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Abstract

In this thesis, I propose CQ, an imperative high-level programming language for simple
boolean and integer manipulation via classical and quantum hardware. CQ inherits its
core syntax directly from C, but dispenses with classical low-level control in favor of a
joint abstraction of classical and quantum variables. For this purpose, I introduce the
quantum type qualifier, marking variables which are to be realized as quantum states
of multi-qubit registers; the interpretation of quantum states as (superpositions of)
classical booleans or integers is always understood w.r.t. the computational basis of
the multi-qubit system. By fixing a reference basis, arithmetic and bitwise operations
can be seamlessly applied to both quantum and classical variables. Furthermore, the
classical control structures if/else-statements and switch-statements are suitably
extended to conditions and statements involving quantum variables, utilizing controlled
quantum gates as counterpart to classical implementations. Functions that are defined
for classical parameters and only involve quantizable operations may also be applied to
quantum variables of the same type. Beside these hybrid functionalities, manipulating
the phase of quantum variables (via the phase keyword) and measuring them (via
the measure keyword) are two additional, purely quantum operations. Alongside the
conceptualization of the CQ-language, I provide a prototypical parser and semantic
analyzer to process CQ-source code, and discuss its application to Grover’s famous
quantum search algorithm as a concrete example.
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CHAPTER 1

Introduction

Quantum computing is an emerging field at the intersection of quantum mechanics and
computer science with an impressive track record of recent advancements in both soft-
and hardware development. In a nutshell, quantum computing describes the approach
of utilizing fundamental quantum phenomena such as superposition and entanglement
to perform calculations, aiming at improved computational power over conventional,
classical computers. This quest necessitates, on the one hand, the development of
hardware with precise control over quantum systems, and on the other, the design of
algorithms that incorporate the enlarged set of fundamental principles. While this
gives an application-oriented characterization of quantum computing, the field arguably
has a rather theoretical origin: Benio!’s [1] and Deutsch’s [2] pioneering work on
quantum Turing machines during the early eighties, simultaneously introducing the
idea of quantum computers and spawning the field of quantum complexity theory [3].

But also the practical implications of realized quantum computers were also discussed
early on. In particular, Feynman [4] proposed to simulate quantum systems with the
aid of other quantum systems, thus essentially formulating the concept of a quantum
computer. And indeed, nowadays, the discipline of quantum simulation [5] constitutes
the most promising area for practical quantum advantage: solving a problem of practical
relevance with quantum computers significantly faster or with higher quality than
any existing classical (super-)computer could. Use cases of quantum simulation cover
disciplines such as chemistry [6], material sciences [7], and many more.

Furthermore, quantum computers are not limited to solving quantum-mechanical
problems alone. From a theoretical standpoint, it is well-established that quantum com-
puters can simulate classical computers e"ciently [8], making them viable candidates
for addressing purely classical problems as well. While merely simulating a classical
algorithm on a quantum computer will not o!er practical advantages due to higher
operational costs, slower gate execution speeds, and the increased complexity of error
correction, specialized quantum algorithms have the potential to solve certain problems
faster than any known classical algorithm. Several quantum primitives such as the
Deutsch-Jozsa algorithm [9] or Simon’s algorithm [10] solve artificial problems provably
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Chapter 1 Introduction

exponentially faster than any possible deterministic or even probabilistic classical
algorithm. Although constituting impressive results in the field of quantum complexity
theory, the problems solved by these algorithms are typically of little use in practice.
However, Simon’s algorithm also served as the inspiration for Shor’s famous quantum
algorithms for e"cient prime factorization and calculating discrete logarithms [11], two
tasks of high practical relevance, especially in many public-key cryptography schemes.
Another pivotal discovery has been Grover’s algorithm [12], establishing a quadratic
speed-up over exhaustive, unstructured search. Assuming P →= NP, Grover’s algorithms
and its generalization, such as quantum amplitude amplification [13], are leading
candidates for providing an asymptotic quadratic speed-up for general NP-complete
decision problems.

It is important to note that a true quantum advantage is still pending since the
hardware, necessary to reliably execute quantum routines such as Shor’s algorithms on
instance sizes of practical relevance, has not yet been built. Manufacturing a large-scale,
fault-tolerant quantum computer faces various technical challenges such as maintaining
quantum coherence and properly handling error correction. Both the construction
and maintenance of quantum computers are significantly more involved than those of
classical computers, primarily due to the quantum systems’ higher susceptibility to
environmental noise; today’s quantum computer – also called noisy intermediate-scale
quantum (NISQ) devices [14] – are indeed very restricted, both in storage and runtime
capacity, and are severely su!ering from noise e!ects. Consequently, most proposed
quantum algorithms are not yet (reliably) testable on real devices. Nevertheless,
their capabilities can still be assessed by various methods besides asymptotic runtime
analysis, such as classical simulation for small problem instances and recently developed
hybrid frameworks [15, 16, 17] that are able to give precise runtime predictions, even for
real-world instance sizes. Hence the development and evaluation of quantum software
can fortunately proceed mostly independently of advancements in quantum hardware.

Indeed, the software landscape is flourishing with several specialized algorithms and
general frameworks being formulated on a weekly basis. Most algorithms can be loosely
classified either as pure (far-term) quantum algorithms, demanding fault-tolerant
quantum computers, or NISQ-friendlier hybrid algorithms that outsource certain
subroutines to classical computers (mostly variational quantum algorithms [18]). Since
NISQ-friendly algorithms aim at addressing hardware-specific shortcomings explicitly,
their design is typically more involved and harder to abstract away from low-level
control of the quantum hardware. In contrast, far-term algorithms such as Grover’s or
Shor’s algorithm may be formulated more problem- than hardware-oriented; quantum
operations are typically applied as conceptual constructs, allowing, in principle, for a
high-level description of the algorithms’ subroutines that does not require any knowledge
about the quantum hardware, merely about the available primitives.
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The rapidly increasing number of quantum algorithms is complemented by a similarly
fast growing stack of (mostly open-source) quantum computing software development
frameworks such as Xanadu’s PennyLane [19], IBM’s Qiskit [20], or Google’s Cirq
[21], and quantum cloud services such as Amazon Braket [22] or Microsoft’s Azure
Quantum [23]. Most services come as Python modules which is why Python is often
also recognized as a quantum programming language. However, there are specialized
autonomous programming languages used in the background such as IBM’s OpenQASM
[24] and Microsoft’s Q# [25]. Other particularly influential quantum languages are
Quipper [26] (functional language embedded in Haskell), QCL [27] (imperative, C-
based language), and Silq [28]. Another honorable mention is the recently introduced
Qrisp [29] (python-based). These programming languages are crafted to facilitate
both low-level, gate-wise control and high-level conceptualization through predefined
primitives. For instance, OpenQASM is referred to as a “broader and deeper quantum
assembly”, emphasizing the language’s versatility, but also indicating its extensive
scope. This extensive scope can make these languages quite challenging for newcomers
to learn. Additionally, despite the many compound routines already embedded in these
languages, practitioners ultimately cannot avoid delving into low-level gate operations,
making it more di"cult to focus on high-level algorithmic design.

In this thesis, I explicitly tackle these issues, being present in most existing quantum
programming languages. I introduce the CQ programming language for classical and
quantum manipulation of booleans and integers. The language uses a syntax which
is, restricted to classical variables, a proper subset of the pioneering C programming
language with some quality-of-life changes, making the transition from classical software
design as easy as possible. Additionally, CQ allows declaring quantum variables, which
may be initialized and processed in quantum superposition, and manipulating them
together with classical variables via bitwise and arithmetic operations. The symbols for
those operators are the same as in plain C and are suitably overloaded to handle also
quantum operands. Furthermore, the classical control structures if/else- and switch-
statements are extended to allow for quantum conditions and statements. Logical
comparison operators are extended for relating classical to quantum and quantum to
quantum variables. Statements controlled on quantum conditions are realized as (multi-
)controlled quantum circuits, where the control pattern can be directly inferred from
the provided boolean expression. By overloading elementary operations and control
structures, CQ is able to provide handling of classical and quantum variables with
only three additional non-C keywords: quantum (type qualifier for quantum variables),
measure (measurement of a quantum variable), and phase (addressing the phase of a
quantum variable). With this drastically reduced set of additional keywords, CQ aims
to be easy for beginners to learn and to become a proper, classical programmer-friendlier
alternative to Silq which o!ers similar features. Most importantly, quantum hardware
details such as the implementation of integers as quantum states of multi-qubit registers
or the gate decomposition of subroutines like integer comparison are abstracted away.
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The second chapter establishes all necessary preliminaries for designing a custom
quantum programming language. In Section 2.1, I detail general principles of pro-
gramming language design. I examine the necessary building blocks, present in every
proper programming language, and summarize the usual workflow associated with
the implementation of a new programming language. Subsequently, I formulate the
foundations of quantum computing in Section 2.2, following the axiomatic description
of quantum mechanics. I mainly focus on concepts that are incorporated within CQ’s
scope, but also mention and discuss additional phenomena that may be of independent
interest.

In the third chapter, I investigate quantized versions of several classical primitives. Sec-
tion 3.1 deals with bitwise operations on integers and with their quantum-computational
analogues. In Section 3.2, I cover all basic arithmetic operations for integers and their
realizations as quantum circuits. I conclude this chapter with the treatment of boolean
expressions and conditions in Section 3.3. The focus lies on translating classical condi-
tioning to suitable quantum control structures, making extensive use of manipulation
of boolean formulas.

The fourth chapter constitutes the heart of this thesis: the design of CQ, strictly
following the workflow detailed in Section 2.1. In Section 4.1, I define the C-like
vocabulary of CQ and construct a suitable lexer. The lexer is implemented using the
open-source flex-software [30]. Section 4.2 then defines CQ’s grammar which allows me
to construct a parser for syntax checking. The parser is written in GNU’s Bison [31]
framework. Due to its low complexity, CQ’s syntax and semantics, as detailed in
Section 4.3, can be analyzed simultaneously in a single pass. That is, the parser only
accepts syntactically and semantically correct programs. The source code which is
being described in this chapter can be found under [32].

As a proof of concept, I give a CQ implementation of Grover’s famous search algorithm
in the fifth chapter. First, I recap Grover’s algorithm in Section 5.1 and already
characterize its building blocks to match them with CQ primitives in Section 5.2.
Here, I provide a concrete implementation and investigate all intermediate as well as
the final result generated from the initial source code. In Section 5.3, I compare the
e!ort of implementing Grover’s algorithm in CQ to formulations found in existing
frameworks.

In the last chapter, I draw a conclusion and present an outlook on further investigations.
In particular, I address concrete extensions to the CQ programming language and
their implications on the scope of the language. Furthermore, I comment on possible
connections between CQ and other parts of the quantum software stack, highlighting
potential next steps from a software engineering point of view.
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CHAPTER 2

Preliminaries

2.1 Principles of Programming Language Design

Developing and implementing a new programming language is a complex task which
involves not only the abstract formulation of consistent grammar rules but also their
thorough implementation across several stages. The software stack for high-level
programming languages like C, Java, or Python is far more sophisticated than a
simple program that accepts or rejects source code. It also incorporates features
such as debugging capabilities, the generation of intermediate representations, code
optimization, instructions for executing code on hardware (for interpreted languages
like Python), and further translation into lower-level languages (for compiled languages
like C). The scope of a programming language’s implementation strongly depends
on design intent behind the language. For instance, early programming languages
were designed with a strong emphasis on e"ciency due to the limited computational
power of early hardware. This focus on e"ciency minimized overhead and avoided
extensive abstraction from the hardware level. Consequently, there was little need
for intermediate translation units, as source code was often executed directly on
hardware. As advancements in hardware fabrication made computational resources
more abundant, the focus shifted toward greater abstraction and portability. This
evolution led to more human-readable syntax, which in turn increased the semantic
gap between high-level programming languages and machine code. Bridging this gap
necessitated the development of additional intermediate layers. As a result, translating
high-level source code into machine code directly became increasingly cumbersome
and error-prone. Instead, compilers and interpreters were developed to break down
high-level source code into intermediate representations systematically, which could
then be translated into machine code more e!ectively and reliably. Together with these
translation units, debugging tools and sophisticated code optimization techniques were
introduced to improve the quality of the code before its execution. All together, the
history of programming language design perfectly showcases how each design choice
directly influences the entire software stack that is behind each language.

Page 5 of 76



Chapter 2 Preliminaries

Two core features of every programming language are its syntax and its semantics.
Syntax, or grammar, defines the formal rules and structure of the language, dictating
how symbols, keywords, and operators must be arranged to form valid statements
or expressions. Semantics, on the other hand, deals with the meaning behind the
syntactically correct constructs, specifying what actions or operations a piece of code will
perform eventually. As most programming languages are formal languages (exceptions
are, e.g., the visual programming languages like Snap! [33]), their syntaxes are indeed
formal grammars. That is, on the most fundamental level, one has to specify four
quantities: a set of variables/non-terminals which are used internally for production
rules and are not visible to the programmer, an alphabet of terminal symbols, i.e. the
set of all symbols that are allowed to appear in the source code, a set of production
rules that map combinations of non-terminals and terminals to other combinations, and
a start variable (again invisible to the programmer). In many programming languages,
there is a clear separation between names of variables, which can be arbitrarily long
concatenations of symbols from a fixed alphabet, and other “words” of fixed appearance
such as operators, keywords, and delimiters. This is reflected in the common approach
to introduce an additional layer of grammar verification: the lexer. The lexer, short
for lexical analyzer, is responsible for analyzing the raw sequence of characters in the
source code and transforming them into a stream of meaningful tokens. These tokens
are atomic units of syntax, such as identifiers, keywords, operators, and punctuation,
that conform to the language’s terminal symbols. By separating the recognition of
individual lexical elements from the higher-level syntactic structure, the lexer simplifies
the parsing process. It ensures that the input adheres to the language’s lexical rules,
already identifying errors such as unrecognized symbols. Additionally, the lexer typically
eliminates whitespace and comments, streamlining the input for subsequent stages
while preserving the code’s meaning.

After the lexer has transformed the raw source code into a stream of tokens, the
parser takes over. The parser is responsible for analyzing the token sequence according
to the language’s syntax rules, as defined by its formal grammar. Its primary goal
is to determine whether the token stream forms a syntactically valid structure, i.e.
whether the source code is a valid “sentence” in the given formal language, and to
build a corresponding abstract representation, often called a parse tree or abstract
syntax tree (AST). At its core, the parser operates based on a set of production rules,
which describe how terminal and non-terminal symbols combine to form higher-level
constructs, such as expressions, statements, or program blocks. Using these rules, the
parser recursively applies a series of reductions (in bottom-up parsing) or expansions
(in top-down parsing) to map the token sequence to the grammar’s start variable,
thereby constructing the AST either from its leafs or its root. Introducing a single
placeholder for all the previously tokenized identifiers and working entirely on the level
of valid tokens drastically reduces the set of production rules.
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After the parser has verified the syntactic correctness of the source code and generated
an AST, the semantic analyzer takes the next step to ensure the program’s meaning
is valid and consistent. Semantic analysis involves checking the AST against the
language’s semantic rules, which go beyond syntax to enforce logical correctness. These
rules may include verifying type compatibility, ensuring that variables are declared
before use, enforcing access control for private or protected members, and resolving
function calls with the correct parameters and return types. Semantic analysis typically
augments the AST with additional information, such as type annotations or symbol
table references, creating a more detailed intermediate representation (IR). The symbol
table is a crucial component in this process, mapping identifiers like variable names and
function names to their respective declarations, scopes, and attributes. Additionally,
semantic analysis detects issues that cannot be identified by the parser alone, such as
type mismatches in assignments, undefined or duplicate identifiers, and violations of
scope rules. Note that, depending on the concrete syntax and semantics, it may be
possible to evaluate syntax and semantics at the same time, thus creating an enriched
AST already during the parsing process; this is then called a one-pass compiler.

Once the semantic analysis has verified the program’s correctness and enriched the IR
with semantic details, possible next steps are code optimization and code generation.
First and foremost, this is the case for compiled languages such as C, but also for
interpreted languages like Python just-in-time (JIT) compilation, which is currently
rising in popularity, demands similar steps. Code optimization involves improving the IR
to make the resulting program more e"cient in terms of execution speed, memory usage,
or other performance metrics, without altering its semantics. Before applying any code
optimizations, the initially tree-structured IR is linearized to an abstract instruction list.
Subsequent optimization techniques may include eliminating redundant calculations,
inlining functions, unrolling loops, or reorganizing code for better utilization of hardware
features like CPU pipelines or caches. Following optimization, the code generation
phase translates the optimized IR into a target language, which is typically low-level
machine code or assembly. This step involves mapping high-level constructs to hardware-
specific instructions, allocating registers, managing memory layout, and embedding
runtime support elements. A key component of code generation is instruction selection,
where abstract operations in the IR are matched to specific instructions in the target
architecture, and instruction scheduling, which arranges these instructions to minimize
execution stalls. The result of this stage is a complete and optimized binary or
executable, ready for execution on the targeted hardware.
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2.2 Foundations of Quantum Computing

Quantum computing is a sub-discipline of quantum information theory, aiming at
utilizing quantum-mechanical concepts as computational tools. Formulated in the
language of quantum mechanics and heavily influenced by classical computer science, the
theory of quantum computing delivers mathematically elegant and concise descriptions
of both fundamental quantum phenomenology and application-relevant computational
problems, along with algorithmic frameworks to address them. Most concepts of
practical relevance can be directly derived from the postulates of modern quantum
mechanics, relying on basic linear algebra. In doing so, I primarily follow Nielsen and
Chuang’s highly influential book on Quantum Computation and Quantum Information

[34] for the remainder of this chapter.

Postulate 1. The state space of any isolated physical system is given by a complex
Hilbert space (a vector space with an inner product). The system’s state is completely
described by a state vector, a vector of unit length in the system’s state space.

The first postulate defines the underlying mathematical structure of quantum mechanics
– and hence quantum computing. It places the theory right in the fields of linear algebra
and functional analysis. For the scope of this thesis, however, linear algebra will prove
to be a su"cient tool as I will only deal with finite-dimensional spaces. Quantum
mechanics often comes with its own, somewhat peculiar notation: the bra-ket or Dirac

notation. Given some Hilbert space H, a unit vector, i.e. some system’s state vector,
is denoted as ket |ω↑ ↓ H. The symbol between the vertical bar and the right angle
bracket may be arbitrary. In particular, I may use descriptive labels such as numbers
directly for the vector without sub- or superscripting. The inner product with another
ket |ε↑ ↓ H is denoted as ↔ω|ε↑.1

Note that Postulate 1 is not constructive; it does not dictate a system-describing
Hilbert space, but merely asserts its existence. Accordingly, I will prescribe a certain
state space rather than a physical system. Inspired by the bit, the most basic unit of
classical information, one is seeking a suitable state space characterizing the most basic
unit of quantum information. The simplest, non-trivial (complex) Hilbert space is the
two-dimensional ℂ2 and any system described by this state space is, in analogy to the
bit, called a qubit (from quantum bit). Physical realizations of qubits are two-level

1The dual notion of a ket is the bra. A bra ↔ω| denotes an element (of unit norm) in the dual
space of H, i.e. the space of (continuous) linear maps from H to ℂ. Hilbert spaces are naturally
isometric (anti-)isomorphic to their dual spaces via the Riesz representation theorem which allows
for uniquely identifying a bra ↔ε| ↓ H

→ with a ket |ω↑ ↓ H and vice versa. In this light, the inner
product notation ↔ω|ε↑ can really be understood of a short-hand for ↔ω| (|ε↑).
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quantum systems such as the polarization direction of light [35, 36], electronic [37] and
nuclear spins [38], atomic energy levels of neutral atoms [39] and trapped ions [40], and
superconducting phases of Josephson junctions [41].

I introduce the notation " := {0, 1} for classical bits, and # := ℂ2 for qubits. The
former can be embedded into the latter by choosing an orthonormal basis of # and
labeling its two elements with |0↑ and |1↑, respectively; # may then be interpreted as
the linear span of the two bit states |0↑ and |1↑, that is

# ↗= {ϑ |0↑ + ϖ |1↑ : ϑ, ϖ ↓ ℂ}. (2.2.1)

This gives an easy mathematical grasp of the concept of (coherent) superposition:
Besides the “classical” states |0↑ and |1↑ also all linear combinations of them are valid
quantum state, as long as they are normalized to unit length, i.e. if |ϑ|

2 + |ϖ|
2 = 1.

While di"cult to comprehend intuitively, quantum superpositions are thus simple
mathematical objects. Furthermore, the interpretation of a given quantum state as
superposition of other states is entirely based on what states one declares as reference
states or, equivalently, which orthonormal basis of the underlying Hilbert space one
chooses. Take, for example, the following two qubit states

|+↑ := 1
↘

2
|0↑ + 1

↘
2

|1↑ and |≃↑ := 1
↘

2
|0↑ ≃

1
↘

2
|1↑ . (2.2.2)

They are introduced as superpositions of the two bit states. However, |+↑ and |≃↑

together constitute an equally valid orthonormal basis of # and, w.r.t. this basis, the
bit states

|0↑ = 1
↘

2
|+↑ + 1

↘
2

|≃↑ and |1↑ = 1
↘

2
|+↑ ≃

1
↘

2
|≃↑ (2.2.3)

are actually superpositions; none of these interpretations is, in any sense, more correct
than the other. However, in order to properly express calculations and as an interface
with classical information, a choice has to be made, falling on {|0↑ , |1↑} as the reference
basis.

The correspondence between quantum states and unit vectors in an associated Hilbert
space which is introduced by Postulate 1 is actually not one-to-one. All physically
observable properties of a quantum state, described by some |ω↑ ↓ H, are equally
validly encoded into every unit vector collinear to |ω↑, i.e. by vectors of the form ϱ |ω↑,
where the scalar ϱ ↓ ℂ is of unit magnitude and is called a global phase. Another way
of of phrasing it is that the representing state vector is unique up to a global phase.2

2There is a more general formulation of the first postulate that avoids the appearance of the global
phase all together: Any isolated physical system is still assigned a Hilbert space H. However, the
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Postulate 2. The state space of a composite physical system is the tensor product of
the state spaces of the component physical system. Moreover, assuming an enumeration
of individual system from 0 to n ≃ 1, if the i-th system is prepared in the state |ωi↑,
the joint state of the total system is |ωn→1↑ ⇐ · · · ⇐ |ωi↑ ⇐ · · · ⇐ |ω0↑.

Unlike the first postulate, Postulate 2 gives an explicit state space construction,
provided that the individual state spaces are already known. Applying it to an n-qubit
system yields the state space

#↑n :=
n→1⊗

i=0
# =

n→1⊗

i=0
ℂ2 ↗= ℂ2n

. (2.2.4)

Furthermore, the second postulate asserts that the joint state of individually prepared
states is a (tensor) product state of the individual states. In particular, I may apply
this instruction to the bit states of individual qubits. Assuming the i-th qubit being in
the state |xi↑, xi ↓ ", the n-qubit state is given by

|xn→1 . . . xi . . . x0↑ := |xn→1↑ ⇐ · · · ⇐ |xi↑ ⇐ . . . ⇐ |x0↑ . (2.2.5)

In fact, the set of all states of the form (2.2.5) constitutes itself an orthonormal basis
of #↑n, the computational basis

{|x↑ := |xn→1 . . . x0↑ : xi ↓ "} = {|x↑ : x ↓ "n
}. (2.2.6)

The computational basis is thus the embedding of the set of all n-bit strings into the
n-qubit state space. Analogously to (2.2.1), this means that every n-qubit state can
be expressed as a superposition of n-bit strings. Quite frequently, I will exploit the
binary representation of integers to label the elements of the computational basis with
consecutive integers rather than bit strings, that is

|xn→1 . . . x0↑ ↗= |j↑ , j =
n→1∑

i=0
xi2i

⇒ {|x↑ : x ↓ "n
} ↗= {|j↑ : j = 0, . . . 2n

≃ 1}. (2.2.7)

I highlight that Postulate 2 makes a statement about how to construct the joint state
of known individual states, but not the other way around. This is no shortcoming of

system’s state is described by a density operator ϑ ↓ L(H), a positive operator of unit trace. A
density operator which is also a projection is called a pure state, other states are called mixed

states. A pure state can be written as |ω↑↔ω| for some normalized vector |ω↑ ↓ H onto whose span
the pure state projects, establishing a connection to the initially given formulation of the postulate.
Choosing instead of |ω↑ a collinear unit vector |ε↑ = ϖ |ω↑ gives rise to the same density operator
as |ε↑↔ε| = |ϖ|

2
|ω↑↔ω| = |ω↑↔ω|, eliminating this unphysical degree of freedom.
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the postulate, but indeed a generally ill-posed question: Consider, for example, the
2-qubit state

|!+
↑ = 1

↘
2

|00↑ + 1
↘

2
|11↑ ↓ #↑2

, (2.2.8)

which is one of the famous four Bell states [42]. It can be shown that there are exist
no two single-qubit states |ω↑ , |ε↑ ↓ # such that |!+

↑ can be written as the tensor
product of |ω↑ with |ε↑.3 Nevertheless, |!+

↑ is a perfectly valid and realizable quantum
state [43]. This phenomenon that composite systems can exist in states in which single
constituents cannot be fully described without considering the others is known as
(quantum) entanglement. It is a distinct feature of quantum mechanics. Whether a
state is entangled does not, in contrast to the question whether it is a superposition,
depend on the choice of basis.

Postulate 3. The evolution of a closed quantum system with associated Hilbert space
H is described by a unitary, linear operator U ↓ L(H). That is, if the system’s initial
state is |ω↑ ↓ H, its evolved state is given by U |ω↑.

The third postulate is again non-constructive, but crucially establishes the linearity
of quantum mechanics.4 Additionally, unitarity is imposed in order to maintain
normalization of quantum states: Unitary operators U ↓ L(H) may be defined as
satisfying UU

† = U
†
U = 1, where U

† is the adjoint of U and 1 ↓ L(H) is the identity
operator. These properties are equivalent to preserving the Hilbert space’s inner
product and hence, especially, its norm. Therefore, a normalized state |ω↑ indeed
remains normalized after the application of some unitary U .

The set of linear operators over a d-dimensional complex Hilbert space H can be
identified with the set of complex d ⇑ d matrices by choosing a (not necessarily
orthonormal) basis {|j↑ : j = 0, . . . , d ≃ 1} of the underlying Hilbert space and, for
a given operator A ↓ L(H), recording the matrix elements Mij := ↔i|A|j↑ for all
i, j = 0, . . . , d ≃ 1. Conversely, given a d ⇑ d matrix M , the abstract operator can be
constructed via

A =
d→1∑

i,j=0
Mij |i↑↔j| ↓ L(H). (2.2.9)

3In mathematical terms, |!+
↑ is called a non-pure tensor.

4A more refined version of the postulate states that the time evolution of the state of a closed
quantum system is described by the Schrödinger equation i⊋d|ω↑

dt = H |ω↑, where ⊋ is Planck’s

constant and H ↓ L(H) is the system’s Hamiltonian.
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The action of the operator |ω↑↔ε| on some state |ς↑ is given by |ω↑↔ε|ς↑ (first taking the
inner product of |ε↑ with |ς↑ and then outputting the vector |ω↑, scaled by this factor),
i.e. the symbols are simply concatenated. For an n-qubit system, the allowed evolutions
are therefore described by unitary 2n

⇑2n matrices, where I fix again the computational
basis as the preferred basis to translate between the abstract operators and concrete
matrices. In analogy to classical logical gates and circuits, these multi-qubit evolutions
are primarily called quantum gates and circuits. I may also speak of gates/circuits
directly, when it is clear from the context whether classical or quantum gates/circuits
are addressed.

Most importantly, the tensor structure of #↑n is also present in L(#↑n). For example,
if I only want to apply a single-qubit gate U (thus represented by a 2 ⇑ 2 matrix) to,
say, the i-th qubit contained in a composite n-qubit system, the corresponding n-qubit
gate is of the form

Ui := 1 ⇐ · · · ⇐ 1 ⇐ U#

i-th position

⇐ 1 ⇐ · · · ⇐ 1 ↓ L(#↑n). (2.2.10)

Similarly, also m-qubit gates with 1 < m < n can be embedded as n-qubit gates.
In the same spirit, applying multiple quantum gates each acting on distinct qubits,
simultaneously in an n-qubit register is mathematically described by taking their tensor
product, filled up with an identity for each una!ected qubit. In contrast, applying
quantum gates sequentially is described by their usual matrix/operator product.

In addition to the matrix representation of quantum gates, a visual representation,
especially of longer gate sequences, is often insightful. A common depiction are quantum
circuit diagrams which are inspired by and named after the logic circuit diagrams. Here,
individual qubits are represented as wires, and quantum gates are depicted as boxes,
connected to the qubits/wires they operate on. Consider, e.g., a two qubit system
#↑2, initialized in the |00↑ state, whose components I address with q0 and q1. Now, I
wish to apply first a single-qubit gate U ↓ L(#) on the zeroth qubit q0, followed by
a two-qubit gate V ↓ L(#↑2), acting on both q0 and q1. The corresponding quantum
circuit diagram is shown in Fig. 2.1.

One particular type of quantum gates will play a crucial role throughout this thesis:
controlled gates. Consider again a two-qubit system with components q0 and q1, and
let U be a single-qubit gate. Applying U on q0 controlled on q1 being unset/set are
the abstract operations

C1(U0) := |0↑↔0| ⇐ U + |1↑↔1| ⇐ 1 and C1(U0) := |0↑↔0| ⇐ 1 + |1↑↔1| ⇐ U. (2.2.11)

q0 is called the target qubit of this operation and q1 is its control qubit. These construc-
tions readily extend to multi-controlled multi-target gates. Intuitively, controlled gates
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q1 : |0↑

V

q0 : |0↑ U

Figure 2.1: Quantum circuit diagram for a two-qubit system. Both qubits are initialized
in the |0↑ state. First, a single-qubit gate U is applied to the zeroth qubit. Second a
two-qubit gate V is applied to both qubits.

act non-trivially only on some portion of a given input superposition. The behavior
is thereby controlled by the state of a certain subsystem of the input, relative to the
classical bit states (or more generally, relative to the computational basis). Controlled
gates are so common that instead of depicting them as regular multi-qubit gates they
possess their own notation where the control qubits are vertically connected to the
actual gate that is applied to the target qubit(s). The control qubits receive white/black
circles when the control is on their |0↑/|1↑ state as depicted in Fig. 2.2.

q1

C1(U0)
q0

=
q1

q0 U
and

q1

C1(U0)
q0

=
q1

q0 U

Figure 2.2: Quantum circuit diagram definitions for controlled gates. Controlling a
single-qubit operation U on the zeroth qubit on the first qubit being in the state |0↑/
|1↑ is depicted by a vertical line connecting the U -box on the q0-wire with a white/black
circle on the q1-wire.

Postulate 4. Given a quantum system with associated Hilbert space H, a measurement
of that system is described by a collection {Mm} ⇓ L(H) of measurement operators

satisfying the completeness equation

∑

m

M
†
mMm = 1. (2.2.12)

The index m refers to the measurement outcomes that may occur in the experiment.
If the system’s state is |ω↑ immediately before the measurement then the probability
that result m occurs is given by

p(m) = ↔ω|M
†
mMm|ω↑ (2.2.13)

and the state of the system right after the measurement is

Mm |ω↑
√

↔ω|M
†
mMm|ω↑

. (2.2.14)
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Given a family of measurement operators {Mm} ↓ L(H) as being described in the
fourth postulate, I verify now that the function p defined in (5.1.6) is indeed a valid
probability distribution on the set of possible measurement outcomes. First, the basic
properties of inner products and the definition of the adjoint entail that p(m) ⇔ 0 for
all m. Second, the completeness equation (2.2.12) ensures that

∑

m

p(m) =
∑

m

↔ω|M
†
mMm|ω↑ =

〈

ω

∣∣∣∣∣
∑

m

M
†
mMm

∣∣∣∣∣ ω

〉

= ↔ω|1|ω↑ = ↔ω|ω↑ = 1 (2.2.15)

due to the normalization of the state |ω↑; hence p is a probability distribution.5

The only measurements I will consider throughout this thesis are measurements of qubits
in the computational basis. Consider first the case of a single qubit: The two possible
outcomes of a measurement in the computational basis are 0 and 1 with associated
measurement operators M0 = |0↑↔0| and M1 = |1↑↔1|, respectively. Mathematically,
these operators are projections on the respective bit states |0↑ and |1↑.6 This means
that it holds that M0/1 = M

†
0/1 = M

2
0/1 which simplifies the calculations as I can replace

each occurrence of M
†
0/1M0/1 with M0/1. Now, |0↑ and |1↑ together constituting an

orthonormal basis of # immediately implies that the completeness equation indeed
holds: M0 + M1 = |0↑↔0| + |1↑↔1| = 1. Postulate 4 states that, given an initial state
|ω↑ = ϑ |0↑ + ϖ |1↑, the probabilities of measuring 0 and 1 are

p(0) = ↔ω|M0|ω↑ = ↔ω|0↑↔0|ω↑ = |↔0|ω↑|
2 = |ϑ ↔0|0↑ + ϖ ↔0|1↑|

2 = |ϑ|
2 and (2.2.16)

p(1) = ↔ω|M1|ω↑ = ↔ω|1↑↔1|ω↑ = |↔1|ω↑|
2 = |ϑ ↔1|0↑ + ϖ ↔1|1↑|

2 = |ϖ|
2
, (2.2.17)

respectively. Accordingly, the two possible post-measurement states are
M0 |ω↑

√
↔ω|M0|ω↑

= |0↑↔0|ω↑

|ϑ|
= ϑ

|ϑ|
|0↑ and M1 |ω↑

√
↔ω|M1|ω↑

= |1↑↔1|ω↑

|ϖ|
= ϖ

|ϖ|
|1↑ , (2.2.18)

hence e!ectively |0↑ and |1↑, as ϑ/|ϑ| and ϖ/|ϖ| have unit magnitude and are thus
merely global phases.

In a similar fashion, I can also measure multiple qubits at once which will turn out
to be mathematically equivalent to consecutive single-qubit measurements. As a con-
crete case, consider a two-qubit system which I wish to measure in the computational

5A simplification of Postulate 4 can be made, if the post-measurement state is not of relevance. A
family of positive operators {Em} ⇓ L(H) is called a positive operator-valued measure (POVM) if
it fulfills the adapted completeness equation

∑
m Em = 1. A measurement associated with a such

a POVM produces, given an initial state |ω↑, outcome m with probability p(m) = ↔ω|Em|ω↑. As
one can readily check, a given collection {Mm} ⇓ L(H) of measurement operators canonically gives
rise to a POVM {Em} via Em = M

†
mMm. Describing measurements with POVMs thus allows to

perform calculations more compactly. However the information about the post-measurement state
is lost, as many sets of measurement operators share the same POVM.

6These kinds of measurements are also called projection-valued measures (PVMs).
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basis. The possible outcomes are the four 2-bit strings 00, 01, 10, and 11. The associ-
ated measurement operators are composed of the familiar single-qubit measurement
operators:

M00 = M0 ⇐ M0 = |0↑↔0| ⇐ |0↑↔0| = |00↑↔00| , (2.2.19)
M01 = M0 ⇐ M1 = |0↑↔0| ⇐ |1↑↔1| = |01↑↔01| , (2.2.20)
M10 = M1 ⇐ M0 = |1↑↔1| ⇐ |0↑↔0| = |10↑↔10| , and (2.2.21)
M11 = M1 ⇐ M1 = |1↑↔1| ⇐ |1↑↔1| = |11↑↔11| . (2.2.22)

As for the single-qubit case, I obtain the collection of all one-dimensional projectors
onto the computational basis states, implying that the completeness equation holds.
Let |ω↑ = ϑ |00↑ + ϖ |01↑ + ϱ |10↑ + φ |11↑ be the initial two-qubit state of the system.
Then, according to Postulate 4 and following essentially the same calculations as in
(2.2.16) and (2.2.17), I obtain

p(00) = |ϑ|
2
, p(01) = |ϖ|

2
, p(10) = |ϱ|

2
, and p(11) = |φ|

2
. (2.2.23)

Furthermore, analogously to (2.2.18), the possible post-measurement states are essen-
tially given by the four computational basis states themselves. This readily generalizes
to n-qubit systems: Measuring all n qubits in the computational basis has as possible
outcomes all the bit strings of length n, i.e. "n. The measurement operator associated
to a given bit string x is Mx = |x↑↔x|, the probability of obtaining x is given by the
initial state’s coe"cient in front of the basis state |x↑, and the post-measurement state
after measuring x is given by |x↑.

Next, I consider the case of measuring only a proper subset of all qubits. For simplicity,
I assume to be given a two-qubit system of which I wish to measure the zeroth qubit
in the computational basis, again yielding possible outcomes 0 and 1. The “act” of
not measuring a subsystem is encoded by the identity operator 1 in the subsystem’s
tensor factor. Accordingly, the associated measurement operators are M0 = 1 ⇐ |0↑↔0|

and M1 = 1 ⇐ |1↑↔1|. These operators are again projections, simplifying the following
calculations; M0 projects onto the subspace #⇐span({|0↑}) and M1 onto #⇐span({|1↑}).
Furthermore, it holds that

M0 + M1 = 1 ⇐ |0↑↔0| + 1 ⇐ |1↑↔1| = 1 ⇐ (|0↑↔0| + |1↑↔1|) = 1 ⇐ 1 = 1, (2.2.24)

i.e. the completeness equation is again fulfilled. Consider again an arbitrary initial
state |ω↑ = ϑ |00↑ + ϖ |01↑ + ϱ |10↑ + φ |11↑. Naively performing the calculation of the
measurement probabilities quickly becomes unhandy since e.g. ↔ω|M0|ω↑ would expand
into 16 individual terms, although most terms will vanish in the end. Instead I make
the observation that applying M0/1 to a computational basis state either eliminates
the state or leaves it invariant. Especially, sandwiching M0/1 between two orthogonal
computational basis states in an inner product will result in a vanishing term, already
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eliminating the 12 cross-terms. Furthermore, two out of the four remaining terms also
vanish, as the projection in the zeroth factor eliminates each computational basis state
that carries the “wrong” bit in its zeroth component; in the other two terms, M0/1
does not have any e!ect. Therefore, I have just have argued that

p(0) = ↔ω|M0|ω↑ = |ϑ|
2 + |ϱ|

2 and p(1) = ↔ω|M1|ω↑ = |ϖ|
2 + |φ|

2
. (2.2.25)

With analogous reasoning I can determine the two possible post-measurement states:

|ε0↑ = M0 |ω↑
√

↔ω|M0|ω↑

= ϑ |00↑ + ϱ |10↑
√

|ϑ|
2 + |ϱ|

2
= ϑ |0↑ + ϱ |1↑

√
|ϑ|

2 + |ϱ|
2

⇐ |0↑ and (2.2.26)

|ε1↑ = M1 |ω↑
√

↔ω|M1|ω↑

= ϖ |01↑ + φ |11↑
√

|ϖ|
2 + |φ|

2
= ϖ |0↑ + φ |1↑

√
|ϖ|

2 + |φ|
2

⇐ |1↑ . (2.2.27)

A subsequent measurement of the first qubit would be modeled by the measurement
operators N0 = |0↑↔0|⇐1 and N1 = |1↑↔1|⇐1. Provided that the previous measurement
result for the zeroth qubit was 0, the probabilities of obtaining the result 0 and 1 for
the first qubit are

p(0 | 0) = ↔ε0|N0|ε0↑ = |ϑ|
2

|ϑ|
2 + |ϱ|

2 and p(1 | 0) = ↔ε0|N1|ε0↑ = |ϱ|
2

|ϑ|
2 + |ϱ|

2 , (2.2.28)

respectively. Similarly, the probabilities of obtaining 0 and 1 for the first qubit,
conditioned on the measurement of the zeroth qubit yielding 1, are

p(0 | 1) = ↔ε1|N0|ε1↑ = |ϖ|
2

|ϖ|
2 + |φ|

2 and p(1 | 1) = ↔ε1|N1|ε1↑ = |φ|
2

|ϖ|
2 + |φ|

2 , (2.2.29)

respectively. Therefore, the overall probability of obtaining the bit strings 00, 01, 10,
and 11 match with the ones from the simultaneous measurement of both qubits:

p(00) = p(0 | 0) p(0) = |ϑ|
2
, p(01) = p(0 | 1) p(1) = |ϖ|

2
, (2.2.30)

p(10) = p(1 | 0) p(0) = |ϱ|
2
, and p(11) = p(1 | 1) p(1) = |φ|

2
. (2.2.31)

An exemplary calculation of the post-measurement state after subsequently obtaining
0 for both qubits yields

N0 |ε0↑√
↔ε0|N0|ε0↑

=
ϑ

√
|ϑ|

2 + |ϱ|
2

|00↑

|ϑ|

√
|ϑ|

2 + |ϱ|
2

= ϑ

|ϑ|
|00↑ . (2.2.32)

Analogously, one can verify that the post-measurement states for 01, 10, and 11 also
agree with the ones resulting from a simultaneous measurement of both qubits. In
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summary, I have shown that simultaneous and consecutive measurement of distinct
qubits are physically equivalent; they yield the same measurement statistics and post-
measurement states. This holds generally true for the measurement of 1 ↖ m ↖ n

qubits within an n-qubit system and is a consequence of the associated measurement
operators’ tensor product structure.

Quantum measurements also possess a graphical representation within quantum circuit
diagrams; they are depicted as boxes with an anlog display, inputting the qubits to
be measured. The output of such a measurement can further be used to classically
control the application of quantum gates on other qubits. In analogy to controlled
gates, this is depicted with two vertical bars, connecting the measurement box and the
gate box. The classical condition that has to be fulfilled in order to apply the quantum
gate is annotated next to the vertical bars. Fig. 2.3 shows an example of a two-qubit
system initialized in the |00↑ state, where the zeroth qubit is measured after applying
a two-qubit gate V on both qubits. Subsequently, a single-qubit gate U is executed on
the first qubit if the measurement of the zeroth qubit has yielded the outcome 0. After
this, also the first qubit is measured.

0
q1 : |0↑

V

U

q0 : |0↑

Figure 2.3: Quantum circuit diagram for a two-qubit system involving quantum mea-
surements and classical control. After applying a two-qubit gate V to both qubits
q0 and q1, the zeroth qubit q0 is measured, classically controlling the application of a
single-qubit gate U on q1 on the measurement outcome 0. Subsequently, q1 is measured,
too.

Lastly, I will study the interplay of entanglement with measurements on subsystems.
Consider again the general probabilities (2.2.25) and post-measurement states (2.2.26)
and (2.2.27) for the one-out-of-two-qubit measurement. If the initial state is an arbitrary
product state, i.e. of the form

(↼0 |0↑ + ↼1 |1↑) ⇐ (↽0 |0↑ + ↽1 |1↑), (2.2.33)

expanding it into the two-qubit computational basis yields that

ϑ = ↼0↽0, ϖ = ↼0↽1, ϱ = ↼1↽0, and φ = ↼1↽1. (2.2.34)

These coe"cients give rise to output probabilities of

p(0) = |↼0↽0|
2 + |↼1↽0|

2 =
(
|↼0|

2 + |↼1|
2
)
|↽0|

2 = |↽0|
2 and (2.2.35)

p(1) = |↼0↽1|
2 + |↼1↽1|

2 =
(
|↼0|

2 + |↼1|
2
)
|↽1|

2 = |↽1|
2
, (2.2.36)
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where I have used that |↼0|
2 + |↼1|

2 = 1. This means, the probability of measuring
either 0 or 1 on the zeroth qubit only depends on the zeroth qubit’s initial state, not on
the state of the first qubit. This matches the classical intuition perfectly. Furthermore,
given the coe"cients above, I would obtain the following post-measurement states:

|ε0↑ = ↼0↽0 |0↑ + ↼1↽0 |1↑
√

|↼0↽0|
2 + |↼1↽0|

2
⇐ |0↑ = (↼0 |0↑ + ↼1 |1↑) ⇐

↽0
|↽0|

|0↑ and (2.2.37)

|ε1↑ = ↼0↽1 |0↑ + ↼1↽1 |1↑
√

|↼0↽1|
2 + |↼1↽1|

2
⇐ |1↑ = (↼0 |0↑ + ↼1 |1↑) ⇐

↽1
|↽1|

|1↑ . (2.2.38)

Intuitively, the state of the first qubit does not change due to the measurement of the
zeroth qubit. In particular, both post-measurement states have the same first tensor
factor.

However, intuition is about to break down when considering the entangled Bell state
|!+

↑ (2.2.8) instead. This time, the coe"cients are given by

ϑ = 1
↘

2
, ϖ = 0, ϱ = 0, and φ = 1

↘
2

. (2.2.39)

Here, I would obtain the uniform measurement statistics of p(0) = p(1) = 1/2. The two
possible post-measurement states, however, turn out to be |ε0↑ = |00↑ and |ε1↑ = |11↑.
It would not make sense to claim that the measurement of the zeroth qubit a!ected
the state of the first qubit since both individual qubit states were not well-defined
in the first place. What I would observe, in turn, is that the two post-measurement
states’ first tensor factors do not agree. Measuring a subsystem has therefore yielded
information also about the other, unmeasured subsystem. In case of the Bell state
|”+

↑ I would even know with certainty that a subsequent measurement of the first
qubit would give the same result as the previous measurement of the zeroth qubit.
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CHAPTER 3

Quantized Classical Circuits

In the previous chapter, I have detailed how classical bit strings can be represented as
multi-qubit states, forming the computational basis of the quantum system’s Hilbert
space. In this chapter, I “quantize” classical logical gates that operate on bit strings to
quantum gates, i.e. unitary operators acting on multi-qubit states.

Definition 3.1. Given a logical function f : "n
↙ "n, an operator U ↓ L(#↑n) is a

quantization of f if it is unitary and for all x ↓ "n it holds that U |x↑ = |f(x)↑. If
such a unitary quantization of f exists, f is called quantizable.

Note that by linearity, the action of an operator U ↓ L(#↑n) on each element of
the computational basis uniquely determines its action on all other states |ω↑ ↓ #↑n.
Therefore, each logical function f : "n

↙ "n canonically gives rise to an operator
Uf ↓ L(#↑n) by simply defining the operator to fulfil Uf |x↑ := |f(x)↑, for all x ↓ "n.
However, these operators are generally not unitary and thus no valid quantizations.
In order to ensure unitarity, it is necessary and indeed su"cient that f is one-to-
one, turning Uf into a permutation of computational basis states which is a unitary
operation.

Corollary 3.2. A logical function f : "n
↙ "n is quantizable if and only if it is

bijective.

Therefore, the task of quantizing logical functions is in alignment with the e!orts
of constructing classically reversible operations, which are essential in the model of
reversible computing [44]. The first section of this chapter covers the quantization of
bitwise operations and borrows all major quantization strategies directly from designs
made for reversible computations. In comparison, the second section addresses the
quantization of arithmetic operations which is based on the quantum Fourier transform
(QFT). The third section treats the quantization of boolean expressions as conditions,
again building on knowledge gained from the field of reversible computing.
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3.1 Bitwise Operations

The simplest (non-trivial) logical operation is the NOT gate with its truth table
shown in Table 3.1. This elementary operation is reversible, hence quantizable, and its
quantum version is the single-qubit X gate which has the matrix representation

∝ ′ X ′

[
0 1
1 0

]

. (3.1.1)

Input Output
b0 ¬b0
0 1
1 0

Table 3.1: Truth table of the NOT gate.

There are several important logical operations that act on two bits. One of them is the
XOR gate which returns 1 if and only if both input bits are unequal, and therefore
acts like an addition modulo 2. As a function from "2 to " it cannot be reversible.
However, by additionally outputting one of the input bits beside the calculation, it is
promoted to a reversible two-bit maps with truth table shown in Table 3.2. In this
form, the XOR gate can be semantically described as a conditional NOT (CNOT) gate
that inverts the target bit only if the control bit has the value one. Accordingly, the
quantum analogue is given by the controlled X gate in its two possible orientations

C1(X0) ′





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 and C0(X1) ′





1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



 . (3.1.2)

Another important two-bit operation is the AND gate which returns 1 if and only
if both input bits are set to 1 as well. Unlike the XOR gate, the AND gate cannot
be made reversible on two bits, simply because three configurations (00, 01, and 10)
are mapped to 0, and there are only two 2-bit strings which have a zero at the same
position. This issue can be circumvented by adding an additional input and output bit
(by convention the zeroth bit) where the result is stored. However, in order to guarantee
reversibility, the value of this additional bit also has to depend on its initial value,
giving the correct result of the AND operation on the two target bits only if initially
set to zero, and the inverted result otherwise. This gate is known as the To!oli gate
and constitutes a universal gate [45], that is, all Boolean functions can be expressed
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Input Output
b1 b0 b1 b0 ∝ b1
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Table 3.2: Truth table of the reversible XOR gate, storing the calculation in the zeroth
bit.

as a sequence of To!oli gates, operating on the same input bits and some additional
temporary bits. The To!oli gate’s truth table is depicted in Table 3.3. Semantically, it
inverts the extra bit conditioned on the other two bits being set to one. Therefore, the
quantum analogue is the doubly-controlled X gate with its three possible orientations.
The matrix representation of the lexographical order is

C2C1(X0) ′





1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0





. (3.1.3)

Input Output
b2 b1 b0 b2 b1 (b2 ∞b1)∝b0
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Table 3.3: Truth table of the To!oli gate, storing the result of b2 ∞ b1 in the zeroth bit if
the latter is initially set to zero. If it is instead set to one, the inverted result is stored.

The last two-bit operation to be considered is the OR gate which returns 1 if and only
if at least one of the input bits is set to 1. Similarly to the AND gate, one needs at
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least 3 input and output bits in order to render the gate reversible (by convention, the
extra bit is again the zeroth bit). However, there is no elementary gate that constitutes
a reversible version of the OR gate. Instead, one constructs a two-gate sequence which
consists of a CNOT gate with the first bit as control and the extra bit as target,
followed by a To!oli gate targeting the extra bit, but with inverted condition on the
first bit; the corresponding truth table is shown in Table 3.4. Accordingly, the quantum
version of the reversible OR gate consists of the quantized versions of the CNOT gate,
followed by the quantized To!oli gate, admitting the following matrix representation
of the lexographical order:

C2C1(X0) C1(X0) ′





1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0





. (3.1.4)

Input Output
b2 b1 b0 b2 b1 (b2 ∈b1)∝b0
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 1
0 1 1 0 1 0
1 0 0 1 0 1
1 0 1 1 0 0
1 1 0 1 1 1
1 1 1 1 1 0

Table 3.4: Truth table of the reversible OR gate, storing the result of b2 ∈ b1 in the
zeroth bit if the latter is initially set to zero. If it is instead set to one, the inverted
result is stored.

This completes the treatment of the most relevant logical/bitwise operations and
their quantizations. More complex boolean functions can be quantized by classically
decomposing them into a sequence of NOT gates, AND gates, OR gates, and XOR
gates with subsequent quantization of these elementary operations. With this technique
also arithmetic operations are, in principle, already covered. However, I will present in
the next section more elegant approaches for implementing these operations.
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3.2 Arithmetic Operations

Interpreting bit strings, and hence the computational basis states, as binary repre-
sentations of integers, one can also formulate arithmetic operations on multi-qubit
systems. In the following, I will distinguish between encoding signed and unsigned
integers into the computational basis states. Via the identification (2.2.7), I may repre-
sent the unsigned integers 0, 1, . . . , 2n

≃ 1 within an n-qubit system. For the signed
version, I choose the commonly used two’s complement representation of numbers
a ↓ {≃2n→1

, ≃2n→1 + 1, . . . , 0, . . . , 2n→1
≃ 1} as n-bit strings x via

a = ≃xn→12n→1 +
n→2∑

i=0
xi2i

. (3.2.1)

After having fixed a representation of (un)signed integers, arithmetic operations can now
be implemented on a bitwise level. This is the usual approach on classical computers
and the resulting gate sequences can be quantized in alignment with the methods
presented in the previous section (see e.g. [46]). However, transforming arithmetic
circuits such as the ripple-carry adder or the more complex Brent-Kung adder [47]
into reversible ones introduces a larger overhead, both in additional (qu-)bits and
gates. Instead, I will focus on implementations that are based on the quantum Fourier
transform (QFT) which I describe in the following.

Definition 3.3. Given a complex vector v ↓ ℂd, its discrete Fourier transform (DFT)
is given by the vector w ↓ ℂd with entries

wk = 1
↘

d

d→1∑

j=0
vje

→i2ωjk/d
, k = 0, . . . , d ≃ 1. (3.2.2)

The naive implementation of the DFT requires O(d2) operations. In comparison, fast
Fourier transform algorithms such as the Cooley-Turkey algorithm [48] can calculate
the DFT with merely O(d log d) operations. As of today, a proof that this is the
optimal complexity for calculating general DFTs is still pending; optimality could
only be shown under additional assumptions (see e.g. [49]). Nevertheless, it is widely
believed that the scaling of O(d log d) is indeed generally optimal.

I may interpret a given complex vector v ↓ ℂd as quantum state of a quantum system
to which I associate the Hilbert space ℂd, provided that the vector is normalized. In
this context, one can define the quantum version of the DFT.
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Definition 3.4. The quantum Fourier transformation (QFT) is the linear operator
QFT : ℂd

↙ ℂd defined by its action on the orthonormal basis states

QFT |j↑ := 1
↘

d

d→1∑

k=0
e

2ωijk/d
|k↑ , k = 0, . . . , d ≃ 1.

Note that the DFT and QFT di!er in the sign of the exponents. Therefore, the QFT is
technically a quantum version of the inverse DFT. Crucially, as stated in Proposition 3.5,
the QFT is a unitary operator and therefore a valid quantum circuit.

Proposition 3.5. The QFT is a unitary operator.

Proof. The case d = 1 is trivial, as in this case QFT = 1. Therefore let d > 1. It su"ces
to prove the assertion for ONB states. Since the adjoint is given by

QFT †
|k↑ = 1

↘
d

d→1∑

ε=0
e

→2ωikε/d
|⇀↑ ,

it holds that

QFT †QFT |j↑ = 1
↘

d

d→1∑

k=0
e

2ωijk/dQFT †
|k↑

= 1
d

d→1∑

k=0
e

2ωijk/d
d→1∑

ε=0
e

→2ωikε/d
|⇀↑

= |j↑ + 1
d

d→1∑

ε=0
ε↓=j

d→1∑

k=0

(
e

2ωi(j→ε)/d
)k

|⇀↑

= |j↑ + 1
d

d→1∑

ε=0
ε↓=j

⇁

d̃→1∑

k=0

(
e

2ωiϑ/d̃
)k

|⇀↑ = |j↑ ,

where

(⇁, ω, d̃) =






(
|j ≃ ⇀|, 1, d/(j ≃ ⇀)

)
, if (j ≃ ⇀) | d(

1, j ≃ ⇀, d

)
, otherwise.

In either case, all terms vanish except for |j↑ since the sum of all n-th complex unit
roots is zero, for n > 1. The first case is clear. In the second case, (j ≃ ⇀) ⫅̸ N , thus
e

2ωi(j→ε)/d is a primitive unit root and the summation over k also gives the sum over all
N -th complex unit roots.
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Assuming that d = 2n for some n ↓ ℕ, one especially obtains the QFT for an n-qubit
system, first discovered by Coppersmith [50]. The multi-qubit QFT can be constructed
from O(n2) many (controlled) elementary gates of the form

H ′
1

↘
2

[
1 1
1 ≃1

]

and Rk ′

[
1 0
0 e

i2ω/2k

]

, k ↓ ℕ, (3.2.3)

where H is the famous Hadamard gate and Rk applies a relative phase to the portion of
a qubit that is in the state |1↑. A concrete quantum circuit implementing the n-qubit
QFT as envisioned by Coppersmith is depicted in Fig. 3.1. I have omitted the final
layer of SWAP gates which reverses the qubit order. In applications, this is usually
not implemented anyway since it is more e"cient to simply keep track of the reversed
qubit order classically and to reorder the qubit routing of subsequent quantum circuits.
This will be also the case for all operations discussed in the following. Lastly, note
that the classical version, assuming optimality of the current fast Fourier transform
algorithms, would need at least O(n2n) classical operations. That is, the QFT o!ers an
exponential speed-up over its classical counterpart.1

. . .

. . .

. . .

. . .

. . .

qn→1 H R2 Rn

qn→2 H R2 Rn→1

qn→3

...

q1 H R2

q0 H

Figure 3.1: Quantum circuit diagram of quantum Fourier transform of an n-qubit
register q0, . . . , qn→1. On the qubit qi, an initial Hadamard gate is followed by a
cascade of i + 1 singly-controlled rotational gates. The control runs over the qubits
qi→1, . . . , q0 and the applied phase is halved from one gate to the next.

1Exponential speed-ups governed by pure quantum subroutines such as the QFT always have to be
taken with a grain of salt. Even though the QFT might compute the DFT exponentially faster
than any classical algorithm could, the result is still encoded into a quantum state. As soon as I
would like to read out the DFT via quantum measurements, I would need to sample/measure the
quantum state exponentially often in order to resolve the exponentially small di!erences between
the relative phases of the computational basis states.
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QFT-based arithmetic operations all follow the same design principle which was first
formulated by Draper [51] for the concrete case of integer addition: acting on the qubit
register of one operand with the QFT, applying rotational gates which are controlled
on the qubits of the other operand, subsequently applying the inverse QFT to the first
register. The key observation is that the QFT-ed state encodes its bit information in the
relative phases such that simple rotational gates, which act additively on the phases,
can e"ciently produce the QFT-ed state of the sum of the former state and any other
desired state such that subsequently acting with the inverse QFT yields the correct
state. More concretely, applying the QFT on an n-qubit CB state |x↑ in fact produces
the state

QFT |x↑ = 1
↘

2n

(
|0↑+e

2ωi0.xn→1···x1x0 |1↑

)
· · ·

(
|0↑+e

2ωi0.x1x0 |1↑

)(
|0↑+e

2ωi0.x0 |1↑

)
, (3.2.4)

where 0.xk · · · x1x0 is the binary fraction which corresponds to dividing the integer
represented by x by 2k, respectively. Now assume I wish to add a single bit y ↓ "
to a given integer x. In order to prepare the QFT-ed state of |x + y↑ I would have
to add, for each k = 0, . . . , n ≃ 1, the binary fraction consisting of k zeros and y as
the trailing binary place to the (k + 1)-th exponent in (3.2.4). This can be achieved
by acting with a y-controlled Rk on the (k + 1)-th qubit, respectively. If a bit string
y = y1y0 of length two should be added, the circuit for the addition of y0 is simply
appended with a cascade of y1-controlled Rε acting on the ⇀-th qubit, respectively. Each
additional bit/qubit introduces n ≃ k singly-controlled rotational gates on top. This
pattern readily generalizes for arbitrary long bit strings and is depicted in Fig. 3.2
for the phase addition of two n-qubit integers. Applying this quantum circuit to the
previously QFT-ed qubit register thus yields the state

1
↘

2n

(
|0↑ + e

2ωi(0.xn→1···x1x0+0.yn→1···y1y0)
|1↑

)
⇐ · · · ⇐

⇐

(
|0↑ + e

2ωi(0.x1x0+0.y1y0)
|1↑

)
⇐

(
|0↑ + e

2ωi(0.x0+0.y0)
|1↑

) (3.2.5)

in the first register which readily is the QFT-ed version of the CB state |x + y↑. Therefore,
subsequently applying the inverse QFT indeed yields the latter state. As for all the
quantized circuits for logical/bitwise operations, it su"ces to verify the correctness of
this operation on the CB states. By linearity, I may employ the very same circuit to
add together two superpositions of quantum integers. Furthermore, note that, due to
the properties of the two’s complement, the (quantum) circuit looks the same for both
unsigned and signed integers. By exchanging the quantum controls in Fig. 3.2 with
classical ones, I may use the same circuit idea to add a classical integer to a quantum
integer. Note that this circuit construction also already covers subtraction; flipping
the signs of all the relative phases incurred from the rotational gates clearly performs
a phase subtraction rather than a phase addition.
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. . . . . . . . .

. . . . . . . . .

. . .

. . .

rn→1

rn→2

...
r1

r0

qn→1 R1 R2 Rn→1 Rn

qn→2 R1 Rn→2 Rn→1

...
q1 R1 R2

q0 R1

Figure 3.2: Quantum circuit diagram for phase addition. The qubits q0, . . . , qn→1
belong to the previously QFT-ed integer register while the qubits r0, . . . , rn→1 represent
the second quantum integer which is to be added to the first one. On the qubit qi, a
cascade of i + 1 controlled rotational gates is applied. Within each of these cascades
the control runs over the last i + 1 qubits in the r-register and the applied phase is
halved from one gate to the next. The result is the QFT-ed state of the sum of both
quantum integers.

The ingenious construction by Draper has spawned QFT-based circuits also for the other
arithmetic operation. However, for multiplication, division, and modulo the fact that
one of the operands may be zero complicates the circuit design. Integer multiplication
simply is not reversible and can therefore, unlike integer addition and subtraction, not
admit a straight-forward quantization. This issue can be resolved by introducing an
additional register where the result is stored such that the initial operands remain
unchanged in their respective registers. Then, even in the case where one of the
operands is zero, di!erent operands get mapped to di!erent output (considering all
three registers) and reversibility has been achieved. A concrete implementation for
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integer multiplication is described in [52] and is centered around the decomposition

x · y =
n→1∑

k,ε=0
xkyε2k+ε =

n→1∑

k=0
2k(xky + ykx ≃ xkyk) (3.2.6)

of the product to be computed. The corresponding phase multiplication consists of the
phase addition/subtraction of all 3n terms in the most right-hand side of (3.2.6). The
respective power of two enters directly into the rotational gates’ applied relative phases
while the bit-valued pre-factor can be realized by additionally controlling all associated
rotational gates on the respective qubit. These 3n operations can be further condensed
to 2n phase additions by simply leaving out the addition of 2k

xkyk when adding either
2k

xky or 2k
ykx and therefore accounting for the negative term. Furthermore, I may

ignore all rotational gates which would carry a relative phase larger than πi as this
directly corresponds to overflows. Sandwiching the just described circuit between
the QFT and inverse QFT on the third register implements the unitary which acts on
products of CB states as |x↑ |y↑ |z↑ ∋↙ |x↑ |y↑ |z + xy↑. Initializing the third register
with zero therefore writes the integer multiplication of x and y in the third register.

Lastly, I consider integer division and the modulo operation. Both operations can again
not be made reversible with only two outputs, since none of them is initially defined
when the second operand is zero and choosing any artificially set value will eventually
collide with the result of the regular division and modulo operation. Therefore, one extra
output register is necessarily required for reversibility. When calculating the quotient
and remainder simultaneously, an entirety of four registers is necessary. Regarding
the case where the second operand is zero, the usual choice is to simply return the
original dividend as quotient and some large value for the remainder. There are several
works on quantum versions of integer division and modulo operation; in the following
I will focus on the quantized restoring division algorithm as proposed in [53]. The
classical version works on four n-bit registers: The first one holds the dividend, the
second one holds the divisor, the third register is initialized to zero and will hold the
resulting quotient, and the fourth register is initialized with the dividend and will
hold the remainder. The following steps are repeated n times: Bit-shift the combined
remainder-dividend register to the left by one, subtract the divisor from the remainder
register and if the result is negative restore the former value by adding the divisor to
the remainder register; otherwise set the least significant bit of the quotient register to
one. This completes the algorithm. Note that, if the divisor is zero then the quotient
will be equal to the dividend and the remainder will be set to 011. . . 1, i.e. the largest
positive number representable in the two’s complement. If dividend and divisor di!er
in their signs, the final quotient has to be adjusted to hold a negative value. When
working with unsigned inputs, the subtractions and subsequent checks for negativity
have to be substituted with direct integer comparisons and conditional subsequent
subtraction to avoid underflows in the unsigned format. Basically all parts of the
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classical restoring division algorithm are directly quantizable with the available tools.
Namely, I have already introduced quantum circuits for addition and subtraction,
and checking whether the result of a subtraction is negative can be implemented by
a quantum control on the leading qubit in the respective register. A corresponding
quantum circuit for in-place division on inputs in the two’s complement (without sign
adjustment) is shown in Fig. 3.3. For unsigned input, adding one qubit to each register
allows for applying the regular restoring division algorithm on (n + 1)-qubit integers.

. . .

. . .

. . .

. . .

. . .

s

rn→1

rn→2

Sub Add

rn→3

Sub Add

...

r0

qn→1

Sub Add

qn→2

...

q1

q0

Figure 3.3: Quantum circuit diagram for division and modulo operation. The qubit
register s holds the divisor’s value and is used for in-place addition and subtraction
on the compound register q0, . . . , qn→1, r0, . . . , rn→1 where the first n qubits represent
the dividend and the last n qubits are initialized to zero. Between the cascade of
alternating subtractions and additions with the divisor which are shifted towards the
beginning of the compound register by one qubit per step, CNOT and X gates account
for correctly setting the remainder register’s qubits.
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3.3 Boolean Expressions as Conditions

Now that I have detailed how to quantize various bitwise and arithmetic operations,
I wish to discuss how to quantize conditional operations. The underlying idea is to
take the quantization of the respective unconditional operation and to control it on an
ancilla flag qubit which was previously flipped to the |1↑ state whenever the respective
condition is fulfilled. This should happen coherently, i.e. without measurements so
that the flag qubit also has to be manipulated with suitable controlled quantum gates.
In the following I may always assume that the operation acts (at least partly) on
the same registers on which also the condition is checked, enforcing the introduction
of flag qubits to store the result of checking the condition. Note, however, that if
the controlled operation and the condition a!ect disjoint registers, the operation may
occasionally be controlled directly on the qubits of the registers on which the condition
is to be evaluated, avoiding the need for additional qubits.

A scheme for quantizing general logical formulae can be given inductively: The simplest
case arises when an operation is conditioned directly on a single (qu-)bit being set
to one. Here, the flag qubit, being initialized in the |0↑ state, is conditionally flipped
using the CNOT gate Eq. (3.1.2) with the conditioning qubit as control qubit. Given
a formula ϕ and a quantum circuit realizing the unitary

Cϖ(Xa) :=
∑

ϖ(x)=0
|x↑↔x| ⇐ 1a +

∑

ϖ(x)=1
|x↑↔x| ⇐ Xa (3.3.1)

which flips the ancilla qubit for all CB states which fulfill the formula ϕ, the quantum
circuit implementing the control on the negated formula ¬ϕ is simply given by flipping
the ancilla qubit unconditionally before applying the control on the unnegated formula,
that is

C¬ϖ(Xa) = Cϖ(Xa)(1 ⇐ Xa). (3.3.2)

Controlling on the exclusive OR of two formulae ϕ and ε is again relatively straight
forward. Assuming access to the unitaries Cϖ(Xa) and Cϱ(Xa), the control on ϕ ∝ ε

simply arises from executing both unitaries in sequence since the ancilla qubit is
flipped twice (and therefore brought back to the |0↑ state) whenever both formulae are
fulfilled:

Cϖ ↔ ϱ(Xa) = Cϱ(Xa)Cϖ(Xa). (3.3.3)

For controlling on the logical OR/AND of two formulae ϕ and ε, I have to introduce
two ancilla qubits a0, a1. In both cases, one of the formulae, say ϕ, is checked and
the result stored on a0/a1. Secondly, the remaining formula is checked for. In case
of the logical OR, a1 is only flipped if additionally a0 has not been flipped previously
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such that a1 is only set to |1↑ if ε is fulfilled, but ϕ is not. Afterwards, a0 is flipped
controlled on a1. If ϕ is fulfilled, a0 already is in the |1↑ state and the final flip is not
applied as a1 has not been flipped in the second step. If ϕ is not fulfilled, but ε is,
this final CNOT gate flips a0 into the |1↑ state. Thus, in summary, the described gate
sequence implements the check for ϕ ∈ ε and stores the result on a0, that is

Cϖ↗ϱ =
(
1 ⇐ Ca1(Xa0)

)
CϱCa0(Xa1)Cϖ(Xa0). (3.3.4)

In case of the logical AND, flipping a0 is controlled on both the qubit a1 and on whether
ε holds true, ensuring that a0 is only set to |1↑ if both ϕ and ε are fulfilled, yielding
the gate sequence

Cϖ↘ϱ = CϱCa1(Xa0)Cϖ(Xa1) (3.3.5)

This concludes the treatment of the most fundamental logical operations. More
complex logical formulae can always be decomposed into some combination of variables,
negations, exclusive ORs, logical ORs, and logical ANDs e.g. in the common conjunctive
or disjunctive normal form (see [54]). A summary of all quantized control structures is
also given in Table 3.5.

formula unitary quantum circuit

x Cx(Xa)
a

x

¬ϕ Cϖ(Xa)(1 ⇐ Xa)
ϕ

a

x

ϕ ∝ ε Cϱ(Xa)Cϖ(Xa)
ϕ ε

a

x

ϕ ∈ ε

(
1 ⇐ Ca1(Xa0)

)
CϱCa0(Xa1)Cϖ(Xa0)

ϕ ε

a1

a0

x

ϕ ∞ ε CϱCa1(Xa0)Cϖ(Xa1)

ϕ ε

a1

a0

x

Table 3.5: Quantum control flow for logical formulae. This set of elementary quantiza-
tion schemes inductively defines a valid approach for arbitrary logical formulae.
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In addition to formulae involving only logical, i.e. boolean, variables, I wish to also
quantize comparisons of two integers, say x and y. A uniform approach, already used
in the (quantum) division algorithm (see Fig. 3.3), is to subtract y from x via the
subtraction method described in Fig. 3.2 and to subsequently check whether. . .

x == y: . . . all qubits are in the |0↑ state.

x != y: . . . at least one qubit is in the |1↑ state.

x < y: . . . the most significant qubit is in the |1↑ state (negative number).

x >= y: . . . the most significant qubit is in the |0↑ state (non-negative number).

For checking x > y, one may subtract y + 1 instead and then perform the same check
as for x >= y. Analogously, checking x <= y can be implemented by subtracting y ≃ 1
and then performing the same check as for x < y. For unsigned n-qubit integers, I may
again introduce a single ancilla qubit in order to perform the subtraction on a signed
(n + 1)-qubit integer. The entire check may be computed in-place in which case it has
to be uncomputed via a subsequent addition by y (or y ± 1 for strict inequalities).
Alternatively, one may introduce an ancilla register, initialized in |0↑ and copy the
relevant information via a layer of CNOT gates.

Lastly, I wish to detail how to quantize computational branches, appearing e.g. in
if-else-constructions. A single if-statement is already covered by the discussions
above; All operations in the if-body have to be controlled on the flag qubit previously
manipulated with a quantum control flow Cϖ(Xa) for the if-condition ϕ. When
appending an else-statement, all operations within the else-branch have to be
explicitly controlled on the negated flag qubit in order to ensure that only one of the
two computational branches is executed on a given CB state. Similarly, when appending
one or multiple else if-statements, the operations within an else if-branch have to
be controlled not only on the respective else if-condition, but also on all previously
checked conditions to be not fulfilled. This requires to store the evaluation of each
condition on a separate flag qubit and to control the i-th else if-condition on the
i-th qubit being in the |1↑ state and the zeroth to (i ≃ 1)-th flag qubits being in the |0↑

state. The final else-branch, if present, has to be controlled on all flag qubits being in
the |0↑ state.
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The Design of CQ

In this chapter, I detail the construction of CQ. The first section gives a collection of
CQ’s vocabulary, i.e. of all valid “words”; these words are already partially equipped
with some semantical meaning to motivate their selection. Furthermore, I comment
on the implementation of the lexer, that is, the software which inputs a stream of
characters (a potential CQ-source code file) and tokenizes the input into valid words.
In the second section, I introduce the entire grammar of CQ while keeping semantical
interpretation to a minimum. However, in order to give insights into the language’s
inner workings, some comments on the intended semantics are necessary. For each
set of grammar rules, I display the corresponding source code for the parser, that is,
the software that takes the tokenized output of the lexer and verifies that it complies
to the given grammar rules. Lastly, in the third section, I complete the discussion of
CQ’s semantic. The previously grammar rules are extended to action rules in order to
construct the abstract syntax tree (AST). I design a one-pass compiler that can check
syntactical and semantical correctness simultaneously. This means, the AST does
not have to be traversed again in order to check a program’s semantical correctness.
The excellent online tutorial by drifter1 [55] about compiler construction helped me
enormously to get myself familiar with the relevant software tools. All the code shown
in this chapter can be found under [32].

4.1 Vocabulary and Lexer

As in most other programming languages, identifier for variable or function names may
start with a letter of the Latin alphabet (lower- or uppercase) or an underscore and be
followed up by an arbitrary amount of Latin letters, underscores, and digits. Special
combinations are reserved for the language’s 21 keywords which are summarized in
Table 4.1. For example, the tokens false and true are reserved for boolean truth-
values, i.e. are boolean literals. Integer literals are sequences purely comprised of digits,
optionally preceded by a minus-sign. These three rules are summarized in Fig. 4.1
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1 ID [a-zA -Z_][a-zA -Z0 -9_]*
2 BCONST "false "|" true"
3 ICONST " -"?[0 -9]+

Figure 4.1: Lexer code snippet for defining allowed identifiers as well as boolean and
integer literals.

The remaining 19 keywords are tokenized similarly to false/true. For example, the
two qualifier keywords const and quantum are translated to internal objects CONST
and QUANTUM, respectively (see Fig. 4.2).

1 const { return CONST; }
2 quantum { return QUANTUM ; }

Figure 4.2: Lexer code snippet for recognizing the two qualifier keywords const and
quantum.

In addition to identifiers, integer literals, and keywords, there are symbols and se-
quences of symbols reserved for operations and delimiters. The four logical operations
incorporated into CQ are NOT (!), AND (&&), OR (||), and XOR (ˆˆ). Further logical
elements are the comparisons (<, <=, >, and >=) as well as equality (==) and inequality
(!=). The nine possible integer operations are comprised of four bitwise operations and
five arithmetic operations: bitwise-INVERT (~), bitwise-AND (&), bitwise-OR (|), and
bitwise-XOR (ˆ), as well as addition (+), subtraction (-), multiplication (*), division
(/), and modulo (%). All these operations, except the unary INVERT, also come as
in-place assignment operators (|=, ˆ=, &=, +=, -=, *=, /=, and %=), complementing the
ordinary assignment operator (=). Lastly, CQ uses as delimiters colons (:), commas
(,), semicolons (;), parentheses (( and )), square brackets ([ and ]), and braces ({,
}).

The code snippets in Figs. 4.1 and 4.2 are taken from my implementation of the lexer
using the C-based flex-software. In this framework, the prescribed vocabulary is easily
accessible from the lexer source code; language elements are simply listed together with
some actions (expressed as C-code) which should be executed upon reading a given
pattern from the input file. If characters in the input file do not match any prescribed
pattern, the lexer throws an error, indicating invalid CQ-source code. The lexer could
also be run independently from the subsequent parser, simply performing an analysis
of the vocabulary.
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CQ-Keyword Purpose
bool primitive type
break classical control flow
case classical and quantum switch-statements
continue classical control flow
const type qualifier, for classical variables only
default classical and quantum switch-statements
do classical control flow
else classical and quantum control flow
false boolean truth-value
for classical control flow
if classical and quantum control flow
int primitive type
measure quantum measurement
phase address phase of quantum variable
quantum type qualifier for quantum variables
return classical and quantum control flow
switch classical and quantum control flow
true boolean truth-value
unsigned primitive type
void no-return functions
while classical control flow

Table 4.1: CQ-Keywords. 18 out of the 21 keywords of CQ are directly imported
from C, while measure, phase, and quantum are completely new keywords which are
introduced for purely quantum syntax. CQ features the two qualifiers const and
quantum, and the four types bool, int, and unsigned, and void. The keywords
break, continue, do, for, and while are for classical control flow only, while case,
default, else, if, return, and switch can be used in the quantum context as well.

4.2 Grammar and Parser

Conducting the lexical analysis of the input with the lexer introduced in the previous
section ensures a stream of valid tokens. The next step is to define the grammar of CQ
which has these tokens as terminal symbols. The grammar should be deterministic
context-free in order to admit a su"ciently e"cient parser [56]. For the implementation
of the parser, I use GNU’s bison [31] that accepts production rules in Backus-Naur form
and constructs the corresponding parser from it. I will display all following grammar
rules already as bison source code.
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By convention, the starting symbol of the grammar is program. In the global scope I
only wish to allow for variable declaration and definition as well as function definitions;
other statements may only appear inside the body of a function. This is implemented
by producing a declaration list from program which, in turn, can yield arbitrarily
many declarations via left-recursion; it always contains at least one declaration, thus
prohibiting an empty program. Finally, a declaration in this sense can either be a
variable declaration, a variable definition, or a function definition. These three product
rules complete the construction of the global scope and are summarized in Fig. 4.3.

1 program : decl_l ;
2

3 decl_l : decl
4 | decl_l decl ;
5

6 decl: var_decl
7 | var_def
8 | func_def ;

Figure 4.3: Parser code snippet for the global scope. The declaration list (decl_l)
is derived from the starting symbol program. The former, in turn, can be expanded
into at least one, but otherwise arbitrarily many declarations (decl) which may either
be a variable declaration (var_decl), a variable definition (var_def), or a function
definition (func_def). All appearing semicolons are not part of the production rules
themselves. They are used by bison to mark the respective production rule’s end.

A variable declaration always consists of a type specifier, determining the primitive type
and array dimensions, the variable’s name and a subsequent semicolon. This sequence
may optionally preceded by the quantum-qualifier while the const-qualifier is not
permitted. In contrast, a variable definition may start with any qualifier (none, const,
or quantum), followed by the type specifier, the variable’s name, the assignment symbol,
an initializer, and a closing semicolon. The initializer may either be a single expression
or an initializer list enclosed by braces. Such an initializer list is then expanded into
at least one expression; arbitrarily many additional elements together with a comma
may be appended via left-recursion. Notably, in the context of initialization, also
superposition-calls to functions are allowed. The syntax for such a call is to enclose the
function’s name with square brackets and to omit the argument, as it is determined by
the variable to be defined on the left-hand side. The type specifier which is present
both in variable declarations as well as in variable definitions is eventually expanded
into one of the three primitive types bool, int, and unsigned. Arbitrarily many array
dimensions, consisting of a square brackets-enclosed expression, may be appended to
the primitive type via left-recursion. The rules for variable declaration and definition
as well as for the initializer and the type specifier are summarized in Fig. 4.4.
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1 var_decl : QUANTUM type_specifier declarator SEMICOLON
2 | type_specifier declarator SEMICOLON ;
3

4 var_def : QUANTUM type_specifier declarator ASSIGN init SEMICOLON
5 | CONST type_specifier declarator ASSIGN init SEMICOLON
6 | type_specifier declarator ASSIGN init SEMICOLON ;
7

8 init:
9 lor_expr

10 | LBRACKET ID RBRACKET
11 | LBRACE init_elem_l RBRACE ;
12

13 init_elem_l : lor_expr
14 | LBRACKET ID RBRACKET
15 | init_elem_l COMMA LBRACKET ID RBRACKET
16 | init_elem_l COMMA lor_expr ;
17

18 type_specifier : BOOL
19 | INT
20 | UNSIGNED
21 | type_specifier LBRACKET or_expr RBRACKET ;
22

23 declarator : ID ;

Figure 4.4: Parser code snippet for variable declaration and variable definition. Declared
variables may be declared with the quantum-qualifier or with no qualifier; they cannot
be const. Defined variables, in turn, can also be const. Variable definitions include an
assignment symbol (=) and a right-hand side (init) which is either a single expression or
an initializer list (init_elem_l) of arbitrary length. Variables are uniquely determined
by their qualifier, their type (type_specifier), and their name (ID in declarator).
Both, variable declaration and variable definition are closed with a trailing semicolon.

Function definitions are comprised of a description of their return type, the function’s
name, a parentheses-enclosed comma-separated list of parameters (type specifiers and
names) as well as the actual function body. A function’s return may have none or the
quantum-qualifier, and any primitive type as well as the void-type, where void is a
substitute for the combination of qualifier and ordinary type specifier, i.e. neither the
quantum-qualifier, nor array dimensions are allowed whenever the function definition
involves void. The function parameters may have none or the quantum-qualifier,
and any primitive type as well as arbitrarily array dimensions, implemented via the
ordinary type specifier. The parameter list itself can hold arbitrarily many elements
via left-recursion, thus it may also be empty. Lastly, the braces-enclosed function
body gives rise to a sub-program. All productions related to function definitions are
summarized in Fig. 4.5.
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1 func_def : QUANTUM type_specifier declarator func_head func_tail
2 | type_specifier declarator func_head func_tail
3 | VOID declarator func_head func_tail ;
4

5 func_head : LPAREN par_l RPAREN
6 | LPAREN RPAREN ;
7

8 par_l: par
9 | par_l COMMA par ;

10

11 par: QUANTUM type_specifier declarator
12 | type_specifier declarator ;
13

14 func_tail : LBRACE sub_program RBRACE ;

Figure 4.5: Parser code snippet for function definition. These start with specifying
the return-type of the function. A function may not return anything (void) or return
either classical (unqualified) or quantum values which can be arrays of arbitrary
dimensions. The function head (func_head) holds a (possibly empty) parameter list
(par_l) with unqualified or quantum parameters (par), which can also be array-valued.
Eventually, the function tail (func_tail) is given by a braces-enclosed sub-program
(sub_program).

Similar to the global program, a sub-program may be expanded into a statement list
with at least one statement. This rule is again implemented via left-recursion. Variable
declarations and definitions are also valid within sub-programs while function definitions
are not. In addition, statements may be one of the restricted statements: phase-shift,
measurement, function call, if-else-construction, switch-construction, do-while-loop,
while-loop, for-loop, break, continue, return, and assignment. A restricted sub-program,
in turn, may only contain restricted statements and therefore neither declarations nor
definitions. In the following, I will allow for general sub-programs as bodies of functions
and loops, while if-else-branches and switch-cases are merely restricted sub-programs.
The product rules for (restricted) sub-programs and statements are also depicted in
Fig. 4.6.

The left-hand side of a phase-shift-statement is given by the phase-keyword, followed
by a parentheses-enclosed reference (a variable’s name, optionally with array indexing).
This is followed up by either an addition-assignment or subtraction-assignment. The
right-hand side consists of an expression as well as a trailing semicolon. In contrast, the
measurement-statement has only one possible derivation. It consists of the measure-
keyword, a parentheses-enclosed reference, and a trailing semicolon. The two possible
expansions for the phase-shift-statement and the production rule for the measurement-
statement are depicted in Fig. 4.7.
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1 sub_program : stmt_l ;
2

3 stmt_l : stmt
4 | stmt_l stmt ;
5

6 stmt: decl_stmt
7 | res_stmt ;
8

9 decl_stmt : var_decl
10 | var_def ;
11

12 res_sub_program : res_stmt_l ;
13

14 res_stmt_l : res_stmt
15 | res_stmt_l res_stmt ;
16

17 res_stmt : phase_stmt
18 | measure_stmt
19 | func_call_stmt
20 | if_stmt
21 | switch_stmt
22 | do_stmt
23 | while_stmt
24 | for_stmt
25 | break_stmt
26 | continue_stmt
27 | return_stmt
28 | assign_stmt ;

Figure 4.6: Parser code snippet for a sub-program. A sub-program is expanded into a
statement list (stmt_l) which contains at least one statement (stmt), but otherwise
arbitrarily many statements. A statement, in turn, may either be a declaration
statement (decl_stmt) or a restricted statement (res_stmt) which is either a phase-
shift (phase_stmt), a measurement (measure_stmt), a function call (func_call_-
stmt), an if-statement (if_stmt), a switch-statement (switch_stmt), a do-while-
loop (do_stmt), a while-loop (while_stmt), a for-loop (for_loop), break (break_-
stmt), continue (continue_stmt), a return-statement (return_stmt), or an assignment
(assign_stmt). Declaration statements are either variable declarations or definitions,
but no function definitions. A restricted sub-program (res_sub_program) is expanded
into a list of restricted statements (res_stmt_l).

Function calls can either be direct or inverted in which case the actual function call is
preceded by the INVERT-operator. The atomic function call is comprised of either the
function’s name or by the function’s name enclosed in square brackets, and a (possibly
empty) parentheses-enclosed argument list. The arguments themselves can be general
expressions. These three production rules are also listed in Fig. 4.8.
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1 phase_stmt : PHASE LPAREN ref_expr RPAREN ASSIGN_ADD lor_expr
SEMICOLON

2 | PHASE LPAREN ref_expr RPAREN ASSIGN_SUB lor_expr SEMICOLON ;
3

4 measure_stmt : MEASURE LPAREN ref_expr RPAREN SEMICOLON ;

Figure 4.7: Parser code snippet for a phase-shift- and a measurement-statement. The
phase-shift-statement (phase_stmt) is expanded into the phase-keyword, a subse-
quent reference (ref_expr) enclosed by parentheses, either a addition- or subtraction-
assignment, and an expression as right-hand side. The measurement-statement
(measure_stmt) is given by the measure-keyword followed by an expression enclosed
by parentheses.

1 func_call_stmt : INV func_call SEMICOLON
2 | func_call SEMICOLON ;
3

4 func_call : ID LPAREN arg_expr_l RPAREN
5 | ID LPAREN RPAREN
6 | LBRACKET ID RBRACKET LPAREN arg_expr_l RPAREN ;
7

8 arg_expr_l : lor_expr
9 | arg_expr_l COMMA lor_expr ;

Figure 4.8: Parser code snippet for a function call statement. Function call statements
(func_call_stmt) consist of a function call (func_call) and a trailing semicolon,
where the function call may optionally be inverted via a leading INVERT-operator.
The actual function call is given by a function’s name, possibly enclosed by square
brackets and a list of arguments (arg_expr_l). If the function call is regular (without
square brackets), the argument list may also be empty. In any case, there is not upper
bound on the number of arguments, and the individual arguments may be separated
with commas.

If-else-statements are initialized by the if-keyword, followed by a parentheses-enclosed
expression: the if-condition. The if-branch, in turn, is given by a braces-enclosed
restricted sub-program. In addition, the if-branch may be complemented by an arbitrary
amount of else-if-branches, implemented via left-recursion. These are introduced with a
combination of the else-keyword and the if-keyword, again followed by a parentheses-
enclosed expression, the corresponding else-if-condition. As for the if-branch, the
else-if-branches are restricted sub-programs, enclosed by braces. Eventually, an optional
trailing else-branch may complete the if-else-statement, consisting only of the else-
keyword and a braces-enclosed restricted sub-program, the else-branch. The entire
construction of if-else-statements is also summarized in Fig. 4.9.
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1 if_stmt : IF LPAREN lor_expr RPAREN LBRACE res_sub_program RBRACE
optional_else

2 | IF LPAREN lor_expr RPAREN LBRACE res_sub_program RBRACE
else_if optional_else ;

3

4 else_if : ELSE IF LPAREN lor_expr RPAREN LBRACE res_sub_program
RBRACE

5 | else_if ELSE IF LPAREN lor_expr RPAREN LBRACE
res_sub_program RBRACE ;

6

7 optional_else : ELSE LBRACE res_sub_program RBRACE
8 | /* empty */ ;

Figure 4.9: Parser code snippet for an if-else-statement. An if-statement (if_stmt)
starts with the if-keyword holds an parentheses-enclosed expression and a braces-
enclosed restricted sub-program followed by an arbitrary amount of else-ifs (else_if)
and an optional else (optional_else). Else-ifs consist of the combination of the else-
and if-keyword, an expression and a restricted sub-program; A simple else has to be
followed by a restricted sub-program.

Switch-statements begin with the switch-keyword, followed by a parentheses-enclosed
expression, the switch-expression, and a list of cases, enclosed by braces. The case list
must at least hold one case, but, using left-recursion, there is no upper limit on the
number of provided cases. A single case may either start with the case-keyword and a
subsequent constant, or with the default-keyword. Both variants are continued by a
colon and a restricted sub-program. Note that, unlike for the if-else-construction, no
enclosing braces are required. The grammar rules for the switch-statement and cases
are also shown in Fig. 4.10.

1 switch_stmt : SWITCH LPAREN lor_expr RPAREN LBRACE case_stmt_l
RBRACE ;

2

3 case_stmt_l : case_stmt
4 | case_stmt_l case_stmt ;
5

6 case_stmt : CASE const_val COLON res_sub_program
7 | DEFAULT COLON res_sub_program ;

Figure 4.10: Parser code snippet for a switch-statement. Such a switch-statement is
introduced with the switch-keyword, followed up by a parentheses-enclosed expression
and a braces-enclosed list of cases (case_stmt_l). A case list, in turn, can hold
arbitrarily many case-statements (case_stmt). Lastly, a case-statement consists of a
colon and a restricted sub-program, preceded by either the case-keyword followed by
a constant (const_val) or the default-keyword.
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The three types of loops (do-while-loop, while-loop, and for-loop) are introduced
with their respective keyword. In case of the do-while-loop, the initial do-keyword
is followed up by a braces-enclosed sub-program, the while-keyword, a parentheses-
enclosed expression and a trailing semicolon. The order of expression and sub-program
is reversed for while-loops: The initial while-keyword is followed by a parentheses-
enclosed expression and then by the braces-enclosed sub-program. Finally, for-loops
start with the for-keyword. Their parentheses-enclosed head is comprised of a variable
definition or an assignment, an expression, and a subsequent assignment. The for-loop’s
body is, as for the other two loops, given by a braces-enclosed sub-program. The
production rules for all three loops are again summarized in Fig. 4.11.

1 do_stmt : DO LBRACE sub_program RBRACE WHILE LPAREN lor_expr RPAREN
SEMICOLON ;

2

3 while_stmt : WHILE LPAREN lor_expr RPAREN LBRACE sub_program RBRACE
;

4

5 for_stmt : FOR LPAREN for_first lor_expr SEMICOLON assign_expr
RPAREN LBRACE sub_program RBRACE ;

6

7 for_first : var_def
8 | assign_stmt ;

Figure 4.11: Parser code snippet for loop statements. Do-while-loops (do_stmt) and
while-loops (while_stmt) have similar syntax: Both consist of a sub-program enclosed
by braces and the while-keyword followed by a parentheses-enclosed expression. Merely
the order of these elements and the fact that the do-while loop additionally start with
the do-keyword and ends with a semicolon are di!erent. In contrast, the for-loop
(for_stmt) is initiated with the for-keyword followed by a parentheses-enclosed triple
of either an assignment or a variable definition (for_first), an expression, and an
assignment expression (assign_expr). As for the other loops, the body of the for-loop
is a sub-program enclosed by braces.

The three possible jump-statements in CQ are break-statements, continue-statements,
and return-statements. The first two merely consist of the respective keyword (break
and continue) and a semicolon while the latter may optionally enclose an expression
between the leading return-keyword and the trailing semicolon. These production
rules are also listed in Fig. 4.12.

There are nine possible assignment-statements in CQ. The di!erent types of assignment-
statements exactly correspond to the di!erent types of assignment-operators that I
already introduced in the previous section. In any case, the statement consists of
a reference as left-hand side, the respective assignment-operator, an expression as
right-hand side, and a trailing semicolon. These rules are again listed in Fig. 4.13.
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1 break_stmt : BREAK SEMICOLON ;
2

3 continue_stmt : CONTINUE SEMICOLON ;
4

5 return_stmt : RETURN SEMICOLON
6 | RETURN lor_expr SEMICOLON ;

Figure 4.12: Parser code snippet for jump-statements. Both the break-statement
(break_stmt) and the continue-statement (continue_stmt) merely consist of the
respective keyword and a semicolon. A return-statement (return_stmt) may, in
addition to the return-keyword and a closing semicolon, contain an expression.

1 assign_stmt : assign_expr SEMICOLON ;
2

3 assign_expr : ref_expr ASSIGN lor_expr
4 | ref_expr ASSIGN_OR lor_expr
5 | ref_expr ASSIGN_XOR lor_expr
6 | ref_expr ASSIGN_AND lor_expr
7 | ref_expr ASSIGN_ADD lor_expr
8 | ref_expr ASSIGN_SUB lor_expr
9 | ref_expr ASSIGN_MUL lor_expr

10 | ref_expr ASSIGN_DIV lor_expr
11 | ref_expr ASSIGN_MOD lor_expr ;

Figure 4.13: Parser code snippet for an assignment-statement. The assignment-
statement (assign_stmt) consists of an assignment-expression (assign_expr) and a
trailing semicolon. The assignment-expression, in turn, is comprised of a reference as
left-hand side, one of the nine assignment operators, and an expression for right-hand
side.

CQ’s grammar has several production rules for dealing with expressions. The following
production rules are heavily inspired by [57] which provides exemplary bison code for
some of C’s syntax rules. First and foremost, a fixed ordering of di!erent expressions
accounts for the di!erent precedences of logical, bitwise, and arithmetic operators.
Whenever expressions occurred in previous production rules, they were logical OR
expressions; correspondingly, the logical OR has the lowest precedence among all oper-
ators. These may either be expanded into a single logical XOR expression or a logical
XOR expression preceded by another logical OR expression and the corresponding
operator. Similarly, a logical XOR expression may yield a logical AND expression,
optionally preceded by a logical XOR expression and the operator. The logical AND
operator has the highest precedence among all binary logical operators; a logical AND
expression eventually gives rise to a comparison expression, preceded by an arbitrary
amount of logical AND expressions and logical AND operators. The three production
rules for binary logical operators are also depicted in Fig. 4.14.
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1 lor_expr : lxor_expr
2 | lor_expr LOR lxor_expr ;
3

4 lxor_expr : land_expr
5 | lxor_expr LXOR land_expr ;
6

7 land_expr : comparison_expr
8 | land_expr LAND comparison_expr ;

Figure 4.14: Parser code snippet for logical expressions. The order of the logical
expression resembles the precedence of the three binary logical operators, that is, the
logical OR has the lowest precedence, followed by the logical XOR while the logical AND
has the highest precedence among these three operators. A logical AND expression
(land_expr) may eventually give rise to a comparison expression (comparison_expr).

The four comparison operators have equal precedence, stronger than the one of any
binary logical operator, but weaker than the one of the equality and inequality operator.
Accordingly, a comparison expression may directly yield an (in-)equality expression or
another comparison expression followed by one of the comparison operators and an
(in-)equality expression. Similarly, the equality and inequality operator have the same
precedence which, in turn, is below the precedence of every binary integer operator. An
(in-)equality expression therefore may be expanded into an OR expression, preceded
by arbitrarily many combinations of (in-)equality expressions and either the equality
or inequality operator. These rules are also shown in Fig. 4.15.

1 comparison_expr : equality_expr
2 | comparison_expr GE equality_expr
3 | comparison_expr GEQ equality_expr
4 | comparison_expr LE equality_expr
5 | comparison_expr LEQ equality_expr ;
6

7 equality_expr : or_expr
8 | equality_expr EQ or_expr
9 | equality_expr NEQ or_expr ;

Figure 4.15: Parser code snippet for comparison and (in-)equality expressions. Un-
like the binary logical operators, the four comparison operators all share the same
precedence, implemented by alternative productions rather than consecutive ones. A
comparison expression may eventually yield an (in-)equality expression (equality_-
expr). Again, the equality and inequality operator share the same precedence which is
superseded by that of integer operators. Therefore, an (in-)equality expression may
eventually give rise to the integer operator expression of lowest precedence: the bitwise
OR expression.
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The eight di!erent binary integer operators demand several production rules for properly
enforcing correct precedence. They are ordered in precedence according to the following
scheme: Bitwise operators have lower precedence than arithmetic operators. Internally,
the bitwise operators’ precedences are ordered in the same way as the ones of their
logical counterparts, that is bitwise OR has the lowest, bitwise XOR the second lowest,
and bitwise AND the highest precedence. Addition and subtraction have the next
higher precedence. Finally, multiplication, division and modulo share the highest
precedence among all binary operators. The corresponding production rules for integer
expressions as shown in Fig. 4.16 follow the given order of precedence, allowing for
di!erent expansions whenever two or more operators tie in terms of their precedence.

1 or_expr : xor_expr
2 | or_expr OR xor_expr ;
3

4 xor_expr : and_expr
5 | xor_expr XOR and_expr ;
6

7 and_expr : add_expr
8 | and_expr AND add_expr ;
9

10 add_expr : mul_expr
11 | add_expr ADD mul_expr
12 | add_expr SUB mul_expr ;
13

14 mul_expr : unary_expr
15 | mul_expr MUL unary_expr
16 | mul_expr DIV unary_expr
17 | mul_expr MOD unary_expr ;

Figure 4.16: Parser code snippet for integer expressions. The order of logical expressions
mirrors the precedence of the eight binary integer operators: first the three binary
bitwise operators OR, XOR, AND, followed by addition and subtraction and completed
by multiplication, division, and modulo. A multiplicative expression (mul_expr)
eventually gives rise to a unary expression (unary_expr).

The last set of production rules is concerned with unary operators, measurements,
function calls, references with array indexing, and constants. First, a unary expression
may either yield a postfix expression, another unary expression preceded by the logical
NOT-operator or the INVERT-operator, or a measurement of another parentheses-
enclosed unary expression. A postfix expression, in turn, may either be a primary
expression, a function call, or a reference. References are identifier of variables followed
by an arbitrary amount of square brackets-enclosed OR expressions, representing the
C-style of array indexing. Lastly, a primary expression may either be a constant or
a logical OR expression, enclosed by parentheses, thus establishing prioritization of
operations via parentheses. These production rules are again shown in Fig. 4.17.
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1 unary_expr : postfix_expr
2 | NOT unary_expr
3 | INV unary_expr
4 | MEASURE LPAREN unary_expr RPAREN ;
5

6 postfix_expr : primary_expr
7 | func_call
8 | ref_expr ;
9

10 ref_expr : ref ;
11

12 ref: ID
13 | ref LBRACKET or_expr RBRACKET ;
14

15 primary_expr : const
16 | LPAREN lor_expr RPAREN ;
17

18 const: BCONST
19 | ICONST ;

Figure 4.17: Parser code snippet for unary expressions. These include negated or
inverted expressions as well as measured quantities. Of higher precedence than these
unary operators/keywords are function calls, references with C-style array indexing,
and parentheses-enclosed expressions.

4.3 Abstract Syntax Tree and Semantic Analysis

Combining all previously given code snippets would give a perfectly valid parser which
only checks for syntactical correctness. However, these grammar rules do not prohibit
code like int a = true; While this example is a syntactically valid variable definition,
it is semantical nonsense to assign the truth value true to an integer variable. These
and many other cases have to be excluded with additional rules which are either applied
alongside the production rules or subsequently. For the CQ, I chose to implement the
first option as it is more performant than the second while still being easily maintainable.
The general strategy is to enrich the production rules with additional semantical checks,
expressed as C-code. In order to avoid the definition of an integer with a truth value,
the parser additionally compares the declared type (in this case int) with the type of
the supplied right-hand side (in this case true which has the type bool) and raises an
error whenever these do not match. In addition, the parser creates a tree structure
(the AST) out of the di!erent parts of the source code. For the variable definition, it
creates a corresponding definition-node with the right-hand side of the definition as
child node. The constant-node for the truth value true has no further child nodes
such that the tree for the exemplary variable definition is completed.
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Referring to Fig. 4.3, the root node of the entire AST corresponds to the whole
program. It can have arbitrarily many child nodes which correspond to global variable
declarations, variable definitions, and function definitions. The nodes for variable
declarations, in turn, do not have any child nodes. When constructing them, the
parser checks whether the variable has already been declared or defined previously;
this step is implemented with a global symbol table that stores variable and function
names, their appearances, and additional information such as their type. The same
verification is performed when encountering variable definitions. Additionally, these
nodes carry all elements of the right-hand side as child nodes (compare Fig. 4.4).
For each child node, the parser performs a type check: matching qualifier (assigning
quantum to classical is prohibited), matching primitive types (only bool to bool,
int to int, unsigned to unsigned, and int to unsigned are allowed), and matching
array dimensions (comparing depth and size of each dimension). If an initializer list is
used, its elements have to be arrays of depth zero, and their total number must not
exceed the product of all dimensions’ sizes of the declared variable. For const-declared
variables, each element on the right-hand side also has to be constant.

Function definitions (compare Fig. 4.5) have, by far, the most complicated semantical
restrictions. First, in analogy to variable declarations/definitions, the availability of the
function’s name is checked via the global symbol table. Upon entering the function’s
parameter list, the scope is increased and all parameters are declared within this
narrower scope, allowing for potential name collisions with previously defined variables
or functions. The parameters’ type information are directly stored within the function
definition-node while the body of the function enters as a child node. This child node,
in turn, holds arbitrarily many child nodes which correspond to all statements within
the sub_program defined by the function body. Such a statement list-node carries
additional metadata which has to be compared to the function’s declared properties.
Namely, each function must eventually return with the type specified in its declaration
(the type check is the same as being performed for the variable definition). In order to
monitor this, a statement list itself carries information about its return type which is
simply compared to the return type specifier and qualifier of the function. If no return
statement is present, this is interpreted as returning void which raises an error if the
function is declared with a non-void return. Furthermore, a subprogram can include
loops, if-else-statements, and switch-statements which may not return in every
case. The recursive rules for determining whether a statement list has a conditional
or unconditional return are the following: A loop never returns unconditionally, an
if-else-statement only return unconditionally if an else-branch exist and all branches
return unconditionally, a switch-statement only returns unconditionally if the default-
case exist and all case branches return unconditionally, and finally, a statement list
returns unconditionally if and only if all its statements return unconditionally. As soon
as multiple return statements appear within, e.g., a switch-statement, their return
types are compared upon creating the respective statement, raising an error if they
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do not match. Therefore, a statement list always carries a unique return type which
then can be compared to the function’s return type. In addition to its return type
and its parameters, a function may have one of the two properties: being quantizable
or being unitary. A function is quantizable if it returns classically or void, only
inputs classical parameters, and has a quantizable function body. In comparison, a
function is unitary if it has a quantum or no return and has a unitary function body.
Whether the function body is quantizable or unitary is, analogously to its return type,
determined recursively: A statement list is quantizable/unitary if and only if every
statement is quantizable/unitary. Variable declarations, variable definitions, loops, and
measurements are neither quantizable nor unitary. Phase shifts are never quantizable
and only unitary if their right-hand side is unitary. Assignments of classical/quantum
variables are never unitary/quantizable; they are quantizable/unitary if and only
if the assignment operator is not = and the right-hand side is quantizable/unitary.
Function calls are quantizable/unitary if the respective function as well as all parameter
expressions are quantizable/unitary. A function call also counts as unitary if the
function is quantizable and is supplied with quantum parameters which are themselves
unitarily computed. Array indexing is quantizable and unitary if and only if all indices
are constant. Logical and binary operations are quantizable/unitary of all operands
are quantizable/unitary. Return-statements in the top scope of the function body
are both quantizable and unitary. If-else-statements are quantizable/unitary if and
only if all expressions and branches are quantizable/unitary, and switch-statements
are quantizable/unitary if and only if the switch-expression and all case-branches are
quantizable/unitary. The rules for determining whether an if-/if-else-/else-/case-branch
is quantizable/unitary are the same as for the function body with the exception that
return-statements destroy both properties.

Sub-programs and restricted sub-programs are represented as statement list-nodes with
arbitrarily many child nodes just like the global program. The child nodes correspond
to the possible statements within the list (compare Fig. 4.6). When creating a node for
a phase-shift-statement (see Fig. 4.7), it has to be checked whether the left-hand side
actually refers to a quantum variable while the right-hand side has to be classical; both
sides enter as child nodes. Similarly, when creating a node for a measurement-statement,
the referenced variable has to be quantum; it is appended as child node.

Function calls (compare Fig. 4.8) require again more semantical checks. When creating
a corresponding node in the AST the function’s name has to be looked up in the symbol
table to infer its properties such as return type, (number of) parameters, and whether
it is quantizable or unitary. The provided parameter expressions enter as child nodes
of the function call-node, comparing the number of child nodes to the declared number
of parameters and raising an error if both numbers do not match. Furthermore, for
each parameter a type check is performed following the rules detailed for the variable
definition. However, there are some special treatments involving quantizable functions.
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If the function in question is declared to input only classical parameters, but quantum
expressions are provided, it is checked whether the function is quantizable. If this is
the case, all provided parameter expressions must be quantum; otherwise, or if the
function is not quantizable, an error is raised. If the function’s name is enclosed with
square brackets, the parameters necessarily have to be quantum, the function has to be
quantizable, and has to return a single classical bool. If the function call is preceded by
an INVERT-operator, the function either has to be unitary or must have been invoked
with quantum parameters while being quantizable and, additionally, must have no
return.

If-else-expressions can be either classical or quantum, but must always be single bools.
As soon as one expression in an if-else-statement is quantum, all others have to be
quantum too; for the mixed case, an error is raised. Furthermore, in the quantum case,
all branches have to be unitary restricted sub-programs. For the classical case, there is
no such restriction. An if-else-node contains the if-expression, the if-branch, and the
optional else-branch as child nodes (compare Fig. 4.9). Additionally, each else-if-block
enters as an additional child node which, in turn, carries the corresponding expression
and branch as child nodes.

Switch-statements (compare Fig. 4.10) may incorporate a classical or quantum ex-
pression which, however, must always be a single value; arrays are not allowed. Each
case-constant has to pass a type check, comparing its primitive type to the expression’s
type. If the switch-expression is quantum, all case-branches, including the optional
default-branch, have to be unitary restricted sub-programs. None of the case-constants
or the default-keyword may be repeated. The switch-node has the expression as
well as each individual case (including default) as child nodes. A case-node, in turn,
carries the respective case-branch as child node.

Since loops of any kind (compare Fig. 4.11) are purely classical control structures
in CQ, there semantics come without additional enhancements: Do-loop-nodes as
well as while-nodes have the sub-program contained in the loop-body and the loop-
condition as child nodes; only the order is reversed between both types of loops. While
there are no restrictions on the sub-program, the expression constituting the loop-
condition has to be a single, classical bool. A for-loop-node additionally possesses a
variable definition or assignment as well as a (second) assignment as child nodes. Both
structures may be of any qualifier. The restriction on the loop-condition is the same
as for the other two loops, that is a single, classical bool is required. Furthermore,
break-statements and continue-statements (compare Fig. 4.12) may only appear inside
a loop’s body. A return-statement is allowed everywhere except for the global scope.
While break-node and continue-node do not have any child nodes, the return-node has
the return-expression, if existing, as child node.
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Assignment-nodes also have two child nodes corresponding to the left-hand side and
the right-hand side of the assignment (compare Fig. 4.13). Two additional semantical
rules are executed upon constructing the nodes: First, the primitive type of the left-
hand side has to be compatible with the respective assignment-operator. Since the
assignment-operators for the logical and bitwise operation are comprised of the same
symbols the only incompatibilities arise when the left-hand side’s primitive type is bool
while the assignment-operator is arithmetic. Second, left-hand side and right-hand side
have to pass the same type check as incorporated in variable definitions.

Since CQ overloads all binary operators to allow for classical, quantum, or mixed
operands, all binary expressions (compare Figs. 4.14 to 4.16) comply to the similar
semantical checks: Both operands’ types have to be compatible with the respective
operator and further pass the already established type check. Logical operators only
accept operands of type bool, (in-)equality operators have no restriction on the operands
(comparing, e.g., a bool to an integer is, nevertheless, prohibited by the subsequent
type check), and comparison operators, bitwise as well as arithmetic operators only
accept (unsigned) integer operands. For unary operators (compare Fig. 4.17), only
compatibility of operator and operand has to be established; the logical NOT-operator
may only precede an expression of primitive type bool while the INVERT-operator
may only precede expressions which are (arrays of) signed or unsigned integers. Lastly,
array indices may only be classical expressions and never be quantum.

This completes the description of CQ’s semantics. The parser provided along this
thesis already includes the whole semantical analysis. I omitted the source code here
due to its sheer length; all relevant semantical rules have been elaborated on anyway.
The current version of the parser constructs the whole AST as described within this
section and allows for saving it in a text file after compilation.
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Grover’s Algorithm in CQ

My main motivation when designing CQ was to give a compact and natural formulation
of Grover’s famous search algorithm. In this chapter, I explain first the quantum
algorithm and its scope on a conceptual level. This follows the mathematical language
introduced in Section 2.2. Subsequently, I iterate through the algorithmic blueprint and
discuss how the di!erent steps of the algorithm are matched with CQ-functionalities,
resulting in the CQ-source code for Grover as presented in Fig. 5.1. Finally, I compare
CQ’s version of Grover’s algorithm with implementations found in established quantum
programming languages.

5.1 Grover’s Algorithm

Before explaining how Grover’s algorithm works, let me first clarify for which kind of
problems it has been designed initially. Suppose to be given a collection of N items of
which M ↖ N items are marked. The task is to find one of the M marked items among
the totality of N items. In order to verify that an item is marked, I may assume that
there is a boolean oracle function f : {1, . . . , N} ↙ ", returning one for (the index of)
a marked item and zero otherwise. Without any further structure or knowledge about
relations between the items, the simplest approach to solving this problem classically is
also optimal: Linear search iterates through the collection of items, evaluates the oracle
function for each item, and stops as soon as the function evaluates to one, returning
its input. This algorithm clearly has a best-case performance of O(1), an average
performance of O(N/M), and a worst-case performance of O(N ≃ M).

Assume for simplicity that N = 2n for some n ↓ ℕ such that the problem can be
mapped to n (qu-)bits and assign a CB state |x↑ to each item, e.g. by encoding
the item’s index in some list as a bit string. On a high level, Grover’s algorithm
may be summarized as follows: Create a uniform superposition of all CB states, then
alternately apply a quantum oracle, which flips the phase of all states corresponding
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to a solution, and a di!usion operator which applies a phase flip in all direction
orthogonal to the uniform superposition. Due to the irrelevance of global phases,
this is physically equivalent to applying a phase flip only in direction of the uniform
superposition. Finally, measure the outcome state to obtain a candidate for a solution.
By convention, qubits are initialized in the |0↑ state. In order to create the initial
uniform superposition, it su"ces to apply a layer of Hadamard gates (3.2.3) to each
qubit. In addition, the quantum oracle is typically implemented with the aid of an
ancilla qubit in a state whose phase can be flipped easily. One common approach is to
initialize the ancilla qubit in the |1↑ state and to apply controlled Z gates whenever
the phase has to be flipped conditionally. Therefore, the initialization step of Grover’s
algorithm reads

(
H↑n

⇐ Xa
)
(|0↑ ⇐ |0↑a) = |+↑ ⇐ |1↑a := 1

↘
N

N→1∑

k=0
|k↑ ⇐ |1↑a , (5.1.1)

where the existence of the ancilla register is optional and depends on whether the
quantum oracle can be implemented in-place or not. With the choice made for the
ancilla qubit’s initial state, the general quantum oracle consists of applying a Z gate to
the ancilla qubit whenever the main register’s state fulfills the oracle. How this control
is implemented highly depends on the classical oracle function. In Chapter 3, I have
detailed how to quantize elementary building blocks of classical functions. Following
these strategies, every oracle function can, at least in principle, be quantized to give
rise to a valid quantum oracle. As an example, consider the oracle that returns true
for every odd number and false otherwise. A possible classical implementation is given
by x ∋↙ (x & 1) == 1, i.e. it is checked whether the bitwise AND of the input and
the number one (whose binary representation has n ≃ 1 leading zeros and its least
significant bit set to one) yields one. It is readily su"cient to simply check whether the
least significant qubit of the input is set to one (odd number) or to zero (even number)
and to control a phase flip on the former. As highlighted previously, the Z gate only
introduces a phase flip when applied to the |1↑ state. Therefore it is su"cient to apply
a Z gate directly to the least significant qubit without the need for an ancilla qubit
or any additional control structure. This ancilla-free construction is, however, rarely
possible. Lastly, the di!usion operator is usually implemented by sandwiching a check
for the |0↑ state between two layers of Hadamard gates. Since a layer of Hadamard
gates (also called Hadamard transform) maps |0↑ to |+↑ and vice versa, this readily
gives the correct operation. This operation can again be implemented without requiring
any ancilla qubit: Instead of checking for the |0↑ state, sandwich the check for the
all-one state between two layers of X gates which readily translate between both states.
This check can now be implemented in-place by applying a multi-controlled Z gate to
any of the main registers qubits, controlled on every other qubit in the main register.
Only if all qubits are in the |1↑ state, the Z gate is executed and introduces a phase
flip. Otherwise, the execution may not be triggered or the gate itself does not have
any e!ect on the |0↑ state.
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In order to verify the correctness of Grover’s algorithm and to infer its runtime, let me
first rewrite the uniform superposition as

|+↑ = 1
↘

N

N→1∑

k=0
|k↑ = cos

(
ς
2

)
|ϑ↑ + sin

(
ς
2

)
|ϖ↑ with

▷ := 2 arccos
√

N→M
N


,

|ϑ↑ := 1
↘

N ≃ M

∑

f(x)=0
|x↑ , and

|ϖ↑ := 1
↘

M

∑

f(x)=1
|x↑ .

(5.1.2)

The definition of ▷ may appear arbitrary but will play a fundamental role in the
following derivation. More intuitively, the state |ϑ↑ is the uniform superposition of
all CB states that do not correspond to solutions (i.e. on which the oracle evaluates
to false) while the state |ϖ↑ is the uniform superposition of all solution states (i.e. on
which the oracle evaluates to true). Accordingly, note that the normalization factors in
|ϑ↑ and |ϖ↑ precisely match (the inverse square root of) the number of infeasible states
(N ≃ M) and feasible states (M), respectively. Correspondingly, the quantum oracle
may generally be written as

Uf = 1 ⇐ |0↑↔0|a +
(
1 ≃ 2 |ϖ↑↔ϖ|

)
⇐ |1↑↔1|a , (5.1.3)

although only the second term is of relevance since the ancilla qubit stays within the
state |1↑ throughout the entire routine. For the concrete example, illustrated previously,
the ancilla qubit may indeed be dropped entirely. The di!usion operator with its
naturally ancilla-free implementation possesses the abstract form

U0 =
(
2 |+↑↔+| ≃ 1

)
⇐ 1a (5.1.4)

where again only the second term is relevant for understanding the algorithm’s func-
tionality. I may therefore omit the ancilla qubit from all the following calculations. The
following lemma and its elementary proof establish the fundamental design principle
which fuels Grover’s algorithm and various other related quantum algorithms.

Lemma 5.1. Applying the Grover iteration U0 Uf k-times, k ↓ ℕ, to the initial state
(5.1.2) yields

(
U0 Uf

)k
|+↑ = cos

(
1
2 + k

)
▷


|ϑ↑ + sin

(
1
2 + k

)
▷


|ϖ↑ . (5.1.5)
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Proof. For k = 0 the claim is true by construction of ▷. Assume now that (5.1.5) holds
for a given k ↓ ℕ. Then
(
U0 Uf

)k+1
|+↑ =

(
U0 Uf

)

cos
(

1
2 + k

)
▷


|ϑ↑ + sin

(
1
2 + k

)
▷


|ϖ↑



= U0



cos
(

1
2 + k

)
▷


|ϑ↑ ≃ sin

(
1
2 + k

)
▷


|ϖ↑



= 2 cos
(

1
2 + k

)
▷


|+↑↔+|ϑ↑ ≃ cos

(
1
2 + k

)
▷


|ϑ↑

≃ 2 sin
(

1
2 + k

)
▷


|+↑↔+|ϖ↑ + sin

(
1
2 + k

)
▷


|ϖ↑

= 2 cos
(

1
2 + k

)
▷


cos

(
ς
2

)
|+↑ ≃ cos

(
1
2 + k

)
▷


|ϑ↑

≃ 2 sin
(

1
2 + k

)
▷


sin

(
ς
2

)
|+↑ + sin

(
1
2 + k

)
▷


|ϖ↑

= 2 cos
(

1
2 + k

)
▷


cos2

(
ς
2

)
|ϑ↑ ≃ 2 sin

(
1
2 + k

)
▷


sin

(
ς
2

)
cos

(
ς
2

)
|ϑ↑

≃ cos
(

1
2 + k

)
▷


|ϑ↑ + 2 sin

(
ς
2

)
cos

(
1
2 + k

)
▷


cos

(
ς
2

)
|ϖ↑

≃ 2 sin
(

1
2 + k

)
▷


sin2

(
ς
2

)
|ϖ↑ + sin

(
1
2 + k

)
▷


|ϖ↑ .

Using trigonometric product-to-sum formulae (see, e.g., [58]), the first, second, fourth,
and fifth term may be further expanded into terms consisting only of a single trigono-
metric function:

4 cos
(

1
2 + k

)
▷


cos2

(
ς
2

)

= cos
(

3
2 + k

)
▷


+ cos

(
1
2 ≃ k

)
▷


+ 2 cos

(
1
2 + k

)
▷



4 sin
(

1
2 + k

)
▷


sin

(
ς
2

)
cos

(
ς
2

)

= ≃ cos
(

3
2 + k

)
▷


+ cos

(
1
2 ≃ k

)
▷



4 sin
(

ς
2

)
cos

(
1
2 + k

)
▷


cos

(
ς
2

)

= sin
(

3
2 + k

)
▷


+ sin

(
1
2 ≃ k

)
▷



4 sin
(

1
2 + k

)
▷


sin2

(
ς
2

)

= ≃ sin
(

3
2 + k

)
▷


+ sin

(
1
2 ≃ k

)
▷


+ 2 sin

(
1
2 + k

)
▷


.

Comparing the signs of the terms as they appear in initial calculation, one readily
verifies that all terms containing an angle of

(
1
2 ≃ k

)
▷ cancel each other out, and that
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all terms containing the angle
(

3
2 + k

)
▷ sum up to the expected pre-factors. Lastly, all

the remaining terms and the unexpanded terms in the initial calculation containing an
angle of

(
1
2 + k

)
▷ eventually cancel each other out. Therefore, I have just shown that

(
U0 Uf

)k+1
|+↑ = cos

(
3
2 + k

)
▷


|ϑ↑ + sin

(
3
2 + k

)
▷


|ϖ↑

= cos
(

1
2 + (k + 1)

)
▷


|ϑ↑ + sin

(
1
2 + (k + 1)

)
▷


|ϖ↑

and the claim follows for all k ↓ ℕ by induction.

From (5.1.5) one can see that a Grover iteration performs a rotation by ▷ within
the two-dimensional subspace spanned by |ϑ↑ and |ϖ↑. Repeatedly performing a
Grover iteration therefore rotates the initial vector closer to |ϖ↑ such that a subsequent
measurement will yield with high probability a solution from the superposition |ϖ↑.
However, by setting the number of Grover iterations too high, it is also possible to
overshoot and to obtain a diminished success probability. More concretely, given a
total rotation angle of x▷, x ↓ ℝ, the probability of measuring a solution state is given
by

Psucc =
∣∣∣∣cos

(
1
2 + x

)
▷


↔ϖ|ϑ↑ + sin

(
1
2 + x

)
▷


↔ϖ|ϖ↑

∣∣∣∣ =
∣∣∣∣sin

2
(

1
2 + x

)
▷

∣∣∣∣ . (5.1.6)

The success probability is maximized when the sine’s argument becomes kπ/2 for any
k ↓ ⪲. Since the rotation is counterclockwise, the first encounter will be at π/2. This
yields the following ideal rotation:


1
2 + x



▷ = π

2 △ x = π ≃ ▷

2π
=


π

2 ≃ arccos
√

N→M
N



/▷ = arcsin
√

N→M
N


/▷

= arcsin
√

1 ≃
M
N


/▷ = arccos

(√
M/N

)
/▷. (5.1.7)

Choosing the integer kx closest to the optimal x, i.e. it holds that |x ≃ kx| ↖ 1/2, as
number of Grover iterations produces the desired state |ϖ↑ with an angle that is at
most ▷/2 away from the optimal angle π/2. The case where M > N/2, i.e. more than
half of the items are marked, shall not be of interest as classical linear search will give,
on average, a solution after two steps, that is independently of the problem size N .1
For the more interesting case of M ↖ N/2, the following derivation is possible:

M ↖
N

2 △
N ≃ M

N
⇔

1
2 ⇒

▷

2 = arccos
√

N→M
N


↖ arccos

√
1
2


= π

4 . (5.1.8)

1This reasoning is, of course, only valid if it is known in advance that M > N/2. By introducing an
additional qubit and considering the search problem over now N

↓ = 2N states where a state is
considered a solution if and only if it was a solution before and has a zero at the additional position,
one can artificially achieve that M

↓ = M ↖ N = N
↓
/2 such that the subsequent derivation is

generally valid.
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Therefore, the angle after kx Grover iterations is at most π/4 away from π/2, i.e., within
the interval [π/4, 3π/4] on which sin2 only takes values ⇔ 1/2. Grover’s algorithm
thus succeeds with probability at least 1/2. Furthermore, since the arccos(y) ↖ π/2
and sin(y) ↖ y for all y ⇔ 0 it holds that

kx ↖


arccos

(√
M/N

)
/▷


↖


ω
2ς



ς
2 ⇔ sin

(
ς
2

)
=

√
M
N




 ⇒ kx ↖




π

4


N

M




. (5.1.9)

(5.1.9) truly is a remarkable result. It entails that the average runtime of Grover’s
algorithm is in O(

√
N/M) which has to be contrasted with the average runtime of

O(N/M) provided by classical linear search. Surely, the quantum oracle is usually
more expensive to implement than its classical counterpart, but this is solely due
to hardware challenges. In principle, both circuits can be executed with a similar
number of gates such that Grover’s algorithm indeed achieves a quadratic speed-up
over linear search. While unstructured search is rather rare in real world application
as, e.g., databases are usually sorted, the scope of Grover’s algorithm has already been
extended to a variety of problems such as solution counting [59], non-uniform search [13],
and discrete optimization [60]. All these extensions follow the blueprint laid out by
Grover’s algorithm and manifested in Lemma 5.1: Prepare an initial superposition
that has non-zero overlap with at least one of the solution states and alternately apply
a quantum oracle, flipping the phase of all solution states, and a di!usion operator
which flips the phase in all directions orthogonal to the initial superposition. Together,
the quantum oracle and adjusted di!usion operator function as a rotation within the
two-dimensional subspace spanned by the feasible portion of the initial state and the
superposition of solution states. The geometric intuition gained from the previous
considerations remains valid in the more general case; the larger the overlap of initial
state and solution state, the fewer rotations are required, and the closer the optimal
rotation angle is to a multiple of the initial angle, the higher is the probability of
measuring a solution state at the end.

In practice, the construction of a suitable quantum oracle can often be easily derived
from the classical problem description at hand while designing a favorable initial super-
position which is also e"ciently preparable is typically more challenging. Conversely,
if a favorable initial superposition can be found, there is often a classical probabilistic
algorithm that samples from the same probability distribution corresponding to the
superposition and thereby already achieves good results. Accordingly, whether Grover’s
algorithm and derived routines will ever o!er practical speed-ups compared to classical
algorithms has been the topic of debate for several years (see, e.g., [15, 17, 61]).
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5.2 Implementation

The first step to implementing Grover’s algorithm is to specify a concrete search
problem. For simplicity, I may assume a problem size of N = 264 and model each
possible item with a 64-bit integer. A suitable oracle function should input a candidate,
i.e. an integer, and return a boolean truth value: true for marked items, false for
unmarked items. Furthermore, the oracle function should be quantizable as described
in the previous chapter. An example for such an oracle function is the parity check
introduced earlier which returns true for even numbers and false for odd numbers. In
this case, exactly half of the candidates are solutions, which yields an optimal number
of Grover iterations of roughly GROVER_ITER = 2.

For creating the initial uniform superposition, an approach could have been to introduce
this frequently used operation as an extra keyword or a macro-like function. However,
using CQ’s syntax for superposition, this can be compactly implemented without the
need for enriching the language’s vocabulary. As a reminder, in CQ, defining quantum
int a = [f] with a quantizable function of signature bool f(int) initializes the
quantum integer a in a uniform superposition of all CB states |x↑ such that f, given x
as its classical input, evaluates to true. In order to create the uniform superposition
of all CB states, I may simply introduce a function all_true which returns true
regardless of its input, thereby establishing a short implementation for this very
important subroutine. By altering the quantizable function f, the very same syntax
may be employed to create arbitrary uniform superpositions.

After properly initializing a 64-qubit quantum integer with the aforementioned method,
the heart of Grover’s algorithm consists of a repeated application of the quantum
oracle and the di!usion operator. The repetition is controlled by a classical for-loop,
running GROVER_ITER-many times. The quantum oracle is required to flip the phase of
all CB states |x↑ for which the classical oracle returns true on input x. The feasibility
check can be naturally implemented in CQ by calling the oracle with the quantum
integer as input inside an if-condition. As the classical oracle function is required
to be quantizable, inputting a quantum integer instead of a regular one is permitted
and returns a quantum bool. This, in turn, means that the if-statement will be
quantized as well and all statements within the if-body are implemented as quantum
circuits controlled on the outcome of the quantized oracle function. A generally valid
implementation of this construction is to introduce an ancilla quantum integer, copy
the original quantum integer via a layer of CNOT gates to the ancilla register, and to
subsequently execute the quantized oracle function on the copy. Additional qubits may
be required for the quantized routine such as, e.g., a qubit for storing the result of the
calculation, where |0↑ is associated with false and |1↑ with true. In this particular
case, the function can be evaluated without altering the input or the need for an
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ancilla qubit to store the result at. The if-body consists of adding one to the phase of
the original quantum integer. The statement phase (a) += b is to be understood as
applying a phase shift of π/b to a, i.e. b = 1 realizes a full phase flip. The phase shift
can be implemented in full generality by introducing an additional qubit (initialized
in |0↑), flipping it with an X gate and subsequently applying a rotational gate R as in
(3.2.3) with a properly set angle. The entire if-statement therefore precisely matches
the usual implementation of the quantum oracle, but expressed in logical abstraction
and in terms of the classical problem rather than a seemingly unmotivated sequence of
quantum gates.

The di!usion operator is implemented in three steps: First, apply the same quantum
circuit which has been used for creating the initial superposition. In CQ, this is
achieved via the extended syntax for function calls which allows for statements of the
form [f](a) and follows the same semantics as the previously discussed superposition
syntax for variable definitions. Second, a phase flip has to be applied to all CB states
except the |0↑ state which can be elegantly formulated via a quantized if-statement,
containing the corresponding phase shift in its body. The if-condition reads a != 0
since the inequality-operator is overloaded for quantum to classical values. This check
can again be implemented without altering the input a such that no quantum copy
of a is necessary. In a concrete implementation, checking whether a == 0 is more
straightforward, and a generally valid approach to utilize this fact is to simply check
for the negated condition, write the result to an ancilla qubit, and to subsequently flip
the ancilla qubit with an X gate. Another generally valid approach is to first apply
all operations in the if-body uncontrolled and to apply their inverse controlled on
the negated condition. In this concrete case of a single phase flip to be executed,
another implementation, as already highlighted in the previous section is also suitable:
sandwiching a Z gate on any of the target register’s qubits, controlled on all other qubits
of the target register, between two layers of X gates. Lastly, the superposition-creating
circuit has to be applied again which follows the exact same syntax as before.

The final step in Grover’s algorithm is to measure the processed quantum state in the
CB in order to obtain a bit string, representing (the index of) a marked item with high
probability. Accordingly, the last line of CQ-code consists of the measure keyword
being applied to the quantum integer which indeed returns a classical integer. Fig. 5.1
depicts the just discussed implementation of Grover’s algorithm in CQ as a minimum
working example, constituting Grover’s algorithm as a single executable which returns
the item index. In principle, the outcome of Grover’s algorithm may be processed
further within a broader program. A promising example would be to substitute linear
search routines in a complex C program with the CQ implementation of Grover’s
algorithm.
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1 const unsigned GROVER_ITER = 2; // number of iterations
2

3 // exemplary quantizable oracle function
4 bool oracle (int x) {
5 return (x & 1) == 1;
6 }
7

8 // quantizable function used for state preparation
9 bool all_true (int x) {

10 return true;
11 }
12

13 int main () {
14 quantum int state = [ all_true ]; // create superposition
15

16 for ( unsigned i = 0; i < GROVER_ITER ; i += 1) {
17 // quantum oracle
18 if ( marker (state)) {
19 phase (state) += 1;
20 }
21

22 // apply layer of Hadamard gates
23 [ all_true ]( state );
24

25 if (state != 0) {
26 phase (state) += 1;
27 }
28

29 // apply layer of Hadamard gates
30 [ all_true ]( state );
31 }
32

33 return measure (state);
34 }

Figure 5.1: Grover’s algorithm in CQ. The quantizable oracle function returns true for
odd numbers and false for even numbers. The quantum integer state is initialized
in uniform superposition via the quantizable helper function all_true which returns
true for every input. Subsequently, a classical for-loop with GROVER_ITER many
iterations contains the alternating application of the quantum oracle and the di!usion
operator. The former is comprised of a quantized if-statement, controlling a phase flip
on state on whether the (quantized) oracle returns true while the latter consists of
sandwiching a quantized if-statement,which flips the phase of state conditioned on
state != 0, between two applications of the superposition-creating circuit. Finally,
state is measured and the classical outcome is returned.
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5.3 Comparison to Existing Frameworks

In this section, I compare the implementation of Grover’s algorithm with the parity
check oracle and the standard di!usion operator in CQ to its implementations in
Quipper, QCL, OpenQASM, Q#, and Silq. Qrisp would have been also an interesting
candidate to compare to, but its focus on quantum floats rather than quantum integers
renders a fair comparison rather di"cult. As a rule of thumb, the higher-level the
language the longer the source code for this specific example. This is mainly due to
the fact that the quantum oracle takes up one line of code when expressed in terms of
elementary quantum gates: a Z gate applied to the least significant qubit in the main
register. The only exception to this rule is Quipper which, despite being relatively
low-level, requires several lines of code to implement the quantum oracle.

In essence, I find that only Silq provides the possibility of quantizing a classical function
and if-statements for usage within a quantum routine. In all other languages, the
quantum oracle has to be given in terms of quantum gates. Additionally, Silq is the
only other language which provides native support of quantum integers like CQ does.
In all other cases, one has to use arrays of qubits of suitable length. The di!usion
operator looks very similar in Quipper, QCL, and OpenQASM, being a sequence of
elementary quantum gates applied to the di!erent qubits of the main register. Q#, in
turn, o!ers a feature that lets me express the sandwiching layers of Hadamard and X
gates as a conjunction of operators which perfectly matches their higher-level meaning.
Only in Silq, I have been able to express the core part of the di!usion operator, the
phase flip for all CB states except |0↑, as a conditional statement. However, even in
Silq, the enclosing layers of Hadamard gates, in contrast to CQ, have to be specified
directly. Given the language-specific implementations of the quantum oracle and the
di!usion operator, the skeleton for Grover’s algorithm looks nearly identical in all
languages, including CQ: After initializing the target in uniform superposition, a simple
for-loop with a prescribed number of iterations alternately applies the quantum oracle
and the di!usion operator to the target state. Subsequently, the state can be measured
via the language’s respective keyword.

Admittedly, Grover’s algorithm looks very similar in CQ and Silq with the main
exception lying in CQ’s extended syntax for creating equal superpositions via function
calls rather than quantum gate sequences. The feature of quantized if-statements is
indeed analogously implemented in both languages. However, both languages follow
a somewhat di!erent design idea: While CQ enforces the programmer to explicitly
declare whether a variable is quantum, Silq assumes this by default and has to track
whether a variable remains in a CB state throughout the program. Furthermore, CQ
automatically checks whether a provided function is quantizable or unitary, while
this has to be annotated explicitly in Silq with keywords such as qfree, lifted, and
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mfree.

1 -- exemplary oracle function
2 oracle :: [ Qubit ] -> Circ [Qubit]
3 oracle qubits = do
4 let lsb = last qubits
5 gate_Z_at lsb
6 return qubits
7

8 -- diffusion operator
9 diffuse :: [Qubit ] -> Circ [Qubit ]

10 diffuse qubits = do
11 hadamard_all qubits
12 qnot_all qubits
13 gate_Z_at ( qubits !! 0) ‘controlled ‘ (tail qubits )
14 qnot_all qubits
15 hadamard_all qubits
16 return qubits
17

18 -- Grover ’s algorithm
19 grovers_algorithm :: (Int , Int) -> Circ Int
20 grovers_algorithm (n, iter) = do
21 qubits <- qinit ( replicate n False )
22 hadamard_all qubits
23 forM_ [1.. iter] $ \_ -> do
24 qubits <- oracle qubits
25 qubits <- diffuse qubits
26 result <- qmeas qubits
27 return ( from_bitlist result )

Figure 5.2: Grover’s algorithm in Quipper. Quipper is a functional programming
language, realized as Haskell extension. Support for quantum resources is enabled
via additional keywords such as Qubit (a quantum bool in CQ) and various low-level
quantum gates such as X Y, and Z gates (via qnot, gate_Y, and gate_Z) or Hadamard
gates (via hadamard). Quantum operations can be controlled on qubits, but not
on more complex conditions. The exemplary oracle function has to be given as a
quantum circuit which applies a Z gate to the least significant qubit in the main
register. Similarly, the di!usion operator has to be written as a function that performs
a multi-controlled Z gate on the zeroth qubit qubit of the main register, controlled on
the remaining main qubits and sandwiched between two layers of Hadamard gates and
X gates, respectively. Lastly, Grover’s algorithm consists of preparing the main register
and the flag qubit, iteratively applying the previously defined oracle and di!usion
functions, and to return the measured main register. While Quipper encapsulates all
relevant quantum operations with Haskell-like syntax, classical and quantum resources
are always treated separately, not supporting analogies of e.g. classical and quantum
control flows.
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1 operator diffuse ( qureg q) { // diffusion operator
2 H(q);
3 Not(q);
4 CPhase (pi , q);
5 !Not(q);
6 !H(q);
7 }
8

9 procedure grover (int n, int iter) { // Grover ’s algorithm
10 int x;
11 int i;
12 qureg q[n];
13 reset ;
14 H(q);
15 for i = 1 to iter {
16 Z(x[0]); // exemplary oracle function
17 diffuse (q);
18 }
19 measure q, x;
20 print " measured ", x;
21 reset ;
22 }

Figure 5.3: Grover’s algorithm in QCL. QCL can treat most classical functionality
in a C-like manner. In order to also handle quantum variables and functions, QCL
introduces additional keywords like operator (comparable to unitary functions in CQ),
qufunct (similar to quantizable functions in CQ), and qureg (would be a quantum
boolean array in CQ). The displayed source code is an adaptation of the example given
in the latest QCL release [62]. The exemplary oracle function can be expressed with one
line of code (line 16) and is therefore not introduced as an additional function/operator.
The di!usion operator (lines 1–7) reads similar to its implementation in Quipper (see
Fig. 5.2); a Z gate on the zeroth qubit in the main register is controlled on all other
qubits and explicitly sandwiched between two layers of Hadamard gates and X gates,
respectively. Grover’s algorithm (lines 9–22) consists of initializing an n-qubit main
register q, preparing the main register in uniform superposition, iteratively performing
the exemplary phase oracle and the di!usion operator iter-times, measuring the
final state, and storing the result in the classical integer x. Afterwards, all qubits
are reset. While the extended utility of QCL allows to properly treat classical and
quantum resources at the same time, support for straight-forward quantization of
classical primitives is missing. Ultimately, QCL o!ers a proper interface to integrate
explicit quantum gate sequences into larger hybrid programs. However, it does not
o!er many simplifications when writing pure quantum code.
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1 define n_qubits (n: int);
2 define iterations (iter: int);
3

4 qubit [n] q;
5 bit[n] result ;
6

7 // diffusion operator
8 gate diffuse q {
9 h q;

10 x q;
11 ctrl @ z q[0: n_qubits - 1];
12 x q;
13 h q;
14 }
15

16 // Grover ’s algorithm
17 h q;
18 for i in [0: iterations - 1] {
19 z q[ n_qubits - 1]; // exemplary oracle function
20 diffuse q;
21 }
22 measure q -> result ;

Figure 5.4: Grover’s algorithm in OpenQASM. OpenQASM is the currently most
prominent “high-level” quantum programming language, compatible with e.g. IBM’s
Qiskit and Xanadu’s Pennylane. The fundamental quantum data type in OpenQASM
is the qubit (a quantum bool in CQ) and a gate is a unitary instruction acting
on one or several qubit registers/arrays (corresponds to a unitary function in CQ).
The exemplary oracle function can again be expressed with one line of code (line
19) and is therefore not introduced as a stand-alone gate. The di!usion operator
(lines 8–14) reads similar to the implementations in Quipper (see Fig. 5.2) and QCL
(see Fig. 5.3); applying a layer of Hadamard and X gates to all qubits in the main
register, applying a Z gate on the zeroth qubit, controlled on all other qubits, and
applying another layer of X and Hadamard gates on all qubits. Grover’s algorithm (lines
17-22) then consists of applying a layer of Hadamard gates to the n_qubits-qubit
register q, a subsequent iterative application of the exemplary quantum oracle and
the previously defined diffusion gate, and a final measurement of q to store the
classical outcome in the n_qubits-bit register result. While OpenQASM combines
classical operations and control structures with basic quantum utility, it does not
provide quantization schemes of any kind; quantum analogues of integers to not exist
and logical operations as well as control structures are not overloaded for qubits. In
contrast, OpenQASM popularity mainly stems from its advanced compatibility with
several quantum hardware architectures. It should therefore ultimately serve as a
possible intermediate step when compiling higher-level languages like CQ or Silq down
to hybrid machine code.
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1 operation Main () : Result [] { // Grover ’s algorithm
2 let n = 64;
3 let iter = 2;
4 use qubits = Qubit [n];
5 UniformPrep ( qubits );
6 for _ in 1.. iter {
7 Z( qubits [0]); // exemplary oracle function
8 Diffuse ( qubits );
9 }

10 return MResetEachZ ( qubits );
11 }
12

13 operation UniformPrep ( inputQubits : Qubit []) : Unit is Adj + Ctl {
14 for q in inputQubits {
15 H(q);
16 }
17 }
18

19 operation Diffuse ( qubits : Qubit []) : Unit { // diffusion operator
20 within {
21 Adjoint UniformPrep ( qubits );
22 for q in qubits {
23 X(q);
24 }
25 } apply {
26 Controlled Z(Most( qubits ), Tail( qubits ));
27 }
28 }

Figure 5.5: Grover’s algorithm in Q#. Q# is the high-level quantum programming
language behind Microsoft’s quantum development kit. The displayed source code is
an adaptation of the example given in the o"cial Q# algorithms section. Similar to
OpenQASM, the fundamental quantum data type in Q# the Qubit. An operation is
any function that a!ects a qubit register. These can be annotated as adjoinable/unitary
(Adj) and controllable (Ctl) as has been done for the uniform state preparation
(UniformPrep). Using the within-keyword, an operation can be executed between
another operation and its adjoint which is a convenient shortcut for the sandwiching
with Hadamard and X gate layers in the di!usion operator. Grover’s algorithm has
the typical form of first initializing an n-qubit register in uniform superposition, then
iteratively applying the exemplary quantum oracle and the di!usion operator, and
returning the result of measuring the qubit register in the CB. Although subroutines
can be nicely packaged into functions, one ultimately has to supply low-level quantum
instructions on a gate level in order to implement Grover’s algorithm in similar
procedures in Q#.
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1 GROVER_ITER := 2: !ℕ;
2 n := 64: !ℕ;
3

4 def oracle ( const cand: int[n]) lifted : ⪳ { // oracle function
5 return (cand & 1) == 1;
6 }
7

8 def diffuse (cand: int[n]) mfree: int[n] { // diffusion operator
9 for k in [0..n) {

10 cand[k] := H(cand[k]);
11 }
12 if cand != 0 {
13 phase (ϱ);
14 }
15 for k in [0..n) {
16 cand[k] := H(cand[k]);
17 }
18 return cand;
19 }
20

21 def main () { // Grover ’s algorithm
22 cand := 0: int[n];
23 for k in [0..n) {
24 cand[k] := H(cand[k]);
25 }
26 for k in [0.. GROVER_ITER ) {
27 if oracle (cand) {
28 phase (ϱ);
29 }
30 cand := diffuse (cand);
31 }
32 return measure (cand);
33 }

Figure 5.6: Grover’s algorithm in Silq. Silq is a proper high-level quantum program-
ming language which o!ers rich support for quantization of classical functions. In
Silq, variables are considered quantum by default (unless annotated with a leading
exclamation mark), but realized as classical variables if they are not brought into
superposition. For example, the exemplary oracle function can be written as in CQ,
but additionally has to be annotated as lifted, indicating that no superpositions are
created and that all input variables are held constant. The di!usion operator has to
implement the Hadamard gates explicitly, but can describe the conditional phase flip
via quantized if-statement like in CQ. Similarly, Grover’s algorithm has to explicitly
apply a Hadamard gate to each qubit of the quantum integer cand. Subsequently, the
exemplary oracle function can be used with quantum input inside an if-condition,
controlling the phase flip. Finally, the quantum state cand is measured and the mea-
surement outcome is returned as classical integer.
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Conclusion and Outlook

In this thesis, I have proposed a high-level programming language for expressing
integer-based quantum-classical programs: CQ. The main feature of CQ is to pro-
vide several quantization schemes for classical concepts such as logical, bitwise, and
arithmetic operations as well as if- and switch-statements, and to address both the
classical functionality and its quantization with the same syntax. For this purpose,
I have detailed explicit quantization strategies for all the aforementioned concepts
in Chapter 3. While the literature on quantum arithmetic is quite rich, little work
has been presented on quantizing classical control structures such as if-statements.
However, all issues addressed in this thesis admit a short and elegant solution which
are probably implemented in the same or a similar way in frameworks like QCL or Silq.
Building on these quantization schemes, I have introduced the vocabulary, grammar,
and semantics of CQ in Chapter 4 alongside a prototypical implementation of the parser
(available under [32]). Finally, I have given a fairly detailed introduction to Grover’s
algorithm. The proof to Lemma 5.1 is a more rigorous, but also lengthier alternative
to proofs found in the literature. The subsequent comparison of implementations of
Grover’s algorithm in various quantum programming languages (CQ, Quipper, QCL,
OpenQASM, Q#, and Silq) provides an important benchmark set for assessing a
language’s expressibility.

As already mentioned several times, the provided parser (and the design of CQ in
general) are prototypical. My main intent was to deliver a working parser software for
a compact set of rules and functionalities. Due to this reason, I decided to develop
the parser independently of the existing software stack for C compilers, to avoid
the enormous initial task of su"ciently understanding these massive code libraries,
although CQ is meant to integrate well with C. In the following, I wish to comment on
plausible next steps which would elevate CQ to a promising bridge between classical
and quantum computing with real-world applications. The next step clearly has to
be introducing CQ as a proper extension of C: This task involves cloning the source
code of one’s favorite C compiler and building the extended functionality of CQ on top
of C’s scope. While the introduction of the three new keywords measure, phase, and
quantum and their additional syntactical rules should be relatively straight-forward,
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implementing the checks for quantizable and unitary functions might necessitate diving
deep into the original source code. Furthermore, on the one hand, some design choices I
have made such as Java-style array annotations have to be reverted in order to comply
with the C syntax. On the other hand, some C concepts (most notably pointers,
floating point numbers, and a printing mechanics) are missing in my prototype and
have to be thoroughly aligned with CQ’s functionality. I assume the first task to not
require any intellectual overhead, since this would already amount to changing only a
few conventions within the current parser source code. Also for the latter task, I am
quite optimistic that the current state of research allows for finding quick solutions
for the quantization of each C concept or to argue why it should not be lifted to a
quantum operation.
Preprocessor directives: Since the preprocessing of source and header files has
nothing to do with the actual language features, all preprocessor directives may be
adopted without any changes. This also includes the macro-specific keyword _Generic
as in introduced in C11. Additional directives addressing quantum hardware details
could prove themselves useful in the future.
Linker: The linking process for a hybrid architecture should be similar to the one on
purely classical computers. Therefore, the C keywords extern and static as well as
inline as introduced in C99 which communicate storage management with the linker
may be adopted without any changes.
Goto: The only control structure I did not take into consideration so far is goto. Sim-
ilar to the other jump statements break and continue, goto may only be allowed in
a classical context and render the enclosing function non-quantizable and non-unitary.
Primitive types: Following the quantization schemes implemented in Qrisp, the
primitive types float and double may also carry the quantum qualifier and arith-
metic operations may also be overloaded to accept quantum floating point numbers
as operands. Via the usual implementation of complex numbers as two floating point
numbers, quantum versions of the _Complex and _Imaginary keywords introduced in
C99 as well as complex operations and functions may also possess quantum versions.
Other primitive types (signed and unsigned versions of char, long, and short) which
are all integer-like may as well carry the quantum qualifier; quantum versions of bitwise
and arithmetic operations with these operands are essentially the same as the ones pre-
sented in this thesis. In C23, the _BitInt and unsigned _BitInt types are introduced
for bit-precise integers. This perfectly matches the functionality of declaring bit/qubit
registers of di!erence sizes (as, e.g., in OpenQASM) and such bit-precise integers may
also carry the quantum qualifier. Bitwise and arithmetic quantum operations readily
generalize for bit/qubit-precise operands. In addition, C23 introduced decimal floating
point numbers of various precision via the keywords _Decimal32, _Decimal64, and
_Decimal128. Although there is, to my knowledge, yet no literature on quantizations
of decimal floating point arithmetic, I am convinced that adapting the classical circuits
in a similar fashion to ordinary floating point arithmetic should be su"cient in order
to allow also for quantum versions for this new data type and operations with it.
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Compound types: Maintaining a type system will almost certainly remain a purely
classical task since it is an already well established concept, is typically not a compu-
tational bottleneck, and requires precise, deterministic checks. Correspondingly, C’s
functionality for creating custom types via enum, struct, and union may be adopted
only with small adjustments. An enum may also have a quantum version. Currently,
I do not see any problem with allowing both classical and quantum members in a
struct, even at the same time, while all members of a union may either be purely
classical or purely quantum since it is otherwise not possible for them to share the
same memory. Note, however, that introducing these more complex types will re-
quire more complicated checks for assessing whether a function using those types is
quantizable or unitary. Other type-specific features (sizeof and typedef as well as
the operators typoeof and typeof_unqual as in introduced in C23) may be adopted
straight-forwardly.
Pointers and memory management: Pointers are undoubtedly one of the most
powerful features of C and properly implementing them as well as associated concepts
(restrict from C99 and nullptr from C23) could be done in two fundamentally
di!erent ways. Which variant to use highly depends on future decisions regarding
the management of quantum memory. The first option is to allow only for classical
addresses. This means that the address of any variable, regardless on whether variable
is classical or quantum, can only be classical, i.e. quantum int * p; would be a
valid declaration of a pointer to a quantum integer, while int * quantum p; would
be an illegal declaration of a quantum pointer to a classical integer. Alternatively,
one could also allow for addresses being stored in superposition as proposed in [63].
In this case, also the second declaration would be valid. While the second option
definitely is more general and allows for more powerful and interesting programs, it also
complicates the type system further as soon as quantum pointers to classical memory
are allowed. In general, memory management on quantum architectures is a broad
topic and di!erent design choices will influence which classical concepts to transfer to
the quantum case. Concretely, in C there exists the (legacy) auto specifier, indicating
that the annotated variable shall be destroyed upon exiting its scope. By default all
variables have automatic memory management in C. This is in contrast to dynamically
allocated memory (via malloc and similar functions) where the memory has to be
freed by the programmer. Depending on which quantum storage class is implemented,
one of these functionalities may not be applicable to quantum variables. Furthermore,
classical variables may exist only on a register, annotated via the register specifier,
and do not have an address. Depending on the available/chosen architecture, the
register keyword might not be applicable to quantum variables either. Another
low-level functionality addressed in C (via _Alignas and _Alignof since C11 and
their successors alignas and alignof since C23) is alignment requirement which is
the number of bytes between successive addresses at which objects of the respective
type can be allocated. Whether these keyword may also be used for quantum variables
highly depends on the actual implementation of the quantum memory’s address space.
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Multiprocessing and multithreading: Similar to implementing a type system,
managing processes and threads as well as their associated resources will probably
always remain a task for the classical computer. QPU will most likely solely enter as
additional computational resources which are assigned and revoked by an operating
system, running on the classical computer. Accordingly, C’s functionalities for context
management (volatile as well as _Atomic and _Thread_local as introduced in C11
with the latter being deprecated and replaced with thread_local in C23) may be
adopted without any change.
Other keywords: In the above paragraphs, I covered all keywords introduced since
C89 except for four keywords which do not belong to any of the broader topics discussed.
First, the _Noreturn annotation, introduced in C11, for functions tells the compiler
that the function does not return to its caller. This can have several reasons with
exiting the entire program as one of them. At this point I do not see any chance
that a function which is rightfully annotated with _Noreturn can be quantizable or
unitary since it typically means that a jump statement is involved for which there is no
quantum counterpart. Second and third, _Static_assert, introduced in C11, and its
successor static_assert from C23 are compile-time checks for constant expressions.
For the latter, the annotation constexpr has been introduced in C23. While other
languages such as QCL also propose constant quantum variables and expressions, this
is not the case within CQ. Therefore, these concepts may remain only be applicable to
classical values.

Suitably adopting all the content from the exhaustive list of C keywords would enable
CQ as a proper C extension and would also massively increase CQ’s practicability. I
wish now to discuss further enhancements which are not necessary in order to make C
and CQ compatible, but which allow to compactly express more advanced quantum
algorithms in CQ.
Quantizable and unitary for-loops: In my prototypical version of CQ, for-loops
are never quantizable or unitary. However, many for-loops in practice are (counter-
)controlled loops where the loop variable is not altered within the loop body. If
additionally, the number of loop iterations is known before executing the loop, the
loop variable may be considered const during each iteration of the loop. In this
case, an otherwise quantizable/unitary loop body would remain quantizable/unitary.
Implementing this feature in a future version of CQ is highly desirable for expressing
e.g. more complicated state preparation routines, which apply di!erent gates to each
qubit in a register (as in [17]), compactly with a unitary for-loop.
Parameterized gates: Currently, only the phase shift is parameterizable via the
right-hand side of a phase-shift-statement. This has to be extended in a meaningful
way to a broader class of quantum gates and subroutines. First and foremost, [17]
and many others utilize parameterized Ry gates to bring qubits from the |0↑ state to a
non-uniform superposition between |0↑ and |1↑ with amplitudes directly corresponding
to the chosen parameters. To some extend, this can be understood as the more general
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version of applying a Hadamard gate to |0↑ which creates a uniform superposition
of the two CB states. Since this is such an important ingredient of many quantum
algorithms, especially those which tackle classical problems, it may be appropriate
to introduce an additional keyword branch in a future version of CQ, implementing
a parameterized Ry gate. Alternatively, the low-level access to single quantum gates
may be enabled by introducing elementary gates as functions which expect a quantum
input. This would then also enable low-level coding in CQ as already present in the
other languages discussed in Section 5.3.
Quantum linear algebra: A powerful alternative to mapping bits to qubits for
the quantization of floating point numbers is to encode real and complex numbers of
arbitrary precision directly into the continuous state space of qubits (see e.g. [64]).
Namely, for a given vector v ↓ ℂN with ▽v▽2 = 1, there exists a state preparation
circuit that prepares the ̸log2 N7-qubit state |v↑ = ∑N

i=1 |i↑ with depth O(N/ log N),
yielding an exponentially reduced encoding compared to the usual encoding. This
method only works for normalized vectors v while for unnormalized input there exist
approximate schemes using additional ancilla qubits. It is particularly well studied in the
context of quantum linear algebra, a discipline addressing linear algebraic calculations
such as matrix-vector multiplication on a quantum computer. Although conceptually
challenging, there might exist also (approximate) versions of arithmetic operations
for these compactly encoded real/complex numbers. This definitely requires further
research but might be worth tracking in order to eventually provide an additional,
presumably more powerful quantization scheme for floating point numbers.
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