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Abstract

Ernő Rubik’s Magic Cube is one of the best-selling puzzles in the world. Its structure is
remarkably simple and yet, the puzzle is astonishingly difficult to solve. Aside from the
challenge of physically solving the Rubik’s cube, it has also attracted interest from math-
ematicians. Solving the puzzle means finding a sequence of permutations such that their
composition moves each element of the Rubik’s cube to its original position. Based on a
mathematical model of Rubik’s cubes, this thesis discusses difficult computational prob-
lems and how they relate to Rubik’s cubes and to other computational decision and search
problems. A zero-knowledge protocol that is based on the intractability assumption of the
problem of solving Rubik’s cubes in a fixed number of turns will be discussed. We will
suggest improved parameters and a software implementation. Lastly, we develop practi-
cal attacks against a symmetric encryption scheme that is based on Rubik’s cubes, which
effectively break the scheme’s security almost entirely.
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Chapter 1

Introduction

Der Mensch spielt nur, wo er in voller Bedeutung des Wortes Mensch

ist, und er ist nur da ganz Mensch, wo er spielt.

— Schiller, Über die ästhetische Erziehung des Menschen

In 1974, Ernő Rubik, an Hungarian professor of architecture, invented a puzzle, which he
called hisMagic Cube. To him, it was an architectural challenge to design the cube in such
a way that its elements could move around all three axes, and the difficulty of physically
constructing such a cube was intriguing. Once he began marking the faces of the cube
with different colors, he himself was surprised about the difficulty of restoring the cube
to its original color pattern. Despite this realization, Rubik remained more interested in
designing and constructing the puzzle than in solving it [56].
Since its invention, the Rubik’s cube has been one of the best-selling toys in the world. Its
structure is remarkably simple and yet, the puzzle is astonishingly difficult to solve. The
fact that such a simple toy could allow a total of 43, 252, 003, 274, 489, 856, 000 possible
positionsmay even seem strange. Of course, Rubik and others were quick to design larger
cubes consisting of more movable elements, such as the 4x4x4 Rubik’s cube (“Rubik’s
Revenge” or “Master Cube”) and the 5x5x5 Rubik’s cube (“Professor’s Cube”), and the
number of possible positions grows exponentially with the size of the cube.
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Chapter 1 — Introduction

Over the last decades, the puzzle became an object of interest in different areas. Most im-
portantly, of course, the puzzle remains a challenge for humans. While various methods
are known for solving the cube, it is inherent to the human nature to strive to become bet-
ter. There are competitions, rankings, and national and international records for solving
a Rubik’s cube as quickly as possible, which is referred to as speedcubing. In most compe-
titions, contestants perform dozens of turns within mere seconds to solve the cube in as
little time as they can. Nevertheless, there are also competitions that challenge contestants
to solve the cube in as few turns as possible, or to solve it as quickly as possible with one
hand only, or even to solve the cube while blindfolded [72].
Aside from the challenges of physically solving the Rubik’s cube, it has also attracted
interest from mathematicians. While, from an architectural perspective, the geometry of
the three-dimensional cube and the movement of its elements might have been inspiring,
the cube turned out to have remarkable algebraic properties as well. Within the puzzle,
each move is a permutation of the positions of the colored facelets. Solving the puzzle
means finding a sequence of such permutations such that their composition moves each
facelet to its original position. The permutations that represent turns of the faces of the
Rubik’s cube generate a permutation group, and this group is a an exact model of all
possible positions and all possible moves within the puzzle [56, pp. 155-167].
Based on this understanding of the Rubik’s cube, many questions about the puzzle could
now be answered algebraically without the physical embodiment of the cube. However,
just like the physical Rubik’s cube, this group surprised with its enormous complexity.
One of the most interesting problems related to Rubik’s cubes was the search for God’s
number, that is, the maximum number of moves that an optimal algorithm would require
to solve an arbitrary position of the Rubik’s cube. Because it was believed that no human
would be able to find an optimal solution to arbitrary positions, such an algorithm is
commonly referred to as God’s algorithm. Mathematically, God’s number is the diameter of
the Rubik’s cube permutation group. Despite significant efforts, God’s number remained
unknown for decades, until, in 2010, vast computational resourceswere used to determine

2



Chapter 1 — Introduction

the permutation group’s diameter [54, 55]. Still, this computer-assisted proof did not
yield optimal solutions for all possible positions, but only proved a tight upper bound.
Finding an optimal solution efficiently remains an unsolved problem.
Of course, seemingly difficult problems attract interest from cryptographers, and the Ru-
bik’s cube is no exception. Based on the mathematical model of Rubik’s cubes that is
defined in Chapter 2, this thesis discusses such problems and how they relate to Rubik’s
cubes and to other computational decision and search problems in Chapter 3. In Chap-
ter 4, wewill discuss a zero-knowledge protocol that is based on the intractability assump-
tion of the problem of solving Rubik’s cubes in a fixed number of turns, and, in Chapter 5,
we will discuss and then break a recently proposed symmetric encryption scheme whose
security is supposedly based on the intractability assumption of the conjugacy problem
for the Rubik’s cube permutation group. Finally, in Chapter 6, we will briefly list other
proposals for cryptographic methods that are related to Rubik’s cubes.
In particular, aside from surveying existing work, this thesis contributes

• new and presumably more efficient parameter sets for the zero-knowledge protocol
in Chapter 4 (or, alternatively, parameter sets offering a higher degree of security at
the same level of efficiency),

• a reference implementation of the zero-knowledge protocol in Python,
• an optimized implementation of the zero-knowledge protocol in C that focuses on

the prevention of side-channel attacks, and
• the first cryptanalysis of a recently proposed symmetric encryption scheme in Chap-

ter 5, including practical attacks, ranging from attacks that disprove IND-CPA se-
curity to partial plaintext recovery, ciphertext forgery, and potentially even key re-
covery attacks, as well as an extension of the discovered weaknesses to recently pro-
posed commitment schemes.
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Chapter 2

Mathematical representation

I respect the cube. I cannot fathom it. Whichever way I turn, disorder

gives way to more disorder.
—György Marx, Rubik’s Cubic Compendium

Rubik’s cubes are a shining example of group theory and permutation groups. This chap-
ter defines the mathematical model that accurately represents the properties of Rubik’s
cubes of almost arbitrary sizes.

2.1 Singmaster notation

Any cube has six faces, twelve edges, and eight corners. A Rubik’s cube, however, divides
each face and each edge into smaller parts. The smaller cubes that it appears to consist of
are called cubies, and the visible faces of these smaller cubes are called facelets.

Cubies 6 · (n− 1)2 + 2
Corner cubies 8
Edge cubies 12 · (n− 2)
Center cubies 6 · (n− 2)2

Facelets per face n2

Facelets 6n2

Table 2.1: Basic structural properties of Rubik’s cubes of size n

4



Chapter 2 —Mathematical representation

U

L F R B

D

U

F R

Figure 2.1: Labels assigned to the faces of a Rubik’s cube

Each face of a Rubik’s cube has its own color. The positions of the colored faces on a
solved Rubik’s cube, relative to each other, cannot be changed. However, the positions of
the colored faces, relative to the observer, can change, and, in the more general case of
Rubik’s cubes whose faces do not have center facelets (e.g., the 4x4x4 cube), it can even
be impossible to determine the “correct” color of a face unambiguously.
Therefore, it is convenient to identify the faces of the Rubik’s cube based on their position
relative to the observer: front (F), back (B), left (L), right (R), up (U), and down (D).
Figure 2.1 shows the initial state of a Rubik’s cube of unspecified size. The assignment of
colors to the faces is arbitrary, but commonly used. [56, p. 28].
Figure 2.1 also serves to demonstrate the projection of the faces of the three-dimensional
cube to a two-dimensional plane that will be used throughout this thesis due to the con-
straints of two-dimensional media.

Remark 2.1. Some mathematicians prefer top (T) over up (U) [56, p. 26].

The color of each facelet is determined by its initial position on the cube.
The standard approach to describing a sequence of moves is the Singmaster notation [66].
Since amove is always the rotation of one side of the cube, it is sufficient to notewhich face
is being rotated, and by what angle, where the angle is a multiple of a clockwise quarter
turn. We use the same letters that we assigned to the faces of the cube to denote the
turns. For example, the sequenceFFRmeans thatF is rotated by a clockwise quarter turn
twice, followed by R being rotated by a clockwise turn once. Repeating the same move
multiple times can be abbreviated using exponents: F 2R. Similarly, negative exponents
mean counterclockwise turns, and since one counterclockwise turn is equivalent to three

5



Chapter 2 —Mathematical representation

clockwise turns, the sequences F−1 and F 3 are interchangeable in terms of the outcome.
Similarly, sequences of moves can be repeated as well, e.g., (FR)2 = FRFR [56, p. 27].

2.2 Permutation-based representation

In this section, wewill develop the representation of Rubik’s cubes as permutation groups.
Recall that permutations over a domainD are bijective functions σ : D → D. For simplic-
ity, wewill only use domains that consist of the first n natural numbers for some n. Conse-
quently, any permutation of n elements is a bijective function σ : { 1, . . . , n } → { 1, . . . , n }.
Sn denotes the symmetric group, which is the group whose underlying set is the set of all
permutations of n elements and whose group operation is function composition. Sub-
groups of symmetric groups are called permutation groups. In particular, if S ⊆ Sn is a set
of permutations from some symmetric group Sn, then ⟨S⟩ is the subgroup of Sn whose
generators are the elements of S, i.e., ⟨S⟩ ≤ Sn. The order |G| of a group G is the cardi-
nality of the underlying set, for example, |Sn| = n! for n ∈ N. The order of an element σ
of the group is the order of its cyclic subgroup ⟨σ⟩.

Remark 2.2. We use the conventional notation f ◦ g for function composition from right
to left, that is, (f ◦ g)(x) = f(g(x)). Because permutations are functions, the composi-
tion of permutations is usually applied from right to left. However, in literature related
to permutation groups, the group operation is commonly applied from left to right (refer
to modern standard works on permutation groups, such as Dixon-Mortimer [17, p. 3] or
Cameron [7, p. 2]), and this rule is also widely supported by mathematicians who have
had a major impact on our understanding of the Rubik’s cube, such as David Singmaster
[66, p. 5]. Following that convention, we use the notation σ1σ2 to denote the group oper-
ation σ1σ2 := σ2 ◦ σ1. We generally avoid the notation σ1 · σ2 (or σ ∗ σ2) in an attempt to
not further add to the confusion, albeit we use ∗ for the composition of permutations in
SageMath [68] code, where it also composes from left to right. Be aware that some related
work uses the same notation σ1σ2 to denote σ2 ◦ σ1, but additionally defines σ1 ∗ σ2 as a

6
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1 2 3

4 U 5

6 7 8

9 10 11 17 18 19 25 26 27 33 34 35

12 L 13 20 F 21 28 R 29 36 B 37

14 15 16 22 23 24 30 31 32 38 39 40

41 42 43

44 D 45

46 47 48

Figure 2.2: Numbers assigned to the facelets of a 3x3x3 Rubik’s cube

right group action that is equivalent to σ1◦σ2 and thusmeans the opposite of the notation
σ1 ∗ σ2 in SageMath [68].

The state of a standard1 Rubik’s cube of arbitrary size is defined in its entirety by the
position of each facelet on the surface of the cube. We assign a number to each facelet.
The standard numbering of the facelets of a 3x3x3 Rubik’s cube is shown in Figure 2.2.
Each possible move is a rotation of a face of the cube, which we represent as permutations
of the facelets (or, more accurately, as permutations of the positions of the facelets). The
standard generators for the 3x3x3 Rubik’s cube are the following permutations.

U := (1 3 8 6) (2 5 7 4) (9 33 25 17) (10 34 26 18) (11 35 27 19)

L := (9 11 16 14) (10 13 15 12) (1 17 41 40) (4 20 44 37) (6 22 46 35)

F := (17 19 24 22) (18 21 23 20) (6 25 43 16) (7 28 42 13) (8 30 41 11)

R := (25 27 32 30) (26 29 31 28) (8 33 48 24) (5 36 45 21) (3 38 43 19)

B := (33 35 40 38) (34 37 39 36) (3 9 46 32) (2 12 47 29) (1 14 48 27)

D := (41 43 48 46) (42 45 47 44) (14 22 30 38) (15 23 31 39) (16 24 32 40)

1There are variants of the Rubik’s cube that mark some or all facelets with symbols. The orientation of
those symbols is not reflected by the permutation-based model, therefore, we restrict ourselves to standard
Rubik’s cubes.
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We do not assign numbers to the center facelets. Because their position is not affected by
rotating any of the faces, even if we assigned numbers to these facelets, all moves would
map these numbers to themselves, and the order of the permutation group would remain
the same. Conversely, we could allow rotating the center slices around each axis, which
would change the positions of the center facelets, however, this would unnecessarily com-
plicate the representation and not create any interesting properties. Instead, we assume
that the center facelets are fixed in space.

Definition 2.3. TheRubik’s cube group (for the 3x3x3 Rubik’s cube) is the permutation group

R3 := ⟨{U,L, F,R,B,D }⟩ < S48.

With this definition, the Singmaster notation (see Section 2.1), which we introduced as a
mere way of writing sequences of turns, is equivalent to the mathematical notation. The
sequence F 2Rmeans that the front face is rotated by 180 deg before turning the right face
by 90 deg. Since the group operation is function composition, and because F and R are
permutations and thus functions, σ = F 2R means that σ(i) = R(F (F (i))), which is the
desired effect. This is a convenient consequence of the left-to-right notation that we use
for the group operation (see Remark 2.2).
The next chapters will also use larger Rubik’s cubes, especially the 5x5x5 Rubik’s cube,
which is often referred to as the Professor’s cube. Ernő Rubik himself referred to it as “the
giant cube” [56, p. 13]. Again, we assign numbers to all facelets except the centers of the
six faces (see Figure 2.3) and define moves via permutations. However, in addition to
allowing turning the faces of the cube, a 5x5x5 cube also allows turning the layer behind
each face, which leads to a total of twelve possible moves at each point. Mathematically,
the permutation group representing the 5x5x5 Rubik’s cube is a subset of S144 and has
twelve generating permutations. Due to the complexity of these permutations, they are
listed separately in Appendix A.

8
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1 2 3 4 5
6 7 8 9 10
11 12 U 13 14
15 16 17 18 19
20 21 22 23 24

25 26 27 28 29 49 50 51 52 53 73 74 75 76 77 97 98 99 100 101
30 31 32 33 34 54 55 56 57 58 78 79 80 81 82 102 103 104 105 106
35 36 L 37 38 59 60 F 61 62 83 84 R 85 86 107 108 B 109 110
39 40 41 42 43 63 64 65 66 67 87 88 89 90 91 111 112 113 114 115
44 45 46 47 48 68 69 70 71 72 92 93 94 95 96 116 117 118 119 120

121 122 123 124 125
126 127 128 129 130
131 132 D 133 134
135 136 137 138 139
140 141 142 143 144

Figure 2.3: Numbers assigned to the facelets of a 5x5x5 Rubik’s cube

Definition 2.4. The Rubik’s cube group for the 5x5x5 Rubik’s cube is the permutation group

R5 := ⟨{U0, U1, L0, L1, F0, F1, R0, R1, B0, B1, D0, D1 }⟩ < S144.

In general, we will denote with an index the distance of the layer from the respective
face, i.e., Qd is a clockwise quarter turn of the layer at depth d ≥ 0 from the face Q ∈

{U,L, F,R,B,D }, where d = 0 is used for the face itself, which is the outermost layer,
and d > 0 for the slices between the face and the center of the cube. The maximum depth
for a cube with edge length n is ⌊n/2⌋ − 1 and since there are six faces, the standard set of

generators for a Rubik’s cube of size n consists of 6 · ⌊n/2⌋ permutations, which represent
quarter turns of single layers. For the 2x2x2 and 3x3x3 Rubik’s cubes, we omit the index
since only one generator exists per face. The 4x4x4 and 5x5x5 Rubik’s cubes have two
movable layers for each face, which results in a total of twelve generators. The 6x6x6 and
7x7x7 Rubik’s cubes have three movable layers per face and thus a total of 18 generators.

9
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1 2

3 4

5 6 9 10 13 14 17 18

7 8 11 12 15 16 19 20

21 22

23 24

Figure 2.4: Numbers assigned to the facelets of a 2x2x2 Rubik’s cube

An example of a Rubik’s cube whose edges have even length is the 2x2x2 Rubik’s cube,
which is the smallest meaningful (cubic) construction (see Figure 2.4). The 3x3x3 and
the 2x2x2 Rubik’s cubes are the only Rubik’s cubes that can be represented using only six
generators each. Observe that the 2x2x2 Rubik’s cube has no center facelets, which means
that no facelets are fixed in space. Consequently, when solved, the cube might appear to
have been rotated in space. For example, after a single F turn, the 2x2x2 Rubik’s cube can
be solved either by undoing the first turn, i.e., through F−1, or by turning the back face to
match the rotation of the front face, i.e., through B−1. The first option restores the initial
state, the second appears to have rotated the cube in space by a clockwise quarter turn
around the axis going through the front and back face, which means that the upper face
is now white, not blue.

2.3 Turn metrics

Allmoves can be constructed from the generators of the permutation group. For example,
a half turn (180◦) of the front face can be expressed as F 2. However, there is no universal
agreement whether this sequence should be considered to be a single move or not. When
holding a Rubik’s cube, it certainly seems like a single move, on the other hand, it can
clearly be constructed from two smaller moves.

10
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Similarly, a counterclockwise turn of any face requires three moves in the previously de-
fined mathematical model since F−1 is not a generator of the permutation group, and the
shortest factorization of F−1 using generating permutations is F 3. However, intuitively, a
counterclockwise turn surely is a single move.
More ambiguities arise for larger Rubik’s cubes, which havemore than one rotatable layer
per face. For example, turning both F layers of a 5x5x5 Rubik’s cube can bewritten asF0F1

(or F1F0), however, the physical constructions of such cubes generally allow turning both
layers in a singlemove. In fact, rotating only the inner layer is often not considered a single
move in reality since it is simpler to first rotate both the outer and inner layer (F0F1)
before undoing the turn of the outer layer (F−1

0 ). In the previously defined standard set
of generators, this simple sequence consists of five clockwise quarter turns while being
equivalent to the single clockwise quarter turn sequence F1.
To solve these ambiguities, turn metrics can be defined.

Definition 2.5. A turn metric for a Rubik’s cube of size n is a set T ⊂ Rn with Rn = ⟨T ⟩

and such that each element of T is the composition of commuting generators from the
standard set of generators for Rn.

Example. The set {UR,LR,FR,R,BR,DR } generatesR3 but not all of its elements are
compositions of commuting permutations from the standard set of generators forR3. In-
tuitively, the moves UR, FR, BR, and DR cannot be executed as a single turn since the
respective layers cannot be turned simultaneously.

For the standard 3x3x3 Rubik’s cube, the most common metrics are the half turn metric
and the quarter turn metric.

Definition 2.6 (HTM). The half turn metric is the turn metric

{
fx | f ∈ {U,L, F,R,B,D }, x ∈ {−1, 1, 2 }

}
.

11
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Definition 2.7 (QTM). The quarter turn metric is the turn metric

{
fx | f ∈ {U,L, F,R,B,D }, x ∈ {−1, 1 }

}
.

Just like the permutation-based model that was defined in Section 2.2, neither the HTM
nor the QTM allows turning the center slices of the cube. However, this restriction is lifted
by the slice turn metric and quarter slice turn metric. In the permutation-based model,
the center slices are assumed to be fixed, therefore, turning them is equivalent to turning
the two adjoining layers in opposite directions.

Definition 2.8 (STM). The slice turn metric is the turn metric

{
fx | f ∈ {U,L, F,R,B,D,D−1U,L−1R,F−1B }, x ∈ {−1, 1, 2 }

}
.

The half turn metric (HTM), the quarter turn metric (QTM), and the slice turn metric
(STM) were described, for example, by Gerzson Kéri in 1987 [56, p. 97].

Definition 2.9 (QSTM). The quarter slice turn metric is the turn metric

{
fx | f ∈ {U,L, F,R,B,D,D−1U,L−1R,F−1B }, x ∈ {−1, 1 }

}
.

For Rubik’s cubes of any size, the outer block turn metric (OBTM) is commonly used.
This metric is used, for example, by the World Cube Association at competitions [73].

Definition 2.10 (OBTM). Let n be the size of the Rubik’s cube. The outer block BQ,d for
a face Q ∈ {U,L, F,R,B,D } and a depth 0 ≤ d < ⌊n2 ⌋ is the rotation Q0Q1Q2 . . . Qd, that
is, the simultaneous clockwise quarter turn of the d+ 1 outermost layers, beginning with
the face Q. The outer block turn metric is the turn metric

{
BxQ,d

∣∣∣ Q ∈ {U,L, F,R,B,D }, d ∈
{
0, 1, . . . ,

⌊n
2

⌋
− 1

}
, x ∈ {−1, 1, 2 }

}
.

For n = 3, OBTM is equivalent to the half turn metric (see Definition 2.6).

12
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To simplify operations within the mathematical model, we use the following turn metric
that is a natural consequence of the definition of the Rubik’s cube group for cubes of any
size. It requires 6 · ⌊n/2⌋ generators only, compared to 18 · ⌊n/2⌋ generators when using
OBTM. Additionally, for n > 3, at least half of the OBTM generators permute multiple
layers simultaneously, which means that those generators are more complex than single-
layer permutations.

Definition 2.11 (CQLTM). The clockwise quarter layer turn metric is the standard set of
generators {

U0, . . . , U⌊n2 ⌋−1, L0, . . . , L⌊n2 ⌋−1, F0, . . . , F⌊n2 ⌋−1,

R0, . . . , R⌊n2 ⌋−1, B0, . . . , B⌊n2 ⌋−1, D0, . . . , D⌊n2 ⌋−1

}
.

Remark 2.12. We use the term layer instead of slice in Definition 2.11 to avoid confusion
with the slice turn metric (Definition 2.8) and quarter slice turn metric (Definition 2.9).
While the standard set of generators allows turning faces and slices, it does not allow
turning the center slices (which only exist if n is odd).

2.4 Complexity of the Rubik’s cube

The model that was developed in Section 2.2 accurately represents Rubik’s cubes. There-
fore, it can be used to determine certain complexity measures.
Since the order of a permutation group is the number of permutations within the group
and because the state of a Rubik’s cube is determined by the permutation of its facelets,
the order of the Rubik’s cube group is the number of possible states (or positions).
The order2 of the 3x3x3 Rubik’s cube group, |R3|, is 4.3×1019 (43 quintillion), or 1.2×265.
Each of these possibilities is unique and visually distinguishable from every other possible
state. In other words, the number of possible positions is large enough to give a unique
instance of the puzzle to each living person on more than five billion Earths, and none of
them would have the same solution.

2To determine the orders of large permutation groups, the mathematical software system SageMath [68]
can be used.

13
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Before considering the orders of groups representing Rubik’s cubes of other sizes, we will
briefly discuss the perhaps most significant question surrounding the Rubik’s cube.

Definition 2.13 (God’s number). The smallest number of turns that is sufficient to solve
any of the possible states of a Rubik’s cube is called God’s number.

Of course, God’s number depends on the turn metric that is used. We can develop a
simple lower bound as follows.

Theorem 2.14. Given a turn metric S and a state σ, there are states that cannot be reached from

σ in less than
⌈
log|S|(|⟨S⟩|)− 1

⌉
moves.

Proof. Let m ≥ 0. The number of different sequences of m moves from S is |Sm| = |S|m,
therefore, such sequences cannot reach more than |S|m different states.3 Sequences of
length up tom can, therefore, only reach a maximum of sm =

m∑
i=0
|S|i different states. We

have
sm =

m∑
i=0

|S|i = |S|
m+1 − 1

|S| − 1
≤ |S|m+1.

The total number of states that are reachable from σ is |⟨S⟩|. If sm < |⟨S⟩|, then there must
exist at least one state in ⟨S⟩ that cannot be reached in mmoves. It follows that

m < log|S|(|⟨S⟩|)− 1

=⇒ m+ 1 < log|S|(|⟨S⟩|)

=⇒ |S|m+1 < |⟨S⟩|

=⇒ sm < |⟨S⟩|.

Therefore, if m <
⌈
log|S|(|⟨S⟩|)− 1

⌉
, the number of states that can be reached in m turns

is smaller than the number of all states.

Upon closer inspection, God’s number for the 3x3x3 Rubik’s cube is the diameter of the
group R3. This leads to the following conclusion.

3In fact, form ≥ 2, the number of different sequences ofmoves ismuch larger than the number of different
resulting states (due to, e.g., F 4 = R4). Tighter lower bounds can be achieved here and in Corollary 2.15 by
counting states instead of sequences of moves.
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Turn metric HTM QTM STM QSTM CQLTM

Number of generators 18 12 27 18 6

Lower bound for God’s number 15 18 13 15 25

Table 2.2: Trivial lower bounds for God’s number for the 3x3x3 Rubik’s cube

Corollary 2.15. Given a turnmetricS for the 3x3x3Rubik’s cube, a lower bound for God’s number

is
⌈
log|S|(|R3|)− 1

⌉
.

Proof. The identity permutation is the only permutation in ⟨S⟩ = R3 that represents the
3x3x3 Rubik’s cube in a solved state. Let σ = idR3 be the identity permutation and let
m <

⌈
log|S|(|⟨S⟩|)− 1

⌉
. Then, according to Theorem 2.14, there exists at least one state

in ⟨S⟩ that cannot be reached from the solved state σ in up tommoves. Therefore, God’s
number must be greater thanm.

Table 2.2 shows lower bounds for God’s number for the previously defined turn metrics
based on the order of the group and Corollary 2.15. It does not list OBTM because OBTM
is the same as HTM for 3x3x3 Rubik’s cubes.
By 1980, Singmaster had proved a lower bound of 18 for God’s number for the 3x3x3
Rubik’s cube in the half turn metric. He added that “one is tempted to conjecture that
every position can be achieved in at most 20 moves” [66, p. 34], even though the best
known upper bound was 52 [66, p. 39]. Despite significant efforts, it took another 30
years for the conjecture to be proven.
In fact, for the 3x3x3 Rubik’s cube, God’s number in the half turnmetric and in the quarter
turn metric is known. In the half turn metric, God’s number is 20, meaning that every
position of the cube can indeed be solved in nomore than 20moves [54, 55]. In the quarter
turn metric, God’s number is 26 [53]. These values were obtained through computer-
assisted proofs using many years of CPU time. For other turn metrics of the standard
3x3x3 Rubik’s cube, and for larger cubes, God’s number is still unknown.
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Of course, the group order increases exponentially with the size of the Rubik’s cube, and,
unsurprisingly, the order of the 5x5x5 Rubik’s cube group, |R5|, is much larger than that
of the smaller cube, and is 2.6 × 1090 (2.6 novemvigintillion), or 1.3 × 2300. It is difficult
to put this number into perspective since it is much larger than the estimated number of
atoms in the observable universe.
Estimating God’s number for the 5x5x5 cube is more difficult than for the 3x3x3 cube,
and not only due to its greater complexity. Similar to the smaller cube, after m clockwise
quarter turns of any of the twelve layers, the cube is in one of up to 12m possible states.
The order of the group is 6.9× 1283, therefore, there must exist states of the cube that are
reachable, but in no less than 83 clockwise quarter turns. Again, there must exist states
for which the same minimum number of clockwise quarter turns is required to return to
the initial state. In other words, 83 is a lower bound for the diameter of R5 when using
the standard set of generators.
However, unlike the smaller 3x3x3 Rubik’s cube, the 5x5x5 Rubik’s cube does not have a
unique solved state. While the smaller Rubik’s cube is only solved when all facelets are in
their original position, meaning that the permutation representing the state of the cube is
the identity permutation, there are many states of the 5x5x5 Rubik’s cube that represent
the cube in a solved state.4 In other words, some states are visually indistinguishable be-
cause the respective permutations only differ in the positions of facelets that have the same
color. This is not an inaccuracy in the model since the facelet positions are truly different
in reality, but the difference is usually not observed or considered. Thus, God’s number
for cubes other than the 3x3x3 Rubik’s cube is bounded from above by the diameter of the
group, but not necessarily the same number.

4Conversely, not every permutation from S144 that appears to represent a solved state is reachable from
the initial state of the Rubik’s cube, i.e., is not in R5.
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1 2 3 4 5
6 7 8 9 10
11 12 U 13 14
15 16 17 18 19
20 21 22 23 24

25 26 27 28 29 49 50 51 52 53 73 74 75 76 77 97 98 99 100 101
30 31 32 33 34 54 55 56 57 58 78 79 80 81 82 102 114 113 112 106
35 36 L 37 38 59 60 F 61 62 83 84 R 85 86 107 109 B 108 110
39 40 41 42 43 63 64 65 66 67 87 88 89 90 91 111 105 104 103 115
44 45 46 47 48 68 69 70 71 72 92 93 94 95 96 116 117 118 119 120

121 122 123 124 125
126 138 137 136 130
131 133 D 132 134
135 129 128 127 139
140 141 142 143 144

Figure 2.5: Rubik’s cube in a valid, solved state that is different from the initial state

Example. Consider this sequence:

L0R0U0U0R0L
−1
0 B2

0U
2
0R

2
0F

2
0L

2
0D

2
0L

2
0F

2
0

= (103 114) (104 113) (105 112) (108 109)

(127 138) (128 137) (129 136) (132 133)

Since each cycle only contains indices of facelets of the same color, the result represents a
solved state (see Figure 2.5) despite being different from the initial state.

Calculation shows that each visually distinguishable state of the 5x5x5 Rubik’s cube can be
represented by (4!)12/4 = 9, 130, 086, 859, 014, 144 different permutations fromR5. There-
fore, there are only 4·|R3|

(4!)12
≈ 2.83×1074 (283 tresvigintillion) visually distinguishable states.

Consequently, there are 9.13× 1015 (9.13 quadrillion) solved states, i.e., states that are vi-
sually indistinguishable from the initial state.
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Lastly, |R2|, the order of the 2x2x2 Rubik’s cube, is only 88, 179, 840. As mentioned earlier,
none of its facelets are fixed in space since the length of its edges is even, which allows
rotating the entire cube. Therefore, there are 6 · 4 = 24 different orientations of the entire
cube in space, and thus only 88, 179, 840/24 = 3, 674, 160 truly different color patterns.
On the other hand, there are 24 solved states. Because R2 is tiny compared to the groups
representing the 3x3x3 and the 5x5x5 Rubik’s cubes, God’s number is relatively easy to
determine for the 2x2x2 Rubik’s cube, and is 11 in the half turnmetric and 14 in the quarter
turn metric. While even this puzzle can be challenging to solve for humans, it is of little
interest to us due to its low complexity. It is included here only as an example of a cube
whose edges have even length.
Larger cubes of even size (e.g., 6x6x6) combine the lack of fixed-in-space facelets (as dis-
cussed for the 2x2x2 Rubik’s cube) with the non-injective mapping of color patterns to
permutations (as discussed for the 5x5x5 Rubik’s cube).
Despite such symmetries and visually indistinguishable permutations, the number of vis-
ibly different positions still grows exponentially. In particular, Demaine et al. proved that
God’s number grows as Θ (n2/ log n

), where n is the size of the Rubik’s cube [14].

2.5 Variegation (visual disorder)

György Marx defines and uses variegation as a metric for the degree of disorder of states
of the 3x3x3 Rubik’s cube [56, p. 179].

Definition 2.16 (Variegation). LetF = {U,L, F,R,B,D } be the set of faces of the Rubik’s
cube and let f : { 1, . . . , 48 } → F be the surjective function that maps each facelet to the
face that it was initially on. Let σ ∈ R3 be a state of the Rubik’s cube. The variegation of a
face Q ∈ F in the state σ is

vargQ(σ) := 92 −
∑
P∈F

(
origQ,P (σ)

)2
,

where origQ,P : R3 → { 1, . . . , 9 } is the number of facelets on the face Q that were origi-
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1 34 3

10 U 26

6 18 8

9 4 11 17 7 19 25 5 27 33 2 35

37 L 20 13 F 28 21 R 36 29 B 12

14 44 16 22 42 24 30 45 32 38 47 40

41 23 43

15 D 31

46 39 48

Figure 2.6: The Superflip position: all cubies are in the right position, but all edges are
flipped

nally on face P (including the center of the face if P = Q), i.e.,

origQ,P (σ) := |{i ∈ { 1, . . . , 48 } | f(i) = P, f(σ(i)) = Q}|+


1 if P = Q,

0 otherwise.

Definition 2.17 (Average variegation). Let F and σ be defined as in Definition 2.16. The
average variegation of σ is

varg(σ) :=
1

|F|
·
∑
Q∈F

vargQ(σ).

Intuitively, a smaller average variegation corresponds to less disorder in the cube’s state.
When the cube is solved, the average variegation is zero. The variegation also allows some
insight into why Rubik’s cubes are difficult to solve. So far, we have seen that there is an
enormous number of different states, and that some states require 20 moves to solve in
the half turn metric, but, based on these properties alone, the correct choice of each move
could still be obvious, in which case it would not be difficult to solve the cube after all.
One particularly difficult instance of the standard Rubik’s cube is the so called Superflip,
which is shown in Figure 2.6. It has been proven that it is impossible to solve this state in
less than 20 moves in the half turn metric, therefore, no position exists that requires more
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Figure 2.7: Average variegation during an optimal HTM solution of the Superflip

moves [55]. In the quarter turn metric, however, this state can be solved in 24 quarter
turns, which is less than God’s number for the quarter turn metric, and, therefore, more
difficult states exist in the quarter turn metric [53].
An optimal solution for the Superflip in the half turn metric [28] is

FBU2RF 2R2B2U−1DFU2R−1L−1UB2DR2UB2U.

Figure 2.7 shows how the average variegation changes when applying the solutionmoves,
one by one. The average variegation of the Superflip position itself is only 52.0. However,
the first moves of the optimal solution increase the disorder further. Only after 13 moves
is the average variegation lower than it initially was. If one attempted to reduce the degree
of disorder from the beginning, it would, with high probability, lead to a less than optimal
solution. For example, it is rarely helpful to solve single faces of the cube even though this
often reduces the degree of disorder. As Figure 2.7 shows, the visual disorder does not
necessarily correlate with the number of required moves to solve the cube.
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2.6 Suggested literature

David Singmaster’s Notes on Rubik’s Magic Cube [66] are an excellent introduction to the
mathematical model of the Rubik’s cube and go far beyondwhat has been presented here.
Of particular interest might be the subgroups of the cube group that Singmaster discusses
at length, as well as early results concerning upper and lower bounds for God’s number.
Amore recent introductory book on the group theory governing the Rubik’s cube is David
Joyner’sAdventures in Group Theory: Rubik’s Cube, Merlin’s Machine, and Other Mathematical

Toys [28]. Readers who are particularly interested in permutation groups are, of course,
referred to the standard works Cameron [7] and Dixon-Mortimer [17].
A far less mathematical but perhaps equally interesting resource is Rubik’s Cubic Com-

pendium [56] by Ernő Rubik, Tamás Varga, Gerzson Kéri, György Marx, and Tamás Vek-
erdy, which covers a wide variety of topics regarding the Rubik’s cube.
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Difficult computational problems

The Basic Mathematical Problem is to restore the cube from any

random pattern back to the original pattern in which each face is of a

single colour. Masochists with a mathematical background may wish to

start solving this problem at this point.
—David Singmaster, Notes on Rubik’s Magic Cube

Any cryptographic algorithm first requires the definition of a problem that is infeasible
to solve for an attacker. The security of the cryptographic scheme is then based on this
infeasibility. Therefore, this chapter briefly discusses difficult computational problems
related to Rubik’s cubes.

3.1 The conjugacy problem

One of the most important decision problems in group theory is based on the conjugacy
group action.

Definition 3.1 (Conjugacy group action). Let G be a group. The conjugation on G is the
group action xy := y−1xy for x, y ∈ G.

Wewill also use the notation xY for x ∈ G and Y ⊆ G to denote the set xY := {xy | y ∈ Y }.
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Based on the definition of the conjugacy group action, we define the symmetric conjugacy
relation for elements of groups.

Definition 3.2 (Conjugacy relation). Let G be a group and x, y ∈ G. We say that x and y

are conjugate if and only if there is a z ∈ G such that xz = y.

The conjugacy decision problem was first defined in 1911, more than 60 years before the
invention of the Rubik’s cube [12].

Definition 3.3 (Conjugacy decision problem). Given a group G and two elements x, y ∈
G, determine whether x and y are conjugate.

The conjugacy decision problem is known to be undecidable for many infinite groups
[42, 43], but ifG is finite, then the problem is, of course, decidable. In fact, for many finite
and infinite groups, the problem is trivial.

Example. Let A be an abelian group and x, z ∈ A. Because A is abelian, the group oper-
ation is commutative, thus xz = z−1zx = x. Therefore, x is conjugate only to itself.

However, for non-abelian permutation groups, no polynomial-time decision algorithms
are known for the conjugacy decision problem.

Example. The smallest non-abelian symmetric group isS3. Determine the conjugacy class
of σ = (1 2 3), that is, {σy | y ∈ S3}.

σ(1) (2) (3) = (1 2 3) σ(1 2) (3) = (1 3 2) σ(1 3) (2) = (1 3 2)

σ(1) (2 3) = (1 3 2) σ(1 2 3) = (1 2 3) σ(1 3 2) = (1 2 3)

Therefore, the conjugacy class of σ is { (1 2 3), (1 3 2) } ⊂ S3.

Interestingly, the well-known graph isomorphism problem is reducible to the conjugacy
decision problem for permutation groups in polynomial time [59]. Both problems are in
NP, but neither has known polynomial-time decision algorithms, therefore, it is unknown
if they are in P.
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If P = NP, then both the conjugacy decision problem for permutation groups and the
graph isomorphism problem are in P. Even if P ̸= NP, both problems might still be
in P despite no such polynomial-time algorithms being known [59]. However, if these
problems are not in P, it also seems unlikely that they could be NP-complete due to the
consequences for the polynomial hierarchy, which would collapse if graph isomorphism
wasNP-complete [58, 59]. This result leads to a third complexity class that these problems
could be in.

Definition 3.4 (NP-intermediate). NPI is the subset of NP \P that only contains problem
that are not NP-complete.

If P = NP, then, of course, NPI = ∅. In 1975, Richard E. Ladner proved that the inverse is
also true [36]:

Theorem 3.5 (Ladner’s theorem). If P ̸= NP, then NPI ̸= ∅.

Proof. See [36].

If P ̸= NP, the conjugacy decision problem for permutation groups and the graph iso-
morphism problem could be in NPI. Another candidate for NPI is the integer factoriza-
tion problem, which the commonly used Rivest–Shamir–Adleman public-key cryptosys-
tem (RSA) is based on [52]. It was later shown that the integer factorization problem
is in BQP [62], which means that quantum computers can perform integer factorization
in polynomial time and with small error probability, rendering the security provided by
RSA insufficient against quantum computing attacks. However, it is unknown if other
NPI candidates, including the graph isomorphism problem and the conjugacy decision
problem for permutation groups, are in BQP as well.
Regardless of whether the conjugacy decision problem for permutation groups is in P, in
NPI, or even NP-complete, it might be in P for certain classes of permutation groups [59].
In particular, it might be possible to solve the conjugacy decision problem for the class
of permutation groups representing Rubik’s cubes. However, again, no such polynomial-
time algorithms are known.
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Recall that an element of a Rubik’s cube group can be seen either as a state of the cube
or as a change of the state of the cube (i.e., a sequence of turns). Therefore, in terms of a
Rubik’s cube (of arbitrary size n), the conjugacy decision problem can be interpreted as
follows: given a Rubik’s cube state y ∈ Rn and a sequence of turns x ∈ Rn, decide if there
is a sequence of turns z ∈ Rn, such that, beginning with the solved state of the Rubik’s
cube, applying z−1 followed by x followed by z results in y.
In the context of cryptography, the corresponding search problem is often more useful
than the decision problem itself.

Definition 3.6 (Conjugacy search problem). Given a groupG and two elements x, y ∈ G,
find z ∈ G, such that xz = y.

A variety of cryptosystems have been proposed based on the conjugacy problem over
different groups, such as the Anshel-Anshel-Goldfeld key exchange scheme [1] (see Sec-
tion 6.2). This problem will also play a central role in Chapter 5.

3.2 Solving the cube in a fixed number of turns

The process of restoring a Rubik’s cube to its solved state through a sequence of allowed
turns is the primary aspect of the puzzle. As such, it has been thoroughly researched, and
a number of different methods and algorithms exist for solving the Rubik’s cube. Despite
the complexity of the puzzle, there are straightforward methods that reliably solve the
Rubik’s cube. Such algorithms usually consist of different phases that gradually restore
the cube to a solved state [56, p. 98].
When solving a Rubik’s cube by hand, thesemethods are important due to the complexity
of the puzzle, and the time it takes a person to solve the cube dependsmore on the chosen
method and on the speed of each physical movement than on the number of turns. For
example, the current world record for a single solve of the 3x3x3 Rubik’s cube is 3.47

seconds, during which Yusheng Du performed 27 turns (in the half turn metric) [72].
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For computers, however, the time to physically solve a Rubik’s cube is not necessarily
meaningful, and finding a sequence of moves that solves the Rubik’s cube is not particu-
larly challenging.

Remark 3.7. For the definitions of the following computational problems, we assume that
the Rubik’s cube is only solved when all facelets are in their original positions, i.e., we
assume that only the identity permutation represents a solved state. As described in Sec-
tion 2.4, in the traditional interpretation of the puzzle, this is only true for the standard
3x3x3 Rubik’s cube. Of course, the following definitions can be adapted to better rep-
resent the traditional interpretation, however, there is little value in doing so as part of
this thesis. Allowing only the identity permutation as the single solved state is logical
in the mathematical model and simplifies problem definitions and connections to known
computational problems. Conversely, one can write numbers onto the facelets of any Ru-
bik’s cube and attempt to not only solve it but also to restore all facelets to their original
positions, thus obtaining the problem as described here.

With this in mind, formally, solving the puzzle is the following search problem.

Definition 3.8 (Solving a Rubik’s cube of size n). Given σ ∈ Rn and a turn metric T =

{ t1, . . . , tm }, find r ∈ N0 and a sequence i1, . . . , ir, such that σti1ti2 . . . tir = idRn .

For any state σ ∈ Rn, an infinite number of solutions exist. Even when σ = idRn , any
sequence that first scrambles and then unscrambles the Rubik’s cube is a solution.
Upon closer inspection, the aforementioned search problem is remarkably similar to a
better known computational problem that was listed along with the conjugacy decision
problem (see Definition 3.3) by Dehn in 1911 [12].

Definition 3.9 (Generalized word problem for groups).
Let G be a group and let g, g1, . . . , gm ∈ G. Let H = ⟨g1, . . . , gm⟩. Decide if g ∈ H by
finding i1, . . . , ir such that g = gi1gi2 . . . gir if such a sequence exists.

Of course, the generalized word problem is decidable for finite groups. However, like the
conjugacy decision problem (see Definition 3.3), it is undecidable in general [42, 43].
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A common abstraction of the generalized word problem for permutation groups can be
achieved by constructing a Cayley graph for the group [8]. The problem is then equiva-
lent to finding a path from the identity permutation to the given permutation within the
constructed graph.

Theorem 3.10. The problem of solving a Rubik’s cube of size n is equivalent to the generalized

word problem for groups with G = H = Rn.

Proof. Let T = { t1, . . . , tm } be defined as in Definition 3.8. Let gi := t−1
i for 1 ≤ i ≤ m. We

have gi = t3i and ti = g3i and, therefore, Rn = ⟨t1, . . . , tm⟩ = ⟨t−1
1 , . . . , t−1

m ⟩ = ⟨g1, . . . , gm⟩.
A solution to the generalized word problem is of the form g = gi1gi2 . . . gir , which is
equivalent to gg−1

ir
. . . g−1

i2
g−1
i1

= idRn , which is equivalent to gtir . . . ti2ti1 = idRn , which
means that ir, . . . , i2, i1 is a solution for the Rubik’s cube.

Remark 3.11. The above theorem ignores the decision aspect of the generalizedword prob-
lem for groups, i.e., any element of H is an element of G because G = H . A closer ap-
proximation might be the generalized word problem with G = Sdom(Rn) and H = Rn.
Semantically, this problem arises when given a Rubik’s cube whose non-center facelets
may have been reordered arbitrarily (e.g., by peeling off the stickers before gluing them
back on). A solution exists if and only if the same pattern could have been achieved
through a sequence of allowed turns. However, the decision problem is easily solved by
attempting to solve the search problem using one of the aforementioned methods.

The problem becomes significantly more difficult when the number of turns in the so-
lution sequence is limited by some non-trivial upper bound. The modified form of the
generalized word problem for groups (see Definition 3.9) that additionally restricts the
length r of the sequence is often referred to as the factorization problem for groups [49],
which Lubotzky classified as a “noncommutative analog of the discrete logarithm prob-
lem” [41, p. 102]. Rephrasing the problem in terms of the Rubik’s cube, we arrive at the
following definition.
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Definition 3.12 (Solving a Rubik’s cube of size nwith a limited number of turns). Given
σ ∈ Rn, a turn metric T = { t1, . . . , tm }, and some ℓ > 0, find a sequence i1, . . . , ir for
some 0 ≤ r ≤ ℓ, such that σti1ti2 . . . tir = idRn .

Unlike the problem of solving a Rubik’s cube in any number of turns (see Definition 3.8),
this problem might not have a solution.

Example. The state F 2 can be solved in no more than one turn in HTM, STM, and OBTM,
but not in QTM, QSTM, and CQLTM.

Definition 3.13 (Solving a Rubik’s cube of size n with a fixed number of turns). Given
σ ∈ Rn, a turn metric T = { t1, . . . , tm }, and some ℓ > 0, find a sequence i1, . . . , iℓ, such
that σti1ti2 . . . tiℓ = idRn .

A solution in no more than ℓmoves does not necessarily imply the existence of a solution
in exactly ℓmoves.

Example. The state F can be solved in no more than four turns in QTM, but it cannot be
solved in precisely four turns in the same turn metric.

An exhaustive (“brute force”) search for a solution to the problem of solving a Rubik’s
cube in a fixed number of turns takes time O (|T |ℓ). However, it is possible to reduce the
search space at the cost of increasing the space complexity.

Theorem 3.14. A solution can be found in time O
(
2 · |T |ℓ/2

)
if ℓ is even.

Proof. The problem is approached from the left and right side separately. In cryptography,
this is referred to as a meet-in-the-middle attack. The equation σti1ti2 . . . tiℓ = idRn (see
Definition 3.13) is equivalent to

σti1ti2 . . . tiℓ/2 = (tiℓ)
−1 . . . (tiℓ/2+1

)−1. (3.1)

Compute all left sides of Equation 3.1. Then, while computing all right sides of Equa-
tion 3.1, check for equality with any of the previously computed left sides. This method
runs in O (2 · |T |ℓ/2).
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Perhaps the most interesting variation of the problem is the search problem seeking an
optimal solution to the Rubik’s cube.

Definition 3.15 (Solving a Rubik’s cube of size n optimally). Given σ ∈ Rn and a turn
metric T = { t1, . . . , tm }, find a sequence i1, . . . , ir for some r ≥ 0, such that

• σti1ti2 . . . tir = idRn , and
• σti′1 . . . ti′r′

̸= idRn for all 0 ≤ r′ < r and all sequences i′1, . . . , i′r′ .

An optimal solution always exists, and it seems reasonable to assume that an optimal
solution will be unique or almost unique [70].
As mentioned above, solving the generalized word problem for a permutation group is
equivalent to finding a path in the Cayley graph representing the group [8]. Finding an
optimal solution as in Definition 3.15 is, therefore, equivalent to finding a shortest path
in the Cayley graph of the Rubik’s cube group. Unfortunately, the Cayley graph itself
consists of |Rn| vertices, and each vertex has |T | outgoing edges. The graph is unweighted
and as such has no distance measure other than the length of the shortest path from each
vertex to the target node. The shortest path algorithm for this class of graphs must not
traverse more than a logarithmic number of vertices to achieve polynomial time because
the number of vertices grows exponentially in n [14].
It is unknown if the problem is NP-complete [30, p. 27]. In a characterization of the class
NP, Stephen A. Cook used Rubik’s cubes as an example of a problem that is difficult to
solve but whose solution is simple to verify, which is the very nature of many problems
in NP [10]. Demaine et al. designed a puzzle based on the concept of Rubik’s cubes and
demonstrated that optimally solving it isNP-hard, but the result does not apply to Rubik’s
cubes [14]. Volte et al. also relate the problem of solving a Rubik’s cube in a limited
number of turns to problems that are provably hard [70, p. 89].
The difficulty of these problems is apparent both in manual solving methods and in soft-
ware implementations of Rubik’s cube solvers. Manual methods rarely even get close to
20 HTM turns for the 3x3x3 Rubik’s cube [56, 66] even though an optimal solution would
require 20 HTM turns at most (see Section 2.4).

29



Chapter 3 — Difficult computational problems

Most current software implementations do not solve the same Rubik’s cube optimally ei-
ther. The most commonly used computer algorithm is Kociemba’s two-phase algorithm,
which solves 3x3x3 Rubik’s cubes in less than 20 HTMmoves on average. Requiring only
a fraction of a second to solve a Rubik’s cube on modern hardware, it is the fastest known
algorithm that produces near-optimal solutions [55]. Kociemba also developed an op-
timal solver for 3x3x3 Rubik’s cubes. Even on modern hardware, it can take significant
amounts of time for the algorithm to solve a single position [35].
While the complexity of the 3x3x3 Rubik’s cube is astonishing, it is still feasible to find
near-optimal and even optimal solutions with existing computational resources in short
amounts of time. However, as n grows, the complexity of the problem grows.
The order of the group R3 is only 4.3 × 1019 and it still took many years for its diameter
to be determined in the half turn metric, and only through complicated reductions and
years of CPU time. Other properties, including the group’s diameter in some other turn
metrics, are still unknown [55].
Finding optimal or near-optimal solutions in the larger groupR5, whose order is 2.6×1090,
appears to be significantly more challenging. Both manual methods and state-of-the-art
computer algorithms, such as Daniel Walton’s solver for arbitrarily large Rubik’s cubes
[71], typically reduce the problemof solving larger cubes to the problemof solving a 3x3x3
cube through a sequence of turns. Therefore, solutions for larger cubes usually consist of
a sequence reducing the problem to that of solving a smaller Rubik’s cube followed by a
sequence of turns solving the smaller cube.
As mentioned above, it seems likely that an optimal solution would be unique or almost
unique even for larger Rubik’s cubes. As a consequence of this assumption, it is highly
unlikely that such a solution consisting of two distinct phases is optimal or near-optimal.
Lastly, note that Demaine et al. proved that God’s number (see Definition 2.13) grows
with the Rubik’s cube size n as Θ (n2/ log n

) and that the group order is in 2Θ(n
2) [14].

For the 5x5x5 Rubik’s cube, the exact number is unknown (in any turn metric), but one
could find a lower bound using the technique in Section 2.4 and an upper bound by con-
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sidering a specific reduction method from the problem of solving the 5x5x5 Rubik’s cube
to the problem of solving the 3x3x3 Rubik’s cube. The upper bound is the maximum
number of turns required by the reduction method plus the maximum number of turns
required to solve the 3x3x3 Rubik’s cube (e.g., 20 in HTM). However, with current reduc-
tion methods, the difference between thereby derived upper and lower bounds is too big
to draw meaningful conclusions.
It is very likely that, regardless of the size of a Rubik’s cube, an optimal solutionwould not
consist of distinct phases. Ernő Rubik himself wrote: “Increasing the number of elements
may be interesting, but inmy opinion, it does not really add anything new.” He added that
the 3x3x3 cube “gives the maximum amount of information with the minimum number
of elements” [56, p. 15], referring to the fact that larger cubes still only consist of the
same structural elements, which are corner cubies, edge cubies, and center cubies. This
supports the assumption that solving larger cubes optimally is unlikely to be achieved
through processes that use reduction to smaller cubes.
Given the lack of known polynomial-time solutions to the generalized word problem for
permutation groups (seeDefinition 3.9), the proven increase of the groups’ diameters and
orders as the size of the Rubik’s cube increases, and the lack of known polynomial-time
optimal solvers, it does indeed seem appropriate to base cryptographic schemes on the
assumed difficulty of the problems from Definition 3.13 and Definition 3.15.
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3.3 Suggested literature

While Dehn’s Über unendliche diskontinuierliche Gruppen [12] must be mentioned here,
more recent works such as those written by Charles F. Miller III [43, 42] are far more
detailed and benefit from additional decades of research since Dehn’s work.
There are probably very few people who have spent more time studying the Rubik’s cube
group’s diameter and God’s number than Rokicki et al. [55]. Their effort to answer a
question that had been open for decades goes far beyond the mere computational power
that was required for the computer-assisted proof. Similarly, Demaine et al. [14] provide
some of the most recent results concerning the (asymptotic) complexity of Rubik’s cubes
and possible relations to NP-completeness. A survey of NP-complete puzzles can also be
found in [30].
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A zero-knowledge protocol

It is possible to prove that some theorems are true without giving the

slightest hint of why this is so.

— Blum et al., Non-Interactive Zero-Knowledge and Its Applications

Volte et al. proposed a zero-knowledge protocol based on Rubik’s cubes in 2013, which
they also generalized to other non-abelian groups [70]. The concept of zero-knowledge
proofswas introduced byGoldwasser,Micali, andRackoff [23, 24], whowere awarded the
very firstGödel prize for this contribution. Later, Goldreich et al. described zero-knowledge
proofs as “proofs that yield nothing but their validity” [22]. In the context of cryptogra-
phy, zero-knowledge protocols define interactions between a prover and a verifier, during
which the prover has to prove a previously made claim to the verifier without providing
information that would allow the verifier to prove the same (or any) claim themselves.
In this case, the public key of the prover is a seemingly random state of a Rubik’s cube,
and the secret knowledge of the prover is a sequence of d moves that solves the Rubik’s
cube. The purpose of the zero-knowledge protocol is for the prover to prove their ability
to solve the publicly known state of the Rubik’s cube in d moves without disclosing any
information that would allow the verifier to solve the Rubik’s cube in the same number of
moves themselves.
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Assuming that only the prover knows the correct sequence of moves, such a zero-knowl-
edge protocol can be used by the verifier to confirm the identity of the prover that is as-
sociated with the prover’s public key. The challenge is, of course, for the prover to prove
that they know the sequence of moves, without actually disclosing any part of it.
Thanks to Goldreich et al., it is well known that zero-knowledge proofs can be constructed
for all languages in NP, however, the general construction requires a reduction of the
language to 3-Colorability [22, p. 722] and does not necessarily lead to efficient protocols.
Thus, even when the existence of a zero-knowledge protocol for a language is already
known, it still makes sense to search for a protocol that is specific to the language and
more efficient than the general construction by design [70].

4.1 Repositioning groups

The zero-knowledge protocol makes extensive use of repositioning groups.

Definition 4.1 (Repositioning group). Let G be a group, let F = { f1, . . . , fα } ⊂ G, and
let H < G. We say that H is a repositioning group of F if fH

1 = F .

Of course, for any F ⊂ G, a repositioning group can only exist if the elements of F are
conjugate (see Definition 3.2).

Theorem 4.2. Let H be a repositioning group of F . If τ ∈R H is drawn from a discrete uniform

probability distribution, then f τ ∈ F is a random variable with uniform probability distribution

for all f ∈ F .

Proof. By contradiction. Let i, j, k, ℓ ∈ { 1, 2, . . . , α } be arbitrary and, w.l.o.g., assume that
P(f τ

i = fj) > P(f τ
k = fℓ) for τ ∈R H . Because τ is selected from a discrete uniform

probability distribution, this implies that there are more τ ∈ H such that f τ
i = fj than

there are τ ′ ∈ H with f τ ′
k = fℓ.
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Let τi, τj , τk, τℓ ∈ H be some elements of H such that f τi
1 = fi, f τj

1 = fj , f τk
1 = fk, and

f τℓ
1 = fℓ. For any τ ∈ H , let τ ′ = τ−1

k τiττ
−1
j τℓ. Then

f τ
i = fj =⇒ f τ ′

k = f
τ−1
k τiττ

−1
j τℓ

k = f
ττ−1

j τℓ
i = f

τ−1
j τℓ

j = f τℓ
1 = fℓ.

Therefore, for every τ ∈ H with f τ
i = fj , there is a τ ′ ∈ H with f τ ′

k = fℓ, which contradicts
the assumption that there are more such values for τ than there are for τ ′. Thus, for
τ ∈R H , we have P(f τ

i = fj) = P(f τ
k = fℓ) for all i, j, k, ℓ, which means that f τ is a

random variable with uniform probability distribution for all f ∈ F .

A repositioning group H masks elements of F . If f τ
i = fj for some fi ∈ F and τ ∈ H ,

then knowing fj gives no information about fi unless τ is disclosed. Yet, knowing only
fj and that τ is some element ofH , anyone can check if fi ∈ F since fi ∈ F ⇐⇒ fj ∈ F .

4.2 Commitment schemes

The protocol also requires a commitment scheme. Informally, the prover needs the ability
to commit to a statement without disclosing the statement itself. Later, the prover can
reveal the statement alongwith a key that was used to produce the commitment, allowing
the other party to verify the commitment.

Definition 4.3 (Commitment scheme). A commitment scheme for a message spaceM is
a key spaceK, a commitment space C, and a function Com: K ×M→ C, which is

• statistically hiding, meaning that the distributionsCom(k, x) andCom(k′, y) are com-
putationally indistinguishable for all (x, y) ∈M2 when k, k′ ∈R K, and

• computationally binding, meaning that the probability of finding k, k′ ∈ K and x, y ∈

Mwith (k, x) ̸= (k′, y) andCom(k, x) = Com(k′, y) in polynomial time is negligible.

In early work on commitment schemes, the two properties are often referred to as secrecy
and non-ambiguity instead of hiding and binding [26, p. 209-210].
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Commitment schemes typically operate in two phases, which are commit and reveal. When
the verifier does not know the key k ∈ K, the commitment scheme ensures that the verifier
cannot determine what messagem ∈M the prover committed to based on c ∈ C because
the commitment function is statistically hiding. On the other hand, when the protocol
requires the prover to disclose (k,m) ∈ K ×M for a previously made commitment c =

Com(k,m), finding a different (k′,m′) ∈ K ×M with Com(k′,m′) = c is intractable for
the prover. Thus, in this case, the commitment scheme ensures that the prover has to
truthfully disclose (k,m) during the reveal phase.
Volte et al. do not require the use of any specific commitment scheme [70]. Message
authentication functions, such as the Keyed-Hash Message Authentication Code (HMAC)
[47], are believed to be both statistically hiding and computationally binding.

4.3 Protocol

Following the presentation by Volte et al. [70], this section describes the general protocol
for groups that have a repositioning group. The parameters of the protocol are

• a group G,
• a set F = { f1, f2, . . . , fα } ⊂ G,
• a repositioning group H ≤ G of F (see Definition 4.1), and
• a number of moves d ≥ 3.

These parameters implicitly define the subgroups GR := ⟨F⟩ and G′ := ⟨F , H⟩.
Additionally, let Com: K ×G→ C be a commitment function, where K is the key space
and C is the commitment space (see Definition 4.3).
The prover’s secret key is a sequence (i1, i2, . . . , id) ∈ { 1, 2, . . . , α }d, where α is the num-
ber of generators. The public key x0 is the element ofGR such that x0fi1fi2 . . . fid = idGR

.
Equivalently, x0 := (fi1fi2 . . . fid)

−1.
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Prover Verifier

commitments

question

answer

Figure 4.1: Typical structure of a single round in an interactive zero-knowledge protocol

The key generation algorithm is shown in Algorithm 4.1. In terms of a Rubik’s cube, x0 is
a state of the cube whose solution is the turn sequence fi1fi2 . . . fid .

Algorithm 4.1 Key generation
Output: secret key (i1, i2, . . . , id), public key x0
1: σ ← idGR

2: for j ← 1 to d do
3: ij ← random integer from { 1, 2, . . . , α }
4: σ ← σfij ▷ fij is an element of F
5: x0 ← σ−1

As usual, the zero-knowledge protocol defines an interaction as a single round during
which the prover provides a set of commitments, followed by the verifier asking a question
and the prover answering the question (see Figure 4.1). The verifier uses the answer to
verify a subset of the commitments provided in the first step. A truthful proverwill always
provide a valid answer.
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Algorithm 4.2 Prover: round initialization
Input: secret key (i1, . . . , id)
Output: secret state (τ, σ0, . . . , σd, k∗, k0, . . . , kd), commitments c0, s0, . . . , sd
1: τ ← random element of H
2: σ0 ← random element of G′ = ⟨F , H⟩
3: for j ← 1 to d do
4: σj ← (f τ

ij
)−1σj−1

5: (k∗, k0, . . . , kd)← random element of Kd+2

6: c0 ← Com(k∗, τ)
7: for i← 0 to d do
8: si ← Com(ki, σi)

At the beginning of each round (see Algorithm 4.2), the prover picks τ ∈R H,σ0 ∈R

G′, k∗, k0, . . . , kd ∈R K at random and computes σj := (f τ
ij
)−1σj−1 for 1 ≤ j ≤ d. The

prover then provides commitments c0 and s0, . . . , sd for τ and σ0, . . . , σd, respectively.
The keys that are used for these commitments are k∗ and k0, . . . , kd, respectively.

Algorithm 4.3 Prover: generate answer
Input: secret key (i1, . . . , id), state (τ, σ0, . . . , σd, k∗, k0, . . . , kd), question q
Output: answer a ∈ (H ×G′ ×K3) ∪ (F ×G′ ×K2)
1: if not the first invocation of this algorithm in this round then
2: abort ▷ Prevent cheating verifiers from extracting information.
3: if q = 0 then
4: a← (τ, σ0, k∗, k0, kd)
5: else
6: a← (f τ

iq
, σq, kq−1, kq)

The verifier picks q ∈R { 0, . . . , d }. This is the question. If q = 0, the answer provided
by the prover (see Algorithm 4.3) consists of τ , σ0, k∗, k0, and kd. Otherwise, the answer
consists of f τ

iq
, σq, kq−1, and kq.
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Algorithm 4.4 Verifier: verify answer
Input: public key x0, commitments c0, s0, . . . , sd, question q, answer a
1: if q = 0 then
2: (τ, σ0, k∗, k0, kd)← a
3: if τ /∈ H then
4: reject
5: σd ← xτ0σ0
6: if Com(k∗, τ) ̸= c0 or Com(k0, σ0) ̸= s0 or Com(kd, σd) ̸= sd then
7: reject
8: else
9: (f τ

iq
, σq, kq−1, kq)← a

10: if f τ
iq

/∈ F then
11: reject
12: σq−1 ← f τ

iq
σq

13: if Com(kq−1, σq−1) ̸= sq−1 or Com(kq, σq) ̸= sq then
14: reject

The verifier checks commitments based on the received answer (Algorithm 4.4).
(i) If the question was q = 0, the verifier computes σd = xτ0σ0. They can then verify

that τ ∈ H (line 3) and that the commitments for τ , σ0, and σd are valid (line 6).
Intuitively, this is equivalent to verifying that the prover committed to a sequence
of dmoves that indeed transforms x0 into idGR

(i.e., solve the Rubik’s cube), but the
verifier has no way of knowing the moves that were used to do so. In particular, the
verifier cannot even tell if all of the moves are valid moves.

(ii) If the question was q ̸= 0, the verifier computes σq−1 = f τ
iq
σq. They can then verify

that f τ
iq
∈ F (without knowing iq or τ) and that the commitments for σq−1 and σq

are valid. The verifier thus establishes that the q-th move in the sequence of dmoves
is indeed a valid move, but, because the verifier does not know τ , cannot obtain fiq

from f τ
iq
(see Theorem 4.2). Also, the verifier can neither tell if any of the other d−1

moves are valid, nor if the whole sequence of moves transforms x0 into idGR
.

Regardless of the question q, that a cheating prover could fool the verifier because the ver-
ifier only checks a subset of all commitments and conditions. However, as we will see
in the next section, the probability that a cheating prover successfully fools a verifier is
negligible when multiple rounds of the protocol are performed.
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4.4 Zero-knowledge property of the protocol

The concept of interactive zero-knowledge proof systems extends the notion of interactive
proof systems. An interactive proof system represents prover and verifier as an interactive
pair of Turing machines and requires the protocol to be complete and sound. For a formal
definition, readers are referred to Goldwasser et al. [23, p. 293]. Informally, completeness
means an honest prover’s ability to convince a verifier of the prover’s knowledge, whereas
soundness means that no cheating prover will be able to convince an honest verifier of a
false statement with greater than negligible probability.

Remark 4.4. Note that the verifier is restricted to polynomial-time computation. Without
this restriction, zero-knowledge protocols for languages in NP would be meaningless in
the context of cryptography [24, p. 291].

Lemma 4.5. The protocol is complete, that is, an honest prover will always be accepted by an

honest verifier.

Proof. Anhonest verifierwill not deviate from the protocol as shown in Figure 4.1. During
the protocol, only the verification algorithm (Algorithm 4.4) could reject the prover. We
show that, if the prover is honest, the algorithm will not reject the prover.
If q = 0, the verifier computes σd = xτ0σ0 (in line 5 of Algorithm 4.4). This is correct
because σj = (f τ

ij
)−1σj−1 for j ∈ { 1, . . . , d } and
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σd = (f τ
id
)−1σd−1

= (f τ
id
)−1(f τ

id−1
)−1σd−2

= (f τ
id
)−1(f τ

id−1
)−1(f τ

id−2
)−1σd−3

...

= (f τ
id
)−1(f τ

id−1
)−1(f τ

id−2
)−1 . . . (f τ

i1)
−1σ0

= (τ−1fidτ)
−1(τ−1fid−1

τ)−1(τ−1fid−2
τ)−1 . . . (τ−1fi1τ)

−1σ0

= (τ−1f−1
id

τ)(τ−1f−1
id−1

τ)(τ−1f−1
id−2

τ) . . . (τ−1f−1
i1

τ)σ0

= τ−1f−1
id

f−1
id−1

f−1
id−2

. . . f−1
i1

τσ0

= τ−1(fi1 . . . fid−2
fid−1

fid)
−1τσ0

= τ−1x0τσ0

= xτ0σ0.

If q ̸= 0, the verifier computes σq−1 = f τ
iq
σq (in line 12 of Algorithm 4.4). This is correct

because

σq = (f τ
iq)

−1σq−1

⇐⇒ f τ
iqσq = f τ

iq(f
τ
iq)

−1σq−1

⇐⇒ f τ
iqσq = σq−1.

Therefore, an honest prover will always pass all checks performed by an (honest) verifier
and thus will not be rejected.

The protocol is also sound. For this property to hold, Goldwasser et al. require the proba-
bility of the verifier accepting a cheating prover to be negligible [23, p. 293]. In Lemma 4.6,
we show that, during a single round of the protocol, the probability p that the verifier ac-
cepts a cheating prover is at most d

d+1 . Then, after r ∈ N rounds, the probability is at most
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r 7→
(

d
d+1

)r
, thus negligible. We can also use this to find specific values for r in order to

achieve desired upper bounds on the impersonation probability (see Section 4.4.1).
The remainder of this section roughly follows the presentation by Volte et al. [70] and
adds some details and explanations.

Lemma 4.6. During a single round, the probability of accepting a cheating prover is at most d
d+1 .

Proof. By contradiction. Assume that a cheating prover, i.e., a prover who does not know
(i1, . . . , id) ∈ { 1, . . . , α }d such that x0fi1fi2 . . . fid = idGR

, can answer any question q ∈

{ 0, 1, . . . , d } correctly.
Recall that, because the commitment scheme is binding (see Definition 4.3), if there are
multiple ways of obtaining a value from the prover, all of themmust yield the same result,
e.g., σ0 obtained through q = 0must have the same value as σ0 obtained through q = 1.
Because the prover answers q = 0 correctly, idGR

= x0τσ0σ
−1
d τ−1 must hold. Additionally,

because the prover answers 1 ≤ q ≤ d correctly, σq−1σ
−1
q ∈ F must hold. Let uj ∈

{ 1, 2, . . . , α } such that fuj = σj−1σ
−1
j for 1 ≤ j ≤ d. Combined, we have

x0fi1fi2 . . . fid = idGR
= x0τσ0σ

−1
d τ−1

= x0τ(σ0σ
−1
1 )(σ1σ

−1
2 ) . . . (σd−1σ

−1
d )τ−1

= x0τfu1fu2 . . . fud
τ−1

= x0τfu1τ
−1τfu2τ

−1 . . . τfud
τ−1

= x0f
τ−1

u1
f τ−1

u2
. . . f τ−1

ud
.

The prover knows f τ−1

ui
= σi−1σ

−1. Let ij be the index of f τ−1

uj
for 1 ≤ j ≤ d. Clearly, this

is a solution for the problem of finding such a sequence (i1, i2, . . . , id). This contradicts
the assumption that the prover is a cheating prover, i.e., does not know a solution.
Therefore, a cheating prover cannot be able to answer all questions correctly. There must
be at least one q ∈ { 0, 1, . . . , d } for which the prover will answer incorrectly, thus the
impersonation probability is at most q

q+1 .
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Corollary 4.7. The proposed protocol is an interactive proof system as defined by Goldwasser et

al. [23, p. 293].

Proof. This follows from Lemma 4.5 and Lemma 4.6, which have shown that the protocol
has the required properties.

For an interactive proof system to be an interactive zero-knowledge proof system, the
proofmust not yield anything other than its validity. For a formalization of this statement,
readers are referred to Goldreich et al. [22, p. 696].
For example, digital signatures can also be used as means of authentication. The verifier
chooses some random sequence a, and the prover chooses some random sequence b and
provides a digital signature for a cryptographic hash value of (a, b). Since only an honest
prover could provide a valid signature, this identifies the prover. The verifier cannot use
the signature to impersonate the prover since another partywould choose a different value
for a, thus rendering the signature useless. However, this protocol is certainly not zero-
knowledge. For example, the verifier can now use the signature to prove to a third party
that they, at some point, interacted with the prover, because only the prover could have
produced the signature.
This idea is reflected by definitions of zero-knowledge proofs that, for any polynomial-
time verifier V , require the existence of a polynomial-time simulator MV , whose set of
possible outputs is indistinguishable from the set of transcripts of possible interactions be-
tween the (honest) prover and V [22, p. 696]. Intuitively, in an interactive zero-knowledge
proof system, any transcript of an interaction between the prover and the verifier could
have been created in the absence of the prover. This implies that neither the verifier nor
anyone else reading the transcript of the interaction learns anything from the interaction.
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Theorem 4.8. The proposed interactive proof system is zero-knowledge.

Proof. We show that, for any verifier V , a simulator MV exists, which is accepted with
probability d

d+1 , and, when unsuccessful rounds are omitted from the transcript, the tran-
script is computationally indistinguishable from the transcript between V and an honest
prover. The simulatorMV acts like an honest prover, except at the beginning of the round.
The simulator chooses q∗ ∈ { 0, 1, . . . , d } by predicting that q∗ ̸= q, where q ∈ { 0, 1, . . . , d }
is the question that will be selected by the verifier V .

(i) If q∗ = 0, the simulator expects to answer q ∈ { 1, . . . , d }, thus it only needs to ensure
that σj−1σ

−1
j ∈ F for 1 ≤ j ≤ d. Therefore, the simulator picks τ ∈R H , σ0 ∈R G′,

and f ′
1, . . . , f

′
d ∈R F randomly and computes σj = (f ′

j)
−1σj−1 for 1 ≤ j ≤ d.

(ii) Otherwise, if q∗ ̸= 0, the simulator expects to answer q ∈ { 0, 1, . . . , q∗ − 1, q∗ +

1, . . . , d }, thus it must ensure that τ ∈ H , σd = τ−1x0τσ0, and σj−1σ
−1
j ∈ F for

j ∈ { 1, . . . , q∗ − 1, q∗ + 1, . . . , d }. The simulator picks τ ∈R H , σ0 ∈R G′, and
f ′
1, . . . , f

′
q∗−1, f

′
q∗+1, . . . , f

′
d ∈R F . The simulator then computes

f ′
q∗ = (x0f

′
1 . . . f

′
q∗−1)

−1(f ′
q∗+1 . . . f

′
d)

−1

and σj = (f ′
j)

τ−1
σj−1 for 1 ≤ j ≤ d. Note that f ′

q∗ is in G′, but generally not in
F . (Otherwise, the sequence f ′

1, . . . , f
′
d would be a solution to the initial problem of

finding such a sequence, which is presumed to be intractable.)

Only if the simulator’s prediction was incorrect, i.e., if q∗ = q, the simulated prover will
be rejected by the verifier V . The probability of this is at most 1

d+1 .
The only aspect of the construction of MV that depends on V is the prediction of q ∈
{ 0, 1, . . . , d }. If V is an honest verifier and picks q ∈R { 0, 1, . . . , d } randomly, then MV

picks q∗ ∈R { 0, 1, . . . , d }, and omits the current round from the transcript whenever q =

q∗. Otherwise, if V does not pick q randomly, then q is, by definition, predictable, and
there is a simulatorMV that correctly predicts q.
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4.4.1 Security and number of rounds

The security of the scheme is limited by the computational complexity of deriving the
secret key (i1, . . . , id) ∈ { 1, . . . , α }d from the public key x0 ∈ GR. According to Theo-
rem 3.14, this is possible inO (2 · αd/2

). No better attack is known, therefore, the security
is estimated at 2 · αd/2.
The impersonation probability during a single round is at most d

d+1 . Because rounds are
statistically independent, the impersonation probability after r rounds is at most

(
d

d+1

)r
.

Volte et al. approximate the number of rounds that are required in order for the imper-
sonation probability to be at most 2−m for some m > 0 as r ≈ md ln(2) [70]. However,
upon closer inspection, the exact number of rounds required to achieve a probability of
2−m is

r =

⌈
m/ log2

(
d+ 1

d

)⌉
.

4.5 Using the 3x3x3 Rubik’s cube

The standard Rubik’s cube’s representation as a group is R3. Conveniently, the group
has an obvious repositioning group (see Definition 4.1) when using the standard set of
generators. Recall that a repositioning group for a set of generators F is a permutation
group H , such that each generator fi ∈ F can be transformed into any other generator,
i.e., H must fulfill

{fh
i | h ∈ H} = F for all fi ∈ F .

The standard set of generators forR3 is the set {U,L, F,R,B,D }, which each represent a
clockwise quarter turn of the respective face of the cube. Recall from Section 2.1 that the
faces are denoted by their relative orientation to the observer. This leads to a natural repo-
sitioning group, whose presentation here follows that provided by Volte et al. [70, p. 80]
closely. By rotating the entire Rubik’s cube in space, the orientation of the cube relative to
the observer changes, which is equivalent to relabeling the faces without disrupting the
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U

F R

(a) Action h1

U

F R

(b) Action h2

U

F R

(c) Composition hh2
1

Figure 4.2: Visualization of the repositioning transformations h1 and h2

cube’s structure. Each of the six generators is a turn of one of the six faces, and each face
can be moved to the position of any other face by rotating the cube.
Each of the six faces can be rotated to the front and, regardless of which face is in the
front position, the cube can be rotated around the axis that goes through the front face
in 90 degree steps. Combined, there are 6 × 4 = 24 possible rotations. Therefore, the
repositioning group H will consist of |H| = 24 permutations.
To generateH , only quarter rotations around two axes are required. Each can be expressed
as the product of permutations rotating the three layers around the respective axis. The
permutation h1 rotates the cube around the axis going through the right (R) and left (L)
faces (see Figure 4.2a), and h2 rotates the cube around the axis going through the up (U)
and down (D) faces (see Figure 4.2b).

h1 := R
(
(2 39 42 18)(7 34 47 23)

)
L−1

h2 := U
(
(12 36 28 20)(13 37 29 21)

)
D−1

Rotating the cube around the third axis is equivalent to hh2
1 (see Figure 4.2c). The reposi-

tioning group is H := ⟨h1, h2⟩ and we have, indeed, |H| = 24. The other parameters are
GR := R3 and F := {U,L, F,R,B,D }.
Volte et al. suggest d = 24 [70, p. 80]. It was later shown that God’s number in the quarter
turnmetric (see Definition 2.7) is 26 and, unlike the standard set of generators that is used
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17 18 19
20 U 21
22 23 24

11 13 16 41 42 43 30 28 25 8 7 6
10 L 15 44 F 45 31 R 26 5 B 4
9 12 14 46 47 48 32 29 27 3 2 1

40 39 38
37 D 36
35 34 33

(a) Effect of h1

6 4 1
7 U 2
8 5 3

17 18 19 25 26 27 33 34 35 9 10 11
20 L 21 28 F 29 36 R 37 12 B 13
22 23 24 30 31 32 38 39 40 14 15 16

43 45 48
42 D 47
41 44 46

(b) Effect of h2

Figure 4.3: Effects of the repositioning transformations h1 and h2

as F , the quarter turn metric allows counterclockwise turns [53]. Therefore, there must
be Rubik’s cube states that cannot be reached in only d = 24 turns from F . However, at
the same time, the order of R3 is not much larger than |F|24, thus, increasing d would
increase the probability of distinct secret keys representing the same public keys.
There are |F|d = 624 ≈ 262 secret keys, therefore, recovering the secret key from the public
key is possible in about 232 steps according to Theorem 3.14, and no better recovery attack
is known [70].
The impersonation probability after r rounds is at most

(
d

d+1

)r
=
(
24
25

)r. As discussed in
Section 4.4.1, Volte et al. use an approximation to determine r such that the impersonation
probability is at most 2−m, which leads to r = 500 for m = 30 [70, p. 84]. However, as
explained above, the exact number of rounds required to achieve a probability of 2−m is
r =

⌈
m/ log2

(
d+1
d

)⌉. In this case, ⌈30/ log2 (2524)⌉ = 510 rounds are required to achieve the
desired upper bound on the impersonation probability.

4.6 Using the 5x5x5 Rubik’s cube

Unfortunately, the security provided by the zero-knowledge protocol using the 3x3x3 Ru-
bik’s cube that was presented in the previous section is insufficient in practice. However,
larger Rubik’s cubes appear to be much more difficult to solve (see Section 3.2). There-
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fore, Volte et al. also present parameters for the zero-knowledge protocol that are based
on the 5x5x5 Rubik’s cube [70, pp. 84-86].
The idea that was used to construct the repositioning group for the 3x3x3 Rubik’s cube in
Section 4.5, i.e., rotating the entire cube in space, does not work for larger Rubik’s cubes
because any turn metric, including the standard set of generators, consists of more than
six generators. Because there are more generators than faces of the cube, rotating the cube
is not sufficient for hiding a turn. For example, turns of the faces of the Rubik’s cube (e.g.,
F0) can still be distinguished from turns of the inner slices of the cube (e.g., F1) even after
rotating it in space.
Therefore, Volte et al. suggest the following construction [70]. Recall thatR5 < S144. Now
consider two 5x5x5 Rubik’s cubes for a total of 2 · 144 = 288 facelets (excluding centers)
and assign the facelet indices 1 to 144 to the left Rubik’s cube and the indices 145 to 288

to the facelets of the right cube. The generators ofR5 now define the allowed moves (and
thus all possible positions) of the left cube.
We define∆: S144 → S288 as∆(σ) := σ′, where σ′(j) := σ(j − 144). Intuitively, given any
permutation σ that operates on the left cube only,∆(σ) is the permutation that represents
the same permutation on the right cube only.
For any face Q ∈ {U,L, F,R,B,D } and j ∈ { 0, 1 }, define Q∼

j := Qj∆(Q1−j). For exam-
ple, F∼

0 = F0∆(F1) is the permutation that simultaneously turns the front face of the left
cube and the slice behind the front face of the right cube.
Instead of working inR5 = ⟨{U0, U1, L0, L1, F0, F1, R0, R1, B0, B1, D0, D1 }⟩, we use F :=

{U∼
0 , U∼

1 , L∼
0 , L

∼
1 , F

∼
0 , F∼

1 , R∼
0 , R

∼
1 , B

∼
0 , B

∼
1 , D

∼
0 , D

∼
1 }, and thus have GR := ⟨F⟩ < S288.

Calculation shows that |R5| ≈ 1.3×2300, and |GR| ≈ 1.5×2364. Intuitively, the increase in
the order of the group means that, for each possible state of the left cube, the right cube
can be in one of many possible states. In other words, the state of the right cube not only
depends on the state of the left cube, but also on the sequence of moves that put the cube
in such a state (and vice versa).
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Example. Consider the following permutations.

S1 = (U∼
1 )−1R∼

1 U
∼
1 L∼

1

S2 = L∼
1 (U∼

1 )−1R∼
1 U

∼
1

Separating the effects of the permutations on the left and right cube, we have

S1,ℓ = U−1
1 R1U1L1 S1,r = ∆(U−1

0 R0U0L0)

S2,ℓ = L1U
−1
1 R1U1 S2,r = ∆(L0U

−1
0 R0U0)

Calculation shows that S1,ℓ = S2,ℓ, however, S1,r ̸= S2,r. Therefore, the sequences of turns
put the left cube into the same state, but the right cube into different states.

Rotating one or both cubes in space still is not sufficient to hide the moves in F . However,
if we allow swapping the cubes, it is. We again define h1 and h2 to represent rotations of
a single Rubik’s cube in space as we did in Section 4.5, except we now do so for the larger
5x5x5 Rubik’s cube.

h1 := R0R1

(
(3 118 123 51)(8 113 128 56)(17 104 137 65)(22 99 142 70)

)
(L0L1)

−1

h2 := U0U1

(
(107 83 59 35)(108 84 60 36)(109 85 61 37)(110 86 62 38)

)
(D0D1)

−1

The effect is the same as depicted in Figure 4.2. Swapping the two cubes is the permutation

e↔ := (1 145)(2 146)(3 147) . . . (143 287)(144 288).

We construct the repositioning group by allowing simultaneously rotating both cubes in
space and swapping the cubes:

H := ⟨{h1∆(h1), h2∆(h2), e↔ }⟩.
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We have |H| = 48 since there are |⟨{h1∆(h1), h2∆(h2) }⟩| = |⟨{h1, h2 }⟩| = 24 possible
rotations of the cubes in space and for each such rotation, we can either simultaneously
swap the cubes or not swap the cubes, i.e., |⟨e↔⟩| = 2.
Calculation shows that fH

i = {fh
i | h ∈ H} = F for all fi ∈ F , therefore, H is indeed a

repositioning group of F (according to Definition 4.1).
To achieve a security of 280, we can set d = 45 since we have α = 12.1 In this case, r = 926

rounds are necessary to achieve an impersonation probability below 2−30 when d = 45.
Volte et al. further recommend restricting secret keys such that consecutive permutations
do not commute unless they are equal in order to reduce the number of equivalent secret
keys [70, p. 85-86], thus reducing the key space to 12 × 9d−1 keys since only the first
generator can be chosen freely and the remaining generators must either be equal to or
not commute with the previous generator. They suggest d = 48 and r = 988 to account
for the smaller key space.

4.7 The puzzle S41

The Rubik’s cube groups R3 (see Section 4.5) and R5 (see Section 4.6) are interesting
groups for the proposed zero-knowledge protocol. They are also useful for visualizing
both the private key as a sequence of turns and especially the respective repositioning
groups. The group R5, the 5x5x5 Rubik’s cube group, even seems to provide enough
security for practical use. However, due to the small number of generators α = |F|, the
length d of the private key must be quite large to achieve sufficient security, and thus the
protocol requires a large numbers of rounds to achieve a sufficiently small impersonation
probability.

1Volte et al. estimate the security as d · αd/2, which is why they suggest d = 42 only [70, p. 85], whereas
we estimate it to be as low as 2 · αd/2, leading to slightly higher values for d. In practice, the factor is likely
larger.
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Therefore, Volte et al. proposed a new puzzle, which they referred to as S41 [70, p. 91].
They constructed the puzzle by choosing a single permutation h ∈ S41 and a single per-
mutation f1 ∈ S41 such that

〈
f
⟨h⟩
1

〉
= S41 and attempted to maximize α =

∣∣∣f ⟨h⟩
1

∣∣∣. Their
simulation tested 1,000 permutations and resulted in the following parameters.

h := (1 14 39 19 31 18 37) (3 36 4 23 20 34 16 25 17 26 35) (5 13 30 33)

(6 7 10) (8 24 15 38 41 27 11 9) (12 40 32 21 28) (22 29)

f1 := (1 11 31 6 17 34 25 24 22 12 4 28 3 14 5 27 32 13 26 8 23 2 20 41 19 10 40 15 38
16 37 39 35 21 18)
(7 29 36) (9 30)

Calculation shows that α = 9240 [70, p. 91]. Therefore, d = 12 is sufficient for a level
of security greater than 280. Due to the small value of d, only r =

⌈
30/ log2

(
13
12

)⌉
= 260

rounds are necessary to achieve an impersonation probability of at most 2−30.

4.8 Improving upon S41

In the previous section, the puzzle S41 was presented with values for h and f1 suggested
by Volte et al. [70] based on a simulation of 1,000 parameter sets. To improve upon S41
both within the same symmetric group and in other permutation groups, we attempted
to find more efficient or, alternatively, more secure parameters.

4.8.1 Finding permutations of maximal order

What is the difficult part in finding efficient and/or secure parameters? To increase α

without increasing the order of the group, a permutation h of higher order must be found
within the group. Volte et al. use a computer simulation that randomly selects permuta-
tions from S41 and selects the permutation which has the highest order. However, we can,
at least in theory, find permutations of maximal order based on Landau’s function.
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Definition 4.9 (Landau’s function [38]). For n ∈ N, we define g(n) to be the maximal
order of a permutation in the symmetric group Sn,

g(n) := max
σ∈Sn

|⟨σ⟩| .

In general, determining the value of Landau’s function for large n is difficult. However, for
small values of n, consider the cycle notation of permutations. It is well-known that the
order of a permutation is the least commonmultiple of the length of its disjoint cycles. The
set of possible cycle length combinations is the set of integer partitions of n. Therefore,
g(n) must be the maximal least common multiple of all integer partitions of n. While
there are fewer integer partitions of n than there are permutations in Sn, the complexity
of calculating g(n) still grows exponentially.
Oncewe know g(n) for the desired symmetric group Sn, we can determine the cycle struc-
ture of a permutation of order g(n) through prime factorization of g(n). More generally, if
wewant to find a permutation of order α ∈ N, we need to consider the prime factorization
of α, i.e.,

pe11 · p
e2
2 · . . . · p

ek
k = α and p1 < p2 < · · · < pk,

where k ∈ N, p1, p2, . . . , pk ∈ P, and e1, e2, . . . , ek ∈ N. We have

lcm(pe11 , pe22 , . . . , pekk ) = α

because powers of different primes are relatively prime. Thus, a permutation of order
α must contain k disjoint cycles, the lengths of which are ci := peii for 1 ≤ i ≤ k. Let
ℓ :=

∑
1≤i≤k ci be the number of permuted elements. If ℓ > n, no such permutation exists

in Sn. Otherwise, any permutation

(i1,1 i1,2 . . . i1,c1)(i2,1 i2,2 . . . i2,c2) . . . (ik,1 ik,2 . . . ik,ck)
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n Group Group order g(n) Prime factorization of g(n)
41 S41 2164.5 30030 2 · 3 · 5 · 7 · 11 · 13

42 S42 2169.9 32760 23 · 32 · 5 · 7 · 13

43 S43 2175.3 60060 22 · 3 · 5 · 7 · 11 · 13
... ... ... 60060 22 · 3 · 5 · 7 · 11 · 13

47 S47 2197.4 120120 23 · 3 · 5 · 7 · 11 · 13

48 S48 2202.9 120120 23 · 3 · 5 · 7 · 11 · 13

49 S49 2208.6 180180 22 · 32 · 5 · 7 · 11 · 13
... ... ... 180180 22 · 32 · 5 · 7 · 11 · 13

53 S53 2231.3 360360 23 · 32 · 5 · 7 · 11 · 13
... ... ... ... ...
60 S60 2272.1 1021020 22 · 3 · 5 · 7 · 11 · 13 · 17

Table 4.1: Selected symmetric groups and Landau’s function value factorization

has order α if the cycles are disjoint, i.e., if

∣∣{ i1,1, i1,2, . . . , i1,c1 , i2,1, i2,2, . . . , i2,c2 , . . . , ik,1, ik,2, . . . , ik,ck }∣∣ = ℓ.

Note that ℓmight be smaller than n regardless of whether α = g(n) holds.

Example. Recall the puzzle S41 from Section 4.7. We have n = 41 and α = |⟨h⟩| = 9240.
The prime factorization of α is 23 · 3 · 5 · 7 · 11 = 9240. Indeed, h contains cycles of length
8, 3, 5, 7, and 11. However, g(n) = 30030, therefore, permutations of higher order exist in
S41.

Table 4.1 shows selected symmetric groups beginning with S41 and the respective values
of Landau’s function. For any symmetric group Sn, for whichwe know g(n), we can easily
find a permutation h ∈ Sn with |⟨h⟩| = g(n) now. Then, we only need to select f ∈ Sn

such that ⟨F⟩ = Sn, where F = f ⟨h⟩.
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4.8.2 Nothing-up-my-sleeve permutations

In the past, where algorithms required fixed seed values, these were often chosen by the
proposing entity. Even if said entitymight claim that the parameterwas chosen randomly,
there is no guarantee that the proposed parameters do not enable some backdoor that
is only known to the party that selected the values. Therefore, it has become common
practice to instead derive seed values from constants that are unlikely to have any hidden
properties, and in a way that is as simple as possible. Thereby derived parameters are
often referred to as nothing-up-my-sleeve numbers.
Here, we will develop a deterministic algorithm that produces h and f1 with desirable
properties as discussed in the previous section for any group Sn. We derive h from the
fractional part of the constant π, the ratio of the circumference of a circle to its diameter,
and f1 from the fractional part of the constant e (Euler’s number). The construction is
straightforward and is not affected by any parameters other than n.2

Algorithm 4.5 defines the produce sequence function, which converts a real number’s
fractional part to a sequence of n integers, such that the first integer is in { 1, 2, . . . , n } for
some n ∈ N, the second integer is in { 1, 2, . . . , n− 1 }, the third integer is in { 1, 2, . . . , n−
2 }, etc., and the n-th integer is always 1. Therefore, it produces one of n! possible se-
quences. The function is defined recursively. Unless n = 0, the function does not discard
any information, meaning that it maintains the full entropy of the real number v until the
entire integer sequence has been generated.

Algorithm 4.5 Parameter generation: the produce sequence function
Input: n ∈ N0, v ∈ [0, 1)
Output: s ∈ ({ 1, 2, . . . , n } × { 1, 2, . . . , n− 1 } × · · · × { 1, 2 } × { 1 })
1: function produce sequence(n, v)
2: if n = 0 then return empty sequence
3: p← 1 + n · v
4: r ← ⌊p⌋
5: return concat(r, produce sequence(n− 1, p− r))

2However, for large n, it might be desirable to fix α to a “small” value.
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The produce shuffle function uses the integer sequence that is generated by the above
produce sequence function to shuffle the integers from one to n. Note that this is a one-
to-one mapping since the sequence is one of n! and the shuffled output is one of n!.

Algorithm 4.6 Parameter generation: the produce shuffle function
Input: n ∈ N, v ∈ [0, 1)
Output: s ∈ { 1, 2, . . . , n }n, such that each 1 ≤ i ≤ n occurs in s exactly once
1: function produce shuffle(n, v)
2: remaining ← 1, 2, . . . , n
3: s← empty sequence
4: for i in produce sequence(n, v) do
5: s← concat(s, remaining[i])
6: delete remaining[i]

7: return s

The produce permutation function uses produce shuffle to obtain the shuffled list of in-
tegers from one to n and forms disjoint cycles according to the prime factorization of α.

Algorithm 4.7 Parameter generation: the produce permutation function
Input: n ∈ N, α ∈ N, v ∈ [0, 1)
Output: σ ∈ Sn

1: function produce permutation(n, α, v)
2: σ ← idSn

3: shuffled← produce shuffle(n, v)
4: pe11 · p

e2
2 · . . . · p

ek
k ← prime factorization of α

5: for j ← 1 to k do
6: cj ← p

ej
j

7: i1, i2, . . . , icj ← take next cj numbers from shuffled
8: σ ← σ ◦ (i1 i2 . . . icj )

9: return σ

Finally, the produce parameters function uses produce permutation to generate h ∈ Sn

from the fractional part of π. It then does the same to generate f1 ∈ Sn from the fractional
part of e. While this works for most n, there is no guarantee that

〈
f
⟨h⟩
1

〉
= Sn. Therefore,

if this requirement is not met, the algorithm (repeatedly) discards the first decimal digit
of the fractional part of e until the condition is true.
Note that an implementation of these algorithms requires floating-point arithmetic with
much higher precision than usually provided by hardware. Arbitrary precision libraries,
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Algorithm 4.8 Parameter generation: the produce parameters function
Input: n ∈ N
Output: (h, f1) ∈ Sn × Sn, such that

〈
f
⟨h⟩
1

〉
= Sn and |⟨h⟩| = g(n)

1: function produce parameters(n)
2: α← g(n) ▷ g is Landau’s function
3: h← produce permutation(n, α, π − ⌊π⌋) ▷ π is Archimedes’s constant
4: e′ ← e ▷ e is Euler’s number
5: repeat
6: f1 ← produce permutation(n, α, e′ − ⌊e′⌋)
7: e′ ← 10 · e′
8: until

〈
f
⟨h⟩
1

〉
= Sn

9: return (h, f1)

such as RealField in SageMath [68], can be used to achieve the required precision of
hundreds or thousands of digits (depending on n).

4.8.3 New parameter sets

Based on the discussion in the previous sections, we nowproposemultiple newparameter
sets as alternatives to the puzzle S41 (see Section 4.7).
S41∗ is the puzzle obtained by produce parameters(41).

h := (6 34) (10 13 5) (9 4 39 27 40) (24 36 20 21 3 28 19)

(16 14 7 17 38 12 32 15 23 30 2) (29 31 37 1 33 26 8 11 25 22 18 35 41)

f1 := (30 18) (41 12 25) (36 31 14 1 4) (5 20 34 11 10 15 3)

(29 22 21 17 33 38 37 23 16 13 24) (9 32 40 6 39 19 7 27 2 8 28 26 35)

S41∗ improves upon S41 within the same symmetric group due to the larger value of
α = 30030 and the deterministic process through which its parameters were obtained. To
achieve a security of 280, a secret key length of only d = 11 is necessary (as opposed to
12 for S41). Consequently, for an impersonation probability below 2−30, only 239 rounds
are necessary (as opposed to 260 rounds for S41).
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S43∗ is the puzzle obtained by produce parameters(43).

h := (7 4 32 17) (35 27 23) (28 37 15 38 29) (34 6 30 36 3 41 19)

(43 16 9 18 40 10 13 31 33 8 42) (1 22 24 39 21 5 12 25 20 2 26 14 11)

f1 := (31 39 9 38) (36 7 37) (41 32 20 22 14) (12 35 17 19 21 40 29)

(3 26 4 1 13 27 24 6 11 33 5) (2 23 28 10 43 30 34 8 18 16 25 15 42)

We chose S43∗ because it allows further reducing d to d = 10 for the same level of security,
leading to only r = 219 rounds for an impersonation probability below 2−30 while not
increasing the size of each permutation much. We have α = 60, 060.
S53∗ is the puzzle obtained by produce parameters(53).

h := (8 28 13 38 46 37 17 39) (27 35 6 42 10 11 1 26 18) (33 34 36 9 21)

(3 50 30 49 25 19 12) (45 53 29 24 32 20 48 43 47 23 7)

(40 15 52 44 16 31 41 2 4 14 51 22 5)

f1 := (39 4 31 45 2 36 6 22) (53 25 38 5 8 16 11 26 37) (35 18 30 51 50)

(15 48 21 49 20 42 46) (41 13 34 33 43 47 14 44 29 32 10)

(9 27 28 23 17 19 24 40 12 7 3 1 52)

Lastly, we chose S53∗ because it appears to be a good candidate for achieving a security
of approximately 2112, which is a recommended lower bound until 2030 [4]. We have
α = 360360. Using d = 12 and r = 260 as in the S41 puzzle suggested by Volte et al.
[70], the security is estimated to be at least 2111.8 and the impersonation probability is
below 2−30. The increase in the size of permutations, compared to S41, does not impact
performance much.

Remark 4.10. Note that the meet-in-the-middle attack (see Theorem 3.14), which the se-
curity estimation is based on, requires the attacker to store approximately 2110.8 permu-
tations, or approximately 235.6 yobibytes.
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To generate parameters with even higher levels of security, the produce parameters algo-
rithm can also be used for n > 53. For much larger values of n, the parameter α can be
set to “small” values instead of setting it to g(n), which grows exponentially. Only line 2
in Algorithm 4.8 needs to be adapted accordingly.

4.9 Implementation considerations

Assuming that a software implementation of the required permutation operations is avail-
able, implementing the zero-knowledge protocol (see Section 4.3) is straightforward. A
reference implementation written in the programming language Python 3 is provided in
Appendix B. It is sufficiently abstract to be compatible with any of the previously de-
scribed parameter sets, i.e., the 3x3x3 Rubik’s cube (see Section 4.5), the 5x5x5 Rubik’s
cube (see Section 4.6), the puzzle S41 (see Section 4.7), and the new parameter sets pro-
posed in this thesis (see Section 4.8).
However, for practical use, it is insufficient for a software implementation to merely be
correct. Performance and security of the implementation are similarly important. The
security of the implementation is not to be confusedwith the security of the protocol itself.
The protocol, including its specification and parameters, might be secure (in theory) and
yet a correct implementation might not be.
We have made an implementation of the protocol that is written in the C programming
language and that considers the following difficulties available online at

https://github.com/tniessen/zkp-volte-patarin-nachef-c.

4.9.1 Random number generation

In this case, the protocol requires both the prover and the verifier to make a multitude
of random choices. Random number generation is a traditionally difficult problem for
computers that are designed to work deterministically. Due to the limited availability
of randomness, software often relies on cryptographically secure pseudorandom number gen-

erators. Modern computer architectures often provide access to hardware features, e.g.,
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using the RDRAND CPU instruction, which uses a cryptographically secure hardware ran-
dom number generator [27].
Even when a secure random number generator is available, its use must be designed care-
fully. For example, when generating a secret key (see Algorithm 4.1, the prover must
choose d random integers from the set { 1, . . . , α }. However, random number generators
usually produce random integers from a set whose cardinality is a power of two. For
example, a typical random number generator rand might produce values with uniform
probability from the set { 0, . . . , 2b − 1 } for some integer b > 0. While naive implemen-
tations, such as ij := 1 + (rand mod α), appear to work, they do not produce a uniform
probability distribution unless 2b is a multiple of α, and implementations must account
for this so-called modulo bias accordingly.
A standardwork on random number generation is Knuth’s Seminumerical Algorithms [31].
A fewmechanisms for obtaining cryptographically secure random numbers from sources
of randomness with limited entropy are approved by theNational Institute of Standards and

Technology [5].

4.9.2 Random permutation generation

Randomly choosing permutations from a permutation group can also be difficult, espe-
ciallywhen a uniformprobability distribution is desired. In the proposed zero-knowledge
protocol, the prover must pick τ ∈R H (in line 1 of Algorithm 4.2) and σ0 ∈R G′ (in line
2 of Algorithm 4.2).
In all previously discussed parameter sets, the group H is small enough to list all of its
elements, allowing to select a random element τ by choosing a random index within the
list of elements of H . Refer to the previous section for producing random integers.
Recall that G′ = ⟨F , H⟩. Fortunately, some of the suggested parameter sets yield G′ =

Sn for some n ∈ N. We have G′ = S41 for the puzzles S41 (see Section 4.7) and S41∗
(see Section 4.8), G′ = S43 for the puzzle S43∗ and G′ = S53 for S53∗ (see Section 4.8).
Choosing a random permutation from a symmetric group Sn is straightforward: write
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the identity idSn in the two-line notation, then apply the Fisher–Yates shuffle [31, p. 145]
to the second line.
However, when G′ is not a symmetric group (e.g., in Section 4.5 and Section 4.6), pro-
ducing random elements of G′ is more difficult. Let Sn be the symmetric group for some
n ∈ N such that G′ < Sn. It is possible to repeatedly choose random permutations from
Sn as described above until one of the generated permutations is in G′. However, merely
deciding if the generated permutation is in G′ is potentially difficult (see Definition 3.9).
Even if the structure ofG′ allowsmaking this decision efficiently,G′ is, with high probabil-
ity, much smaller than Sn, which makes it very unlikely that a randomly selected element
of Sn is in G′.

Example. The parameters for the 3x3x3 Rubik’s cube (see Section 4.5) result in |G′| ≈

8.65 × 1019, but |S48| ≈ 1.24 × 1061. Therefore, the probability that a random element of
S48 is also an element of G′ is only 6.97× 10−42.

Thus, a constructive approach appears to be the best option. Because G′ = ⟨F , H⟩, ran-
domly selecting a finite number of not necessarily distinct elements g1, g2, . . . , gm ∈R

F ∪ H and computing their composition g = g1g2 . . . gm yields a random element of G′.
However, the probability distribution is not uniform, meaning that, for any value of m,
some elements of G′ will be more likely than others. Nevertheless, for sufficiently large
values ofm, the probability distribution approximates a uniform distribution.
To selectm not necessarily distinct random elements ofF∪H , use themethod for selecting
τ ∈R H that was described above and adapt it accordingly.

4.9.3 Side-channel vulnerabilities

Side-channel attacks are attacks that do not target weaknesses of the cryptographic algo-
rithm itself, but instead use weaknesses of the implementation. The most prominent of
such attacks are timing attacks and cache (timing) attacks, many of which are based onwork
by Kocher from as early as 1996 [34].
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If the duration of a computation within a software or hardware implementation depends
on potentially sensitive data, an attacker might be able to draw conclusions about the data
from measuring the duration of the computation directly or indirectly. Such attacks are
referred to as timing attacks.
Writing software that is resistant to timing attacks proves to be challenging. Algorithms
and implementations are usually designed and optimized to be as fast as possible and
not to run in constant time. Even if the software itself appears to not contain any timing
vulnerabilities, the compiler (or interpreter) could introduce side-channel vulnerabilities,
e.g., due to optimization of the generated instructions. And even if the code is timing-safe,
the system hardwaremight execute the same instruction sequences differently depending
on various other conditions.
Cache (timing) attacks analyze memory access patterns indirectly. Modern computer
processors represent the system’s memory as a sequence of pages of a fixed size and store
the contents of frequently accessed memory pages in caches. This technique significantly
improves performance because accessing data that is stored within a cache is much faster
than accessing data that is stored in the system’s regular main memory. However, caches
are small memory buffers, which are very limited in size (usually in the order of kibibytes
or mebibytes), therefore, the system evicts memory pages from its cache if it determines
that caching other memory pages is more likely to improve the system’s performance.
Depending on whether a memory page is currently cached, an attacker might observe
different memory access times. Therefore, by measuring the delay incurred by memory
access to specific memory pages, an attacker can sometimes determine which memory
pages have previously been accessed by other processes and thus cached by the CPU. A
similar technique played an important role in the recently discovered Meltdown [39] and
Spectre [33] vulnerabilities that affect a wide range of applications and systems.
An implementation of the zero-knowledge protocol could be affected by cache timing vul-
nerabilities. While most of the required data structures are small, some parameter sets,
e.g., S41 (see Section 4.7) and the new puzzles S41∗, S43∗ and S53∗ (see Section 4.8), use
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a large number of permutations as the respective repositioning group H and as the set
of generators F . Generating H “on the fly,” that is, only when required, appears to be
challenging in constant time, i.e., without introducing timing side-channel vulnerabili-
ties. Similarly, while fi ∈ F can be computed in constant time for the aforementioned
puzzles, it might still make sense to store F in memory to improve performance. If all
elements of H and F have been computed in advance and are stored in memory, at least
|H| · ⌈log2(|H|)⌉ + |F| · ⌈log2(|GR|)⌉ bits are required, i.e., at least 1, 653, 960 bits for S41,
5, 405, 400 bits for S41∗, 11, 531, 520 bits for S43∗, and 90, 450, 360 bits for S53∗. However,
this minimal representation makes operations that use permutations difficult to imple-
ment in software, which is why software implementations usually represent elements of
subgroups of a symmetric group Sn as sequences of n integers. This representation in
memory is equivalent to the mathematical two-line notation of permutations, where the
first line corresponds to the (relative) location in memory.

 1 2 . . . n− 1 n

π(1) π(2) . . . π(n− 1) π(n)


For example, a software implementation would usually represent π ∈ S41 as a sequence
of the 41 integers π(1), π(2), . . . , π(41). This representation increases thememory require-
ment for storing all elements ofH ≤ Sn to |H| ·n integers, and similarly for F . Regardless
of the representation of the permutations, the required amount of memory is significantly
larger than a typical memory page size of 4096 bytes. During key generation, for example,
the prover might only access a few of the stored permutations. Because the permutations
are stored across a multitude of memory pages, only a small number of memory pages
and, thus, only a subset of the permutations might be placed in a CPU cache. In that case,
a cache timing attack might succeed in determining which of the permutations have been
used by the prover.
For instance, with the S41 parameter set (see Section 4.7), α = 9240 = |H| = |F|. While
generating the public key, the prover must access fij for 1 ≤ j ≤ d, where (i1, . . . , id) ∈
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{ 1, . . . , α } is the private key, or, if onlyH is stored in memory, must access hij to compute
fij . Assuming a typical page size of 4096 bytes and that each permutation is stored as a
sequence of 41 bytes, the algorithm might access only d = 12 of ⌈41 · 9240/4096⌉ = 93

memory pages holding F (or H). Those 12 pages only hold approximately 1200 of the
9240 permutations, thus knowing which pages have been accessed, e.g., through a cache
timing attack, reduces the key space from αd ≈ 2158 to 1200d ≈ 2122.
Therefore, instead of storing m elements of a group Sn as a sequence of m sequences of
n integers each, we suggest interleaving the m sequences. In other words, in place of a
memory layout such as

[
f1(1) f1(2) . . . f1(n) f2(1) f2(2) . . . f2(n) . . . fm(1) fm(2) . . . fm(n)

]
,

we interleave all permutations to maximize the number of permutations that cause each
memory page to be accessed:

[
f1(1) f2(1) . . . fm(1) f1(2) f2(2) . . . fm(2) . . . f1(n) f2(n) . . . fm(n)

]

Since α > 4096, no memory page contains more than one byte of each permutation. Con-
sequently, each permutation is spread out across n = 41 different memory pages, and
accessing a single permutation gives each of the 93memory pages a chance of 41

93 of being
accessed. Accessing d = 12 permutations during key generation thus reduces the prob-
ability that a specific memory page is not accessed to (1− 41

93

)12 ≈ 0.09%, which means
that every memory page has a 99.91% probability of being accessed.
Of course, this modified layout makes memory access slower and the CPU cache signif-
icantly less effective. However, it also appears to render cache timing attacks targeting
memory pages that hold large numbers of permutations, e.g., H or F , ineffective.

4.9.4 Transmitting τ and f τ
iq

A minor optimization can be implemented in order to reduce the amount of data trans-
ferred between prover and verifier.
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Instead of sending τ ∈ H to the receiver, assign fixed indices to all elements ofH , such that
H = {h1, h2, . . . , h|H| }, and only transfer the index i ∈ { 1, 2, . . . , |H| } such that hi = τ .
Instead of checking τ ∈ H , the verifier only needs to check 1 ≤ i ≤ |H|.
Similarly, f τ

iq
is an element of F and there already exists a numbering of the elements of

F = { f1, f2, . . . , fα }. Therefore, instead of transmitting f τ
iq
, the prover only needs to send

j ∈ { 1, 2, . . . , α } such that fj = f τ
iq
, and the verifier only needs to check 1 ≤ j ≤ α.

4.10 Outlook

In this chapter, we have discussed an interesting zero-knowledge scheme due to Volte et
al. [70]. Two constructions based on such an interactive zero-knowledge protocol are of
particular interest.
The protocol requires the prover and verifier to interact during each of potentially hun-
dreds of rounds, which, in reality, could incur serious communication delays, far out-
weighing any computational cost. To overcome this problem, a standard construction
such as the one developed by Blum et al. [6] can likely be used to create a non-interactive

zero-knowledge system.
Secondly, Fiat and Shamir developed amethod for constructing digital signature schemes
from interactive proof systems [19]. This mechanism has similarities to the construction
due to Blum et al. [6]. Thus, the zero-knowledge protocol discussed here can likely be
used to construct a digital signature scheme.
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A symmetric encryption scheme

Few false ideas have more firmly gripped the minds of so many

intelligent men than the one that, if they just tried, they could invent a

cipher that no one could break.
—David Kahn, The Codebreakers

In 2020, Pan et al. proposed two symmetric encryption schemes based onRubik’s cubes. In
particular, the schemes are based on the assumption that, if one draws an arrow pointing
in one of four possible directions onto each facelet of a Rubik’s cube1 and then performs a
sufficiently long sequence of turns on the Rubik’s cube, it is infeasible to draw conclusions
about the original arrow orientations from the resulting arrow orientations alone [48].
Of course, if one knew the sequence of turns that had been applied to the cube, one could
reverse the sequence and obtain the original arrow orientations. Similarly, if one knew
the state of the Rubik’s cube after the sequence had been applied, one could simply solve
the Rubik’s cube (in any number of moves) and thus obtain the original arrow orienta-
tions. However, knowing only the final direction of the arrows on the facelets of the cube,
without knowing the original positions of said facelets, it does seem almost impossible to
obtain their original orientations.

1Interestingly, such puzzles have existed since shortly after the Rubik’s cube’s invention [56, p. 195].
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This idea seems intriguing especially because Pan et al. claim that the design is provably
secure based on the intractability assumption of the conjugacy problem for the Rubik’s
cube [48]. Goldwasser et al. wrote in 1989: “Given our current state of knowledge about
lower bounds, the security of a cryptographic protocol must be proved based on the in-
tractability assumption of some candidate hard problem. Thus one must accept that fur-
ther analysis may reveal some candidate hard problems to be efficiently solvable. What is
not acceptable is that a protocol may be broken without violating the relative intractabil-
ity assumption” [23, p. 301]. However, this chapter will thoroughly disprove the security
properties claimed by Pan et al. [48] and thus break the proposed schemes without vio-
lating the intractability assumption of the conjuacy problem. We will not only disprove
the security property but even present practical attacks. To the best of the author’s knowl-
edge, this is the first cryptanalysis of the proposed schemes.

5.1 Message encoding

Unlike many other models that do not use the center facelets, the proposed schemes use
all 54 facelets of a standard Rubik’s cube. While the positions of the center facelets do not
change when turning the faces of the cube, their orientation does change.
A two-dimensional representation of the surface of the Rubik’s cube trivially allows ar-
rows pointing in four directions: up, right, down, and left. These four possible directions
can be encoded using two bits each. We choose to represent the arrows on the facelets of
the Rubik’s cube as elements of Z/4Z, thus the 54 arrows on the 54 facelets of the cube
are in (Z/4Z)54. Instead of defining encoding and decoding functions, we will use ↑ syn-
onymously with 0 ∈ Z/4Z, → synonymously with 1 ∈ Z/4Z, ↓ synonymously with
2 ∈ Z/4Z, and ← synonymously with 3 ∈ Z/4Z.
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No encoding or decoding is necessary in either direction. The binary representation of
(Z/4Z)54 is { 0, 1 }108. Position changes of the arrows are simply permutations of the 54
dimensions, and orientation changes are additions in Z/4Z:

(((( ↑ ) + 1) + 1) + 1) + 1 = (((→ ) + 1) + 1) + 1 = (( ↓ ) + 1) + 1 = (← ) + 1 = ( ↑ ).

Therefore, the bit sequence

00 01 10 11 . . . 00 01 10 11 ∈ { 0, 1 }108

represents
(0, 1, 2, 3, . . . , 0, 1, 2, 3) ∈ (Z/4Z)54 ,

which is equal to
( ↑ , → , ↓ , ← , . . . , ↑ , → , ↓ , ← ).

Because the scheme proposed by Pan et. al., by design, makes no use of the colors of the
facelets [48], (Z/4Z)54 is also a representation of the state of the Rubik’s cube at any point
in time. In other words, the only information associated with each facelet is the direction
of the arrow on it, and not its color or its original position.
Figure 5.1 shows the effects of a simple turn sequence consisting of three clockwise quar-
ter turns only, beginning with the initial state (0, 0, . . . , 0, 0) ∈ (Z/4Z)54. Given the ori-
entation of the arrows in Figure 5.1d alone, it is certainly possible to restore the original
orientation of the arrows by applying the sequence U−1R−1F−1. However, knowing only
that a sequence of length dwas applied, the correct sequence to restore the arrows to their
original orientations is just one of 6d possible sequences of clockwise quarter turns. In this
example, that only leaves 216 possibilities, however, the number grows exponentiallywith
the length of the sequence.
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↑ ↑ ↑
↑ ↑ ↑
↑ ↑ ↑

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

↑ ↑ ↑
↑ ↑ ↑
↑ ↑ ↑

(a) Initial state

↑ ↑ ↑
↑ ↑ ↑
→ → →

↑ ↑ → → → → → ↑ ↑ ↑ ↑ ↑
↑ ↑ → → → → → ↑ ↑ ↑ ↑ ↑
↑ ↑ → → → → → ↑ ↑ ↑ ↑ ↑

→ → →
↑ ↑ ↑
↑ ↑ ↑

(b) After turning F

↑ ↑ →
↑ ↑ →
→ → →

↑ ↑ → → → → ↓ ↓ ↓ ← ↑ ↑
↑ ↑ → → → ↑ → → → ↓ ↑ ↑
↑ ↑ → → → ↑ → → → ↓ ↑ ↑

→ → ↓
↑ ↑ ↓
↑ ↑ ↓

(c) After turning F and R

↓ → →
↓ → →
↓ ↓ ↓

→ → → ↓ ↓ ↓ ← ↑ ↑ ↑ ↑ →
↑ ↑ → → → ↑ → → → ↓ ↑ ↑
↑ ↑ → → → ↑ → → → ↓ ↑ ↑

→ → ↓
↑ ↑ ↓
↑ ↑ ↓

(d) After turning F, R, and U

Figure 5.1: Example sequence of facelet orientations
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5.2 Algorithms

The scheme S1 defines a block cipher operating on 108 bit blocks, but due to the way
messages are encoded, we prefer to work in the message spaceM = (Z/4Z)54. During
the encryption process, a random rotating sequence r ∈ R3 is used, which is appended to
the ciphertext. Therefore, the ciphertext space is C =M×R3. The symmetric key is also
a random rotating sequence, therefore, the key space is R3.

• Key generation is as simple as choosing the secret key k ∈R R3 randomly (as a
sequence of clockwise quarter turns by default).

• To encrypt a message m = (m1, . . . ,m54) ∈ M with a secret key k ∈ R3, select
r ∈ R3 randomly and assign m1, . . . , m54 to the facelets at position 1, 2, . . . , 54 of
a Rubik’s cube, respectively, then perform the turn sequence k−1rk on the Rubik’s
cube. Let m′

1, m′
2, . . . , m′

54 be the resulting arrow orientations on the facelets at
position 1, 2, . . . , 54, respectively, and letm′ = (m′

1,m
′
2, . . . ,m

′
54).

The ciphertext is (m′, r).
• To decrypt a ciphertext (m′, r) ∈ M × R3 with a secret key k ∈ R3, where m′ =

(m′
1,m

′
2, . . . ,m

′
54), assign m′

1, m′
2, . . . , m′

54 to the facelets at position 1, 2, . . . , 54 of a
Rubik’s cube, respectively, then perform the turn sequence k−1r−1k on the Rubik’s
cube. Let m1, m2, . . . , m54 be the resulting arrow orientations on the facelets at
position 1, 2, . . . , 54, respectively, and letm = (m1,m2, . . . ,m54). The plaintext ism.

5.3 Breaking the scheme through the cube’s centers

A flaw in the proposed scheme arises from the inclusion of the center facelets in the
scheme. None of the permutationsU , L, F ,R,D, andB change the positions of the center
facelets, and the orientation of each center facelet (or, equivalently, of the arrow thereon)
only depends on turns of the same face. For example, the orientation of the center facelet
of the upper face of the cube only changes when the U turn is applied to the cube.
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Theorem 5.1. The symmetric encryption scheme S1 allows recovering a significant part of the

plaintext without knowing the secret key.

Proof. Let k be the secret key, and let y be the number of clockwise quarter turns of U in k.
During encryption, a random turn sequence r is chosen. Let z be the number of clockwise
quarter turns of U in r.
Ignoring all facelets other than the center facelet ofU , applying k−1 followed by r followed
by k is equivalent to applying Uy followed by U z followed by U−y. The order of these
operations is irrelevant, and since counterclockwise turns nullify subsequent clockwise
turns of the same face, this sequence is equivalent to U z as long as we only consider the
center facelet of U . Unlike the secret key k, the random sequence r and, therefore, z are
public. All that is necessary to recover the original orientation of the center facelet of the
upper face is applying U−z to the Rubik’s cube.
Therefore, by repeating this procedure for each of the six faces, it is trivially possible to
restore the original orientations of the center facelets and, since the position of a facelet
on the surface of the Rubik’s cube maps directly to the position of the bits assigned to it
in the plaintext and ciphertext, to recover the parts of the plaintext that are assigned to
center facelets. Since there are six center facelets and each represents two bits of data, 12
of the 108 bits can be recovered without knowing the symmetric key.

The implications of including the center facelets in the permutation group were men-
tioned by David Singmaster even before 1981, when he referred to the extension of R3 to
the center facelets and their orientations as the supergroup [66, p. 18].

Example. Consider the example given by Pan et al. [48]. The plaintext is

m =111001100011000011010111110000001001

001001111001011000011010111000000111

011010001111101100011110010010110100.
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We intentionally do not present the encryption key here. The random sequence r is r =

RLFBUDRFBU , and the ciphertext is

c =111111001011110000011110111001001111

101101100011001011011000010111000011

100101111001101110011010101001000100.

The center facelet of the upper face is the fifth facelet of the cube, therefore, it corresponds
to the ninth and tenth bit of the decoded message. Counting the number of clockwise
quarter turns of U in r, we see that U was rotated twice during the application of r. The
ninth and tenth bits have the values 1 and 0, respectively, which means that the arrow on
the facelet is pointing down ( ↓ ) as described in Section 5.1. After applying two coun-
terclockwise turns of U to a Rubik’s cube in any state that shows ↓ on the center facelet
of the upper face, the arrow on said facelet now points into the opposite direction ( ↑ ),
which represents the two bits 00. Comparing this result with the plaintext, we see that
the ninth and tenth bits of the plaintext are indeed 0 and 0, respectively.

It is possible to modify the scheme by removing the center facelets from the model, which
makes the previously described attack impossible, but also reduces the block size from
108 bits to 96 bits. However, as the next section will show, even this modified scheme is
provably insecure.

5.4 Disproving IND-CPA and IND-CCA2 security

We will now develop an attack that, regardless of the previously discovered flaw due to
the center facelets, disproves IND-CPA security of the scheme S1 and consequently the
IND-CCA2 security of the scheme S2, which are due to Pan et al. [48].
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Definition 5.2. Let sδ :M→ { 0, 1 } be defined as

sδ(m) :=

(∑
i∈I

mi

)
mod 2,

where m = (m1,m2, . . . ,m54) ∈ M and where I = { 1, . . . , 54 } \ { 5, 14, 23, 32, 41, 50 } is
the set of all non-center facelet indices.

Remark 5.3. mi mod 2 = 1 if and only ifmi is perpendicular to ↑ .

Let turn:M×{U,L, F,R,B,D } →M be the function that maps a state and a face to the
state that results from turning said face of a Rubik’s cube in said previous state.
Let turn∗ :M× {U,L, F,R,B,D }∗ → M be the function that applies the turn function
repeatedly in order to apply a sequence of turns.

Lemma 5.4. Letm ∈M be a state and Q ∈ {U,L, F,R,B,D } be a face.

Then sδ(m) = sδ(turn(m,Q)).

Proof. First, observe that each possible turn moves facelets from positions in the set I
only to other positions within the same set I. Center facelets remain in the centers of
their respective faces, and no turn will move a facelet whose position is in I to a central
position.
Letm = (m1,m2, . . . ,m54) and letm′ = (m′

1,m
′
2, . . . ,m

′
54), wherem′ := turn(m,Q).

Let Ri,Q ∈ Z/4Z be the value in row 1 ≤ i ≤ 54 and column Q of Table 5.1. Ri,Q is the
relative orientation change of the arrow on the i-th facelet that is incurred by a clockwise
quarter turn of a faceQ. Because facelet positions also change,mi = m′

i+Ri,Q is generally
not true.
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i U L F R B D i U L F R B D

1 1 0 0 0 3 0 28 0 0 1 1 0 0
2 1 0 0 0 3 0 29 0 0 0 1 0 0
3 1 0 0 2 3 0 30 0 0 0 1 3 0
4 1 0 0 0 0 0 31 0 0 1 1 0 0
5 1 0 0 0 0 0 32 0 0 0 1 0 0
6 1 0 0 2 0 0 33 0 0 0 1 3 0
7 1 0 1 0 0 0 34 0 0 1 1 0 0
8 1 0 1 0 0 0 35 0 0 0 1 0 0
9 1 0 1 2 0 0 36 0 0 0 1 3 0
10 0 1 0 0 3 0 37 0 0 0 2 1 0
11 0 1 0 0 0 0 38 0 0 0 0 1 0
12 0 1 1 0 0 0 39 0 2 0 0 1 0
13 0 1 0 0 3 0 40 0 0 0 2 1 0
14 0 1 0 0 0 0 41 0 0 0 0 1 0
15 0 1 1 0 0 0 42 0 2 0 0 1 0
16 0 1 0 0 3 0 43 0 0 0 2 1 0
17 0 1 0 0 0 0 44 0 0 0 0 1 0
18 0 1 1 0 0 0 45 0 2 0 0 1 0
19 0 0 1 0 0 0 46 0 2 1 0 0 1
20 0 0 1 0 0 0 47 0 0 1 0 0 1
21 0 0 1 0 0 0 48 0 0 1 0 0 1
22 0 0 1 0 0 0 49 0 2 0 0 0 1
23 0 0 1 0 0 0 50 0 0 0 0 0 1
24 0 0 1 0 0 0 51 0 0 0 0 0 1
25 0 0 1 0 0 0 52 0 2 0 0 3 1
26 0 0 1 0 0 0 53 0 0 0 0 3 1
27 0 0 1 0 0 0 54 0 0 0 0 3 1

Table 5.1: Relative orientation change of each facelet for clockwise quarter turns of each
face
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However, we can consider sums of columns because

sδ(m) = sδ(turn(m,Q))

⇐⇒ sδ(m) = sδ(m
′)

⇐⇒

(∑
i∈I

mi

)
mod 2 =

(∑
i∈I

m′
i

)
mod 2

⇐⇒

(∑
i∈I

mi

)
+

(∑
i∈I

m′
i

)
≡ 0 (mod 2)

⇐⇒

(∑
i∈I

mi

)
+

(∑
i∈I

mi

)
+

(∑
i∈I

Ri,Q

)
≡ 0 (mod 2)

⇐⇒
∑
i∈I

Ri,Q ≡ 0 (mod 2).

The last congruence can be verified using Table 5.1. Indeed, the sum of each column is
even for i ∈ I:

∑
i∈I

Ri,U = 8
∑
i∈I

Ri,L = 20
∑
i∈I

Ri,F = 20

∑
i∈I

Ri,R = 20
∑
i∈I

Ri,B = 44
∑
i∈I

Ri,D = 8

Therefore, sδ(m) = sδ(turn(m,Q)) for anym ∈M and Q ∈ {U,L, F,R,B,D }.

Corollary 5.5. Let m ∈ M be a state and q ∈ {U,L, F,R,B,D }∗ be a sequence of faces. Then

sδ(m) = sδ(turn
∗(m, q)).

Proof. This follows from Lemma 5.4 by induction.
Clearly, if the length ℓ of q is 0, then turn∗(m, q) = m and, thus, sδ(turn∗(m, q)) = sδ(m).
Otherwise, the length ℓ is greater than zero. Let Q be the last turn in q and q′ be q up
to but not including Q. The length of q′ is ℓ − 1. Let m′ := turn∗(m, q′). Then, by in-
ductive hypothesis, sδ(m′) = sδ(m). According to Lemma 5.4, we have sδ(turn∗(m, q)) =

sδ(turn(m
′, Q)) = sδ(m

′) = sδ(m).
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Corollary 5.6. A state m ∈ M cannot, through a sequence of turns, be transformed into a state

m′ ∈M if sδ(m) ̸= sδ(m
′).

Proof. This follow immediately fromCorollary 5.5. Any statem′′ that can be reached from
m fulfills sδ(m′′) = sδ(m), therefore, m′′ ̸= m′, which means that m′ cannot be reached
fromm.

Algorithm 5.1 IND-CPA adversary based on sδ

Output: b ∈ { 0, 1 }
1: m1 ← plaintext with sδ(m1) = 0 ▷ see Figure 5.2a
2: m2 ← plaintext with sδ(m2) = 1 ▷ see Figure 5.2b
3: (c, r)← LR(m1,m2) ▷ challenger encrypts eitherm1 or m2

4: if sδ(c) = sδ(m1) then
5: return 0 ▷ challenger encrypted the left message
6: else
7: return 1 ▷ challenger encrypted the right message

Theorem 5.7. The symmetric encryption scheme S1 lacks indistinguishability under chosen

plaintext attack (IND-CPA).

Proof. Letm1,m2 ∈M such that sδ(m1) ̸= sδ(m2). Without loss of generality, let sδ(m1) =

0 and sδ(m2) = 1.
Let (c1, r1) and (c2, r2) be the outputs that are produced by the encryption algorithm (see
Section 5.2) upon inputs m1 and m2, respectively. Without knowing the secret key, it
is known that c1 and c2 were produced by applying sequences of turns to m1 and m2,
respectively. Therefore, according to Corollary 5.5, we have sδ(c1) = sδ(m1) = 0 and
sδ(c2) = sδ(m2) = 1.
Thus, an attacker can distinguish the ciphertexts based on sδ and can relate them to the
chosen plaintexts (see Algorithm 5.1), which means that the scheme does not provide
indistinguishability under chosen plaintext attack.

Remark 5.8. Note that sδ uses I, which does not include center facelet indices. There-
fore, even when removing the center facelets from the scheme in response to the attack
described in Section 5.3, this attack succeeds.
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↑ ↑ ↑
↑ U ↑
↑ ↑ ↑

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
↑ L ↑ ↑ F ↑ ↑ R ↑ ↑ B ↑
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

↑ ↑ ↑
↑ D ↑
↑ ↑ ↑

(a) Encoded plaintext m1

→ ↑ ↑
↑ U ↑
↑ ↑ ↑

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
↑ L ↑ ↑ F ↑ ↑ R ↑ ↑ B ↑
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

↑ ↑ ↑
↑ D ↑
↑ ↑ ↑

(b) Encoded plaintext m2

↓ ↑ ↓
↑ U ↑
↑ ↓ →

↑ ← ← ↑ → ↑ ↑ → ↑ ↑ ↑ ↑
↓ L ← ← F → → R ↑ ↑ B ←
→ ↑ → → ← ↑ → ↑ → ← → ←

→ ← ↓
→ D ↓
↑ ↓ ↓

(c) Encoded ciphertext c1

← ← ↓
↓ U ←
↓ ↓ ←

→ → → ← ↓ ← ↑ ← ↓ ↓ → →
↓ L ↑ ↑ F ↓ → R ← → B →
→ ↓ → → ↓ → ↑ ↑ ↑ → → →

↑ ↑ →
↑ D →
↑ ← ←

(d) Encoded ciphertext c2

Figure 5.2: Illustration of a chosen-plaintext attack against S1 using sδ
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This attack is demonstrated in Figure 5.2. Since all arrows in Figure 5.2a point up, we have
sδ(m1) = 0. Conversely, Figure 5.2b showsm2, in which all arrows but one point up, and
the sole arrow not pointing up is perpendicular to ↑, therefore, sδ(m2) = 1. The ciphertext
c1, visualized in Figure 5.2c, fulfills, as predicted by Corollary 5.5, sδ(c1) = 0. According
to Corollary 5.6, c1 could not possibly be the result of applying a sequence of turns tom2.
Conversely, sδ(c2) = 1 and, therefore, c2 cannot be the result of encryptingm1.

Remark 5.9. Pan et al. [48] attempt to prove IND-CPA security by relating the problem
of distinguishing ciphertexts to the conjugacy decision problem (see Definition 3.3) for
the Rubik’s cube group R3. However, as shown here, it is possible to break IND-CPA
security without considering k and r (see Section 5.2) at all, which play an essential role
in their proof. They claim that the existence of an IND-CPA attacker implies the existence
of a probabilistic conjugacy problem solver, however, as part of the proof, they present
the IND-CPA attacker with an input that could not have been created by the encryption
algorithm, thus violating the IND-CPA protocol.

Indistinguishability under chosen plaintext attack (IND-CPA) is a fundamentally im-
portant property of encryption schemes. Pan et al. [48] present a variant of S1 that
uses a well-known construction that was proposed by Fujisaki and Okamoto in 1999 [20]
to achieve indistinguishability under adaptive chosen ciphertext attacks (IND-CCA2).
However, with IND-CPA security of S1 disproven, the IND-CCA2 security property of
the modified scheme S2 that was claimed by Pan et al. [48] has to be discarded as well.

Corollary 5.10. The symmetric encryption scheme S2 lacks indistinguishability under adaptive

chosen ciphertext attack (IND-CCA2).

Proof. The scheme S2 lacks IND-CPA security since it is based onS1 and the differences
between these two schemes do not affect the previously described attack. The output of
the encryption algorithm associated with S2 still allows distinguishing between cipher-
texts based on sδ.
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Remark 5.11. Observant readers might consider a modification of the proposed scheme
that not only excludes the centers from the model (see Section 5.3), but also reduces the
block size by another bit, whose value is then determined by the encryption algorithm
based on the rest of the message such that sδ is constant for all messages. However, the
attack described in this section also works with definitions of sδ that use certain subsets of
I instead of I, and such a modification would fail against at least one of these alternative
definitions.

5.5 Attacks based on invariant structural properties

This section briefly discusses another class of attacks, which rely on invariant structural
properties of the model used by Pan et al. [48]. These attacks are intuitively simpler than
the previously described attack, but not immediately apparent in the formal model.
One such invariant is the orientation of the arrows on edge facelets relative to the edge that
the facelet is connected to. In other words, the orientation and position of these arrows
may change, but each arrow will maintain the same angle to the nearest edge, regard-
less of its position or orientation. In most cases, given the ciphertext only, this invariant
does not allow conclusions about the original message because the original positions and
orientations of the edge facelets are still unknown. However, when an attacker is able
to choose a plaintext, for example, in the IND-CPA security model, it becomes trivial to
distinguish ciphertexts based on such invariants.
Figure 5.3 demonstrates one such possibility: when all arrows on all edge facelets point
toward the centers of their respective faces, then this will be true for any state that re-
sults from turning faces of the Rubik’s cube. The position and orientation of the facelets
changes, but, since the model ignores the colors of the facelets, this has no effect.
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↑ ↓ ↑

→ U ←
↑ ↑ ↑

↑ ↓ ↑ ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↓ ↑

→ L ← → F ← → R ← → B ←
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

↑ ↓ ↑

→ D ←
↑ ↑ ↑

(a) Initial state

↑ ↓ ↑

→ U ←
→ ↑ →

↑ ↓ → → ↓ → → ↓ ↑ ↑ ↓ ↑

→ L ← → F ← → R ← → B ←
↑ ↑ → → ↑ → → ↑ ↑ ↑ ↑ ↑

→ ↓ →

→ D ←
↑ ↑ ↑

(b) After turning F

↑ ↓ →

→ U ←
→ ↑ →

↑ ↓ → → ↓ → ↓ ↓ ↓ ← ↓ ↑

→ L ← → F ← → R ← → B ←
↑ ↑ → → ↑ ↑ → ↑ → ↓ ↑ ↑

→ ↓ ↓

→ D ←
↑ ↑ ↓

(c) After turning F and R

↓ ↓ →

→ U ←
↓ ↑ ↓

→ ↓ → ↓ ↓ ↓ ← ↓ ↑ ↑ ↓ →

→ L ← → F ← → R ← → B ←
↑ ↑ → → ↑ ↑ → ↑ → ↓ ↑ ↑

→ ↓ ↓

→ D ←
↑ ↑ ↓

(d) After turning F, R, and U

Figure 5.3: Relative orientation of edge facelets as an invariant
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↑ ↓ ↑
→ U ←
↑ ↑ ↑

↑ ↓ ↑ ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↓ ↑
→ L ← → F ← → R ← → B ←
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

↑ ↓ ↑
→ D ←
↑ ↑ ↑

(a) Encoded plaintext m1

↑ ↑ ↑
← U →
↑ ↓ ↑

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
← L → ← F → ← R → ← B →
↑ ↓ ↑ ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↓ ↑

↑ ↑ ↑
← D →
↑ ↓ ↑

(b) Encoded plaintext m2

↓ ↓ ↓
→ U ←
↑ ↑ →

↑ ↓ ← ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↓ ↑
→ L ← → F ← → R ← → B ←
→ ↑ → → ↑ ↑ → ↑ → ← ↑ ←

→ ↓ ↓
→ D ←
↑ ↑ ↓

(c) Encoded ciphertext c1

← ↑ ↓
← U →
↓ ↓ ←

↑ ↑ → ← ↑ ← ↑ ↑ ↓ ↓ ↑ →
← L → ← F → ← R → ← B →
→ ↓ → → ↓ → ↑ ↓ ↑ → ↓ →

↑ ↑ →
← D →
↑ ↓ ←

(d) Encoded ciphertext c2

Figure 5.4: Illustration of a chosen-plaintext attack against S1 using edge facelets
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Figure 5.4 shows how such invariants can be used to disprove IND-CPA security in a
less formal and more intuitive way than previously shown. The plaintext messages (see
Figure 5.4a and Figure 5.4b, respectively) are

m1 := 001000010011000000001000010011000000

001000010011000000001000010011000000

001000010011000000001000010011000000,

m2 := 000000110001001000000000110001001000

000000110001001000000000110001001000

000000110001001000000000110001001000.

The secret key is k := FDRDLUBU and the randomly chosen turn sequences are

r1 :=RBUFRRUL (for encryptingm1),

r2 :=ULLDRUUB (for encryptingm2).

The ciphertexts (see Figure 5.4c and Figure 5.4d, respectively) are

c1 = 101010011011000001001011010111010001

001000010111010000001000011111010001

001000010111110011011010010011000010,

c2 = 110010111101101011000001111001011001

110011110001011001000010110101001000

100001110101011001000001110101001011.

Because the arrows on the edge facelets are indistinguishable since they all have the same
orientation relative to their nearest edge, their positions and absolute orientations are ir-
relevant. It is trivial for an attacker in the IND-CPAmodel to distinguish between cipher-
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texts by only considering the orientation of the arrows on the edge facelets if said attacker
chooses the plaintexts accordingly, for example, as shown in Figures 5.4a and 5.4b. Thus,
as already formally proven in the previous section, the schemeS1 is not IND-CPA secure.

5.6 Key recovery attacks

None of the previously described attacks allow recovering the secret key k. While they are
sufficient to disprove IND-CPA and IND-CCA security (see Section 5.4 and Section 5.5)
and even allow recovering parts of the plaintext (see Section 5.3), they do not allow an
attacker to fully decrypt arbitrary messages nor do they allow an attacker to encrypt mes-
sages in a manner that would lead to a desired plaintext upon decryption by a legitimate
receiver. Recovering the key k in the scheme S1 appears to be difficult for two reasons:

1. Knowing the ciphertext does not imply knowing the Rubik’s cube’s state that re-
sulted from the turn sequence that was applied by the encryption algorithm.

2. Even if the Rubik’s cube’s statewas known to an attacker, the conjugacy search prob-
lem (see Definition 3.6) is presumably difficult for the Rubik’s cube group, meaning
that recovering k from the cube’s state is assumed to be infeasible [48].

While the first argument might be true in the general case, it is not when the attacker can
choose a plaintext.

5.6.1 Obtaining the Rubik’s cube’s state

Definition 5.12. Amultiset S of cardinality |S| is an unordered collection of |S| not neces-
sarily distinct elements.

Lemma 5.13. The number of different multisets that only contain elements from a set S and whose

cardinality is precisely z is (
z + |S| − 1

z

)
.
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↑ →
U

← ←
→ ↑ ↓ ↑ ↓ ↑ → ←

L F R B
↓ ↓ ↑ ↓ → ← → ↓

↑ →
D

← ←

(a) Plaintext assigned to corner facelets

→
← U →
↓

→ ↓ ← ↓
→ L ↓ ↓ F ← ↓ R → ↑ B →
→ ↑ → →

→
← D ↓
↑

(b) Plaintext assigned to edge facelets

↑ → →
← U →
← ↓ ←

→ → ↑ ↓ ↓ ↑ ↓ ← ↑ → ↓ ←
→ L ↓ ↓ F ← ↓ R → ↑ B →
↓ → ↓ ↑ ↑ ↓ → → ← → → ↓

↑ → →
← D ↓
← ↑ ←

(c) Crafted plaintext

→ ↑ ←
→ U ←
↓ → ↓

↓ → ← ↑ → ↑ → ← ↓ ↑ ↓ ↑
← L → ↑ F ↑ → R ↑ ↑ B ↑
↑ ↓ ↓ ↑ ↑ ↓ ↓ ← ↑ ← ↑ ↑

↑ → →
↓ D →
↑ ↓ ↓

(d) Resulting ciphertext

Figure 5.5: Crafted plaintext and resulting ciphertext for recovering the Rubik’s cube’s
state that is used by the encryption algorithm
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There are eight corner cubies, each having three facelets. The orientations of the arrows
on the facelets on a corner cubie, relative to the corner, does not change when applying
turns to the Rubik’s cube. This is similar to the invariant relative orientation of the arrows
on edge facelets relative to their nearest edge as described in Section 5.5. The position and
orientation of these arrows does changewith the position and orientation of the cubie that
they are on. Still, regardless of any turns applied to the cube, the multiset of orientations
of the arrows on each corner cubie, relative to the corner, remains the same regardless
of the position and orientation of the cubie. The cardinality of the multiset is three and
its elements must be from the set Z/4Z = { 0, 1, 2, 3 } and there are 20 such multisets.
Because there are more such multisets than corner cubies, the orientations of the arrows
on the corner cubies can be chosen such that, even after applying an arbitrary sequence
of turns to the Rubik’s cube, corner cubies can be identified uniquely using the relative
orientations of the arrows on the three facelets that belong to the cubie.
Each center cubie only has exactly one facelet and the position of those cubies does not
change when applying turns to the Rubik’s cube (see Section 5.3).
The remaining cubies are edge cubies. There are twelve edge cubies, each having two
facelets. Section 5.5 already discussed the fact that the orientations of the arrows on edge
facelets, relative to the nearest edge, do not change. However, there are only 10 multisets,
therefore, it is impossible to uniquely identify edge cubies based on such multisets alone.
Further, to determine the original position of each facelet, it is insufficient to obtain the
original position of each cubie because the orientation of the cubiemay change aswell, and
multisets that only contain one distinct element are insufficient for determining the ori-
entation of a cubie. Therefore, it makes sense to only assign multisets that contain at least
two distinct elements. There are 16 such multisets with cardinality 3, which means that
there are enough such multisets to uniquely identify each corner cubie (see Figure 5.5a.
However, there are only 6 such multisets with cardinality 2. Assigning the same multiset
to two edge cubies means that, for each such pair, it is not possible to distinguish between
the two edge cubies based on arrow orientations alone (see Figure 5.5b).
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By choosing a plaintext that assigns suchmultisets to edge and corner cubies, the attacker
can draw conclusions about the Rubik’s cube state from the ciphertext. The position and
orientation of corner cubies can be determined unambiguously whereas the position of
the edge cubies cannot. However, for each of the six pairs of edge cubies, only two possi-
ble positions exist. Therefore, the Rubik’s cube must be in one of 26 = 64 possible states.
Compared to the total number of possible states of the Rubik’s cube, which is approxi-
mately 1.2 × 265, this attack accomplishes a significant improvement, and is perhaps the
most interesting result within this chapter.

Example. Let m ∈ M be the crafted plaintext from Figure 5.5c. The bit sequence that
representsm is

m := 000101110001111011010100010010100110

101000100011000010101100100001010111

011011000001010110000101110010110011.

We encrypt m using the secret key k := RRFLUDRDLUBU and the randomly chosen
turn sequence r := BULLBDRUUL. The resulting ciphertext (see Figure 5.5d) is

c = 010011011111100110100111111101001010

000100000000000010011110010100101100

001000001000110000000101100101001010.

We then proceed as described, without using k, to obtain the 64 possible states of the
Rubik’s cube, which are shown in Figure 5.6. The highlighted state is indeed the correct
state (as can be verified by turning a Rubik’s cube according to k−1rk).
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Figure 5.6: Rubik’s cube states recovered from ciphertext. The correct state is highlighted.
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Theorem 5.14. Knowing the Rubik’s cube state σ = k−1rk that was used to produce a ciphertext

is sufficient for producing arbitrary ciphertexts that, upon decryption, result in chosen plaintexts.

Proof. (Sketch only.) While it is (presumably) difficult to obtain k from σ even when r is
known, we can statically determine the position (directly from σ) and orientation change
(refer to Table 5.1) of each facelet incurred by σ (e.g., by solving σ through an arbitrarily
long sequence of turns, which is efficiently computable). For the orientation change of the
center facelets, only r has to be considered. Then, proceed as in the encryption algorithm
(with r fixed) for a chosen plaintext m ∈ M (see Section 5.2). The obtained ciphertext
(m′, r) ∈M×R3 will decrypt tomwhen the receiver uses the key k because σk−1r−1k =

(k−1rk)k−1r−1k = k−1rr−1k = k−1k = idR3 .

Corollary 5.15. If an attacker can encrypt a single chosen plaintext, they can forge any number

of messages with success probability 1
64 .

Proof. Proceed as described above to obtain (m′, r) ∈ M×R3 and the 64 possible states
of the Rubik’s cube. Then proceed as in Theorem 5.14 by guessing which of the 64 states
was used for encryption.

Remark 5.16. The scheme S2, for which Pan et al. claimed IND-CCA2 security [48], is at
least as vulnerable as the schemeS1 that is being discussed here. The attack described in
Corollary 5.15 works againstS2 as well because the attacker can determine the hash value
H(m, r) for any chosen plaintext m ∈ M and known r ∈ R3. Additionally, because S2

uses the same sequence r to encrypt H(m, r), the attacker effectively obtains two cipher-
texts that use the same key k and the same rotating sequence r (and thus the same Rubik’s
cube state σ = k−1rk) in the first step of the attack. The ciphertext that results from en-
cryptingH(m, r) can likely be used to reduce the set of possible states of the Rubik’s cube
down further, which increases the success probability of the attack beyond 1

64 .

However, knowing a single Rubik’s cube state is insufficient for decrypting other cipher-
texts since the Rubik’s cube’s state depends on the turn sequence r that is chosen by the
encryption algorithm.
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5.6.2 Solving the conjugacy search problem

As the previous section demonstrated, it is possible to recover the Rubik’s cube’s state that
is used by the encryption algorithm. However, recovering the key k from the state is still
difficult.
When represented as permutations over R3, the recovered state σ fulfills σ = k−1rk. Ob-
taining k requires a solution to the conjugacy search problem (see Definition 3.6) for the
Rubik’s cube group R3, which is presumed to be difficult (see Section 3.1).
Nevertheless, even an exhaustive search for k only needs to search the key spaceR3, which
contains 1.2 × 265 possible keys. While this might be impractical, such a small key space
is generally considered insecure by today’s standards [4].
Quantum computing attacks, e.g., using Grover’s algorithm, can reduce the number of
operations to O

(√
N
)
, where N is the order of the group [25]. In this case, a quantum

computer could find k from σ in approximately 233 iterations.

5.7 Analysis of discovered weaknesses

All previously presented weaknesses and attacks result from the fact that all operations
that act on the Rubik’s cube preserve certain properties.

• The sets of edge facelets, corner facelets, and center facelets are disjoint and do not
change. In particular, the positions of center facelets do not change (see Section 5.3).

• Some congruences are preserved (see Section 5.4).
• The orientation of edge facelets, relative to their nearest edge, does not change (see

Section 5.5).
• The orientation of corner facelets, relative to their nearest corner, does not change

(see Section 5.6.1).
Another way of looking at these issues is as follows. The message space and ciphertext
space are { 0, 1 }108 each. Fix a plaintext message. Then the arrow orientations on the
corner facelets and edge facelets depend on the permutation k−1rk ∈ R3 only. The arrow
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Block cipher Block size Key size

IDEA (1991) [37] 64 bits 128 bits
Triple DES (1995) [29] 64 bits 112 bits or 168 bits
Twofish (1998) [57] 128 bits 128 bits or 192 bits or 256 bits
Rijndael (1998) [11] 128 bits 128 bits or 192 bits or 256 bits
Camellia (2000) [3] 128 bits 128 bits or 192 bits or 256 bits
S1, S2 (2020) [48] 108 bits 65 bits (approx.)

Table 5.2: Comparison of the block size and key size of the scheme due to Pan et al. [48]
to other block ciphers

orientations on the center facelets do not depend on k but only on r and are always in one
of only 46 possible states since there are six such facelets and each has two bits assigned
to it. Combined, this means that, for the fixed plaintext message, regardless of the choice
of k and r, the ciphertext must be one of |R3| · 46 = 1.2× 277 possible bit sequences.
The ciphertext space is 1.7×230 times larger than the number of possible ciphertexts for a
fixed plaintext. The attacks in Section 5.4 and in Section 5.5 took advantage of this fact by
choosing plaintexts such that the sets of possible ciphertexts were disjoint and such that
the resulting ciphertexts could be attributed to the respective sets of possible ciphertexts.
As Table 5.2 shows, the block cipher S1 proposed by Pan et al. [48] uses a much smaller
key space than commonly used block ciphers, and it is unusual for a modern block cipher
to use block sizes that are larger than the key size, measured in bits. In this case, it even
leads to catastrophic security flaws of the proposed scheme. Conversely, reducing the
block size could result in anunusually small block size compared tomodern block ciphers.
The evaluation performed by Pan et al. [48] focuses on performance. While the required
computations might be fast compared to other encryption schemes (however, refer to Sec-
tion 5.10.2 for reasons as to why the performance evaluation should be disregarded), the
analysis ignores the fact that the proposed scheme adds a randomly chosen turn sequence
r (or, equivalently, a randomly chosen Rubik’s cube state) to each encrypted block. The
publication uses a sequence of ten turns for r in an example, which can be encoded as a
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sequence of ⌈log2(610)⌉ = 26 bits. This increases the effective size of the ciphertext from
108 bits to 134 bits, which is an increase by 24 %. Unlike other symmetric cryptosystems
that add a random nonce per message, the proposed scheme adds this random sequence
to each block. As a result, encrypting longermessageswill result in a significant overhead.
It is worth mentioning that the block size is not a multiple of eight bits. This is unusual
for a modern block cipher. Because application data usually consists of units of eight bits,
this aspect potentially complicates usage. However, when not assigning data bits to the
center facelets of the Rubik’s cube due to the weakness discussed in Section 5.3, the block
size is reduced to 96 bits, which is a multiple of eight bits.
Similarly, the key k and the rotation sequence r can either be encoded as elements of R3

or as sequences of clockwise quarter turns of the six faces. In the first case, the set of
possible values is R3, and the order of R3 is 1.2 × 265, therefore, no bijective mapping
from bit sequences of fixed length to R3 exists: there are not enough bit sequences of
length 65 and too many bit sequences of length 66. When encoding the values as turn
sequences, for a sequence length ℓ, there are 6ℓ different turn sequences. However, there
are no integer solutions for b in 2b = 6ℓ for ℓ ∈ N, which means that again, no bijective
mapping from bit sequences of fixed length to turn sequences of fixed length exists. In
other words, no bijective mapping from bit sequences of fixed length to values for k and
r exists, which is another potential usability issue.
Table 5.2 includes Triple DES [29], which is based on the weaker DES block cipher. It is
possible to use a similar construction to create a “TripleS1” block cipherwith the primary
goal of increasing the key size beyond 100 bits. However, such a construction would not
be sufficient to address the fundamental weaknesses of the proposed scheme.
Similarly, using larger Rubik’s cubes would increase the group order and thus the key
space as well as the block size. However, just like the the standard 3x3x3 Rubik’s cube,
larger Rubik’s cubes possess structural properties that preserve certain patterns in the
message regardless of their size, e.g., regardless of the size of the Rubik’s cube, corner
cubies will always remain in a corner position.
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5.8 Potential modification to address discovered weaknesses

At its core, the scheme proposed by Pan et al. [48] applies the face turn sequences k−1,
r, and k to a Rubik’s cube whose facelet orientations encode the message, where k is the
secret symmetric key and r is a randomly chosen turn sequence. While this idea is inter-
esting and might seem promising at first, this chapter has revealed multiple weaknesses
of the proposed scheme that effectively break its security almost entirely.
As discussed in Section 5.7, the weaknesses arise from structural properties of the Rubik’s
cube and from the small key space.
A potential workaround could be an additional operation τ that permutes the positions
of the facelets in an unnatural manner, i.e., in a pattern that cannot be produced by turns
of the faces of the cube.
Such a permutation τ could, for example, shift all facelets upward (in the two-dimensional
model of the Rubik’s cube), placing the top-most facelets in the bottom-most positions.

τ := (1 52 49 46 25 22 19 7 4)

(2 53 50 47 26 23 20 8 5)

(3 54 51 48 27 24 21 9 6)

(10 16 13) (11 17 14) (12 18 15)

(28 34 31) (29 35 32) (30 36 33)

(37 43 40) (38 44 41) (39 45 42)

This permutation moves • all six center facelets to the positions of edge facelets, • those
six edge facelets to the positions of other edge facelets, • those six edge facelets to the
positions of the center facelets, • the remaining twelve edge facelets to the positions of
corner facelets, • those twelve corner facelets to the positions of the other twelve corner
facelets, and • lastly, those twelve corner facelets to the positions of edge facelets.
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Remark 5.17. If one wishes to model the Rubik’s cube without center facelets, a different
permutation τ must be chosen.

Such an operation τ could be a part of the key k and/or the random sequence r. Alter-
natively, it could be applied implicitly by the encryption algorithm between turns in the
sequence k−1rk, and τ−1 would then be applied by the decryption algorithm between
turns in the sequence k−1r−1k.
The unnatural character of τ arises from the fact that it takes away any structural properties
that would otherwise be preserved by the Rubik’s cube. Through a sequence consisting
of face turns and applications of τ , any facelet can move to any position.

Example. Figure 5.7 and Figure 5.8 show the probability distributions of the possible po-
sitions of a single corner facelet in the model used by Pan et al. [48] and in a modified
model that applies τ between turns, respectively. In the original model, after two turns,
the facelet must be in one of only 11 positions (see Figure 5.7c), whereas it can already
be in one of 12 positions in the modified model after the same number of turns (see Fig-
ure 5.8c). In both models, after ten turns, the probability distribution is reasonably close
to a uniform distribution. However, in the original model, that only applies to the set of
positions of corner facelets (see Figure 5.7d). In the modified model, the probabilities of
all 54 facelet positions approximate 1/54 each (see Figure 5.8d).
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Figure 5.7: Probability of positions of the top-left facelet of the front face (F) in the model
used by Pan et al. [48] (as rounded percentages)
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Figure 5.8: Probability of positions of the top-left facelet of the front face (F) in the mod-
ified model (as rounded percentages)
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Figure 5.9: Difference between the probability of the most likely facelet position change
and the probability of the least likely facelet position change, depending on the number
of turns: maxi,j{ pi,j }−mini,j{ pi,j }, where pi,j is the probability that the facelet that was
originally in position i ∈ { 1, . . . , 54 } is currently in position j ∈ { 1, . . . , 54 }.

As Figure 5.9 shows, in the modified scheme, the position of each facelet approaches a
uniform probability distribution as the number of turns in the turn sequence increases.
These calculations only concern the position of each facelet. It could be that each facelet
can be moved to any position, but not without restricting the set of possible positions of
other facelets. To answer this question, let U, L, F,R,B,D be the extensions of the Rubik’s
cube group generators U , L, F ,R,B, andD to the model that includes the center facelets,
respectively. The domain of these permutations is, therefore, { 1, . . . , 54 }, whereas the
domain of the standard generators is { 1, . . . , 48 } only.
Of course,

|⟨U,L,F,R,B,D⟩| = |⟨U,L, F,R,B,D⟩| = |R3| ≪ |S54|

holds. However, when applying τ before each of the turns,2 we see that

|⟨τU, τL, τF, τR, τB, τD⟩| = |S54| .

2It is irrelevant for this calculation whether τ is applied before the first turn or not.
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Therefore, every permutation σ ∈ S54 is indeed a possible reordering of the arrows on the
facelets of the Rubik’s cube in the modified model. From this result, it is also apparent
that the key space must be at least as large as S54 because there must be at least one turn
sequence producing each possible permutation of the facelets.
It is not necessarily obvious why this modified model is different from simply applying
a permutation from S54 to a bit sequence, or why the key space is not necessarily exactly
as large as S54. However, a permutation alone would hardly provide any level of security.
Recall that, with each turn, not only does the position of the facelets on the surface of
the Rubik’s cube change, but also the orientations of the arrows on those facelets. In the
original model, with the exception of the center facelets, the orientation change of each
arrow only depends on its position change due to structural properties of the Rubik’s
cube. This is not true in the modified scheme.
Each of the 54 arrows on the facelets of the cube can point in one of four directions, there-
fore, the relative orientation change incurred by a sequence of turns, ignoring facelet po-
sitions, must be one of 454. Thus, there must be at least |S54| and at most |S54| · 454 non-
equivalent turn sequences, i.e., keys.
While thismodification appears to prevent the attacks presented in Section 5.3, Section 5.5,
and Section 5.6, it does not result in IND-CPA security by itself. Attacks based on the idea
that has been discussed in Section 5.4 also work against the modified scheme.

5.9 Valuation according to Shannon

In 1945, only a few years after Alan Turing proposed the idea of modern computers in the
form of universal Turing machines [69], Claude Shannon developed theoretical founda-
tions of cryptography and cryptanalysis [60]. Because his workwas deemed critical to the
national security of the country he was residing in, a redacted version was published four
years later [61], and the original paper was not made publicly available for more than six
decades. Despite the scientific advances in the fields of cryptography and cryptanalysis,
his work has not lost its relevance, even though, at the time of writing, only symmetric
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cryptography had been developed. Modern cryptography, including cryptographic hash
functions, asymmetric cryptography, digital signatures, and zero-knowledge protocols,
had not been invented yet.

5.9.1 Criteria

According to Shannon [61, pp. 669-670], the five most important criteria for evaluating a
symmetric cipher are 1. the amount of secrecy, 2. the size of the key, 3. the complexity of
encryption and decryption, 4. the propagation of errors, and 5. message expansion (i.e.,
overhead due to ciphertexts being longer than plaintexts).
The amount of secrecy of the block cipher proposed by Pan et al. [48] has been thoroughly
proven to be marginal in the previous sections.
A brute-force search for the key in any cryptosystem refers to an exhaustive search for
the key in the entire key space. Therefore, the computational complexity of such a search
is linear in the size of the key space.3 Therefore, the size of the key is an important upper
bound on the security of a cipher. Conversely, if the security of the cipher can be compro-
mised through a significantly smaller computational effort than a brute-force search for
the key, then the key space and, therefore, the key size has little to no advantage over a
smaller key space and key size. In the scheme proposed by Pan et al. [48], the key size is
too small to provide a sufficient level of security (see Section 5.6.2) and, at the same time,
unnecessarily large when compared to the overall security of the scheme.
The complexity of the encryption and decryption algorithms is low. The computational com-
plexity is at most linear in the length of the turn sequences. However, unlikemostmodern
cryptosystems, such as Twofish [57] and Rijndael [11], the algorithmic design was not ex-
plicitly optimized for modern computer architectures and processors. It seems unlikely
that a much simpler and much faster algorithm, such as the one proposed by Pan et al.
[48], could achieve a level of security that is comparable to these modern ciphers.

3This is not true when considering quantum computing. On a sufficiently advanced quantum computer,
the computational complexity is linear in the square root of the size of the key space [25].
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The propagation of errors refers to the effects that a small change in the ciphertext has on
the decrypted message. Shannon argued that such errors in the ciphertext should ide-
ally result in few or localized errors [61]. This appears desirable when transmitting en-
crypted messages through an analog channel, however, with the shift toward digital data
transmissions, multilayer networks, and forward error correction, transmission errors are
unlikely to occur in application data. Additionally, it has become common practice to use
authenticated encryption algorithms or message authentication algorithms prior to de-
coding received messages to ensure the messages’ authenticity. These mechanisms inten-
tionally prevent decoding modified messages. Therefore, this criterion does not seem as
relevant today as it may have in 1945. Nevertheless, manymodern encryption schemes do
minimize such errors, for example, the commonly used counter mode of Rijndael (AES-
CTR) [18]. In general, due to the nature of block ciphers, an error in the ciphertext only
affects the plaintext belonging to the corresponding block, unless the blocks making up
the message are chained in a way that creates dependencies between the blocks. Both the
block cipher proposed by Pan et al. [48] and the modified version discussed in Section 5.8
cause highly localized error propagation when an error occurs in the bit sequence rep-
resented by the arrows on the facelets of the Rubik’s cube. However, each ciphertext is
accompanied by a randomly selected turn sequence r, and an error in this turn sequence
could result in vastly different results.
Lastly, message expansion is problematic with the schemes discussed here due to the ad-
dition of the randomly chosen turn sequence r to each block (see Section 5.7). None of
the other block ciphers listed in Table 5.2 add overhead to each block of a message.

5.9.2 Confusion and diffusion

The attacks described in the previous sections can be seen as edge cases of statistical analy-
sis. Shannon identifies two properties of ciphers that, in general, make statistical analysis
more difficult. These properties are confusion and diffusion, where confusion means that
it should be difficult to relate statistics obtained from ciphertexts to the secret key and
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diffusion means that small changes in the plaintext should result in large changes in the
ciphertext.

Remark 5.18. All of the commonly used block ciphers listed in Table 5.2 (IDEA [37], Triple
DES [29], Twofish [57], Rijndael [11], and Camellia [3]) were designed with confusion
and diffusion in mind.

The scheme proposed by Pan et al. [48] lacks diffusion entirely because each bit in the
plaintext corresponds to exactly one bit in the ciphertext, and changing its value in the
plaintext does not affect any other bits in the ciphertext. However, due to the use of a
randomly chosen turn sequence r for each encryption, this effect cannot be easily observed
(without fixing r). It is still possible to use the lack of confusion to break the security of
the scheme as shown, for example, in Section 5.5 because the orientation of each arrow
on each facelet depends on the original orientation of the arrow on the same facelet only
and not on the orientation of the arrows on any other facelets.
As Section 5.6 demonstrated, it is possible to recover the Rubik’s cube’s state through a
chosen-plaintext attack. Arguably, this indicates a low degree of confusion in the scheme.
Again, it is only due to the use of the randomly chosen turn sequence r that the key can-
not be recovered directly from the Rubik’s cube’s state, but, as explained in Section 5.6.2,
the computational complexity of recovering the key from the Rubik’s cube state does not
necessarily warrant intractability assumptions.
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5.10 Outlook

In this section, we will briefly consider the effect of the flaws that were discovered here
on two proposed commitment schemes, as well as what could processes have led to the
discovery of these flaws during the design of the system.

5.10.1 Commitment schemes based on the same ideas

Earlier this year, Pan et al. published another paper [49] proposing new cryptographic
commitment schemes (see Section 4.2 for a brief introduction to commitment schemes).
The first of the two new schemes, C1, is based on the symmetric encryption scheme that
has been discussed in this chapter, and whose security is claimed to be directly related to
the conjugacy problemagain. However, it is immediately obvious thatC1 does not address
any of the weaknesses of the underlying encryption scheme. In fact, using the techniques
that were developed in this chapter, it appears that the commitment scheme can be broken
rather easily. The second proposed scheme, C2, is not based on the encryption scheme
S1, and an in-depth analysis is out of scope for this thesis. Nonetheless, the scheme also
encodes the plaintextmessage onto the surface of a Rubik’s cube in the form of arrows and
then applies a sequence of rotations before decoding the arrows to form the commitment.
Given that some of the techniques in this chapter work regardless of the sequence of turns
that is applied to the cube, it seems inevitable that the scheme C2 can also be broken using
the same or similar methods.

5.10.2 Lessons learned

What lessons can researchers learn from the fatal flaws in the proposed encryption and
commitment schemes? Finding flaws in a design or implementation can be challeng-
ing, and proving that a system is flawless is difficult if not impossible. Nevertheless, it
seems that standard cryptanalytic approaches could have led to the discovery of signifi-
cant weaknesses in this case.
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In Section 5.9, we used some of the earliest theoretical foundations of modern cryptogra-
phy to evaluate the proposed schemes. Even if we had not found any weaknesses in the
previous sections, using only knowledge from the 1940s, we would have found the com-
plete lack of diffusion (see Section 5.9.2), which is unusual for a block cipher, as well as
message expansion (see Section 5.9.1), which is also untypical when compared tomodern
block ciphers. By themselves, these properties are not necessarily problematic, however,
they should have warranted investigation.
The unusual design, especially the requirement of a random rotating sequence r for each
block, makes it difficult to evaluate some aspects of the algorithm. For example, symmet-
ric encryption algorithms are often analyzed in the context of pseudorandom function
families, however, due to the non-determinism of the proposed block cipher, it is difficult
to apply such models. Virtually all common symmetric block ciphers are deterministic
and only the block cipher mode of operation, such as cipher block chaining (CBC), counter
(CTR), etc., adds non-determinism to the system [18]. Adopting such a design allows the
separation of non-determinism from the security of the cipher itself during analysis.
However, despite these difficulties in the analysis of the proposed schemes, some standard
cryptanalytical methods would have inevitably led to the discovery of weaknesses. For
example, it is common to observe the propagation of bits from the plaintext to the internal
state of the algorithm and possibly even to the resulting ciphertext. The designers of the
Rijndael cipher, which ended up becoming the Advanced Encryption Standard (AES),
mention this technique as the basis of many cryptanalysis methods [11]. Their design
ensures that, after only two of the at least ten internal rounds within their cipher, every bit
of the internal cipher state depends on every input bit, thus making it extremely difficult
to trace the propagation of a single bit.
Applying the same cryptanalytic method to the cipher proposed by Pan et al. would have,
at the very least, revealed not only the lack of diffusion but also the propagation of a part
of the plaintext regardless of the secret key, allowing partial plaintext recovery attacks as
described in Section 5.3. Similarly, the same analysis method would have shown that all

101



Chapter 5 — A symmetric encryption scheme

input bits can only affect a subset of the output bits as depicted, for example, in Figure 5.7.
Provable security, that is, the reduction of a presumably hard problem to an attack against
a cryptographic system, is an area of great importance. Admittedly, the proof published
by Pan et al. [48] is presented convincingly. However, in this case, a mistake in the reduc-
tion from the conjugacy problem for the Rubik’s cube group to an IND-CPA attack against
the encryption scheme invalidates the security proof entirely. Even if we had not found
practical attacks against the scheme, this would still mean a lack of provable security.
Finally, Pan et al. focus on the performance of their proposed scheme and compare it to
that of established encryption schemes, such as Rijndael [11] in CBC mode (AES-CBC)
andOFBmode (AES-OFB) and even asymmetric algorithms, without addressing the fun-
damental differences between those and their own schemes [48]. Additionally, Pan et al.
do not account for hardware differences between benchmarks from as early as 2009 and
their own measurements. Performance is an important factor when designing crypto-
graphic algorithms, however, the performance evaluation presented by Pan et al. [48] is
a misleading comparison at best, and fails to account for basic differences between algo-
rithms and benchmarks.
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Other related ideas

This chapter will briefly list a few noteworthy ideas for other cryptographic mechanisms
that are based on (or related to) Rubik’s cubes, a discussion of which would be out of
scope for this thesis. For an in-depth discussion of a zero-knowledge protocol [70] based
on Rubik’s cubes, refer to Chapter 4. For the cryptanalysis of a broken symmetric en-
cryption scheme based on Rubik’s cubes [48] and its relation to presumably broken com-
mitment schemes [49], refer to Chapter 5 and Section 5.10.1, respectively. The following
selection does not represent endorsement.

6.1 Without reductions to group theoretical problems

The following proposals do not attempt to prove the security of the proposed schemes
based on intractability assumptions derived from group theoretical problems.

6.1.1 Image encryption

Loukhaoukha et al. proposed two image encryption algorithms based on Rubik’s cubes
[15, 40] in 2012 and 2013. Internally, similar to the allowed turns of a Rubik’s cube, rows
and columns of the image’s pixels are rotated. These domain-specific algorithms aim to
be sufficiently fast for real-time image encryption and decryption at the cost of providing
a smaller degree of security than commonly used general-purpose block ciphers.
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6.1.2 Pseudo-random bit generation

Raza and Satpute suggested a pseudo-random bit generation algorithm that scrambles its
internal state by arranging it on the surface of a Rubik’s cube and applying a sequence
of turns [51]. They relate the security of the system to chaos theory. In particular, small
changes in the system’s internal state are expected to cause large differences in the gener-
ated bit sequences.
The design involves the use of a cryptographic hash function for seeding the generator. Of
course, a cryptographic hash function itself is sufficient for constructing a secure random
bit generator [5], however, Raza and Satpute claim that their design is less computation-
ally expensive [51, p. 6162].

6.2 With reductions to group theoretical problems

The following proposals are based on problems that have reductions to group theoretical
problems, thus basing the security of the schemes on intractability assumptions.

6.2.1 Cryptographic hash functions

In their article Rubik’s for Cryptographers, which was published in 2013, Christophe Petit
and Jean-JacquesQuisquater discuss Cayley hash functions, which are based on problems
within Cayley graphs of groups, and they describe these problems as generalizations of
the Rubik’s cube puzzle [50]. They conclude that, while such hash functions have been
broken in the past due to weak parameters, there is no reason to disregard the existence
of secure parameters as long as the underlying computational problems are presumed
to be hard. The group representing the 3x3x3 Rubik’s cube is certainly small enough to
solve even optimally, however, generalizations to larger cubes and other noncommutative
groups could be reasonable choices.
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6.2.2 Key agreement and public-key cryptosystem

Multiple key exchange protocols have been proposed that are based on variants of the
conjugacy problem (see Section 3.1). The most notable of these protocols is likely the
Ko-Lee-Cheon-Han-Kang-Park (KLCHKP) key agreement system [32], which is some-
times called Braid Diffie-Hellman since it is based on the same ideas as the well-known
Diffie-Hellman key exchange protocol [16] from 1976, but uses elements of braid groups
instead of integers. Unlike the original Diffie-Hellman protocol, the braid group version
was suspected to resist quantum computing attacks. Additionally, Ko et al. proposed a
public-key cryptosystem based on the ideas behind their key agreement system.
However, in 2003, Cheon and Jun found a polynomial-time attack against the Ko-Lee-
Cheon-Han-Kang-Park key agreement system [9]. While their algorithm runs in polyno-
mial time, its complexity is still too large for practical attacks. Nevertheless, the existence
of a polynomial-timemethod renders the scheme insecure froma theoretical point of view.
The attack does not solve the general cases of the underlying group theoretical problems.
Multiple other key exchange protocols have been proposed based on similar ideas [1, 2,
67] aswell asmultiple authentication schemes [64, 65], and, whilemany of these have also
been broken [44, 45, 63], it remains an interesting area of research [13, 21]. Additionally,
the application of group theory to cryptography has led to new research avenues within
group theory [46].
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Summary

Ernő Rubik might not have foreseen the enormous impact of his creation almost 50 years
ago. Despite the simplicity of the design of the Rubik’s cube and of its mathematical
representation as a permutation group, we have seen that the challenges it poses are not
limited to merely solving it by hand.
In Chapter 2, we have discussed a mathematical model that accurately represents Rubik’s
cubes of arbitrarily large sizes. Based on this permutation-based model, we presented
selected computational problems that are directly related to Rubik’s cubes and that can
be generalized to other permutation groups in Chapter 3. For most of those problems, no
polynomial-time algorithms are known, but their potential hardness has not been proven
either. Surely, group theory encompasses a wide range of computational problems, and
will likely remain an active research area for the foreseeable future.
In Chapter 4, we have discussed a zero-knowledge protocol whose design is based on Ru-
bik’s cubes, even though themathematical models representing Rubik’s cubes themselves
do not result in ideal parameters. For example, while the permutation group representing
the 5x5x5 Rubik’s cube (the “Professor’s cube”) is complex enough to provide a sufficient
level of security for the zero-knowledge protocol (see Section 4.6), the size of the group is
small compared to the size of each permutation, leading to a high overhead. Nevertheless,
Rubik’s cubes allow an intuitive understanding of the protocol before we progress toward
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more efficient parameter sets in Section 4.7 and Section 4.8, whichwe constructed in away
thatmaximizes efficiencywithin fixed symmetric groups. In addition to this contribution,
we also made an implementation of the protocol available online (see Section 4.9).
Next, in Chapter 5, we offered the cryptanalysis of a symmetric encryption schemewhose
security was supposedly based on the conjugacy problem (see Section 3.1). However, we
managed to not only find flaws in the theory of the design, but also developed practical
attacks ranging from disproving IND-CPA security and partial plaintext recovery to ci-
phertext forgery and even secret key recovery. The weaknesses that were found diminish
the security of the proposed scheme almost entirely, and we extended this result to two
commitment schemes in Section 5.10.1.
Lastly, in Chapter 6, we briefly discussed other ideas for cryptosystems that are based on
or related to Rubik’s cubes. Of particular interest are those in Section 6.2, whose security
assumptions are based on intractability assumptions of group theoretical problems. Un-
fortunately, many of those cryptosystems have been broken, which is why there is much
disagreement as to whether group theory is a promising area for cryptographic research.
Because the group axioms do not restrict the nature of groups much and because groups
are such general objects within the field of abstract algebra, group-based cryptography has
a wide variety of groups to choose from. Even more algebraic structures become avail-
able when extending the field to noncommutative cryptography. Most asymmetric cryp-
tosystems that are in use today rely on number theory, which is based on commutative
algebraic structures. Nevertheless, as we have seen in Chapter 4 and briefly discussed
in Section 6.2, promising designs of noncommutative cryptosystems exist, even though
many have been broken. On a positive note, every time we base the security of an algo-
rithm on a presumably difficult mathematical problem, we learn something new about
the problem, even more so if someone manages to break the cryptosystem.
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Appendix A

Generators for the Professor’s cube

For completeness, this section lists the generators of the permutation group representing
the 5x5x5 Rubik’s cube (see Chapter 2).

U0 := (1 5 24 20) (2 10 23 15) (3 14 22 11) (4 19 21 6)

(7 9 18 16) (8 13 17 12)

(25 97 73 49) (26 98 74 50) (27 99 75 51) (28 100 76 52) (29 101 77 53)

U1 := (30 102 78 54) (31 103 79 55) (32 104 80 56) (33 105 81 57) (34 106 82 58)

L0 := (25 29 48 44) (26 34 47 39) (27 38 46 35) (28 43 45 30)

(31 33 42 40) (32 37 41 36)

(1 49 121 120) (6 54 126 115) (11 59 131 110) (15 63 135 106) (20 68 140 101)

L1 := (2 50 122 119) (7 55 127 114) (12 60 132 109) (16 64 136 105) (21 69 141 100)

F0 := (49 53 72 68) (50 58 71 63) (51 62 70 59) (52 67 69 54)

(55 57 66 64) (56 61 65 60)

(20 73 125 48) (21 78 124 43) (22 83 123 38) (23 87 122 34) (24 92 121 29)

F1 := (15 74 130 47) (16 79 129 42) (17 84 128 37) (18 88 127 33) (19 93 126 28)
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Appendix A — Generators for the Professor’s cube

R0 := (73 77 96 92) (74 82 95 87) (75 86 94 83) (76 91 93 78)

(79 81 90 88) (80 85 89 84)

(24 97 144 72) (19 102 139 67) (14 107 134 62) (10 111 130 58) (5 116 125 53)

R1 := (23 98 143 71) (18 103 138 66) (13 108 133 61) (9 112 129 57) (4 117 124 52)

B0 := (97 101 120 116) (98 106 119 111) (99 110 118 107) (100 115 117 102)

(103 105 114 112) (104 109 113 108)

(5 25 140 96) (4 30 141 91) (3 35 142 86) (2 39 143 82) (1 44 144 77)

B1 := (10 26 135 95) (9 31 136 90) (8 36 137 85) (7 40 138 81) (6 45 139 76)

D0 := (121 125 144 140) (122 130 143 135) (123 134 142 131) (124 139 141 126)

(127 129 138 136) (128 133 137 132)

(44 68 92 116) (45 69 93 117) (46 70 94 118) (47 71 95 119) (48 72 96 120)

D1 := (39 63 87 111) (40 64 88 112) (41 65 89 113) (42 66 90 114) (43 67 91 115)
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Appendix B

Reference implementation of the zero-

knowledge protocol in Python

We present an implementation of the generic zero-knowledge protocol proposed by Volte
et al. [70], which has been discussed in Chapter 4. The implementation consists of three
Python classes. It makes the same assumptions as the protocol definition itself.
Additionally, to ensure compatibility with SageMath [68], which is based on Python, this
implementation requires that a ∗ b evaluates to b◦awhen a and b are both permutations
(see Remark 2.2).
The only required import is the randbelow function from the secrets library, which is
used to generate the prover’s secret key i1, . . . , id and to choose the verifier’s question q.

from s e c r e t s import randbelow
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Appendix B — Reference implementation of the zero-knowledge protocol in Python

The SecretKey class is used to encapsulate a secret key i1, . . . , id. An instance of the class
is held by the prover, who can use the function get_public_key to obtain the public key,
which identifies the prover. The get_generator_conjugate function is provided for con-
venience only and not meant to be used directly.

c l a s s SecretKey :
def __ in i t _ _ ( s e l f , params , secre t_key ) :

s e l f . params = params
s e l f . secre t_key = secre t_key

def get_publ ic_key ( s e l f ) :
p = s e l f . params
pub = p . F[ s e l f . secre t_key [0]]
for i in s e l f . secre t_key [ 1 : ] :

pub = pub ∗ p . F[ i ]
return pub ∗∗ −1

def get_genera tor_con jugate ( s e l f , j , tau ) :
p = s e l f . params
i = s e l f . secre t_key [ j − 1]
return ( tau ∗∗ −1) ∗ p . F[ i ] ∗ tau
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Appendix B — Reference implementation of the zero-knowledge protocol in Python

The Proof class represents a single round from the perspective of the prover. It is in-
stantiated from within the Protocol class. The prover can use the commitments function
to obtain the commitments that must be sent to the verifier. Finally, the prover uses the
answer function to obtain the answer for a question q that was provided by the verifier.

c l a s s Proof :
def __ in i t _ _ ( s e l f , secret_key , tau , sigma , k_star , k ) :

s e l f . secre t_key = secre t_key
s e l f . tau = tau
s e l f . sigma = sigma
s e l f . k_s ta r = k_s ta r
s e l f . k = k
s e l f . answered = Fa lse

def commitments( s e l f ) :
p = s e l f . secre t_key . params
c0 = p . commit( s e l f . k_star , s e l f . tau )
s = [p . commit( s e l f . k[ i ] , s e l f . sigma[ i ]) for i in range (p . d + 1)]
return ( c0 , s )

def answer( s e l f , q ) :
i f s e l f . answered :

r a i s e Exception ( ' answer may only be ca l l ed once ' )
s e l f . answered = True
i f q == 0 :

d = s e l f . secre t_key . params . d
return ( s e l f . tau , s e l f . sigma [0] , s e l f . k_star , s e l f . k [0] , s e l f . k[d])

e lse :
f _ tau = s e l f . secre t_key . ge t_genera tor_con jugate (q , s e l f . tau )
return ( f_tau , s e l f . sigma[q ] , s e l f . k[q − 1] , s e l f . k[q])

122



Appendix B — Reference implementation of the zero-knowledge protocol in Python

Lastly, the Protocol class provides the high-level functions for both the prover and the
verifier. The prover invokes the generate_key function to generate a new secret key, from
which the public key (and thus identity) can be derived (see above for the definition of
get_public_key in the SecretKey class). The prover can obtain an instance of the Proof
class by calling begin_proof. The verifier can use choose_q to randomly select a question,
and then check_answer to verify that the received answer is valid.

c l a s s Protoco l :
def __ in i t _ _ ( s e l f , params ) :

s e l f . params = params

def generate_key ( s e l f ) :
p = s e l f . params
return SecretKey (p , [ randbelow(p . alpha ) for i in range (p . d)])

def begin_proof ( s e l f , secre t_key ) :
p = s e l f . params
tau = p .H. random_element ()
k_s ta r = p .K. random_element ()
k = [p .K. random_element () for i in range (p . d + 1)]
sigma = [p .G_ . random_element ()] + [None] ∗ p . d
for j in range (1 , p . d + 1) :

f_ tau = secre t_key . ge t_genera tor_con jugate ( j , tau )
sigma[ j ] = ( f_ tau ∗∗ −1) ∗ sigma[ j − 1]

return Proof ( secret_key , tau , sigma , k_star , k)

def choose_q ( s e l f ) :
return randbelow( s e l f . params . d + 1)

def check_answer ( s e l f , commitments , q , answer , public_key ) :
p = s e l f . params
(c0 , s ) = commitments
i f q == 0 :

( tau , sigma_0 , k_star , k_0 , k_d) = answer
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Appendix B — Reference implementation of the zero-knowledge protocol in Python

sigma_d = ( tau ∗∗ −1) ∗ public_key ∗ tau ∗ sigma_0
a s s e r t tau in p .H
a s s e r t p . commit( k_star , tau ) == c0
a s s e r t p . commit(k_0 , sigma_0) == s [0]
a s s e r t p . commit(k_d , sigma_d) == s [p . d]

e lse :
( f_tau , sigma_q , k_q_minus_1 , k_q) = answer
sigma_q_minus_1 = f_ tau ∗ sigma_q
a s s e r t f_ tau in p . F
a s s e r t s [q − 1] == p . commit(k_q_minus_1 , sigma_q_minus_1)
a s s e r t s [q] == p . commit(k_q , sigma_q)

Using these classes requires a compatible definition of the system parameters params.
Once such parameters are defined, usage follows this pattern:

zkp = Protoco l (params)

# Invok ed by t h e p r o v e r once t o c r e a t e a new i d e n t i t y .

secre t_key = zkp . generate_key ()
public_key = secre t_key . get_publ ic_key ()

for round in range ( r ) :
# Prove r :

proof = zkp . begin_proof ( secre t_key )
commitments = proof . commitments ()
# V e r i f i e r :

q = zkp . choose_q ()
# Prove r :

answer = proof . answer(q)
# V e r i f i e r :

zkp . check_answer (commitments , q , answer , public_key )
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Appendix B — Reference implementation of the zero-knowledge protocol in Python

This implementation is designed as a reference only and, after defining the necessary
parameters, can help verify the correctness of other implementations. We have made an
implementation written in the C programming language available online at

https://github.com/tniessen/zkp-volte-patarin-nachef-c.
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