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1 Introduction

Temporal logics extend classical logic, by introducing reasoning over time and modality [16,
17]. A well-known application is the specification and verification of systems and software
through transition models. Other uses include automated reasoning and artificial intelligence
as well as applications in physics, philosophy and linguistics. The main temporal logics are
Computational Tree Logic CTL, Linear Time Logic LTL, and the superset of both CTL∗. All
three introduce two path quantifiers A and E, together with the temporal operators neXt, Until,
Future, Globally, and Release.

In CTL∗ any combination of path quantifiers and temporal operators is allowed, making
CTL∗ the most general temporal logic. In contrast, LTL formulas only quantify over paths, i.e.
they always start with E, followed only by propositional and temporal operators. Finally, in
CTL all path quantifiers must be followed by a temporal operator, resulting in ten different
CTL operators.

The most common variant of a transition system used for temporal logic is the Kripke

model [14]. Informally, a Kripke model consists of worlds W, a total binary relation R con-
necting one world to another, and a function η labelling each world with a set of propositions
that hold in that world.

To familiarise the reader with Kripke models and temporal logic formulas, in particular
CTL formulas, we give a short example. Figure 1.1 depicts a simple model for a traffic light,
which is formally defined as

M = ({r,w1,w2}, {(r,w2), (r,w1), (w1,w2), (w2, r)}, η)

with η(r) = {green}, η(w1) = {yellow} and η(w3) = {red}. To check that our model meets the
requirements of a traffic light we can describe its behaviour using CTL formulas.

For example: “at least one light should be on at all times and after green always comes red

at some point”. A CTL-formula describing this property would be

φ B AG(green ∨ yellow ∨ red) ∧ AG(green→ AF red).

This leads directly to the first of two important decision problems in temporal logic, model

checking [3, 2]. In model checking, you are given a Kripke model and a temporal formula, and
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Figure 1.1: Kripke modelM of a three signal traffic light.

have to decide whether the formula is true in the model or not. The model checking problem
for temporal logics has been thoroughly studied, with results ranging from P-completeness
for CTL to PSPACE-completeness for LTL and CTL∗ [18].

Satisfiability is the other important decision problem in temporal logic, asking whether for
a given formula there exists a Kripke model such that the formula is true in that model. For
CTL satisfiability is EXPTIME-complete, for LTL it is PSPACE-complete and for CTL∗ it is
2-EXPTIME-complete [10, 19, 20].

While decision problems ask whether solutions exist, a more natural approach may be to
output the solutions themselves. Such problems are called enumeration problems and are
concerned with finding and returning all solutions to a problem. Analysing the complexity of
an enumeration algorithm often lead to exponential runtime, simply because the number of
solutions is exponential. Therefore, one studies the time that elapses between the output of two
solutions, the delay of an enumeration algorithm. Enumeration problems with an algorithm
with polynomial delay are considered as the class of efficient enumeration problems.

Creignou et al. introduced a framework for enumeration problems beyond polynomial delay
[6]. They present a hierarchy for enumeration problems analogous to the polynomial hierarchy
and a notion of hardness using reduction. Here, we will use the enumeration complexity
classes DelP and DelNP, where DelP is the aforementioned class of efficient enumeration
problems.

A natural enumeration problem for CTL is submodel enumeration, i.e. the problem of
finding and outputting all submodels of a Kripke model that satisfy a CTL formula. While
submodel enumeration has been studied for modal logic, a weaker extension of classical logic
with only modality [11], the goal of this thesis is to further investigate its complexity with
respect to fragments of the temporal logic CTL. We will immediately see that this problem is
hard for arbitrary CTL formulas, which motivates restrictions on the allowed Boolean and
CTL operators.

For a better understanding, let us go back to the traffic light example from before and
consider the following scenario. We want to simplify our notion of a traffic light to just two
signals red and green. Since we already have a model of a traffic light with three signals

2



green
r

red
w2

Figure 1.2: Traffic light submodel of Figure 1.1 with only two signals.

we do not want to start from scratch. Instead, we define a new formula that describes the
properties of a traffic light with two signals, e.g.

φRG B AG(green→ AX red ∧ red→ AX green).

Using submodel enumeration, we get all submodels that satisfy φRG allowing us to choose the
one that is most useful to us. Here, the only suitable submodel that would be enumerated can
be seen in Figure 1.2.

In Chapter 2 we first introduce the necessary definitions of CTL and enumeration com-
plexity, as well as some results of hard enumeration. We then investigate the complexity of
submodel enumeration in Chapter 3. First we consider CTL with all operators, which we
will prove to be DelNP-complete, followed by restricting access to more and more opera-
tors. Finally, we summarise our results and give an outlook on possible future research in
Chapter 4.
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2 Preliminaries

In this chapter, we will define the temporal logic CTL and submodels, the notion of clones
and fragments, enumeration complexity and some results of hard enumeration used in this
thesis.

2.1 Computational Tree Logic

We follow the notation of Clarke et al. [3].
Let PROP be an infinite, countable set of propositions. The set of well-formed CTL

formulas is
φ :B ⊤ | p | ¬φ | φ ∨ φ | φ ∧ φ | φ ⊕ φ | PT φ | φ PT ′ φ |

with p ∈ PROP,P ∈ {E,A},T ∈ {X,F,G},T ′ ∈ {U,R}. This results in ten CTL operators,
consisting of six unary operators EX, EX, EF, AF, EG, AG and four binary operators EU, AU,
ER, AR.

Next, we turn towards the structures used in Temporal Logic called Kripke model. Usually
a Kripke model is triple (W,R, η), where W is a set of worlds, R ⊆ W ×W is a total transition
relation and η is an assignment function. Here we add a fourth element r ∈ W called root.

Definition 1. A rooted Kripke Model is a tupleM = (W,R, η, r) where

• W is a non-empty set of world or states,

• R ⊆ W ×W is a total, binary transition relation on W

• η : W → P(PROP) is an assignment function, that maps to each world w a set η(w) of
propositions and

• r ∈ W is the root.

An example of a rooted Kripke model is depicted in Figure 2.1.
CTL formulas make statements about infinite paths. As such we need to define paths of

rooted Kripke Models.

Definition 2. LetM = (W,R, η, r) be a rooted Kripke model. A path π inM is an infinite
sequence of worlds w1,w2, · · · such that (wi,wi+1) ∈ R for all i ≥ 1. We write π[i] to denote
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Figure 2.1: Example Kripke model.

the ith world on the path π. For a world w ∈ W we define Π(w) B {π | π[1] = w} as the set of
all infinite paths ofM starting with w.

We can now define the semantics of CTL.

Definition 3. LetM be a rooted Kripke model and φ, ψ be CTL formulas.

M,w |= ⊤ always,
M,w |= p iff p ∈ η(w) with p ∈ PROP,
M,w |= ¬φ iffM,w ̸|= φ,
M,w |= φ ∧ ψ iffM,w |= φ andM,w |= ψ,
M,w |= φ ∨ ψ iffM,w |= φ orM,w |= ψ,
M,w |= φ ⊕ ψ iff (M,w |= φ andM,w ̸|= ψ) or (M,w ̸|= φ andM,w |= ψ),
M,w |= EXφ iff ∃π ∈ Π(w) :M, π[2] |= φ,
M,w |= AXφ iff ∀π ∈ Π(w) :M, π[2] |= φ,
M,w |= EFφ iff ∃π ∈ Π(w) ∃k ≥ 1 :M, π[k] |= φ,
M,w |= AFφ iff ∀π ∈ Π(w) ∃k ≥ 1 :M, π[k] |= φ,
M,w |= EGφ iff ∃π ∈ Π(w) ∀k ≥ 1 :M, π[k] |= φ,
M,w |= AGφ iff ∀π ∈ Π(w) ∀k ≥ 1 :M, π[k] |= φ,
M,w |= φ EU ψ iff ∃π ∈ Π(w) ∃k ≥ 1 :M, π[k] |= ψ and ∀i < k :M, π[i] |= φ,
M,w |= φ AU ψ iff ∀π ∈ Π(w) ∃k ≥ 1 :M, π[k] |= ψ and ∀i < k :M, π[i] |= φ,
M,w |= φ ER ψ iff ∃π ∈ Π(w) ∀k ≥ 1 :M, π[k] |= ψ or ∃i < k :M, π[i] |= φ,
M,w |= φ AR ψ iff ∀π ∈ Π(w) ∀k ≥ 1 :M, π[k] |= ψ or ∃i < k :M, π[i] |= φ.

Additionally, take ⊥ B ¬⊤ as constant false. We also omit the root inM, r |= φ and just write
M |= φ instead. A formula φ is then said to be satisfied by modelM, ifM |= φ holds.

Before continuing let us make an observation regarding the semantics of CTL.
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Observation 4. The following equivalences between CTL operators hold:

• EXφ ≡ ¬AX(¬φ)

• AGφ ≡ ¬EF(¬φ) and EGφ ≡ ¬AF(¬φ)

• EGφ ≡ ⊥ ER φ and AGφ ≡ ⊥ AR φ

• EFφ ≡ ⊤ EU φ and AFφ ≡ ⊤ AU φ

• φ ER ψ ≡ ¬(¬φ AU ¬ψ) and φ AR ψ ≡ ¬(¬φ EU ¬ψ)

2.1.1 Submodels

Next, we introduce the notion of submodels. Given two Kripke models M = (W,R, η, r)
andM′ = (W ′,R′, η, r). If W ′ ⊆ W and R′ ⊆ R we callM′ a submodel ofM, denoted by
M′ ⊆ M. Notice that a tuple (W ′,R′, η, r) with W ′ ⊆ W and R′ ⊆ R is not necessarily a
submodel, as for example R′ could be a not total relation.

We want to further narrow down the definition of a submodel, by introducing connected
submodels.

Definition 5. Let M = (W,R, η, r) be a Kripke model. M′ = (W ′,R′, η, r) is a connected

submodel ofM, denoted byM′ ⊆c M, if

1. W ′ ⊆ W and W , ∅,

2. R′ ⊆ R and R′ ⊆ W ′ ×W ′ is a total relation and

3. for all w ∈ W ′ there exists a path π ∈ Π(r) and i ≥ 1 with π[i] = w.

The first two points ensure thatM′ is a Kripke model. The third point makes sure that all
worlds inM′ lie on a path starting at the root. This reduces redundancy in the enumeration
of submodels. Worlds that violate this point cannot have influence on the satisfiability of
CTL formulas. Thus an enumeration algorithm printing connected submodels can trivially be
extended to include non-connected submodels.

Since we will only consider connected submodels in this thesis, we will simply write
submodels and use ⊆ instead of ⊆c. Additionally we want to introduce an alternative notation
for submodels M′ = M − D, with D = (DW ,DR) a tuple consisting of a set of worlds
and a set of relations and where W ′ = W \ DW and R′ = R \ DR, forM = (W,R, η, r) and
M′ = (W ′,R′, η, r).

A submodelM′ is satisfying φ ifM′ |= φ. The formula φ is often omitted, if it can be
deduced from the context.

Finally, we define the notion of an order over the relations of a Kripke model.
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Figure 2.2: Three potential submodels of the Kripke model in Figure 2.1. The left structure is
a submodel but not a connected submodel. The middle structure is a connected
submodel. And the right structure is neither a connected submodel nor a submodel.

Definition 6 (R-Order). LetM = (W,R, η, r) be a Kripke model. We write ≺R to denote an
arbitrary strict total order over the relations R.

Additionally we say that min(M) B min(R) B e ∈ R such that for all e0 ∈ R with e0 , e

we have e ≺R e0.

The specifics of ≺R are not of relevance here. All that is required of ≺R is that it allows us
to describe a unique sequence of relations in a model.

Example 7. Let us look at the Kripke model in Figure 2.1 again. Figure 2.2 shows three
possible submodels. While the first model has a total relation and is therefore a submodel by
the original definition, there is no path to world w2. Therefore the model is not a connected
submodel. The middle model fulfills all the requirements of a connected submodel. Although
the last model is connected, the world w3 has no outgoing relation, as such the model is not
total and therefore not a submodel.

2.1.2 Post’s Lattice in CTL

Let id be the identity function, i.e. id(x) B x. If B is a set of Boolean functions, then [B] is
called a clone, if it contains all projections (i.e. all Boolean functions In

k (a1, . . . , an) = ak for
all a1, . . . , an ∈ {0, 1}) and is the smallest set, which is derived by arbitrary composition of
functions of B ∪ {id}, such that [B] = B holds. Any finite B0 ⊆ B with [B0] = B is called a
base (or basis) of B. For a more in depth introduction into clones we refer the reader to [1].

While there is usually an infinite set of Boolean clones, in the context of this thesis we only
need to consider seven. This is due to the fact that we can always simulate the constants ⊤
and ⊥ by introducing new proportions that hold on either all worlds or none.

Figure 2.3 depicts the relevant clones described by their standard bases. Notice that
{∧,⊕} is sufficient to express all Boolean functions, because of the “free” constants and the
equivalences

¬φ ≡ φ ⊕ ⊤ and φ ∨ ψ ≡ ((φ ⊕ ⊤) ∧ (ψ ⊕ ⊤)) ⊕ ⊤.
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Figure 2.3: The relevant Boolean clones in this thesis.

For the CTL operators we also have equivalences as shown in Observation 4. These allow us
to construct a similar lattice for CTL operators when there are no restrictions on the Boolean
operators, as depicted in Figure 2.4. Here we can also see, that {AX,AF,AR,∧,⊕}-formulas
have enough expressivity to formulate any CTL formula. Unfortunately, the lattices for
temporal operators and clones with limited access to Boolean operators are impractical to
visualise due to their sheer size.

2.2 Enumeration Complexity

In this section we will introduce Enumeration Complexity, unlike decision problems, which
ask for the existence of solutions to a given instance, enumeration problems aim to output
all solutions of an instance. The set of solutions is often much larger than the the size of the
input instance, making the overall runtime of an enumeration algorithm overly dependent
on the number of solutions. To avoid the problem of possible exponential total runtime, the
elapsed time between outputting two solutions, called the delay of an enumeration algorithm,
is commonly measured.

The Turing machine, as the standard machine model used in complexity theory, also proves
to be problematic for enumeration. Its linear nature in accessing data prevents a polynomial
delay when traversing exponentially large data sets, even if the actual data read is small.
Therefore, one commonly uses random access machines (RAMs) as the machine model in
Enumeration Complexity. RAMs, as their name suggests, allow direct access to bits of their
data.

Definition 8. Let Σ be a finite alphabet. An enumeration problem is a tuple E = (I,Sol),
where

• I ⊆ Σ∗ is the set of instances, and

• Sol : I → P(Σ∗) is a function that maps to each instance x ∈ I a set of solutions (of x).
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Figure 2.4: The lattice induced by all CTL operators with no restrictions on the Boolean
operators. Each node is labeled with a minimal set of operators.
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Definition 9. Let E = (I,Sol) be an enumeration problem. An algorithm A is called an
enumeration algorithm for E, if for every instance x ∈ I the algorithmA obeys the following
two properties, whereA(x) denotes the computation ofA on input x:

• A(x) terminates after a finite sequence of steps.

• A(x) prints exactly Sol(x) without duplicates.

Let us now formally define the previously mentioned delay of an enumeration algorithm.

Definition 10. Let E = (I,Sol) be an enumeration problem,A be an enumeration algorithm
for E, x ∈ I be an instance and n = |Sol(x)| the number of solutions of x. We now define

• the ith delay of A(x) as the elapsed time between the output of the ith and (i + 1)st
solution of Sol(x),

• the 0th delay as the precomputation time, i.e, the elapsed time before the first output of
A(x), and

• the nth delay as the postcomputation time, i.e., the elapsed time after the last output of
A(x) until it terminates.

We say thatA has delay f , for some function f : N→ N, if for all x ∈ I and all 0 ≤ i ≤ n the
ith delay ofA(x) is in O( f (|x|)).

If f is a polynomial, then this leads directly to the most common enumeration complexity
class, i.e. the class of problems that can be enumerated by an algorithm with polynomial
delay, called DelP.

2.2.1 Hard enumeration

In this subsection we will introduce the framework of hard enumeration by Creignou et al. [6].
Hard enumeration presents tools to analyse enumeration problems beyond polynomial delay
by introducing a hierarchy of complexity classes similar to the polynomial-time hierarchy
and a notion of reductions for enumeration problems.

We begin by defining two decision problems that naturally arise in the context of enumera-
tion.

Definition 11. Let E = (I,Sol) be an enumeration problem over the alphabet Σ. The decision
problem asking for the existence of solutions, i.e. the set Sol(x) is not empty for a given
instance x ∈ I, is defined as follows:

Problem: Exist_E

Input: Instance x

Question: Is Sol(x) , ∅?

10



The decision problem concerned with finding new solutions, i.e. given an instance x and
a partial solution y, can we extend the partial solution by a word y′ ⊆ Σ∗ such that yy′ is a
solution of E, where yy′ denotes the concatenation of y and y′, is defined as:

Problem: ExtendSol_E

Input: Instance x, partial solution y

Question: Is there some y′ such that yy′ ∈ Sol(x)?

As mentioned before we use RAMs instead of Turing machines in the context of enumera-
tion complexity. We now want to further extend the underling machine model, by introducing
decision oracles. A decision oracle can be seen as a subroutine solving a specific decision
problem. When analysing the runtime, or in this case the delay, of an algorithm calls to its
oracle always count as a single step, regardless of the time the oracles needs. Our machines
can now write into special registers and the oracle will consider these as well as all consecutive
non-empty registers as its input. A request to the oracle then occurs if the machine enters a
special question state and will go into either a positive state if the oracle answers “yes” or a
negative state if the oracle answers “no”.

We can now formally define enumeration complexity classes with oracles.

Definition 12 (Enumeration Complexity Classes). Let E be an enumeration problem, and C a
decision complexity class. Then we say that E ∈ DelC if there is a RAM M with oracle L in
C and a polynomial p, such that for any instance x, M enumerates Sol(x) with delay p(|x|).
Moreover, the size of every oracle call is bound by p(|x|).

This definition directly entails the aforementioned enumeration complexity classes DelP.
Another enumeration complexity class we want to highlight here is DelNP, which consists
of enumeration problems that can be enumerated with polynomial delay by a RAM with an
oracle in NP. Both DelP and DelNP can be seen as the counterparts of P and NP respectively.

The following Corollary 13 as well as Corollary 17 are both simplified versions of results
presented in [6]. While Creignou et al. considered the full polynomial hierarchies in their
proofs, here we are only concerned with the P and NP cases.

Corollary 13 ([6, Proposition 6]). Let E = (I,Sol) be an enumeration problem and C ∈

{P,NP}. If ExtendSol_E ∈ C then E ∈ DelC.

Corollary 13 allows membership results for enumeration problems, using the corresponding
decision problem ExtendSol. This technique will prove particularly useful when showing
membership in DelNP, as constructing enumeration algorithms with oracles can be quite
difficult.

We now give the necessary definitions to show hardness results for enumeration problems.
The first definition introduces yet another machine model, which can then be used to define a
reduction from one enumeration problem to another.

11



Definition 14. Let E be an enumeration problem. An Enumeration Oracle Machine with

an enumeration oracle E, abbreviated as (EOM_E), is a RAM that has a sequence of new
registers Ae,Oe(0),Oe(1), . . . and a new instruction NOO (next Oracle output). An EOM_E is
oracle-bounded, if the size of all inputs to the oracle is at most polynomial in the size of the
input to the EOM_E.

Definition 15. Let E be an enumeration problem and π1, π2, . . . be the run of an EOM_E and
assume that the kth instruction is NOO, i.e. πk = NOO. Denote with xi the word stored in
Oe(0),Oe(1), . . . at step i. Let K = {πi ∈ {π1, . . . , πk−1} | πi = NOO and xi = xk}. Then the
oracle output yk in πk is defined as an arbitrary yk ∈ R(xk) such that yk has not been the oracle
output in any πi ∈ K. If no such yk exists, then the oracle output in πk is undefined.

When executing NOO in step πk, if the oracle output yk is undefined, then the register Ae

contains some special symbol in step πk+1. Otherwise in step πk+1 the register Ae contains yk.

Definition 16 (D-reductions). Let E and E′ be enumeration problems. We say that E reduces
to E′ via D-reduction, E ≤D E

′, if there is an oracle-bounded EOM_E′ that enumerates E in
DelP and is independent of the order in which the E′-oracle enumerates its answers.

The next result shows that one can use the decision problem Exist_E to show hardness of
the corresponding enumeration problem E. If an enumeration problem is shown to be both
hard for and a member of an enumeration complexity class, we call it complete for that class.

Corollary 17 ([6, Theorem 13]). Let E = (I,Sol) be an enumeration problem. If Exist_E is

NP-hard, then E is DelNP-hard via D-reductions.

2.3 Auxiliary Decision Problems

To make use of Corollary 17 we need to show the NP-hardness of Exist_E. We will use the
standard approach in complexity theory by presenting polynomial time many-one reductions

(≤P
m). That is, a problem A is NP-hard if a problem B, already known to be NP-hard, can be

reduced to problem A in polynomial time, i.e. B ≤P
m A. Thus we now present the NP-complete

(NP-hard and computable in NP) decision problems SAT and HAMPATH.

The problem SAT is concerned with the satisfiability of formulas of propositional logic.
We will not fully introduce propositional logic here, instead we present the necessary aspect
to work with SAT.

A formula φ in propositional logic consists of Boolean connectors ∧,∨,¬ and propositions
x1, x2, . . . , xn. The set of propositions of φ is denoted by PROP. We call the total function
I : PROP→ {0, 1} an assignment of φ. The evaluation function Î(φ) extends the assignment
function to formulas in the following way:

12



Problem: SAT

Input: A propositional formula φ
Question: Does an assignment I exist such that I(φ) = 1?

Figure 2.5: Satisfiability problem of propositional logic

Problem: HAMPATH

Input: A graph G = (V, E) with s ∈ V and t ∈ V
Question: Does a Hamiltonian path from s to t exist in G?

Figure 2.6: Hamiltonian path problem

1. If φ is a proposition, then Î(φ) = I(φ).

2. If φ = θ ∧ ϕ, then Î(φ) = 1, if Î(θ) = 1 and Î(ϕ) = 1, 0 otherwise.

3. If φ = θ ∨ ϕ, then Î(φ) = 1, if Î(θ) = 1 or Î(ϕ) = 1, 0 otherwise.

4. If φ = ¬ϕ, then Î(φ) = 1, if Î(ϕ) = 0 and 0 otherwise.

We usually write I for both, the assignment and evaluation function, and omit Î. If
I(φ) = 1 we say that φ is satisfied by I. A formula φ is satisfiable if an assignment I exists
such that φ is satisfied by I.

The problem SAT now consists of all satisfiable formulas. The formal definition can be
seen in Figure 2.5.

Theorem 18 ([4]). SAT is NP-complete.

The second decision problem we will be using in this thesis is HAMPATH. Given a graph
G = (V, E) containing the nodes s and t, HAMPATH asks if there exits a Hamiltonian path
from s to t. A Hamiltonian path is defined as a path containing all nodes of the graph exactly
once. Figure 2.6 formally defines this as a decision problem.

Theorem 19 ([12]). HAMPATH is NP-complete.
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3 Complexity of Submodel

Enumeration

In this chapter we will formally define the problem of enumerating satisfying submodels. We
then present complexity results for CTL and most of its fragments.

3.1 Submodel Enumeration

We begin by formally defining the enumeration problems we want to study in this thesis.
That is the problem of enumerating all submodels of a given models satisfying the given CTL

formula.

Problem: E-CTL-Submodel(T )

Input: A Kripke modelM = (W,R, η, r) and a CTL formula φ
with operators in T ⊆ {EX,AX,EG,AG,EF,AF,

EU,AU,ER,AR,¬,∨,∧,⊕}.
Output: All submodelsM′ ⊆ M that satisfy φ, i.e. M′ |= φ.

We will omit the set notation in favour of convenience and write E-CTL-Submodel(AF, ∧)
instead of E-CTL-Submodel({AF,∧}) for example. Also we write E-CTL-Submodel to refer
to the problem that can express any CTL formula, i.e. E-CTL-Submodel(EX,EG,EU,∧,⊕).

Next we define the decision problems Exist_E and ExtendSol_E of E-CTL-Submodel(T ).

Problem: ExistSubmodel(T )

Input: A Kripke modelM = (W,R, η, r) and a CTL formula φ
with operators in T ⊆ {EX,AX,EG,AG,EF,AF,

EU,AU,ER,AR,¬,∨,∧,⊕}.
Question: Does a submodelsM′ ⊆ M withM′ |= φ exist?
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Problem: ExtendSubmodel(T )

Input: A Kripke modelM = (W,R, η, r), a CTL formula φ
with operators in T ⊆ {EX,AX,EG,AG,EF,AF,

EU,AU,ER,AR,¬,∨,∧,⊕} and a set of deletions D.
Question: Is there a D′ such that the submodelM′ BM− [D ∪ D′]

satisfies φ, i.e. M′ |= φ?

We will again omit (T ) when the fragment in question is clear from the context.

3.2 Results for formulas with all operators

Let us now turn to our first complexity results. Enumerating satisfying submodels without
restrictions on the operators is intractable. We prove this, by showing NP-hardness of
ExistSubmodel. The core idea of the proof is to establish a connection between submodels
and assignments of a propositional formula. The goal is to show, that finding a submodel that
satisfies the CTL formula is equivalent to solving SAT.

Theorem 20. E-CTL-Submodel is DelNP-hard.

Proof. It follows from Corollary 17 that the showing NP-hardness of ExistSubmodel is
sufficient to prove this theorem.

Let φ be a propositional formula. Further let PROP(φ) = {x1, x2, . . . , xn} be the finite set
of propositions of φ. We define φCT L by replacing all occurrences of x in φ with EX x for
x ∈ PROP(φ). We then construct a Kripke modelM = (W,R, η, r) as follows (see Figure 3.1
for a visual representation).

W B {r,wx1 ,wx2 , . . . ,wxn}

R B {(r,wxi), (wxi ,wxi) | xi ∈ PROP(φ)}

η(wxi) B {xi} for all xi ∈ PROP(φ)

We show that ⟨φ⟩ 7→ ⟨M, φCT L⟩ is a valid reduction function from SAT to ExistSubmodel.
Suppose ⟨φ⟩ ∈ SAT. Then there is an assignment I such that I(φ) = 1. Next letM′ =

(W ′,R′, η, r) be a submodel ofM as follows:

W ′ B W \ {wxi | I(xi) = 0}

R′ B R \ {(r,wxi), (wxi ,wxi) | I(xi) = 0}.

That is, we remove all worlds as well as their adjacent edges labeled with a proposition set to

15



x1 x2 . . . xn

Figure 3.1: Kripke modelM used in Theorem 20, with a root and worlds for each proposition
of a propositional formula.

0 by the satisfying assignment of φ. This means that

M′ |= EX x ⇐⇒ I(x) = 1

and because the only difference between φ and φCT L is the temporal operator EX before
propositions, it follows thatM′ |= φCT L and thus ⟨M, φCT L⟩ ∈ ExistSubmodel.

Now suppose ⟨M, φCT L⟩ ∈ ExistSubmodel. Then there exists a submodel of M that
satisfies φCT L. LetM′ = (W ′,R′, η, r) be such a submodel. We construct an assignment I
fromM′ as follows:

I(x) B

1, if wx ∈ W ′

0, otherwise.

It should be clear that I(x) = 1 ⇐⇒ M′ |= x holds again. So by the same argument as
above we have I(φ) = 1 and ⟨φ⟩ ∈ SAT.

It follows that SAT ≤P
m ExistSubmodel, since both the modelM and the formula φCT L can

clearly be computed in polynomial time. □

To illustrate the proof, we give a short example, where we show the construction of the
formula φCT L and the Kripke modelM, as well as the connection between finding submodels
and solving SAT.

Example 21. Let φ B (x ⊕ y) ∧ ¬(y ∨ ¬z) with PROP(φ) = {x, y, z}. We then construct the
CTL formula φCT L as described above.

φCT L B (EX x ⊕ EX y) ∧ ¬(EX y ∨ ¬EX z)

The corresponding Kripke modelM = (W,R, η, r) is as follows:
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x y z

Assume we find the following satisfying submodelM′ ⊆ M:

x z

Now we construct the assignment for φ as shown in the proof of Theorem 20. Since
wx,wz ∈ W ′ we have

I(x) = I(z) = 1

and with wy < W ′

I(y) = 0.

We can convince ourselves that I indeed satisfies φ.

φ = (x ⊕ y) ∧ ¬(y ∨ ¬z)

= (1 ⊕ 0) ∧ ¬(0 ∨ ¬1)

= 1 ∧ ¬0

= 1

Therefore φ ∈ SAT holds.

Having just shown DelNP-hardness, we now turn to membership. Once again, we use the
tools of hard enumeration, this time to get around the need to give a DelNP algorithm. Instead
we show that ExtendSubmodel ∈ NP which, together with Corollary 13, gives the desired
upper bound.

Theorem 22. E-CTL-Submodel ∈ DelNP.

Proof. Algorithm 1 decides ExtendSubmodel and is in NP. The correctness should be
obvious. If an extension D′ exists such thatM− D′ |= φ, then we can nondeterministically
guess the worlds and relations of that extension in line 1. Also guessing, computing D′ and
checkingM− D′ |= φ can all clearly be done in polynomial time.

□
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Algorithm 1: NP algorithm for ExtendSubmodel.
Input: Kripke modelM = (W,R, η, r), CTL formula φ, set of deletions

D = (DW ,DR)
1 Guess a set of worlds W ′ ⊆ W and a set of relations R′ ⊆ R
2 D′ B (W ′ ∪ DW ,R′ ∪ DR)
3 if M− D′ |= φ then accept else reject

Corollary 23. E-CTL-Submodel is DelNP-complete.

Proof. Follows directly from Theorem 20 and Theorem 22. □

Notice that Theorem 22 is not only an upper bound for E-CTL-Submodel but also for all
of its fragments too.

3.3 Results for monotone formulas

Since E-CTL-Submodel is intractable, we now want to restrict the access to some operators
in hope of finding a tractable fragment. We start by studying monotone formulas. These are
formulas that have no negation. Note that in the context of CTL, this restriction is actually
not that harsh. Every CTL formula can be transformed into an equivalent formula in negation
normal form, i.e. formulas with only atomic negations, using Observation 4. One can then
introduce new propositions to simulate atomic negations. Thus, every formula-model pair has
an equivalent formula-model pair without negations.

In this section we will show, that monotone CTL formulas with only E quantified temporal
operators lead to our first tractability result, while A quantified temporal operators are still
hard to enumerate.

Before showing tractability of E-CTL-Submodel(EX,EG,EF,EU,ER,∧,∨) we first need
two auxiliary results. Algorithm 2 will be used as a subroutine to “fix” a set of deletions to
create an actual submodel that matches to our definition of a submodel. Lemma 24 then states
that using this subroutine will not prevent polynomial delay.

The other Lemma 25 allows us to formulate a break continue, when searching through all
possible submodels. It says that if a Kripke model does not satisfy a formula, then neither
will one of its submodels, and therefore does not need to be considered by an enumeration
algorithm.

The idea of the algorithm is to simply remove all “bad” worlds, i.e. worlds that violate
the totality or connectivity of the submodel, and repeating to do so until either all worlds are
removed or a valid submodel is found. The function of Line 7 will become clear later, when
considering the full enumeration algorithm.

Lemma 24. The function FixSubmodel() can be computed in polynomial time with respect

to the size of the model.
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Algorithm 2: Repair a potential submodel
Input: A Kripke modelM = (W,R, η, r) and a set of deletions D = (DW ,DR)
Output: A set of deletions D′ = (D′W ,D

′
R) such thatM− D′ is a submodel or empty

1 Function FixSubmodel(M,D):
2 W ′ ← W \ DW , R′ ← R \ DR and D′ ← D
3 while ∃w ∈ W ′ on no path in Π(M) or (w, ·) ∩ R′ = ∅ do
4 D′W ← D′W ∪ {w}
5 D′R ← {(w, ·)} ∪ {(·,w)}, for all (w, ·), (·,w) ∈ R′

6 W ′ ← W \ D′W and R′ ← R \ D′R
7 if ∃r ∈ R′ with r ≺R min(DR) then return W(M) ∪ R(M) // no fix

8 return D′

Proof. The loop in line 2 iterates over each world at most once. Adding to D′, recalculation
W ′ and R′ and comparing all relations in R′ to the relations in D can clearly all be done in
polynomial time. Therefore the total runtime is polynomial. □

Lemma 25. Let M′ ⊆ M be a submodel. If M ̸|= φ, for any CTL formula φ with CTL

operators in {EX,EG,EF,EU,ER}, thenM′ ̸|= φ.

Proof. To prove this lemma consider its contraposition, i.e. M′ |= φ =⇒ M |= φ. Note that
the set of paths that satisfy φ inM′ also exist inM. Since we only consider monotone CTL

formulas, the same set of paths will satisfy φ inM. □

Theorem 26. E-CTL-Submodel(EX,EG,EF,EU,ER,∧,∨) ∈ DelP.

Proof. Using Lemma 25 as a break condition we construct a recursive enumeration algorithm
(see Algorithm 3) starting with the original modelM and successively removing relations
(and nodes when necessary). We can guarantee no duplicate outputs by using an order ≺R

over R, because for every submodelM− D that satisfies φ, there is a unique sequence of
recursive calls to EnumSubgraphRec(). This must be a subsequence of the sequence given
by the relations in D and ≺R. Any relation missing from the subsequence has been removed by
a call to FixSubmodel(), which also respects the order. So there is only one way to output a
submodel.

The algorithm also does not miss any possible submodels. A simple induction shows
that for every satisfying submodel, there exists a satisfying submodel with at least one more
relation up to the original model, and it is quite easy to see that our algorithm will consider
and output all submodels in this chain.

The delay of the algorithm mainly depends on the calls to FixSubmodel(), the model
checking of the current submodel and the number of submodels not satisfying φ considered
between two solutions. We have shown in Lemma 24 that FixSubmodel() can be computed
in polynomial time. Model checking is a well-studied problem and it is well known to be
computable in polynomial time [18]. Finally, the number of “bad” submodels considered is
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bounded by the depth of the recursion and the number of iterations in the for-loop. Both are
bounded by the number of relations in the model, giving an upper bound of O(|M|2). Together
the algorithm is then obviously in DelP. □

Algorithm 3: Enumerate the satisfying submodels for a monotone CTL formula
with only E quantifiers

Input: A Kripke modelM = (W,R, η, r) and a CTL formula φ with operators
T ⊆ {EX,EG,EF,EU,∧,∨,⊕}

Output: All submodelsM′ ⊆ M withM′ |= φ
1 EnumSubgraphRec(M, φ, ∅)
2

3 Procedure EnumSubgraphRec(M, φ,D):
4 if M− D is not a submodel then
5 D← FixSubmodel(M,D)

6 if M− D |= φ then
7 outputM− D
8 for e ∈ R \ DR and min(DR) ≺R e do // prevents duplicates
9 EnumSubgraphRec(M, φ,D ∪ {e})

Let us now visualise the algorithms functionality with an example.

Example 27. LetM be a Kripke model as follows:

x
w1

y
w2

z
w3

Next, consider the following CTL formula

φ B x ∧ EF z.

The goal is to enumerate all submodelsM′ ⊆ M that satisfy φ.
First fix the order ≺R as

(w1,w2) ≺R (w1,w3) ≺R (w3,w2) ≺R (w3,w3) ≺R (w2,w2).

We can visualise it in the model by labeling the relations as follows:
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x
w1

y
w2

z
w3

1

2 3

4

5

Next, we start the algorithm by calling the procedure

EnumSubgraphRec(M, x ∧ EF z, ∅).

The algorithm tests ifM− ∅ |= x ∧ EF z, which is true. We therefore get our first solution
M− ∅, i.e. the original modelM. The algorithm then starts the recursion with

EnumSubgraphRec(M, x ∧ EF z, {(w1,w2)}).

M − {(w1,w2)} |= x ∧ EF z is again true and M − {(w1,w2)} is the second solution. The
algorithm continues deeper into the recursion with

EnumSubgraphRec(M, x ∧ EF z, {(w1,w2), (w1,w3)}).

M− {(w1,w2), (w1,w3)} is not a submodel, because there is no path from the root w1 to w2

and w3.

x
w1

y
w2

z
w3

3

4

5

The algorithm therefore tries to repair the submodel, which results in the empty submodel,
because the root has no outgoing relation and has to be removed. This branch of the recursions
has reached a dead end and we need to backtrack. There are still relations to be considered
and up next is

EnumSubgraphRec(M, x ∧ EF z, {(w1,w2), (w2,w3)}).

Resulting in the following submodel:
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x
w1

y
w2

z
w3

2

4

5

This submodel is also not connected and needs to be repaired. This time it is in fact possible,
by removing the world w2 and the relation (w2.w2), resulting in the following submodel:

x
w1

z
w3

2

4

This submodel is total and connected andM− {w2, (w1,w2), (w2,w3), (w2,w2)} |= x ∧ EF z is
true, thus being our third solution.

There are two relations left, but because (w2,w2) ⊀R (w1,w3) and (w2,w2) ⊀R (w3,w3), we
cannot remove either.

Finally, let us take a look how the order ≺R over the relations prevents outputting dupli-
cate submodels. Assume we just called EnumSubgraphRec(M, x ∧ EF z, {(w3,w2)}). The
submodelM− {(w3,w2)}

x
w1

y
w2

z
w3

1

2

4

5

satisfies x ∧ EF z. Removing the relation (w1,w2) would result in the same submodel as our
second solution above. But because (w3,w2) ⊀R (w1,w2), this is not allowed and we would
continue with the relations (w3,w3) and (w2,w2). Lets assume we continue with (w2,w2). The
resulting submodel is not total, because w2 has no outgoing relations. The algorithm therefore
calls FixSubmodel(M, {(w3,w2), (w2,w2)}), but again we are prohibited from removing the
relation (w1,w2), and cannot repair the submodel resulting in no further outputs on this branch.
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x1, x0
1 x1, x1

1

x2, x0
2 x2, x1

2

...

xn, x0
n xn, x1

n

Figure 3.2: Kripke modelM(φ) from Definition 28

Next we show that a single universal temporal operator leads to intractability.

Definition 28. Let φ be a propositional formula with propositions PROP(φ) = {x1, x2, . . . , xn}.
We define the modelM(φ) = (W,R, η, r) with the following properties.

W B{r,wi,w0
i ,w

1
i }

R B{(r,w0
1), (r,w1

1)} Edge from the root to the first layer

∪ {(w0
i ,wi), (w1

i ,wi)} Edge from a layer to its joint

∪ {(wi,w0
i+1), (wi,w1

i+1)} Edge from the joint to the next layer

∪ {(wn,wn)} Loop on the last joint

η(wk
i ) B{xi, xk

i }

for all 1 ≤ i ≤ n.

A visualisation of the definition above can be seen in Figure 3.2, with the proposition
labeling instead of the worlds names.
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Theorem 29. The following enumeration problems are DelNP-complete:

1. E-CTL-Submodel(AX,∧,∨)

2. E-CTL-Submodel(AG,∧,∨)

3. E-CTL-Submodel(AF,∧,∨)

Proof. The upper bound follows from Theorem 22.
We will detail the proof of the lower bound for E-CTL-Submodel(AF,∧,∨). The other two

cases will follow analogously.
By Corollary 17 we only need to show NP-hardness for Exist_E-CTL-Submodel(AF,∧,∨),

which is a decision problem asking, if there exists a submodel of the given model satisfying
the given formula. For that we present a reduction from SAT.

Let φ be propositional formula in negation normal form. We construct a formula φAF by
replacing all occurrences of xi by AF x1

i and ¬xi by AF x0
i . Next we need to show that

⟨φ⟩ ∈ SAT ⇐⇒ ⟨M(φ), φAX⟩ ∈ ExistSubmodel(AF,∧,∨).

Assume that φ ∈ SAT. Then there is an assignment I such that I(φ) = 1. Using this assign-
ment, we construct a submodelM′ ⊆ M(φ) by removing worlds and relations containing
them as follows:

• if I(xi) = 1, then remove w0
i , likewise

• if I(xi) = 0, then remove w1
i .

Observe thatM′ |= AF x1
i , iff I(xi) = 1, since all paths ofM′ have to contain w1

i , because it is
the only successor world of wi. Analogously,M′ |= AF x0

i , if and only if I(xi) = 0. Recall
that the formula φAX differs from φ only in its atoms. It follows thatM′ |= φAX must be true.

In the same way, if there is a submodel such thatM′ |= φAX, we can construct an assignment
I with I(φ) = 1, concluding the proof for DelNP-hardness of E-CTL-Submodel(AF,∧,∨).

The fragments E-CTL-Submodel(AX, ∧, ∨) and E-CTL-Submodel(AG, ∧, ∨) follow the
same approach using different CTL-formula. For E-CTL-Submodel(AG,∧,∨) we construct
the formula φAG by replacing all occurrences of xi with AG(¬xi∨ x1

i ) and ¬xi by AG(¬xi∨ x0
i ).

These replacements work in the same way as in the AF case. AG(¬xi ∨ x1
i ) only holds, if the

world w0
i is removed, while AG(¬xi ∨ x0

i ) only holds, if w1
i is removed.

For AX, we need to consider how far away the worlds are from the root. Keeping this
in mind we can simulate the behaviour of AF by concatenating multiple AX operators. the
resulting formula φAX is constructed as follows: Replace all occurrences of xi with AX2i−1 x1

i

and ¬xi by AX2i−1 x0
i , using AXn as an abbreviation for n concatenated AX operators. □
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x1, x0
1 x1, x1

1

x2, x0
2 x2, x1

2

Figure 3.3: ModelM(φ) in Example 32.

Corollary 30. E-CTL-Submodel(AU, ∧, ∨) and E-CTL-Submodel(AR, ∧, ∨) are DelNP-

complete.

Proof. We can simulate the behaviour of AF and AG respectively using the identities AGφ =

φ AR ⊥ and AFφ = ⊤ AU φ. □

The next result shows how this affects the the clone with all Boolean operators. While
we have already shown that E-CTL-Submodel with access to all temporal and Boolean
operators is DelNP-complete, we now prove that a single temporal operator already has
enough expressivity to show DelNP-hardness.

Corollary 31. E-CTL-Submodel(T,∧,⊕) is DelNP-complete, if T contains at least one CTL

operator.

Proof. For A operator this follows directly from Theorem 29 and Corollary 30. If T contains
only E operators we can use Observation 4 to construct an equivalent formula using only A
operator. □

Example 32. Let φ = (x1 ∧ ¬x2) ∨ (x2 ∧ (¬x1 ∨ 1) ∧ 0) be a propositional formula, with
PROP(φ) = {x1, x2}. ThenM(φ) is as depicted in Figure 3.3 and φT is, depending on the CTL
operators, as follows:

φAX = (AX x1
1 ∧ AX AX AX x0

2) ∨ (AX AX AX x1
2 ∧ (AX x0

1 ∨ ⊤) ∧ ⊥)
φAF = (AF x1

1 ∧ AF x0
2) ∨ (AF x1

2 ∧ (AF x0
1 ∨ ⊤) ∧ ⊥)

φAG = (AG(¬x1 ∨ x1
1) ∧ AG(¬x2 ∨ x0

2)) ∨ (AG(¬x2 ∨ x1
2) ∧ (AG(¬x2 ∨ x0

1) ∨ ⊤) ∧ ⊥)

The submodel M′ as shown in Figure 3.4 satisfies φT in all three cases. In the first
case AX x1

1 and AX AX AX x0
2 are true and thus the whole formula. In the second case the
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x1, x1
1

x2, x0
2

Figure 3.4: SubmodelM′ of the model in Figure 3.3 withM′ |= φT .

corresponding AF x1
1 and AF x0

2 are true. And lastly in the third case AG(x1 → x1
1) and

AG(x2 → x0
2) are true. In all these cases we can deduce a satisfying assignment for the

original propositional formula φ. In this example the assignment is I(x1) = 1 and I(x2) = 0,
resulting in

I(φ) = (1 ∧ ¬0) ∨ (0 ∧ (¬1 ∨ 1)

= 1 ∨ 0

= 1

which shows φ ∈ SAT as desired.

3.4 Results for formulas with only conjunction

Having fully classified the monotone case in the last section, we continue to restrict access to
Boolean operators. Fortunately, the tractability results for E quantified temporal operators
carry over to the less expressive clones. Thus, from here on out, we will mainly focus on A
quantified CTL operators.

In this section we will show that the fragment containing only AF and the Boolean conjunc-
tion is already DelNP-hard. So far we have been to use a fairly straightforward connection
between finding satisfying assignments for propositional formulas and finding satisfying
submodels. Without access to disjunction, this connection seems much less obvious. We will
therefore consider another NP-complete problem and make a similar connection between its
solutions and satisfying submodels. Our problem of choice will be HAMPATH, which we
have formally defined in Figure 2.6.
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We begin by defining the Kripke model used in the proof of Theorem 35.

Definition 33. Let G = (V, E) be a directed graph and s, t ∈ V be some nodes of G. Further
let H B ⟨G, s, t⟩.

We define the modelM(H) B (W,R, η,ws) as follows:

W B {wv, ŵv,wv,i | v ∈ V, 1 ≤ i ≤ |V |}

R B {(wv,wv,i), (wv,i, ŵv) | v ∈ V, 1 ≤ i ≤ |V |}

∪ {(ŵu,wv) | (u, v) ∈ E and u , t} (t has no outgoing relation)

∪ {(ŵt, ŵt)} (except to itself)

η(wv,i) B {i} for 1 ≤ i ≤ |V |

η(wt) B {t}

For a better understanding of the above definition, let us consider the following example.

Example 34. Let G = (V, E) be the graph depicted in Figure 3.5. The Kripke model
constructed as described in Definition 33 can be seen in Figure 3.6.

Theorem 35. E-CTL-Submodel(AF,∧) is DelNP-complete.

Proof. The upper bound follows directly from Theorem 20. For the lower bound we give a
reduction from the NP-complete problem HAMPATH to ExistSubmodel(AF,∧).

Let H B ⟨G, s, t⟩ be an instance of HAMPATH with G = (V, E), s, t ∈ V and n = |V |.
Further letM(H) be the Kripke model obtained from G as described in Definition 33. We
construct a {AF,∧}-formula as follows:

φ B AF(1 ∧ AF(2 ∧ AF(· · · ∧ AF(n ∧ AF t))))

We now show that the Kripke modelM(H) and the formula φ are constructed in such a
way that all submodelsM′(H) ⊆ M(H), withM′(H) |= φ, must consist only of paths from
ws to ŵt containing all other worlds wv for v ∈ V . That is all submodels M′(H) describe
Hamiltonian paths, with respect to the worlds wv in the Kripke model and thus Hamiltonian
paths in the graph G. It is then obvious that a submodel ofM(H) which satisfies φ can only
exist if the original graph has a Hamiltonian path.

Assume M′(H) is a satisfying submodel. We first show that φ forces all infinite paths
inM′(H) to end in a loop at ŵt. For that we start by showing that all paths π ∈ Π(M′(H))
contain the world ŵt.
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b t

Figure 3.5: Example graph with the Hamiltonian path s, a, b, t
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ŵa

wb
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ŵb wt

1
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t
ŵt

Figure 3.6: Kripke modelM(H) of the graph in Figure 3.5.
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M′(H), r |= AF(1 ∧ AF(2 ∧ AF(· · · ∧ AF(n ∧ AF t)))) (with r root ofM′(H))

⇒ ∀π ∈ Π(r)∃k ≥ 1: M′(H), π[k] |= 1 ∧ AF(2 ∧ AF(· · · ∧ AF(n ∧ AF t)))
(Definition of AF)

⇒ ∀π ∈ Π(r)∃k ≥ 1: M′(H), π[k] |= AF(2 ∧ AF(· · · ∧ AF(n ∧ AF t))) (Definition of ∧)

⇒ ∀π ∈ Π(r)∃k ≥ 1∀π′ ∈ Π(π[k])∃k′ ≥ 1:

M′(H), π′[k′] |= 2 ∧ AF(· · · ∧ AF(n ∧ AF t)) (AF again)

⇒ ∀π ∈ Π(r)∃k ≥ 1∃k′ ≥ k : M′(H), π[k′] |= 2 ∧ AF(· · · ∧ AF(n ∧ AF t))
(all π′ ∈ Π(π[k]) also exist in Π(r) with some prefix of length k − 1)

⇒ ∀π ∈ Π(r)∃k ≥ 1: M′(H), π[k] |= 2 ∧ AF(· · · ∧ AF(n ∧ AF t)) (take k = k′)

⇒ ∀π ∈ Π(r)∃k ≥ 1: M′(H), π[k] |= t (repeat steps above)

⇒M′(H), r |= AF t (Definition of AF)

Only one world inM(H) is labeled with the proposition t, that is ŵt. BecauseM′(H) |= AF t

is true if and only if all paths contain such a world, all paths must contain ŵt.
For any path π of Π(M′(H)) assume that π[k] = ŵt with k ∈ N. Now, the only outgoing

relation of ŵt inM′(H) is (ŵt, ŵt), because it is the only outgoing relation of ŵt inM(H).
Therefore for all i ≥ k we have that π[i] = ŵt.

Next, we show that all paths ofM′(H) must contain all worlds wv for v ∈ V . Analogously
to aboveM′(H) |= φ implies

M′(H) |= AF 1,M′(H) |= AF 2, . . . andM′(H) |= AF n.

This means there are k1, k2, . . . , kn ∈ N with

M′(H), π[k1 + 1] |= 1,M′(H), π[k2 + 1] |= 2, . . . andM′(H), π[kn + 1] |= n.

on all paths π ∈ Π(M′(H)). The worlds labeled with numbers in the submodelM′(H) are
wv,k for v ∈ V and 1 ≤ k ≤ n, which have wv as predecessor respectively. Thus all paths must
contain ≥ n worlds wv. With a total number of n such worlds inM′(H), it remains to show
that all paths can visit these worlds only once.

A consequence of all paths leading to ŵt is that the underlying graph ofM′(H) must be
acyclic, except for the loop at the world ŵt. Assume M′(H) is not acyclic. Then M′(H)
would have a cycle. But the cycle obviously cannot contain ŵt, because ŵt has no outgoing
relations except to itself, which contradicts the above statement.

This acyclicity of the model, and the aforementioned necessity to visit at least n worlds wv,
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Figure 3.7: Submodel of the model in Figure 3.6 describing the Hamiltonian path s, a, b, t of
the graph in Figure 3.5.

leads to each world wv being on all paths exactly once.

The infinite paths of a satisfying submodelM′(H) ⊆ M(H) start at wr by definition, we
have shown that they must reach ŵt and contain all wv for v ∈ V exactly once, therefore
describing a Hamiltonian path from s to t in G.

Finally, the reduction function ⟨G, s, t⟩ 7→ ⟨M(H), φ⟩ is polynomial time computable, since
both the Kripke model and the formula can be constructed in polynomial time. □

Let us again visualise the proof with an example.

Example 36. Let G = (V, E) be the graph from Figure 3.5 and M(H) be the constructed
Kripke model depicted in Figure 3.6. We construct the following {AF,∧}-formula:

φ = AF(1 ∧ AF(2 ∧ AF(3 ∧ AF(4 ∧ AF t))))

Figure 3.7 depicted a submodel ofM(H) that satisfies this formula and clearly shows the
corresponding Hamiltonian path of G.

We will continue using this concept of forcing submodels to describe Hamiltonian paths in
the following section. Before that, we want to state the following corollary and remark.

Corollary 37. E-CTL-Submodel(AU,∧) is DelNP-complete

Proof. Follows directly from the equivalence AFφ = ⊤ AU φ. □
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Remark 38. E-CTL-Submodel(AX,∧) can also be shown to be DelNP-complete, by using a
similar reduction as above with the following formula:

φ B AX(1 ∧ AX AX AX(2 ∧ . . . (n AX t).

We won’t fully prove this, as we give an even stronger result in the next section. But it
should be clear that this formula simply mimics the behaviour of the formula used in the proof
of Theorem 35, with the structure of the Kripke model in mind.

3.5 Results for formulas without Boolean operators

In this sections we will show that some CTL operators are inherently hard, when trying
to enumerate satisfying submodels, by disallowing all Boolean operators. We will again
relate submodels to Hamiltonian paths of graphs resulting analogous proves to the proof of
Theorem 35.

Theorem 39. E-CTL-Submodel(AU) is DelNP-complete.

Proof. The upper bound, as always, follows directly from Theorem 22.
For the lower bound we again present a reduction from HAMPATH. Let G = (V, E) be

a graph, n = |V |, s ∈ V and t ∈ V . We make use of the same Kripke model M(H), with
H B ⟨G, s, t⟩, introduced in Definition 33 together with the following {AU}-formula

φ B ((((⊤ AU t) AU n) AU n − 1) · · · AU 2) AU 1.

We show that this formula forces satisfying submodelsM′(H) ⊆ M(H) to consist of paths
from ws to ŵt over all worlds wv with v ∈ V and each wv is on the path exactly once, i.e. they
describe a Hamiltonian path of G inM(H).

Let us start by showing that all paths of anyM′(H) must reach ŵt.

M′(H),ws |= ((((⊤ AU t) AU n) AU n − 1) · · · AU 2) AU 1

⇒ ∀π ∈ Π(ws)∃k ≥ 1∀i < k :

M′(H), π[i] |= (((⊤ AU t) AU n) AU n − 1) · · · AU 2 (Second half of AU)

⇒ ∀π ∈ Π(ws) :M′(H), π[1] |= (((⊤ AU t) AU n) AU n − 1) · · · AU 2 (take i = 1)

⇒M′(H),ws |= (((⊤ AU t) AU n) AU n − 1) · · · AU 2 (π[1] = ws)

⇒M′(H),ws |= ⊤ AU t (repeat)

⇒M′(H),ws |= AF t (Observation 4)

It follows that the underlying graph ofM′(H) must be acyclic as demonstrated in the proof of
Theorem 35.
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Next we prove that all paths inM′(H) visited all worlds wv for v ∈ V .

M′(H),ws |= (((⊤ AU t) AU n) · · · AU 2) AU 1

⇒ ∀π ∈ Π(ws)∃k ≥ 1 :M′(H), π[k] |= 1 and

∀i < k :M′(H), π[i] |= ((⊤ AU t) AU n) · · · AU 2 (definition AU)

⇒ ∀π ∈ Π(ws)∃k ≥ 1 :M′(H), π[k] |= 1 and

M′(H), π[k − 1] |= ((⊤ AU t) AU n) · · · AU 2 (take i = k − 1)

⇒ ∀π ∈ Π(ws)∃k ≥ 1 :M′(H), π[k] |= 1 and ∀π′ ∈ Π(k − 1)∃ j ≥ 1 :M′(H), π′[ j] |= 2 and

∀i < j :M′(H), π′[i] |= ((⊤ AU t) AU n) · · · AU 3 (definition AU)

⇒ ∀π ∈ Π(ws)∃k ≥ 1 :M′(H), π[k] |= 1 and ∃k′ ≥ k − 1 :M′(H), π[k′] |= 2 and

∀i < j :M′(H), π[i] |= ((⊤ AU t) AU n) · · · AU 3 (all π′ in Π(R) with some prefix)

⇒ ∀π ∈ Π(ws)∃k ≥ 1 :M′(H), π[k] |= 1 and ∃k′ ≥ k − 1 :M′(H), π[k′] |= 2 and

M′(H), π[k′ − 1] |= ((⊤ AU t) AU n) · · · AU 3 (take i = k′ − 1)

Repeating this process leads to

∀π ∈ Π(ws)∃k ≥ 1 :M′(H), π[k] |= 1

and ∃k′ ≥ k − 1 :M′(H), π[k′] |= 2

and . . .

and ∃k(n−1) ≥ k(n−2) − 1 :M′(H), π[k(n−1)] |= n.

Notice that in the construction of M(H) the predecessor world of worlds labeled with a
number has no label themselves. Also notice that the world label with a number has no other
label. Therefore k(i) > k(i−1) instead of k(i) ≥ k(i−1) − 1 must hold for 0 ≤ i ≤ n − 1.

From this we can conclude that all paths ofM′(H) have to contain n worlds labeled from 1
to n. Since labeled words can only be reached from worlds wv for v ∈ V , each wv can only be
on a path once due to the acyclicity ofM′(H), and there are n worlds wv in total, this means
that all wv have to be on all paths ofM′(H) exactly once.

This shows that H ∈ HAMPATH, iff ∃M′(H) ⊆ M(H) :M′(H) |= φ. M(H) and φ can be
computed in polynomial time. So HAMPATH ≤P

m ExistSubmodel(AU) and with Corollary 17
it follows that E-CTL-Submodel(AU) is DelNP-complete. □

Theorem 40. E-CTL-Submodel(AR) is DelNP-complete.

Proof. The upper bound follows from Theorem 22 again.
For the lower bound we will reduce from HAMPATH, but this time we need to define a

new Kripke modelMAR(H). Let G = (V, E) be a graph with n = |V | and H B ⟨G, s, t⟩ an
instance of HAMPATH. Further letMAR(H) B (W,R, η,ws) be as follows (see Figure 3.8 for
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an example):

W B {wv, w̃v, ŵv,wv,i | v ∈ V, 1 ≤ i ≤ n}

R B {(wv,wv,i), (wv,i, w̃v), (w̃v, ŵv) | v ∈ V, 1 ≤ i ≤ n}

∪ {(ŵu,wv) | (u, v) ∈ E and u , t} (t has no outgoing relation)

∪ {(ŵt, ŵt)} (except to itself)

η(wv,i) B {i} for 1 ≤ i ≤ n

η(wv) B {x, 1, 2, . . . , n}

η(w̃v) B {y, 1, 2, . . . , n}

η(ŵv) B {x, y}

Further let φ be the following {AR}-formula

φ B (((((((y AR n) AR x) AR y) AR n − 1) · · · AR 2) AR x) AR y) AR 1.

We will now show that ⟨G, s, t⟩ 7→ ⟨MAR(H), φ⟩ is a valid reduction function. Suppose
⟨G, s, t⟩ is an instance of HAMPATH. Further letM′

AR(H) be a satisfying submodel.
The following claim shows that φ andMAR(H) force submodels to only contain paths of a

certain order.

Claim 41. For any path π ∈ Π(M′
AR(H)) we have that for all 1 ≤ i ≤ n exists a v ∈ V such that

π[4i − 3] = wv, π[4i − 2] = wv,i, π[4i − 1] = w̃v and π[4i] = ŵv

and

M′
AR(H), π[4i − 3] |= ((((y AR n) · · · AR i + 1) AR x) AR y) AR i

M′
AR(H), π[4i − 1] |= ((((y AR n) · · · AR y) AR i + 1) AR x) AR y

M′
AR(H), π[4i] |= ((((y AR n) · · · AR x) AR y) AR i + 1) AR x.

Proof. We proceed by induction on i. For the base case i = 1, it is clear that π[1] = ws,
considering that all paths start at the root. Notice that from

M′
AR(H),ws |= ((((y AR n) · · · AR 2) AR x) AR y) AR 1

and
M′

AR(H),ws ̸|= ((((y AR n) · · · AR 2) AR x) AR y)

follows thatM′
AR(H), π[2] |= 1. By the construction ofMAR(H) the only world directly after

ws labeled with 1 is ws,1, thus we have π[2] = ws,1. It is then obvious that π[3] = w̃s and
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π[4] = ŵs, because w̃s is the only successor of ws,1 and has only ŵs as successor.
Now consider how this unravels φ. First observe thatMAR(H), π[4] ̸|= 1, it follows that

there exists an i < 4 such that

M′
AR(H), π[i] |= (((y AR n) · · · AR 2) AR x) AR y.

We have already established that i , 1. Also i , 2, because y < η(π[2])(= η(ws,1)), leaving
only i = 3. So

M′
AR(H), π[3] |= (((y AR n) · · · AR 2) AR x) AR y.

must hold. Similarly, since all successors of ŵs inMAR(H) (and thus in all its submodels) are
not labeled with y and w̃s is not labeled with x, it follows that

M′
AR(H), π[4] |= (((y AR n) · · · AR y) AR 2) AR x.

For the induction step, we have

M′
AR(H), π[4i] |= ((((y AR n) · · · AR x) AR y) AR i + 1) AR x

and π[4i] = ŵv as induction hypothesis. Notice that all successors wu of ŵv are labeled with x,
while their successors are not. Thus

M′
AR(H), π[4i + 1] |= ((((y AR n) · · · AR i + 2) AR x) AR y) AR i + 1

with π[4i + 1] = wu for some u ∈ V . Note again that this formula can only be true at π[4i + 1]
and not π[4i], because i + 1 < η(π[4i]). Similar to the base case, the only successor of wu

labeled with i + 1 is wu,i+1, therefore π[4i + 2] = wu,i+1. π[4i + 3] = w̃u and π[4i + 4] = ŵu

follow immediately.
We can again observe the unraveling of the formula.

M′
AR(H), π[4i + 3] |= ((((y AR n) · · · AR y) AR i + 2) AR x) AR y

must be true because, y < η(π[4i + 2]) and i + 1 < η(π[4i + 4]). Also

M′
AR(H), π[4i + 4] |= ((((y AR n) · · · AR x) AR y) AR i + 2) AR x

because x < η(π[4i + 3]) and no successor of ŵu has label y. □

It follows from Claim 41 that all paths of a submodel satisfying φ visit ≥ n worlds wv,i.
Claim 41 also shows that

M′
AR(H),wv |= ((((y AR n) · · · AR i + 1) AR x) AR y) AR i
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which forces all successors of wv to be labeled with i. For this to be true wv,i has to be the
only successor of wv. From this we can conclude that all wv,i must have different v. With ≥ n

worlds wv,i on any path and |V | = n, it follows that all paths visit all worlds wv once. Notice
that by our construction of the Kripke model, world ŵt is a dead end and therefore must be
visited last.

This shows that all satisfying submodels ofMAR(H) must describe a Hamiltonian path of G.
The reduction function is computable in polynomial time, since both the modelMAR(H) and
the formula φ can be constructed done in polynomial time with respect to the graph G. □

Example 42. Take the Kripke model shown in Figure 3.8 and the following formula:

φ = (· · · (y AR 4) AR x) AR y) AR 3) AR x) AR y) AR 2) AR x) AR y) AR 1

Figure 3.9 depicts a submodel satisfying φ.

Theorem 43. E-CTL-Submodel(AX) is DelNP-complete.

Proof. The upper bound follows as usual from Theorem 20. For the lower bound again define
a new, but this time simpler, Kripke model for a graph G = (V, E) and nodes s, t ∈ V . Let
MAX(H) = (W,R, η,ws) be a Kripke model, for H B ⟨G, s, t⟩, with

W B {wv | v ∈ V} ∪ {wend}

R B {(wu,wv) | (u, v) ∈ E and u , t} wt has no outgoing relations

∪ {(wt,wend), (wend,wend)} other than to wend

η(wt) B {t}

The underlying graph of this model is almost G itself, except that a new world wend is added,
which became the only successor of wt and has only one relation to itself. Figure 3.10 depicts
such a model.

Suppose H is an instance of HAMPATH and n = |V |. Then let MAX(H) be the Kripke
model as described above and let

φ B AXn−1 t

be an {AX}-formula, where AXk donates concatenating the AX operator k times. Further let
M′

AX(G) ⊆ MAX(H) be a satisfying submodel.
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ŵs

x, 1,
2, 3, 4

wa
1

2

3

4

y, 1,
2, 3, 4

w̃a

x, y
ŵa
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Figure 3.8: Kripke modelMAR(H) of the graph in Figure 3.5.
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ŵt

Figure 3.9: Submodel of the Kripke model in Figure 3.8
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Figure 3.10: Kripke modelMAX(H) of the graph depicted in Figure 3.5.

We begin by showing, that all π[n] = wt for all paths π ∈ Π(M′
AX(G)).

MAX(H),ws |= AXn−1 t

⇔ ∀π ∈ Π(ws) :MAX(H), π[2] |= AXn−2 t (definition AX)

⇔ ∀π ∈ Π(ws)∀σ ∈ Π(π[2]) :MAX(H), σ[2] |= AXn−3 t (definition AX)

⇔ ∀π ∈ Π(ws) :MAX(H), π[3] |= AXn−3 t (all σ contained in Π with a prefix)

⇔ ∀π ∈ Π(ws) :MAX(H), π[n − 1] |= AX t (repeat this process)

⇔ ∀π ∈ Π(ws) :MAX(H), π[n] |= t

By the definition ofMAX(H), only η(wt) = t. Thus ∀π ∈ Π(ws) we have π[n] = wt.
Now note that wt cannot be on any path before that. Otherwise the path would continue

to wend and get stuck there. Also submodels again cannot have cycles, or else there would
be a path that never reaches wt. So we can conclude that on all paths inM′

AX(H) the first n

elements must be different. With n worlds other than wend, this leads to satisfying submodels
which are Hamiltonian paths from ws to wt, showing the correctness of the reduction function
as desired.

Also ⟨G, s, t⟩ 7→ ⟨MAX(H), φ⟩ can obviously be computed in polynomial time. □

We conclude this section on clones without Boolean operators by proving that the fragment
{AF,AG} is tractable.

First, we adapted the following Lemma 44 from a result presented by Krebs et al. [13,
Lemma 10], showing that every {AF,AG}-formula can be reduced to contain only two temporal
operators.

Lemma 44. The following equivalences hold:

(1) AF AF x ≡ AF x

(2) AG AG x ≡ AG x
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(3) AG AF AG x ≡ AF AG x

(4) AF AG AF x ≡ AG AF x

Proof. (1)

M,w |= AF AF x

⇔ ∀π ∈ Π(w)∃k ≥ 1∀σ ∈ Π(π[k])∃ j ≥ 1 :M, σ[ j] |= x

⇔ ∀π ∈ Π(w)∃k ≥ 1∃ j ≥ k :M, π[ j] |= x

⇔ ∀π ∈ Π(w)∃k ≥ 1 :M, π[k] |= x

⇔M,w |= AF x

(2) analogously.
(3)M,w |= AG AF AG x ⇒ M,w |= AF AG x is trivial. For the other direction, assume

M,w |= AF AG x. Let π ∈ Π(w) be an arbitrary path. M, π[k] |= AG x holds for some k with
M, π[i] ̸|= AG x for all i < k. WithM, π[1] |= AF AG x, it follows thatM, π[i] |= AF AG x

for all i < k. Further take some σ ∈ Π(π[k]). From M, π[k] |= AG x it follows that
M, σ[ j] |= AG x which leads toM, σ[ j] |= AF AG x for all j ≥ 1. Therefore, we have an
infinite path ρ = π[1], π[2], . . . π[k − 1], σ[1](= π[k]), σ[2] withM, ρ[i] |= AF AG x for all
i ≥ 1. Since π and σ are arbitrary, this holds for all ρ ∈ Π(w), soM,w |= AG AF AG x.

(4)M,w |= AG AF x ⇒ M,w |= AF AG AF x is trivial. For the other direction, assume
M,w |= AF AG AF x. Now supposeM,w ̸|= AG AF x. By the duality of AG and AF it follows
thatM,w |= EF EG¬x, but this cannot be true without contradicting our assumption. On a
path π ∈ Π(w) witnessing this there would be a k ≥ 1 such that for all i ≥ k :M, π[i] |= ¬x.
But this contradicts our assumption that on all path, there would be an k ≥ 1 such that for all
i ≥ k there is an h ≥ i :M, π[h] |= x. We can therefore conclude thatM,w |= AG AF x. □

Theorem 45. E-CTL-Submodel(AF,AG) is in DelP.

Proof. We give an algorithm deciding ExtendSubmodel(AF,AG) in polynomial time.
The algorithm gets ⟨M, φ,D⟩ as input with,M = (W,R, η, r) a Kripke model, φ a {AF,AG}-

formula and D a set of deletions. LetM′ = (W ′,R′, η, r) BM− D be current submodel and
φ′ be the shortened formula obtained from φ using Lemma 44. Notice that φ′ can only have
one of four forms.

Now, the algorithm has the following behaviour, depending on φ′:

1. If φ′ = AF x, then accept ifM′ |= EF x, otherwise reject.

2. If φ′ = AG x, then accept ifM′ |= EG x, otherwise reject.

3. If φ′ = AF AG x, then accept ifM′ |= EF EG x, otherwise reject.
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4. If φ′ = AG AF x, then let M̂ = (W ′,R′, η̂, r) be the submodelM′ but with a new labeling
function η̂ defined as

η̂(w′) B {xw′}

for all w′ ∈ W ′ with x ∈ η(w′).

Accept if M̂ |=
∨

w′∈W′ EF(xw′ ∧ EX EF xw′), otherwise reject.

Correctness of the first two cases is trivial. A path witnessing EF x or EG x induces a
submodel, where AF x or AG x holds, respectively. The third case is also quite obvious. If
M′ |= EF EG x, then there is a path π and a k such thatM′, π[k] |= EG x. Let σ be the path
witnessingM′, π[k] |= EG x, we than have a path ρ = π[1], . . . , π[k−1], ρ[1](= π[k]), ρ[2], . . .
which induces a submodel satisfying φ′ = AF AG x.

For AG AF x this approach does not work. Take a look at the following modelM0:

w1 w2

x
w3 w4

WhileM0 |= EG EF x holds, with π = w1,w2,w1,w2 . . . as witness, no submodel can satisfy
AG AF x, because all submodel M′

0 ⊆ M0 contain w4 and M′
0,w4 ̸|= AF x, which means

M′
0 ̸|= AG AF x.

Observer that AG AF x implies that all path contain infinitely many worlds where x holds.
Since our models are finite it follows that at least on such world must occur on the path
infinitely often.

We mimic this property in terms of model checking by first constructing another model
M̂, where each world w′ ∈ W ′ labeled with x gets a new and unique label xw′ . Secondly, we
construct a formula as a disjunction of EF(xw′ ∧ EX EF xw′). Notice that this disjunction is
true, if and only if the model has at least one cycle containing a world labeled with xw′ and
thereby a path which contains this worlds infinitely often.

M̂ |= EF(xw′ ∧ EX EF xw′)

⇔ ∃π ∈ Π(M̂)∃k ≥ 1 : M̂, π[k] |= xw′ and M̂, π[k] |= EX EF xw′

⇔ ∃π ∈ Π(M̂)∃k ≥ 1 : M̂, π[k] |= xw′ and M̂, π[k + 1] |= EF xw′

⇔ ∃π ∈ Π(M̂)∃k ≥ 1 : M̂, π[k] |= xw′ and ∃ j ≥ k + 1 : M̂, π[ j] |= xw′

⇔ ∃π ∈ Π(M̂)∃k ≥ 1 : π[k] = w′ and ∃ j > k : π[ j] = w′

39



It then follows that the path

ρ = π[1], . . . π[k − 1], π[k], π[k + 1], . . . , π[ j − 1], π[k](= π[ j]), π[k + 1], . . .

of M̂ induces a satisfying submodel ofM′.

Constructing φ′ and model checking the first three cases can clearly be done in polynomial
time. For the fourth case we additionally need to construct a new submodel. But since the size
of the new model is identical to the old one, this means it can also be done in polynomial time.
The size of the disjunction is linear in the number of worlds of the submodel. Its construction
and the model checking can therefore be done in polynomial time. □

Let us illustrate the behaviour of the algorithm with an example.

Example 46. LetM be the Kripke model depicted in Figure 3.11. Further let

φ B AF AG AG AF x.

We now call the algorithm from Theorem 45 on the input ⟨M, φ, ∅⟩.
The first step is to trim φ. Note that with (1) from Lemma 44 φ ≡ AF AG AF x and with (2)

AF AG AF x ≡ AG AF x C φ′. So we proceed as follows.
First we construct the model M̂ (see Figure 3.12) and the formula

ψ B EF(xw2 ∧ EX EF xw2) ∨ EF(xw3 ∧ EX EF xw3).

The algorithm then uses a model checking algorithm to test whether M̂ |= ψ. The model
checking algorithm will return true, so our algorithm accepts.

The model induced by a path witnessing ψ can be seen in Figure 3.13, also notice that this
model obviously satisfies φ′ and thereby φ.
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Figure 3.11: Kripke modelM used in Example 46
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Figure 3.12: Kripke model M̂. Identical to fig. 3.11, but with different labels.

w1

x
w3 w4

Figure 3.13: Induced Kripke model of a path witnessing EF(xw3 ∧ EX EF xw3) in Figure 3.12.
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3.6 Results for formulas with only negation

In this last section we will transfer the previous results onto the clone with only negation. To
achieve this we make use of the equivalences between CTL-operators shown in Observation 4.

The fragments {AU,¬}, {AR,¬} and {AX,¬} are obviously DelNP-complete. But the
addition of negation allows us to show the hardness of further fragments.

The following corollary, extends the results of Theorem 39, 40 and 43.

Corollary 47. The enumeration problems

(1) E-CTL-Submodel(ER,¬),

(2) E-CTL-Submodel(EU,¬) and

(3) E-CTL-Submodel(EX,¬)

are DelNP-complete.

Proof. (1) We have that φAUψ ≡ ¬(¬φEU¬ψ) by Observation 4. Thus any {AU}-formula can
be expressed using ER and ¬, giving rise to a simple reduction from E-CTL-Submodel(AR)
to E-CTL-Submodel(ER,¬).
(2) Similar to (1), we have that φ AR ψ ≡ ¬(¬φ EU ¬ψ).
(3) Analogously with AXφ = ¬EX¬φ. □
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4 Conclusion

4.1 Summary

In this thesis we introduced a new enumeration problem E-CTL-Submodel, which is the
problem of enumerating all submodels of a Kripke model that satisfy a CTL formula. We
started by showing its intractability, or more precisely DelNP-completeness, in Corollary 23,
with a straightforward reduction from SAT, the satisfiability problem of propositional logic.
This unfortunate result motivated us to consider restrictions on the CTL formulas used, in the
hope of finding tractable fragments.

To do this, we started by simply disallowing the negation operator, which led to the
monotone Boolean clone. Here we proved DelP membership for E-CTL-Submodel(EX,EF,

EG, EU, ER, ∧, ∨), our first tractability result, in Theorem 26. Unfortunately, Theorem 29
and Corollary 30 show that all monotone formulas containing AX, AF, AG, AU or AR are
intractable. We were again able to encode SAT, this time using only A quantified temporal
operator and without negation.

So we further restricted the Boolean operators. Theorem 35 shows DelNP-completeness
for E-CTL-Submodel(AF,∧). In this proof we turned to HAMPATH, another NP-complete
problem, to reduce from. By constructing special Kripke models and {AF,∧}-formulas, we
were able to relate the existence of submodels to the existence of Hamiltonian paths in a given
graph.

Afterwards we used the same approach to show intractability for E-CTL-Submodel(AU)
(see Theorem 39), E-CTL-Submodel(AR) (see Theorem 39) and E-CTL-Submodel(AX) (see
Theorem 39). These results show that the enumeration problem E-CTL-Submodel is in-
herently hard for A quantified temporal operators and thus for most fragments of CTL.
This gets even worse for the Boolean clone with negation. Corollary 47 proves DelNP-
completeness for the fragments E-CTL-Submodel(ER, ¬), E-CTL-Submodel(EU, ¬) and
E-CTL-Submodel(EX,¬), wich makes almost all fragments with negation being intractable.

Table 4.1 summarizes the complexity results for some of the more interesting fragments of
CTL.
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Operators id ¬ ∧ ∨ ∨,∧ ⊕ ∧,⊕

EG DelP DelP DelP DelP DelNP-c
EF DelP DelP DelP DelP DelNP-c
EX DelP DelNP-c DelP DelP DelP DelNP-c DelNP-c
EU DelP DelNP-c DelP DelP DelP DelNP-c DelNP-c
ER DelP DelNP-c DelP DelP DelP DelNP-c DelNP-c
EX, EU, ER DelP DelNP-c DelP DelP DelP DelNP-c DelNP-c
AG DelP DelNP-c DelNP-c
AF DelP DelNP-c DelNP-c DelNP-c
AG, AF DelP DelNP-c DelNP-c DelNP-c
AX DelNP-c DelNP-c DelNP-c DelNP-c DelNP-c DelNP-c DelNP-c
AU DelNP-c DelNP-c DelNP-c DelNP-c DelNP-c DelNP-c DelNP-c
AR DelNP-c DelNP-c DelNP-c DelNP-c DelNP-c DelNP-c DelNP-c

Table 4.1: Enumeration complexity results for fragments of E-CTL-Submodel. Here, DelP
means membership in DelP and DelNP-c means DelNP-completeness. If an entry
is empty, it means that we currently have no concrete result, besides membership
in DelNP which is true for all fragments.

4.2 Outlook

With the hardness results for the fragments E-CTL-Submodel(AU), E-CTL-Submodel(AR)
and E-CTL-Submodel(AX) propagating upwards in the lattice of Boolean clones, we have
classified the enumeration problem of enumerating satisfying submodels for most fragments
of CTL as intractable. But some gaps still remain to be filled. Some notable fragments with
no current results are:

• E-CTL-Submodel(AG,∧) and E-CTL-Submodel(AG,∨),

• E-CTL-Submodel(AF,∨),

• E-CTL-Submodel(AF,AG,EF,EG,¬),

• E-CTL-Submodel(AG,EX,EU,ER) and

• E-CTL-Submodel(AF,EX,EU,ER)

It seems reasonable to assume that most will have intractability results, given the apparent
hardness of submodel enumeration in general. However, e.g. AG in of itself does not allow
much leeway on satisfying submodels, which may make it easier to find them, and may give
rise to a DelP algorithm.

Also, while we have proven both, membership in DelNP and DelNP-hardness, i.e. DelNP-
completeness for many fragments, the same is not true for our DelP results, where we have
only shown membership. CTL operators have different complexity results when considering
model checking [13], making it plausible to find better upper bounds for fragments of

44



submodel enumeration without access to all Boolean functions. Enumeration classes defined
by circuits [5] may be useful in this context.

Another approach to a better understanding of submodel enumeration might be parame-
terised enumeration [8, 7, 15], with possible parameters like the depth of the formula or the
treewidth of the Kripke model [9, Cha. 7].
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