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1 Introduction

At the intersection of economics, philosophy, and computer science sits social choice theory,
concerned with various problems involving the aggregation of individual preferences to
reach some form of collective decision. Within this field exists the theory of fair allocation,
attempting to answer a question that has been a part of human society since ancient times:
How does one fairly divide a finite resource among people, considering their differing needs,
rights, and even the fact that they might attempt to cheat the system?

This thesis aims to provide further insight, aimed at readers from the field of computer
science without much knowledge of economics theory, into some of the classes of allocation
problems briefly listed in Ch. 11 of the Handbook of Computational Social Choice [1] by
Brandt et al. To this end, after a brief introduction to the theory of fair allocation in Ch. 2,
some central approaches and their resulting rules will be detailed for each of the chosen
classes in Ch. 4. Finally, to build onto the intention of furthering cross-fertilization between
computer science and economics voiced in the Handbook of Computational Social Choice,
Ch. 5 features a brief overview of some recent developments specifically in the computer
science branch of social choice, computational social choice, with a focus on the classes
introduced in this theses or those adjacent to them.
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2 Theory of Fair Allocation

2.1 Introduction to the Theory of Fair Allocation

Before delving into the classes of allocation problems mentioned in the Handbook of Com-

putational Social Choice [1], it is necessary to give an overview of what the theory of fair
allocation is concerned with in general, and more specifically in which context it will be
examined in this thesis.

Generally and informally fair allocation deals with problems concerning the fair division
of some form of resource among agents. At first, this might seem very simple: Everyone
can receive the same amount. The issues turning this premise into something complex arise
from the facts that resources are not always homogeneous or easily divisible and agents can
have differing, not easily compatible preferences. Consider for example the division of an
inheritance among heirs whose total claims, based on a will, exceed the actual inheritance. Or
the common problem of workers applying to firms — no longer can the jobs simply be divided
according to the workers’ preferences, as the firms themselves may also have preferences for
different workers, and those may not line up with the workers’ own interests. Both of these
Problems will be examined in more detail later.

This also poses the question of what precisely constitutes fairness in a specific real-world
context. While this is indeed a complex topic of its own [2], it shall not be of concern here.
Instead, mathematical representations of various fairness notions shall be introduced later in
the context of axioms, without any value judgement on how important any of these notions
are.

Furthermore, the question of whether or not agents are truthful in their indication of their
preferences divides the literature on this topic in two branches. One is the strategic branch
which focuses on agents’ ability to control resources and information and how to prevent
the impact of them using that ability to manipulate the distribution in their favor. The other
is the normative branch, which is more concerned with the distribution of welfare over a
population, irregardless of potential strategic acting by the individual agents [1, 3]. In line
with the Handbook of Computational Social Choice, this thesis will focus on the normative
branch, however strategic issues will not be disregarded entirely when the chosen literature
examines them.
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2.2 Definitions

Additionally, the usual structure through which resource allocation problems will be modeled
in this thesis needs to be established. To this end, a generic allocation problem will be
described with all its components. The classes that are subject of the next chapter may in
some cases impart further restrictions on the model. Unless stated otherwise, all definitions in
Ch. 2.2 and Ch. 2.3 will be based on Chapter 11 of the Handbook of Computational Social

Choice [1].
As fair allocation is an important problem of economics [4] and usually applied to problems

with an economic background, the model as a whole is referred to as an economy. An economy
may have some or all of the following components:

1. Agents: An agent refers to an entity — this may be an individual person, a company, a
government agency, or any other more abstract entity — whose goal it is to maximize
resource gain according to their preferences.

2. Resource data: Resource data concerns endowments of goods to be assigned to agents.
These goods can be of abstract nature, such as an allocation of labor time, or more
concrete, such as money.

3. Ownership data: Ownership data is data about resource ownership by agents. Owner-
ship can be individual, i. e. a specific agent owning a resource, semi-collective, i. e. a
specific group of agents owning a resource, or collective, i. e. the entire set of agents
owning a resource. These modes of ownership may be combined within the same
economy and may be contested, in which case disagreement results in incompatible
claims.

4. Preference data: Preference data indicates natural properties that agents’ preferences
satisfy in each problem class. An example of this would be the single-peakedness of
preferences in the fair division problems with single-peaked preferences introduced in
Ch. 4.2.

5. Bounds: There may be lower or upper bounds imposed on the amount of goods assigned
to each individual agent.

A specific allocation problem then contains at least agents and resource data. The precise
mathematical definition of what constitutes a problem depends heavily on the specific model
used, and will therefore be foregone at this point. It should furthermore be noted that there is
no claim to this list being exhaustive of the components of resource allocation problems as a
whole, nor of every component being described to its broadest extent, rather it contains only
those components needed for the problems discussed in this thesis, described to the extent
they are used.
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2.3 Solutions and Rules

A solution associates with each problem in a class a non-empty subset of its set of feasible
allocations, therefore it achieves a first elimination of alternatives without specifying the
process to be used to determine a final outcome - for example one’s first criterion might be
that there is no agent that receives nothing at all, so the associated solution would eliminate all
those allocations in which any agent receives ∅. A rule then is a single-valued solution and
hence provides a complete answer on how to allocate resources in each particular problem of
a class. Solutions and rules in this thesis will be defined as either the criteria for an allocation
to be part of the set resulting from the solution, with S (P) denoting the set of allocations
resulting from application of solution S to a given allocation problem P, or by describing a
process to arrive at the set of allocations.

There are a number of ways of arriving at a solution. For one, one may consider a solution
as a formal description of a real-world practice. This can be useful to understand what is
done in reality and learn about the desirable as well as the undesirable features of common
practices. Useful lessons can be drawn from examining the procedures societies have come up
with to resolve resource allocation conflicts, such procedures being for example rules based
on equality, proportionality, priority, lotteries, and prices.

There is also the axiomatic approach, that is starting from a list of axioms, where an axiom
is a mathematical expression of some notion about how a solution or rule should behave in
certain situations. The ultimate goal here is to determine the boundary that separates those
combinations of axioms that are compatible from those that are not. These underlying notions
vary in scope such that some can be meaningfully expressed in almost any model, while
others are a bit more limited. A few broadly scoped notions will be formally introduced in
the preliminaries, as they are commonly encountered in literature on various problem classes,
and will therefore be relevant in multiple sections of Ch. 3.

Inspiration for solution concepts can also be drawn from cooperative game theory. However,
the models studied in that theory are typically abstract in the sense that only sets of achievable
utility vectors are given, without specifying a description of the actual physical choices the
agents have. Utilizing the theory of cooperative games therefore poses the challenge of
finding the most natural expressions, in the context of the model under examination, of the
principles that have been important in that theory. Alternatively, the allocation problem under
investigation can be mapped into games, where solutions from cooperative game theory can
then be applied.

Lastly, rules that are common in one area of resource allocation problems may serve as
inspiration for new rules in another. For instance, the theory of two-sided matching has been
important in defining solutions for priority-augmented augmentation problems.
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3 Preliminaries

N = {1, . . . , n}will refer to the set of all agents, andΩwill refer to the set of goods (also known
as a social endowment) to be distributed. An allocation x is then a set of pairs (i, a), a ∈ Ω∪∅
assigning all agents i ∈ N an amount of goods.

A central concept in allocation problems are preference relations, an ordering of agents’
preferences over Ω, or in the case of two-sided matching problems, over a set of agents (the
latter case will be covered in more detail in the preliminaries of Ch. 4.4). The set of preference
relations for a given problem will be denoted as ≿, and the preference order of an individual
agent i ∈ N as ≿i.

a ≻i b denotes that agent i strictly prefers a over b, i. e. values a higher than b. a and b

can be any assignments or matchings in a given problem, such as amounts of an infinitely
divisible resource or, in the case of matching problems, even other agents. Similarly, a ∼i b

will denote that i is indifferent between a and b, i. e. values them the same. A weak preference
of a over b by agent i, i. e. that agent i values a at least as high as b, but not necessarily higher,
is then denoted as a ≿i b.

Fairness axioms

The definitions in this sections are again based on the Handbook of Computational Social

Choice [1] unless otherwise noted.
For an allocation x, let xi refer to the goods agent i ∈ N is assigned in x.

Definition 1 (Pareto efficiency). An allocation x is called Pareto efficient for an economy
if no agent can be made better off without making another agent worse off, i. e. there exists
no alternative allocation x′ such that for each i ∈ N, x′i ≿i xi while there exists at least one
j ∈ N, x′j ≻ j x j.

Pareto efficiency is also simply referred to as efficiency, with a Pareto efficient allocation
also being referred to as efficient.

Definition 2 (Envy-freeness). An allocation x is called envy-free for an economy if no agent
values the share of another agent higher than their own, i. e. for all i, j ∈ N, xi ≿i x j.

Definition 3 (Strategy-proofness). A solution s is called strategy-proof if agents do not gain
anything by being untruthful about their preferences, i. e. for every agent i ∈ N and their
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“true” preference relation ≿i leading to a set of allocations X under application of s, there
exists no alternative “fake” preference relation ≿′i such that applying the solution with ≿′i in
replacement of ≿i yields a set of allocations X′ containing an allocation x′ such that x′i ≿i xi[5]
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4 Classes of Allocation Problems

4.1 Classical fair division Problems

4.1.1 Overview

The first of the problem classes described in the Handbook of Computational Social Choice

is that which the Authors call classical fair division problems. Due to its simplicity, rather
elaborating on it, at this point a simple quote of their given definition seems appropriate:

A social endowment Ω ∈ Rℓ+ of ℓ infinitely divisible goods has to be distributed
among a group N of agents. Each agent i ∈ N is equipped with a preference
relation ≿i over an ℓ-dimensional commodity space Rℓ+. These preferences satisfy
"classical" assumptions of continuity, monotonicity, and convexity.

Perhaps the most well-known example of a problem satisfying this definition is the cake-

cutting problem, in which the social endowment Ω is a cake. The cake does not have to be
homogenous, rather it can be thought of as perhaps having unevenly distributed toppings,
or an uneven mixing of multiple types of dough. The problem to be solved is then how to
fairly divide this cake between multiple agents that might have different preferences about the
toppings or dough. This serves as a metaphor for a variety of real-life problems, such as the
division of an area of land or broadcast time on a television channel.

As the term classical might imply, this class of problems, in particular the cake-cutting

problem has been well studied in game theory, economics, and computer science over the
past decades. Indeed a solution for 2 agents, known as divide and choose, which, under
certain criteria, is fair, has been known since ancient times, being informally mentioned in the
Bible [6] and likely having been known even before then. It will be introduced in some depth
via the cake-cutting problem, in part to provide a foundation that the following sections can
build on.

4.1.2 The Model

The model that will be used for the cake-cutting problem will be taken directly from chapter 13
of the Handbook of Computational Social Choice[1]. It contains a set of agents N = {1, . . . , n}
and the heterogeneously divisible cake represented by the interval [0, 1]. Each agent has
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a valuation function Vi mapping a given subinterval I ⊆ [0, 1] to a value in [0, 1] assigned
to it by agent i such that Vi(∅) = 0 and Vi([0, 1]) = 1. Vi(x, y) will be used as a shorthand
for Vi([x, y]). These valuation functions are assumed to satisfy normalization, divisibility,
nonnegativity and additivity.

Definition 4 (Normalization). All agents value the entirety of the cake as 1, i. e. for all agents
i,Vi(0, 1) = 1.

Definition 5 (Nonnegativity). No agent considers any part of the cake to be of negative value,
i. e. for every subinterval I and every agent i,Vi(I) ≥ 0.

Definition 6 (Divisibility). Any part of the cake can be further divided into parts of lesser
or equal value, i. e. for every subinterval [x, y] ⊆ [0, 1] and every agent i and all λ 0 ≤ λ ≤ 1
there exists a point z ∈ [x, y] such that Vi(x, z) = λVi(x, y).

The property of divisibility implies the valuation functions to be nonatomic, i. e. Vi(x, x) = 0
for every x ∈ [0, 1]. This allows disregarding the boundaries of intervals, and in particular
treating two intervals as disjoint if their intersection is a singleton.

Definition 7 (Additivity). Addition of two separate parts of the cake results in the same value
for an agent as adding up the values of the parts individually, i. e. for all agents, the value of
two disjoint subintervals I, I′,Vi(I) + Vi(I′) = Vi(I ∪ I′).

The property of additivity means that for any set of intervals X assigned to an agent, its
value is simply Vi(X) =

∑
I∈X Vi(I). The set of intervals X will also be referred to as a piece of

cake.

Further preliminaries

The fairness axioms of proportionality and equity will only be relevant in this chapter, and
therefore be defined here.

Definition 8 (Proportionality). An allocation x is called proportional for an economy if
every agent receives a share at least proportional in value to the amount of agents, i. e. for all
i ∈ N,Vi(xi) ≥ 1/n.1

Definition 9 (Equitability). An allocation x is called equitable for an economy if every agent
values their own share the same as other agents value theirs, i. e. for all i, j ∈ N,Vi(xi) = V j(x j).

1∑(Vi(xi)) can be greater than 0, as different agents may value different pieces of the cake differently.
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4.1.3 Classic Cake-Cutting Algorithms

Cut and Choose

Cut and choose is a very simple and intuitive algorithm to compute a proportional and envy-
free allocation for two agents. Agent 1 cuts the cake into two pieces X1 and X2 such that
V1(X1) = V1(X2). Agent 2 then chooses its preferred piece, and agent 1 receives the remaining
piece. Formally, if V2(X1) ≥ V2(X2) then set A2 = X1, A1 = X2, otherwise set A1 = X1, A2 = X2.
This allocation is clearly proportional as both agents get a piece they value more or equally
to the other out of 2 pieces, and as for two agents the properties of proportionality and
envy-freeness are equivalent, it is also envy-free. It is however not equitable as it is possible
for agent 2 to value one of the pieces higher than 1/2 the total value, while agent 1 will always
get a piece it values at precisely 1/2 the value.

Even-Paz

A recursive algorithm proposed by Even and Paz in 1984[7] achieves a proportional allocation
for any number of agents. It should be noted here that an algorithm achieving the same, but
less computationally efficient[1] has already been defined by Dubins and Spanier in 1961[8],
but will not be presented here due to scope constraints.

For ease of exposition, let the number of agents n be a power of 2. The algorithm takes a
subset of agents 1, . . . , k and a piece [y, z] and then asks each agent i in the subset to mark a
point xi such that Vi(y, xi) =

Vi(y,z)
2 . Let xi1 , . . . , xik be the marks sorted such that xi j ≤ xi j+1 for

j = 1, . . . , k − 1. The algorithm is then recursively called with agents i1, . . . , ik/2 and the piece
[y, xik/2], and agents ik/2+1, . . . , ik and the piece [xik/2+1 , z]. When the algorithm is called with a
set i only containing a single agent and an interval I it assigns Ai = I. The initial call happens
with all agents and the entire cake.

At depth k in the recursion tree, n
2k agents share a piece of cake that each agent values at at

least 1
2k . At depth lg n the algorithm is called with one agent and a piece of cake that agent

values at at least 1
2lg n =

1
n . Therefore the Even-Paz algorithm is proportional.

4.2 Fair division problems with single-peaked

preferences

4.2.1 Overview

The second of the problem classes described is that of fair division problems with single-

peaked preferences. First analysed by Sprumont in 1991[9][10], in contrast to the previously
examined classical fair division problems, in fair division problems with single-peaked
preferences, the social endowment Ω ∈ R+ consists of only a single, infinitely divisible
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commodity.2 Agents’ preferences are single-peaked, i. e. they have an ideal amount of
the commodity they would like to be assigned. Around this optimum, agents’ valuation
monotonically decreases. Importantly, it is not possible to discard any of the endowment —
the full amount has to be assigned.

The example case given by Sprumont is that of agents contributing to a production process
requiring a fixed amount of total work, with each agent having to contribute an assigned
amount of labor that they get proportionally compensated for. Sprumont also mentions
a slightly different version of the same problem that is found in literature on fixed-price
equilibria. This problem is about a two-good exchange economy (hence, Ω consists of two
different commodities) with a rigid relative price.3 If net demands don’t add up to zero, there
is a similar need to assign agents unpreferable values for their traded amount. He points out
that this problem differs from the previous in two aspects:

1. An agent’s net demand may be any real number, as opposed to a value between one and
zero representing a percentage of the total work.

2. The net trades must add up to zero, as opposed to the shares having to add up to one.

By imposing the restriction of not rationing any of the agents on the short side of the market,
i. e. those agents in possession of the good in short supply, however, the problem once again
consists of dividing a fixed amount, in this case of demand or supply, among several agents
whose total claims exceed or subceed that amount4. If agents’ preferences are strictly convex5,
their preferences over the bundles on their budget line6 are single-peaked.

4.2.2 The Model

The Model used in this section will be taken largely from Thomson[13], with some of the
symbols adjusted to match the choices in earlier sections. Similarly to the model for classical

2Thomson initially defines the social endowment specifically in R++ and later adds that it will be defined over
R+ when it simplifies an issue. Economics literature commonly distinguishes between R++ = (0,∞) and
R+ = [0,∞). For the limited scope in which this thesis examines this class of problems, the distinction is not
relevant and as such a definition in R+ will be assumed for simplicity’s sake.

3An economy consisting of two goods that can be exchanged for each other, with the exchange rate between
the goods not changing.

4Whether supply or demand is considered, and subsequently whether the claims exceed or subceed the amount,
depends solely on point of reference: Either the consideration is of the long side’s demand of the short side’s
good, which exceeds the short side’s supply, or of the short side’s supply of the long side’s good, which
subceeds the long side’s demand. Either way, as it has been decided that the agents on the short side will not
be rationed, the problem structure is the same.

5A preference relation ≿ is called strictly convex if for all a, b ∈ Ω such that a ∼ b, a , b, λa + (1 − λ)b ≻ a
and λa + (1 − λ)b ≻ b for all λ ∈ [0, 1], i. e. averages are preferred to extremes — if an agent is indifferent
between a and b, they prefer the weighted average λa + (1 − λ)b to either a or b. [11]

6The budget line is a two-dimensional plot over 2 goods, representing the amount of each good that an agent
can acquire with their budget [12]. In the given two-good exchange economy, the budget is simply an amount
of either of the goods.
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fair division problems that was described earlier it contains a social endowment Ω ∈ R+ and a
set of agents N. Each agent i ∈ N is equipped with a continuous and single-peaked preference
relation Ri defined over the interval [0, Ω]. It follows that there is a number in [0,Ω] that is
the agent’s peak amount, denoted p(Ri), such that the agent’s valuation strictly monotonically
decreases in both directions of that amount, i. e. for each pair xi, x′i ∈ [0,Ω], if x′i < xi ≤ p(Ri)
or p(Ri) ≤ xi < x′i , then xi ≻i x′i .

The class of all such preference relations shall be denoted by R, with an economy being
referred to as a list R ≡ (Ri)i∈N ∈ R

N .
A feasible allocation is a list x ≡ (xi)i∈N ∈ R

N
+ such that

∑
xi = Ω, or informally an

allocation where the amounts assigned to the agents are not more or less than the available
total. The set of feasible allocations will be denoted by X.

4.2.3 The Uniform Rule

An important rule for division problems with single-peaked preferences is the uniform alloca-

tion rule. The rule is obtained by specifying a bound that is the same for all agents, either an
upper bound if there is too little of the commodity, or a lower bound if there is too much.

Definition 10 (Uniform rule, U). For each R ∈ RN , x ∈ U(R) if x ∈ X and there exists a
λ ∈ R+ such that when

∑
p(Ri) ≥ Ω, then x = (min{p(Ri), λ})i∈N , and when

∑
p(Ri) ≤ Ω, then

x = (max{p(Ri), λ})i∈N

The uniform rule is envy-free, strategy-proof and efficient [14]. It is furthermore both the
unique efficient allocation for each economy at which the difference between the greatest
and smallest amounts any two agents receive is the smallest, as well as the unique efficient
allocation for each economy at which the variance of the amounts received by all the agents
is the smallest. [15]

It should be noted that this rule can be criticized based on the fact that it fully satisfies some
agents, i. e. gives them their peak amounts — specifically those agents with the lowest peak
amounts if

∑
p(Ri) ≥ Ω and those with the highest peak amounts if

∑
p(Ri) ≤ Ω— while

others may be significantly off their peak amounts. Nevertheless, envy-freeness holds, as no
agent will ever have an amount that is closer to another agent’s peak amount than their own.

4.3 Claims Problems

4.3.1 Overview

Claims problems, the third of the problem classes described, were first analytically examined
by O’Neill in 1982[16] based on arbitration problems and solutions presented in the Talmud.7

7The Talmud is a Jewish religious text that serves as the most important source of Jewish law[17]
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As in the previously examined fair division problems with single-peaked preferences, there
is a social endowment Ω ∈ R+ consisting of a single, infinitely divisible commodity. Rather
than splitting it among a group of agents N with regards to preferences, however, the agents
in the group have mutually incompatible claims on it. One of the examples from the Talmud
analysed by O’Neill is of a father leaving each of his sons a different amount of his estate,
with the total amounts adding up to more than his possessions. Another common problem
in this class is the division of assets after a bankruptcy. Intuitively one might think that a
simple proportional divide would be the most fair, and the literature does consider this as the
proportional rule, however it can easily be argued that, by dividing the resource proportionally,
the agent with the smallest claim would receive a very small amount in absolute terms, and
should at least get a certain minimum compensation. Similarly, one can argue that the absolute
damage for the agent with the highest claim is the highest if allocation is proportional, and as
such that agent should receive a proportionally larger amount.

This section and the definitions within will be primarily based on a 2008 article by Thom-
son[18] in which he proposes two families of rules to determine allocations for claims
problems, based on the two considerations outlined above. It should be noted here that the two
families are not necessarily mutually exclusive, nor are they exhaustive of all possible rules
for claims problems, but they serve well as a general overview of and means of contrasting
important rules in the literature.

4.3.2 The Model

Similar to the two models from the previously discussed classes, the model contains a set of
agents N. Each agent i ∈ N has a claim ci ∈ R+, with c ≡ (ci)i∈N denoting the vector of claims.
The social endowment Ω is insufficient to honor all these claims. A claims problem is then a
pair (c,Ω) such that

∑
ci ≥ Ω, with C refering to the set of all claims problems. A rule is a

function that associates each problem with a vector x ∈ RN such that 0 ≦ x ≦ c and
∑

xi = Ω,
with such an x called an awards vector for (c,Ω). X will denote the set of these vectors.

For sake of simplicity, it will be assumed that agents are ordered such that c1 ≥ c2 ≥ · · · ≥

cn.

4.3.3 The ICI family of rules

The first family proposed by Thomson is the Increasing-Constant-Increasing family, or ICI
for short. It is named such in reference to the behaviour of each agent’s assigned share for
an increasing Ω, which is divided into three intervals with the first displaying increasing,
the second displaying constant, and the third displaying increasing behaviour for the share.
The size of any of these intervals may be 0. Informally, starting from Ω = 0, as Ω increases,
at first each agent receives an equal increase in their share. Once a threshold, the value of
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which depends on the claims problem (c,Ω), has been reached, the agent with the lowest
claim “drops out” and no longer receives an increase. This pattern continues until a threshold
is reached for the agent with the highest claim, at which point the other agents “re-enter”
starting with the agent with the highest claim, up until Ω =

∑
(ci) when all agents are fully

compensated. A formal definition is available from Thomson [18], inclusion of which would
be beyond the scope of this thesis due to its additional prerequisites while not being relevant
for anything discussed in this thesis.

An example of a rule in this family would be the minimal overlap rule introduced by
O’Neill. [16]

Definition 11 (Minimal overlap rule, MO). Claims on specific parts of the endowment are
arranged to minimize overlap between the claims, i. e. either

1. c1 ≥ Ω, in which case claimant 1 claims the interval [0,Ω] and further claimants
i ∈ N, i > 1 claim [0,min(ci,Ω)], i. e. claims are nested, or

2. c1 < Ω, in which case there exists some t ∈ [0,Ω] such that each claimant i ∈ N for
which ci ≥ t claims [0, t] as well as a part of [t,Ω] of size ci − t such that there is
no overlap between these claims, and each claimant i for which ci < t claims [0, ci],
i. e. each claimant has a claim in [0, t], in which interval claims are nested, and the
claimants with the highest total claim also have a claim in [t,Ω] with no overlap. [19]

To better illustrate this rule, suppose the inheritance problem from Rabbi Abraham Ibn Ezra
referred to by O’Neill, in which a man dies and leaves each of his 4 sons different amounts of
his estate. One of the sons (a1) has been left all of it, another (a2) has been left half, the third
(a3) has been left one third, and the fourth (a4) has been left one quarter. By assigning the total
value of the estate as Ω = 120, this results in c1 = 120, c2 = 60, c3 = 40, c4 = 30. Arranging
these claims according to the minimal overlap rule yields four parts of the estate to be divided.
With parts denoted as pi, the resulting parts are p1 = 60, p2 = 20, p3 = 10, p4 = 30, where
each part pi is claimed by sons a1, . . . , ai. Equally dividing each of these parts to each son with
a claim on it results in p4

4 = 7.5 going to a4, p4
4 +

p3
3 = 10.83 going to a3, p4

4 +
p3
3 +

p2
2 = 20.83

going to a2, and the rest of p4
4 +

p3
3 +

p2
2 + p1 = 80.83 going to a1.

An increase in the value of Ω while keeping the sons’ claims fixed results in every son’s
share going up equally until Ω = c1 + c4 = 150, after which point the share of a4 stays
constant for further increases to Ω. The same then happens for a3 at Ω = c1 + c3 = 160.
Once Ω = c1 + c2 = 180, a1 receives the entirety of his claim, as there is no longer a
need for overlap between c1 and c2. After this point, the share of a1 stops increasing,
whereas the shares of a2, a3, a4 all increase with increasing Ω, until reaching another threshold
Ω = c1 + c2 + c4 = 210 where the share of a4 stops increasing once again. This pattern
continues until Ω =

∑
(ci) = 250, at which point every son is able to receive the entirety of his

claim.
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Another rule in the ICI family, the Talmud rule, proposed by Aumann and Maschler in
1985 [20], will also be introduced here as it will be relevant for understanding of a rule in the
following section. The definition will again be taken from Thomson [18].

Definition 12 (Talmud rule, T). Let Ti(c,Ω) refer to the share assigned to agent i in the
allocation given by the Talmud rule for a given claims problem. For each (c,Ω) ∈ C and each
i ∈ N,

Ti(c,Ω) =

min{ ci
2 , λ} if

∑n
i=1( ci

2 ) ≥ Ω,

ci − min{ ci
2 , λ} otherwise,

where in each case λ ∈ R+ is chosen so as to achieve Pareto-efficiency, i. e. such that
n∑

i=1
(Ti(c,Ω)) = Ω.

For the previously introduced problem from Ibn Ezra, for an endowment of Ω = 120 this
would mean that a1 receives 55, a2 receives 30, a3 receives 20, and a4 receives 15, with λ = 55.
Generally, for increasing Ω starting from 0, agents “drop out” once their share reaches half
their claim, and then “re-enter” once the share of the agent with the highest claim reaches half
of both agents’ claims combined, i. e. agent j “re-enters” once agent i with the highest claim
receives Ti =

ci
2 +

c j

2 .

4.3.4 The CIC family of rules

The second family proposed by Thomson is the Constant-Increasing-Constant family, or CIC
for short. As the name might suggest, the inspiration for this family originated as a reverse of
the ICI family, where for increasing Ω starting from 0, each agent’s award is first constant,
then increasing, then constant again. Informally, starting from Ω = 0, as Ω increases, at
first only the share of the agent with the highest claim increases. Once a threshold has been
reached, the agent with the second highest share “enters” as well and gets an equal increase.
This pattern continues until the agent with the lowest claim has also “entered”. After this
point, once the agent with the lowest claim has been fully compensated, that agent “drops
out”, which continues until all agents have been fully compensated at Ω =

∑
(ci). A formal

definition would again be out of scope for the same reason, but is available [18].
An example of a rule in this family is the reverse Talmud rule. The definition here will be

taken from van den Brink et al. [21]

Definition 13 (Reverse Talmud rule, RT). Let RTi refer to the share assigned to agent i in the
allocation given by the reverse Talmud rule for a given claims problem. For each (c,Ω) ∈ C

and each i ∈ N,

RTi(c,Ω) =


max{0, ci

2 − λ} if
n∑

i=1
( ci

2 ) ≥ Ω,

ci − max{0, ci
2 − λ} otherwise,
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where in each case, λ ∈ R+ is chosen so as to achieve Pareto-efficiency, i. e. such that
n∑

i=1
(RTi) = Ω.

To once again illustrate this rule using Ibn Ezra’s problem, for Ω = 120, a1 receives 58.75,
a2 receives 28.75, a3 receives 18.75, and a4 receives 13.75, with λ = 1.25. For Ω < 65, given
fixed claims, a4 would receive 0. More generally, for a given agent j ∈ N, RT j > 0 once
Ω >
∑ j−1

i=1 ( ci
2 i), i. e. once the share of agent j − 1 with the next higher claim exceeds c j

2 . Once

all sons receive a share, their shares increase equally until Ω =
n−1∑
i=1

( ci
2 i) + ncn = 185, at which

point a4 receives 30 and is therefore fully satisfied, with a1 receiving 75, a2 receiving 45, and
a3 receiving 35. The other sons then reach their threshold in order and stop increasing their
share until at Ω = 250 all of their claims are fully satisfied.

4.4 Matching agents to each other

4.4.1 Overview

The last of the problem classes described is that of matching agents to each other. The name
of this class might make it seem a bit broader than what is meant, as the specific type of
problem referred to are so-called two-sided matching problems, in which the agents are split
into two sets, with the objective of matching agents from one set to agents from the other.
Within this class there are a variety of models, differing in aspects such as:

1. Whether it is possible for an agent to not be matched to any agent.

2. Whether matching is one-to-one, such as pairing men and women for a dance class, or
one-to-many, such as pairing students to universities. Many-to-many matching is also
possible, such as matching workers to firms when workers are able to work for multiple
firms at once, while firms can employ more than one worker.

3. Whether preferences are strict or indifference is allowed.

4. Whether some amount of an infinitely divisible good is to be distributed, and if yes,
whether the total amount of it is dependent on which pairs are formed by the agents,
and whether the agents care only about how much of the good they are assigned or
about both the good and their pairing matching.

Adjacent to two-sided matching problems there are also roommate problems in which
agents from a single set have to be matched to another agent from the same set in a one-to-one
pairing.
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4.4.2 The Model

The Model in this section will be based on Erdil and Ergin [22]. It describes a many-to-one
two-sided matching problem that also allows for agents to not be matched at all, with no
additional infinitely divisible good to be distributed. Importantly, indifference in preferences
is allowed, with the exception of indifference to not being matched at all.

Rather than a single set, the model contains two disjoint finite sets of agents, set W of
workers and set F of firms. Let N = W ∪ F refer to the set of all agents. Let there be a
vector of the number of positions at firms q = (q f ) f∈F , with q f ≥ 1 denoting the number
of positions at firm f . There is also a vector ≿= (≿n)n∈N of weak orders, i. e. complete and
transitive relations, where ≿w denotes the preference of worker w over F ∪ ∅ and ≿ f denotes
the preference of firm f over W ∪ ∅, called a preference profile. A preference profile will be
called strict if ≿n is anti-symmetric for each n ∈ N, i. e. there is no longer any indifference. It
will be assumed that there is no worker w and firm f such that w ∼ f ∅ or f ∼w ∅. A worker
w is said to be acceptable to firm f if w ≻ f ∅, and similarly a firm f is acceptable to worker w

if f ≻w ∅. A strict preference profile ≿′ is called a tie-breaking of ≿ if x ≿n y implies x ≿′n y

for all x, y, n ∈ N.

Other Preliminaries

Definition 14 (Stability). Let µ(w) refer to the firm a worker w is matched to in matching µ,
and µ( f ) to the set of workers a firm is matched to in matching µ. A matching µ is said to be
stable if there is no pair (w, f ) such that there exists an alternative matching µ′ such that

1. µ′(w) ≻w µ(w)

2. w ≻ f x, x ∈ µ( f ) or, if f has an empty position, w ≻ f ∅

for any w ∈ W, f ∈ F.
Informally, there is no pair of a worker and a firm such that the worker prefers the firm over

their current matching, and the firm prefers to add the worker to their list of workers in the
current matching at the expense of another worker, or over an empty position if the firm has
one. [23]

Definition 15 (Worker optimality). Let µ(w) refer to the firm a worker w is matched to in
matching µ. A matching µ is said to be Worker optimal (W-optimal) if there exists no other
matching µ′ such that µ′(w) ≿w µ(w) for all agents w ∈ W and µ′(w) ≻w µ(w) for some w ∈ W,
i. e. there exists no alternative matching in which no worker would be worse off while at least
one worker would be better off. [24]
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4.4.3 Algorithms for strict and weak preference profiles

The Deferred Acceptance Algorithm

To understand the importance of the difference between strict and weak preference profiles, it
is important to first introduce an algorithm that is defined only for strict preference profiles.
The example here shall be the deferred acceptance algorithm proposed by Gale and Shapley
in 1962 [25]. It was originally about the problem of colleges accepting students, in order to
better match the model used here, colleges and students will be replaced by firms and workers
respectively. The algorithm additionally assumes that workers are not permitted to apply to
firms that don’t consider them acceptable in the first place.

Definition 16 (Deferred acceptance algorithm, DA). At the first step, all workers w apply
to the firm f of their first choice. Each firm f then places the q f applicants for which its
preference is highest on its waiting list, or all applicants if there are fewer applicants than q f ,
and rejects the rest.

At the kth step, each applicant that was rejected at step k − 1 applies to their next best
acceptable firm. after which each firm places the q f applicants for which its preference is
highest on its waiting list, or all applicants if there are fewer applicants than q f , and rejects
the rest.

The algorithm terminates when every applicant is either on a waiting list or has been
rejected by every firm they find acceptable.

This algorithm yields a W-optimal, and therefore also stable, matching of applicants. It
is furthermore strategy-proof from the agents’ perspective [26, 27]. The algorithm does not
work when indifferences are permitted since behaviour for ties in preferences on either side is
undefined. While any weak preference profile can be turned into a strict preference profile
through application of a tie-breaking procedure as established in the model, applying the DA
algorithm to a tie-breaking is no longer guaranteed to yield a W-optimal matching.

The following proof for this is adapted from an introductory example provided by Erdil and
Ergyn [22]: Assume that W consists of two workers i and j, and F consists of two firms K

and L. Firm L prefers i over j, i. e. i ≻L j, and worker j prefers firm K over firm L, i. e. K ≻ j L.
Firm L is indifferent between i and j, i. e. i ∼K j, and worker i is indifferent between K and L,
i. e. K ∼i L. These relations form the preference profile ≿. If ties are broken alphabetically,
i. e. i ≻′K j and K ≻′i L, to yield the tie-breaking ≿′, applying the DA algorithm to ≿′ assigns
worker i to firm K and worker j to firm L. This matching achieves W-optimality for ≿′,
however it is trivial to see that it is not W-optimal for ≿, as worker j prefers firm K while
being matched to L, while worker i is indifferent between the firms. Furthermore, it is not
Pareto efficient as welfare can be improved for both j and L without affecting i nor K.
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≿K ≿L

i ∼A j j
i

≿i ≿ j

A ∼i K K
L

≿′K ≿′L
i j
j i

≿′i ≿
′
j

i j
j i

Table 4.1: Preference relations for the original preference profile ≿ and the tie-breaking ≿′

≿ ≿′

( j,K) (i,K)
(i, L) ( j, L)

Table 4.2: The unique W-optimal matchings for ≿ and ≿′. The DA algorithm yields the
correct unique W-optimal matching for ≿′, but as seen here, it differs from the
unique W-optimal matching for ≿

The Efficient and Stable Matching Algorithm

To find a stable matching even when preference profiles are not strict, Erdil and Ergyn [22]
propose the efficient and stable matching algorithm (ESMA). This algorithm employs Pareto

improvement cycles (PI-cycles) and Pareto improvement chains (PI-chains), which will need
to be established before the algorithm.

Definition 17 (Pareto improvement cycle, PI-cycle). Let µ be a stable matching for some
fixed ≿, with µ(w) referring to the firm that worker w is matched to in µ. A PI-cycle then
consists of distinct workers w1, . . . ,wm ≡ w0(m ≥ 2) such that:

1. Each wt is matched to some firm

2. µ(wt + 1) ≿wt µ(wt) and wt ≿µ(wt+1) wt+1 for t ∈ {0, 1, . . . ,m − 1}, i. e. each worker in the
cycle weakly prefers the firm matched to the next worker in the chain, and each firm
that a worker in the cycle is matched to weakly prefers the previous worker in the cycle
to their currently matched one for all workers in the cycle matched to that firm.

3. At least one of µ(wt+1) ≻wt µ(wt) or wt ≻µ(wt+1) wt+1 is true for some t ∈ {0, 1, . . . ,m−1}

If there is a PI-cycle, then the matching µ can be Pareto improved by letting each worker
in the cycle move into the firm of the next worker, which yields the improved matching µ′.
Carrying out a PI-cycle shall refer to to constructing the new matching µ′ in this manner.

Definition 18 (Pareto improvement chain, PI-chain). Let µ be a stable matching for some
fixed ≿, with µ(w) referring to the firm that worker w is matched to in µ. A PI-chain then
consists of distinct workers w1, . . . ,wm(m ≥ 2) and a firm f with an empty position such that:

1. w1 is unmatched,

2. wt is matched with some firm for each t ∈ {2, . . . ,m},
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3. µ(wt+1) ≿wt µ(wt) and wt ≿µ(wt+1) wt+1 for t ∈ {1, . . . ,m−1}, i. e. each worker in the chain
other than wm weakly prefers the firm matched to the next worker in the chain, and each
firm that a worker in the chain is matched to weakly prefers the previous worker in the
cycle to their currently matched one for all workers in the cycle matched to that firm,

4. f ≿wm µ(wm) and wm ≿ f ∅, i. e. worker wm weakly prefers the firm with an empty
position over its current firm and is acceptable to the firm with an empty position.

Similarly to PI-cycles, if there is a PI-chain, then the matching µ can be Pareto improved
by letting each worker other than wm in the cycle move into the firm of the next worker,
and letting wm move into the firm f with an empty position, to yield the improved matching
µ′. Again, carrying out a PI-chain refers to constructing the new stable matching µ′ in this
manner.

Erdil and Ergin prove that a stable matching is Pareto efficient if and only if it does not
admit PI-cycles nor PI-chains, from which they then arrive at the ESMA family of algorithms:

Definition 19 (Efficient and stable matching algorithm family, ESMA family). First obtain a
stable matching by applying the DA algorithm to a tie-breaking. Then find a PI-cycle or a
PI-chain in the matching and, if one exists, carry it out to obtain a Pareto improving matching.
Repeat this as long as the obtained matching has a PI-cycle or a PI-chain.

It is specifically called an algorithm family here since the ordering of the agents and firms
in some steps, such as when finding a PI-cycle or PI-chain, affects the matching yielded by
the algorithm. Through specification of a precise selection rule, a specific algorithm in the
family is defined.

As the matching yielded by an algorithm in the family has no PI-cycle nor PI-chain, it
must be Pareto efficient. Algorithms in the ESMA family are polynomial in the number of
workers and total number of positions. In contrast to the DA algorithm, however, they are
not strategy-proof, as in the domain of strict preferences, and by extension the generalized
domain of weak preferences, no stable matching is strategy-proof when both sides of the
market are strategic actors. [27]

The Worker-Optimal Stable Matching Algorithm

In a similar manner to computing a Pareto efficient matching, it is possible to compute a
W-optimal and stable matching for a weak preference profile, just like the DA algorithm does
for strict preference profiles. Rather than PI-cycles and PI-chains, this utilizes stable worker

improvement cycles (SWI-cycles) and stable worker improvement chains. These operate
similarly to their PI counterpart, but require only that the matching yielded from carrying
them out is improved from the workers’ perspective, disregarding firms’ preferences outside
of workers needing to be at least acceptable to firms. A formal definition will not be included
here due to scope constraints.
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Analogously to PI-cycles and PI-chains, Erdil and Ergin prove that a stable matching is
W-optimal and stable if and only if there are no SWI-cycles nor SWI-chains, from which they
then derive the WOSMA family of algorithms:

Definition 20 (Worker-optimal stable matching algorithm family, WOSMA family). First
obtain a stable matching by applying the DA algorithm to a tie-breaking. So long as the
stable matching is not W-optimal and stable, there will be an SWI-cycle or an SWI-chain. If
that is the case, find an SWI-cycle or an SWI-chain and carry it out to obtain a new stable
matching that improves the original one from the workers’ perspective. Repeat this as long as
the obtained stable matching has an SWI-cycle or SWI-chain.

Algorithms in this family yield a W-optimal and stable matching as it contains no SWI-
cycles nor SWI-chains. Algorithms in the WOSMA family are polynomial in the number
of workers and number of firms. Algorithms in the WOSMA family, just like those in the
ESMA family, are, however, not strategy-proof even from the workers’ perspective as a result
of possible ties in firms’ preferences. [28] The resulting matching is however not necessarily
Pareto efficient, as firms might have been made worse off. It can therefore be improved by
applying an ESMA-algorithm to the result, yielding a W-optimal and stable Pareto efficient
matching.
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5 Areas of recent research interest

Fair division of indivisible goods

There has been much ongoing research into the fair division of indivisible goods. Algorithms
yielding allocations fulfilling various fairness notions have been explored [29], but various
open questions remain, particularly regarding the computation of allocations which satisfy
Pareto efficiency and so-called Envy-freeness up to one item. [30, 31]

Incremental Stable Matching Problems

Another area of major recent interest are matching problems with regards to changing mar-
kets — models, such as the ones introduced in this thesis, are often applicable only to a static
market, i. e. one where agents’ preferences do not change. The question is then of how to
adapt an existing stable matching for an initial market into a new one, while keeping the
new stable matching as close as possible to the old one as to minimize the effort involved
in transitioning to the new state. These incremental stable matching problems have recently
been studied with regards to their complexity by a variety of authors. [32, 33, 34]

Fair division with restricted preferences

The class of fair division problems with single-peaked preferences introduced in this thesis
is just one example of a large amount of potential restrictions on preferences. Elkind et
al. suggest that there is much potential in examining preference restrictions in more than one
dimension, or considering entirely new restrictions originating in graph theory or mathemat-
ics. [35]

Incorporating empirical data

Beyond even the specific field of the theory of fair allocation, pertaining to the entirety of
computational social choice, there have been suggestions and efforts made to incorporate
more empirical data into computational social choice research in order to consider human
behaviour when developing models. To this end, there may be potential in further analysis of
the structure of existing data sets. [35, 36]
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6 Conclusion

A look at four classes of allocation problems shows a large amount of diversity in applications
of the theory of fair allocation, even when only looking at a specific model in a selection
of classes. Approaches differ in terms of prioritized fairness criteria, and are often are only
applicable to very restricted models. As a result they fail to cover the full breadth of real-
world problems. Thus, in spite of the age of the basic premise of division of resources among
people, there are still many open questions which go beyond the philosophical foundation
of what constitutes fairness. Developing algorithms and proving the general feasibility of
computing allocations for these problems therefore remains an active area of research with
much unrealized potential that also provides an obvious use of theoretical computer science
for common problems in society.
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