
Leibniz Universität Hannover

Fakultät für Elektrotechnik und Informatik

Institut für Theoretische Informatik

Decidability for real-valued

computation

Tobias Brockmeyer

Matriculation number 10011858

Master Thesis

October 24, 2022
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1 Introduction

In classical complexity theory, Turing machines have been the preferred mathematical

model for physical computers since they were invented by Alan Turing in 1936 [Tur37].

They are unaffected by minor changes to their definition (e.g. multi-tape Turing ma-

chines can be simulated by single-tape Turing machines with only quadratic slow-down)

and are therefore well-suited for the study of decidability and complexity questions.

Since physical computers are finite systems based on digital circuits, it is reasonable to

base mathematical models such as Turing machines and boolean circuits on a binary

alphabet.

A binary alphabet is, of course, sufficient to represent arbitrary rational numbers. While

the representation’s length is, in theory, logarithmic with respect to the precision and

absolute value of the number, actual systems use a standard encoding with a fixed

length. For instance, integers are stored using either a 32-bit or 64-bit representation,

depending on the specific system. Therefore, it is also reasonable to treat numbers

as atomic (therefore constant) parts of mathematical models of computation. From a

numerical point of view, this facilitates the analysis of algorithms because arithmetic

operations such as addition and multiplication become a base operation of the machine

model. This is supported by the fact that the complexity of arithmetic operations is

almost never the bottleneck of an algorithm’s performance.

In 1989, Blum, Shub and Smale invented another model of computation which deals with

this problem [BSS89]. Instead of only allowing finite alphabets, their machines (called

BSS machines) use the elements of algebraic rings as their alphabet. Turing machines

can now be seen as a special case of BSS machines where the underlying ring is finite.
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1 Introduction

However, the more interesting cases are BSS machines working over either Z, Q, R or C.

The main concern of this thesis is to study the computational power of BSS machines

(especially for machines working over R) in comparison to Turing machines. The results

are then transferred to algebraic circuits, a model for parallel computation based on BSS

machines and boolean circuits.

In Chapter 2, we will formally define BSS machines over arbitrary rings as well as

algebraic circuits along with an introduction to some algebraic foundations.

The 3rd chapter deals with encodings of polynomials and BSS machines to ultimately

prove that (just as it is the case for Turing machines) there exists a universal BSS machine

(i.e. a BSS machine that can simulate any given BSS machine). Another surprising result

will be that BSS machines over R are able to decide any problem that has a discrete

input set (i.e. all problems that can be stated for Turing machines including the halting

problem).

We then proceed by studying space restrictions for BSS machines over R in Chapter 4.

The main result of this chapter (as proven by Michaux in 1989) is that any BSS machine

over R can be simulated by an equivalent machine using only linear space.

Next, the consequences of restricting a machine’s access to irrational machine constants

are investigated in Chapter 5. We use Meer and Ziegler’s proof that more machine

constants lead to strictly increasing computational power to show that non-uniform

algebraic circuit families can be used to decide BSS-undecidable problems.

Finally, Chapter 6 deals with machines and circuits that are able to perform exact

computations on real numbers, but are only allowed to process discrete inputs. We will

study certain restrictions on the instruction set of BSS machines and the impact on

their computational power on discrete inputs. The results of this chapter depend on

whether the BSS machine is working over an ordered or unordered ring (in the latter

case, the machine’s decisions depend only on equality checks whereas in the former case,

the machine may make decisions based on questions of the type “x ≥ 0?”). We show

that Turing machines are able to simulate BSS machines in a uniform way precisely if
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“x ≥ 0?” checks are not allowed. Moreover, for BSS machines that are not allowed to

perform multiplications, there is even an efficient way to realize this simulation. This

result can be transferred to algebraic circuits, ultimately proving that boolean circuits

with unlimited fan-in can simulate algebraic circuits whose instruction sets include only

additions and equality checks with constant blow-ups in size and depth.
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2 Preliminaries

The main interest of this thesis lies in the computational power of machine models over

algebraic rings. In the present section, some algebraic foundations concerning rings

and transcendental field extensions are introduced. Additionally, we define the relevant

machine models for this thesis and illustrate these definitions with basic examples.

2.1 Algebra

This section is split into three parts: Some important terminology concerning rings will

be introduced in Section 2.1.1, followed by the definition of field extensions and related

notions in Section 2.1.2 (c.f. [Bos20]). Lastly, in Section 2.1.3, we define (semi-)algebraic

sets and discuss some important properties thereof.

2.1.1 Rings and polynomials

A ring is a set R with two operations ∗ : R→ R and +: R→ R where

(R1) (R,+) is an abelian group,

(R2) ∗ is associative and

(R3) the distributive laws a ∗ (b+ c) = a ∗ b+ a ∗ c and (a+ b) ∗ c = a ∗ c+ b ∗ c hold.

Throughout this thesis, we assume that the rings we work with are nontrivial commuta-

tive rings with unit (i.e. ∗ is commutative and there exists an element 1 ∈ R such that

1 ∗ r = r for each r ∈ R). We will also write ab or a · b instead of a ∗ b.

5



2 Preliminaries

Definition 2.1. Let R be a ring. A set J ⊆ R with the properties

(J1) (J,+) is a group

(J2) ar ∈ J for each a ∈ J, r ∈ R

is called an ideal of R. ◁

One can easily check that the ring axioms also hold for ideals, showing that an ideal is

a ring as well (although not necessarily a ring with unit, even if R is a ring with unit).

For instance, 2Z := {2z | z ∈ Z} is an ideal without unit in Z.

If R is a ring, then by R[x] we denote the polynomial ring over R, i.e. the set of

polynomials over R whose elements are of the form

f = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ adx
d

where ai ∈ R, ad ̸= 0. The degree of a polynomial f is written as deg f and defined by

deg f = max{d | ad ̸= 0}.

The preceding definition of a polynomial ring can easily be extended to multiple variables

by letting R[x1, . . . , xm] := R[x1, . . . , xm−1][xm]. For f ∈ R[x1, . . . , xm], we say that the

dimension of f is m and we write dim f = m.

In the next section, we will define BSS machines over R. These machines are allowed to

compute any polynomial function (or rational function in case R is a field) in a single

step. If R is a field, a rational function over R is a function f : Rm → R that can be

written as

f(x1, . . . , xm) =
g(x1, . . . , xm)

h(x1, . . . , xm)
,

where g, h ∈ R[x1, . . . , xm] and h ̸= 0.

The composition of polynomial functions can easily be seen to be a polynomial function

as well. The same holds true for rational functions. This will be crucial for the following

discussion of BSS machines.
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2.1 Algebra

2.1.2 Field extensions

The following foundations of field extensions are mostly relevant for Chapter 5 where we

will investigate the computational power of BSS machines with respect to the permitted

number of real machine constants.

Definition 2.2. Let K be a field. A field E ⊇ K is called a field extension of K. This

is also written as E/K. ◁

Definition 2.3. Let E/K be a field extension and A ⊆ E. Then,

K[A] :=
⋂
{R | R is a ring with K ∪A ⊆ R} and

K(A) :=
⋂
{F | F is a field with K ∪A ⊆ F}. ◁

Thus,K[A] is the smallest ring containing both the elements fromK and A. For instance,

the polynomial ring K[x] is the smallest ring that contains both K and x and we have

R[i] = R(i) = C. Since K(A) is the smallest field containing both K and A and each

field is also a ring, we always have K[A] ⊆ K(A).

Definition 2.4. Let E/K be a field extension and a ∈ E. We say that a is algebraic

over K if there exists a polynomial f ∈ K[x] \ {0} such that f(a) = 0. Otherwise, a is

called transcendental over K. E is called an algebraic field extension of K if each a ∈ E

is algebraic over K. Otherwise, E is called a transcendental field extension of K. ◁

Definition 2.5. Let E/K be a field extension. A set S ⊆ E is called algebraically

independent over K if s is transcendental over K(S \ {s}) for each s ∈ S. ◁

Definition 2.6. Let E/K be a field extension. An algebraically independent set S ⊆ E

is called a transcendence basis of E if E/K(S) is algebraic. |S| is called the transcendence

degree of the field extension E/K. In caseK = Q, we write trdegE for the transcendence

degree of E/K. ◁

If no field K is specified, we assume K = Q. For instance,
√
2 is algebraic over Q since

√
2 is a root of f(x) = x2 − 2. This implies that the transcendence degree of Q(

√
2) is
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2 Preliminaries

0 because Q(
√
2)/Q is an algebraic field extension and therefore, ∅ is a transcendence

basis of Q(
√
2). Of course, the transcendence degree is only well-defined if for each field

extension E/K, we have that any two transcendence bases S1, S2 of E have the same

cardinality. The proof can be found in [Bos20, Section 7.1].

2.1.3 Algebraic sets

A natural requirement for machines over an algebraic ring is the possibility to take

different paths of computation depending on how the input looks like. In this section,

by looking at algebraic and semi-algebraic sets, we examine some candidates for sets

that describe the inputs which take a specific path of computation.

Definition 2.7 [MP07, Definition 1.1]. Let F ⊆ R[x1, . . . , xm]. The set

V(F ) := {x ∈ Rm | f(x) = 0 for all f ∈ F}

is called the affine algebraic set or vanishing set defined by F . A set A ⊆ Rm is called

algebraic if A = V(F ) for some F ⊆ R[x1, . . . , xm]. ◁

It is well known that finite unions as well as arbitrary intersections of algebraic

sets are again algebraic. Furthermore, for each algebraic set A, there exist some

f1, . . . , fk ∈ R[x1, . . . , xm] such that A = V(f1, . . . , fk), i.e. F can be chosen to be

finite [MP07, Remark 1.3].

In the setting of computation over a ring, we will want to allow checks like “x ≥ 0?” if R

is ordered. This yields a slightly modified version of algebraic sets, called semi-algebraic

sets.

Definition 2.8 [Blu+98, page 50]. Let R be an ordered ring and f, g ∈ R[x1, . . . , xm].

We call f(x) = g(x) a polynomial equation over R. In addition, the following are

polynomial inequalities over R.

f(x) ̸= g(x), f(x) < g(x), f(x) ≤ g(x), f(x) > g(x), f(x) ≥ g(x)

A set A ⊆ Rm is called basic semi-algebraic over R if A is the set of elements in Rm that
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2.1 Algebra

satisfy a finite system of polynomial equations or inequalities over R. A semi-algebraic

set over R is a finite union of basic semi-algebraic sets over R. ◁

We will also use the term system of polynomial constraints for a system of polynomial

equations and inequalities. We can oberve that if A ∈ Rm is basic semi-algebraic over

R, then there exists a system S of polynomial constraints over R that defines A and

contains only the following types of constraints.

f(x) = 0, f(x) ̸= 0, f(x) < 0, f(x) ≤ 0 where f ∈ R[x1, . . . , xm]

First note that the constraint f(x) = g(x) is equivalent to the constraint f(x)−g(x) = 0

(this argument of course also holds for inequalities). The inequalities f(x) > 0 and

f(x) ≥ 0 can be replaced by −f(x) < 0 and −f(x) ≤ 0.

We will write V(S) for the basic semi-algebraic set defined by the system of polynomial

constraints S if there is no confusion with vanishing sets as in Definition 2.7.

Lemma 2.9. Let A ⊆ R be a finite set which is semi-algebraic over some field extension

K = Q(B) ⊆ R. Then, the field extension K(A)/K is algebraic.

Proof. Let A = {a1, . . . , ak} ⊆ R where a1 < · · · < ak. For each aj , there is a system of

polynomial constraints S over K such that aj ∈ V(S). We can add constraints to S to

force aj−1 < s < aj+1 for each s ∈ V(S). Hence, for each aj ∈ A, we have that {aj} is
basic semi-algebraic over K.

Furthermore, the set {aj} is a closed subset of R. We will now prove that each system S′

of polynomial constraints over K with V(S′) = {aj} must contain at least one equality

constraint f(x) = 0 for some f ∈ K[x] \ {0} (or we can add an equality constraint

without changing V(S′)).

The first observation is that it is not possible for S′ to only consist of “<” constraints.

This is because each set defined only by “<” constraints is open and each open subset of

R is either empty or infinite. Suppose S′ only contains “<” and “̸=” constraints. Each

constraint f(x) ̸= 0 only removes a finite number of elements (because f has only a finite

number of roots) unless f is constant in which case the constraint produces either the
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2 Preliminaries

empty set or can be dropped. Thus, it is insufficient to add finitely many “ ̸=” constraints

in order to obtain the set {aj}.

Therefore, S′ must contain at least one equation (in which case f(aj) = 0 for some f

and thus, aj is algebraic over K and we are done) or S′ contains at least one constraint

f(x) ≤ 0. In the latter case, let f1 ≤ 0, . . . , fn ≤ 0 be all constraints in S′ of the form

f(x) ≤ 0. If fi(aj) ̸= 0 for each 1 ≤ i ≤ n, then the constraints f1 ≤ 0, . . . , fn ≤ 0

can be replaced by f1 < 0, . . . , fn < 0 without changing the defined semi-algebraic set.

However, this is impossible because this would define an infinite (or empty) set. Hence,

fi(aj) = 0 for some i and therefore, aj is algebraic over K. Thus, each aj ∈ A is algebraic

over K and therefore, K(A)/K is an algebraic field extension.

We will see in Chapter 5 that there is a close relation between semi-algebraic sets and

the halting sets of BSS machines.

For the remainder of this section, we will restrict ourselves to basic semi-algebraic sets

that are definable by a system of linear inequalities with integral coefficients. We will

call these sets polytopes as they are a generalization of polyhedras to higher dimensions

in a geometric sense.

Definition 2.10. For z ∈ Z, let

size(z) := |bin(z)|

denote the length of the binary representation for z. For rational numbers y ∈ Q, set

size(y) = min

{
size(p) + size(q) | p

q
= y and p, q ∈ Z

}
.

The size of a vector v = (v1, . . . , vk) with rational entries is defined as
∑k

i=1 size(vi). ◁

For simplicity, we will assume size(z) = log(|z|) for each z ∈ Z.

Definition 2.11. A set P ⊆ Rm is called a polytope if

P = {x ∈ Rm | Ax ≤ b and A′x < b′}

for some A ∈ ZN×m, A′ ∈ ZN ′×m, b ∈ ZN , b′ ∈ ZN ′
, N,N ′ ∈ N. ◁
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2.1 Algebra

Our goal is to prove that each nonempty polytope P ⊆ Rm defined by Ax ≤ b and

A′x < b′ contains a rational point whose binary representation has a size polynomial in

m and the size of the entries of A,A′, b, b′. In other words, the solution’s length does not

depend on the number of inequalities that define P . Thus, for a fixed m, we can always

find some x ∈ P with a “small” binary representation as long as the coefficients in the

defining inequalities are sufficiently small. We will need the following result.

Lemma 2.12 [Sch86, Corollary 7.1i]. If a vector b ∈ Rm is a positive linear combination

of vectors a1, . . . , an ∈ Rm (i.e. if there exist coefficients xi ≥ 0 such that
∑n

i=1 xiai = b),

then there exists a linearly independent subset {ai1 , . . . , aik} ⊆ {a1, . . . , an} such that b

is a positive linear combination of ai1 , . . . , aik .

Proof. See [Sch86, Theorem 7.1].

Lemma 2.13 [Koi94, Theorem 5]. Let P ⊆ Rm be a nonempty polytope defined by a

system Ax ≤ b of N linear inequalities where the entries of A and b are integers of size

L. Then, there is a rational point x ∈ P such that size(x) is polynomial with respect to

m and L.

Proof. We will prove this lemma in multiple steps. In the first step, we will transform

the system defining P into a system

A′x′ = b′, x′i ≥ 0, (∗)

which has a solution if and only if P has a solution. For each variable xi, we introduce

two variables yi and y′i and replace each occurence of xi by yi − y′i. This allows us

to assign positive values to yi and y′i. We also add a slack variable to each equation,

transforming aj1x1 + · · ·+ ajmxm ≤ bj into

aj1(y1 − y′1) + · · ·+ ajm(ym − y′m) + sj = bj .

The matrix A′ in (∗) is a matrix of size N ×N +2m. Since the slack variables s1, . . . , sN

that correspond to the N rightmost columns of A′ form an identity matrix (because each

11



2 Preliminaries

sj appears in exactly one equation), A′ has rank N . The second step is to transform the

system from (∗) into a system

A′′x′′ = b′′, x′′i ≥ 0 (∗∗)

where A′′ is an N ×N matrix. Let v1, . . . , vN+2m be the column vectors of A′. We know

that b′ can be written as a positive linear combination

v1x
′
1 + · · ·+ vN+2mx′N+2m.

Thus, we can apply Lemma 2.12 to see that there is even a positive linear combination

vi1x
′
i1 + · · ·+ viNx

′
iN

= b′.

Hence, we set x′i = 0 for each x′i with i ̸= ij for j = 1, . . . , N and immediately obtain a

system as in (∗∗). Obviously, A′′ has rank N as well. Therefore, we know from linear

algebra (Cramer’s rule, c.f. [Lan87, Theorem 4.1]) that (∗∗) has a unique solution

x′′ = (x′′1, . . . , x
′′
N )T where x′′i =

det(A′′
i )

det(A′′)
.

Here, A′′
j denotes the matrix obtained from A′′ by replacing the jth column by b′′. Since

A′ contains N column vectors that belong to an identity matrix, we know that all but at

most 2m columns of A′′ contain presisely one 1 and further only 0’s. By permutations

of rows and columns, each of the matrices A′′, A′′
i can be brought into the form

B =

C 0

D I

 ,

where I is an identity matrix and C is a square matrix of size 2m+ 1. Hence, det(B) is

the sum of at most (2m+ 1)! terms dj where each dj is the product of at most 2m+ 1

numbers of absolute value at most 2L. Since all entries of B are integers, det(B) must

be an integer as well. Therefore, we have

size(det(B)) ≤size
(
(2m+ 1)! · 2L(2m+1)

)
= log

(
(2m+ 1)! · 2L(2m+1)

)
≤ log

(
(2m+ 1)2m+1) + log(2L(2m+1)

)
=(2m+ 1) log(2m+ 1) + L(2m+ 1).

12



2.1 Algebra

Finally, we are able to prove the following result which generalizes the preceding lemma

to polytopes where the defining inequalities may also be strict. This lemma will play a

key role for the simulation of BSS machines by Turing machines.

Lemma 2.14 [Koi94, Theorem 6]. Let P ⊆ Rm by a nonempty polytope defined by a

system φ of N inequations of the form

Ax ≤ b, A′x < b′,

where the entries of A,A′, b, b′ are integers of size L. Then, there is a rational point

x ∈ P such that size(x) is polynomial with respect to m and L.

Proof. Let P ′ be the polytope of Rm+1 defined by the system φ′ obtained from φ by the

following transformations:

� add a new variable K and the constraint K ≥ 1,

� replace the subsystem Ax ≤ b by Ay ≤ Kb,

� replace the subsystem A′x < b′ by A′y ≤ Kb′ − 1

For instance, the inequality 4x1 + 2x2 < 10 will be replaced by 4y1 + 2y2 − 10K ≤ −1.
Intuitively, each solution (x1, x2) where |4x1 + 2x2 − 10| < 1 can be transformed into a

solution for 4y1+2y2−10K ≤ −1 by choosing K sufficiently large and multiplying x1, x2

by K. Hence, the new system has a solution y = (y1, . . . , ym,K) ∈ Rm+1 if and only if φ

has a solution (x1, . . . , xm) ∈ Rm. Because P ̸= ∅, we know that such a solution exists

and by Lemma 2.13, there exists a point y = (y1, . . . , ym,K) ∈ P ′ with size polynomial

in L and m. Let

x =

(
y1
K

, . . . ,
ym
K

)
.

Clearly, x ∈ P and since size(y) is sufficiently small, size(x) is polynomial in L and

m.

13



2 Preliminaries

2.2 Computation over a ring

As pointed out in the introduction, a Turing machine can be seen as a machine that

works over the field Z2. The following definition aims to generalize this to an arbitrary

field (or, even more general, an arbitrary ring). In the following, let R be a ring.

In the classical case, a Turing machine reads either a 0 or a 1 at each step. It is then

allowed to either keep the value (therefore applying the identity function) or replace it

by another value. Any of these functions can be seen as a polynomial function over Z2.

For instance, flipping a bit can be interpreted as evaluating the function f(x) = x+ 1.

In the following, we generalize this notion to an arbitrary ring by allowing our machines

to store any element of a fixed ring R in each of their cells.

2.2.1 Infinite-dimensional spaces

Classically, when considering Turing machines, any finite sequence of symbols is allowed

as an input, leading to the set Σ∗ where Σ is an alphabet. Analogously, any finite

sequence of elements from R is allowed as an input for BSS machines over R. We denote

the set of these sequences by R∞ where

R∞ =
⋃
n∈N

Rn.

Let x ∈ R∞. By |x|, we denote the length of x and if x ∈ Rn, we set |x| = n.

The working tape of classical Turing machines is unbounded in two directions. This

property is simulated by the bi-infinite direct sum space over R which we shall denote

by R∞. Elements of R∞ have the form

x = (. . . , x−2, x−1, x0.x1, x2, . . . ),

where xi ∈ R for all i ∈ Z and xk = 0 for all but finitely many k ∈ Z. Intuitively,

the marker “.” between x0 and x1 can be thought of as the head position of a Turing

machine with x on its working tape.
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2.2 Computation over a ring

The construction of R∞ and R∞ can also be found in the book of Blum et al. [Blu+98,

Section 3.1]. For the remainder of this section, let x = (. . . , x−2, x−1, x0.x1, x2, . . . ).

Definition 2.15 [Blu+98, Section 3.1]. Let h : Rm → R be a polynomial function of

degree d over R. Then h defines a polynomial function ĥ : R∞ → R of degree d and

dimension m on R∞ by letting ĥ(x) = h(x1, . . . , xm) for each x ∈ R∞.

If gi : R
m → R (i = 1, . . . ,m) are polynomial functions of maximum degree d over R,

we define the polynomial function of degree d and dimension m on R∞ defined by the

gi by letting

g(x) = (. . . , x−2, x−1, x0.g1(x), g2(x), . . . , gm(x), xm+1, xm+2, . . . ). ◁

Therefore, for instance, if we apply the polynomial functions

g1(x1, x2) = x1 + 3 and g2(x1, x2) = x2 − 2x1

to the input x = (. . . , 0, 0.1, 4, 1, 5, 9, . . . ), we get

g(x) = (. . . , 0, 0.4,2, 1, 5, 9, . . . ).

With the above definition, rational functions on R∞ can be definied analogously by

replacing “polynomial function” by “rational function” everywhere in the definition.

A BSS machine over R will have a finite set of instructions (more precisely, polynomial

or rational functions on its state space R∞). Having only access to functions as in

the previous definition, the machine can only access a constant number of registers

(this is due to the finite degree of any function in the instruction set of the machine).

To circumvent this issue, we need two additional shift functions which are defined as

follows.

Definition 2.16 [Blu+98]. The functions shift left σℓ : R∞ → R∞ and shift right

σr : R∞ → R∞ are defined by letting, for all i ∈ Z,

σℓ(x)i = xi+1 and σr(x)i = xi−1. ◁
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2 Preliminaries

Applying a shift function resembles the movement of a Turing machine’s head where σℓ

is a movement to the right and σr is a movement to the left. With these functions, our

machines will now be able to access the whole space R∞.

2.2.2 BSS machines

Definition 2.17 [CM99; Blu+98]. A BSS machine over R consists of an input space

I = R∞, an output space O = R∞ and a state space S = R∞, together with a connected

directed graph whose nodes are labeled 1, . . . , N .

The node labeled 1 is the input node. Associated with this node there is a next node

β(1) and the input map gI : I → S.

The node labeled N is the output node. It has no next nodes, once it is reached the

computation halts, and the output map gO : S → O places the result of the computation

in the output space.

Each of of the remaining nodes has one of the following types:

1. Computation nodes. Associated with a node m of this type there are a next node

β(m) and a function gm : S → S. The gm is a polynomial (or rational if R is a

field) function on R∞ in the sense of Definition 2.15.

2. Branch nodes. There are two nodes associated with a node m of this type: β+(m)

and β−(m). The next node is β+(m) if x1 ≥ 0 and β−(m) if x1 < 0.

3. Shift nodes. Associated with a node m of this type is a next node β(m) and a

function gm : S → S where either gm = σℓ or gm = σr.

The input map gI transforms an input (x1, . . . , xn) ∈ R∞ into the state

(. . . , 0, n̂.x1, . . . , xn, 0, . . . ) ∈ R∞ where n̂ denotes a sequence of n 1s.

The output map gO transforms a state (. . . , 0, n̂.x1, x2, x3, . . . ) ∈ S into the output

(x1, . . . , xn) ∈ O.
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2.2 Computation over a ring

Let N = {1, . . . , N} be the set of nodes of the machine M . Then, each configuration

of M can be described by some z ∈ N × S. The starting configuration of M is thus

z0 = (1, gI(x)). Let B be the set of branch nodes ofM . The machine works by generating

the computation z0, z1, z2, . . . with zk = (ηk, xk) for each k ∈ Z and

zi+1 = H(ηi, xi),

where xk = (. . . , xk−1, x
k
0.x

k
1, . . . ) and

H(ηk, xk) =


(β+(ηk), xk), if ηk ∈ B and xk1 ≥ 0

(β−(ηk), xk), if ηk ∈ B and xk1 < 0

(β(ηk), gηk(x
k)), otherwise.

If for some k, ηk = N , then the machine halts and outputs gO(x
k). ◁

Note that in the case of R, the sequence n̂ in the input and output function can be

replaced by n (therefore only using one register instead of n registers). This is not

possible for rings R with charR ̸= 0 (e.g. R = Z2) as they do not have enough elements

to represent each n ∈ N.

In the original definition by Blum, Smale and Shub in 1989 [BSS89], an additional type of

node was used instead of shift nodes which allowed their machines to access the content

of an arbitrary register by its address. The definition using shift nodes instead of these

random access nodes is equivalent [Blu+98, Section 3.6].

The entries xi of a machine’s state x ∈ S are refered to as the registers of that machine

throughout this thesis. Furthermore, each BSS machine M has access to only a finite

number of machine constants over R (i.e. constants that are hard-wired in the description

of M). These constants are exactly the coefficients in the polynomial (or rational)

functions that are associated with the computation nodes of M .

If M is a BSS machine over R, the function ΦM (x) : R∞ → R∞ that maps each x ∈ R∞

to the output of M on input x is called the input-output-map of M . Moreover, let ΩM

be the halting set of M , i.e. the set of all x ∈ R∞ such that M halts on input x.
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Definition 2.18 [Blu+98, Section 4.2]. Let M be a BSS machine over R and x ∈ R∞.

We define cost(x) to be the number of nodes traversed during the computation of M on

input x. M works in time f(n) if cost(x) ≤ f(n) for each input x with |x| = n. We say

that M works in polynomial time if M works in time p(n) for some polynomial p. ◁

We end this section by presenting a simple example for a BSS machine over R that

strictly follows our definition. This example should clarify how the shift operations can

be used to simulate the behavior of a Turing machine.

Given an input (s1, s2, . . . , sn) ∈ Rn, our machine M will compute s1 + s2 + · · · + sn.

Given this input, M will produce the initial state

(. . . , 0, n.s1, . . . , sn, 0, . . . ).

Note that we use n instead of n̂ for the input length since we are working over R. As

our machine can only access registers with positive coordinates (i.e. x1, x2, . . . ), we first

need to apply a right shift to get access to n. After the right shift, we proceed by adding

x2 and x3 and storing the result in x3 followed by a left shift. This way, the register x2

always contains a sum of of the form s1 + s2 + · · · + sk where k ∈ N is the number of

iterations. Thus, we get the following sequence of states:

(. . . , 0.n, s1, s2, s3, s4, . . . )

(. . . , 0, n.s1, s1 + s2, s3, s4, . . . )

(. . . , 0, n, s1.s1 + s2, s1 + s2 + s3, s4, . . . )

...

(. . . , s1 + · · ·+ sn−2.s1 + · · ·+ sn−1, s1 + · · ·+ sn, 0, . . . )

This is close to the actual algorithm. However, the machine needs an additional piece of

information to know when to stop. This information is provided by n. We can prevent

the n from being shifted to the left by swapping it with the value at the second coordinate
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2.2 Computation over a ring

each time before we apply the left shift. We thus get the following sequence of states:

(. . . , 0.n, s1, s2, s3, . . . )

(. . . , 0.n, s1, s1 + s2, s3, . . . )

(. . . , 0.s1, n, s1 + s2, s3, . . . )

(. . . , 0, s1.n, s1 + s2, s3, . . . )

The value n can now be used to count the number of remaining additions. Initially, we

need to decrement n because we only need n− 1 additions for the sequence (s1, . . . , sn).

The machine then decrements the counter again at the start of each iteration.

Combining all these ideas finally yields a machine as shown in Figure 2.1. The nodes

at the right side have the only purpose to output x2. For this, the machine needs to

produce the state

(. . . , 1.x2, . . . ).

This can be done by writing the value 1 to x1 and then performing a shift left operation.

2.2.3 Algebraic circuits

In classical complexity theory, several models of parallel computation such as parallel

RAMs and boolean circuits have been studied. As in the case of Turing machines,

boolean circuits can be seen as operating over the field Z2. A more general definition of

circuits that allows inputs from an arbitrary ring instead of the fixed field Z2 is presented

in this section.

Definition 2.19 [Blu+98, page 349]. An algebraic circuit over R is an acyclic directed

graph with n input nodes labeled 1, . . . , n and m output nodes labeled 1, . . . ,m.

Input nodes have indegree 0. Output nodes have indegree 1 and outdegree 0. The

remaining nodes have one of the following types:
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Input (x1, . . . , xn) and Init

σr

x1 ← x1 − 2

x1 ≥ 0? x1 ← 1

σℓ

Output

x3 ← x2 + x3

(x1, x2)← (x2, x1)

σℓ

x1 ← x1 − 1

Yes

No

Figure 2.1: The BSS machine M for implementing the addition of array elements

1. Arithmetic nodes. Associated with a node of this type is one of the binary oper-

ations +,−, ∗ (and division ÷ in case R is a field) of R. Arithmetic nodes have

indegree 2.

2. Constant nodes. Nodes of this type are labeled with an element of R and have

indegree 0.

3. Sign nodes. These nodes have indegree 1.

For an algebraic circuit C, the size of C is the number of nodes in C. The depth of C is

the length of the longest path from some input node to some output node. We will also

refer to the nodes of C as gates.

Let C be an algebraic circuit with n input gates and m output gates. We inductively

associate a function fg : R
n → R with each gate g of C. Let x = (x1, . . . , xn).

� If g is the ith input gate of C, then fg(x) = xi.

� If g is a constant gate labeled a ∈ R, then fg(x) = a.
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2.2 Computation over a ring

� If g is an arithmetic node labeled ◦ ∈ {+,−, ∗,÷} with predecessors h1 and h2,

then fg(x) = fh1(x) ◦ fh2(x).

� If g is a sign node with predecessor h, then fg(x) =


1, fh(x) ≥ 0

0, otherwise

� If g is an output node with predecessor h, then fg(x) = fh(x).

The circuit C computes the function fC : Rn → Rm defined by

fC(x) = (fg1(x), . . . , fgm(x)),

where g1, . . . , gm are the output nodes of C. ◁

By convention, we let x÷y := 0 for y = 0 to make sure that fC(x) is always defined. The

preceding definition only allows inputs of a specific, fixed length. We have already seen

that BSS machines over a ring R are allowed to process any inputs from R∞. Therefore,

if we want to investigate the parallel complexity of problems over R∞, we need to expand

our definition of algebraic circuits in order to allow them to process the same inputs as

other machines.

Definition 2.20. A circuit family over R is a sequence C = (Cn)n∈N of algebraic circuits

where Cn has n input nodes for each n ∈ N. Let fn be the function computed by Cn.

We say that C computes the function fC : R∞ → R∞ where

fC(x) = f |x|(x)

for each x ∈ R∞. ◁

The above definition of a circuit family is non-uniform in a sense that there is no finite

description of a circuit family as it may consist of possibly infinitely many unrelated

circuits. A solution to solve this problem in the boolean context is to study only uni-

form circuit families, i.e. circuit families whose structure can be computed by a Turing

machine. The Turing machine then gives a finite description of the circuit family.

Classically, the complexity results for uniform circuit families are quite different from

non-uniform circuit families. While the uniform versions of NC and AC are contained
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in P, this is not the case if we allow non-uniform circuit families as they can even solve

the unary halting problem which is undecidable by Turing machines (see Section 5.3 for

more details).

Naturally, we can apply the same distinction to families of algebraic circuits. Later in this

thesis, we will show that non-uniform circuit families over R are stronger than machines

over R (just as in the boolean case), although the argument is more complicated than

in the boolean case.

Definition 2.21 [Blu+98, page 353]. A family C = (Cn)n∈N of algebraic circuits over

R is said to be uniform if there exists a BSS machine M over R that, on input (n, i),

outputs the description of the ith gate of Cn. It is said to be PR-uniform if M works in

polynomial time. ◁

There are many ways to describe a node in an algebraic circuit. One way is to associate

a node labeled n with a tuple (n, t, g1, g2) where n is the node’s label, t is the node’s type

(for arithmetic nodes, t also encodes the associated operation) and g1, g2 are the node’s

predecessors. For a node without any predecessors, we set g1 = g2 = 0. For nodes with

exactly one predecessor, set g2 = 0.

Definition 2.22 [Blu+98, page 353]. NCi
R is the class of sets A ⊆ R∞ such that there is

a family of circuits that computes the characteristic function of A and has size polynomial

in n and depth O(logk n). The union of the NCi
R is denoted by NCR. ◁

We may define a uniform version of the above classes by additionally requiring the circuit

family to be PR-uniform. We denote the uniform version of NCi
R by UPR-NC

i
R. By NCi

and ACi (without the subscript R), we refer to the parallel complexity classes in the

boolean context.

For instance, any sequential algorithm for the problem of matrix multiplication for n×n

matrices can be proven to require at least n2 steps, but the problem requires only

logarithmic time (i.e. depth) in the setting of algebraic circuits. It can easily be verified

that the circuit shown in Figure 2.2 can be generalized to the multiplication of n × n
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a11 a12 a21 a22 b11 b12 b21 b22

× × × × × × × ×

+ + + +

Figure 2.2: An algebraic circuit for the multiplication of two 2× 2 matrices.

matrices with logarithmic depth by arranging the addition gates in the bottom layer in

a binary tree, thus proving that matrix multiplication is in UPR-NC
1
R [Vol99, Theorem

5.3].
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3 Universal machines

An important observation about Turing machines is that any Turing machine can be

represented using only a single positive integer (the underlying encoding was presented

by Gödel in 1931 [Göd31]). This allows the construction of a universal Turing machine,

i.e. a Turing machine that, on input (M,x), outputs ΦM (x). Moreover, this allows the

following formulation of the (discrete) halting problem which is known to be undecidable.

Problem: H

Input: A Turing machine M and an input x

Question: Does M halt on input x?

This leads to the question whether it makes sense to define a similar halting problem

for machines over R. Indeed, we will be able to construct a universal BSS machine and

therefore, it makes sense to define a real halting problem HR.

Problem: HR

Input: A BSS machine M over R and an input x

Question: Does M halt on input x?

The aim of this section is to construct a universal machine over R. As a first step, we

need to find an encoding π(M) of a BSS machine M by a finite sequence of real values.

Over N, it is possible to find a recursive bijection N∞ → N. Hence, we can encode

finite sequences of integers by a single integer and, by recursion, obtain a way to encode

multiple sequences of integers. This is, however, not possible for R.

In general, a sequence (x1, . . . , xn) ∈ Rn cannot easily be distinguished from a shorter

sequence that ends with one or more 0s. Therefore, the input function in the definition
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of machines over R adds the prefix n to inputs of length n. This idea can be generalized

to sequences of real numbers [Blu+98, page 80]. We can encode k sequences of real

numbers by

(k, n1, . . . , nk, a1, . . . , ak),

where k, ni ∈ N and ai ∈ Rni for i = 1, . . . , k.

Lemma 3.1. Each BSS machine over R has a recursive representation π(M) ∈ R∞.

The proof also works for any other ring with characteristic 0. For other rings, the proof

can be adjusted by using the sequence n̂ (the sequence of n 1s) instead of n at the

respective places.

Proof. [Blu+98, page 81] To describe a machine M over R, it suffices to represent the

nodes of the underlying graph. Let N be the set of nodes in the graph of M . Each

η ∈ N can be represented by a tuple

η = (n, βη, tη, gη),

where n ∈ {1, . . . , N} is the label of η, βη = (β+
η , β

−
η ) is the pair of next nodes of η,

tη is the type (input, output, branch, computation or shift) of η and gη is the function

associated with η. By setting unused values to 0 (e.g. the function gη is not required if

η is a branch node), we can represent each type of nodes with the same set of values. In

particular, we assume that the next node is always stored in β+
η if η has only one next

node.

All these values except gη can trivially be encoded by a single positive integer. Let m

be the dimension of M , i.e. the maximum dimension of the functions associated with

the nodes of M . To encode gη, we can store the sequence of coefficients of gη using

a lexicographic order on the monomials of dimension m. The encoding π(M) of the

machine is the sequence of encodings of its nodes.

An easy way to get a lexicographic ordering on the monomials of dimension m is to order
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the monomials by their total degree, i.e.

1, x1, . . . , xm︸ ︷︷ ︸
total degree 1

, x21, x1x2, . . . , x1xm, x2x1, . . . , x
2
m︸ ︷︷ ︸

total degree 2

, x31, . . .

For instance, the polynomial function 2x21+πx2+
√
2x4+4 of dimension 4 can be encoded

by the sequence

(4, 0, π, 0,
√
2, 2).

To simulate a given BSS machine M over R, the universal machine has to evaluate the

polynomials that appear in the computation of M . We will do so by using a univer-

sal polynomial evaluator (UPE) as subroutine, i.e. a machine that, given a polynomial

f ∈ R[x1, . . . , xm] and x ∈ Rm, outputs f(x). This can easily be generalized to ratio-

nal functions if R is a field. One procedure to implement a UPE is to compute each

monomial’s value separately and sum up the monomials’ values. This can be done in

polynomial time and with a constant amount of registers apart from the representation

of f .

We will now investigate the special case where R ⊆ Q, i.e. the machine has to evaluate

a polynomial f ∈ Q[x1, . . . , xm] (again, the following observations also hold for rational

functions). The important difference in this case is that each such f can be represented

using only a single positive integer r. Thus, f can be stored in a single register by a

machine M over R. However, M is unable to access the digits of r directly due to its

restriction to rational functions. The following result shows that M can access the digits

of r in polynomial time and with only a constant amount of auxiliary registers.

Lemma 3.2. Let r ∈ R, r ≥ 0 and let . . . r2r1r0.r−1r−2 . . . be the b-adic representation

of r, i.e. ri ∈ {0, 1, . . . , b− 1} and

r =
∑
k∈Z

rk · bk.

For each z ∈ Z, there exists a machine Mb over R without shift nodes that, on input

(r, z), outputs rz.

Proof. Since r ∈ R, there exists a maximum k ∈ Z such that rk ̸= 0. Hence, r
bk

< 1 for

some k ∈ Z. Mb works by first dividing r by b until it obtains some r′ < 1. The count

27



3 Universal machines

of divisions performed this way is stored in a separate register and will be denoted by

n. If n ≤ z, output 0.

In the next step, the machine repeats the following steps n − z − 1 times (we assume

that r′ is stored in the register x1 at this point):

1. Multiply x1 by b.

2. While x1 ≥ 1, set x′1 ← x1 − 1.

After this sequence of operations, the register x1 holds the value

. . . 0.rzrz−1rz−2 . . .

in b-adic representation. Now, to obtain rz, the machine only needs to multiply x1 by b

and then subtract 1 from x1 until x1 < 1. By counting the number of subtractions, Mb

can compute rz.

This allows machines over R to store the configuration of a Turing machine in a single

register. By storing the head position in a separate register, a machine over R can thus

simulate any Turing machine in constant space (use one register to store the tape and

simulate the machine as in the discrete case).

Corollary 3.3. Each set A ⊆ N is decidable over R.

Proof. [MZ06] Let

an = χA(n) =


1, n ∈ A

0, n /∈ A

for n ∈ N. The sequence a = (an)n∈N can be encoded into a real number Ra ∈ R by

letting

Ra =
∑
k∈N

ak · 2−k.

On input z, the machine performs the instruction x1 ← Ra and proceeds as in the proof

of Lemma 3.2 to access az. It accepts if it finds the value 1 and rejects otherwise.
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By letting A = H in the predecing result, it follows that the discrete halting problem is

decidable by a BSS machine over R. In fact, a single real constant is enough for BSS

machines over R to decide the halting problem. We will show in Chapter 5 that the

power of machines over R strictly increases with the number of permitted constants, i.e.

for each n ∈ N, there is a set A ⊆ R such that A is undecidable by a machine over R

with n constants, but there is a machine with n+ 1 constants that decides A.

Going back to UPEs, we get another useful result from Lemma 3.2 that will be important

in Chapter 4.

Corollary 3.4. Let f ∈ Q[x1, . . . , xm] and x ∈ Rm. There exists a machine M over R

such that

1. M outputs f(x) on input (f, x),

2. M uses only m+ k registers where k ∈ N and

3. M does not modify the input registers.

Proof. Immediate from Lemma 3.2 and the discussion on page 27.

A universal machine over R will have to simulate the computation of any machineM over

R. We can use the UPE subroutine (cf. page 27) to simulate the effect of a computation

node of M and are thus ready to describe a universal machine.

Theorem 3.5. There exists a machine U over R such that, when input a pair (π(M), x),

U outputs ΦM (x).

Note that a machine over R can swap the values of some registers xi, xj with 1 ≤ i < j

by evaluating the polynomial map

(x1, . . . , xi−1, xi, xi+1, . . . , xj)← (x1, . . . , xi−1, xj , xi+1, . . . , xi)

of dimension j. Operations of this kind are referred to as swap operations during the

following proof.
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x−1 x0 x1 xk xk+n

π(M) xM
1

. . . xM
n 0 . . .k1UPEn0

node in simu-
lation of M

Figure 3.1: Initial state of U during the simulation of M . Control information is stored

in the gray registers. The white registers contain the state of M during the

simulation.

Proof. We give a description of U . On input (π(M), x), U will enter the initial state

(. . . , 0, n, k.m1, . . . ,mk, x1, . . . , xn, 0, . . . ),

where |x| = n and |π(M)| = k (this can be done by extracting n and k from the input,

see the discussion on page 26). U will use most of its registers to store the current state

of the simulation. It needs the following additional registers (see Figure 3):

� k registers to store π(M)

� one register to store k

� one register to store the current node of M in the simulation

� a constant number of registers for the UPE subroutine

The state shown in Figure 3 can easily be reached from the initial state by a sequence

of shift and swap operations.

U can only “see” the registers x1, . . . , xm for some fixed m (due to the finite dimension of

U). However, the number of control registers for U is not constant (due to π(M)). This

can be solved by adding further control registers. These registers contain the coordinate

p of the leftmost register that stores π(M) and space to copy instructions from π(M).

This enables U to systematically access π(M) using shift operations and reduces the

number of remaining control registers to a constant, enabling U to access these registers

without shift or swap operations. U accesses π(M) and the state of M by performing a

sequence of shift operations and tracking the offset using p.
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A step in the simulation of M works as follows:

� look up the next operation in π(M) based on the current node η stored at x−1

� perform an operation based on the current type of node (∗)

� determine the next node in the computation of M and update the state of U

accordingly

The specific operations performed by U in (∗) depend on the type of node that U has

to simulate:

� If η is a shift node, U enters a shift node and then swaps a constant number of

registers to make sure the control registers of U remain in the same position as

before.

� If η is a branch node, U checks whether the register storing x1 is ≥ 0 and updates

the node register accordingly. x1 can be accessed by a sequence of shift and swap

operations.

� If η is a computation node, copy the starting coordinate of the polynomial’s repre-

sentation in π(M) to one of the registers of the UPE subroutine. The subroutine

can use shift and swap operations to access the relevant registers of the simulation

and evaluates the components one by one. U can use temporary auxiliary registers

to store the results that were generated by the UPE before writing them back to

the simulation registers.

If M reaches an output node, U computes the respective output state, then enters the

output node of U . Clearly, U computes ΦM (x).

In classical recursion theory, the existence of a universal Turing machine implies that

the discrete halting problem is undecidable. The same argument can now be used to

show that the real halting problem is undecidable over R.

Corollary 3.6. HR is undecidable over R.
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Proof. Assume that HR is decidable over R. Let M be a machine over R that, on input

x, decides if (x, x) ∈ HR. Construct a machine M ′ that simulates M , halts if the result

is 0 and goes into an infinite loop if the result is 1. Clearly, this is a contradiction:

� If (π(M ′), π(M ′)) ∈ HR, then M ′ goes into an infinite loop on input π(M ′). Thus,

(π(M ′), π(M ′)) /∈ HR. Contradiction.

� If (π(M ′), π(M ′)) /∈ HR, thenM ′ halts on input π(M ′). Thus, (π(M ′), π(M ′)) ∈ HR.

Contradiction.

Hence, HR must be undecidable.

The next chapters will give a deeper understanding of the causes of decidability and

undecidability over R by investigating certain restrictions of BSS machines over R.
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It is a natural question to ask how the computational power of BSS machines changes if

they have access to only a limited amount of space. More precisely, we are interested in

the number of registers a machine over R needs to compute a function f(x) with respect

to the input length |x|.

It was proven by Michaux in 1989 [Mic89] that the restriction of BSS machines to

polynomial space does not actually restrict their computational power over R. In fact, the

following proof by Michaux shows that linear space is enough to compute any computable

function over R.

On page 17 it was already pointed out that each machine over R can only have a

finite number of machine constants in its description (the coefficients that appear in the

functions in the machine’s computation nodes). This is a key premise for the argument

underlying the proof.

Theorem 4.1. Let f : Rm → R be a function that can be computed by a BSS machine

over R. Then, there exists a BSS machine M ′ over R without shift nodes such that

ΦM (x) = ΦM ′(x) for all x ∈ Rm.

A machine over R without shift nodes is often referred to as a finite-dimensional machine

over R. This is due to the fact that it is unable to access more than a constant amount

of registers. The original definition of a finite-dimensional machine over R can be found

in the book of Blum et al. [Blu+98, page 40].

Proof. Consider the entries of a state x ∈ S during the calculation of M . Initially, they
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4 Real computation with restricted space

hold the values

(. . . , 0, n.s1, . . . , sn, 0, . . . )

where s = (s1, . . . , sn) is the input to M . Clearly, the value at each coordinate can be

expressed as a rational function on s.

At each step during the computation of M , the machine applies a rational function to

some of its registers. Being compositions of rational functions, the values in the registers

of M can be expressed by rational functions on s at each step of M . Let c = (c1, . . . , ck)

be the machine constants of M . We can transform the rational functions on s that

describe the state space of M at a certain step of computation into rational functions

on s and c by interpreting the ci (i = 1, . . . , k) as arguments of these functions. Hence,

the values in the registers of M at a certain state x ∈ S can be interpreted as rational

functions on s and c and can thus be written as

xi =
g(s1, . . . , sn, c1, . . . , ck)

h(s1, . . . , sn, c1, . . . , ck)
(∗)

where xi denotes the value at the ith coordinate in the state x of M . Let N be the set

of nodes of M . A configuration z = (η, x) of M with η ∈ N , x ∈ S can therefore be

represented by two integers. The first integer encodes η while the second one encodes

the sequence

p = (pl, . . . , pr)

where each pi is a rational function as in (∗) that has to be evaluated to obtain xi. The

coefficients of each pi are in Z and thus, each pi can be encoded as a single integer by a

computable function. With the same argument, the whole list p can be represented by

a single integer. We will write ⟨p⟩ for the integer that encodes p.

The idea for the machine M ′ is to store the rational function that needs to be evaluated

in order to get one of the xi instead of the actual values. M ′ has the following types of

registers:

� n registers for storing the input (their values will remain constant during the

computation of M ′)

� k registers for storing the machine constants

34



� one register for storing the state of M

� one register to implement the shift operations of M

The registers for the machine constants can easily be initialized by executing the in-

struction

(xl, . . . , xr)← (c1, . . . , ck)

directly after gI was executed where xl is the leftmost such register and xr the rightmost.

The machine then produces the initial state

(. . . , 0.s, c, ⟨p0⟩, σ0, . . . ).

Here, p0 denotes the sequence of rational functions that represent the initial state of M .

M ′ works by updating the functions in p whenever M computes a function at one of its

computation nodes.

The state of M ′ after T steps of computation looks like

(. . . , s, c, ⟨pT ⟩, σT , . . . ).

σT is necessary to implement the shift operations of M . It starts with σ0 = 0, is

increased by 1 whenever M performs a shift right operation and decreased by 1 whenever

M performs a shift left operation. By Lemma 3.2, M ′ can compute the values ⟨pi⟩ for
i ∈ N using only a constant amount of auxiliary registers.

For the branch operations, M ′ needs to evaluate the function stored in pT1 for some

T ∈ N during the computation. This can be realized by calling a UPE as constructed in

Corollary 3.4 as a subroutine. This adds only a constant amount of additional registers

to M ′. Rational functions are handled analogously (the numerator and denominator

can be stored separately). To check whether a rational function is 0, it suffices to check

whether the numerator is 0.

When M ′ reaches an output node, it can use the UPE to restore the output value and

compute the output state. Clearly, M ′ computes the same function as M .

Note that the only possible coefficients in the functions associated with the computation
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4 Real computation with restricted space

nodes of M ′ are 1 and 0. For instance, a possible step in the calculation of M ′ could be

as follows. Let (s1, . . . , sn) ∈ Rn be the input of M ′ and let η be a computation node of

M with gη =
√
2x23 + 4x4 + 5. If η is the only computation node of M , then

√
2, 4 and

5 are the only constants of M and M ′ will produce the initial state

(. . . , 0.s1, . . . , sn, 5, 4,
√
2, ⟨p⟩, σ, 0, . . . )

with σ = 0, p = (p0, . . . , pn) ∈ Q[α1, . . . , αn+k]
n+1, p0 = n and pi = αi for i ∈ {1, . . . , n}.

Here, σ = 0 indicates that the leftmost entry of the sequence stored in p refers to the

register x0 of M and αi is a pointer to the value in the ith register of M ′. If M performs

a shift right operation, M ′ will increment σ to indicate that the leftmost entry of p now

refers to x1. Thus, after another shift right operation, σ holds the value 2 and the state

of M would look like

(. . . , 0.0, n, s1, . . . , sn, 0, . . . ).

Let |p| denote the number of polynomials encoded by p. IfM now enters the computation

node η, then M ′ computes a new pointer expression to write to p1−σ. Here, M ′ writes

the result to p−1 because p0 now represents the value at x2. The polynomial expression

√
2x23 + 4x4 + 5

will be transformed into a representation that can be stored into p. This is done by first

replacing the coefficients by the respective address references, yielding

αn+3x
2
3 + αn+2x4 + αn+1.

Afterwards, each occurance of xi is replaced by the expressions in the respective register

(this is done by looking at p). For instance, each occurance of x3 will be replaced by the

expression stored in p3−σ. If the machine tries to access pi for i < 0 or i ≥ |p|, then the

value can be treated as 0. This transforms the expression into

αn+3α
2
1 + αn+2α2 + αn+1.

M ′ finishes the computation step by replacing p−1 by this expression. Since p−1 is not

yet stored in p, the machine prepends this value to the list. For later computations, this

value will be treated as p0 (i.e. p = (p0, . . . , pk) at each step during the computation of
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M ′ for some k ∈ N). This requires another change to σ since p0 no longer stores the

value x2. The final state of M ′ after this sequence of operations is thus

(. . . , 0.s1, . . . , sn, 5, 4,
√
2, ⟨p⟩, 1, 0, . . . ),

where p = (p0, . . . , pn+1) and

pi =


αn+3x

2
3 + αn+2x4 + αn+1, if i = 0

n, if i = 1

αi−1, otherwise.

Let k denote the number of machine constants of M ′. M ′ may output the value x1 by

evaluating the polynomial f ∈ Q[α1, . . . , αn+k] stored at p1−σ on (s1, . . . , sn, 5, 4,
√
2) ∈ Rn+k

using the UPE.

Corollary 4.2. Each function f : R∞ → R∞ that is computable by a BSS machine over

R can be computed by a machine over R in linear space.

Proof. By analyzing the proof of Theorem 4.1, it can be seen that we can build a machine

M ′′ over R for the whole input space R∞ just as in the case of a fixed input length with

the only modification that we need to use a number of shift operations depending on |x|
each time we evaluate the value of a register (i.e. if the machine reaches a branch node

or the output node). This, however, does not require any additional space and therefore

M ′′ only needs the following space:

(. . . , x1, . . . , xn, c1, . . . , ck,SM , σM , . . . )

SM denotes the sequence of polynomials representing the state of M . Hence, each BSS-

computable function f : R∞ → R∞ can be computed by a machine over R in linear

space.
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5 Restrictions on machine constants

We have seen in Chapter 3 that a single machine constant is sufficient to give machines

over R the power to decide any subset of N (or, more generally, every problem whose

inputs can be represented using a discrete input set such as {0, 1}∗). Without the use of

real machine constants, however, discrete problems that are classically undecidable are

undecidable even for BSS machines over R. This is due to the fact that Turing machines

are able to simulate BSS machines on discrete inputs if only rational machine constants

are permitted. Hence, machines with one real constant are strictly stronger than ma-

chines without a real constant. Meer and Ziegler [MZ06] proved that this phenomenon

appears in general if we allow additional constants, i.e. for each i, there is a problem

that can be decided by a machine with i real constants, but not by a machine with i− 1

real constants.

To prepare the proof, we will first discuss an algebraic characterization of semi-decidable

sets in Section 5.1. Meer and Ziegler’s result will be presented in Section 5.2 and an

application thereof to algebraic circuits can be found in Section 5.3.

5.1 An algebraic characterization of semi-decidable sets

Lemma 5.1. Let A ⊆ R∞ be semi-decidable by a machine over R with i real machine

constants. Then, there exist c1, . . . , ci ∈ R such that A =
⋃

n∈NAn and all An are

semi-algebraic over the field extension K := Q(c1, . . . , ci).

Proof. [Blu+98, Section 2.3] Let M be a machine with the machine constants c1, . . . , ci
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5 Restrictions on machine constants

that semi-decides A and N = {1, . . . , N} the set of nodes of M . By definition of M , we

have A = ΩM (recall that ΩM is the halting set of M). For T ∈ N, let ΩT be the time-T

halting set of M , i.e. the set of all x ∈ R∞ such that M halts on input x after exactly

T steps.

For x ∈ ΩT , let π(x) = (1, η1, . . . , ηT−1, N) be the computation path of x (i.e. the nodes

traversed during the computation of M on input x). Then,

πT = {π(x) | x ∈ ΩT }

is the set of time-T halting paths. Clearly, πT is finite for each T ∈ N. By letting

Vπ = {x ∈ R∞ | π(x) = π},

we obtain the set of all inputs that take the computation path π (called the path set of

π). We will now show that this set is basic semi-algebraic. Let ztj be a value that is

stored in the jth register of M on input x = (x1, . . . , xn) after t steps of computation.

Clearly, ztj can be written as a polynomial (or rational) function on (x1, . . . , xn), i.e.

ztj = f t
j (x1, . . . , xn). Furthermore, all coefficients of ztj are in the field Q(c1, . . . , ci) since

the only available coefficients for the polynomials associated with a computation node

of M are c1, . . . , ci. For some computation path π = (η0, . . . , ηk), let

Lπ = {j | ηj is a branch node and ηj+1 = β−(ηj)}

and

Rπ = {j | ηj is a branch node and ηj+1 = β+(ηj)}.

Now, if f t
j ∈ K[x1, . . . , xn] describes the value at the jth register after t steps of compu-

tation on input x ∈ Rn, we can write the path set of π as

Vπ =
⋃
n∈N
{x ∈ Rn | f t

1(x) < 0 for each t ∈ Lπ and f t
1(x) ≥ 0 for each t ∈ Rπ},

proving that for each n ∈ N, the set Vnπ := Vπ ∩ Rn is basic semi-algebraic over

Q(c1, . . . , ci). Thus, we can write the halting sets of M as a countable union of path

sets:

ΩT =
⋃
n∈N

⋃
π∈πT

Vnπ and ΩM =
⋃
t∈N

Ωt
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5.2 Restricted access to real constants

Since all unions are countable and Vnπ is basic semi-algebraic for each n, π, we have shown

that A = ΩM is a countable union of semi-algebraic sets.

The following result from transcendental number theory is a useful tool for finding sets

of algebraically independent numbers.

Theorem 5.2 (Lindemann-Weierstrass, 1985). If a1, . . . , an are algebraic numbers that

are linearly independent over Q, then exp(a1), . . . , exp(an) are algebraically independent

over Q.

Proof. See [NT20, Corollary 2.6.1].

The method to obtain algebraically independent numbers using Theorem 5.2 is based

on the observation that for two primes p ̸= q,
√
p and

√
q are linearly independent in

the vector space Q(
√
p,
√
q) over Q whose elements have the form

a+ b
√
p+ c

√
q + d

√
pq (a, b, c, d ∈ Q).

Assume b
√
p+ c

√
q = 0 for some b, c ̸= 0. Squaring this equation yields

b2p+ c2q + 2bc
√
pq = 0.

Now, since b2p and c2q are rational, we let z = b2p+c2q
2bc and obtain

√
pq = −z. Since

z ∈ Q, we have
√
pq ∈ Q, contradicting that

√
pq is irrational.

5.2 Restricted access to real constants

Theorem 5.3 [MZ06, Theorem 5]. Let c1, . . . , ci be algebraically independent over Q.

Then, the finite set A = {c1, . . . , ci} ⊆ R is decidable with i real machine constants, but

not semi-decidable with i− 1 real constants.

Theorem 5.2 yields an easy way to obtain any number of algebraically independent

values c1, . . . , cn over Q: Let p1, . . . , pn be primes with pi ̸= pj for i ̸= j. Then,
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5 Restrictions on machine constants

exp(
√
p1), . . . , exp(

√
pn) are algebraically independent over Q. This proves the existence

of a set A as in the theorem for each i ∈ N.

Hence, Theorem 5.3 proves that for each i ∈ N, there is a problem that can be decided

by a machine using i real constants, but not by a machine using i − 1 real constants.

In other words, machines over R become strictly stronger if additional constants are

allowed.

Proof. To see that A is decidable using i real constants, construct a machine that com-

pares its input to each of the machine constants c1, . . . , ci.

We will now prove the second part of the claim. First note that trdegQ(A) = i since

{c1, . . . , ci} is a transcendence basis of Q(A). Suppose that A is semi-decidable by a

machine with i − 1 real constants. By Lemma 5.1, A is a countable union of semi-

algebraic sets over some field extension Q(c̃1, . . . , c̃i−1) = K. Since A is a finite set, the

union is in fact finite. Let A = A1 ∪ · · · ∪Ak where Aj is semi-algebraic over K for each

j.

Because A is finite, the Aj have to be finite as well. Hence, each field extension K(Aj)/K

is algebraic by Lemma 2.9. Thus, K(A)/K is an algebraic field extension which implies

that trdegQ(A) ≤ i − 1 (this is an upper bound for the transcendence degree of K

since there exists a transcendence basis S of K with S ⊆ {c̃1, . . . , c̃i−1}). This, however,
contradicts the fact that trdegQ(A) = i and therefore, A cannot be semi-decidable by a

machine with i− 1 constants.

This result has interesting implications on Post’s problem as we can naturally define

“slices” of the real halting problem in the following way.

Problem: Hi

Input: A description ⟨w, c1, . . . , ci⟩ of a BSS machine M over R with

constants c1, . . . , ci ∈ R and w ∈ Q

Question: Does M halt on input 0?

This yields an infinite family of problems that are BSS-undecidable but not sufficient
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5.3 Application to algebraic circuits

for the real halting problem to be decidable if one of these problems is allowed as an

oracle [MZ06, Corollary 7]. Interestingly, this is not the only explicit solution to the real

version of Post’s problem. Another solution is the set Q which is BSS-undecidable but

not BSS-complete (i.e. the real halting problem cannot be reduced to Q) [MZ05].

5.3 Application to algebraic circuits

It is well-known that non-uniform boolean circuit families are able to solve Turing-

undecidable problems since the characteristic function of each problem A ⊆ N can be

encoded into the definition of the circuit family by using an unary encoding for its

inputs (c.f. [Vol99, Lemma 2.2]). In particular, let HU be the unary version of the

discrete halting problem which is defined as follows.

Problem: HU

Input: 1n, n ∈ N

Question: Does the Turing machine defined by n halt on input n?

Obviously, HU is Turing-undecidable. However, it can be solved by the non-uniform

circuit family C = (Cn)n∈N where Cn outputs the constant value χHU
(n).

Similar arguments do not work for algebraic circuit families as each problem that can be

encoded into the input length is a subset of N and therefore decidable by Corollary 3.3.

However, the preceding result gives us a tool to generalize the above observation, i.e.

show that there are non-uniform algebraic circuit families for BSS-undecidable problems.

Theorem 5.4. There exists a BSS-undecidable problem A ⊆ R that is decidable by a

non-uniform circuit family over R.

Proof. Let c1, c2, . . . be an infinite sequence of algebraically independent numbers. De-

fine Ai = {(c, . . . , c) ∈ Ri | c ∈ {c1, . . . , ci}} and A =
⋃

i∈NAi. Suppose there exists a

machine M that decides A and let k be the number of real constants of M . We can

now define a machine M ′ with k real constants that decides the set {c1, . . . , ck+1}: On
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y

−
x

sgn

sgn

×
×

−1

Figure 5.1: A circuit for x = y. The circuit outputs 1 if and only if both sign nodes

output 1 which is equivalent to x ≥ y ∧ y ≥ x.

input x, M ′ checks whether |x| = 1 and simulates M on input (x, . . . , x) ∈ Rk+1. This,

however, contradicts Theorem 5.3 and therefore, A cannot be decidable.

To see that A is decidable by a non-uniform circuit family, let C = (Cn)n∈N where Cn,

on input (x1, . . . , xn), checks whether x1 = · · · = xn using a layer of sub-circuits as in

Figure 5.3 and outputs 1 if x1 = ck for some 1 ≤ k ≤ n (this can be done using n

constant gates).

Clearly, Cn decides An and therefore, because A ∩ Rn = An, C decides A. This circuit

family is in fact a NC1
R family, thus proving A ∈ NC1

R.
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The inputs for BSS machines over R that were discussed before are uncomputable,

i.e. there is no way to represent these inputs using Turing machines. The aim of this

chapter is to investigate the power of BSS machines over R in a setting where we only

allow computable, i.e. discrete, inputs. More formally, we are interested in complexity

classes of the form

C ∩ Σ∗ := {A ∩ Σ∗ | A ∈ C}

where C is a complexity class for BSS machines over R and Σ is an alphabet. For

instance, in the case where C is the class of all decidable problems over R, we know from

Corollary 3.3 that C ∩ {0, 1}∗ is the class of all languages over {0, 1}∗ (since each such

language is decidable over R). Obviously, this contains Turing-undecidable languages

and thus, BSS machines cannot be simulated by Turing machines.

The aim of the following studies is to investigate the reason for the superior power of

BSS machines compared to Turing machines. Recall that the reason for the above result

is that a machine constant c can be used to encode the solution for any discrete problem.

We already studied the impact of real machine constants on the recursive power of BSS

machines in Chapter 5. However, apart from the existence of such machine constants,

the decision algorithm from Chapter 3 also requires the BSS machine to be able to

actually access the information stored in c (as in the proof of Lemma 3.2). We consider

the following restricted versions of BSS machines:

� Additive machines [Blu+98, Chapter 21]. Additive machines are defined as in Defi-

nition 2.17 except that now in computation nodes, only additions and subtractions

are allowed, i.e. gm = x ◦ y, ◦ ∈ {+,−} for each node m. Here, x, y are either
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6 Real computation on discrete inputs

coordinates of the state space or machine constants.

� Branching on equality. Instead of allowing our machines to make their decision in

a branch node based on the question “x ≥ 0?” for some x (branching on order),

we may only allow the question “x = 0?”.

Both multiplication and branching on order were used in the proof of Lemma 3.2. There-

fore, it is a natural question to ask whether machines over R keep their super-recursive

power even without the ability to use these operations.

Apart from these restrictions, there are also variants that assign a higher cost to itera-

tive multiplications and different variants of nondeterminism [Blu+98, Chapter 5, 20],

but these restrictions mostly affect the runtime rather than the recursive power of BSS

machines (although this is not generally true for arbitrary rings – for instance, prob-

lems over Z that are decidable in nondeterministic polynomial time are not necessarily

decidable over Z, cf. [Blu+98, Chapter 5, Remark 5]).

6.1 Simulations for additive machines

In 1994, Koiran proved that additive machines retain their super-recursive power on

discrete inputs (i.e. inputs from Σ∗ where Σ is an alphabet) if and only if they are

allowed to branch on order. More specifically, they proved that P<
add ∩ Σ∗ = P/poly

and P=
add ∩ Σ∗ = P. Here, P<

add (P=
add) denotes the class of decision problems that

are decidable in polynomial time by additive machines over R that branch on order

(equality).

Theorem 6.1 [Koi94, Theorem 1]. P=
add ∩ Σ∗ = P

In the following proof, bin(n) denotes the binary representation of the integer n.

Proof. First note that P ⊆ P=
add trivially holds because each base operation of Turing

machines can be simulated by an additive machine in constant time.
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6.1 Simulations for additive machines

We will now prove P=
add ⊆ P. Let A ∈ P=

add via the additive machine M with the machine

constants c1, . . . , ck. Let x be an input for M with |x| = n. We assume without loss of

generality that ck = 1. The key observation is that at any time, all registers of M hold

values that can be represented as
k∑

i=1

aici

where ai ∈ Z and |bin(ai)| ≤ p(n) for some polynomial p. The latter can be proven by in-

duction on the steps ofM (for instance, one can prove xti ≤ 2t·ĉ where ĉ = max{|c1|, . . . , |ck|}
and xti is the value that is stored in the ith register of M after t steps).

Let V be the vector space over Q spanned by c1, . . . , ck and let m be the dimension

of V . We can assume without loss of generality that (c1, . . . , cm) is a base of V . Let

(bij) ∈ Qk×m be a matrix such that

ci =
m∑
j=1

bijcj .

Then, we can write the value of any register x at a given time during the computation

as

x =

k∑
i=1

ai

m∑
j=1

bijcj

=

k∑
i=1

m∑
j=1

aibijcj

=

m∑
j=1

(

k∑
i=1

aibij)cj

and therefore, the test “x = 0?” can be performed by a Turing machine by checking if∑k
i=1 aibij = 0 for all 1 ≤ j ≤ m. Hence, M can be simulated by a Turing machine M ′

in polynomial time.

Obviously, the proof is also valid if we drop the restriction that M and M ′ run in

polynomial time. Therefore, additive machines that branch on equality checks, restricted

to discrete inputs, are just as powerful as Turing machines. We now move on to prove

that additive machines that branch on order are still strictly more powerful than Turing
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machines. For that, it suffices to show that P/poly ⊆ P<
add as P/poly already contains

undecidable problems such as the unary halting problem.

Theorem 6.2 [Koi94, Theorem 9]. P<
add ∩ Σ∗ = P/poly

Proof. To see that P/poly ⊆ P<
add, we can use the same argument as in Lemma 3.2. The

polynomial advice f(|x|) is encoded in a real machine constant a with

a = 0.f(1)#f(2)#f(3)# . . .

(in binary representation). The first digit a1 of f(1) can be accessed by checking a ≥ 1
2 .

To access the second digit a2, the same check is applied to 2a−a1. The multiplication 2a

is the same as a+a and therefore computable by an additive machine. By iterating this

process, the machine can access the advice for its input. This reduces the task to the

simulation of a deterministic polynomial time algorithm which is possible in polynomial

time due to Theorem 6.1.

For P<
add ⊆ P/poly, let M be a P<

add-machine. We will approximate the machine con-

stants c1, . . . , ck of M by rational values c1, . . . , ck such that the branching checks behave

exactly as in the computation of M .

Let B(x) be the set of all values that appear in a branch node during the computation

of M on input x and Bn =
⋃

x∈Σn B(x). Clearly, Bn is finite for each n ∈ N.

Let Ln = {b ∈ Bn | b < 0}. There exists some ε > 0 such that |b| ≥ ε for all b ∈ Ln.

Thus, for each x ∈ Bn, we have that x < 0 if and only if x′ < 0 for all x′ with |x−x′| < ε.

The same argument holds if x > 0. The case x = 0 can be eliminated using the technique

from Theorem 6.1.

Hence, we can approximate the ci without changing the computation path of M by

choosing c1, . . . , ck such that the error at any given step of the computation is at most ε

regardless of the input. This only requires |ci − ci| to be sufficiently small. We can use

the polynomial advice to enable the Turing machine to use these approximations (i.e.

f(n) = (c1, . . . , ck) where ci depends on n for i = 1, . . . , k).
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It remains to be shown that |f(n)| grows only polynomially with respect to n. To do

this, we reformulate the problem as a system of linear inequalities. Each b ∈ Bn can be

written as some linear combination

b = a1c1 + · · ·+ akck,

where aj ∈ Z for j = 1, . . . , k. Hence, for each b ∈ Bn, the approximations have to

satisfy an equation 
a1c1 + · · ·+ akck < 0, if b ∈ Ln

a1c1 + · · ·+ akck ≥ 0, otherwise.

Since M is a P<
add-machine, there is a polynomial p such that M halts after at most p(n)

steps for each input x with |x| = n, yielding |aj | ≤ 2p(n). We can deduce from Lemma

2.14 that there exists a solution c = (c1, . . . , ck) to this system with size(c) polynomial

in k · |bin(2p(n))| = k · p(n), proving that there exists an advice function f such that

|f(n)| grows only polynomially with respect to n.

This proof shows that multiplication as in the proof of Lemma 3.2 is not a necessary

prerequisite for BSS machines to decide Turing-undecidable problems. In fact, each

problem A ⊆ Σ∗ is decidable by an additive BSS machine that branches on order (using

the same argument as in the above proof, but without the restriction to polynomial

time).

The technique for proving P=
add = P can also be used to obtain a similar result for

parallel computation. Let NCi
add denote the class of problems that can be decided by a

family of additive NCi
R circuits. Additive circuits are defined like algebraic circuits, but

with the following adjustments:

� all arithmetic nodes are either associated with + or −

� on input x, sign nodes compute the function


1, x = 0

0, otherwise

Theorem 6.3. NCi
add ∩ Σ∗ ⊆ ACi
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Figure 6.1: An algebraic circuit (left) and a corresponding boolean circuit (right). The

node labeled x1 is the input node and the node labeled c is a constant node.

Since the circuit has one constant node, each linear combination for inter-

mediate results has the form a1c + a2. Thus, the addition node has two

sub-circuits (one circuit for each ai).

Proof. Let A ∈ NCi
add via the family of algebraic circuits C = (Cn)n∈N, i.e.

fC(x) = χA(x) for all x ∈ {0, 1}∗ where χA is the characteristic function of A. Moreover,

let c1, . . . , ck be the constants appearing in Cn, d(n) an upper bound for the depth of

Cn and s(n) an upper bound for the size of Cn.

The idea is that each intermediate result x appearing during the computation of Cn can

be represented by a linear combination

x = a1c1 + · · ·+ akck + ak+1

where ai ∈ Z (as in the proof of Theorem 6.1). During the computation of C, we

have |bin(ai)| ≤ d(n) for each ai. Therefore, we can use k + 1 blocks of d(n) nodes to

store x in the boolean circuit C ′
n (see Figure 6.1 for an example). In the following, let

N = (k+1)d(n). We construct an equivalent circuit C ′
n by modifying Cn in the following

way:

� Each input node g is replaced by a sequence vg1 , . . . , v
g
N of nodes where vg1 , . . . , v

g
N−1

are constant nodes holding the value 0 and vgN = g.
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6.1 Simulations for additive machines

� Each constant node g holding the constant cj is replaced by the nodes vg1 , . . . , v
g
N

where

vgi is


a constant 1, if i = j · d(n)

a constant 0, otherwise.

� Each arithmetic node g labeled ◦ ∈ {+,−} with the predecessors h1 and h2 is

replaced by k + 1 circuits Cg
i that compute

val

(
vh1

(i−1)d(n)+1, . . . , v
h1

i·d(n)

)
◦ val

(
vh2

(i−1)d(n)+1, . . . , v
h2

i·d(n)

)

where val(x) is defined by bin(x) 7→ x. Each Cg
i can be realized in constant depth

and polynomial size [Vol99, Section 1.1]. Let oi1, . . . , o
i
d(n) be the output nodes of

Cg
i . For each 1 ≤ j ≤ N , let y1 · d(n) + y2 be the unique representation of j where

1 ≤ y2 ≤ d(n). Then, we set vgj = oy1+1
y2 .

� Each sign node g with the predecessor h is replaced by the nodes vg1 , . . . , v
g
N where

vg1 , . . . , v
g
N−1 are constant nodes holding the value 0 and vgN is the output node of

a circuit that computes ¬(vh1 ∨ · · · ∨ vhN ).

� Let h be the predecessor of the output node in Cn. Then, v
h
N becomes the output

node of C ′
n.

On inputs x ∈ {0, 1}n, the new circuit C ′
n always computes the same output as Cn.

Each node in Cn is replaced by a sub-circuit with polynomially many nodes and constant

depth. Thus, we have proven A ∈ ACi.

This proof is, of course, valid for the non-uniform case. Moreover, it can easily be

verified that the above construction can be computed in polynomial time. Thus, the

resulting circuit family C ′ is P-uniform if and only if the algebraic circuit family C is

P=
add-uniform.
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6 Real computation on discrete inputs

6.2 Simulations for multiplicative machines

As we have seen in the previous section, additive BSS machines are not stronger than

Turing machines unless they are allowed to branch on order rather than on equality. This

leads to the hypothesis that the super-recursive power of unrestricted BSS machines is

entirely based on their ability to branch on order. Consequently, one might assume that

BSS machines with the ability to evaluate polynomials but without the ability to branch

on order can still be simulated by Turing machines. The following theorem shows that

this is indeed the case.

Theorem 6.4. Let M be a BSS machine over R that branches on equality and Σ = {0, 1}∗.
If M accepts the language A, then there exists a Turing machine M ′ such that M ′ accepts

the language A ∩ Σ∗.

We need a result from computer algebra to prepare the proof of Theorem 6.4. If R is

the polynomial ring K[x1, . . . , xm] for some field K and J ⊆ R is an ideal, the ideal

membership problem (IMP) is defined as follows.

Problem: IMP(R, J)

Input: An element a ∈ R

Question: Does a ∈ J hold?

Lemma 6.5. Let K be a field and J ⊆ K[x1, . . . , xm] =: R an ideal. Then, IMP(R, J)

is decidable.

Proof. See [GG13, Chapter 21] or [GP08, Chapter 1.8.1].

Theorem 6.6. Let K be a field, f ∈ K[x1, . . . , xm], a = (a1, . . . , am) ∈ Km and

J ⊆ K[x1, . . . , xm] an ideal. Then, the question “f(a) = 0?” is decidable.

Proof. Let eva be the evaluation homomorphism

eva : K[x1, . . . , xk]→ K, f(x1, . . . , xk) 7→ f(a1, . . . , ak).
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6.2 Simulations for multiplicative machines

Since eva is a homomorphism, ker eva is an ideal J ⊆ K[x1, . . . , xk]. Hence, f(c1, . . . , ck) = 0

if and only if f ∈ J . By Lemma 6.5, this is decidable.

We will use this result to simulate branch nodes in the following proof. The key observa-

tion is that we can use the same technique as in Theorem 4.1 to avoid calculating with

real numbers. Instead of storing the real values from the registers of the BSS machine,

we store a polynomial that needs to be evaluated in order to get the actual value in the

register.

Proof. (of Theorem 6.4) Let x = (x1, . . . , xn) and M be a BSS machine as in the claim

of the theorem. Moreover, let c1, . . . , ck be the machine constants of M . To obtain a

Turing machine M ′ with the desired properties, we use a similar construction as in the

proof of Theorem 4.1: For 1 ≤ i ≤ n, let fi ∈ Q[z1, . . . , zk] be the constant polynomials

fi(z1, . . . , zk) = xi. On input x, M ′ first stores the string

f0#f1# . . .#fn

on its tape where # is a separator symbol and f0(z1, . . . , zk) = n. Throughout this

proof, we identify polynomials with their representation over Σ. Note that M ′ does not

store the value of fi, but a representation of the polynomials. Let f be the polynomial

that corresponds to s1 in a state

(. . . , s0.s1, s2, . . . )

of M . To keep track of the shift operations of M , we can use a special symbol that

marks the beginning of f ’s representation. For instance, the first symbol of f1 will be

marked in the initial configuration of M ′. To simulate a step of M , M ′ will behave as

follows:

� To simulate a computation node, M ′ adjusts the polynomials on its tape as in the

proof of Theorem 4.1. This is possible because each polynomial over Q has a finite

representation.

� To simulate a shift node, M ′ moves the special symbol on its tape that marks the

first symbol of f1.
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6 Real computation on discrete inputs

� To simulate a branch node, M ′ checks whether g(c1, . . . , ck) = 0. Here, g de-

notes the polynomial that corresponds to the register of M with coordinate 1. By

Theorem 6.6, the check g(c1, . . . , ck) = 0 is computable.

� To simulate an output node, M checks whether g(c1, . . . , ck) = 0 for g as above. If

yes, M ′ rejects. Otherwise, M ′ accepts.

Clearly, M ′ accepts the same inputs as M .

Let C denote the class of all problems that are decidable by a BSS machine which

branches on equality. Theorem 6.4 shows that C ∩ Σ∗ contains only Turing-decidable

problems. Thus, we can conclude that BSS machines are not able to exploit their ability

to perform exact computations on real numbers to gain more recursive power than Turing

machines unless they are allowed to branch on order.

Again, we may take the runtime of the simulated BSS machine M into account and

investigate the simulation’s slow-down. Let P=
R denote the class of problems that are

decidable in polynomial time by a BSS machine that branches on equality. One can

show that P=
R ∩ {0, 1}∗ ⊆ BPP [Koi97, Theorem 9], but an efficient simulation of BSS

machines with branches on equality has not yet been found. With regard to the result

P=
add ∩ Σ∗ = P (Theorem 6.1), this presumably means that multiplication does have a

significant impact on the runtime of BSS machines.

This led to the study of a variant of BSS machines that assigns a higher cost to its base

operations depending on how complicated the representation of the operation’s result

by a polynomial f(x1, . . . , xn, c1, ck) with respect to the input x = (x1, . . . , xn) and the

machine constants c1, . . . , ck is. A natural measure is the length of the polynomial’s

binary representation which is otherwise the bottleneck in the simulation of BSS ma-

chines (as the polynomial can grow exponentially with respect to the runtime of M).

These machines are called weak BSS machines (see [Koi97, Section 3.1] for a precise

definition) and it has been proven that these machines can efficiently be simulated by

Turing machines [Koi97, Theorem 8].
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7 Conclusion

Since their introduction in 1989, several surprising, partly undesired properties of BSS

machines have been found, probably the most notable result being that the undecidable

halting problem is no longer undecidable if we establish BSS machines over R as our

model of computation.

In Chapter 2, we have introduced the BSS model of computation for arbitrary rings.

While this model is a useful way to capture decidability questions which are not ex-

pressible for Turing machines, we have seen that the respective results heavily depend

on minor details in the definition of BSS machines.

These details were the subject of Chapter 5 and 6 where we studied certain restrictions

on the instruction set as well as restrictions on the allowed machine constants. Building

on Koiran’s proof from 1994 who proved that additive BSS machines that branch on an

equality relation can be efficiently simulated by Turing machines while additive machines

that branch on an order relation cannot be simulated in a uniform way at all, we found

that BSS machines are able to decide Turing-undecidable problems if and only if they are

allowed to branch on an order relation rather than an equality relation. Our proof used

a construction from Michaux which we presented in the 4th chapter. This construction

was originally used by Michaux to prove the surprising result that space does not play an

important role for BSS machines over R as each BSS machine over R can be simulated

in linear space. In addition, we used Koiran’s proof to find an efficient way to simulate

additive algebraic circuits by boolean circuits.

The 5th chapter concerned itself with a restricted version of BSS machines where only a

limited number of irrational machine constants is allowed. This restriction was based on
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7 Conclusion

the observation that BSS machines can use irrational machine constants to encode the

solution of Turing-undecidable problems. Meer and Ziegler proved that BSS machines

gain strictly more recursive power for each additional irrational machine constant that

is allowed. We used this proof to show that there is a BSS-undecidable problem which

is decidable by a non-uniform algebraic circuit family, thus generalizing the respective

result from classical circuit complexity and justifying the notion of uniformity for alge-

braic circuit families. Ultimately, the consequence of the results in Chapter 5 and 6 is

that BSS machines over R can decide any problem over {0, 1}∗ if they are allowed to

� branch on an order relation (i.e. get an answer to the question “x ≥ 0?”) and

� use at least one irrational machine constant.

Otherwise, their recursive power does not exceed that of Turing machines.

In the 3rd chapter, we presented a way to encode BSS machines over R by a sequence

in R∞. Next, we constructed a universal BSS machine as proposed by Blum, Shub and

Smale, allowing us to formulate a generalization of the discrete halting problem to BSS

machines which is undecidable even by BSS machines using the same argument as in the

discrete case.

While BSS machines over R are, for now, a purely theoretical model and an idealization

of physical computers, it is possible to come up with reasonable restrictions that limit

their recursive power (even with respect to complexity) sufficiently that they can be

efficiently simulated by Turing machines. Further research in algebraic computation

with the help of tools from algebra and topology will certainly contribute to a better

understanding of classical complexity theory in the future.
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