following we will use the standard correspondence between Boolean relations
and Boolean formulae; that is, an n-ary Boolean relation R corresponds to an n-ary
Boolean formula f in such a way, that a vector v is in R if and only if f(v) = 1.

A finite non-empty set Σ is called alphabet . A sequence w = a1 . . . an of n elements of
Σ for n ≥ 0 is called a word (or sometimes also string) over the alphabet Σ and |w| = n
is called its length. In the special case of n = 0 we write w = ε and call ε the empty
word . The set of all words over Σ is denoted by Σ∗. Let A ⊆ Σ∗; then, A is called a
language over Σ. If A ⊆ Σ∗ is a language, we define the complement of A as A = Σ∗ \ A.

Example 2.1.2 Let Σ = {0, 1} be an alphabet. Then the set of all words over Σ is
the set Σ∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . . }. Possible languages over Σ would be A = ∅,
B = Σ∗, C = {1, 10}, and D = {ε, 0, 00, 000, . . . }. Obviously A = B and B = A.

Finally, we will define some notions of the propositional logic, in particular formulae
and their assignments. Let X = {x1, . . . , xn} be a set of variables. Then any variable
xi ∈ X is a propositional formula. If ϕ and ψ are propositional formulae, then also ¬ϕ,
ϕ ∧ ψ, and ϕ ∨ ψ are propositional formulae. Instead of ¬ϕ we sometimes also write
ϕ. If ϕ is a propositional formula and x1, . . . , xn are all variables occurring in ϕ, we say
that ϕ is a formula over X = {x1, . . . , xn}. For the following, let ϕ be a propositional
formula over variables X = {x1, . . . , xn}. A function I from X to {0, 1} is called a truth
assignment (or assignment) of ϕ. We now define inductively what it means that a truth
assignment I satisfies a given formula ϕ. If ϕ = xi for a variable xi, then I satisfies ϕ if
and only if I(xi) = 1. If ϕ = ψ1 ∧ ψ2 (ϕ = ψ1 ∨ ψ2), then I satisfies ϕ if and only if I
satisfies ψ1 and ψ2 (ψ1 or ψ2, resp.). This way, a propositional formula can also be seen

6



2.1 Basics

formula name description abbreviation for
ϕ id identity n/a
¬ϕ, ϕ not negation n/a
ϕ ∧ ψ and conjunction n/a
ϕ ∨ ψ or disjunction n/a
ϕ→ ψ impl implication ¬ϕ ∨ ψ
ϕ↔ ψ equiv equivalence (ϕ→ ψ) ∧ (ψ → ϕ)
ϕ⊕ ψ xor exclusive or ¬(ϕ↔ ψ)

Table 2.1: List of important Boolean functions

as a Boolean function and for a formula ϕ over variables X = {x1, . . . , xn} we thus write
ϕ(x1, . . . , xn). Depending on the assignment, it calculates either 0 or 1. Table 2.1 gives
an overview of the most important Boolean functions. When a formula is considered
as a function, the truth assignments are usually written in form of a tuple instead of a
function. Thus, (α1, . . . , αn) ∈ {0, 1}n is said to satisfy a formula ϕ, if ϕ(α1, . . . , αn) = 1.
We denote with sat(ϕ) (unsat(ϕ)) the set of satisfying (unsatisfying, resp.) assignments
of ϕ; that is, sat(ϕ) (unsat(ϕ)) is the set A ⊆ {0, 1}n such that for every α ∈ A we have
that ϕ(α) = 1 (ϕ(α) = 0, resp.). Further we write #sat(ϕ) for |sat(ϕ)| and #unsat(ϕ)
for |unsat(ϕ)| to denote the number of satisfying respectively unsatisfying assignments of
ϕ.

There are two main normal forms of propositional formulae. One is the conjunctive
normal form (CNF) and the other is the disjunctive normal form (DNF). A formula ϕ
is said to be in CNF if it is of the form ϕ = c1 ∧ · · · ∧ cn, where ci = lj1 ∨ · · · ∨ ljmi

for
1 ≤ i ≤ n and all lk are variables or negated variables. The ci’s are called clauses and the
lk’s are literals . A DNF is similarly a disjunction of conjunctions; that is, ϕ = d1∨· · ·∨dn,
where di = lj1 ∧ · · · ∧ ljmi

for 1 ≤ i ≤ n and all lk are variables or negated variables. The
di’s are then called disjuncts and the lk’s are again literals. It can be shown that any
propositional formula can be transformed into a CNF and a DNF. If we only allow up to
three literals per clause (disjunct), the resulting formula is said to be a 3-CNF (3-DNF,
resp.).

An extension to this is a formula with quantifiers, where a quantifier is a symbol
∀ or ∃. For this we first have to introduce the notion of free variables. Let ϕ be a
formula over variables X. Then the free variables of ϕ are all occurring variables. If
ϕ is a (quantified) formula with free variables X = {x1, . . . , xn}, then ∃xiϕ and ∀xiϕ
with xi ∈ X are quantified formulae with free variables X \ {xi}. An assignment I of
the free variables satisfies an existentially quantified formula ∃xϕ if and only if there is a
value α ∈ {0, 1} such that I ∪ {x = α} satisfies ϕ. An assignment I of the free variables
satisfies a universally quantified formula ∀xϕ if and only if for all values α ∈ {0, 1}, we
have that I ∪ {x = α} satisfies ϕ. If a formula ϕ has no free variables, it is said to be
closed , and it is either true or false.

7



2 Preliminaries

2.2 Complexity

In complexity theory a main objective is to classify problems by their complexity, that is,
by their difficulty. In order to do this, we first have to clarify two things: What kind of
difficulty are we looking for? And how exactly do we measure it? For example, if the
problem is to get from one place to another, we could define the difficulty as the time
that is needed to do the journey. Another difficulty might be, how much money it takes
to do the journey. Now measuring the time seems not to be a problem (you just take a
stop watch and see how long the journey takes), whereas the measurement of money is
not so clear anymore. If you take a short trip of a few hundred metres, you can certainly
do it for free if you just walk. However, on a trip from Paris to Rome, you could also
just walk, but it would take you days and you would have to sleep and eat meanwhile,
which would probably cost you some money. So, the question is, what kind of money
is included and what is not. Also the measurement of time is not always obvious. The
fastest way from Paris to Rome is certainly to fly. However, do you include the time you
need to buy a plane ticket, get to the airport, wait for the next plane, and so on? Or do
you just take the flying time from one airport to the other?

2.2.1 A Basic Model

Our problems are of course somewhat more theoretical, though, the general principle
remains the same. You might, for example, be given a list of numbers and want to sort
them. One important complexity is, of course, the time that is needed to sort those
numbers. Similar to the practical example above, this certainly depends on the help
you have. If you do it by hand, it will take much longer than if you do it with the help
of a computer. But, even with a computer, there are large differences of speed mainly
depending on the age of the computer, but also depending on how the data is fed to
the computer. We therefore would like to have a fixed computational model, which is
supplied by the Turing machine, or short TM. Basically, a TM is an automaton with a
finite number of states. It has an infinite tape divided into cells and a head, which can
look at one cell at a time. Each cell contains exactly one out of finitely many symbols.
At the start of each run of a TM the input data is assumed to be on the tape starting
at the head’s position. Depending on the symbol at the head’s current location and the
state of the machine, it may enter a new state, may change the symbol, and afterwards
move the head one cell to the left, one cell to the right, or leave it at the current position.
Although this model is very simple, it is as powerful as any programming language. A
detailed definition of the Turing machine is omitted here, but a very good introduction
can be found in, for example, [Sip97] and [HU79].

Although a TM could produce any kind of output, we will almost only deal with TMs
for decision problems (with a little exception in Chapter 4). These are TMs designed for
a specific language and they decide, whether a word is in that language or not; that is,
they either accept or reject their input by entering a unique accepting or rejecting state.
For our purposes we still need to define four variants of such a TM.
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2.2 Complexity

• The first one is a generalization. Instead of having only one tape, we allow the TM
to have a constant number k of tapes. Accordingly, there are also k heads, one for
each tape. Such a TM is then called k-tape Turing machine or in case k is not
known or not important, we call it a multi-tape Turing machine. The action of
the k-tape TM depends on its state and the content of the tapes at each head’s
position. All heads can be moved independently from each other.

• Another variant is that the TM has an additional input tape. This input tape is a
read-only tape. The purpose will be seen later.

• The third variant is a nondeterministic TM (NTM). In contrast to a (deterministic)
TM, an NTM is allowed to have more than one possible action for any given pair
of state and read symbol. Nondeterminism can then be explained in two ways.
The first being that whenever there is more than one possible action the NTM
could do, it branches and follows all possibilities in parallel. Each sequence of
possible branchings is called a computation path or simply path of the TM. The
NTM accepts an input if and only if at least one of those paths terminates in an
accepting state. We also call such a path an accepting path. The other explanation
is that by some “divine intuition” the TM always chooses the right action if such
exists, whenever several possibilities occur. Thus, it “guesses” a computation path
and if there is at least one accepting path, the NTM will always choose an accepting
path.

• Finally, we define the so-called oracle Turing machine. This is a general TM with
an additional oracle A. Such a TM possesses a separate write-only oracle tape
and three distinguished states q?, q0, and q1. Whenever the state q? is reached, the
TM either enters one of the distinguished states q0 or q1 depending on whether the
word on the oracle tape is in A or not. Thus, it has access to the language A with
almost no cost. Intuitively such an oracle can be considered as a subroutine of a
programming language. Except from this peculiarity the oracle TM works as usual.

A formal definition of nondeterministic and oracle Turing machines can again be found
in many text books about theoretical computer science, see, for example, [Sip97] and
[HU79] for nondeterminism and [Pap94] for oracles.

2.2.2 Complexity Classes

We finally have a palpable and well-defined model for computations, which allows us to
define complexity classes. The time that is needed to solve a problem, is defined as the
steps it takes a TM to decide it. A second important complexity is the space a TM uses
during its computation. This is defined as the number of cells on the work tape that are
being visited by the TM during its computation. For space complexity we always assume
a TM with additional input tape, but the visited cells of that tape are not considered.
However, in complexity theory we are not interested in the exact amount of steps taken
or cells visited, but just in their order of magnitude. Therefore, the O-notation is very
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useful. If f, g : N → N, then f ∈ O(g)1 (pronounced, f is in big oh of g), if there exist
c, n0 ∈ N, such that for all n > n0 we have f(n) ≤ c · g(n). Intuitively this means that
for large enough n, the function f is not larger than g (apart from a constant factor).

Of course, time and space depend on the TM and its actual input. So, if we want
to classify the complexity of a given problem, we have to leave open the choice of TM
and somehow include the input, making the time a function depending on the input size.
Since we are only dealing with decision problems, we can say that a complexity class is a
set of languages. Thus, the following definitions seem reasonable.

Definition 2.2.1 Let s, t : N → N and k ∈ N. We define TIME(t) as the set of lan-
guages, that can be decided by a k-tape TM in time O(t). Similarly we define SPACE(s)
as the set of languages, that can be decided by a k-tape TM with additional input tape in
space O(s).

Similar classes can be defined for nondeterministic Turing machines instead of deter-
ministic ones. Here, the time and space that is needed is always considered to be the
maximum through all computation paths.

Definition 2.2.2 Let s, t : N → N and k ∈ N. We define NTIME(t) as the set of
languages, that can be decided by a k-tape NTM in time O(t). Similarly we define
NSPACE(s) as the set of languages, that can be decided by a k-tape NTM with additional
input tape in space O(s).

Definition 2.2.3 Let C be a set of languages. The complement of C is defined as
coC = {A | A ∈ C}.

With the help of these formalities, we can finally define the complexity classes, which
we will encounter throughout this paper.

Definition 2.2.4 Let k ≥ 1.

L is the class of languages, that can be accepted by a TM in logarithmic space; that is,
L = SPACE(log n).

NL is the class of languages, that can be accepted by an NTM in logarithmic space; that
is, NL = NSPACE(log n).

⊕L is the class of languages, that can be accepted by an NTM in logarithmic space
with the additional property, that an input is accepted if and only if the number of
accepting paths is odd.

P is the class of languages, that can be accepted by a TM in polynomial time; that is,
P = TIME(nO(1)).

1Some text books often write f = O(g) instead, though the meaning remains the same
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NP is the class of languages, that can be accepted by an NTM in polynomial time; that
is, NP = NTIME(nO(1)).

ΣP
0 = P.

ΣP
k is the class of languages, that can be accepted by an NTM in polynomial time with

access to a ΣP
k−1-oracle; that is, ΣP

k = NPΣP
k−1.

∆P
0 = P.

∆P
k is the class of languages, that can be accepted by a TM in polynomial time with

access to a ΣP
k−1-oracle; that is, ∆P

k = PΣP
k−1.

ΠP
0 = coP = P.

ΠP
k = coΣP

k

ΘP
0 = P.

ΘP
k is the class of languages, that can be accepted by a TM in polynomial time with a

parallel access to an ΣP
k−1-oracle; that is, all oracle questions have to be calculated

before the first one is asked.

PH =
⋃

k≥0(∆
P
k ∪ΣP

k ∪ΠP
k )

PSPACE is the class of languages, that can be accepted by a TM in polynomial space;
that is, PSPACE = SPACE(nO(1)).

The class PH stands for the polynomial hierarchy , which was defined by Meyer and
Stockmeyer [MS72]. In Figure 2.1 the inclusion structure of the complexity classes is
displayed. A line between two classes means that the lower one is a subclass of the higher
one. For almost all inclusions it is not known, whether they are strict or not. So far it has
only been proved that NL ⊂ PSPACE (see, for example, the space hierarchy theorem in
[Pap94]). For all other inclusions strictness is strongly assumed, especially for the famous
P = NP problem. An indication to their inequality can be seen through reductions and
completeness. For a more detailed description of complexity classes, their dependencies
and different characterizations, see, for example, [Pap94], [Pip97], or [HO02].

2.2.3 Reductions

A very important tool in complexity theory is the reduction. By reducing one language
to another language it is possible to compare their complexity.

Definition 2.2.5 Let A ⊆ Σ∗ and B ⊆ ∆∗ be two languages. We say that A is
polynomial-time many-one (log-space many-one) reducible to B, in signs A ≤P

m B
(A ≤log

m B, resp.), if there exists a function f : Σ∗ → ∆∗, such that f is computable in
polynomial time (logarithmic space, resp.) and for all x ∈ Σ∗ we have that x ∈ A if and
only if f(x) ∈ B. Such a function is then called reduction function.
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PSPACE

PH

ΣP
3 ΠP

3

∆P
3

ΘP
3

ΣP
2 ΠP

2

∆P
2

ΘP
2

coNPNP

P

NL ⊕L

L

Figure 2.1: Inclusion structure of the complexity classes
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The polynomial-time many-one reduction is sometimes also called Karp reduction due
to Karp, who first introduced this notion of reducibility [Kar72].

Colloquially it means that if a language A can be reduced to a language B, then
A cannot be much more difficult than B. Here, the “much” is implicit in the type of
reduction, since the reduction function has some power of its own. Thus, for example,
the polynomial-time many-one reduction (or in short pm-reduction) is only useful for
comparing languages up to a polynomial-time degree. Though it is possible to reduce
any language A ∈ P to a language B ∈ L when using pm-reductions, this is not possible
with log-space reductions; then, unless P = L, there are languages A ∈ P with A 6≤log

m B
for all B ∈ L.

Next to the two many-one reductions in Definition 2.2.5 there are also other notions of
reducibilities. For this thesis the following two are also needed.

Definition 2.2.6 Let A ⊆ Σ∗ and B ⊆ ∆∗ be two languages. We say that A is
polynomial-time truth-table reducible to B, in signs A ≤P

tt B, if A is decidable by
an oracle TM M with oracle B in polynomial time, such that M has to compute all oracle
queries before the first one is asked. If we additionally require that M accepts if and only
if all oracle queries return 1, we have a conjunctive truth-table reduction from A to B,
in signs A ≤P

ctt B.

When comparing complexities of problems it is also important to be able to express,
what it means that two languages have the same complexity referring to a certain
reduction.

Definition 2.2.7 Let A ⊆ Σ∗ and B ⊆ ∆∗ be two languages and let ≤y
x be any reduction.

If A ≤y
x B and B ≤y

x A, we say that A and B are x-y-equivalent and write A ≡y
x B.

Since we are now able to compare different problems with each other, we can also talk
about most difficult problems in a certain complexity class. Therefore, we will introduce
the notions of completeness and hardness.

Definition 2.2.8 Let A be a language, C be a complexity class, and ≤ be a reduction.
We say that A is ≤-hard for C (or C-hard, if the reduction type is known from the context)
if for any language B ∈ C, we have that B ≤ A. We say that A is ≤-complete for C (or
C-complete) if additionally A ∈ C.

The first problem ever shown to be NP-complete is SAT. This is the problem, given
a propositional formula ϕ, to decide, whether there exists a satisfying assignment of ϕ.
This result is due to a work by Stephan A. Cook [Coo71] and was later independently
also proved by Leonid Levin [Lev73]. Once the first NP-complete problem was known,
it was possible to show NP-completeness for a whole lot of further problems by simply
reducing SAT to these problems, since the reduction is transitive. Garey and Johnson
produced a very large compilation of NP-complete problems in [GJ79], which is still
today a good source of candidates for reductions.
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2.3 Constraints
Informally, a constraint can be seen as a kind of restriction to some solution. For example,
you have a box of red and blue candies and are allowed to take four candies. Obviously
you have five possibilities to choose from2. One constraint could be that they must not
be all equal. A second constraint could be that the majority should be red. Now the
only solution is that you take one blue and three red. Thus, each constraint restricts the
set of possibilities.

Formally, an n-ary constraint R is an n-ary Boolean relation. A constraint application
C is an application of an n-ary constraint to an n-tuple of not necessarily distinct variables.
An assignment I is said to satisfy a constraint application C = R(x1, . . . , xn) if and only
if (I(x1), . . . , I(xn)) ∈ R.

A finite set of constraints is called constraint language and will usually be denoted
by S. Then, we have an S-clause, which is a constraint application of some constraint
C ∈ S. A conjunction of such clauses is called S-formula. If ϕ is an S-formula and the
set of variables occurring in ϕ is X, then ϕ is an S-formula over variables X.

Example 2.3.1 Let S = {Rnae, R1in3, Req} be a constraint language with the constraints

Rnae = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)},
R1in3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, and
Req = {(0, 0), (1, 1)}.

Informally, Rnae is the ternary constraint such that not all three variables have the
same value, R1in3 is true if and only if exactly one of the three variables is set to 1, and
finally Req is the equivalence. For variables x, y, and z, the expressions R1in3(x, y, z) and
R1in3(x, x, x) are constraint applications, where the former is satisfiable, but the latter is
not.

A possible S-clause would be R1in3(x, y, z) ∧ Req(x, z). A satisfying assignment for
this clause would have to map x to 0, y to 1, and z to 0. Also, this clause is obviously
equivalent to the clause R1in3(x, y, x) ∧R1in3(z, y, z).

There are several properties that classify special types of constraints. The ones which
we will use most often are given in the following definition.

Definition 2.3.2 Let C be a k-ary constraint. Then we say

• C is 0-valid, if (0, . . . , 0) ∈ C.

• C is 1-valid, if (1, . . . , 1) ∈ C.

• C is Horn (sometimes also called weakly negative), if C is equivalent to a CNF
with at most one positive literal in each clause.

• C is anti-Horn (sometimes also called weakly positive), if C is equivalent to a CNF
with at most one negative literal in each clause.

2Assuming you will actually take four and are not satisfied with three or less
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• C is bĳunctive, if C is equivalent to a 2-CNF; that is, a CNF where each clause
has at most two literals.

• C is affine, if C is equivalent to an XOR-CNF; that is, a CNF with ⊕-clauses.

• C is 2-affine, if C is affine and bĳunctive.

• C is complementive, if (α1, . . . , αk) ∈ C implies (¬α1, . . . ,¬αk) ∈ C.

• C is Schaefer, if C is Horn, anti-Horn, bĳunctive, or affine.

These properties can also be extended to constraint languages. A constraint language
S is called 0-valid, 1-valid, Horn, anti-Horn, bĳunctive, affine, 2-affine, complementive, or
Schaefer if and only if every constraint in S has that property.

The following problem, which has first been considered by T. Schaefer in 1978 [Sch78],
is the basis of this work. All other problems, which we will look at, are in some way or
another derived from it.

Definition 2.3.3 Let S be a constraint language. The constraint satisfaction problem
over S, denoted by CSP(S), is the problem to decide, whether a given S-formula is
satisfiable.

Example 2.3.4 The well-known 3-SAT problem is equivalent to the constraint sat-
isfaction problem over the constraint language S3-SAT, which is defined as S3-SAT =
{(x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x3)}.

Schaefer came to the result that depending on the constraint language allowed, the
problem is either in P or NP-complete. He also gave easy criteria to decide which of the
two cases occurs.

Theorem 2.3.5 ([Sch78]) Let S be a constraint language. If S is 0-valid, 1-valid, or
Schaefer, then CSP(S) is in P; otherwise CSP(S) is NP-complete.

This result is quite surprising, since assuming that P 6= NP there are infinitely many
complexity classes between P and NP [Lad75].

A question that arises is, how one can determine, whether a given constraint language
is, for example, Horn or affine. For this the closure properties of the next section are
very helpful. But first, we will introduce the notion of conjunctive queries, which can
be used to measure the expressive power of a set of constraints. They were thus also an
important tool in the method of proof used by Schaefer to prove Theorem 2.3.5.

Definition 2.3.6 Let S be a constraint language. Then COQ(S) is the set of all relations
that can be represented by formulae of the form

ϕ(x1, . . . , xk) = ∃y1∃y2 . . . ∃yl ψ(x1, . . . , xk, y1, . . . , yl),

where ψ is an S-formula. COQ(S) is called the set of conjunctive queries over S.
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2.4 Closure Properties and Post’s Lattice

2.4.1 Functions and Clones

For a set B of Boolean functions, we say that B is closed under superposition, if it
contains the identity function id and it is closed under

1. introduction of fictive variables: Let f be an n-ary Boolean function in B. Then
g(x1, . . . , xn+1) = f(x1, . . . , xn) is in the closure of B.

2. permutation of variables: Let f be an n-ary Boolean function in B and let π be
a permutation on {x1, . . . , xn}. Then g(x1, . . . , xn) = f(π(x1), . . . , π(xn)) is in the
closure of B.

3. identification of variables: Let f be an n-ary Boolean function in B. Then the
function g(x1, . . . , xn−1) = f(x1, . . . , xn−1, x1) is in the closure of B.

4. substitution: Let f be an n-ary function and g be an m-ary function in B. Then
h(x1, . . . , xm+n−1) = f(x1, . . . , xn−1, g(xn, . . . , xm+n−1)) is in the closure of B.

Points 2 through 4 are equivalent to arbitrary composition of functions. For a more
detailed explanation of superposition see, for example, [BCRV03]. A set closed under
superposition is also called a clone or simply closed . The clone of a set of functions B is
denoted by [B]. If for two sets B and B′ we have that B = [B′], then B′ is said to be a
base of B. Naturally, a clone may have different bases.

Example 2.4.1 Let BF be the set of all Boolean functions. Then BF = [{and , not}] =
[{or , not}].

In the first half of the last century E. Post did some extensive research on the properties
of Boolean functions. In that context he identified all closed classes and their inclusion
structure [Pos41]. This inclusion structure constitutes a lattice and is therefore often
called Post’s lattice (see Figure 2.2 for a graphical representation3). Additionally, Post
found a finite base for each of the Boolean clones (see Table 2.2). A proof for the finite
bases and a nice general overview of this topic can be found in [Pip97]. Jablonski et al.
give a very detailed and complete compendium of Post’s classes in [JGK70]4.

2.4.2 Relations and Co-Clones

Similar to the Boolean functions there is also the notion of closure for relations. A
relation R is closed under a k-ary Boolean function f , if for any, not necessarily distinct,
k vectors m1, . . . ,mk ∈ R, we have that

(f(m1[1], . . . ,mk[1]), f(m1[2], . . . ,mk[2]), . . . , f(m1[n], . . . ,mk[n])) ∈ R,
3by courtesy of Steffen Reith
4This version is a German translation of the Russian original work.
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Name Definition Base
BF All Boolean functions {or , and , not}
R0 {f ∈ BF | f is 0-reproducing} {and , xor}
R1 {f ∈ BF | f is 1-reproducing} {or , equiv}
R2 R1 ∩ R0 {or , x ∧ (y ↔ z)}
M {f ∈ BF | f is monotonic} {or , and , 0, 1}
M0 M ∩ R0 {or , and , 0}
M1 M ∩ R1 {or , and , 1}
M2 M ∩ R2 {or , and}
Sn

0 {f ∈ BF | f is 0-separating of degree n} {impl , dual(hn)}
S0 {f ∈ BF | f is 0-separating} {impl}
Sn

02 Sn
0 ∩ R2 {x ∨ (y ∧ z), dual(hn)}

S02 S0 ∩ R2 {x ∨ (y ∧ z)}
Sn

01 Sn
0 ∩M {dual(hn), 1}

S01 Sn
0 ∩M {x ∨ (y ∧ z), 1}

Sn
00 S0 ∩ R2 ∩M {x ∨ (y ∧ z), dual(hn)}

S00 S0 ∩ R2 ∩M {x ∨ (y ∧ z)}
Sn

1 {f ∈ BF | f is 1-separating of degree n} {x ∧ y, hn}
S1 {f ∈ BF | f is 1-separating} {x ∧ y}
Sn

12 Sn
1 ∩ R2 {x ∧ (y ∨ z), hn}

S12 S1 ∩ R2 {x ∧ (y ∨ z)}
Sn

11 Sn
1 ∩M {hn, 0}

S11 S1 ∩M {x ∧ (y ∨ z), 0}
Sn

10 Sn
1 ∩ R2 ∩M {x ∧ (y ∨ z), hn}

S10 S1 ∩ R2 ∩M {x ∧ (y ∨ z)}
D {f | f is self-dual} {xy ∨ xz ∨ (y ∧ z)}
D1 D ∩ R2 {xy ∨ xz ∨ yz}
D2 D ∩M {xy ∨ yz ∨ xz}
L {f | f is linear} {xor , 1}
L0 L ∩ R0 {xor}
L1 L ∩ R1 {equiv}
L2 L ∩ R2 {x⊕ y ⊕ z}
L3 L ∩D {x⊕ y ⊕ z ⊕ 1}
V {f | f is constant or an n-ary or -function} {or , 0, 1}
V0 [{or}] ∪ [{0}] {or , 0}
V1 [{or}] ∪ [{1}] {or , 1}
V2 [{or}] {or}
E {f | f is constant or an n-ary and-function} {and , 0, 1}
E0 [{and}] ∪ [{0}] {and , 0}
E1 [{and}] ∪ [{1}] {and , 1}
E2 [{and}] {and}
N [{not}] ∪ [{0}] ∪ [{1}] {not, 1}
N2 [{not}] {not}
I [{id}] ∪ [{0}] ∪ [{1}] {id , 0, 1}
I0 [{id}] ∪ [{0}] {id , 0}
I1 [{id}] ∪ [{1}] {id , 1}
I2 [{id}] {id}

Table 2.2: List of all closed classes of Boolean functions and their bases.
The function hn is defined as:

hn(x1, . . . , xn+1) =
n+1∨
i=1

x1 ∧ x2 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xn+1
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Figure 2.2: Graph of all closed classes of Boolean functions
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Clone Remark Base(s) of corresponding co-clone
BF {x ↔ y}, {∅}
R0 {x}
R1 dual of R0 {x}
R2 R0 ∩ R1 {x, x}, {x ∧ y}
M {x → y}
M0 M ∩ R0 {x → y, x}, {x ∧ (y → z)}
M1 M ∩ R1 {x → y, x}, {x ∧ (y → z)}
M2 M ∩ R2 {x → y, x, x}, {x → y, x → y}, {xy ∧ (u → v)}
Sn

0 {orn}
S0

⋂
n≥2 Sn

0 {orn | n ≥ 2}
Sn

02 Sn
0 ∩ R2 {orn, x, x}

S02 S0 ∩ R2 {orn | n ≥ 2} ∪ {x, x}
Sn

01 Sn
0 ∩M {orn, x → y}

S01 S0 ∩M {orn | n ≥ 2} ∪ {x → y}
Sn

00 Sn
0 ∩ R2 ∩M {orn, x, x, x → y}

S00 S0 ∩ R2 ∩M {orn | n ≥ 2} ∪ {x, x, x → y}
Sn

1 dual of Sn
0 {nandn}

S1 dual of S0 {nandn | n ≥ 2}
Sn

12 dual of Sn
02 {nandn, x, x}

S12 dual of S02 {nandn | n ≥ 2} ∪ {x, x}
Sn

11 dual of Sn
01 {nandn, x → y}

S11 dual of S01 {nandn | n ≥ 2} ∪ {x → y}
Sn

10 dual of Sn
00 {nandn, x, x, x → y}

S10 dual of S00 {nandn | n ≥ 2} ∪ {x, x, x → y}
D {x⊕ y}
D1 D ∩ R1 {x⊕ y, x}
D2 D ∩M {x⊕ y, x → y}, {xy ∨ xyz}
L {even4}
L0 L ∩ R0 {even4, x}, {even3}
L1 L ∩ R1 {even4, x}, {odd3}
L2 L ∩ R2 {even4, x, x}, every {evenn, x} where n ≥ 3 is odd
L3 L ∩D {even4, x⊕ y}, {odd4}
V {x ∨ y ∨ z}
V0 V ∩ R0 {x ∨ y ∨ z, x}
V1 V ∩ R1 {x ∨ y ∨ z, x}
V2 V ∩ R2 {x ∨ y ∨ z, x, x}
E dual of V {x ∨ y ∨ z}
E0 dual of V1 {x ∨ y ∨ z, x}
E1 dual of V0 {x ∨ y ∨ z, x}
E2 dual of V2 {x ∨ y ∨ z, x, x}
N {dup3}
N2 N ∩ L3 {dup3, even4, x⊕ y}, {Rnae}
I L ∩M {even4, x → y}
I0 L ∩M ∩ R0 {even4, x → y, x}, {dup3, x → y}
I1 L ∩M ∩ R1 {even4, x → y, x}, {x ∨ (y ⊕ z)}
I2 L ∩M ∩ R2 {even4, x → y, x, x}, {R1in3}, {x → (y ⊕ z)}

Table 2.3: Bases for all Boolean co-clones.
For the definition of the relations dup3, eveni, and odd i see Definition 2.4.5.
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where mi[j] is the value of the jth position of the vector mi. In other words, the
coordinate-wise application of f to any vectors from R yields again a vector from R.
This notion of closure of relations is well-known and an easy way to determine what
type of relation we are dealing with (compare Example 2.4.2, and for a more detailed
description including proofs, see [Sch78] or [CKS01]). Such a function is then also called
polymorphism of R. The set of all polymorphisms of R is denoted by Pol(R). If S is a
set of relations, then Pol(S) is the set of functions, which are polymorphisms of every
relation in S.

Example 2.4.2 Let R be a constraint and let ∧, ∨, ⊕, and maj be applied on vectors
coordinate-wise. Here, maj is the ternary majority function, which yields 1 if and only if
at least two of its arguments are 1. Then

• R is Horn if and only if m, m′ ∈ R implies m ∧m′ ∈ R.

• R is anti-Horn if and only if m, m′ ∈ R implies m ∨m′ ∈ R.

• R is bĳunctive if and only if m, m′, m′′ ∈ R implies maj(m,m′,m′′) ∈ R.

• R is affine if and only if m, m′, m′′ ∈ R implies m⊕m′ ⊕m′′ ∈ R.

• R is 0-valid if and only if m ∈ R implies that the all-0 vector is in R.

• R is 1-valid if and only if m ∈ R implies that the all-1 vector is in R.

It can easily be shown that Pol(S) is a clone for any constraint language S, since Pol(S)
is closed under superposition. The following two propositions will turn out to be very
useful for our later proofs.

Proposition 2.4.3 Let S be a constraint language. Then

1. S is not Schaefer if and only if Pol(S) ⊆ N,

2. S is 1-valid if and only if Pol(S) ⊇ I1, and

3. S is 0-valid if and only if Pol(S) ⊇ I0.

Proof. For the first item, note that a constraint language is Schaefer if and only if every
relation in S is Horn, anti-Horn, bĳunctive, or affine. Looking at Example 2.4.2 and
Table 2.2, a relation R is Horn if and only if Pol(R) ⊇ E2; a relation R is anti-Horn if
and only if Pol(R) ⊇ V2; a relation R is bĳunctive if and only if Pol(R) ⊇ D2; and a
relation R is affine if and only if Pol(R) ⊇ L2. A further look at Figure 2.2 shows, that
all clones except the ones below N are covered by Schaefer cases.

For the cases 2 and 3 it is clear by definition that every relation is b-valid, for b ∈ {0, 1},
if and only if the all-b vector is in the relation and this is the case if and only if it is
closed under the constant b function, that is, closed under Ib. �
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2.4 Closure Properties and Post’s Lattice

Proposition 2.4.4 Pol(R1in3) = I2.

Proof. First, note that trivially Pol(R1in3) ⊇ I2, since I2 only contains the identity function
and every relation is closed under the identity. In order to prove Pol(R1in3) = I2, we have
to show that none of the seven supersets of I2 is contained in Pol(R1in3); that is, R1in3 is
not closed under those functions. The result then follows, because Pol(S) is a clone for
any set of relations S.

In the following all functions are considered to be applied coordinate-wise. A look
at Figure 2.2 shows that we have to examine the classes I1, I0, N2, V2, E2, L2, and
D2. The clones I1 and I0 contain the constant 1 respectively constant 0 function. Since
neither (1, 1, 1) ∈ R1in3 nor (0, 0, 0) ∈ R1in3, Pol(R1in3) 6⊇ I1 and Pol(R1in3) 6⊇ I0. Ob-
viously (1, 0, 0), (0, 1, 0), (0, 0, 1) ∈ R1in3. The clone N2 contains the function not, but
not((1, 0, 0)) = (0, 1, 1) 6∈ R1in3. The clone V2 contains the function or , but (1, 0, 0) ∨
(0, 1, 0) = (1, 1, 0) 6∈ R1in3. Similarly and ∈ E2, but (1, 0, 0) ∧ (0, 1, 0) = (0, 0, 0) 6∈ R1in3.
The clone L2 contains the ternary xor function, but (1, 0, 0) ⊕ (0, 1, 0) ⊕ (0, 0, 1) =
(1, 1, 1) 6∈ R1in3. And finally, the clone D2 contains the ternary majority function, but
maj((1, 0, 0), (0, 1, 0), (0, 0, 1)) = (0, 0, 0) 6∈ R1in3. �

For a set of Boolean functions B, one can also define a dual operator to Pol(S), namely
Inv(B) = {R | B ⊆ Pol(R)} as the set of invariants of B. It turns out that the sets
Inv(B) behave similarly to Pol(S). All sets Inv(B) contain the equivalence relation and
they are closed under certain operations (see [Pip97] for more details). Therefore, we
denote the closure of a constraint language S by 〈S〉 and call it the co-clone generated
by S. Table 2.3 displays a list of bases for every co-clone. We adopted the table from the
result obtained by Böhler et al. in [BRSV05]. In order to read the table properly, we
need to define the following relations.

Definition 2.4.5 • dup3 = {0, 1}3 \ {(0, 1, 0), (1, 0, 1)}.

• eveni = {v ⊆ {0, 1}i | v contains an even number of 1’s}.

• odd i = {v ⊆ {0, 1}i | v contains an odd number of 1’s}.

In [BHRV04] it is shown that this closure corresponds to conjunctive queries in the
way that 〈S〉 = COQ(S ∪ {Req}).

The two operators Inv and Pol exhibit an interesting Galois connection: For any set
B of Boolean functions, Pol(Inv(B)) = [B] and for any set S of constraint languages,
Inv(Pol(S)) = 〈S〉. One useful property is thus that if for an arbitrary constraint
language S and an arbitrary set of Boolean functions B it holds that if Pol(S) ⊆ B,
then 〈S〉 ⊇ Inv(B), and vice versa. Colloquially this means that the smaller the set of
polymorphisms is, the greater is the expressive power of the corresponding conjunctive
queries. A basic introduction to the Galois theory can be found in [Pip97, Pös01] and a
comprehensive study in [PK79]. The use of this connection can be seen in the following
theorem, which is proved, for example, in [Dal00] and [JCG97].
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Theorem 2.4.6 Let S1 and S2 be two constraint languages. If Pol(S2) ⊆ Pol(S1), then
every constraint R ∈ S1 can be represented by a formula

R(x1, . . . , xn) ⇔ ∃y1 . . . ∃ymR1(z1,1, . . . , z1,n1) ∧ · · · ∧Rk(zk,1, . . . , zk,nk
)

∧ (xi1 = xi2) ∧ (xi3 = xi4) ∧ · · · ∧ (xir−1 = xir)

where Ri ∈ S2 and zi,j ∈ {x1, . . . , xn, y1, . . . , ym}.

Obviously the corollary follows directly.

Corollary 2.4.7 Let S1 and S2 be two constraint languages. If Pol(S2) ⊆ Pol(S1), then
COQ(S1) ⊆ COQ(S2 ∪ {Req}).

This result was used in [JCG97] to obtain the following result.

Theorem 2.4.8 Let S1 and S2 be two constraint languages. If Pol(S2) ⊆ Pol(S1), then
CSP(S1) ≤P

m CSP(S2).
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3 The Complexity of Satisfiability
Problems

3.1 Introduction

In 1978 Thomas J. Schaefer published his paper “The Complexity of Satisfiability
Problems” [Sch78], which had a big impact on the complexity theory community. Up
to then it was known that the general satisfiability problem of Boolean formulae is
NP-complete and some restrictions (like Horn-formulae) were known to be in P. Also,
the restriction to a CNF with just three literals per clause (i. e., 3-SAT) stays NP-complete
whereas the same problem with only two literals per clause (i. e., 2-SAT) is already in P.
It was not clear, whether it is always the case, that the restrictions are either in P or
NP-complete. Especially since Ladner proved that if P 6= NP, then there are infinitely
many complexity classes between P and NP [Lad75], it was considered rather unlikely.
Schaefer examined an infinite family of Boolean formulae, namely the class of those that
can be represented by constraints (which cover all of the aforementioned restrictions).
For those he proved that if a formula is Horn, anti-Horn, bĳunctive, affine, 1-valid, or
0-valid, then the corresponding satisfiability problem is polynomial-time decidable. In
all other cases it is NP-complete. This dichotomy theorem was the main result of his
paper and is now often called Schaefer’s Theorem. Schaefer also considered two other
problems in that paper. For one, he took a look at quantified constraints, which we will
address in the next chapter. On the other hand he also began with a refinement of his
dichotomy theorem by looking closer at the results inside P. This is what this chapter is
about. Schaefer only presented some results below P and all without proof. It is also not
clear whether the case list presented by him is exhaustive.

For a closer inspection of the results in P one has to use an appropriate reduction.
In our cases (as did Schaefer) we will use the logarithmic space reduction and obtain a
complete list of complexity classes for the CSP. We show that next to the NP-complete
problems, there are constraint languages for which the CSP is complete for P, ⊕L, and
NL. In all other cases we have membership in L, some of which are trivial (i. e., always
satisfiable). Our proofs rely heavily on the connection between complexity of constraint
languages and universal algebra, in particular the theory of polymorphisms and clones as
introduced in Section 2.4.
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3.2 A Complete Classification
The following theorem lists the complete classification of the Boolean constraint satis-
faction problem (see Definition 2.3.3) depending on the set of constraints allowed. This
theorem is a refinement of Theorem 5.1 from [Sch78] and Theorem 6.5 from [CKS01].

Theorem 3.2.1 Let S be a constraint language.

• If Pol(S) ∈ {I2,N2}, then CSP(S) is ≤log
m -complete for NP.

• If Pol(S) ∈ {V2,E2}, then CSP(S) is ≤log
m -complete for P.

• If Pol(S) ∈ {L2,L3}, then CSP(S) is ≤log
m -complete for ⊕L.

• If S00 ⊆ Pol(S) ⊆ S2
00 or S10 ⊆ Pol(S) ⊆ S2

10 or Pol(S) ∈ {D2,M2}, then CSP(S)
is ≤log

m -complete for NL.

• If S02 ⊆ Pol(S) ⊆ R2 or S12 ⊆ Pol(S) ⊆ R2 or Pol(S) ∈ {D1,D}, then CSP(S) is
in L.

• Otherwise Pol(S) ⊇ I0 or Pol(S) ⊇ I1 and every S-formula is satisfiable, and
therefore CSP(S) is trivial.

This listing is exhaustive: As can be seen in Figure 3.1, every clone is covered. Obviously
the trivial cases are also in L, but due to their special status of being always satisfiable,
we separate them from the L cases. The proof of Theorem 3.2.1 follows from the lemmas
in the remainder of this chapter.

3.2.1 Upper Bounds

First, we will state some results, which are already well-known, see, for example, [Sch78,
BCRV04].

Proposition 3.2.2 Let S be a constraint language.

1. If Pol(S) ∈ {I2,N2}, then CSP(S) is NP-complete. Otherwise, CSP(S) ∈ P.

2. Pol(S) ⊇ L2 implies CSP(S) ∈ ⊕L.

3. Pol(S) ⊇ D2 implies CSP(S) ∈ NL.

4. Pol(S) ⊇ I0 or Pol(S) ⊇ I1 implies that CSP(S) is trivial.

The first statement is just a reformulation of Schaefer’s Theorem in the way of Post’s
classes. By Proposition 2.4.3 and a look at Figure 2.2 it is obvious that if a constraint
language is neither Schaefer nor 0-valid nor 1-valid, its polymorphisms can only be the
clones I2 or N2. For the second item note that a base of L2 is the ternary ⊕-function (see
Table 2.2). Therefore, we are dealing with affine constraints (see Example 2.4.2) and that
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Figure 3.1: The complexity of the constraint satisfaction problem

25



3 The Complexity of Satisfiability Problems

is the problem to check, whether a system of linear equations over {0, 1} is consistent,
which is in ⊕L [CKS01, Sch78]. Thirdly, a base for D2 is {xy ∨ yz ∨ xz} (see Table 2.2),
which is the ternary majority function. Hence, we are dealing with bĳunctive constraints.
Satisfiability is thus equivalent to searching for a path in a directed graph, which is in NL
[Sch78]. Finally, all instances of CSP(S), where Pol(S) ⊇ I0 or Pol(S) ⊇ I1 are satisfiable
by the all-0 or the all-1 vector.

Before we start proving lower bounds, we need the result of Theorem 2.4.8 extended to
logarithmic space reductions.

Lemma 3.2.3 Let S1 and S2 be two constraint languages. If Pol(S2) ⊆ Pol(S1), then
CSP(S1) ≤log

m CSP(S2).

Proof. Because of Theorem 2.4.6 we can reduce CSP(S1) to CSP(S2 ∪ Req) by locally
replacing every relation from S1 by a conjunctive query over S2 plus some equality
constraints. Local replacement is clearly possible in logarithmic space. The existential
quantifiers of the conjunctive query can simply be omitted, since we are only looking
at the satisfiability of formulae. The equality constraints on the other hand can be
eliminated by identifying those variables that are connected by an =-path. By [Rei05]
we know that searching for a path in an undirected graph can also be computed in
logarithmic space. �

The following lemma proves the remaining NL lower bounds by utilizing a similar
algorithm as was used in the proof of Theorem 6.5 in [CKS01].

Lemma 3.2.4 Let S be a constraint language such that Pol(S) ⊇ S00 or Pol(S) ⊇ S10.
Then CSP(S) ∈ NL.

Proof. Let Pol(S) ⊇ S00. Since S00 =
⋃

k≥2 Sk
00, there can be no finite set S such that

Pol(S) = S00. However, S is finite, and hence, there exists an k ≥ 2 with Pol(S) ⊇ Sk
00. As

can be seen in the list of bases for co-clones (see Table 2.3), the set S ′ = {ork, x, x, x→ y}
is a base for the co-clone of Sk

00; and thus Pol(S ′) = Sk
00. Thus, we have Pol(S ′) ⊆ Pol(S)

and by Lemma 3.2.3 it follows that CSP(S) ≤log
m CSP(S ′). Therefore, it suffices to prove

that CSP(S ′) ∈ NL. Now the algorithm works as shown in Figure 3.2:
With the notion →-=-path we mean a sequence yR1z1, z1R2z2, . . . , zm−1Rmx for Ri ∈

{→,=}. The algorithm clearly works in logarithmic space, since next to saving the
pointers to variables of the formula, it is only necessary to look for an →-=-path, which
is an instance of the graph accessibility problem on directed graphs; and thus it is in NL.

For the correctness of the algorithm observe that a positive clause (including positive
literals) in the formula is satisfiable if and only if at least one of its variables can be set
to 1. And that is the case, if there is no →-=-path to a negated variable.

The S10 case works analogously. Just replace or by nand and look for an →-=-path
from a positive literal to variables in the nand -clause (including negative literals) instead.
�

A similar algorithm also works for proving the L-membership for constraint languages
with polymorphisms above S02 or S12, as we will show next.
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3.2 A Complete Classification

INPUT: formula ϕ over relations from S ′ plus equality
for every clause ψ = xi1 ∨ · · · ∨ xik in ϕ do

for every y ∈ {xi1 , . . . , xik} do
for every clause x in ϕ do

if there is an →-=-path from y to x then
y cannot be set to 1

end if
end for

end for
if at least one y ∈ {xi1 , . . . , xik} could be set to 1 then
ψ is satisfiable

else
reject

end if
end for
accept

Figure 3.2: Algorithm for checking satisfiability

Lemma 3.2.5 Let S be a constraint language such that Pol(S) ⊇ S02 or Pol(S) ⊇ S12.
Then CSP(S) ∈ L.

Proof. Let Pol(S) ⊇ S12. Similar to the previous proof, there is no finite set S such that
Pol(S) = S12. So, we have Pol(S) ⊇ Sk

12 for some k and accordingly it suffices to prove
CSP(S ′) ∈ L for S ′ = {nandk, x, x}, which is a base for Sk

12 (see Table 2.3).
The algorithm is essentially the same as in the previous proof. The only difference is

that instead of looking for an →-=-path, we are looking for an =-path. This is the graph
accessibility problem for undirected graphs, which is in L.

Again the case that Pol(S) ⊇ S02 works analogously, since we have or -clauses instead
of nand -clauses. �

Finally, the remaining upper bound occurs if the polymorphisms are either D1 or D.
In these cases the result follows immediately from [AG00].

Lemma 3.2.6 Let S be a constraint language, such that Pol(S) ∈ {D1,D}. Then
CSP(S) ∈ L.

Proof. Let R = x1 ∧ (x2 ⊕ x3). Table 2.3 shows that a base for the co-clone of D1 is
{x⊕ y, x}; thus Pol({R}) = D1. Since D1 ⊆ D and Pol({R}) = D1, by Lemma 3.2.3 it
suffices to prove that CSP({R}) ∈ L. Àlvarez and Greenlaw showed that the satisfiability
problem for formulae that are conjunctions of clauses of the form x or x⊕ y is complete
for SL (see Problem 4.1 in Section 7 of [AG00]). Thus, by [Rei05] we have membership
in L for CSP({x1 ∧ (x2 ⊕ x3)}). �

27



3 The Complexity of Satisfiability Problems

3.2.2 Lower Bounds

We will start with the P lower bounds, since the lower bounds for NP are already known
(see Proposition 3.2.2).

Lemma 3.2.7 Let S be a constraint language such that Pol(S) ∈ {E2,V2}. Then CSP(S)
is ≤log

m -hard for P.

Proof. A base for the clone E2 is made up of the and -function and similarly [{or}] = V2.
As stated in Example 2.4.2 (and proved in [CKS01]) a relation is Horn if and only if it
is closed under conjunction, and a relation is anti-Horn if and only if it is closed under
disjunction. It is well-known that the satisfiability problem for both Horn and anti-Horn
formulae are ≤log

m -complete for P. For Horn see, for example, [GHR95], and for anti-Horn
there is a trivial reduction from Horn satisfiability: Simply negate all literals of the Horn
formula. The result is an anti-Horn formula, which is satisfiable if and only if the original
Horn formula is (via the dual assignment). �

Lemma 3.2.8 Let S be a constraint language such that Pol(S) ⊆ M2. Then CSP(S) is
≤log

m -hard for NL.

Proof. Looking at the list of bases for co-clones (see Table 2.3), one can see that a possible
base for the co-clone of M2 is {x→ y, x, x}. Thus, for every S with Pol(S) ⊆ M2 we can
express x→ y, x, and x. Therefore, the complement of the graph accessibility problem for
directed graphs easily reduces to CSP(S): Let G be a directed graph and s, t be vertices.
For every edge (u, v) in G add a constraint u → v. Further add constraints s for the
source and t for the target. Obviously there is no path in G from s to t if and only if all
constraints are simultaneously satisfiable. Immerman [Imm88] and Szelepcsényi [Sze88]
showed that NL is closed under complement, so the lemma follows with Lemma 3.2.3. �

In order to show ⊕L-hardness we will reduce from a problem called SATC(B). This is
the satisfiability problem for Boolean B-circuits, where B is a set of Boolean formulae.
A B-circuit C is an acyclic graph. The vertices of C are called gates . Every gate has
exactly one outgoing edge (out-degree is 1) and none or some incoming edges (in-degree is
≥ 0). A gate g with in-degree 0 is called an input gate and is assigned one input variable
x. The value of g is val(g) = x. All other gates are assigned a function from B, which
they apply to the values of their incoming edges and the result is propagated to their
outgoing edge. Every B-circuit has exactly one distinguished output gate. This is the
gate calculating the function of the circuit. A formal definition can be found in [Rei01].

Lemma 3.2.9 Let S be a constraint language such that Pol(S) ∈ {L2,L3}. Then CSP(S)
is ≤log

m -hard for ⊕L.

Proof. From [Rei01] we know that SATC({x⊕ y}) is ≤log
m -complete for ⊕L. Thus, when

reducing from SATC(L0) we have a Boolean circuit C with only ⊕-gates. The idea of the
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reduction is to create a constraint for each gate in C such that the function of the gate is
expressed by this constraint.

First, assume that Pol(S) = L2. We show that SATC(L0) ≤log
m CSP(S). Let C be an

{x⊕ y}-circuit. For each gate g in C use a new variable xg. Then create constraints as
follows:

• If g is an (x⊕ y)-gate with gx and gy being its predecessor gates, create a constraint
xg = xgx ⊕ xgy .

• If g is the output gate, create a constraint xg.

Thus, we have a conjunction of constraints of the type x1 = x2 ⊕ x3 and x. Call
this conjunction ϕ. Looking at the list of bases in Table 2.3, we see that the relation
represented by x is in the base of the co-clone of L2; that is, {1} is closed under L2.
Furthermore, the relations represented by x and even4(u, v, w, x) are also in the base of the
co-clone of L2, where even4(u, v, w, x) returns 1 if and only if an even number of the four
variables is 1 (see Definition 2.4.5). Since x1 = x2 ⊕ x3 is equivalent to even4(x1, x2, x3, 0)
with 0 being equivalent to ∃x even4(x, x, x, x), the constraint x1 = x2 ⊕ x3 is also closed
under L2. Since we only have local replacements, ϕ is computable in logarithmic space.
We still need to show that C ∈ SATC(L0) if and only if ϕ ∈ CSP(S).

Let C ∈ SATC(L0). Let further I = (α1, . . . , αn) be a satisfying assignment of C. Now
assign to each variable in ϕ the value the corresponding gate in C has, when C is given
the assignment I to its input gates. Obviously, all introduced constraints are satisfied
with this variable assignment.

Let ϕ ∈ CSP(S) and let x1, . . . , xn be the variables of ϕ. Let further I = (α1, . . . , αn)
be a satisfying assignment of ϕ. Now assign to each input gate g of C the value of the
corresponding variable in ϕ; that is, val(g) = αg. It can easily be shown by induction
that for all g ∈ C, val(g) = αg. Since this is true for the output gate as well, and the
clause xg (for g ∈ C the output gate of the circuit) exists in ϕ, the circuit value is 1.

The same proof does not work for Pol(S) = L3, since it is neither possible to express
x nor x. However, when looking at Post’s graph (see Figure 2.2) it is obvious that L3

is the union of L2 and N2. Thus, basically we have negation as a new polymorphism in
addition to the functions from L2. Now it is possible to extend any relation from Inv(L2)
such that it is also closed under N2 by simply doubling the truth-table. More formally,
for a constraint language S with Pol(S) = L2 we generate a constraint language S ′, such
that CSP(S) ≤log

m CSP(S ′) and Pol(S ′) = L3. Let therefore R be an n-ary relation closed
under L2. We define R = {(x1, . . . , xn) | (x1, . . . , xn) ∈ R} and the (n+ 1)-ary relation
R′ = ({0} × R) ∪ ({1} × R). By construction R′ is closed under N2. For closure under
L2 we have to show that for any vectors u = (u0, u1, . . . , un), v = (v0, v1, . . . , vn), w =
(w0, w1, . . . , wn) ∈ R′ also u⊕ v ⊕ w ∈ R′. Note, that for any vectors a, b, and c it holds
that (1) a ⊕ b ⊕ c = a ⊕ b ⊕ c and (2) a ⊕ b ⊕ c = a⊕ b⊕ c. Because of (1) we only
have to consider the two cases that u0 = v0 = w0 = z for z ∈ {0, 1}. If z = 0, then
u ⊕ v ⊕ w ∈ R′, since R is closed under L2. For the case z = 1, let u′ = (v1, . . . , vn),
v′ = (v1, . . . , vn), and w′ = (v1, . . . , wn). Since u′, v′, w′ ∈ R, it follows that u′, v′, w′ ∈ R.
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3 The Complexity of Satisfiability Problems

Since R is closed under L2, also u′ ⊕ v′ ⊕ w′ ∈ R. Then u′ ⊕ v′ ⊕ w′ ∈ R and by (1) and
(2) u′ ⊕ v′ ⊕ w′ ∈ R. Thus, R′ is also closed under L2, and hence also under L3. Let

ϕ =
n∧

i=1

Rn(xi1 , . . . , xini
)

be an instance of CSP(S) and let S ′ = {R′ | R ∈ S}. We set

ϕ′ =
n∧

i=1

R′
n(t, xi1 , . . . , xini

),

where t is a new variable. We now show that ϕ ∈ CSP(S) if and only if ϕ′ ∈ CSP(S ′).
Let ϕ ∈ CSP(S) and let I be a satisfying assignment for ϕ. Then obviously I ∪{t = 0}

is a satisfying assignment for ϕ′.
Let ϕ′ ∈ CSP(S ′) and let I ′ be a satisfying assignment for ϕ′. Without loss of generality

let I ′ be an assignment that sets t to 0 (otherwise I ′ is a satisfying assignment for ϕ′,
which sets t to 0). Then by construction of ϕ′, the assignment I ′ without t is also a
satisfying assignment for ϕ. This concludes the reduction and thus CSP(S) is ≤log

m -hard
for ⊕L, if Pol(S) = L3. �

This concludes the proofs for Theorem 3.2.1. Looking at Post’s lattice one can easily
verify that all cases have been covered.

3.3 Conclusion
In this chapter we have been able to refine Schaefer’s Theorem, which states that all
constraint satisfaction problems are either difficult (i. e., NP-complete) or easy (i. e., in
P). We proved that there are very different complexity classes for the easy cases, if we
take a reduction that is fine enough. There are some that are actually easy (namely
those that are always satisfiable), whereas some others are more difficult, like the Horn
formulae that are P-complete. The open question that remains is, whether it is possible
to get an even more precise refinement by looking at the cases which we classified to be
in L. Thus, instead of using logspace reductions, one could use AC0 reductions1. A result
in this direction has already been obtained by Allender et al. [ABI+05].

1Sometimes also called FO reductions. These are reductions computable by first-order formulae with
addition and multiplication operators. For more details see [Vol99, Imm99].
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4 Quantified Constraints

4.1 Introduction

As briefly mentioned in the previous chapter, quantified constraints, that is, constraints
with all variables existentially or universally quantified, have already been looked at in
Schaefer’s work [Sch78]. Though, he only presented a result without proof. Dalmau
[Dal97] and Creignou, Khanna, and Sudan [CKS01] continued his ideas and confirmed
the dichotomy result that the problem to decide, whether a fully quantified formula is
true or false, is either in P or PSPACE-complete. Edith Hemaspaandra [Hem04] was
the first to combine this problem with the satisfiability problems of quantified formulae
restricted to a bounded alternation of quantifiers. The latter problems are complete
for the classes in the polynomial hierarchy [MS72]. We reprove her results using the
Galois theory from Section 2.4, which yields a much shorter proof. However, this result
just serves as a starting point for our main study, the complexity of quantified counting
problems; that is, we are given a quantified constraint formula with some free variables
and we want to count the number of satisfying assignments to the formula. For this
purpose we introduce a new type of reduction, which we call complementive reduction.
This is a generalization of the subtractive reduction introduced by Durand, Hermann,
and Kolaitis [DHK00]. The advantage of complementive reductions is that they are strict
enough to close most relevant counting classes, but at the same time they are wide enough
to allow us to obtain hardness results for many problems. Complementive reductions
are likely to turn out useful in other contexts, especially when the problems have some
symmetric properties.

As a special case of quantified formulae, we also implicitly get a full classification
for conjunctive queries. These conjunctive queries play an important role in database
theory, since they represent a broad class of different queries, and their expressive power
is equivalent to select-join-project queries in relational algebra. Additionally, conjunctive
query containment is considered to be a fundamental problem in database query evaluation
and optimization [AHV95]. Recent research points out that query containment is a central
problem in several database and knowledge applications, such as data integration [Len02]
or data warehousing [Wid95].

4.2 Prerequisites

Apart from the general preliminaries of Chapter 2, we need some extra concepts only for
this chapter. On the one hand we have the quantified formulae and related problems and
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4 Quantified Constraints

on the other hand there are the counting complexity classes and their reductions.

4.2.1 Quantified Formulae

Let S be a constraint language. A quantified S-formula ϕ is a closed formula of the
form ϕ = Q1X1Q2X2 . . . QnXnψ, where Q1, . . . , Qn ∈ {∀,∃} and ψ is an S-formula over
the variables X1 ∪ · · · ∪Xn. If the set S is not important, we also call ϕ a quantified
Boolean formula or short QBF. The quantified constraint satisfaction problem QCSP(S)
is the problem to decide, whether a given quantified S-formula is true. This problem is
trivially in PSPACE, since one simply has to do an exhaustive search on all possible
assignments. The general problem, that is, with no restrictions to the set of constraints or
the number of quantifiers, is PSPACE-complete. It is still PSPACE-complete, if the
constraint language is restricted to S3-SAT, that is, the constraints necessary to build a
3-CNF formula (see Example 2.3.4). As it was the case with the basic CSP, also QCSP(S)
has been classified according to the allowed constraint languages S. Surprisingly the
result is again a dichotomy, though there are infinitely many classes between P and
PSPACE-complete.

Theorem 4.2.1 ([Sch78, Dal97, CKS01]) Let S be a constraint language. If S is
Schaefer, then QCSP(S) is in P; otherwise, QCSP(S) is PSPACE-complete.

The second possibility to restrict a QBF is on the number of quantifiers, or better
quantifier alternations, which such a formula may possess. The result therefor is also
well-known, since these problems are prototypical for the polynomial hierarchy. We
define Q∃SATi (Q∀SATi) as the set of all true, closed Boolean formulae, starting with an
existential quantifier (starting with a universal quantifier, resp.) and having exactly i− 1
quantifier alternations. Wrathall showed that each of these problems Q∃SATi for i ≥ 1
is complete for the class ΣP

i [Wra77]. Accordingly each problem Q∀SATi for i ≥ 1 is
complete for the class ΠP

i . As it is the case with QCSP, these problems remain complete
for their respective classes, if the formulae are restricted to normal forms: For Q∃SATi

with odd i and Q∀SATi with even i this holds for restriction to 3-CNF and for Q∃SATi

with even i and Q∀SATi with odd i this holds for restriction to 3-DNF. These results
are also due to [Wra77]. Hemaspaandra examined both restrictions at the same time by
looking at alternation-bounded quantified generalized Boolean formulae [Hem04]. For
this she introduced the following notations, which we will adopt in this thesis.

Definition 4.2.2 Let S be a constraint language and i ≥ 1; let X1, . . . , Xi be pairwise
disjunct sets of variables, and let ψ be a quantifier-free S-formula defined over variables⋃i

j=1Xj. Then

• a Σi(S)-formula ϕ is an expression of the form ϕ = ∃X1∀X2 . . . QiXiψ, where
Qi = ∃ for i odd and Qi = ∀ for i even, and

• a Πi(S)-formula ϕ is an expression of the form ϕ = ∀X1∃X2 . . . QiXiψ, where
Qi = ∃ for i even and Qi = ∀ for i odd.
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4.2.2 Counting

In this section we will introduce counting problems, their complexity classes, and the
necessary reductions to classify these problems. First, what is a counting problem? So
far we have always encountered decision problems, that is, problems, whose instances
are either true or false, that belong to a language or do not belong to it. A prominent
example is the SAT problem. A formula is either satisfiable or unsatisfiable. However,
counting problems are interested in numbers. The matching counting problem for SAT is
#SAT and the question is, given a Boolean formula ϕ, how many (different) satisfying
assignments for ϕ are there. More generally let B ⊆ Σ∗ × Γ∗ be a binary relation; then y
is called a witness for x if (x, y) ∈ B. We only consider relations B such that for each x
there are only finitely many witnesses. In the example of SAT the corresponding binary
relation SAT′ is defined as {(ϕ, I) | ϕ is a Boolean formula such that I satisfies ϕ} and
thus a witness for a formula would be a satisfying truth assignment to its variables.
Further, the witness function for the relation B is the function w : Σ∗ → P<ω(Γ∗), with
w(x) = {y ∈ Γ | y is a witness for x}, where P<ω(Γ∗) is the collection of all finite subsets
of Γ∗. As a shorthand we also write B(x) instead of w(x). Thus, the counting problem
for a given B is the problem to determine the cardinality of w(x) and is usually denoted
by #B. In the case of SAT (as for many other decision problems), the counting version
is simply denoted by #SAT instead of #SAT′ for its binary relation.

The first one to examine counting complexity classes in detail was Valiant [Val79a,
Val79b]. He introduced therefor the class #P as the class of functions f , such that
there exits a polynomial time NTM M and for all x, f(x) is the number of accepting
computation paths of M with input x. In the case of a language in NP, these accepting
paths correspond to the number of witnesses. Thus, for all problems A in NP, their
counting version #A is in #P. For the prototypical problem #SAT, Valiant also
proved that it is #P-complete under parsimonious reductions. A parsimonious reduction
(denoted by ≤!) is a polynomial-time reduction that additionally preserves the cardinality
of the witness sets; that is, for two counting problems #A and #B, #A ≤! #B if and
only if there exists a total, polynomial-time computable function f such that for every x
holds |wA(x)| = |wB(f(x))|, where wA and wB are the witness functions of the counting
problems #A respectively #B. Another complexity class in this context is FP. This is
the set of functions, which are computable in polynomial time. Hence, trivially FP ⊆ #P.

A framework for higher complexity counting classes has been introduced by Toda
[Tod91]. It is based on predicates and focuses on the complexity of membership in the
witness sets. Specifically, if C is a complexity class of decision problems, then #·C is the
class of all counting problems whose witness function w satisfies the following conditions:

• There is a polynomial p(n) such that for every x and every y ∈ w(x), we have that
|y| ≤ p(|x|).

• The witness recognition problem “given x and y, is y ∈ w(x)?” is in C.

In particular, #·NP is the class of counting problems associated with decision problems,
for which the witness size is polynomially bounded and the witness recognition problem
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4 Quantified Constraints

is in NP. Following Toda [Tod91], the inclusions #·ΣP
k ⊆ #·ΠP

k and #·ΠP
k ⊆ #·ΣP

k+1

among counting classes hold for each k. In particular, we have the inclusion #·NP ⊆
#·coNP.

In [Val79b] Vailant used a different type of reduction in his #P-completeness proofs,
namely the so called counting reduction. A counting reduction (denoted by ≤cnt) allows
in contrast to a parsimonious reduction an additional application of a function from FP
after the reduction function has been applied. It therefore is sometimes also called a
weakly parsimonious reduction. The reason he used this instead of the parsimonious
reduction is, that for many problems that are known to be #P-complete under counting
reductions, it has not been possible to prove completeness under parsimonious reduction.
The drawback of counting reductions however, as has been proved by Toda and Watanabe
[TW92], is that the higher counting complexity classes are not closed thereunder. In
Section 4.4 we will therefore introduce a new type of reduction, that on the one hand is
wide enough to allow us to obtain completeness results and on the other hand is strict
enough to leave the ΠP

k -classes closed.

4.3 Quantified Constraint Satisfaction Problems
We will now define the quantified constraint satisfaction problem for a bounded number
of quantifier alternations. The definition originates from [Hem04].

Definition 4.3.1 Let S be a constraint language and let i ≥ 1.

• For i odd, a QCSPi(S)-formula is a Σi(S)-formula and QCSPi(S) is the problem
to decide, whether a given QCSPi(S)-formula is true.

• For i even, a QCSPi(S)-formula is a Πi(S)-formula and QCSPi(S) is the problem
to decide, whether a given QCSPi(S)-formula is false.

The reason for defining different problems for i even and i odd is that we are dealing
with constraints. According to Wrathall [Wra77] the general Q∃SATi problems are
complete for their respective class in the polynomial hierarchy if we are dealing with
CNF in the case that i is odd and DNF in the case that i is even. But, a formula in DNF
cannot be naturally modeled in a constraint context. Hence, in the even cases we are not
looking, whether the formula is true, but whether it is false. Obviously the negation of a
DNF is a CNF and thus can be expressed as a constraint language.

We will now show that the Galois connection between constraint languages and their
closure properties is also applicable to quantified constraints with bounded alternations.

Proposition 4.3.2 Let S1 and S2 be two constraint languages such that S2 does not
only contain the full relation and let i ≥ 1. If Pol(S2) ⊆ Pol(S1), then QCSPi(S1) ≤log

m

QCSPi(S2).

Proof. Let ϕ be a QCSPi(S1)-formula and let Pol(S2) ⊆ Pol(S1). By Corollary 2.4.7 we
know that we can express any relation from S1 by an existentially quantified formula using
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relations from S2 ∪ {Req}. Thus, given ϕ we can similarly create a QCSPi(S2)-formula
ϕ′ by locally replacing all relations from S1 by an existentially quantified (S2 ∪ {Req})-
formula. The newly introduced existentially quantified variables can be moved to the
right end of the quantifier block, because all other variables do not depend on them.
Since QCSPi(S)-formulae always end with a block of existential quantifiers, the resulting
formula ϕ′ is a QCSPi(S2 ∪ {Req})-formula equivalent to ϕ.

In the next step, we need to remove the equality constraints in order to obtain a
QCSPi(S2)-formula ϕ′′ that is equivalent to ϕ. Therefore, we check, whether there are
two variables x and y that are connected via an =-path, such that x is universally
quantified after y is quantified. In this case ϕ′ (and accordingly ϕ) is false. Hence, we
need to build a false QCSPi(S2)-formula, which is only possible, if S2 does not only
contain the full relation. If no such variables x and y exist, all variables connected by an
=-path are variables of which at most the first one in the quantifier sequence is universally
quantified. Call this variable x. All other variables connected to x can be renamed
to x and their corresponding existential quantifiers can be deleted. Finding variables
connected by an =-path is simply searching for a path in an undirected graph, which is
computable in logarithmic space by Reingold [Rei05]. �

We can now reprove a theorem first obtained by E. Hemaspaandra [Hem04]. Using the
algebraic approach, this yields a much shorter proof.

Theorem 4.3.3 Let S be a constraint language and let i ≥ 1. If S is Schaefer, then
QCSPi(S) is in P; otherwise QCSPi(S) is ΣP

i -complete under logspace reductions.

The polynomial result for the Schaefer cases already carries over from the general case
(see Theorem 4.2.1). Likewise the case i = 1 is covered by Schaefer’s Theorem, since
deciding, whether a formula with only existentially quantified variables is true, is the
same as testing satisfiability for a formula. Before we can prove the remainder of this
theorem, we need some additional results.

Proposition 4.3.4 Let i ≥ 1; then, QCSPi(Rnae) is ΣP
i -complete under logspace reduc-

tions.

Proof. Since the general problem Q∃SATi for arbitrary formulae is ΣP
i -complete, it follows

that QCSPi(Rnae) is trivially in ΣP
i . So, we only need to show hardness. From Proposi-

tion 2.4.4 we know that the relation R1in3 is only closed under the identity function and
thus Pol(R1in3) = I2. Taking a look at Figure 2.2 it is obvious that Pol(S3-SAT) ⊇ I2. Thus,
according to Proposition 4.3.2 QCSPi(S3-SAT) is logspace reducible to QCSPi(R1in3); this
yields ΣP

i -hardness for QCSPi(R1in3), since by Wrathall QCSPi(S3-SAT) is ΣP
i -complete

under logspace reductions [Wra77]. We now show that QCSPi(R1in3) ≤log
m QCSPi(Rnae),

which concludes the proof. Let

ϕ = Q1X1 . . . ∀Xi−1∃Xi

s∧
j=1

R1in3(xj1 , xj2 , xj3)
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4 Quantified Constraints

be a QCSPi(R1in3)-formula. We define the following relation as a conjunction of Rnae-
relations.

R2in4(x1, x2, x3, x4) = Rnae(x1, x2, x3) ∧ Rnae(x1, x2, x4)

∧ Rnae(x1, x3, x4) ∧ Rnae(x2, x3, x4).

It is obvious, that R2in4(x1, x2, x3, x4) is true if and only if exactly two of the four variables
are set to true. We then create ϕ′ by locally replacing every R1in3 relation by its R2in4

counterpart:

ϕ′ = Q1tQ1X1 . . . ∀Xi−1∃Xi

s∧
j=1

R2in4(xj1 , xj2 , xj3 , t).

We need to show that ϕ is true if and only if ϕ′ is true. Let ψ and ψ′ be the formula ϕ respec-
tively ϕ′ without their quantifiers; that is, ϕ = Q1X1 . . . ∃Xiψ and ϕ′ = Q1X1 . . . ∃Xiψ

′.
Assume that Q1 = ∀ (the case Q1 = ∃ then follows trivially). If t = 1, we have that
R2in4(x1, x2, x3, 1) = R1in3(x1, x2, x3) and thus ψ and ψ′[t/1] are equivalent. If t = 0, we
have that R2in4(x1, x2, x3, 0) = R1in3(x1, x2, x3) and thus ψ′[t/0] and Neg(ψ) are equiva-
lent, where Neg(ψ) is the formula obtained from ψ by negating all literals. Obviously I is
a satisfying assignment for ψ, if and only if I is a satisfying assignment for Neg(ψ); there-
fore, ϕ is true if and only if ϕ′ is true. Since ϕ′ originates from ϕ by local replacements
only, the reduction is surely computable in logarithmic space. �

Lemma 4.3.5 Let S be a constraint language and let i ≥ 2. If S is not Schaefer, then
QCSPi(S) is ΣP

i -complete under logspace reductions.

Proof. Let S be a constraint language such that S is not Schaefer. According to
Proposition 2.4.3 we have Pol(S) ⊆ N. Since the general problem Q∃SATi for arbitrary
formulae is already ΣP

i -complete it remains to show hardness for Pol(S) = N. Let the
relation R be defined as

R = {t1, t2, x1, x2, x3 | t1 = t2 or Rnae(x1, x2, x3)}.

It is obvious that R is closed under the constant 0 and under the constant 1, since
(0, 0, 0, 0, 0), (1, 1, 1, 1, 1) ∈ R. It is also closed under negation: Let (v1, v2, v3, v4, v5) ∈ R.
If v1 = v2, then trivially (v1, v2, v3, v4, v5) ∈ R. Therefore, let without loss of generality
v1 = 0 and v2 = 1. By definition Rnae(v3, v4, v5) holds and then also Rnae(v3, v4, v5) holds.
Consequently (v1, v2, v3, v4, v5) ∈ R.

Since {not, {0}, {1}} is a base for N, we know that Pol({R}) ⊇ N. Now we prove that
QCSPi(R) is ΣP

i -hard by a logspace reduction from QCSPi(Rnae), which is ΣP
i -complete

by Proposition 4.3.4. Let

ϕ = Q1X1 . . . ∀Xi−1∃Xi

s∧
j=1

Rnae(xj1 , xj2 , xj3)
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be an instance of QCSPi(Rnae). Then construct an instance of QCSPi(R) as follows.

ϕ′ = Q1X1 . . . ∀Xi−1∀t1∀t2∃Xi

s∧
j=1

R(t1, t2, xj1 , xj2 , xj3).

Since ϕ′ must be true for all combinations of truth assignments to t1 and t2, the constraint
Rnae(xj1 , xj2 , xj3) has to hold in every relation R. Hence, it is clear that ϕ is true if and
only if ϕ′ is true and the reduction holds. Since we are always just replacing one relation
by another one locally, the reduction is clearly computable in logarithmic space. �

4.4 Complementive Reductions

The remainder of this chapter is dedicated to our main theorem, namely the complete
classification of the counting problem of quantified constraints for a given constraint
language S. The challenge we are confronted with is to decide, what reduction we
should use for our results. Generally the parsimonious reduction is the reduction of
choice in the context of counting problems, since all higher complexity counting classes
#·ΣP

k and #·ΠP
k are closed under this reduction. However, there are some problems like

QCSPi(Rnae) for which this reduction does not work, since Rnae is complementive and
thus always leads to an even number of solutions. In order to resolve this problem we will
introduce complementive reductions, which are not as strict as parsimonious reductions,
but still supply closure of the counting classes.

We call a finite alphabet even, if it contains an even number of elements. A permutation
π on an even alphabet is called bipartite, if there exists a partition of Γ into two disjoint
sets Γ0 and Γ1 such that the following holds:

• Γ = Γ0 ∪ Γ1

• Γ0 ∩ Γ1 = ∅

• |Γ0| = |Γ1|

• for all x ∈ Γi we have π(x) ∈ Γi−1 for each i = 0, 1.

For each string x1 . . . xk ∈ Γ∗ we homomorphically enlarge every permutation π on Γ to
the strings in Γ∗ by means of the identity π(x1 . . . xk) = π(x1) . . . π(xk).

A set of strings E ⊆ Γ∗ over an even alphabet Γ is called complementive, if there exists
a bipartite permutation πE on Γ such that x ∈ E holds if and only if πE(x) ∈ E. If we
know that a set of strings E is complementive, we always assume that we are effectively
given the permutation πE. Given two alphabets Σ and Γ with Γ being even, we call a
relation B between strings from Σ and Γ complementive, if for each string y ∈ Σ∗ the set
B(y) is complementive with respect to the same bipartite permutation πB.
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Definition 4.4.1 Let Σ and Γ be two alphabets, Γ being even, and let #A and #B be
two counting problems determined by the relations A and B between the strings from Σ
and Γ, where B is complementive.

• We say that the counting problem #A reduces to the counting problem #B via
a strong complementive reduction, if there exist two polynomial-time computable
functions f and g such that for every string x ∈ Σ∗ the following holds:

– B(g(x)) ⊆ B(f(x))

– 2 · |A(x)| = |B(f(x))| − |B(g(x))|

• Let #A and #B be two counting problems. A complementive reduction #A ≤compl

#B from #A to #B is a sequence of parsimonious and strong complementive
reductions; that is, #A ≤compl #B if and only if #A ≤x1 #X1 ≤x2 #X2 ≤x3

. . . ≤xn #B, where ≤xi
for 1 ≤ i ≤ n is either a parsimonious or a strong

complementive reduction.

We will now show that this reduction, which is obviously a special case of counting
reductions, is reasonable for our aims. Theorem 4.4.2 first proves that all complexity
classes #·ΠP

k are closed under complementive reductions. Proposition 4.4.3 will then
demonstrate that the same statement unfortunately does not hold for #·ΣP

k classes.
However, it nevertheless makes sense to use complementive reductions for hardness results
in the hierarchy of the classes #·ΣP

k . Since #·ΣP
k ⊆ #·ΠP

k ⊆ #·ΣP
k+1 holds and the

#·ΠP
k classes are closed, a problem complete for #·ΣP

k+1 cannot be in #·ΣP
k , unless

#·ΣP
k+1 = #·ΠP

k . By Vollmer [Vol94] the latter would imply UPΣP
k = NPΣP

k , where
UP is the class of languages that are acceptable by an NTM such that there is always at
most one accepting computation path. Thus, it is reasonable to assume that a problem
complete for #·ΣP

k+1 is not in #·ΣP
k .

Theorem 4.4.2 Let k ≥ 1; then, #P and all higher complexity classes #·ΠP
k are closed

under complementive reductions.

Proof. Note that for k = 0 we have #P = #·ΠP
0 ; thus we take k ≥ 0 arbitrary, but fixed.

First, we will prove that #·ΠP
k is closed under strong complementive reductions. Therefore,

assume two counting problems #A and #B, such that #B is in #·ΠP
k , #A is reducible

to #B with a strong complementive reduction, and B is complementive. We will show
that then #A is also in #·ΠP

k . By definition we have two polynomial-time computable
functions f and g, such that B(g(x)) ⊆ B(f(x)) and 2 · |A(x)| = |B(f(x))| − |B(g(x))|.
We will now construct a relation A′ as follows. A tuple (x, y′) belongs to A′, if y′ is of
the form

y′ = f(x)$g(x)$y

with (f(x), y) ∈ B, (g(x), y) 6∈ B, and last(y) ∈ Γ0, where $ is a delimiter symbol that is
neither contained in Σ nor in Γ, last(y) returns the last element of the string y, and Γ0 is
one of the two partition sets of Γ, both of which are defined by the bipartite permutation
πB. The following simple algorithm decides, whether a given pair (x, y′) is in A′ or not.
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1. Divide the string y′ into its three parts f(x), g(x), and y.

2. Check whether last(y) ∈ Γ0; if not, reject.

3. Check whether (f(x), y) ∈ B; if not, reject.

4. Check whether (g(x), y) 6∈ B; if not, reject.

5. Accept.

Obviously steps 1 and 2 of the algorithm can be computed in polynomial time. By
definition of the counting classes, the test whether (f(x), y) belongs to B in step 3 is in
ΠP

k and thus also in PΣP
k . Finally, in step 4 we need to test, whether (g(x), y) does not

belong to B, that is, the complement of step 3, which is in ΣP
k and thus also in PΣP

k .
Consequently A′ is in PΣP

k and hence #A′ is in #·PΣP
k , which is the same as #·ΠP

k by
Toda [Tod91]. By construction of A′ we know that the number of elements in A′(x) is
made up of the number of elements in B(f(x)) minus those that are in B(g(x)) and the
whole number is divided by two, since only the strings ending with an element of Γ0 are
taken (which are exactly half of the strings, because B is complementive). Therefore,
2 · |A′(x)| = |B(f(x))|−|B(g(x))| and hence |A′(x)| = |A(x)|. It follows that the counting
problem #A is in #·ΠP

k , because it is as difficult to determine the solutions of A as it is
for A′.

The closure of #·ΠP
k under complementive reductions now follows inductively on the

number of parsimonious and strong complementive reductions, since for both of them
#·ΠP

k is closed. �

Proposition 4.4.3 For every k ∈ N, each higher complexity class #·ΣP
k is not closed

under complementive reductions, unless #·ΣP
k = #·ΠP

k .

Proof. Let k ∈ N. We will reduce a #·ΠP
k -complete problem to a problem in #·ΣP

k via a
complementive reduction. Note that the problem, given a quantified formula

ϕ(y1, . . . , yn) = ∀X1∃X2 . . . QkXkψ(x1, . . . , xm, y1, . . . , yn),

where ψ is a quantifier-free formula and x1, . . . , xm ∈
⋃k

i=1Xi, is #·ΠP
k -complete ac-

cording to Durand et al. [DHK00]. The problem stays #·ΠP
k -complete if for k odd

ψ is in DNF and for k even ψ is in CNF. Similarly the problem given a quantified
formula starting with an existential quantifier and having k − 1 quantifier alternations is
#·ΣP

k -complete. We will do a case distinction on the parity of k: First, assume that k is
odd and we are given ϕo as the quantified formula ϕ from above in such a way that the
quantifier-free formula ψo is in DNF. Construct two formulae ξo and ϑo as follows:

ξo(y0, . . . , yn) = y0 ∨ y1 ∨ · · · ∨ yn ∨ y0 ∨ y1 ∨ · · · ∨ yn

ϑo(y0, . . . , yn) = (y0 ∨ ¬ϕo(y1, . . . , yn)) ∧ (y0 ∨ ¬ϕo(y1, . . . , yn)).
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4 Quantified Constraints

Obviously the negation of ϕo can be propagated to appear only at the literal level.
The resulting formula then starts with an existential quantifier and is in CNF. By the
distributive law we can thus transform ϑo into a quantified CNF.

In the case that k is even, we are given ϕe as the quantified formula ϕ from above in
such a way that the quantifier-free formula ψe is in CNF. Let ξe = ξo and construct

ϑe(y0, . . . , yn) = (y0 ∧ ¬ϕe(y1, . . . , yn)) ∨ (y0 ∧ ¬ϕe(y1, . . . , yn)).

Propagation of the negation and application of the distributive law yields a quantified
DNF ϑe, whose first quantifier is a universal one. All those transformation can be
computed in polynomial time and linear space. Also note that all formulae ξo, ξe, ϑo,
and ϑe are complementive. Since the ξ-formulae represent the full relation, obviously
#sat(ξp) = 2 · 2n and

sat(ϑp) ⊆ sat(ξp)

for p ∈ {o, e}. Evidently #sat(ψp) = 2 ·#sat(¬ϕp) = 2 · (2n −#sat(ϕp)) = 2 · 2n − 2 ·
#sat(ϕp) for p ∈ {o, e}. Combined we have

2 ·#sat(ϕp) = #sat(ξp)−#sat(ϑp)

for p ∈ {o, e}. This constitutes for both the odd and the even cases the complementive
reduction we were looking for. �

4.5 Counting Problems for Quantified Constraints

In this section we want to classify the counting problem associated with the quantified
constraint satisfaction problem. The previous results will serve as a basis to start from.
First, we will have to clarify what counting for quantified constraints means. Since a
quantified Boolean formula is just true or false, there is nothing to count. Thus, we consider
formulae with some free variables apart from the quantified variables. Analogously to
Q∃SATi and Q∀SATi, we define #Q∃SATi and #Q∀SATi as the problems to count the
number of satisfying assignments for a given quantified formula with free variables and
i− 1 quantifier alternations starting with an existential respectively universal quantifier.
These problems are complete for the classes #·ΣP

i respectively #·ΠP
i under parsimonious

reductions and remain complete when restricted to CNF (for #Q∃SATi with odd i and
#Q∀SATi with even i) or DNF (for #Q∃SATi with even i and #Q∀SATi with odd i)
[DHK00]. Similar to Definition 4.3.1 we now define the central problem of this section.

Definition 4.5.1 Let S be a constraint language and let i ≥ 1.

• For i odd, we define a #QCSPi(S)-formula as a formula ϕ(Y ) = ∃X1∀X2 . . . ∃Xi

ψ(Y,X1, . . . , Xi), where ψ is a quantifier-free formula, and #QCSPi(S) as the
problem to determine #sat(ϕ) for a given #QCSPi(S)-formula ϕ.
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4.5 Counting Problems for Quantified Constraints

• For i even, we define a #QCSPi(S)-formula as a formula ϕ(Y ) = ∀X1∃X2 . . . ∃Xi

ψ(Y,X1, . . . , Xi), where ψ is a quantifier-free formula, and #QCSPi(S) as the
problem to determine #unsat(ϕ) for a given #QCSPi(S)-formula ϕ.

The reason for counting the satisfying assignments in the odd cases and the unsatisfying
assignments in the even cases is the same as the reason for deciding whether a QCSPi(S)-
formula is true respectively false in Definition 4.3.1; namely, that we are dealing with
constraints only. A special case of the quantified constraints are the conjunctive queries.
In this case i = 1 and therefore we do not have any universally quantified variables, that
is, a conjunctive query over a constraint language S is a QCSP1(S)-formula.

Definition 4.5.2 Let S be a constraint language. We define a #SAT-COQ(S)-formula
as a #QCSP1(S)-formula and #SAT-COQ(S) as the problem to determine #sat(ϕ) for
a given #SAT-COQ(S)-formula ϕ, that is, #QCSP1(S).

The results of this section are summarized in the following main theorem and an
incidental corollary.

Theorem 4.5.3 Let S be a constraint language and let i ≥ 1.

• If S is affine, then #QCSPi(S) is in FP.

• Otherwise, if S is Schaefer, then #QCSPi(S) is #P-complete under counting
reductions.

• If S is not Schaefer, then #QCSPi(S) is #·ΣP
i -complete under complementive

reductions.

As an easy consequence we can state the following result about conjunctive queries.
The corollary follows immediately from Theorem 4.5.3 by letting i = 1.

Corollary 4.5.4 Let S be a constraint language.

• If S is affine, then #SAT-COQ(S) is in FP.

• Otherwise, if S is Schaefer, then #SAT-COQ(S) is #P-complete under counting
reductions.

• If S is not Schaefer, then #SAT-COQ(S) is #·NP-complete under complementive
reductions.

A graphical representation of Theorem 4.5.3 can be seen in Figure 4.1. The proof of
this theorem follows from the lemmas in the remainder of this chapter. First, we state
an easy consequence of Proposition 4.3.2: We can show that the Galois connection also
applies to the counting version of quantified constraints, which again enables us to utilize
short and elegant proofs.
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Figure 4.1: The complexity of #QCSPi(S) for i ≥ 1
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4.5 Counting Problems for Quantified Constraints

Proposition 4.5.5 Let S1 and S2 be two constraint languages such that S2 does not
only contain the full relation, and let i ≥ 1. If Pol(S2) ⊆ Pol(S1), then #QCSPi(S1) ≤!

#QCSPi(S2).

Proof. Since the last quantifier of any #QCSPi(S)-formula is always an existential
quantifier, by Theorem 2.4.6 we can just locally replace every relation in S1 by conjunctive
queries over S2. These replacements are preserving the number of solutions and thus the
reduction is parsimonious. �

We will start the proof of our main theorem with the affine case.

Lemma 4.5.6 Let S be a constraint language and let i ≥ 1. If S is affine, then
#QCSPi(S) is in FP.

Proof. Let S be affine. As mentioned in Schaefer’s work [Sch78] and similarly to the
problem #CSP(S) in [CH96], a set of affine constraints can be considered as a system
of linear equations over {0, 1}. However, before we can use the Gaussian elimination
algorithm for #QCSPi(S), we first have to eliminate the quantifiers. Let

ϕ(Y ) = Q1X1 . . . ∀Xi−1∃Xi

s∧
j=1

Cj

be a #QCSPi(S)-formula, such that each Cj is an ⊕-formula over the variables Y ∪
X1 ∪ · · · ∪ Xi. Then each Cj = xj1 ⊕ . . . ⊕ xjkj

corresponds to a linear equation
ej : xj1 + · · ·+ xjkj

= 1. Let E = {e1, . . . , es} be the equation system defined by
∧s

j=1Cj.
The algorithm in Figure 4.2 then either returns an equivalent system of linear equations
or rejects the input if ϕ is not satisfiable due to the quantified variables.

We will now prove the correctness of this algorithm. After the execution of step 1 we
are given a system of equations E that is equivalent to the formula ϕ. We will show that
every step of the algorithm preserves the set of solutions of E, but removes all quantified
variables; that is, after the execution of the for-loop in step 2 all equations with index
≤ j have either been deleted or contain only unquantified variables. For this we examine
each step in the for-loop and ensure that the set of solutions is preserved and the current
equation ej does not contain quantified variables at the end of the for-loop. Since x⊕ x
is equivalent to 0 for any x, we can just delete two occurrences of a variable in the same
equation in step 3. Trivially, if a equation 0 = 1 occurs, the system of equations has no
solution and thus the input is rejected in step 5. If in step 7 no variable is quantified in
the current equation, that equation is fine and we carry on with the next one. The key
point of the algorithm appears in the instance that at least one variable is quantified in
an equation ej. In that case we look for the variable x, which is quantified last. Then
there are two possibilities to consider. First, if x is universally quantified, then E has
no solution. This is because in ej all variables are assigned a value before x, resulting
in a formula ∀x(x = 1) or ∀x(x = 0), both of which are obviously false. If on the other
hand x is existentially quantified, the equation ej can be satisfied, but the variable x is
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4 Quantified Constraints

INPUT: quantified formula ϕ(Y ) = Q1X1 . . . ∀Xi−1∃Xi

∧s
j=1Cj

1: Let E = {e1, . . . , es} be the equation system induced by ϕ.
2: for j = 1 to s do
3: Replace in ej every double occurrence of a variable by 0.
4: if ej is contradictory (i. e., 0 = 1) then
5: reject
6: end if
7: if at least one variable in ej is quantified then
8: Let x be a quantified variable, such that no other variable is quantified after x is

quantified.
9: if x is universally quantified then

10: reject
11: else
12: Solve ej for x.
13: Substitute the solution for x in every other equation containing x.
14: Delete ej in E.
15: end if
16: end if
17: end for

Figure 4.2: Algorithm for obtaining a linear equation system from a quantified formula

fixed afterwards. Therefore, the value of x, which is the equation ej solved for x, is then
substituted for any other occurrence of x (obviously this can only happen in equations
ek with k > j since in the other ones are no quantified variables). The equation ej can
then be deleted in step 14, since by Gaussian elimination the system of equations stays
consistent, when one variable together with its equation is eliminated by transferring
the information of that equation to all other equations containing that variable. In the
special case that there is no other occurrence of x, the equation can just be deleted
anyway, because it does not matter to which value x is quantified (this is also the case
for the last equation). Hence, if the algorithm does not reject the input, we have an
equivalent system of linear equations, such that no occurring variable is quantified. Note
that since in step 3 free variables might be deleted, it is important to keep the set Y of
free variables.

For the time complexity note that step 1 needs linear time. The for-loop 2 through
17 is executed once for every C in ϕ. Step 3 is also computable in polynomial time,
as is searching for the last quantified variable in an equation (step 8). Solving a linear
equation for a variable is just a simple transformation, which is possible in polynomial
time. Finally, the substitutions of a variable by a formula in step 13 is computable in
polynomial time, since there are only linearly many equations to look at and the size
of an equation increases at most by the number of variables, because at the beginning
of the for-loop all double variables are deleted. Hence, the total computation time is
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4.5 Counting Problems for Quantified Constraints

polynomial in the input size.
Thus, after the execution of the algorithm we have a system of equations that is

equivalent to the original formula ϕ in the sense that the number of solutions respectively
satisfying assignments is the same. Now we can simply determine that number with the
help of the Gaussian elimination method, which is also computable in polynomial time.
Therefore, we have a polynomial-time computable function and #QCSPi(S) is in FP. �

The other Schaefer cases follow almost immediately from known results.

Lemma 4.5.7 Let S be a constraint language and let i ≥ 1. If S is not affine, but Horn,
anti-Horn, or bĳunctive, then #QCSPi(S) is #P-complete under counting reductions.

Proof. In the cases that S is Horn, anti-Horn, or bĳunctive, we know from Theorem 4.3.3
that QCSPi(S) is in P. Therefore, #QCSPi(S) is in #P. Creignou and Hermann proved
that if S is not affine, #CSP(S) in these three cases is already #P-complete. By the
trivial counting reduction from #CSP(S) to #QCSPi(S) we have that #QCSPi(S) is
also #P-complete. �

Before we can prove #·ΣP
i -completeness for all non-Schaefer cases, we need an additional

proposition.

Proposition 4.5.8 Let i ≥ 1. Then #QCSPi(Rnae) is #·ΣP
i -complete under comple-

mentive reductions.

Proof. Since Durand, Hermann, and Kolaitis showed in [DHK00] that the counting
problem for arbitrary formulae starting with an existential quantifier and having i− 1
quantifier alternations is #·ΣP

i -complete under parsimonious reduction, membership in
#·ΣP

i for #QCSPi(Rnae) with i odd follows directly. For i even note that #Q∀SATi is
#·ΠP

i -complete under parsimonious reductions by [DHK00]. Since we are looking for
unsatisfiability in this case, #QCSPi(S) is the complement problem of #Q∀SATi and thus
#·ΣP

i -complete under parsimonious reductions for arbitrary S. Hence, #QCSPi(Rnae) is
also in #·ΣP

i for i even.
As in the proof of Proposition 4.3.4, we first prove that the problem #QCSPi(R1in3) is

#·ΣP
i -complete under parsimonious reductions. Due to [DHK00] we already know that

#QCSPi(S3-SAT) is #·ΣP
i -complete under parsimonious reductions. Since Pol(R1in3) =

I2, we have that #QCSPi(S3-SAT) ≤! #QCSPi(R1in3) by Proposition 4.5.5. We now
state a strong complementive reduction from #QCSPi(R1in3) to #QCSPi(Rnae). Since
complementive reductions are the closure of parsimonious and strong complementive
reductions, the proposition follows immediately. Thus, let

ϕ(Y ) = Q1X1 . . . ∀Xi−1∃Xi

s∧
j=1

R1in3(xj1 , xj2 , xj3)

be a #QCSPi(R1in3)-formula with xj1 , xj2 , xj3 ∈ Y ∪X1∪· · ·∪Xi, where Y = {y1, . . . , yn}
is the set of free variables. Let u and v be new free variables and define

ϕ1(Y, u, v) = ϕ(Y ) ∧R1in3(u, u, v).
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Then obviously u is fixed to 0 and v is fixed to 1. Therefore, #sat(ϕ1) = #sat(ϕ) and
#unsat(ϕ1) = 2n+2−#sat(ϕ1), since there are now n+ 2 free variables. Let R2in4 be the
relation defined as a conjunction of Rnae-relations as in the proof of Proposition 4.3.4;
that is, R2in4 is true if and only if exactly two of the four variables are set to 1. Now we
can define the formulae necessary for our reduction. Let

ϕ2(Y, v, u) = Q1X1 . . . ∀Xi−1∃Xi∃t
s∧

j=1

R2in4(xj1 , xj2 , xj3 , t) ∧R2in4(u, u, v, t),

ϕ3(Y, v, u) =
n∧

j=1

Rnae(u, v, yj) ∧Rnae(u, u, v),

and
ϕ4(Y, v, u) = Rnae(u, u, u).

The number of satisfying assignments of ϕ2 is exactly twice the number of satisfying
assignments of ϕ1. This is the case, since for every satisfying assignment (α1, α2, α3)
of an R1in3-relation, the two assignments (α1, α2, α3, 1) and (α1, α2, α3, 0) satisfy the
corresponding R2in4-relation. Thus, #unsat(ϕ2) = 2n+2 − 2 ·#sat(ϕ). For ϕ3 we know
due to the last conjunct, that u and v must take different values. Then follows that each
yj can take any value and therefore #sat(ϕ3) = #unsat(ϕ3) = 2n+1. The formula ϕ4

is obviously unsatisfiable and thus #sat(ϕ4) = 0 and #unsat(ϕ4) = 2n+2. Since we are
distinguishing between the number of satisfying solutions for a formula with odd i and
unsatisfying solutions for i even, we have to define two reductions:

• For i odd, let f(ϕ) = ϕ2 and g(ϕ) = ϕ4. Surely sat(ϕ4) ⊆ sat(ϕ2) and 2 ·#sat(ϕ) =
#sat(ϕ2)−#sat(ϕ4).

• For i even, we take f(ϕ) = ϕ2 and g(ϕ) = ϕ3. Then unsat(ϕ3) ⊆ unsat(ϕ2) and
2 ·#unsat(ϕ) = #unsat(ϕ2)−#unsat(ϕ3).

Obviously all constructed formulae are computable in polynomial time. Hence, we have
a complementive reduction in both cases. �

Lemma 4.5.9 Let S be a constraint language. If S is not Schaefer, then #QCSPi(S) is
#·ΣP

i -complete under complementive reductions.

Proof. Let S be a constraint language such that S is not Schaefer. According to
Proposition 2.4.3 we know that Pol(S) ⊆ N. Since the general problem #QCSPi(T ) for
arbitrary constraint languages T is already #·ΣP

i -complete it remains to show hardness
for a constraint language S ′ with Pol(S ′) = N under complementive reductions. Let

ϕ(Y ) = Q1X1 . . . ∀Xi−1∃Xi

s∧
j=1

Rnae(xj1 , xj2 , xj3)
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be a #QCSPi(Rnae)-formula with xj1 , xj2 , xj3 ∈ Y ∪X1∪· · ·∪Xi, where Y = {y1, . . . , yn}
is the set of free variables. First, assume that i ≥ 2; that is, we have universal and
existential quantifiers in our formula. Let

R = {t1, t2, x1, x2, x3 | t1 = t2 or Rnae(x1, x2, x3)}

be the relation originating from the proof of Lemma 4.3.5. Let further S ′ = {R}. We
already know that Pol(S ′) ⊇ N. We will now state a parsimonious reduction from
#QCSPi(Rnae) to #QCSPi(S

′). Let

ϕ′(Y ) = Q1X1 . . . ∀Xi−1∀t1∀t2∃Xi

s∧
j=1

R(t1, t2, xj1 , xj2 , xj3),

where xj1 , xj2 , xj3 ∈ Y ∪X1 ∪ · · · ∪Xi. Corresponding to the proof of Lemma 4.3.5, it is
obvious that #sat(ϕ) = #sat(ϕ′); thus, yielding a parsimonious reduction. Note, that
for this reduction to work, we require universally quantified variables t1 and t2. Thus, for
the case i = 1 we need a different reduction. Let therefore

R′(u, v, x, y, z) = (u ∧ v ∧ x ∧ y ∧ z) ∨ (u ∧ v ∧ x ∧ y ∧ z) and
R′′(u, v, x, y, z) = R′(u, v, x, y, z)

∨ (u ∧ v ∧Rnae(x, y, z)) ∨ (u ∧ v ∧Rnae(x, y, z))

be two relations and let S ′ = {R′, R′′}. It is easy to see that both R′ and R′′ are 0-valid,
1-valid, and complementive. Hence, S ′ is also 0-valid, 1-valid, and complementive and
therefore Pol(S ′) ⊇ N . Now construct the formulae

ϕ′1(Y, u, v) = Q1X1 . . . ∀Xi−1∃Xi

s∧
j=1

R′(u, v, xj1 , xj2 , xj3)

and

ϕ′′1(Y, u, v) = Q1X1 . . . ∀Xi−1∃Xi

s∧
j=1

R′′(u, v, xj1 , xj2 , xj3),

where u and v are new free variables. It is obvious, that #sat(ϕ′1) = 2. By construction
of R′′ it is easy to see, that for ϕ′′1 the number of satisfying assignments is twice that of
ϕ plus 2 and that sat(ϕ′1) ⊆ sat(ϕ′′1). Thus, we have a strong complementive reduction
with 2 ·#sat(ϕ) = #sat(ϕ′′1)−#sat(ϕ′1).

Since complementive reductions are the transitive closure of parsimonious and strong
complementive reductions, we have in both cases a complementive reduction from the
problem #QCSPi(Rnae) to #QCSPi(S

′), such that Pol(S ′) ⊇ N. �

4.6 Conclusion
We have been able to show that the Galois connection is applicable in the case of quantified
constraint. This knowledge allowed us to re-prove a theorem first obtained by Edith
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Hemaspaandra with a much shorter proof. This lead the way to getting a complete
classification also for the counting version of quantified constraints. Again, we were able
to utilize the Galois connection. In order to get completeness results for the different
levels of the counting hierarchy, however, we needed to introduce a new kind of reduction,
the complementive reduction. Unfortunately only the #·ΠP

k classes are closed under
this reduction, but provably this does not hold for the #·ΣP

k classes. Nevertheless, this
reduction was sensible to use in the context of problems exhibiting a complementive
nature, because it enables us to separate between the different levels of the counting
hierarchy. We think that this reduction will probably also turn out to be useful for
problems with similar properties in the counting context. An open question thus is,
whether it is possible to find a reduction that closes the gaps between the #·ΣP

k and
#·ΠP

k complexity classes.
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5 Graph Related Constraint Problems

5.1 Introduction

The graph isomorphism problem is a very interesting and well-studied problem in computer
science. Given two graphs, the task is to determine, whether they are isomorphic, that
is, whether there exists a permutation of the vertices in one graph such that both are
equivalent. The reason why this problem is so famous is that it is one of the very few
natural problems in the class NP that is not not known to be in P and unlikely to be
NP-complete [KST93]. As we have already argued in the previous chapters, there are
infinitely many complexity classes between P and NP, under the assumption that both
are not equal. Graph isomorphism might be a candidate for a member of one of those
intermediate classes.

In this chapter we will take a look at several constraint problems that are in some
way related to graph isomorphism. We will first broaden a result obtained by Böhler
et al. [BHRV02]. They classified the equivalence problem for constraints. This is the
problem, given two constraint formulae, to decide, whether they evaluate the same for all
possible assignments of their variables. However, Böhler et al. just looked at the case in
which both formulae have similar properties; that is, they are both S-formulae for the
same constraint language S. We allow the formulae to originate from different constraint
languages. Thereafter we obtain an akin result of constraint implication; that is, the
question whether one constraint formula implies a second one.

Another graph theoretical problem is the subgraph isomorphism problem. This is a
generalization of graph isomorphism in the way that we are again given two graphs,
but now look, whether there is a subgraph of the first graph such that a permutation
of its vertices yields a graph equivalent to the second one. This problem is known to
be NP-complete. In the main part of this chapter we will introduce the isomorphic
implication problem. As we will later on prove, this problem is an extension of the
subgraph isomorphism in the same way the constraint isomorphism is an extension of
graph isomorphism. At the same time the correlation of constraint isomorphism and
isomorphic implication is analogous to the correlation of graph isomorphism and subgraph
isomorphism. We will show that isomorphic implication is, depending on the constraint
languages allowed, either in P; NP-complete; or NP-hard, coNP-hard, and in ΘP

2 . We
believe that isomorphic implication is ΘP

2 -complete in all those cases where it is NP-hard
and coNP-hard. In Section 5.5 we show that we are able to prove this hardness for some
cases.

Finally, the close connections between isomorphic implication, isomorphism, subgraph
isomorphism, and graph isomorphism allow us to state an interesting and new idea, which
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could result in a proof that graph isomorphism is solvable in polynomial time.
In order to prove the results of this chapter we have to take a different path from the

one we took in the previous chapters. The obstacle is caused by existentially quantified
variables. These are needed in order to reduce one problem to another one by expressing
the relations over conjunctive queries as in Theorem 2.4.6. For the problem of satisfiability
of a constraint formula, it does not matter, whether some of the variables are existentially
quantified or not. The problem stays the same. In the context of quantified constraints we
already have implicit existentially quantified constraints, so we were able to fit additional
quantified variables into the existing quantifiers. In the definition of the equivalence
and similar problems, there are no quantifiers allowed and contrary to satisfiability,
omitting quantifiers for a variable makes a difference. Take, for example, the formulae
ϕ(x, y) = x ∨ y and ψ(x) = ∃y(x ∨ y). Obviously ϕ(x, y) and ψ(x) are not equivalent,
since ϕ(0, 0) is false, whereas ψ(x) is true for any assignment. However, omitting the
quantifiers results in two equivalent formulae (they are indeed the same). Therefore,
we cannot avail ourselves of the structure exhibited by Post’s lattice, but have to cover
“manually” all possible cases by our proofs. This makes them much more elaborate and
involved, which will be especially apparent in the case of isomorphic implication.

5.2 Prerequisites

Before we start with our main contribution for this chapter, we will refresh some basic
notations of graph theory and state some results of previous papers. Note, that all
reductions, unless specified differently, are polynomial-time many-one reductions; that is,
all hardness and completeness results should be seen as being ≤P

m-hard and ≤P
m-complete,

respectively, for their complexity classes.

Definition 5.2.1 Let G = (VG, EG) and H = (VH , EH) be two graphs. The graph
isomorphism problem (abbreviated by GI) is the problem to decide, whether G and H are
isomorphic (denoted by G ∼= H), that is, whether there exists a bĳection π from VG to
VH such that for all u, v ∈ VG we have that (u, v) ∈ EG if and only if (π(u), π(v)) ∈ EH .

The exact complexity of GI is not known. It is only known that it is in NP; it is not
known to be in P and it is considered unlikely to be NP-complete. Therefore, we will
denote from now on the complexity of the graph isomorphism problem by GI; that is, GI
∈ GI. A generalization of the GI is the subgraph isomorphism problem. Its complexity
is, in contrast to GI, well-known.

Definition 5.2.2 Let G = (VG, EG) and H = (VH , EH) be two graphs. The subgraph
isomorphism problem (abbreviated by SGI) is the problem to decide, whether G contains
a subgraph isomorphic to H (denoted by G≤̃H), that is, whether there exists a subgraph
G′ = (VG′ , EG′) of G with VG′ ⊆ VG and EG′ ⊆ EG such that G′ and H are isomorphic.

Theorem 5.2.3 ([GJ79]) The subgraph isomorphism problem is NP-complete.
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The subgraph isomorphism problem can be restricted to having no isolated vertices and
is still NP-complete, because isolated vertices are trivial for determining the isomorphism.

The following two problems of equivalence and isomorphism of constraint formulae
have been defined and classified by Böhler et al. [BHRV02, BHRV04].

Definition 5.2.4 ([BHRV02]) Let S be a constraint language. Then EQUIV(S) is
the problem, given two S-formulae ϕ and ψ, to decide, whether ϕ and ψ are equivalent
(denoted by ϕ ≡ ψ), that is, whether for every assignment to the variables, ϕ is satisfied
if and only if ψ is satisfied.

Theorem 5.2.5 ([BHRV02]) Let S be a constraint language.

• If S is Schaefer, then EQUIV(S) is in P.

• Otherwise EQUIV(S) is coNP-complete.

Definition 5.2.6 ([BHRV04]) Let S be a constraint language. Then ISO(S) is the
problem, given two S-formulae ϕ and ψ over variables X, to decide, whether ϕ is
isomorphic to ψ (denoted by ϕ ∼= ψ), that is, whether there exists a permutation π of X
such that π(ϕ) ≡ ψ.

Theorem 5.2.7 ([BHRV04]) Let S be a constraint language.

• If S is 2-affine, then ISO(S) is in P.

• If S is Schaefer and not 2-affine, then ISO(S) is polynomial-time many-one equiva-
lent to GI.

• Otherwise, S is not Schaefer and ISO(S) is coNP-hard and GI-hard.

Finally, we need the notion of validity of constraint formulae, combining the properties
of 0-valid and 1-valid in two formulae.

Definition 5.2.8 Let S be a constraint language. Two S-formulae ϕ and ψ are said
to have the same validity if and only if they are both 0-valid or both not 0-valid and
additionally both are 1-valid or both are not 1-valid.

5.3 Results for Two Constraint Languages

5.3.1 Equivalence

First, we give the definition for the equivalence problem for two (possibly different)
constraint languages.

Definition 5.3.1 Let S1 and S2 be two constraint languages. Then EQUIV(S1, S2) is
the problem, given an S1-formula ϕ and an S2-formula ψ, to decide, whether ϕ and ψ
are equivalent, that is, whether for every assignment to the variables, ϕ is satisfied if and
only if ψ is satisfied.
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This definition is very similar to the equivalence problem with just one constraint
language in Definition 5.2.4, since EQUIV(S) = EQUIV(S, S). We only allow the second
language to be different from the first one, which results in some more possibilities as
we will see in the following. Note that it is possible, that S1 and S2 are not Schaefer,
but yet EQUIV(S1, S2) is in P. This happens, for example, if S1 is 0-valid, and every
constraint in S2 is not 0-valid. We will show that problems caused by the validity of the
sets of constraints are the only cases that break Theorem 5.2.5.

Before we can state our main theorem, we need to define the function equal-valid ,
which has two constraint languages as input and the output is also a pair of constraint
languages. The intention of this definition is to take those constraints out of the two
languages, which cannot ever be equivalent, because they have a different validity.

Definition 5.3.2 Let S1 and S2 be two constraint languages. We then define the function
equal-valid as equal-valid(S1, S2) = (S ′1, S

′
2) with S ′1 ⊆ S1 and S ′2 ⊆ S2 being maximal

subsets, such that both have the same validity.

Now we can completely classify the equivalence problem for two constraint languages.

Theorem 5.3.3 Let S1 and S2 be two constraint languages and let further be (S ′1, S
′
2) =

equal-valid(S1, S2).

• If S1 and S2 are Schaefer, then EQUIV(S1, S2) is in P.

• Otherwise, if S ′1 and S ′2 are Schaefer, or S ′1 = ∅, or S ′2 = ∅, or S ′1 or S ′2 contain
only the full relation, then EQUIV(S1, S2) is also in P.

• Otherwise S ′1 or S ′2 are not Schaefer and EQUIV(S1, S2) is coNP-complete.

The problem with just one constraint language EQUIV(S) has already been handled
in [BHRV02]. The easy case of their dichotomy carries over.

Lemma 5.3.4 Let S1 and S2 be two constraint languages such that both are Schaefer;
then EQUIV(S1, S2) is in P.

Proof. Let A]B be the marked product, defined as A]B = {0x | x ∈ A}∪{1x | x ∈ B}.
If S1 and S2 are Schaefer, then CSP(S1) and CSP(S2) are in P. Obviously, also the
marked product CSP(S1)]CSP(S2) is in P, since we only have to check the first digit and
then decide, whether to check for CSP(S1) or CSP(S2). Following the proof of Lemma 7
[BHRV02], EQUIV(S1, S2) is also polynomial-time conjunctive truth-table reducible to
CSP(S1) ] CSP(S2): If k is the maximal arity of the constraints in S1 and S2, then it
is easy to check with 2k conjunctive truth-table queries, whether a constraint formula
implies a given constraint by simply trying out all 2k different assignments to the variables.
We thus merely have to test, whether an S1-formula ϕ implies all clauses of an S2-formula
ψ and vice versa. �

Before we can prove the next theorem, we need the following proposition.
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Proposition 5.3.5 Let S1 and S2 be two constraint languages. If S1 is not Schaefer and
S2 contains only the full relation, then EQUIV(S1, S2) is in P.

Proof. Let ϕ be an S1-formula and let ψ be an S2-formula. Further let k be the maximal
arity of constraints in S1. Since S2 contains only the full relation, the formulae ϕ and ψ
are only equivalent, if ϕ ≡ 1. Thus, we need to check for every clause C of ϕ, whether
every assignment to the variables satisfies C. Since there are at most 2k assignments to
consider, this is clearly in P. �

For the lower bound, the following four base cases (i. e., all sets have the same validity)
yield also the same results as in [BHRV02].

Lemma 5.3.6 Let S1 and S2 be two constraint languages. Let further S1 be not Schaefer.

1. If S1 and S2 are not 0-valid and not 1-valid, then EQUIV(S1, S2) is coNP-hard.

2. If S1 and S2 are 0-valid, but not 1-valid, then EQUIV(S1, S2) is coNP-hard.

3. If S1 and S2 are not 0-valid, but 1-valid, then EQUIV(S1, S2) is coNP-hard.

4. If S1 and S2 are 0-valid and 1-valid, but S2 does not only contain the full relation,
then EQUIV(S1, S2) is coNP-hard.

Proof. Cases 1 through 3 follow directly from the proofs in [BHRV02] (see Claims 9, 12.1,
and 12.2, resp.).

For case 4 we will do a reduction from CSP 6=0,1(S1) (where CSP 6=0,1(S) is the problem
to decide, whether an S-formula has a satisfying assignment different from the all-0 and
all-1 vector) to EQUIV(S1, S2). This will give us the result, since by Proposition 10
[BHRV02], CSP 6=0,1(S1) is coNP-complete. Let ϕ be an S1-formula. Note that the all-0
vector and the all-1 vector satisfy ϕ trivially. Therefore, ϕ 6∈ CSP 6=0,1(S1) if and only if ϕ
is equivalent to

∧n
i=1 xi ∨

∧n
i=1 xi.

We will first assume S2 is not complementive. By the proof of Claim 14 [BHRV02],
there exists an S2-formula ψ that is equivalent to

∧n
i=1 xi ∨

∧n
i=1 xi, since ψ is 0-valid and

1-valid. Subsequently the above reduction can be carried out.
Next assume that S2 is 0-valid, 1-valid, and complementive. Furthermore suppose

that S2 contains a constraint C that is not always 1 (otherwise, according to Proposi-
tion 5.3.5, EQUIV(S1, S2) would be in P). Rearrange the order of the variables such that
C(0, . . . , 0, 1, . . . , 1) = 0. Let A(x, y) = C(x, . . . , x, y, . . . , y). Then A(0, 0) = A(1, 1) = 1,
because C is 0-valid and 1-valid, and A(0, 1) = A(1, 0) = 0, because C is complementive.
This implies that A(x, y) ≡ (x↔ y). Thus,

∧
1≤i≤j≤n

A(xi, xj) ≡
n∧

i=1

xi ∨
n∧

i=1

xi.

Likewise we can perform the above reduction here, too. �
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The only cases, whose classification has not been proved so far, are the ones, when
both constraint languages are not Schaefer and do not have the same validity. In these
cases the following proposition tells us, that we only need to look at certain subsets of
the constraint languages to determine the complexity of the equivalence problem.

Proposition 5.3.7 Let S1 and S2 be two constraint languages. If ϕ is an S1-formula of
which at least one of the clauses is not 0-valid (not 1-valid), and ψ is a formula with only
0-valid (1-valid, resp.) S2-clauses, then ϕ 6≡ ψ.

Proof. This trivially holds, since ϕ(0, . . . , 0) = 0, but ψ(0, . . . , 0) = 1. The 1-valid part is
analogous. �

Thus, if a constraint language S1 is not 0-valid, but another constraint language S2 is
0-valid, then it suffices to look at EQUIV(S ′1, S2) with S ′1 being a maximal subset of S1,
that is 0-valid (i. e., the set of all 0-valid constraints of S1).

For a complete classification we therefore need the restricted constraint languages
obtained from the original ones as stated in Definition 5.3.2. Thus, the following corollary
is obvious, because only trivial cases are left out.

Corollary 5.3.8 Let S1 and S2 be two constraint languages and let S ′1 and S ′2 be the
results of equal-valid(S1, S2). Then the two problems EQUIV(S1, S2) and EQUIV(S ′1, S

′
2)

have the same complexity.

Lemma 5.3.9 Let S1 and S2 be two constraint languages and let S ′1 ⊆ S1 and S ′2 ⊆ S2

be sets as in Definition 5.3.2. If S ′1 and S ′2 are Schaefer or S ′1 = ∅ or S ′2 = ∅ or S ′1
contains only the full relation or S ′2 contains only the full relation, then EQUIV(S1, S2)
is in P; otherwise EQUIV(S1, S2) is coNP-hard.

Proof. According to Corollary 5.3.8, instead of looking at the problem EQUIV(S1, S2),
we can prove the theorem for EQUIV(S ′1, S

′
2), where S ′1 and S ′2 are obtained from S1 and

S2 by the function equal-valid . Now for the case that S ′1 and S ′2 are Schaefer we have
already shown in Lemma 5.3.4 that EQUIV(S ′1, S

′
2) is in P.

The case that at least one of the sets S ′1 and S ′2 are empty is also in P. For this case,
an S1-formula will never be equivalent to an S2-formula, since there is no constraint in
S1 that has the same validity as any constraint in S2.

And finally the case that either of the sets contains only the full relation is already
covered by Proposition 5.3.5. �

Finally, it needs to be shown, that all equivalence problems are always in coNP, making
all coNP-hardness results coNP-complete. This however also carries over directly from
[BHRV02].
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5.3.2 Implication

First, we give the definition for the implication problem for two (possibly different)
constraint languages.

Definition 5.3.10 Let S1 and S2 be two constraint languages. Then IMP(S1, S2) is the
problem, given an S1-formula ϕ and an S2-formula ψ, to decide, whether ϕ implies ψ
(denoted by ϕ⇒ ψ), that is, whether every assignment that satisfies ϕ also satisfies ψ.

The following main theorem gives a complete classification for the implication problem
with two constraint languages. Similar to the previous section, it is necessary to use the
function equal-valid from Definition 5.3.2. Here, however, only the second part of the
output is used.

Theorem 5.3.11 Let S1 and S2 be two constraint languages and further let S ′2 ⊆ S2 be
a maximal subset as in Definition 5.3.2.

• If S1 is Schaefer, then IMP(S1, S2) is in P.

• If S ′2 is empty or S ′2 only contains the full relation, then IMP(S1, S2) is also in P.

• Otherwise IMP(S1, S2) is coNP-complete.

We will first look at the easy cases again. There are two properties, which make the
implication problem easy. One of them is, if the first constraint language is Schaefer.

Lemma 5.3.12 Let S1 and S2 be two constraint languages. If S1 is Schaefer, then
IMP(S1, S2) is in P.

Proof. Let ϕ be an S1-formula and ψ be an S2-formula. Then ϕ implies ψ if and only if
ϕ⇒ C for every clause C in ψ.

Following the proof of Lemma 7 in [BHRV02], this can be checked with 2k conjunctive
truth-table queries to CSP(S1), where k is the maximal arity of S2. Since S1 is Schaefer,
CSP(S1) is in P and so is IMP(S1, S2). �

The other case, such that the implication problem is also in P, occurs when the two
constraint languages are too different.

Lemma 5.3.13 Let S1 and S2 be two constraint languages and further let (S ′1, S
′
2) =

equal-valid(S1, S2). If S ′2 is empty or only contains the full relation, then IMP(S1, S2) is
in P.

Proof. Since implication is a one-sided version of equivalence, we are only looking at S ′2
and not S ′1. Obviously if S ′2 is empty, it means that S1 is 0-valid or 1-valid (or both) and
S2 contains only not 0-valid or not 1-valid (or both) constraints. Thus, for any S1-formula
ϕ and any S2-formula ψ, it is never possible, that ϕ⇒ ψ. The all-0 vector or the all-1
vector (or both) will always satisfy ϕ, but never ψ.
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On the other hand, if S ′2 only contains the full relation, all implications are trivially
true, since any S ′2-formula is equivalent to 1. �

As in the equivalence case, we have again four base cases for the lower bound. However,
they are slightly different this time. If the second constraint language is 0-valid (1-valid),
it is not important, whether the first one is 0-valid or not 0-valid (1-valid or not 1-valid,
resp.).

Theorem 5.3.14 Let S1 and S2 be two constraint languages, such that S1 is not Schaefer.

1. If S1 and S2 are not 0-valid and not 1-valid, then IMP(S1, S2) is coNP-hard.

2. If S1 and S2 are not 0-valid and S2 is 1-valid, then IMP(S1, S2) is coNP-hard.

3. If S1 and S2 are not 1-valid and S2 is 0-valid, then IMP(S1, S2) is coNP-hard.

4. If S2 is 0-valid and 1-valid, then IMP(S1, S2) is coNP-hard.

Proof. The proofs are analogous to the proofs of Theorem 5.3.6 in the previous section.
Just instead of reductions to EQUIV(S1, S2), we have reductions to IMP(S1, S2). Thus,
an S1-formula ϕ is not in CSP 6=0,1(S1) if and only if

ϕ ⇒
n∧

i=1

xi ∨
n∧

i=1

xi.

�

This concludes the lower bounds. In order to obtain coNP-hardness we still need to
show membership in coNP, which is obvious.

Lemma 5.3.15 Let S1 and S2 be two constraint languages; then, IMP(S1, S2) is in
coNP.

Proof. Let ϕ be an S1-formula and ψ be an S2-formula. Then, ϕ 6⇒ ψ if and only if there
exists an assignment that satisfies ϕ, but does not satisfy ψ. Such an assignment can
simply be guessed by a nondeterministic TM. Hence, the question whether ϕ⇒ ψ is in
coNP. �

5.4 Isomorphic Implication

The isomorphic implication problem is a combination of the isomorphism problem from
Definition 5.2.6 and the implication problem from Definition 5.3.10.
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Definition 5.4.1 Let S be a constraint language. Then ISO-IMP(S) is the problem,
given two S-formulae ϕ and ψ over variables X, to decide, whether ϕ isomorphically
implies ψ (denoted by ϕ ∼=⇒ ψ), that is, whether there exists a permutation π of X such
that π(ϕ) ⇒ ψ.

We will now show, as mentioned in the introduction, that our definition of ISO-IMP
is sensible in the way that on the one hand it extends the constraint isomorphism the
same way SGI extends GI, and on the other hand it extends SGI in the same way that
constraint isomorphism is an extension of GI. However, first we need a way to translate
graphs to constraint formulae. The following definition describes the standard technique
to transform graphs into 2-CNF with only positive literals, such that every graph without
isolated vertices corresponds to a unique constraint formula.

Definition 5.4.2 Let G = (V,E) be a graph without isolated vertices. The standard
translation from graphs to constraint formulae is

tg→c(G) =
∧

(i,j)∈E

xi ∨ xj.

Lemma 5.4.3 1. Let S be a constraint language and let ϕ and ψ be S-formulae. Then
ϕ ∼= ψ if and only if ϕ ∼=⇒ ψ and ψ ∼=⇒ ϕ.

2. Let G and H be graphs without isolated vertices. Then G = (VG, EG) contains a
subgraph isomorphic to H = (VH , EH) if and only if tg→c(G) ∼=⇒ tg→c(H).

Proof.

1. The left-to-right direction is obvious. For the other direction assume that ϕ ∼=⇒ ψ
and ψ ∼=⇒ ϕ and for a contradiction ϕ 6∼= ψ. Let X be the set of variables occurring
in ϕ∧ψ and let π and ρ be permutations on X such that π(ϕ) ⇒ ψ and ρ(ψ) ⇒ ϕ.
Since ϕ 6∼= ψ, we have that π(ϕ) 6≡ ψ. Thus, there exists an assignment that satisfies
ψ, but does not satisfy π(ϕ) or there exists an assignment that satisfies π(ϕ), but
does not satisfy ψ. Since ρ(ψ) ⇒ ϕ, there have to be at least as many satisfying
assignments for ϕ as there are for ψ, since the permutations do not alter the number
of satisfying assignments of a formula. And similarly since π(ϕ) ⇒ ψ, there have
to be at least as many satisfying assignments for ψ as there are for ϕ. Thus, π(ϕ)
and ψ have the same number of satisfying assignments, but that is a contradiction
to π(ϕ) 6≡ ψ.

2. For the left-to-right direction assume that G′ = (VG′ , EG′) is a subgraph of G
such that G′ is isomorphic to H. Then there exists a bĳection π from VG′ to VH

such that π(G′) = H. We define a permutation ρ of the variables occurring in
tg→c(G) ∧ tg→c(H) such that ρ(xi) = xπ(i) for all i ∈ VG′ . It is easy to see that
ρ(tg→c(G

′)) = tg→c(π(G′)) = tg→c(H). Since G′ is a subgraph of G, we have that
tg→c(G) ⇒ tg→c(G

′) and therefore ρ(tg→c(G)) ⇒ tg→c(H).
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For the other direction, assume that tg→c(G) ∼=⇒ tg→c(H). Then there exists a per-
mutation π on the variables occurring in tg→c(G)∧ tg→c(H) such that π(tg→c(G)) ⇒
tg→c(H). Now let G′ be a graph such that tg→c(H) = π(tg→c(G

′)) and G′ does
not have isolated vertices. Then obviously π(tg→c(G)) ⇒ π(tg→c(G

′)) and hence
tg→c(G) ⇒ tg→c(G

′). Since tg→c(G) is maximal in the sense that all clauses xi ∨ xj

that are implied by tg→c(G) are already contained in tg→c(G), it follows that G′

is a subgraph of G. Because tg→c(H) = π(tg→c(G
′)) and H and G′ do not contain

isolated vertices, G′ is isomorphic to H.

�

The following is our main theorem and gives a trichotomy-like classification for the
isomorphic implication problem.

Theorem 5.4.4 Let S be a constraint language.

• If S contains only constants, the identity function, or negation, then ISO-IMP(S)
is in P.

• Otherwise, if S is Schaefer, then ISO-IMP(S) is NP-complete.

• If S is not Schaefer, then ISO-IMP(S) is NP-hard, coNP-hard, and in ΘP
2 .

The proof of this theorem will follow by the lemmas of the next sections. We will first
prove the upper bounds and then the lower bounds.

5.4.1 Upper Bounds

We will start with the case, when isomorphic implication is solvable in polynomial time.

Lemma 5.4.5 Let S be a constraint language. If S contains only constants, the identity
function, or negation, then ISO-IMP(S) is in P.

Proof. Let ϕ and ψ be two S-formulae. Since each clause is either a constant or a
literal (positive or negative), we will distinguish two cases: First, assume that ϕ or ψ is
equivalent to a constant. Note, that the problem, whether an S-formula is equivalent to
a constant, is in P, since an S-formula is equivalent to 1 if and only if all clauses are 1
and it is equivalent to 0 if at least one clause is 0 or if one variable occurs positive and
negative in the formula. Then there are three possibilities to look at and all of them lead
to a polynomial-time algorithm for deciding ISO-IMP(S):

• If ϕ is equivalent to 1, then ϕ ∼=⇒ ψ if and only if ψ is also equivalent to 1.

• If ϕ is equivalent to 0 or ψ is equivalent to 1, then always ϕ ∼=⇒ ψ.

• If ψ is equivalent to 0, then ϕ ∼=⇒ ψ if and only if ϕ is also equivalent to 0.
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If neither ϕ nor ψ is equivalent to a constant, we claim that ϕ ∼=⇒ ψ if and only if the
number of positive literals in ϕ is greater or equal to the number of positive literals in ψ
and the number of negative literals in ϕ is greater or equal to the number of negative
literals in ψ.

For the left-to-right direction assume that π is a permutation of the variables occurring
in ϕ ∧ ψ such that π(ϕ) ⇒ ψ. Let ϕ′ be the formula ϕ without constants and let ψ′ be
the formula ψ without constants. Since ϕ and ψ are neither 1 nor 0, only clauses with
the constant 1 are being deleted; thus ϕ′ and ψ′ are satisfiable. Hence, for all literals l
such that π(ϕ′) ⇒ l we have that l is a clause in π(ϕ′). Then all literals occurring in ψ
also occur in π(ϕ), because π(ϕ) ⇒ ψ. Hence, the number of positive (negative) literals
in ϕ is greater or equal than the number of positive (negative) literals in ψ.

For the other direction, suppose that the number of positive literals in ϕ is greater or
equal than the number of positive literals in ψ and the number of negative literals in ϕ is
greater or equal than the number of negative literals in ψ. Since both ϕ and ψ are not
equivalent to 0, no variable can occur positively and negatively in one of the formulae.
Therefore, one can easily define a permutation π that maps every positive literal in ϕ to
a positive literal in ψ and every negative literal in ϕ to a negative literal in ψ. Obviously,
π(ϕ) ⇒ ψ and thus ϕ ∼=⇒ ψ, which proves the claim.

Since counting the literals in a formula is trivially in P, this concludes the proof. �

It is easy to see that isomorphic implication is in NP, if the constraint language is
Schaefer.

Lemma 5.4.6 Let S be a constraint language such that S is Schaefer. Then ISO-IMP(S)
is in NP.

Proof. Let ϕ and ψ be two S-formulae over variables X. Then ϕ ∼=⇒ ψ if and only if there
exists a permutation π of X such that π(ϕ) ⇒ ψ. And further π(ϕ) ⇒ ψ if and only if
π(ϕ) ∧ ψ ≡ π(ϕ). Since S is Schaefer, it can be determined in polynomial time, whether
two S-formulae are equivalent (see [BHRV02]). �

Finally, we show that isomorphic implication is always in ΘP
2 .

Lemma 5.4.7 Let S be an arbitrary constraint language. Then ISO-IMP(S) is in ΘP
2 .

Proof. Let ϕ and ψ be two S-formulae over variables X. Let ϕ′ be the conjunction of all
constraint applications over X that are implied by S. Such a formula can be computed
in polynomial time with parallel access to an NP-oracle; that is, it is computable in ΘP

2

(see the proof of Claim 22 in [BHRV02]). Thus, to find out, whether ϕ ∼=⇒ ψ, we first
have to determine, whether there exists a permutation π on X such that π(ϕ) ⇒ ψ (this
can be done by one query to an NP-oracle) and then we have to determine, whether all
clauses of ψ are contained in ϕ′. By [BH91] two rounds of queries to NP are the same as
one round of queries to NP and hence ISO-IMP(S) is in ΘP

2 . �
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5.4.2 Lower Bounds

As we argued in the introduction, the Galois connection does not work for isomorphic
implication. Therefore, it is not possible to prove hardness for a few selected cases and
implicitly cover all cases. We have to take a much closer look and analyze exactly what
cases can occur. In the case of hardness for NP we show that there are exactly ten cases
to consider.

Lemma 5.4.8 Let C be a k-ary constraint such that C(x1, . . . , xk) is not equivalent to
a conjunction of literals. And let S be the constraint language consisting of C; that is,
S = {C}. Then there exists an S-formula that is equivalent to one of the following
formulae:

1. t ∧ (x ∨ y),

3. f ∧ (x ∨ y),

5. x↔ y,

7. f ∧ (x↔ y),

9. x⊕ y, or

2. f ∧ t ∧ (x ∨ y),

4. f ∧ t ∧ (x ∨ y),

6. t ∧ (x↔ y),

8. f ∧ t ∧ (x↔ y),

10. f ∧ t ∧ (x⊕ y).

Proof. First, suppose that C (and thus S) is not 2-affine. According to [BHRV04,
Lemma 24], there exists an S-formula ϕ such that ϕ is equivalent to either of the
following ten formulae. We will show that in each of those cases the formula is either
of the form we need or we can create a different S-formula equivalent to one of the ten
cases we need.

• ϕ(x, y) = x∧ y: We know from the proofs of Theorems 15 and 17 of [BHRV04] that
since S is not 2-affine, there exists an S-formula ψ(0, 1, x, y) that is equivalent to
x ∨ y, x ∨ y, x ∨ y, or x⊕ y. Then ϕ(f, t) ∧ ψ(f, t, x, y) ∧ ψ(f, t, y, x) is equivalent
to f ∧ t ∧ (x ∨ y) (i. e., formula 2), f ∧ t ∧ (x ∨ y) (i. e., formula 4), f ∧ t ∧ (x↔ y)
(i. e., formula 8), or f ∧ t ∧ (x⊕ y) (i. e., formula 10).

• ϕ(x, y) = x ∨ y: Then ϕ(x, y) ∧ ϕ(y, x) = x↔ y (i. e., formula 5).

• ϕ(x, y) = x⊕ y: This is formula 9.

• ϕ(x, y) = x↔ y: This is formula 5.

• ϕ(t, x, y) = t ∧ (x ∨ y): Then ϕ(t, x, y) ∧ ϕ(t, y, x) = t ∧ (x↔ y) (i. e., formula 6).

• ϕ(t, x, y) = t ∧ (x↔ y): This is formula 6.

• ϕ(t, x, y) = t ∧ (x ∨ y): This is formula 1.

• ϕ(f, x, y) = f ∧ (x∨ y): Then ϕ(f, x, y)∧ϕ(f, y, x) = f ∧ (x↔ y) (i. e., formula 7).
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5.4 Isomorphic Implication

• ϕ(f, x, y) = f ∧ (x↔ y): This is formula 7.

• ϕ(f, x, y) = f ∧ (x ∨ y): This is formula 3.

What remains to show is the case that S is 2-affine. In this case we know from Lemma 9
[BHRV04] that there exists a polynomial-time computable normal form function that
maps every S-formula ϕ to an equivalent formula ψ of the form

ψ =
∧
x∈Z

x ∧
∧
x∈O

x ∧
∧̀
i=1

(( ∧
x∈Xi

x ∧
∧
y∈Yi

y

)
∨

( ∧
x∈Xi

x ∧
∧
y∈Yi

y

))
,

where Z, O, X1, Y1, . . . , X`, Y` are pairwise disjoint subsets of {x1, . . . , xk} such that
Xi ∪ Yi 6= ∅ for all 1 ≤ i ≤ `. Note that Z contains all the variables that have to be set
to zero and O contains all the variables that have to be set to one. Thus, we replace in
ϕ every variable in Z by f and every variable in O by t. Furthermore, for each i the
variables in Xi have to take a different value from those in Yi (and accordingly all variables
in a set Xi respectively Yi have to take the same value). Since ϕ and therefore also ψ is
not equivalent to a conjunction of literals, there exists an i such that |Xi ∪ Yi| ≥ 2.

There are now two cases to consider: First, if there exists an i such that Xi 6= ∅ and
Yi 6= ∅; then, replace in ϕ every variable in

⋃
j Xj by x and every variable in

⋃
j Yj by y.

The resulting formula is equivalent to x⊕ y (i. e., formula 9), t ∧ (x⊕ y), f ∧ (x⊕ y), or
f ∧ t∧ (x⊕y) (i. e., formula 10). In the second case the conjunction t∧ (x⊕y)∧ t∧ (t⊕f)
is equivalent to formula 10, and in the third case the conjunction f ∧ (x⊕ y)∧ f ∧ (t⊕ f)
is also equivalent to formula 10.

On the other hand, if for all i one of the sets Xi or Yi is empty, then let i be such
that either |Xi| ≥ 2 or |Yi| ≥ 2. If we now replace in ϕ one of the variables in Xi ∪ Yi

by x and all other variables in
⋃

j Xj ∪ Yj by y, the resulting formula is equivalent to
x↔ y (i. e., formula 5), t ∧ (x↔ y) (i. e., formula 6), f ∧ (x↔ y) (i. e., formula 7), or
f ∧ t ∧ (x↔ y) (i. e., formula 8). �

With the help of Lemma 5.4.8 we only have to show NP-hardness for ten specific cases.
We can even ease our work further by noticing that the isomorphic implication problem
has a kind of duality property. It is computationally equivalent to the problem where all
constraints are replaced by their complementive version, which will be formalized in the
following definition. This originates from [Hem04], where a similar property has been
proved for the satisfiability of quantified constraints (which we did not need in Chapter 4,
because it is implicit in Post’s classes).

Definition 5.4.9 ([Hem04]) 1. Let R be a k-ary constraint; then, RC is the k-
ary constraint such that for all s ∈ {0, 1}k, we have that RC(s) = R(s), where
s = ¬s1, . . . ,¬sk for s = s1, . . . , sk.

2. Let S be a constraint language; then, SC = {RC | R ∈ S}.

3. Let S be a constraint language and let ϕ =
∧n

i=1Ri be an S-formula; then, ϕC =∧n
i=1R

C
i .
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Proposition 5.4.10 Let S be a constraint language; then, ISO-IMP(S) is polynomial-
time many-one equivalent to ISO-IMP(SC).

Proof. Let ϕ and ψ be two S-formulae and let ϕC and ψC be the corresponding SC-
formulae. Then ϕ ∼=⇒ ψ if and only if ϕC ∼=⇒ ψC , because any permutation π with
π(ϕ) ⇒ ψ is also a permutation such that π(ϕC) ⇒ ψC . �

As we have already proved in Lemma 5.4.3, there is a close connection between the
subgraph isomorphism problem and the isomorphic implication problem for positive
2-CNF; that is, a graph G contains a subgraph isomorphic to another graph H (both
without isolated vertices) if and only if tg→c(G) ∼=⇒ tg→c(H). The same correspondence
also leads to the GI-hardness for the isomorphism problem with the constraint language
{x ∨ y}.

We will utilize this connection in order to prove NP-hardness for the first four cases of
Lemma 5.4.8, because they are very similar to the relation x ∨ y, which is used for the
standard translation from graphs to constraint formulae.

Lemma 5.4.11 1. ISO-IMP({t ∧ (x ∨ y)}) is NP-hard.

2. ISO-IMP({f ∧ t ∧ (x ∨ y)}) is NP-hard.

3. ISO-IMP({f ∧ (x ∨ y)}) is NP-hard.

4. ISO-IMP({f ∧ t ∧ (x ∨ y)}) is NP-hard.

Proof. Similar to the standard translation from graphs to formulae from Definition 5.4.2,
we will define two different translations t′g→c and t′′g→c from graphs to constraint formulae
that have the same property and that use the relations above.

1. For the first case let
t′g→c(G) =

∧
(i,j)∈E

t ∧ (xi ∨ xj)

be a translation from graphs to constraint formulae, where G = (V,E) is a graph
without isolated vertices. Let G = (VG, EG) and H = (VH , EH) be two graphs
without isolated vertices. We claim that G has a subgraph isomorphic to H if
and only if t′g→c(G) ∼=⇒ t′g→c(H). Since the subgraph isomorphism problem is
NP-complete, it follows that ISO-IMP({t ∧ (x ∨ y)}) is NP-hard.

To prove the claim, first assume that G′ = (VG′ , EG′) is a subgraph of G such
that G′ is isomorphic to H. Let π be the isomorphism from VG′ to VH such that
π(G′) = H. Then t′g→c(π(G′)) = t′g→c(H). We can now define a permutation ρ on
the variables {t} ∪ {xi | i ∈ VG ∪ VH} such that ρ(t) = t and ρ(xi) = xπ(i) for all
i ∈ VG′ . Then ρ(t′g→c(G

′)) = t′g→c(π(G′)) = t′g→c(H). Since G′ is a subgraph of
G, we have that t′g→c(G) ⇒ t′g→c(G

′) and hence ρ(t′g→c(G)) ⇒ ρ(t′g→c(G
′)). Thus,

ρ(t′g→c(G)) ⇒ t′g→c(H) and therefore t′g→c(G) ∼=⇒ t′g→c(H).
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For the other direction assume that t′g→c(G) ∼=⇒ t′g→c(H). Then there exists a per-
mutation ρ on the variables occurring in t′g→c(G)∧ t′g→c(H) such that ρ(t′g→c(G)) ⇒
t′g→c(H). It is easy to see that ρ has to map the variable t to itself. This is because t
is the only variable that is implied by the constraint formula t′g→c(Ĝ) for any graph
Ĝ. Also note that, if t′g→c(Ĝ) ⇒ t ∧ (x ∨ y), then t ∧ (x ∨ y) has to be a clause in
t′g→c(Ĝ). If this were not the case, we could simply set t to 1, x and y to 0, and all
other variables to 1. Then this assignment would satisfy t′g→c(Ĝ), but it would not
satisfy t ∧ (x ∨ y). For the same reason we know that if ρ(t′g→c(Ĝ)) ⇒ t ∧ (x ∨ y),
then also t∧ (x∨ y) is a clause is t′g→c(Ĝ). It follows that all clauses in t′g→c(H) are
also clauses in ρ(t′g→c(G)). If we now let G′ be a graph isomorphic to H such that
t′g→c(H) = ρ(t′g→c(G

′)), then obviously all clauses of ρ(t′g→c(G
′)) are also clauses in

ρ(t′g→c(G)) and therefore G′ is a subgraph of G.

2. For the second case let

t′′g→c(G) =
∧

(i,j)∈E

f ∧ t ∧ (xi ∨ xj)

be a translation from graphs to constraint formulae, where G = (V,E) is a graph
without isolated vertices. We now claim that for any graphs G and H without
isolated vertices, t′g→c(G) ∼=⇒ t′g→c(H) if and only if t′′g→c(G) ∼=⇒ t′′g→c(H). Since we
already showed that ISO-IMP({t∧ (x∨ y)}) is NP-hard in case one, it follows that
also ISO-IMP({f ∧ t ∧ (x ∨ y)}) is NP-hard.

First, assume that t′g→c(G) ∼=⇒ t′g→c(H). Then there exists a permutation ρ such
that ρ(t′g→c(G)) ⇒ t′g→c(H). By extending ρ to f such that ρ(f) = f , we have that
ρ(t′′g→c(G)) ⇒ t′′g→c(H) and thus t′′g→c(G) ∼=⇒ t′′g→c(H).

For the other direction assume that t′′g→c(G) ∼=⇒ t′′g→c(H). Then there exists a per-
mutation ρ on the variables occurring in t′′g→c(G)∧ t′′g→c(H) such that ρ(t′′g→c(G)) ⇒
t′′g→c(H). As in the previous case, ρ has to map f to itself, since f is the only vari-
able whose negation is implied by the constraint formula originating from t′′g→c(Ĝ)

for any graph Ĝ. Thus, for any graph Ĝ, the formula t′′g→c(Ĝ) is equivalent to
f ∧ t′g→c(Ĝ). Hence, ρ(t′g→c(G)) ⇒ t′g→c(H) and therefore t′g→c(G) ∼=⇒ t′g→c(H).

3. Since (f∧(x∨y))C = (f∧(x∨y)), the result follows directly from Proposition 5.4.10
and case 1 of this lemma.

4. Similar to the previous case, we have that (f ∧ t ∧ (x ∨ y))C = (t ∧ f ∧ (x ∨ y)).
Then the result follows directly from Proposition 5.4.10 and case 2 of this lemma.

This covers all four cases. �

The remaining six cases of Lemma 5.4.8 cannot be dealt with in the same way. The
problem is that the isomorphism problem for these cases is in P (see Theorem 5.2.7).
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So, unless GI is also in P, there is no reduction from graph isomorphism to constraint
isomorphism in these cases. And similarly there do not seem to be simple reductions
from SGI to isomorphic implication. Therefore, we will reduce from a different problem,
the Unary-3-Partition.

Definition 5.4.12 Let A be a set of 3m elements, B ∈ N a bound (in unary), and
for each a ∈ A let s(a) ∈ N be a size (in unary) such that

∑
a∈A s(a) = mB. Then

Unary-3-Partition is the problem to decide, whether A can be partitioned into m disjoint
sets A1, . . . , Am such that

∑
a∈Ai

s(a) = B for 1 ≤ i ≤ m.

Theorem 5.4.13 ([GJ79]) Unary-3-Partition is NP-complete.

Lemma 5.4.14 1. ISO-IMP({x↔ y}) is NP-hard.

2. ISO-IMP({t ∧ x↔ y}) is NP-hard.

3. ISO-IMP({f ∧ x↔ y}) is NP-hard.

4. ISO-IMP({f ∧ t ∧ x↔ y}) is NP-hard.

Proof. We will show that in the first case Unary-3-Partition is reducible to the corre-
sponding isomorphic implication problem. And the other three cases follow from that
result.

1. Let A be a set with 3m elements, B ∈ N a bound (in unary), and for each a ∈ A
let s(a) ∈ N be a size (in unary) such that

∑
a∈A s(a) = mB as in the definition

of Unary-3-Partition. Further let X1, . . . , Xm be m pairwise disjoint sets of B
variables each. We define

ϕ =
m∧

i=1

( ∧
x,x′∈Xi

x↔ x′

)
.

Further let {X̂a | a ∈ A} be a collection of 3m pairwise disjoint sets of variables
such that |X̂a| = s(a) for all a ∈ A and such that

⋃
a∈A X̂a =

⋃m
i=1Xi. We define

ψ =
∧
a∈A

 ∧
x,x′∈ bXa

x↔ x′

 .

Since the values of B and the s(a)’s are given in unary, we can compute both
formulae ϕ and ψ in polynomial time. We now claim that A can be partitioned into
m disjoint sets A1, . . . , Am such that

∑
a∈Ai

s(a) = B for 1 ≤ i ≤ m if and only if
ϕ ∼=⇒ ψ.

For the left-to-right direction assume that A1, . . . , Am is a partition of A such that∑
a∈Ai

s(a) = B for 1 ≤ i ≤ m. We define a permutation π of
⋃m

i=1Xi such that
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π(Xi) =
⋃

a∈Ai
X̂a for 1 ≤ i ≤ m. We now show for every clause x↔ x′ in ψ that

it is also a clause in π(ϕ). Therefore, let x↔ x′ be a clause in ψ. By definition of
ψ there exists an a ∈ A such that x, x′ ∈ X̂a. Let y and y′ be variables such that
π(y) = x and π(y′) = x′. Then by definition of π there has to exist an i such that
both y and y′ must be in the same set Xi. By definition of ϕ it follows, that y ↔ y′

has to be a clause in ϕ and thus π(y) ↔ π(y′) = x↔ x′ is a clause in π(ϕ). This
implies that ϕ ∼=⇒ ψ via π.

For the other direction assume that ϕ ∼=⇒ ψ. Then there exists a permutation π of⋃m
i=1Xi such that π(ϕ) ⇒ ψ. Let Ai = {a | π(Xi) ∩ X̂a 6= ∅} for 1 ≤ i ≤ m. We

claim that A1, . . . , Am is a desired partition of A. Since
⋃

a∈A X̂a =
⋃m

i=1Xi, it is
obvious that all elements from the X̂a sets are in some Xi sets and thus also in the
π(Xi) sets. By definition of the Ai it is immediate that

⋃m
i=1Ai = A. Next we will

show that the Ai are pairwise disjunct. Therefore, suppose for a contradiction that
Ai ∩ Aj 6= ∅ for some i 6= j. Then, there are some z ∈ Xi and z′ ∈ Xj such that
there exists an a ∈ A with π(z), π(z′) ∈ X̂a. It follows that π(z) ↔ π(z′) is a clause
in ψ. Since z and z′ are from different sets Xi and Xj, there exists a satisfying
assignment for ϕ with z set to 1 and z′ set to 0 and therefore ϕ 6⇒ (z ↔ z′). This
implies that π(ϕ) 6⇒ (π(z) ↔ π(z′)), but that is a contradiction to π(ϕ) ⇒ ψ.
Hence, for all i 6= j it follows that Ai∩Aj = ∅ and therefore by definition of the Ai’s
and because there cannot be two elements in any set X̂a that are in different sets
π(Xi), we have that π(Xi) =

⋃
a∈Ai

X̂a. Since π is an injection, |Xi| = |
⋃

a∈Ai
X̂a|,

and since the X̂a’s are pairwise disjoint, |
⋃

a∈Ai
X̂a| =

∑
a∈Ai

s(a). Since |Xi| = B
for 1 ≤ i ≤ m, we have that

∑
a∈Ai

s(a) = B, which concludes this reduction.

2. In the second case the constraint is t∧ (x↔ y) and we reduce from ISO-IMP({x↔
y}), which we just showed to be NP-hard. Therefore, we define two formulae ϕ′

and ψ′ analogously to ϕ and ψ in the previous case. Let

ϕ′ =
m∧

i=1

( ∧
x,x′∈Xi

t ∧ (x↔ x′)

)

and

ψ′ =
∧
a∈A

 ∧
x,x′∈ bXa

t ∧ (x↔ x′)

 .

We now show that ϕ ∼=⇒ ψ if and only if ϕ′ ∼=⇒ ψ′.

First, assume that ϕ ∼=⇒ ψ. Then there exists a permutation π of the variables
occurring in ϕ ∧ ψ such that π(ϕ) ⇒ ψ. If we extend π by letting π(t) = t, then
π(ϕ′) ⇒ ψ′ and thus ϕ′ ∼=⇒ ψ′.

For the other direction assume that ϕ′ ∼=⇒ ψ′. Then there exists a permutation π
of the variables occurring in ϕ′ ∧ ψ′ such that π(ϕ′) ⇒ ψ′. By construction ϕ′ is
equivalent to ϕ ∧ t and ψ′ is equivalent to ψ ∧ t. Since t is the only variable such
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that ϕ′ ⇒ t for any formula ϕ′, it follows that π(t) = t. Since t neither occurs in ϕ
nor in ψ, obviously π(ϕ) ⇒ ψ and thus ϕ ∼=⇒ ψ.

3. Since (f ∧ (x↔ y))C is equivalent to (t ∧ (x↔ y)), the result follows directly from
Proposition 5.4.10 and case 2 of this lemma.

4. In the last case we again reduce from ISO-IMP({x↔ y}). Let

ϕ′′ =
m∧

i=1

( ∧
x,x′∈Xi

t ∧ f ∧ (x↔ x′)

)
and

ψ′′ =
∧
a∈A

 ∧
x,x′∈ bXa

t ∧ f ∧ (x↔ x′)

 .

The proof that ϕ ∼=⇒ ψ if and only if ϕ′′ ∼=⇒ ψ′′ is analogous to that of case 2. For
the one direction we can extend the permutation to π(t) = t and π(f) = f , and
for the other direction it also holds that ϕ′′ is equivalent to ϕ ∧ t ∧ f and ψ′′ is
equivalent to ψ ∧ t ∧ f .

�

For the remaining two cases of Lemma 5.4.8, we also reduce from Unary-3-Partition,
but since we are dealing with xor instead of the equivalence constraint, we need to alter
our proofs slightly.

Lemma 5.4.15 1. ISO-IMP({x⊕ y}) is NP-hard.

2. ISO-IMP({f ∧ t ∧ (x⊕ y)}) is NP-hard.

Proof. We will again prove the first case via a reduction from Unary-3-Partition, and the
second case by reducing from the first case.

1. Let A be a set with 3m elements, B ∈ N a bound (in unary), and for each a ∈ A
let s(a) ∈ N be a size (in unary) such that

∑
a∈A s(a) = mB as in the definition of

Unary-3-Partition. Further let X1, . . . , Xm, Y1, . . . , Ym be 2m pairwise disjoint sets
of B variables each. We define

ϕ =
m∧

i=1

( ∧
x∈Xi,y∈Yi

x⊕ y

)
.

Further let {X̂a, Ŷa | a ∈ A} be a collection of 6m pairwise disjoint sets of variables
such that |X̂a| = |Ŷa| = s(a) for all a ∈ A and such that

⋃
a∈A(X̂a ∪ X̂a) =⋃m

i=1(Xi ∪ Yi). We define

ψ =
∧
a∈A

 ∧
x∈ bXa,y∈bYa

x⊕ y

 .
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Since the values of B and the s(a)’s are given in unary, we can compute both
formulae ϕ and ψ in polynomial time. We now claim that A can be partitioned into
m disjoint sets A1, . . . , Am such that

∑
a∈Ai

s(a) = B for 1 ≤ i ≤ m if and only if
ϕ ∼=⇒ ψ.

For the left-to-right direction assume that A1, . . . , Am is a partition of A such that∑
a∈Ai

s(a) = B for 1 ≤ i ≤ m. We define a permutation π of
⋃m

i=1(Xi ∪ Yi) such
that π(Xi) =

⋃
a∈Ai

X̂a and π(Yi) =
⋃

a∈Ai
Ŷa for 1 ≤ i ≤ m. We now show for

every clause x⊕ y in ψ, that it is also a clause in π(ϕ). Therefore, let x⊕ y be an
arbitrary clause in ψ. By definition of ψ there exists an a ∈ A such that x ∈ X̂a

and y ∈ Ŷa. Let x′ and y′ be variables such that π(x′) = x and π(y′) = y. Then
by definition of π either x′ ∈ Xi and y′ ∈ Yi or vice versa. It then follows from the
definition of ϕ, that x′ ⊕ y′ has to be a clause in ϕ and thus π(x′)⊕ π(y′) = x⊕ y
is a clause in π(ϕ). This implies that ϕ ∼=⇒ ψ via π.

For the other direction assume that ϕ ∼=⇒ ψ. Then there exists a permutation π of⋃m
i=1(Xi ∪ Yi) such that π(ϕ) ⇒ ψ. Let Ai = {a | π(Xi ∪ Yi) ∩ (X̂a ∪ Ŷa) 6= ∅} for

1 ≤ i ≤ m. We claim that A1, . . . , Am is a desired partition of A. With the same
argument as in case 1 of the proof of Lemma 5.4.14 it is immediate that

⋃m
i=1Ai = A.

Next we will show that the Ai are pairwise disjunct. Therefore, suppose for a
contradiction that Ai ∩ Aj 6= ∅ for some i 6= j. Then there are some z ∈ (Xi ∪ Yi)

and z′ ∈ (Xj ∪ Yj) such there exists an a ∈ A with π(z), π(z′) ∈ (X̂a ∪ Ŷa). It
follows that either ψ ⇒ (π(z) ⊕ π(z′)) or ψ ⇒ (π(z) ↔ π(z′)). Since z and z′

are from different sets (Xi ∪ Yi) respectively (Xj ∪ Yj), there exists a satisfying
assignment for ϕ with z set to 1 and z′ set to 0 and another satisfying assignment
with z set to 1 and z′ set to 1. Therefore, ϕ 6⇒ (z ⊕ z′) and ϕ 6⇒ (z ↔ z′). This
implies that π(ϕ) 6⇒ (π(z) ⊕ π(z′)) and π(ϕ) 6⇒ (π(z) ↔ π(z′)), but that is a
contradiction to π(ϕ) ⇒ ψ. Hence, for all i 6= j, it follows that Ai ∩ Aj = ∅ and
therefore by definition of the Ai’s π(Xi ∪ Yi) =

⋃
a∈Ai

(X̂a ∪ Ŷa). Since π is an
injection, |Xi∪Yi| = |

⋃
a∈Ai

(X̂a∪ Ŷa)|, and since the X̂a’s and the Ŷa’s are pairwise
disjoint, |

⋃
a∈Ai

(X̂a ∪ Ŷa)| =
∑

a∈Ai
2s(a). Since |Xi ∪ Yi| = 2B for 1 ≤ i ≤ m, we

have that
∑

a∈Ai
s(a) = B, which concludes this reduction.

2. In the second case the constraint is f ∧t∧(x⊕y) and we reduce from ISO-IMP({x⊕
y}), which we just showed to be NP-hard. Therefore, we define two formulae ϕ′

and ψ′ analogously to ϕ and ψ in the previous case. Let

ϕ =
m∧

i=1

( ∧
x∈Xi,y∈Yi

f ∧ t ∧ (x⊕ y)

)

and

ψ =
∧
a∈A

 ∧
x∈ bXa,y∈bYa

f ∧ t ∧ (x⊕ y)

 .
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The proof that ϕ ∼=⇒ ψ if and only if ϕ′ ∼=⇒ ψ′ is exactly the same as the proof for
case 4 of Lemma 5.4.14.

�

With this we have covered all of the ten cases from Lemma 5.4.8. Thus, we have
proved that ISO-IMP(S) is NP-hard if the constraint language S does not only contain
constants, the identity function, or negation. We still have to show the coNP lower
bound for constraint languages that are not Schaefer.

Lemma 5.4.16 Let S be a constraint language. If S is not Schaefer, then ISO-IMP(S)
is coNP-hard.

Proof. A closer look at the proof of Claim 19 [BHRV02] shows that it can be used here,
too. In that proof Böhler et al. prove coNP-hardness for ISO(S) if S is not Schaefer.
Their reduction has the property that for all S-formulae ϕ and ψ, to which the reduction
maps, the property ψ ∼=⇒ ϕ always holds. Thus, we have ϕ ∼=⇒ ψ if and only if ϕ ∼= ψ. �

This concludes the proof of Theorem 5.4.4.

5.4.3 Connection to GI

As we have already seen in Lemma 5.4.3, the isomorphic implication problem is closely
related to the subgraph isomorphism problem and also to the constraint isomorphism
problem. Both of them in turn are an extension of graph isomorphism. These connections
provide an interesting and new way of approaching the unknown complexity of graph
isomorphism. We have seen that if a constraint language is Schaefer, then in all but the
trivial cases ISO-IMP is equivalent to SGI, because both are NP-complete in these cases.
Similarly in almost all of these cases, ISO is also equivalent to GI. The only case that
does not “fit” is the one, if the constraint language is 2-affine. Then ISO is in P, and
thus it could only be equivalent to GI, if GI were also in P, which is not known.

Let us thus take a closer look at the 2-affine cases.

Proposition 5.4.17 Let S be a 2-affine constraint language and let G and H be two
graphs without isolated vertices. Then there exists a polynomial-time computable reduction
function f such that

〈G,H〉 ∈ SGI if and only if f(〈G,H〉) ∈ ISO-IMP(S).

Proof. This is a simple observation of the fact that ISO-IMP(S) for a constraint language
S that is 2-affine and SGI are both NP-complete. �

Hence, we know that there exists a function which maps two graphs to two 2-affine
constraint formulae. The following theorem states that if such a function exhibits an
additional symmetric property, GI is in P.
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Theorem 5.4.18 Let S be a 2-affine constraint language and let f be a reduction function
from SGI to ISO-IMP(S). If f has the property that for all graphs G and H, f(〈G,H〉) =
〈ϕ, ψ〉 and f(〈H,G〉) = 〈ψ, ϕ〉, for some constraint formulae ϕ and ψ, then GI is in P.

Proof. Assume such a reduction function f exists. Then the following are equivalent:

• 〈G,H〉 ∈ GI

•


〈G,H〉 ∈ SGI

and
〈H,G〉 ∈ SGI


•


f(〈G,H〉) = 〈ϕ, ψ〉 ∈ ISO-IMP(S)

and
f(〈H,G〉) = 〈ψ, ϕ〉 ∈ ISO-IMP(S)


• 〈ϕ, ψ〉 ∈ ISO(S)

Hence, we have a reduction from GI to ISO(S) and since the latter is in P, so is GI. �

5.5 Isomorphic Implication Revisited

The main theorem of the previous section, which classifies the isomorphic implication
problem depending on the constraint language allowed, is somewhat unsatisfactory, since
for the non-Schaefer cases we have a large gap between the upper and lower bounds. We
only showed that in these cases isomorphic implication is in ΘP

2 as well as NP-hard and
coNP-hard. In this section we therefore try to establish a real trichotomy by closing this
gap. We believe that isomorphic implication is ΘP

2 -hard in all these cases.

Conjecture 5.5.1 Let S be a constraint language.

• If S contains only constants, the identity function, or negation, then ISO-IMP(S)
is in P.

• Otherwise, if S is Schaefer, then ISO-IMP(S) is NP-complete.

• If S is not Schaefer, then ISO-IMP(S) is ΘP
2 -complete.

There are two arguments that support our conjecture. On the one hand it is not
uncommon for problems that are NP-hard, coNP-hard, and in ΘP

2 to also be ΘP
2 -hard

and thus ΘP
2 -complete (see, e. g., [HHR97]). On the other hand we will actually prove

ΘP
2 -hardness in some of the non-Schaefer cases in Theorem 5.5.7 and Theorem 5.5.8.
The following theorem by Wagner provides a basis for our ΘP

2 -hardness proofs. It
shows a way how an NP and coNP lower bound can be raised to a ΘP

2 lower bound.
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Theorem 5.5.2 Let L be a language. If there exists a polynomial-time computable
function h such that

|{i | χi ∈ SAT}| is odd if and only if h(χ1, . . . , χ2k) ∈ L

for all k ≥ 1 and all Boolean formulae χ1, . . . , χ2k such that χi ∈ SAT ⇒ χi+1 ∈ SAT,
then L is ΘP

2 -hard.

The basic idea behind applying Wagner’s theorem can be best seen in the context of
and -functions, or -functions and their ω versions. The following definition originates from
[KST93].

Definition 5.5.3 Let Σ be an alphabet and let L ⊆ Σ∗ be a language. An or -function
( and -function) for L is a function f such that for all x, y ∈ Σ∗, we have that f(x, y) ∈ L if
and only if x ∈ L or y ∈ L (x ∈ L and y ∈ L, resp.). An ω-or -function (ω-and-function)
is a function f such that for all x1, . . . , xn ∈ Σ∗, we have that f(x1, . . . , xn) ∈ L if and
only if xi ∈ L for some i (xi ∈ L for all i, resp.), 1 ≤ i ≤ n.

Proposition 5.5.4 Let L be a language. If L is NP-hard, coNP-hard, and one of the
following two conditions holds

• L has polynomial-time computable and-functions and ω-or -functions or

• L has polynomial-time computable or -functions and ω-and-functions,

then L is ΘP
2 -hard.

Proof. Since L is NP-hard and coNP-hard, there exist two functions f and g such that
f is a reduction from SAT to L and g is a reduction from SAT to L. For the first case
assume that L has a polynomial-time computable or -function or , and a polynomial-time
computable ω-and-function and . For k ≥ 1 let χ1, . . . , χ2k be Boolean formulae such
that χi ∈ SAT ⇒ χi+1 ∈ SAT. It is obvious that |{i | χi ∈ SAT}| is odd if and only if
χ2i−1 6∈ SAT and χ2i ∈ SAT for some i with 1 ≤ i ≤ k. Then define h(χ1, . . . , χ2k) as

or(and(f(χ1), g(χ2)), and(f(χ3), g(χ4)), . . . , and(f(χ2k−1), g(χ2k))).

It is easy to see that h is computable in polynomial time. Surely it is the case that
h(χ1, . . . , χ2k) ∈ L if and only if there exists an i, 1 ≤ i ≤ n, such that χ2i−1 6∈ SAT and
χ2i ∈ SAT. Then by Theorem 5.5.2 L is ΘP

2 -hard.
For the other case assume that L has a polynomial-time computable and -function and

a polynomial-time computable ω-or -function. Then L has a polynomial-time computable
or -function and a polynomial-time computable ω-and -function. By the argument above,
L is ΘP

2 -hard and since ΘP
2 is closed under complement, L is also ΘP

2 -hard. �

Agrawal and Thierauf [AT00] showed that the Boolean isomorphism problem has
polynomial-time computable and -functions and or -functions. Looking into their proof in
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detail, it is easy to see that the and-function are even computable in linear time. It is
easy to see that if there exists an and -function f2 computable in linear time, that one can
construct an and -function fn of arbitrary arity n by simply repeatedly applying f2 to the
arguments (e. g., f3(x, y, z) = f2(f2(x, y), z) for a ternary and-function f3) such that fn

is computable in polynomial time. This implies that the Boolean isomorphism problem
also has ω-and -functions. Together with the previous result, this yields an easy corollary.
Note, that coNP-hardness for the Boolean isomorphism problem follows immediately,
since one only has to guess a permutation and an assignment such that two formulae are
not equivalent.

Corollary 5.5.5 If the Boolean isomorphism problem is NP-hard, it is also ΘP
2 -hard.

Although we have coNP-hardness and in contrast to Boolean isomorphism also NP-
hardness in the case of isomorphic implication, this approach does not seem to work
here. There even exists an ω-and-function, but the problem is that we are dealing with
constraints and we need to connect two formulae with an or -function. This unfortunately
does not work in the constraint context. Therefore, we need to take a closer look at
Wagner’s theorem and construct such a reduction function ourselves. Before we can start,
we need an additional proposition.

Proposition 5.5.6 Let S be a constraint language and let ϕ and ψ two S-formulae. Let
further X be the set of variables occurring in ϕ and let Y be the set of variables occurring
in ψ. If ϕ ∼=⇒ ψ, |X| ≥ |Y |, and X ∩ Y = ∅, then there exists a permutation π of X ∪ Y
such that π(ϕ) ⇒ ψ and π(Y ) ∩ Y = ∅.

Proof. Assume that ϕ ∼=⇒ ψ, |X| ≥ |Y |, and X ∩ Y = ∅. Then there exists a permutation
π′ of X ∪ Y such that π′(ϕ) ⇒ ψ. Further assume that π′(Y ) ∩ Y 6= ∅ (otherwise we are
done). We will describe an iterative method to obtain a permutation π from π′ such that
π(Y ) ∩ Y = ∅.

Since π′(Y ) ∩ Y 6= ∅, there exist y, y′ ∈ Y such that π′(y) = y′. Since |X| ≥ |Y |,
there also exist x, x′ ∈ X such that π′(x) = x′. Now we define a permutation ρ such
that ρ(x) = y′ and ρ(y) = x′ and ρ(z) = π′(z) for all other z ∈ X ∪ Y . We claim that
ρ(ϕ) ⇒ ψ. Since X ∩ Y = ∅, repeated application of this method then yields the desired
permutation.

In order to prove the claim, assume for a contradiction that ρ(ϕ) 6⇒ ψ. Let Z
be the list of variables occurring in ϕ ∧ ψ without x′ and y′. Then there exists an
assignment (α, β1, β2) to the variables (Z, x′, y′) with α ∈ {0, 1}|Z| and β1, β2 ∈ {0, 1}
such that ρ(ϕ)(α, β1, β2) 6⇒ ψ(α, β1, β2), that is, ρ(ϕ)(α, β1, β2) = 1 and ψ(α, β1, β2) = 0.
We know that y′ does not occur in ϕ and x′ does not occur in ψ. Thus, we can
negate their assignments without changing the result: We have ρ(ϕ)(α, β1, β2) = 1
and ψ(α, β1, β2) = 0. Since π′ is a permutation such that π′(ϕ)(Z, x′, y′) ⇒ ψ(Z, x′, y′)
for all assignments to (Z, x′, y′), we have that π′(ϕ)(α, β1, β2) = π′(ϕ)(α, β1, β2) = 0,
because ψ also evaluates to 0 via both assignments. Now y′ does not occur in ϕ and
we can again swap the assignment at that position without changing the result and we
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have that π′(ϕ)(α, β1, β2) = π′(ϕ)(α, β1, β2) = 0. Thus, obviously π′(ϕ)(α, x′, y′) ≡ 0.
But, by definition of ρ it follows that π′(ϕ)(α, β2, β1) = ρ(ϕ)(α, β1, β2) = 1, which is a
contradiction. �

Now we can state and prove our two main theorems that yield ΘP
2 -hardness for

isomorphic implication with some non-Schaefer constraint languages.

Theorem 5.5.7 Let S ′ be a constraint language that is 0-valid, 1-valid, not complemen-
tive, and not Schaefer. Let S = S ′ ∪ {(x ∨ y)}. Then ISO-IMP(S) is ΘP

2 -complete.

Proof. In the previous section we already showed that ISO-IMP(S) is in ΘP
2 (see

Lemma 5.4.7); thus we only need to show hardness. Therefore, let k ≥ 1 and let
χ1, . . . , χ2k be formulae such that χi ∈ SAT ⇒ χi+1 ∈ SAT. We will now construct a
reduction function h such that

|{i | χi ∈ SAT}| is odd if and only if h(χ1, . . . , χ2k) ∈ ISO-IMP(S).

It is easy to see that |{i | χi ∈ SAT}| is odd if and only if there exists an i, 1 ≤ i ≤ k,
such that ψ2i−1 6∈ SAT and ψ2i ∈ SAT. We will now prove that such an i exists if and
only if h(χ1, . . . , χ2k) ∈ ISO-IMP(S).

Since S is not Schaefer, we know from Theorem 5.4.4 that ISO-IMP(S) is NP-hard
and coNP-hard. Thus, there exist polynomial-time many-one reductions from SAT to
ISO-IMP(S) and from SAT to ISO-IMP(S). The existence of such reductions will be
used to create the function h we are looking for.

Therefore, let f be a polynomial-time computable function such that for all Boolean
formulae χ, f(χ) is an S ′-formula with

χ ∈ SAT if and only if f(χ) ∼=⇒
∧

1≤j,`≤n

xj → x`,

where {x1, . . . , xn} is the set of variables occurring in f(χ). The function f(χ) exists,
because SAT is reducible to CSP 6=0,1(S ′) and that in turn is reducible to ISO-IMP(S ′). In
the proof of Claim 14 in [BHRV02] it is shown that there exists an S ′-formula equivalent
to x→ y and from the proof of Claim 19 in [BHRV02] we know (with similar arguments
as in Lemma 5.4.16) that CSP 6=0,1(S ′) is reducible to ISO-IMP(S ′).

Let g be a polynomial-time computable function such that for all Boolean formulae
χ, g(χ) is an {x ∨ y}-formula without duplicates (i. e., there are no clauses z ∨ z′ with
z = z′ in g(χ)), and

χ ∈ SAT if and only if g(χ) ∼=⇒
n−1∧
j=1

yj ∨ yj+1,

where {y1, . . . , yn} is the set of variables occurring in g(χ). The function g(χ) exists,
because SAT is reducible to HAMILTONIAN PATH, which is reducible to ISO-IMP({x∨
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y}) as follows. The input of HAMILTONIAN PATH is a graph G, which we can translate
to a constraint formula ϕ as in Definition 5.4.2. It is then clear that

ϕ ∼=⇒
n−1∧
j=1

yj ∨ yj+1.

Since we need the property that there is an odd i with χi 6∈ SAT and χi+1 ∈ SAT if and
only if h(χ1, . . . , χ2k) ∈ ISO-IMP(S), we will use the function f from the coNP-hardness
reduction for formulae with odd index and the function g from the NP-hardness reduction
for formulae with even index. It is also important that all formulae will have a distinct
set of variables. For this we define the following constraint formulae.

For every i, 1 ≤ i ≤ k, define ωi to be the constraint formula f(χ2i−1) with each
variable xj replaced by xi,j. Then

χ2i−1 6∈ SAT if and only if ωi
∼=⇒

∧
1≤j,`≤ni

xi,j → xi,`,

where ni is the n from f(χ2i−1).
Similarly we define for every i, 1 ≤ i ≤ k, the constraint formula υi to be g(χ2i) with

each variable yj replaced by yi,j. Then

χ2i ∈ SAT if and only if υi
∼=⇒

n′i−1∧
j=1

yi,j ∨ yi,j+1,

where n′i is the n from g(χ2i).
One can easily verify that all formulae∧

1≤j,`≤ni

xi,j → xi,`

for 1 ≤ i ≤ k are almost isomorphic. The same holds for the formulae to the right
of υi

∼=⇒. Only the number ni respectively n′i of variables differs. Since we need those
formulae to be exactly isomorphic, we pad them with additional clauses. Therefore, let
n = max{ni, n

′
i + 2 | 1 ≤ i ≤ k} and define for 1 ≤ i ≤ k

ω̂i = ωi ∧ (xi,j → xi,1) ∧
n∧

j=ni+1

(xi,1 → xi,j).

Note that ω̂i is an S ′-formula, because by the proof of Claim 14 in [BHRV02] there exist
S ′-formulae equivalent to x→ y. It is immediate that

ω̂i
∼=⇒

∧
1≤j,`≤n

xi,j → xi,` if and only if ωi
∼=⇒

∧
1≤j,`≤ni

xi,j → xi,`.
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Analogously we pad the formulae υi for 1 ≤ i ≤ k:

υ̂i = υi ∧

 n′i∧
j=1

yi,j ∨ yi,n′i+1

 ∧

 n−1∧
j=n′i+1

yi,j ∨ yi,j+1

 .

We need to show that the padding did not change the reduction, that is,

υ̂i
∼=⇒

n−1∧
j=1

(yi,j ∨ yi,j+1) if and only if υi
∼=⇒

n′i−1∧
j=1

(yi,j ∨ yi,j+1).

For the left-to-right direction we can think about this as the constraint representation
of graphs. By construction of υ̂i and because n ≥ n′i + 2, the vertex n is an endpoint
in the graph and the only way to reach n is via the path n′i+1, n

′
n+2, . . . , n. Thus, any

Hamiltonian path in υ̂i has to contain that subpath. Since n′i+1 is connected with any edge
1, . . . , n′i, there has to be a Hamiltonian path in the subgraph restricted to {1, . . . , n′i}
and therefore in υi. The converse follows immediately, since all constraints added to the
right of υi

∼=⇒ have also been added to υi.
Thus, we have the following situation. For all i, 1 ≤ i ≤ k, ω̂i is an S ′-formula such

that
χ2i−1 6∈ SAT if and only if ω̂i

∼=⇒
∧

1≤j,`≤n

(xi,j → xi,`)

and υ̂i is a {x ∨ y}-formula without duplicates such that

χ2i ∈ SAT if and only if υ̂i
∼=⇒

n−1∧
j=1

(yi,j ∨ yi,j+1).

Now we are finally in a position to define our reduction function

h(χ1, . . . , χ2k) = 〈ϕ, ψ〉,

where

ϕ =
k∧

i=1

(
ω̂i ∧ υ̂i ∧

∧
1≤j,`≤n

xi,j → yi,`

)
and

ψ =
∧

1≤j,`≤n

(xj → x`) ∧
n−1∧
j=1

(yj ∨ yj+1) ∧
∧

1≤j,`≤n

(xj → y`).

It is obvious that h is computable in polynomial time and also that ϕ and ψ are S-
formulae, because ω̂i and υ̂i are S-formulae and we can express the formulae x ∨ y and
x→ y.
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We still need to show that there exists an i such that χ2i−1 6∈ SAT and χ2i ∈ SAT if
and only if h(χ1, . . . , χ2k) ∈ ISO-IMP(S). By construction of the formulae ω̂i and υ̂i and
the function h, this is equivalent to showing that there exists an i such that

ω̂i
∼=⇒

∧
1≤j,`≤n

(xi,j → xi,`) and υ̂i
∼=⇒

n−1∧
j=1

(yi,j ∨ yi,j+1) if and only if ϕ ∼=⇒ ψ.

For the left-to-right direction let i0 be such that

ω̂i0
∼=⇒

∧
1≤j,`≤n

(xi0,j → xi0,`) and υ̂i0
∼=⇒

n−1∧
j=1

(yi0,j ∨ yi0,j+1).

Further let πx and πy be two permutations on {xi0,1, . . . , xi0,n} and {yi0,1, . . . , yi0,n},
respectively, such that

πx(ω̂i0) ⇒
∧

1≤j,`≤n

(xi0,j → xi0,`) and πy(υ̂i0) ⇒
n−1∧
j=1

(yi0,j ∨ yi0,j+1).

We now define a permutation π on the variables occurring in ϕ∧ψ such that π(xi0,j) = x`

if πx(xi0,j) = xi0,` and π(yi0,j) = y` if πy(yi0,j) = yi0,`, for all 1 ≤ j, ` ≤ n. It is then
immediate that

π(ω̂i0) ⇒
∧

1≤j,`≤n

(xj → x`),

π(υ̂i0) ⇒
n−1∧
j=1

(yj ∨ yj+1),

and

π

( ∧
1≤j,`≤n

(xi0,j → yi0,`)

)
⇒

∧
1≤j,`≤n

(xj → y`).

This implies directly that ϕ ∼=⇒ ψ via π.
For the other direction assume that ϕ ∼=⇒ ψ. Then by Proposition 5.5.6 there exists a

permutation π of the variables occurring in ϕ ∧ ψ such that π(ϕ) ⇒ ψ and for all j with
1 ≤ j ≤ n, we have that π(xj) and π(yj) do not occur in ψ, because xj and yj occur in ψ.

In the following we will show that π is a reasonable permutation in that it maps all
variables to their respective counterparts. First, we will show that π cannot map a
y-variable to xj for all 1 ≤ j ≤ n. For a contradiction assume that π(yi,`) = xj. It is
clear that ϕ is satisfied by the assignment that sets all y-variables to 1 and all x-variables
to 0. It remains satisfied when we swap the value of just one y-variable in ϕ, because the
or -clauses in υ̂i are without duplicates and any x→ y clause is always satisfied if x is set
to 0. Then π(ϕ) is satisfied by the assignment that sets π(y) to 1 and π(x) to 0 for all y-
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and x-variables. Similarly π(ϕ) remains satisfied when changing the value of π(yi,`) from
1 to 0. But, this is a contradiction, because π(yi,`) = xj and because of∧

1≤j,`≤n

(xj → x`)

all x-variables have to take the same value in any satisfying assignment. Thus, changing
the value of xj in a satisfying assignment for ψ will always make ψ false. Hence, only
x-variables can be mapped to x-variables. Now let x1 = π(xi0,j0) for some i0 with
1 ≤ i0 ≤ k and some j0 with 1 ≤ j0 ≤ n. Assume that xj = π(xi,`) for some xi,`.
Because π(ϕ) ⇒ (x1 ↔ xj), also ϕ ⇒ (xi0,j0 ↔ xi,`). Thus, i = i0 and therefore
π({xi0,` | 1 ≤ ` ≤ n}) = {x` | 1 ≤ ` ≤ n}.

Next, we will see which variables can be mapped to y-variables. Assume therefor that
π(z) = yj for some variable z. Because π(ϕ) ⇒ (x1 → yj), we have that ϕ⇒ (xi0,j0 → z).
Thus, z can be either an x-variable of the form xi0,` or a y-variable of the form yi0,`. Since
we showed above that all xi0,`-variables are mapped to x`-variables, only z = yi0,` remains
possible. Hence, π({yi0,` | 1 ≤ ` ≤ n}) = {y` | 1 ≤ ` ≤ n} and thus π is a reasonable
permutation.

Let α be the partial assignment that sets all y-variables to 1 and all x-variables except
those in {x` | 1 ≤ ` ≤ n} to 0. Then it is easy to see that π(ϕ)[α] is equivalent to π(ω̂i0)
and ψ[α] is equivalent to ∧

1≤j,`≤n

(xj → x`).

Since π(ϕ) ⇒ ψ, we also have that π(ϕ)[α] ⇒ ψ[α], that is,

π(ω̂i0) ⇒
∧

1≤j,`≤n

(xj → x`)

and thus
ω̂i0

∼=⇒
∧

1≤j,`≤n

(xi0,j → xi0,`).

Similarly let β be the partial assignment that sets all x-variables to 0 and all y-variables
except those in {y` | 1 ≤ ` ≤ n} to 1. Then π(ϕ)[β] is equivalent to π(υ̂i0) and ψ[β] is
equivalent to

n−1∧
j=1

(yj ∨ yj+1).

Since π(ϕ) ⇒ ψ, we also have that π(ϕ)[β] ⇒ ψ[β], that is,

π(υ̂i0) ⇒
n−1∧
j=1

(yj ∨ yj+1)

and thus

υ̂i0
∼=⇒

n−1∧
j=1

(yi0,j ∨ yi0,j+1).
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5.5 Isomorphic Implication Revisited

This concludes the proof of this theorem. �

A similar construction yields ΘP
2 -hardness also for the following case.

Theorem 5.5.8 Let S ′ be a constraint language that is 0-valid, 1-valid, not complemen-
tive, and not Schaefer. Let S = S ′ ∪ {(x⊕ y ⊕ z)}. Then ISO-IMP(S) is ΘP

2 -complete.

Proof. This can be proved analogously to the previous theorem. We will again construct
a polynomial-time computable function h such that

|{i | χi ∈ SAT}| is odd if and only if h(χ1, . . . , χ2k) ∈ ISO-IMP(S),

where χ1, . . . , χ2k are formulae, for k ≥ 1, such that χi ∈ SAT ⇒ χi+1 ∈ SAT.
Let f be a polynomial-time computable function defined as in the proof of the previous

theorem.
Let g be a polynomial-time computable function such that for all χ, g(χ) is an

{x⊕ y ⊕ z}-formula and

χ ∈ SAT if and only if g(χ) ∼=⇒ (y1 ⊕ yn ⊕ zn) ∧
n−1∧
j=1

(yj ⊕ yj+1 ⊕ zj),

where {y1, . . . , yn} is the set of variables occurring at least twice in g(χ). The function
g(χ) exists, because SAT is reducible to VERTEX COVER, which is reducible to HAMIL-
TONIAN CYCLE, which in turn is reducible to ISO-IMP({x⊕ y ⊕ z}) as we will show
below. However, we take a different version of HAMILTONIAN CYCLE, where there
is one distinguished edge, which always belongs to a Hamiltonian cycle and there are
no direct triangles in the graph, that is, there is no clique of size three. Since in the
reduction from VERTEX COVER to HAMILTONIAN CYCLE no direct triangle appears
and there is such a distinguished edge (see [GJ79]), this is no restriction. To serve as the
translation from graphs to formulae we take the one used in the proof of Theorem 25 in
[BHRV02]: For G = (V,E) a connected graph on Vertices V = {1, . . . , n}, let t(G) be the
formula consisting of the clauses from {yi ⊕ yj ⊕ zk | ek = {i, j} ∈ E} ∪ {yi ⊕ vi ⊕ v′i | i ∈
V }∪{zi⊕ zj ⊕ zk | ei, ej, and ek form a triangle in G}. For future references, we call the
clauses from {yi⊕ yj ⊕ zk | ek = {i, j} ∈ E} y-clauses, the ones from {yi⊕ vi⊕ v′i | i ∈ V }
will be called v-clauses, and the others are the z-clauses. The z-clauses are already
implied by the y-clauses. They are added to make sure the obtained constraint formula
is maximal in its clauses, that is, every constraint implied by it is already a clause of the
formula. The maximality has also been proved in [BHRV02]. Let

ξ = (y1 ⊕ yn ⊕ zn) ∧
n−1∧
j=1

(yj ⊕ yj+1 ⊕ zj).

We still need to show that a graph G has a HAMILTONIAN CYCLE if and only if
t(G) ∼=⇒ ξ. For the one direction it is clear that if G has a HAMILTONIAN CYCLE,
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there has to be a conjunction of y-clauses isomorphic to ξ. For the converse assume that
t(G) ∼=⇒ ξ, but G does not have a HAMILTONIAN CYCLE. Since t(G) is maximal, there
has to be a permutation π such that all clauses of ξ are also clauses of π(t(G)). In this
case, for all v- and v′-variables, π(v) and π(v′) cannot map to a y-variable, because each
of those occurs only once in t(G). Since we further know that there are no direct triangles
in G, t(G) does not contain any z-clauses. So, π(z) also cannot map to a y-variable for
any z-variable for the same reason. Thus, only y-variables can map to y-variables and
accordingly only z-variables are mapped to z-variables by π (these are the only other
variables in the y-clauses). Therefore, there exists a permutation π′ on the vertices of G
obtained from π in the obvious way (i. e., π′(i) = j if and only if π(xi) = xj) such that
π′(G) has a HAMILTONIAN CYCLE. But then also, G has a HAMILTONIAN CYCLE
and that is a contradiction to our assumption. Thus, G has a HAMILTONIAN CYCLE
if and only if t(G) ∼=⇒ ξ.

The formulae ωi and υi are again defined analogously. For the padding of ωi and υi we
define n as in the previous proof. Then the formula ω̂i is defined exactly the same way.
For υ̂i let Υi be the set of all clauses of υi, that is, υi =

∧
C∈Υi

C, and let C ′
i ∈ Υi with

C ′
i = yi,j0 ⊕ yi,j1 ⊕ zi,j2 be the clause representing the distinguished edge, which is known

to be in any Hamiltonian cycle. Then we will define a new formula, where we delete the
distinguished edge and introduce at its place a new path, thereby increasing the number
of edges respectively variables. Formally, we have for every i with 1 ≤ i ≤ k

υ̂i =
∧

C∈Υi\{C′
i}

C ∧
n−1∧

j=n′i+1

(yi,j ⊕ yi,j+1 ⊕ zi,j)

∧ (yi,j0 ⊕ yi,n′i+1 ⊕ zi,j2) ∧ (yi,n ⊕ yi,j1 ⊕ zi,n),

where n′i is the n from g(χ2i). The formula υ̂ is already maximal: Since in its construction
no new triangles are introduced, we do not need to add any z-clauses to υ̂i. Furthermore
we know that any Hamiltonian cycle in υi has to go through the edge represented by C ′

i,
and hence any Hamiltonian cycle in υ̂i has to go through the newly introduced edges.
Then it is immediate, that

υ̂i
∼=⇒ (yi,n ⊕ yi,1 ⊕ zi,n) ∧

n−1∧
j=1

(yi,j ⊕ yi,j+1 ⊕ zi,j)

if and only if

υi
∼=⇒ (yi,n′i

⊕ yi,1 ⊕ zi,n′i
) ∧

n′i−1∧
j=1

(yi,j ⊕ yi,j+1 ⊕ zi,j).

Now we can define the reduction function h in an analogous way to the previous proof:

h(χ1, . . . , χ2k) = 〈ϕ, ψ〉,
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where

ϕ =
k∧

i=1

(
ω̂i ∧ υ̂i ∧

∧
1≤j,`≤n

xi,j → yi,`

)
and

ψ =
∧

1≤j,`≤n

(xj → x`) ∧ (yn ⊕ y1 ⊕ zn) ∧
n−1∧
j=1

(yj ⊕ yj+1 ⊕ zj) ∧
∧

1≤j,`≤n

(xj → y`).

As in the previous proof, h is clearly computable in polynomial time and ϕ and ψ are
S-formulae. It remains to show that there exists an i such that

ω̂i
∼=⇒

∧
1≤i,`n

(xi,j → xi,`)

and

υ̂i
∼=⇒ (yi,n ⊕ yi,1 ⊕ zi,n) ∧

n−1∧
j=1

(yi,j ⊕ yi,j+1 ⊕ zi,j)

if and only if
ϕ ∼=⇒ ψ.

The left-to-right direction carries over directly. For the converse, we need to change
some arguments. Suppose that ϕ ∼=⇒ ψ. By Proposition 5.5.6 we know that there exists a
permutation π of the variables occurring in ϕ ∧ ψ such that π(ϕ) ⇒ ψ and such that for
all j with 1 ≤ j ≤ n, we have that π(xj), π(yj), and π(zj) do not occur in ψ.

In the following we will show that π is a reasonable permutation. First, we will
show that for all 1 ≤ j ≤ n, the permutation π cannot map a v-variable to xj. For a
contradiction assume that π(vi′,`) = xj. Then ϕ is satisfied by an assignment that sets
all x-variables to 0 and all other variables to 1. If we now change the value of vi′,` and
the corresponding v′i′,` to 0, then ϕ remains satisfied, because vi′,` occurs only once in
ϕ, namely in a v-clause together with v′i′,`. Accordingly also π(ϕ) is satisfied by the
assignment that sets π(x) to 0 for all x-variables and π(y), π(z), π(v), and π(v′) to 1 for
all other variables. Also π(ϕ) remains satisfied if in this assignment we change the value
of π(vi′,`) and π(v′i′,`) from 1 to 0. But, this is a contradiction, since π(vi′,`) = xj and
changing the value of xj in a satisfying assignment for ψ will always make ψ false, even if
one additional variable π(v′i′,`) is swapped. Exactly the same argument can be used to
show that for all 1 ≤ j ≤ n, the permutation π cannot map a v′-variable to xj. With
a similar argument we will also show that for all 1 ≤ j ≤ n, the permutation π cannot
map a z-variable to xj. For a contradiction suppose that π(zi′,`) = xj. Then zi′,` occurs
by the construction of the υ̂i formulae exactly once in ϕ, namely in a y-clause. In the
same clause are also two y-variables. Let one of them be yi′,k. Then yi′,k appears exactly
once in a v-clause, together with vi′,k, and m times in a y-clause, with 1 ≤ m ≤ n− 2,
for the following reason. The y-clauses represent the edges in the graph and since we
argued that there are no direct triangles, no vertex is directly connected to all other
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vertices. Thus, there can be at most n− 2 different y-clauses containing yi′,k. Now let
zi′,`1 , . . . , zi′,`m be the z-variables from those y-clauses. Obviously zi′,` ∈ {zi′,`1 , . . . , zi′,`m}.
Now ϕ is satisfied by an assignment that sets all x-variables to 0 and all other variables
to 1. If we change the value of all variables zi′,`1 , . . . , zi′,`m and yi′,k from 1 to 0, ϕ remains
satisfied. Accordingly also π(ϕ) is satisfied by the assignment that sets π(x) to 0 for
all x-variables and π(y), π(z), π(v), and π(v′) to 1 for all other variables. The formula
π(ϕ) remains satisfied if in this assignment we change the value of π(zi′,`1), . . . , π(zi′,`m)
and π(yi′,k) from 1 to 0. Since π(zi′,`) = xj and all x-variables have to take the same
value, this implies that {π(zi′,`1), . . . , π(zi′,`m), π(yi′,k)} ⊇ {x1, . . . , xn}. However, this is
a contradiction, since m + 1 < n and all variables are distinct. Finally, for 1 ≤ j ≤ n,
the permutation π cannot map a y-variable to xj. Since every y-variable always occurs
with at least one v-, v′-, or z-variable in the same clause, we can use the above argument.
Change the value of the y-variables and exactly one of the v-, v′-, or z-variables in every
clause, where the y-variable occurs. This keeps the truth value of π(ϕ), but makes ψ
false, since only the y-variable is mapped to an x-variable.

Let i0 and j0 be such that π(xi0,j0) = x1. Now suppose that π(xi′,`) = xj. Since
π(ϕ) ⇒ (x1 ↔ xj), we have that ϕ ⇒ (xi0,j0 ↔ xi′,`). It follows that i′ = i0 and thus
π({xi0,` | 1 ≤ ` ≤ n}) = {x` | 1 ≤ ` ≤ n}.

Next suppose that π(z) = yj for some variable z. Since π(ϕ) ⇒ (x1 → yj), we have
that ϕ ⇒ (xi0,j0 → z). It follows that z = xi0,` or z = yi0,`. Since π({xi0,` | 1 ≤
` ≤ n}) = {x` | 1 ≤ ` ≤ n}, the only possibility is z = yi0,` and it follows that
π({yi0,` | 1 ≤ ` ≤ n}) = {y` | 1 ≤ ` ≤ n}.

Finally, let j1 and j2 be such that π(yi0,j1) = yj and π(yi0,j2) = yj+1. Suppose that
π(z) = zj for some variable z. Since π(ϕ) ⇒ (yj ⊕ yj+1 ⊕ zj), we have that ϕ ⇒
(yi0,j1 ⊕ yi0,j2 ⊕ z). It follows that z = zi0,` and thus π({zi0,` | ` ∈ N}) ⊇ {z` | 1 ≤ ` ≤ n}.
Note that we only consider variables zi0,` that actually occur in the formula.

Let α be the partial assignment that sets all y-variables, all z-variables, all v-variables,
and all v′-variables to 1, and all x-variables except those in {x` | 1 ≤ ` ≤ n} to 0. Then
π(ϕ)[α] is equivalent to π(ω̂i0) and ψ[α] is equivalent to∧

1≤j,`≤n

(xj → x`).

Since π(ϕ) ⇒ ψ, also π(ϕ)[α] ⇒ ψ[α], that is,

π(ω̂i0) ⇒
∧

1≤j,`≤n

(xj → x`),

and thus
ω̂i0

∼=⇒
∧

1≤j,`≤n

(xi0,j → xi0,`).

Let β be the partial assignment that sets all x-variables and all v-variables to 0, all
v′-variables to 1, and all y-variables and all z-variables except those in {y`, z` | 1 ≤ ` ≤ n}
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to 1. Then π(ϕ)[β] is equivalent to π(υ̂i0) and ψ[β] is equivalent to

n−1∧
j=1

(yj ⊕ yj+1 ⊕ zj).

Since π(ϕ) ⇒ ψ, also π(ϕ)[β] ⇒ ψ[β]. If follows that

π(υ̂i0) ⇒ (yn ⊕ y1 ⊕ zn) ∧
n−1∧
j=1

(yj ⊕ yj+1 ⊕ zj),

and thus

υ̂i0
∼=⇒ (yi0,n ⊕ yi0,1 ⊕ zi0,n) ∧

n−1∧
j=1

(yi0,j ⊕ yi0,j+1 ⊕ zi0,j).

This completes the proof of this theorem. �

5.6 Conclusion
In this chapter we have been able to extend several already known results. On the
one hand we classified the equivalence problem for arbitrary constraints. This is either
in P or coNP-complete. As a one-sided version of equivalence, we also obtained a
similar classification for the implication problem for arbitrary constraints, which is also
either in P or coNP-complete. In the main part of this chapter we were able to get a
classification for the isomorphic implication problem. The Schaefer cases are either in P
or NP-complete. The exact complexity for the non-Schaefer cases is not known, yet. We
were able to prove ΘP

2 -completeness for some cases, but there are still open cases, where
we were only able to prove an NP and coNP lower bound.

The most important open question is thus, whether our conjecture holds for all non-
Schaefer cases. Another open question is the classification of isomorphic implication for
two constraint languages. Although we have some results in this direction (e. g., the
problem is in P, if one of the constraint languages contains only constant relations or
both of them contain only the identity and negation; it is in NP, if the first constraint
language is Schaefer; it is coNP-hard, if the first constraint language is not Schaefer and
the second one contains only constant relations), we are still far away from a complete
classification.

Finally, there is of course the open question, whether graph isomorphism is in P.
Though we were not able to answer this question, we hope that our new approach allows
for some new insights into this famous open problem.
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