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1 Introduction

A data stream is defined by the Institute for Telecommunications Sciences (ITS) as
“a sequence of digitally encoded signals used to represent information in transmission”
[7]. According to Woodruff [14, Section 1], data is never available as a whole but is
divided into distinct items and these individual items become available sequentially, i.e.,
in different points at time. The receiver of a data stream cannot control neither the
order in which data items are presented nor the frequency at which this occurs. The
individual items themselves, also referred to as tokens or elements, may be any kind of
data like numbers, cartesian coordinates or edges of a graph.

This form of data accrues when the amount of it is very large or when the sequence of
data items is ongoing or never ending. The first point especially applies to computing
devices on the edge like IP-routers, IoT-devices or even satellites. For these devices
it might be desirable or necessary to process data locally while also being resource
constrained in terms of storage and/or bandwidth. Data sets can be so large, relative
to the respective computing devices memory, that they don’t fit in its entirety, thus
making random access prohibitively expensive. A data stream can exceed the limits of
currently accessible long term storage media. In this case a compression of the data
would be necessary by either preprocessing parts of it in real time or by keeping only
certain items and dropping the rest. A data stream has no upper bound for either size
or time. This implies that the sequence of data items has a non deterministic or non
existent time horizon and can hence grow to infinity in size.

Data of this kind is abundant in modern day computing and occurs everywhere from
financial and economic data to the routing of IP-packets. Concrete examples are high
energy particle physics experiments at Fermilab or CERN generating 40TByte/s or the
prevention of Denial of Service (DOS) attacks. The latter is accomplished by scanning
network traffic for suspicious flows, i.e., a collection of IP-packets with identical values
for certain key attributes such as the source and destination IP-address. A flow that
consists of many SYN packets without corresponding SYN/ACK packets could then be
reported as a potential partaker in such an attack as pointed out by Muthukrishnan
[12, p. 11].
Data streams are fundamentally different to conventionally stored data and the

processing of such streams introduces new challenges from a technical as well as from a
theoretical perspective.
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Figure 1.1: Summary of Frequency Estimation

This thesis consists of two parts. The first part aims to provide an overview of the
data streaming field in Chapter 2. This includes mathematical preliminaries and a brief
discussion of common techniques. The main part of the thesis, Chapter 3, thoroughly
investigates one of the most prevalent topics in data streams – the estimation of
individual element’s frequencies. This main problem includes the sub problems “finding
distinct elements” and “finding the majority element” in the stream. These two will
be discussed by introducing algorithms that provide an exact or approximate solution.
The structure of this chapter and the links between the sub topics are visualized in
Figure 1.1.
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2 General Background

This chapter provides further information on Data Streaming Algorithms (DSAs)
and their background. Section 2.1 gives a formal model of data streams and further
definitions needed for the main part in Chapter 3. Section 2.2 provides an introduction
of commonly used techniques in the design and analysis of DSAs.

2.1 Preliminaries

Streams in the form of physical data, as defined by the ITS, are a real world phenomenon.
Mathematical models abstract and reduce the properties of such phenomena to only
the most relevant ones. Which properties are deemed relevant of course depends on the
purpose of the model. To improve the understanding of streams, a clear mathematical
definition is needed. This is achieved by translating real constraints into a mathematical
model.
DSAs are characterized by the way they have access to their input and, according

to Muthukrishnan [12, Section 3], by the Transmission, Computation, and Storage
(TCS) environment they operate in. Data can only be accessed in “streaming fashion”,
i.e., individual items are presented with distinct timing and in immutable order. An
algorithm is further bounded by at least one of the following TCS constraints:

– Transmission (T) of the complete data set is not possible.

– Computation (C) of some desired output is not possible at the rate the input is
presented.

– Storage (S) of the complete data in a computers main memory or other local
storage media is not possible.

It follows directly from these constraints, that streaming algorithms must operate on
sublinear space and time complexity. This can be described more formally with the
following model for data streams.

2.1.1 The Streaming Model

A data stream describes a signal S that is in turn comprised of a sequence of items si:
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S = s1, s2, s3, . . . , sm

Each si is drawn from a universe U with |U | = n, i.e, U represents n possible values
for each si. The index i represents the sequential order in which the items are received
by algorithm A. This order can also be interpreted as time, implying Si to be the signal
S at time i after item si was made available to the algorithm. A takes S as input and
computes a function φ of S, i.e., A : S 7→ φ(S).

Following, the usual Bachmann-Landau notation is used to describe the asymptotic
behaviour of functions and to provide bounds for space and time requirements of
algorithms.

Definition 1 (Bachmann-Landau notation). Let f and g be real valued functions and
let x > 0 be a real number. Let

- f(x) = O(g(x)) denote the existence of a constant c > 0 and x0 > 0 such that
|f(x)| ≤ c|g(x)| for all x > x0,

- f = Ω(g) be the inverse and therefore equivalent to g = O(f),

- the simultaneous validity of both f = O(g) and g = O(f) be denoted as f = Θ(g),
and finally let

- f(x) = o(g(x)) denote that, for all c > 0 there is a x0 > 0 such that for all x > x0,
|f(x)| < c|g(x)| holds.

In this model, both the size of the input stream |S| = m as well as the size of the
universe |U | = n are determinants for the space efficiency of algorithm A. The available
space is assumed to be much smaller than both m and n. The baseline demand for any
DSA regarding its space complexity therefore is: The space required for processing a
stream needs to be smaller than the space needed for the input. They are therefore a
subset of sublinear algorithms. This yields o(min(m,n)) as the definitive upper bound
for space complexity in the streaming scenario. It is often assumed that the size of
the stream |S| is much larger than the number of elements in the universe |U |. With
m� n, the upper bound for space becomes o(n).

The goal for space efficiency would however be a logarithmic requirement relative to
the size of the universe n. O(log n) means an approximate increase in required space by
a constant number for every doubling in the universe’s size. This allows to store a subset
of all elements in U or a binary counter up to n. While O(1) is obviously even more
desirable, O(log n) is the lower bound for indexing and representing signal S, as pointed
out by Muthukrishnan [12, Section 4.1]. When logarithmic space is not achievable, the
requirements can be relaxed to polylog(n) := O((log n)k) for every k ∈ N.

4



The desiderata for time complexity is usually not as strict as the one for space
complexity since data streams are mainly characterized by the large size of the universe
and of the stream itself. An algorithm’s time complexity contains the processing time
for individual updates, denoted as timeproc, and the time it takes to return the result
φ(S) once queried, denoted as timecomp. Karp et al. [11, Section 1] further divide the
processing time into amortized timeproc as the arithmetic mean, and worst-case timeproc
as the maximally required time over all items. DSAs are not required to be strictly
online as they are allowed to wait, store a sequence of consecutive items, and process
them in batches. However, the more items are stored the worse an algorithm´s space
requirements get. Even multiple passes over the input data, while clearly not desired,
are accepted in some cases, as stated by Chakrabarti [15, Section 0.1].

Definition 2 (online algorithm). An algorithm A : S 7→ φ(S) is called one-pass or
online if each element si of its input S is accessed once and in sequential order while
computing φ(S).

An online DSA stores a data structure describing the input signal S. Any incoming
update is processed instantly and the data structure is updated accordingly. This
algorithm’s requirement for space only depend on the size of the data structure. However,
strict requirements for the worst-case processing time are introduced. To guarantee that
data stream items are processed as they arrive, both worst-case and amortized timeproc
must be constant and less than the time frame between two subsequent updates.

2.1.2 Variations of the Basic Model

Building on the basic streaming model described in Section 2.1.1, there are variations
as to how the data stream phenomenon is modeled in detail. There are three main
models for data streams: the Time Series Model, the Cash Register Model, and the
Turnstile Model. The latter is the most general, whereas the Time Series Model makes
the strongest assumptions and is therefore only applicable for specific use cases. A more
general model can cover a wide variety of real world phenomena. Algorithms using such
a model are therefore preferable to the ones using a more specific model.

The Time Series Model

The stream at a discrete point in time i is denoted as Si and consists of the sequence of
items that were made available at or prior to that point in time, thus

Si = s1, s2, . . . , si−1, si.

The value of Si for any i can either be the value of a single item or be the function of
several consecutive updates. The former is the case in the Time Series Model, where
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Si is wholly described by si. Si remains unchanged until the next item arrives. The
value of the stream at any time i is therefore given as the last update si for all i in
{1, . . . ,m} := [m]. With the i-th update of the stream S[i] defined as si, the following
holds for the Time Series Model :

Si = si = S[i] , for all i in [m].

The Cash Register Model

A data stream is modeled as a sequence of items in the Time Series Model . This
retains information on the order at which individual items appeared. Data streaming
applications like “find the majority element”, “estimate the median”, or the computation
of some other statistical property, however have no need for this information. Only
the frequencies of the individual elements in the stream are relevant. This allows to
represent the stream as a vector of aggregated frequencies f(S) = (f1, . . . , fn) for each
item in U . The vector f is initialized to zero and subsequently updated via S.
Every update si increases the si-th component of f by one. With the length of the

stream given as |S| = m, for every i in [m] and every j in [n], this results in

fj = |{i | si = j}|.

After each update si, the frequency vector f(Si) holds the number of occurrences in Si
for any element j in [n]. Since every update causes an increment of one, the summation
over all fj’s adds up to the length of the current stream, i.e.,

∑
j∈[n] fj = |Si|.

An update from the stream can thus be interpreted as the 2-tuple si = (j, 1). For
more general updates, the value of an update’s second component can be replaced by
a constant c > 0. The frequency vector is then updated by S, such that for every
si = (j, c)

fj ← fj + c.

The Turnstile Model

In the Cash Register Model , c > 0 is required for all updates. A component of f can
therefore never be decremented and can never be negative. The Turnstile Model is
similar but the update value c can be positive or negative. The components of the
frequency vector can therefore be incremented or decremented by the stream and a
negative total value is possible. This is not allowed in the strict Turnstile Model, where
fj ≥ 0 for all j in [n] is required. A component can therefore only be decremented if it
has been incremented by the stream before.
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2.1.3 The Quality of an Algorithm’s Result

An algorithm A computes a function φ on the stream S. This computation is limited
to sublinear space in the streaming scenario and typically returns an estimate φ(S)∗

rather than the true value φ(S). The deviation between the two values determines the
accuracy of the algorithm and is denoted as ε. Deterministic algorithms produce an
identical result, and therefore accuracy, every time they are invoked with the same input
value. Randomized algorithms use a degree of randomness to achieve a certain level of
accuracy in the “average case”. The algorithm’s result is expected to yield a complying
result but there is also a probability δ that this expectation fails to materialize. This is
formalized in the following definitions.

Definition 3 ([15, Definition 0.2.1]). Let S be a stream and φ(S) be the output of a
deterministic algorithm A : S 7→ φ(S). Let further φ∗(S) be the output of a randomized
algorithm A∗ : S 7→ φ∗(S). For any given ε ≥ 0 and 0 ≤ δ ≤ 1 is A∗ defined to
(ε, δ)-approximate φ(S) if

Pr

[∣∣∣∣φ∗(S)

φ(S)
− 1

∣∣∣∣ > ε

]
≤ δ.

φ∗(S) is defined as the (ε, δ)-approximation of φ(S) accordingly.

Rearranging Definition 3 yields a more intuitive formalization and interpretation.
Let the event

∣∣∣φ∗(S)
φ(S)
− 1
∣∣∣ > ε be named as E. Then E is clearly equivalent to

|φ∗(S)− φ(S)| > ε · φ(S) and the absolute value further allows for two possible cases:

E =

φ∗(S) > (1 + ε) · φ(S), if φ(S) ≥ φ∗(S)

φ∗(S) < (1− ε) · φ(S), if φ(S) < φ∗(S).

These cases describe whether the estimate φ∗(S) is outside an interval of confidence I
between (1− ε) ·φ(S) and (1 + ε) ·φ(S). The probability that one of the two cases occur
is hence the probability of φ∗(S) being in I and is equal to Pr[E], namely δ. With this
the condition of Definition 3 can be rewritten as

Pr[φ∗(S) ∈ [(1− ε) · φ(S), (1 + ε) · φ(S)]] ≤ δ.

Definition 3 uses a multiplicative approximation. For some problems an additive
approximation, as defined below, is a more sensible option.

Definition 4 ([15, Definition 0.2.2]). Using the same setup as in Definition 3, φ∗(S) is
defined to be an (ε, δ)+-approximation of φ(S) if

Pr[|φ∗(S)− φ(s)| > ε] ≤ δ.
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Characteristics In Symbols

deterministic δ = 0
exact, i.e. f(S) = f ∗(S) ε = 0
randomized ε, δ > 0

Table 2.1: DSA: Key Characteristics

Desirability

Aspects of Efficiency Possible Acceptable Goal

space complexity space o(m,n) polylog(m,n) O(log(m,n))
time complexity timeproc O(m,n) O(log(m,n)) O(1)
number of passes P ≥ 3 2 1
accuracy of results (ε, δ) (0.5, 0.5) (0.05, 0.05) (0, 0)

Table 2.2: DSA: Efficiency and Quality

The accuracy parameter ε and the associated probability of failure δ can be used to
measure the quality of an algorithm’s result. In Combination with the parameters of
an algorithm’s efficiency – space and time complexity and the number of passes over
the data – this establishes a framework for describing DSAs accurately. A summary of
this framework is given in Table 2.2. The variables m as the size of the input and n as
the size of the universe are used as usual. The columns depict typical values ascending
in terms of their desirability from left to right. They are motivated by the discussion
on space and time complexity and on the number of passes in Section 2.1.1 but are
arbitrary for the accuracy measures.
While smaller values are more desirable for all of the discussed measures, they are

also used to control each other. A relaxed accuracy parameter ε will result in a smaller
δ in most cases. Similarly would a reduction in space efficiency, by simply retaining
more information, yield an improved accuracy. These mutual dependencies can be used
to adapt an algorithm to different use cases.

Motivational Example

The median for a set of items with at least ordinal scale, like numbers, is retrieved by
sorting and selecting. The input S = s1, s2, s3, . . . , sm is first sorted in non decreasing
order O = o1, ..., om. The index i, with 1 ≤ i ≤ m, then represents the rank according
to the respective scale and the median is obtained as:

median(S) =


om/2+om/2+1

2
, if m is even

odm/2e, if m is odd
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Blum et al. [1, Theorem 1] show that this computation requires linear time in the
worst case if S is fully accessible in memory. A streaming solution, i.e., one that uses
only sublinear space, does exist as shown by Munro and Paterson [2, Theorem 2]. With
P as the number of passes, this solution requires at most O(m1/P (logm)2−2/P ) space.

2.2 Common Techniques

Two techniques for improved space efficiency have found widespread use – Sampling
and Sketching. The former decreases the load on TCS systems by simply dropping
items. This method leads to a permanent loss of original information but reduces space
requirements and update times. In some use cases, this still yields satisfactory results.
In Sketching on the other hand, the updates are not stored directly but are rather
used to update a data structure – also called a sketch. The sketch holds information
to describe S and is usually problem specific. It provides an accurate solution for one
problem but cannot be used to solve a different problem. Both methods trade off space
against a permanent loss of information. While sampling is not a great basis for solving
most problems, the maintained data can generally be used for other problems as well
– just as the original stream would have been. Sketching, however, provides a more
powerful primitive for most problems but cannot be used in other cases, according to
Muthukrishnan [12, Section 5.1.1].
Sampling is a very intuitive approach but goes along with some drawbacks. For

most problems, sampling is not suitable because the sample size would have to be
very large in comparison to the domain in order to achieve acceptable results. If the
difference in required memory between sample and stream is only marginally small,
then the benefit of using sampled data in the first place is equally small. Space saving
is, however, not the only use for sampling. The streams items might be presented in
quick succession, so that an algorithm’s processing time doesn’t suffice. Since it is
impossible to process every single one of the updates, using samples is the next best
option. Sampled data is also not specific to any problem. The data can be used for
various applications. However, sampling is only possible in the Cash Register Model. In
the Turnstile Model, an item’s update value can have arbitrary large absolute values and
a positive or negative sign. The variance of an item’s component in the frequency vector
is therefore so large that sampling would yield poor accuracy or require an infeasible
sampling rate.
A sketch is a data structure representing a certain property of the underlying data.

The space reduction is achieved by reducing the dimensionality of the original data.
The data structure and the particularly desirable property linearity is defined below.
In this thesis, this technique is used to solve the Frequent-Estimation problem and
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is applied in Section 3.5.1 – the discussion of the CountSketch data structure.

Definition 5 ([15, Definition 5.2.1]). Let S1 and S2 be streams, let D(·) be a data
structure that is maintained via the updates of a stream, and let S1 ◦ S2 be the
concatenation of the two streams S1 and S2. The data structure D(·) is called a sketch
if there is an space-efficient algorithm υ(·) that combines D(S1) and D(S1) such that

υ(D(S1), D(S1)) = D(S1 ◦ S2).

Definition 6 ([15, Definition 5.2.2]). Let S be a data stream of size m. S consists of
updates si = (j, c) with i in [m] and j being drawn from a universe of size n. Let further
f(S) = (f1, . . . , fn) be the implicitly defined frequency vector obtained by adding c to
fj for every i in [m].
A data structure L(S) is called a linear sketch of S with dimension `(n) if it takes

values in a vector space of dimension `(n) and if it is a linear function of f(S).

Universal hashing is a technique used frequently in randomized algorithms. It creates
independent random variables from the stream. These variables can be nicely bounded
and subsequently provide a confidence interval and the associated probability of failure
in the form of an (ε, δ)-approximation. This method is defined and described in detail
in Section 3.4.1.
Another common pattern in randomized algorithms is to first find an unbiased

estimator of the desired result φ(S), that is a random variable that is expected to be
φ(S) but usually retains a high variance. The variance is then bound using various
results from statistics, mainly the inequalities of Markov and Chebyshev. Finally, the
variance is reduced by applying the median trick. This pattern is used and derived in
detail for the Tidemark algorithm in Section 3.4.1 and the CountSketch data structure
in Section 3.5.1. The median trick is, in accordance with this pattern, used in both
cases but is discussed in detail only in Section 3.4.1.
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3 Frequency Related Problems in
Data Streams

This section will focus on filtering specific items from the stream. Those that occur
only once, i.e., distinct elements, and those that occur frequently when compared to
other elements. These are also called dominant elements or heavy hitters.
Section 3.1 gives the HH()-function as a universal way of representing the set of

frequent or distinct elements, as well as the majority element, in S. Counter-based
algorithms and their results are discussed in detail in Section 3.2 and its sub sections.
The majority element can be computed exactly and in sublinear space. Using the
Misra-Gries frequent elements can be found approximately. Section 3.3 introduces
an important metric on data streams – Frequency Moments. The following sections
introduce two fully randomized algorithms. The Tidemark algorithm in Section 3.4.1
estimates the number of distinct elements and the CountSketch data structure is used
to estimate frequent elements in Turnstile streams.
Each subsection discusses one algorithm in detail. The algorithm’s functioning and

related results are discussed. Every subsection further contains an analysis of the
algorithm’s space and time complexity. The key characteristics of the algorithm will be
derived.

3.1 Frequent Elements in Data Streams

The problem of finding frequent elements in a stream is composed of two separate
problems. First, the frequency fe for each element e in [n] has to be computed and
secondly, the elements with the highest frequencies have to be selected and returned
as a set. This set is also referred to as the heavy hitters of a stream S by Cormode
and Hadjieleftheriou [13, p. 97] and Chakrabarti [15, Excercise 1-2]. It is retrieved by
comparing the actual frequencies fe for each e ∈ S with a given threshold frequency t.

Definition 7 ([13, Definition 1]). The frequency of an element e in the stream S =

s1, s2, ..., sm is given as

fe = |{i | si = e}|, for each i ∈ [m].

11



The heavy hitters set of S for a given threshold t with 0 ≤ t ≤ 1 is

HH(t, S) = {e | f(e) > tm}.

A threshold of t > 50% constitutes the Majority problem. A solution to this
problem returns either one element – the majority element – or ⊥ as none. As a more
general problem, Frequent requires a set of the k most frequent items in S. Setting
t = 1

k+1
, HH(t, S) is the expected solution for Majority if k = 1 or Frequent if

1 < k < m. The number of elements returned is then at most k. This is trivially true,
since fe > 1

k+1
= t for every e ∈ HH(t, S) and

|HH(t, S)| ≥ k ⇒
|HH(t,S)|∑

e=1

fe > m.

Theorem 1 ([15, p. 8]). Any one-pass algorithm that computes HH(t, S) deterministi-
cally requires Ω(min(m,n)) space.

Proof Sketch. This follows from an information-theoretic argument given by Cormode
and Hadjieleftheriou [13, p. 98]: An algorithm that solves the Majority problem
receives a stream S1 of length m

2
as input. The elements e in S1 are drawn from a

universe U with |U | = n = m
2
. Every e is distinct in S1, resulting in a frequency of

fe = 1 for all e. The algorithm then receives another stream S2 of length m
2
, consisting

of only one arbitrary element a in U . The frequency of a in S2 is hence fa = m
2
. This is

also the threshold frequency t = m
2
in the Majority problem for the combined stream

S = S1 ◦ S2 of length m. The algorithm returns

HH

(
1

2
,S
)

=

a, if a ∈ S1

⊥, else.

Deciding a ∈ S1 requires all n distinct elements e in S1 to be stored, which needs
Ω(min(m,n)) = Ω(n) bits of memory.

A similar argument can be given for the generalized Frequent problem. A deter-
ministic and exact algorithm requires a complete history of received elements and their
respective frequencies to be accessible at all times, according to Alon et al. [9, p. 3].
This can be accomplished by maintaining a counter up to the stream’s length m for
every possible element, requiring O(n · logm) of space.

Providing memory space of this size becomes infeasible for large n or impossible for
m =∞. The space requirements of deterministic one-pass algorithms can be reduced
by estimating the solution rather than providing an exact solution. This introduces an
error and motivates a relaxed heavy hitters definition:
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Definition 8 ([13, Definition 2 and Definition 3]). Given an error ε ≤ 1 and a threshold
t ≥ 0, the relaxed heavy hitters set of a stream S with length m is

HH∗(t, S) = {e | f(e) > (t− ε)m}.

Any frequency estimation algorithm used in computing HH∗ must therefore return a
frequency estimate f ∗e , with

fe − εm ≤ f ∗e ≤ fe.

The following chapter on counter-based algorithms provides solutions to the Distinct,
Frequent, and Majority problems. All three can be solved deterministically and
precise with two passes but become probabilistic if only one pass is allowed. For the
Distinct problem this is, however, only a theoretical result since such a solution would
require O(min(m,n)) space in the worst case.

3.2 Finding Frequent Elements: Counter-based

Algorithms

3.2.1 Boyer-Moore Algorithm

The first algorithm that could plausibly be used in the streaming scenario was presented
by Boyer and Moore in 1980 and published in 1991 in [6]. This algorithm, MJRTY,
returns HH(1

2
, S) if a majority element exists. If HH(1

2
, S) = ∅ an arbitrary element is

returned.

Algorithm 1: MJRTY – Boyer-Moore Majority Vote Algorithm
Data: Updates si to stream S with i ∈ [m]
Result: The majority element if HH(1

2
, S) 6= ∅, an arbitrary si otherwise

cm ← si // Initialize majority candidate cm with first update si
cf ← 1 // Initialize the counter with fcm = 1 at time i
for i← 1 to m do

if cm = si then
cf ← cf + 1

else
if cf > 0 then

cf ← cf − 1

else // The sum of all elements e 6= cm is greater than fcm
cm ← si
cf ← 1

return cm
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The algorithm’s functioning is based on a pairing argument. If a majority element
exists, its frequency would be larger than the frequency for all other elements e in
S combined. The counter cf , after all items have been processed by the algorithm,
therefore represents

cf = fcm −
∑

fe, ∀e ∈ S1.

If, however, such an element does not exist, the last majority candidate cm is returned
nevertheless. This behavior can only be corrected by iterating a second time over the
data. Then fcm can be computed exactly and the extended algorithm returns

MJRTYextended(Si) =

cm, if fcm > i
2

⊥, else.

Analysis. The extended MJRTY algorithm requires constant time to process individual
updates si, i.e., timeproc = O(1) since maximally two comparisons are needed per item.
Counting the occurrences of cm in the second pass requires O(m) time. After item si was
received the streams length is m = i, resulting in a computing time of timecomp = O(i).
The first pass needs space for storing the majority candidate cm and a counter for the
relative frequency cf with a maximal value of m. Storing cm requires a constant amount
of bits – namely the maximum size of the streams updates si. Maintaining cf needs
O(logm) space, which is then also the total space complexity of the algorithm.

3.2.2 Misra-Gries Algorithm

Misra and Gries introduced an algorithm to solve the generalization of the Majority

problem – the Frequent problem – in 1982 [3, Algorithm 3]. For their modification of
the original algorithm Karp et al. [11, Theorem 2.2] later proved a space complexity of
O(k) and constant worst-case time requirements for processing items, i.e., timeproc(si) =

O(1) for all i in [m]. Deriving timecomp(S) = O(m) from this, shows that this is a better
result than the one by Misra and Gries [3, Theorem 2]: O(m · log k). The algorithm is
very similar to the MJRTY algorithm but instead of a single counter, k counters for the
k most frequent elements in S are stored and maintained. Theorem 2 is a generalization
of the pairing argument given in Section 3.2.1 and is used to illustrate the principle
of counter-based algorithms for finding frequent elements in streams. The following
definitions are needed.
The usual set notation is used both for sets and multisets. This definition is an

extended version of the similarly defined frequency vector f of streams in the Cash
Register or Turnstile Model.
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Variables of the Solution Majority Frequent Distinct

cardinality k 1 1 < k < m m
threshold t 1

1+1
= 1

2
1
2
< φ < 1

m+1
1

m+1

Table 3.1: Representing Solutions for Majority, Frequent, Distinct via HH(·)

Definition 9 (multiset). A multisetMS is a 2-tuple (C,m) where C is a set of distinct
elements e in MS and m is a vector holding the number of occurrences for each element
e in MS. With elements drawn from an universe U , the size of m is given as |U |
and |C| components have a value above 0. The number of occurrences is called the
multiplicity mMS(e) of e in MS.

The set of distinct elements e in MS is called its support, yielding

support(MS) := {e ∈ U |mMS(e) > 0} = C.

The total number of instances over all elements is defined as

|MS| :=
∑

e∈support(MS)

mMS(e).

A union of two multisets MS1 = (C1,m1) and MS2 = (C2,m2) is defined as

MS1 ∪MS2 := (C1 ∪ C2,m1 + m2).

Definition 10. The distinct elements D of a stream S is a set of elements e from the
universe U that occur with a frequency fe ≥ 1 in S:

D(S) = {e | fe ≥ 1,∀e ∈ U}

The Distinct problem is concerned with finding the set of distinct elements. One
part of the problem – Distinct-Estimation – will be discussed in detail in Section 3.4
but as Definition 10 is needed already in this section, it is noteworthy to point out that
Distinct, just like Majority is a special case of Frequent. As such the HH(t, S)

function describes a solution by setting the threshold t = 1
k+1

accordingly. For any
multiset A with |support(A)| = m, HH( 1

k+1
, A) returns maximally k elements, where

each element’s frequency is above m
k+1

. For k = m this returns maximally m distinct
elements – if no copies occur in A. The elements are distinct because they satisfy
{e | f(e) > m

m+1
> 1,∀e ∈ U} of Definition 10. An overview of different frequency

related problems and their solutions represented as an instance of HH() is given in
Table 3.1.

Definition 11 ([3, Chapter 3]). Let reducer(k,A) be a function that operates on
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an integer k and a multiset A as input. The function returns another multiset B,
that is retrieved from A by repeatedly removing k distinct elements, until either
|support(B)| ≤ |B| < k or the maximal recursion depth r is reached. If r is omitted,
then the default behavior is reduce(k,A) = reduce∞(k,A).

Example ([3, Chapter 3]). Given a multiset A = {1, 1, 2, 3, 3}, the result of reduce(2, A)

may be any one of the following sets: {1}, {2}, {3}. The definite result emerges from a
random recursive decent, with equal probabilities at each step.

reduce(2, {1, 1, 2, 3, 3})

reduce(2, {1, 3, 3})

{3}

reduce(2, {1, 2, 3})

{3} {2} {1}

reduce(2, {1, 1, 3})

{1}

Figure 3.2: Recursive Descend of reduce()

The correctness of the Misra-Gries algorithm is based on the generalized pairing
argument, formalized in the following theorem.

Theorem 2 ([3, Theorem 1]). Given a multiset A containing m elements. Only elements
in reduce(k + 1, A) may occur more than m

k+1
times in A.

Proof. Let A be a multiset containing m elements. Deleting k + 1 elements from A can
be done for a maximum of m

k+1
times, since |A| < k + 1 after the m

k+1
-th deletion. The

number of distinct elements e in A is always less or equal to the number of total items
in A:

|support(A)| = HH

(
1

m+ 1
, A

)
≤ |A| < k + 1 (3.1)

reduce() stops and returns a reduced multiset if Equation 3.1 is true. Any element
left in R = reduce(k + 1, A) has been deleted between 0 and m

k+1
times. Therefore an

element in R can have a frequency e, where 1 ≤ fe ≤ m, but any element that was
deleted through reduce() cannot have a frequency above m

k+1
. Thus, for any multiset A,

there is no e in A such that e is in reduce(k + 1, A) and fe > m
k+1

.

The original algorithm given by Misra and Gries [3, Algorithm 3] makes direct
use of Definition 11 and Theorem 2 and is described in detail as Algorithm 2 given
below. The Misra-Gries algorithm solves both the frequency estimation subproblem
and the Frequent problem at the same time. The multiset D, that is returned by the
Misra-Gries algorithm, holds an approximate solution to the Frequent problem. The
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estimated set of frequent items HH∗ is given as the set of distinct elements support(D)

and the multiplicity of an element e in D represents the frequency estimate f ∗e .
The Frequent problem expects the k most frequent distinct elements e from a

stream S. The relative error ε of the estimated solution is controlled by k, such that
ε = 1

k+1
. This is derived from the following intuition: The higher k the more counts of

elements e have to be estimated. This uses more space and thus keeps more information,
which in turn reduces the chance for an error. More formally the bounds for f ∗e are
given in Theorem 3.

Theorem 3 ([15, Theorem 1.3.1]). Let e be an arbitrary token in [n] and let k > 0 be a
constant integer. The Misra-Gries algorithm provides an estimate f ∗e of the true value
fe, satisfying

fe −
m

k + 1
≤ f ∗e ≤ fe.

Proof. The upper and the lower bound can be proved separately.
Case f ∗e ≤ fe: The multiplicity of e is increased if and only if the stream’s current item

si matches e. Hence an increase to the true frequency fe of one will deterministically
cause an increase of one in the estimated frequency f ∗e .

Case f ∗e ≥ fe− m
k+1

: An error in the estimation may only occur when |support(D)| > k,
since this would invoke reduce(). If an element e in D had, at one point, a multiplicity
mD(e) > 0 and this mD(e) was later decremented by the algorithm but remained above
zero, mD(e) = f ∗e deviates from the true total frequency fe. This is because mD(e), at
this point, represents the relative frequency of e in comparison to other frequent items.
This relative frequency is obtained solely by decrementing by one for a maximum of
m
k+1

times.
Put together this satisfies Definition 8 and proves Theorem 3.

The analysis of this algorithm requires the definition of the AVL data structure.

Definition 12 (Georgy Adelson-Velsky & Evgenii Landis, 1962). A AVL tree is a data
structure named after its inventors Georgy Adelson-Velsky and Evgenii Landis.

The basic tree T is defined as T = (V,E) where V is a set of vertices or nodes v ∈ V
and E is a set of edges e ∈ E between two vertices v1 and v2, given as e = (v1, v2). An
edge describes a relation between a parent node v1 and a child node v2. Nodes can
contain either a single key or a tuple of a key and an additional value. A root node r
has no parents, i.e.,

∀v ∈ V @e ∈ E : e = (v, r)

while a leaf node f has no children, such that

∀v ∈ V @e ∈ E : e = (l, v).
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Algorithm 2: The original Misra-Gries algorithm
Data: Updates si to stream S with i ∈ [m]
Result: A multiset D of elements e with f ∗e >

m
k+1

; A counter cd = |support(D)|
cd ← 0
D ← {} // Initialize D as a empty set
for i← 1 to m do

if si /∈ D then
D ← D ∪ si
cd ← cd + 1
if cd = k + 1 then

D ← reduce1(k + 1, D) // Delete k + 1 distinct occurences
cd ← |support(D)| // Update cd accordingly

else if si ∈ D then // si is not distinct in D
D ← D ∪ si

return D, cd

The height of a tree h(T ) is then given as the longest path between the root node r
and a leaf l. A path P (r, l) = v1, . . . , vi−1, vi is a sequence of nodes where r = v1 and
l = vi and every consecutive two nodes share an edge:

∀vj ∈ P (r, l) ∃e ∈ E : e = (vj, vj+1).

A tree T is a AVL tree if the following conditions are fulfilled:

- T is a binary tree: Every node v ∈ V has a maximum of two children.

- T is a binary search tree, i.e., for every given node v ∈ V contains the left subtree
only keys that are smaller than all keys contained in the right subtree.

- For every node v ∈ V : The difference of the left subtrees height and of the right
subtrees height is the v’s balance factor BF (v) and |BF (v)| ≤ 1.

Analysis. Misra and Gries [3, Chapter 4] implement the multisetD = (support(D),mD)

as an AVL tree with cd = |support(D)| = k+ 1 nodes. Each node j, with 1 ≤ j ≤ k+ 1,
is a tuple (vj, cj) where vj in support(D) is the value of an distinct element in D and
cj = mD(vj) is its multiplicity. This takes blog nc + 1 space for each value vj and
blogmc + 1 for each counter cj. Since there are at most k distinct elements in the
result, the total space is O(k · (log(m) + log(n))).

Ensuring that all conditions of an AVL tree are maintained throughout the insertion
and deletion of nodes is called self balancing. This requires time to compute but
allows for searching, inserting and deleting elements in O(log k) worst-case time. The
time required for rebalancing the tree once necessary is constant and can therefore
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be attributed to the inserting and deleting operations without altering their time
complexity class.

The algorithm’s runtime is dominated by the operations on D. For every item si in
the input stream S the condition si ∈ D needs to be checked. This requires searching
the AVL tree representation of D. Since D holds a maximum of k + 1 nodes a single
search needs O(log k).
If |support(D)| < k + 1 and si is not in D one element has to be inserted into the

tree. This is done in O(log k). If, on the other hand |support(D)| = k + 1 and si /∈ D,
reduce1(k + 1, D) is invoked decrementing k + 1 elements in constant time and deleting
a maximum of k + 1 elements in O(k · log k) total time.
This yields a per item processing time of timeproc = O(k · log k) in the worst case

and an amortized timecomp = O(m
k
· k · log k) = O(m · log k) since this reduction may

occur maximally m
k+1

times over a stream of length m.

A trivial second pass over the data would solve Frequent exactly by calculating fd
for every distinct element d in support(D) and delete every d from the solution where
fd <

m
k
. The time and space complexity remain the same for this extended Misra-Gries

algorithm as was the case for the original algorithm.

3.2.3 Modified Misra-Gries by Karp et al.

The core information needed for solving Frequent is a set of distinct values and their
respective frequencies. In the original algorithm given by Misra and Gries [3] these
values were kept in a multiset. A multiset can be implemented as an AVL tree and
allows for efficient search, insert, and delete operations – all done in logarithmic time
depending on the tree’s size.
Karp et al. [11] modify the original account by using a map instead of a set data

structure. A map M represents a number of associations between a set of keys as
keys(M) and their values M [l] with l in keys(M). Here, the distinct values are keys to
their respective frequencies as values. This results slight modifications yields Algorithm 3.
A graphical overview of the data structures used both in the original and the modified
Misra-Gries algorithm is given in Figure 3.3.

Definition 13 (Hash table, based on Knuth [8, Chapter 6.4]). Given a hash function
h : L→ I that maps keys l ∈ L to hash values i ∈ I and where |L| ≤ |I|.
A hash table HT is a data structure combining hash functions and a strategy for

collision resolution. A collision occurs if l1 6= l2 and h(l1) = h(l2). The memory space
of HT is partitioned into individually addressable buckets. These buckets hold any
amount of key-value pairs (l, v) and are accessible at h(l). The collision resolution states
how multiple entries in a bucket are represented, for example as a linked list.
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Algorithm 3: Modified Misra-Gries Algorithm by Karp et al.
Data: Updates si to stream S with i ∈ [m]
Result: A map M with keys(M) as elements e with f ∗e >

m
k+1

and M [e] = f ∗e as
the value to key e

M ← {} // Initialize M as an empty map
for i← 1 to m do

if si ∈ keys(M) then
M [si]←M [si] + 1

else // Initialize a new key-value pair, since si /∈ keys(M)
keys(M)← keys(M) ∪ si
M [si]← 1

if |keys(M)| > k then // Keep at most k key-value pairs in M
foreach l ∈ keys(M) do

M [l]←M [l]− 1
if M [l] = 0 then

keys(M)← keys(M) \ l // Remove l from M

return M

M is implemented as a hash table. This yields space in O(k) and improves the per
item processing time to an amortized timeproc = O(1) according to Karp et al. [11,
Theorem 2.2 and adjoining proof]. The authors argue that for each received item si

only a constant number of operations are needed if no deletions occur, i.e., while the
number of key-value pairs in M is below or equal to k. In this case the condition
si ∈ keys(M) needs to be checked, which due to M ’s implementation as a hash table is
done in amortized O(1). If deletions occur, the time required could be attributed to
the original items processing time, since only items added as keys may be deleted later
on, thus retaining amortized constant time.

Example. Let E = {1, 1, 2, 3, 1, 2, 2, 3, 1, 2} be a multiset. Following Definition 9,
this can be represented as a 2-tuple E = (support(E),mE) consisting of the set of
distinct elements support(E) = {1, 2, 3} and a vector of the frequency, also called the
multiplicity, for each of these elements as

mE =

mE(1)

mE(2)

mE(3)

 =

4

4

2

.
The sum of all individual frequencies is equal to the total number of elements in E

denoted as |E|: ∑
e∈[3]

mE(e) = |E|.

20



In the original Misra-Gries algorithm an AVL tree is used to store this information
while the algorithm modified by Karp makes use of a hash table. The following is a
graphical illustration of these two data structures representing the multiset E.

4 ∅h(1)

4 ∅h(2)

2 ∅h(3)

Hashtable

2 4

1 4

∅ ∅

3 2

∅ ∅

AVL tree

Figure 3.3: Data Representation and Structure in the Misra-Gries Algorithm

The exact runtime of operations on a hash table depends on their concrete implemen-
tation, i.e., the choice of hash function and the collision resolution. Nevertheless, it can
be regarded to be O(1) on average for searching, inserting and deleting. Searching HT
for (l, v) is described in Algorithm 4, due in part to Knuth’s Algorithm C [8, p. 521]:

Algorithm 4: Searching a Hash Table
Data: A key K, a hash function h(), and a hash table HT
Result: A associated value v, or ⊥ if l /∈ HT

1 i← h(l) // Computing HT’s index by hashing
2 if HT (i) 6= ∅ then
3 foreach (l, v) as e ∈ HT (i) do // All possible entries at HT (i)
4 if K = e[0] then // Compare the entries key with the input key
5 return e[1]

6 return ⊥

The runtime of Algorithm 4 is dominated by the runtime of the hash function h in
line 1 to compute the index i and by the for loop, iterating over all possible values
in bucket HT (i), in line 3. The hash functions time complexity can be considered
constant, but the number of operations required in the for loop depend on HT ’s load
factor α and probability. The load factor is α = k

B
with k being the maximum number

of reported elements as usual and B being the number of buckets in HT , i.e.,

h(l) = i : l ∈ [k] and i ∈ [B].

With HT in O(k) there are k buckets resulting in α = 1. In theory there would
be enough buckets to assign exactly one key-value pair (l, v) to one bucket but this
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h(1)

h(2)

h(3)
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2 4 ∅
HT

V

L

Figure 3.4: Data Representation for the Modified Misra-Gries Algorithm

assignment is done via h() and is therefore probabilistic. There are no hash functions
guaranteeing collision free operation and hence buckets with multiple entries in a bucket
have to be accounted for. In fact, the worst case performance happens if all keys l ∈ [k]

are mapped to the same h(l) = i. Then the worst case time complexity for processing
individual items si becomes dependent on k. If a singly linked list is chosen as the
collision resolution, timeproc is in O(k) in the worst case – worse than the AVL trees
guaranteed O(log k).
The algorithm stores k elements and their respective counter. Once there are more

distinct items in S than there are buckets in HT , i.e.,∣∣∣∣HH( 1

k + 1
, S

)∣∣∣∣ > B with k = m = |support(S)|

the counters for k elements need to be decremented and deleted from HT if the
decremented counter is zero. To reduce the amortized processing time in O(1) to
expected worst-case constant time Karp et al. [11, p. 54] augment a hash table with
a doubly linked list L holding every l ∈ k and a linked list V holding their respective
counts. This reduces the complexity during deletion to transforming a pointer from an
l ∈ L to a v ∈ V . This structure is detailed in Figure 3.4 using the same data as in first
Example.

Analysis. The accuracy of the modified algorithm is the same as the original one. An
approximation HHε, where the relative error ε is controlled by k = 1

ε
, can be provided

in a single pass but an exact solution requires two passes.
Since the selection and deletion operation are extensions of the search operation

of Algorithm 4 the time complexity is timeproc = O(1) and timecomp = O(m) for
both single pass and dual pass operations as per Karp et al. [11, Theorem 2.2 and
Corollary 2.3]. Since these time bounds include hashing operations their actual time
requirements are highly dependent.
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3.3 Frequency Moments

Frequency moments are an important metric about a stream’s data. They are also
convenient for the main focus of this thesis – the general Frequent problem and its
solution. The connections of these two topics is established in the following definition.

Definition 14 ([9, Introduction]). Given a stream S as a sequence of items si with
i ∈ [m] and si ∈ [n]. The frequency of a given element si is the cardinality of the set of
indices j ∈ [m] such that si = sj yielding

fi = |{j | sj = i}|, for all i ∈ [n] and j ∈ [m].

The k-th frequency moment of S is defined as

Fk(S) =
n∑
i=1

fki .

The concept of frequency moments was first introduced by Alon, Matias and Szegedy
[9, p. 2]. According to the authors, frequency moments provide useful statistics on a
set such as the degree of skew in the data. This information is of particular interest
in database applications. Values like the number of distinct elements in a relation
and estimates of join sizes are used in database query optimization, as pointed out by
Chakrabarti [15, Section 6.1].
Fk is defined for every real k > 0. Let f = f(S) = (f1, f2, . . . , fn) be a vector of

each elements frequency in the stream. F1 is the sum of all frequencies and hence the
length of stream S as F1 =

∑
i fi = m. This is equivalent to the cardinality |S| when

viewing S as a multiset as the sum of every distinct elements e multiplicity in S. With
cs = support(S) this yields

F1 =
∑
i∈[n]

fi = m =
∑
e∈cs

mS(e) = |S|.

The exact value of F1 can be obtained by maintaining a single binary counter, consuming
Θ(logm) bits of space.

The second frequency moment is the dot product of f with itself. This value is
referred to as the repeat rate or Gini’s index of homogeneity by Alon et al. [9, p. 1]
and is used in computing the surprise index SI, as described by Good [5, p. 90]. As a
relation between the probability of a specific realization of a random variable P (R = r)

and the expected value of that variable E(R) as

SI =
E(R)

P (R = r)
,
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this index formalizes how much of a surprise the realization of R as r is. A realization
r should be expected if SI is close to one. A high value for SI on the contrary means
P (R = r) is small, making r a rare occurrence, as well as that there are other realizations
with far higher probabilities. The frequencies of elements e in S contained in f are
absolute while the probability of their occurrence P (S = e) is relative to the total
number of occurrences. This number is equal to the length of the stream and given in
this model as

∑
i fi = m. Analogous to f a vector of probabilities p is derived by

p = (p1, p2, . . . , pn) =

(
f1

m
,
f2

m
, . . . ,

fn
m

)
=

1

m
f .

The expected value for the frequency of an element occurring in S is then the sum of
all frequencies weighted by their respective probability

E(f) =
n∑
i=1

pifi =
n∑
i=1

fi
m
fi =

1

m

n∑
i=1

f 2
i =

1

m
F2(S).

This allows for a more intuitive interpretation of the second frequency moment where
F2 is an absolute measure of a sequence’s frequencies that is closely related to the
relative expected value of its frequencies. F2 does not require m which is beneficial
in the streaming scenario where m might be infinite or unknown. Setting m = i for
each update si is unfeasible if i is very large and log i exceeds a memory limit or at
least computation intensive since p needs to be re-computed after every update si. The
surprise index of a stream’s frequencies is identical whether the expected value, and
therefore m, or the second frequency moment is used in its computation:

SIi =
E(f)

pi
=

1
m
F2(S)
fi
m

=
F2(S)

fi
.

F0 is the number of distinct elements in S. It is derived from Definition 14 and the
convention of 00 := 0 so that F0 is incremented by one only if fi > 0. When viewing S
as a multiset, F0 is equivalent to the cardinality of support(S) with

F0 =
∑
i

f 0
i = |{e ∈ U | e ∈ S and f(e) > 0}| = support(S).

3.4 Estimating the Number of Distinct Elements

This section is concerned with estimating the number of distinct elements in a stream
also called 0-th frequency moment. F0 is just the quantity of those elements and
contains neither the element itself nor any additional information on them. Regardless,
maintaining F0 provides valuable insights in a number of scenarios. One of which is
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laid out in detail as motivation below.
The set of distinct elements D of a stream S could theoretically be computed using the

Misra-Gries algorithm discussed in Section 3.2.2. This would mean setting the maximum
number of returned items k to the length of the stream m since, with the streams
elements being drawn from a universe U with |U | = n > m and no element occurring
more than once follows that |D| = m. The space requirements of this algorithm are
however linear with regards to k, hence exceeding the sublinear space requirement for
k = m and a large D. Choosing a smaller k reduces the required space but opens
the possibility of not including all distinct elements in the returned set. Keeping an
estimate of F0 while maintaining k Misra-Gries counters would ensure that D contains
every distinct element as long as F0 ≤ k. If that is not the case, this information may be
used to decide if the available memory to the Misra-Gries algorithm could be extended
or if the algorithm should be kept as is and its result be interpreted accordingly.
This problem is called Distinct-Elements by Chakrabarti [15, Section 2.1]. It is

stated there that this problem cannot provably be solved exactly and deterministically
in sublinear space. We shall therefore focus on providing an (ε, δ)-estimate of F0 where
there are random elements in the algorithm, thus ε, δ > 0.

3.4.1 The Tidemark Algorithm

The algorithm discussed here is originally due to Flajolet and Martin [4, Section 2] and
was later modified by Alon et al. [9, Section 2.3]. It is called the Tidemark algorithm by
Chakrabarti [15, Section 2.2] and allows for an introduction to two important techniques
in data stream processing – universal hashing and the median trick.

Definition 15 (random variables). A set of random variables {X1, . . . , Xl} is k-
independent if

Pr

[⋂
i∈J

Xi = xi

]
=
∏
i∈J

Pr[Xi = xi]

holds for every subset J ⊆ [l] with |J | ≤ k and every realization xi.

Definition 16 ([15, Section 2, Exercises]). Let X and Y be finite sets and let H be a
family of functions such that H = {h | h : X 7→ Y }. Let further h ∼R H denote that h
is being chosen uniformly and randomly from H.
Two conditions must hold for H to be k-universal.

- The random variable h(x) is uniformly distributed in Y for every x in X.

- A set of k hashed values {h(x1), . . . , h(xk)} is k-independent given a set of k
values {x1, . . . , xk} where for all i, j in [k], i 6= j implies xi 6= xj.
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For this section 2-universal families of hash functions are of particular interest. With
h randomly chosen from such a family the values of h(x) are uniformly distributed in
Y for all x ∈ X and the probability of a specific realization Pr[h(x) = y] = 1

|Y | , with
y ∈ Y , is independent from another, second realization. This reduces the probability
for collisions, i.e., h(x1) = h(x2) for all x1, x2 ∈ X with x1 6= x2. Definition 16 implies
that this probability, for all y1, y2 ∈ Y , is

Pr[h(x1) = y1 ∩ h(x2) = y2] =
1

|Y |2
.

This applies for y1 = y2 or y1 6= y2 regardless.

Example. Given a prime number p and two random numbers a, b ∈ [p], then H :=

{h(x) = a · x+ b mod p} is a 2-universal family of hash functions.

The Tidemark algorithm given in Algorithm 5 works as follows. Every update si is
hashed via h ∼R H and the resulting values h(si) are then considered to be uniformly
distributed in [n]. A helper function zeros() is applied in order to retrieve the number
of trailing zeros of the binary representation of h(si). More formally, zeros(p) is defined
for every p > 0 as

zeros(p) = max({l | 2l divides p}).

The maximal value of zeros(h(si)) for all i in [m] is maintained in z as the maximal
number of trailing zeros over all hash values. With F0(S) being the number of distinct
values in S, z is used as an approximation for F0(S)’s binary representations length in
bits. This value is converted to decimal with 2z+

1
2 and returned.

Algorithm 5: The Tidemark algorithm by Alon et al.
Data: Updates si to stream S with i ∈ [m] and si ∈ [n]

Result: 2z+
1
2 as an estimate for F0

Choose random h : [n] 7→ [n]
z ← 0
for i← 1 to m do

if zeros(h(si)) > z then
z ← zeros(h(si))

return 2z+
1
2

The algorithm’s functioning is not apparent since the number of distinct elements
is limited by the length of the stream, i.e., 1 ≤ F0 ≤ m if n � m is assumed, while
the number of trailing zeros is a function of the size of the universe n with values in
{0, 1, . . . , blog(n− 1)c}. The intuition is rather based on a scarcity argument. The
streams updates are mapped uniformly to [n] after hashing. This means that the
probability of h(si) being a specific value is 1

n
, hence only depending on n and the same
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for all si. The probability of zeros(h(si)) realizing as a specific value on the other hand
is inversely proportional to that value. This is exemplified with the following cases.
A value of zero for zeros(p) means that there are no trailing zeros. This is equal

to the last bit of p’s binary representation being a 1 which in turn applies to every
uneven number in [n]. Since every other number in [n] is uneven the probability of
zeros(p) = 0 is 1

2
. With every even number having at least one trailing zero the same

argument applies here, yielding Pr[ zeros(p) ≥ 1] = 1
2
as well. Two or more trailing

zeros occur in 410 = 100b or multiples thereof. The potential values for p are therefor
in {4, 8, 12, 16, . . .} containing n

4
possibilities. This implies Pr[ zeros(p) ≥ 2] = 1

4
.

Following this line of reasoning, for a number of trailing zeros greater two, this further
yields

Pr[ zeros(p) ≥ 3] =
1

8
, Pr[ zeros(p) ≥ 4] =

1

16
, Pr[ zeros(p) ≥ 5] =

1

32
, . . . .

A higher value for zeros(p) is hence an increasingly rare event. Let P1 = {p1, . . . , pk}
and P2 = {p1, p2, . . . , pl} be two sets of uniformly distributed values and let the maximal
number of trailing zeros for all values in a set P be given as z(P ) = max{zeros(pi) | i ∈
[|P |]}. The probability of z surpassing a threshold t is then also inversely proportional
to t which can be formalized as

t1 > t2 ⇒ Pr[ z(P ) ≥ t2] > Pr[ z(P ) ≥ t1] .

If however the two events z(P1) ≥ t2 and z(P2) ≥ t1 with t1 > t2 both occur, i.e., have
a probability of one, then |P1| > |P2| can be assumed on average. For the Tidemark
algorithm this translates to the following assumptions:

- The inequality zeros(h(d)) ≥ log(F0) holds for at least one of the distinct items
d in F0

- No distinct item satisfies zeros(h(d))� log(F0)

The formal analysis of this algorithm requires some key results from the statistics
field. These results are accepted as fact and are not discussed further.

Theorem 4 (Markov’s inequality). Let X > 0 be a random variable and a ≥ 0 be
an arbitrary but fixed real number. The probability that X is at least a is at most the
expectation of X divided by a:

Pr[X ≥ a] ≤ E[X]

a
.

Theorem 5 (Chebyshev’s inequality). Let X > 0 be a random variable with finite
expectation and variance. The probability for a divergence between X and its expected
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value E[X] of at least k is less or equal the variance of X divided by k2:

Pr[|X − E[X]| ≥ k] ≤ V ar[X]

k2
.

Theorem 6 (Boole’s inequality). Let {R1, . . . , Rn} be a finite set of events. The
probability of the union of this set is at most the sum of each event’s individual
probability:

Pr

[
n⋃
i=1

Ri

]
≤

n∑
i=1

Pr[Ri].

It can now be shown that Algorithm 5 provides an approximation of the num-
ber of distinct elements F0 in a stream and therefore solves Distinct-Estimation

approximately.

Theorem 7 ([9, Proposition 2.3]). Let S be a stream and let F ∗0 (S) be the approximation
of F0(S) returned by the Tidemark algorithm. The probability that the ratio between
approximation and true value is not between 1

c
and c is for all c > 2 at most 2 ·

√
2
c
. In

symbols this equates to

Pr

[
F ∗0 (S)

F0(S)
≤ 1

c
∪ F

∗
0 (S)

F0(S)
≥ c

]
≤ 2 ·

√
2

c
.

Proof. Given an element e in [n] that occurs at least once in the stream S, i.e., f(e) ≥ 1,
and a natural number t ≥ 0 as a threshold variable. Let Xt,e be a random variable,
indicating whether the number of zeros in e exceeds t, defined as

Xt,e =

1, if zeros(h(e)) ≥ t

0, else

and Yt be the number of hashed values h(e) that have at least t trailing zeros. This
is achieved by summing Xt,e over all distinct elements in S. With the set of distinct
elements given as D(S) = {d | f(S, d) ≥ 1}, following Definition 10, this yields

Yt =
∑

e∈D(S)

Xt,e.

Let further z∗ denote the last value of z after the algorithm finished processing S. This
value is greater or equal t if and only if Yt > 0. Clearly, z∗ > t implies that at least
one Xt,e = 1 and therefor that their sum

∑
e∈D(S) Xt,e ≥ 1. The other direction also

holds since Yt > 0 implies that at least at one time over the run time of the algorithm
z > t was true. With z∗ as the maximum of all of z’s values, z∗ > t follows directly. An

28



equivalent form of this is
Yt = 0⇔ z∗ ≤ t− 1. (3.2)

With h(e) being uniformly distributed in [n] and following the initial intuition the
expected value of Xt,e can be formalized as

E[Xt,e] = Pr[zeros(h(e)) ≥ t] = Pr
[
2t divides h(e)

]
.

In the streaming scenario a large universe U , and therefor 2t < |U | = n, can reasonably
be assumed. This yields

Pr
[
2t divides h(e)

]
=

1

2t

if for simplicity n is further assumed to be a power of two. The expected total number
of values h(e) that satisfy zeros(h(e)) ≥ t is given as

E[Yt] = E

 ∑
e∈D(S)

Xt,e

 =
∑

e∈D(S)

E[Xt,e] =
F0

2t

This is due to the linearity of expectation and the, by definition, equation of F0 and
the number of distinct elements in S, |D(S)|.
The variance of Yt is equal to the sum of the variances of each Xt,e due to the

2-independence of the random variables Xt,e for every e in D(S) yielding the first line
of equation 3.3. With Xt,e realizing as either 0 or 1, X2

t,e = Xt,e is apparent. Combining
this with V ar[Xt,e] = E[X2

t,e] − E[Xt,e]
2 results in the inequality 3.4. Together this

gives an upper bound for the variance in the total number of ”large“ values e, as in
zeros(e) ≥ t, in S:

V ar[Yt] = V ar

 ∑
e∈D(S)

Xt,e

 =
∑

e∈D(S)

V ar[Xt,e] (3.3)

≤ E[X2
t,e] = E[Xt,e] =

F0

2r
. (3.4)

The total number of distinct hash values of a stream of length m that have at least
t trailing zeros Yt can either be zero or a natural number in [m]. Yt > 0, i.e., Yt is a
natural number, is equivalent to the event Yt ≥ 1. Applying Markov’s inequality to this
event yields:

Pr[Yt ≥ 1] ≤ E[Yt]

1
=
F0

2t
. (3.5)

In order to find an upper bound for the remaining case Yt = 0 using Chebyshev’s
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inequality, the validity of

Pr

[
Yt = 0 ∪ Yt ≥ E[Yt] +

F0

2t

]
= Pr

[
|Yt − E[Yt]| ≥

F0

2t

]
has to be established first. The event on the left side of the equation trivially occurs if
Yt = 0 or Yt ≥ E[Yt] + F0

2t
. With E[Yt] = F0

2t
the same holds for the event on the right

side. Both events don’t occur for 0 < Yt < E[Yt] + F0

2t
and do occur for every other

possible realization of Yt. Hence the two events are equivalent and their probabilities
equal.
The probability of an event R1 can be bound from above by the probability for the

two mutually exclusive events R1 and R2. This follows immediately with Pr[R1 ∪R2] =

Pr[R1] + Pr[R2] and Pr[R2] ≥ 0. Applying this method to Yt results in

Pr[Yt = 0] ≤ Pr

[
Yt = 0 ∪ Yt ≥ E[Yt] +

F0

2t

]
.

Combining the two last results with Chebyshev’s inequality finally yields

Pr[Yt = 0] ≤ Pr

[
|Yt − E[Yt]| ≥

F0

2t

]
≤ V ar[Yt](

F0

2t

)2 =
2t

F0

. (3.6)

It can now be shown, that the value returned by Algorithm 5 is indeed an approx-
imation of F0. This return value is denoted as F ∗0 = 2z

∗+ 1
2 . Let c > 2 be a constant

natural number and let a be the smallest possible number in N0 such that the upper
bound 2a+ 1

2 ≥ c · F0 is true. This can only be larger than F ∗0 if a > z∗, yielding

Pr[F ∗0 ≥ c · F0] = Pr[z∗ ≥ a].

Using equation 3.2 and the upper bound for Pr[Yt ≥ 1] in equation 3.5 results in

Pr[z∗ ≥ a] = Pr[Yt > 0] ≤ F0

2t
.

Rearranging the upper bound gives

2a+ 1
2 ≥ c · F0 ⇒ F0 ≤

2a+ 1
2

c
⇒ F0

2a
≤
√

2

c

and hence the final result of

Pr[F ∗0 ≥ c · F0] ≤
√

2

c
. (3.7)

The lower bound can be established in a similar manner. Given the constant c from
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above, let b be the largest natural number such that 2b+
1
2 ≤ F0

c
. Using equation 3.2 and

equation 3.6 yields

Pr

[
F ∗0 (S) ≤ F0

c

]
≤ Pr[z∗ ≤ b] = Pr[Yb+1 = 0] ≤ 2b+1

F0

≤
√

2

c
.

Both events, i.e., the estimation exceeding either lower or upper bound, are mutually
exclusive. The probability of their union is therefore equal to the sum of the individual
probabilities and can be bound from above as

Pr

[
F ∗0 (S) ≤ F0

c
∪ F ∗0 ≥ c · F0

]
≤ Pr

[
F ∗0 (S) ≤ F0

c

]
+ Pr[F ∗0 ≥ c · F0] ≤ 2 ·

√
2

c
.

This proves Theorem 7.

Analysis. For each update si to the stream S the algorithm performs a constant
amount of operations, namely the hashing of the update, the computation of the helper
function zeros(h(si)), a comparison between this value and the current value of the
counter z, and finally a conditional update of z. The hashing of si can be considered
constant in time since possible collisions are ignored and not handled in any form. The
function zeros(h(si)) counts the number of trailing zeros in the binary representation
of h(si). With the size of the universe being n, the maximal size of h(si) is blog nc+ 1.
Counting that many bits can be done in Θ(blog nc+ 1) time. The comparison of two
numbers in a binary representation requires at most a bit wise comparison over the
length the smaller number. A worst case time of Ω(log n) is therefore required. The
conditional update of z is clearly constant in time at worst. The time required for all
these individual operations can be attributed to a single update si. With a total of m
updates this results in a comprehensive time complexity of O(m).

As stated by Alon et al. [9, Proposition 2.3] the Tidemark algorithm requires O(log n)

bits of memory space. The following estimate is more precise: Exactly one value is
stored – zeros(h(si)). The maximal size of h(si), as established above, is blog nc+ 1.
Representing this maximal value again requires only logarithmic space. Additionally
the two functions zeros() and h() have to be stored. While there is no determinant
on their size, the space requirement is not dependent on either variable m or n and is
therefore considered constant. This results in an overall asymptotic space complexity of
M(S) in O(log log n).
The algorithm works on a single pass over the data.

Two problems arise with this result from Theorem 7. First, while the Tidemark
algorithm provides an approximation for F0, it does not satisfy Definition 3. The
accuracy parameter c fails to provide a symmetrical confidence interval of the kind
[(1− c) · F0, (1 + c) · F0] but rather yields

[
F0

c
, cF0

]
. Second, the same parameter c
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controls both the accuracy of the approximation as well as the probability that the set
accuracy cannot be archived. c is used in implicitly defining both a and b, thus choosing
a higher value for c reduces the probability of failure but decreases the accuracy at the
same time. This conundrum can however be effectively solved by means of the median
trick. It is a technique often used in DSAs because for any given probability of failure
arbitrary good accuracy can be archived by increasing the available space.

The Median Trick

Given a fixed accuracy parameter that creates an interval around the true value and
a basic estimator with an expected value of exactly that true value, the probability
that the basic estimator takes a value within in the interval depends on its variance.
This probability can then be bound using the Chebyshev inequality. Similarly to the
law of large numbers the bound can become increasingly tighter if the basic estimator
is run multiple times. The median of these results is used to make the probability of
failure arbitrarily small. This probability decreases if the number of independent results
from the basic estimator increases. Multiple results however require multiple runs of
the underlying algorithm. This can be done either sequentially, thus needing multiple
passes over the data and increasing the runtime of the algorithm accordingly, or in
parallel, thereby increasing the required space in memory.
Each of the k results of the basic Tidemark algorithm are mapped to a random

variable Xi, indicating with Xi = 1 if k matches the accuracy requirements or that
this is not the case with Xi = 0. These indicator variables are independent of each
other and therefore constitute a Bernoulli trial. The sum over the individual trials,
i.e., X :=

∑
i∈[k] Xi, is then referred to as a Poisson trial. The probability of an

individual result is already known. Since every single result of the Tidemark algorithm
is independent, the probability that the median over all results matches the accuracy
requirements and therefore the expected value of X is simply the individual probability
times k. The probability of a divergence between a realization of X and its expected
value can be bound using the Chernoff inequality and k as a controlling parameter.

Theorem 8 (Chernoff bound for Poisson trials). Let X1, . . . , Xk be independent indi-
cator random variables. For every i in [k] the random variable Xi has a probability
of pi to realize as 1 and a probability of 1 − pi to be 0. Let X :=

∑
i∈[k] Xi and

E[X] = E
[∑

i∈[k]Xi

]
=
∑

i∈[k] pi. With e ≈ 2.71 . . . as the base of the natural logarithm
and for every 0 < d < 1, the probability of a realization of X outside of a confidence
interval defined by d is given as

Pr[X < (1− d)E[X]] < e−d
2E[X]/2
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for the lower bound and for the upper bound as

Pr[X > (1 + d)E[X]] < e−d
2E[X]/3.

Applying this to the Tidemark algorithm and the probability bound of Theorem 7
yields improved guarantees for the final result.

Theorem 9. Running O(log 1
δ
) copies of the Tidemark algorithm and returning the

median of all individual results yields a (O(1), δ)-estimation of F0.

Proof. Using equation 3.7 and fixing c to be constant yields

Pr[F ∗0 ≥ cF0] ≤
√

2

c

Let X1, . . . , Xk be independent indicator random variables for the event “F ∗0 ≥ cF0”.
This event has a probability of

√
2
c
, thus

E[X] = E

[
k∑
i=1

Xi

]
=

k∑
i=1

pi = k

√
2

c
.

If the median of k results of the Tidemark algorithm is above cF0, then at least half of
the individual results are above cF0. Using Chernoff’s inequality with an upper bound
of (1 + d)F0 = k

2
, i.e., d = c

2
√

2
, yields

Pr

[
X >

k

2

]
< e

− 1
3
· k
√
2

c
·
(

c
2
√
2

)2

= e
− k·c

12
√
2 .

With Pr
[
X > k

2

]
in e−O(k), the probability of the median being above 3F0 can also be

stated as 2−Ω(k).
The lower bound can be derived identically and yields, due to Pr[F ∗0 ≥ 3F0] =

Pr
[
F ∗0 ≤ F0

3

]
the same result. The probability that the median is below F0

3
is therefore

in 2−Ω(k) as well. The probability of either a violation of the upper or the lower bound
is the sum of both individual probabilities, hence 2 · 2−Ω(k). For k in Θ(1

2
log 1

δ
) this

evaluates to a maximal probability of failure of δ. The confidence interval is given by
ε = d, which is constant in this context. In the analysis of the basic estimator c may be
used to control upper and lower bounds and the respective probability of failure but in
this context c is kept constant.
The original algorithm requires O(log log n) space. Running k copies of Tidemark

therefore requires O(log 1
δ

log log n) space.

33



3.5 Estimating Frequencies: Sketch-based

Algorithms

The previously described counter based algorithms solve the Frequent-Estimation

problem in a single pass. One additional pass can then be used to verify the frequency
estimation from the first pass and return the set of frequent elements, solving the
Frequent problem as a result. These algorithms are deterministic in the sense that
the returned result will always satisfy a specific guarantee about the accuracy of the
answer but they only work in the cash register model. The space reduction in counter
based algorithms is solely achieved by keeping exact count only of elements that are
likely exceed the desired frequency. Elements that that are occurring less frequently
relative to all other elements are therefore removed from the list and no information
on their exact frequencies is maintained. An element is removed from the list if its
counter is zero and a counter can only be decreased if there are elements occurring in
the stream that are not yet recorded. An elements counter thus represents its relative
frequency but not its absolute frequency in the stream. This mechanism does not work
if the absolute frequency of an element is allowed to decrease – like it is the case in the
turnstile model. This model is used for streams that include updates with a decreasing
frequency. It is prefixed by strict if the frequency of an element is allowed to decrease
but stays above or equal to zero. The plain turnstile model allows both decreasing
updates and negative total frequencies. With S being a stream in the turnstile model,
each update to the stream si is a 2-tuple (j, c). The update occurs at the i-th index in
the stream. It uses j as a key to uniquely identify an element from the universe U . The
associated value is identified by c. This value can be interpreted in any form but for
this use case it will be a frequency update. If S is again imagined as a multiset, then
there is a vector f containing each elements total frequency in S. Since c is an update
to j’s individual frequency, fj is the sum of all c’s of all updates where the key, i.e. the
first element in the tuple, matches j.

Example. Let U = {1, 2, 3} be a universe of values and let S1, S2, S3 be streams
of length m = 3 in the turnstile model on U . Each stream is designed to show the
limitations of the Misra-Gries algorithm and two hypothetical modifications thereof
respectively. There is only enough space to store one counter. This counter is a 2-tuple
consisting of an element from U in the first position and the estimated frequency of this
element in the second one. Its state and the respective streams updates are depicted
in detail in Table 3.5. The first column describes the original Misra-Gries method as
described in Algorithm 2.
The second column, named “Experiment1”, shows the same information for an

hypothetical algorithm that works like the Misra-Gries algorithm but instead of fixed
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increments of 1 and fixed decrements of −1, the sign in the updates c is considered.
The counter at index 2 is set to (1, 1), i.e., the element 1 is considered to be the solution
with an estimated frequency of 1. The update at that index is (2,−1). Contrary to the
plain Misra-Gries algorithm the counter is not decremented by 1 but instead by −1,
resulting in an increment of 1. This follows the intuition that the relative frequency of
the element 1 is increased if another element is updated with a negative frequency.
The third column shows the processing of S3 by an thought experiment algorithm

that alters the counters state based on the updates values sign as well as its absolute
value. Updating the counter (1, 1) with (2,−2) at index 2 thus results in (1, 3) via a
decrement of (−1) · 2.
Each of these experiments fails with intent. The original Misra-Gries algorithm

returns element 2 with an estimated frequency of 1 even though its absolute frequency
f2 = −3 is below the one of element 1 with f1 = 1. The return value of “Experiment1”
of 1 with f1 = 1 is false since f2 = 2. The same applies to column 3 where f1 = 1 is
below f3 = 2.

Misra-Gries Experiment1 Experiment2

Index Counter S1 Counter S2 Counter S3

1 (−, 0) (1, 1) (−, 0) (1, 1) (−, 0) (1, 1)

2 (1, 1) (2,−1) (1, 1) (2,−1) (1, 1) (2,−2)

3 (−, 0) (2,−2) (1, 2) (2, 3) (1, 3) (3, 2)

return (2, 1) (1, 1) (1, 1)

Table 3.5: Thought experiment: Misra-Gries on a Turnstile Stream

3.5.1 The CountSketch

The CountSketch data structure was introduced by Charikar, Chen, and Farach-Colton
in 2002 [10]. Given a stream S, it provides a solution to the Frequency-Estimation

problem even if an elements frequency is decreased via an update si. Charikar et al.
also present an algorithm providing a solution to the Frequent problem based on
the CountSketch’s frequency estimation. This solution is a set of k elements from the
stream that, based on their frequency estimation, are in HH

(
1

k+1
, S
)
. Aggregating

this set, given a valid frequency estimation, is similar to the method described in
Section 3.2.2 and is therefore not considered here. Consequently, Algorithm 6 maintains
the CountSketch data structure and returns an estimation of an elements frequency
when queried.

The data structure consists of a two dimensional array and a series of randomly
chosen hash functions, each from a 2-universal family. The algorithm’s accuracy ε
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b buckets

t hashes

s = (e, c)

Figure 3.6: The CountSketch Data Structure

and probability of failure δ are controlled by the two parameters t and b. There are
h1, . . . , ht hash functions mapping the n possible elements from the universe to hash
values in [b]. There are additional t hash functions with gj : [n] 7→ {−1,+1}. The two
dimensional array consists of t rows and b columns and can be considered an a array of
t hash tables with b buckets each.

In the turnstile model the i-th update to S is given as the 2-tuple si = (ei, ci). This
updates the implicitly defined frequency vector f(S) = (f1, . . . , fn) so that fei = fei +ci.
The total frequency of element e in S is then the sum of all updates over the length of
the stream m. In symbols this equates to

fe =
∑
{ci | si = (ei, ci) and i ∈ [m]}. (3.8)

Each of the t hash tables is maintained as follows: The updates key is hashed into a
bucket in [b] via hj(ei). The value of that bucket is updated by adding ci multiplied by
a random sign generated through gj(ei).
Every hash table C[j][] with j in [t] then holds a representation of the stream’s

data that can be queried to return an individual elements frequency estimate f ∗e =

gj(e) · C[j][hj(e)]. This value can be regarded as an basic unbiased estimator with
E[f ∗e ] = fe. To reduce the variance of the result, t identical data structures with
different random hash functions are maintained. The median over these t different
estimates is returned. The guarantees that are achieved for this final result makes it an
(ε, δ)-estimation of fe. The CountSketch data structure and the processing of a token
from the stream is visualized in Figure 3.6.

Lemma 9.1. Let (a, c) be a fixed token in S with a in [n] and let fa be the tokens true
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Algorithm 6: The CountSketch Algorithm by Charikar et al.
Data: Updates si = (ei, ci) to stream S with i ∈ [m] and ei ∈ [n]
Result: median1≤j≤t(gj(a) · C[j][hj(a)]) as an estimate for fa
C[1 . . . t][1 . . . b]← 0
// Choose hash functions from a 2-universal family
Choose random h1, . . . , ht : [n] 7→ [b]
Choose random g1, . . . , gt : [n] 7→ {−1,+1}
for i← 1 to m do

for j ← 1 to t do
C[j][hj(ei)]← C[j][hj(ei)] + gj(ei) · ci

return median1≤j≤t(gj(a) · C[j][hj(a)])

frequency in a stream S. Given a CountSketch data structure C, that was maintained
over S, each row C[j][hj(a)] with j in [t] gives an unbiased estimator f ∗a for fa.

Proof. Let si = (ei, ci) be an arbitrary token from the stream for all i in [m]. The
output for query a is, according to Algorithm 6, given as

f ∗a = gj(a) · C[j][hj(a)].

A token alters the bucket hj(a) of hash table j if and only if hj(ei) = hj(a). This occurs
if either the keys ei and a are equal or if hj() produces a collision for these values. Let
now Ye be an indicator random variable for this event, i.e., Ye = 1 iff hj(ei) = hj(a) and
else Ye = 0. The value in bucket C[j][hj(a)] is the sum of gj(ei) · ci over all i in [m],
where Ye = 1, thus

C[j][hj(a)] =
m∑
i=1

ci · gj(ei) · Ye.

Since gj(ei) and Ye are constant for all token si with the same key from [n] and with
the result from 3.8 this can be rearranged as a sum of an elements frequency over all e
in [n]:

C[j][hj(a)] =
n∑
e=1

fe · gj(e) · Ye.

Applying this to the reported estimator yields

f ∗a = gj(a) ·
n∑
e=1

gj(e) · fe · Ye =
n∑
e=1

gj(a) · gj(e) · fe · Ye.

For the case that e = a, gj(e) = gj(a), hj(e) = hj(a), and therefore Ye = 1 hold as well.
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This further simplifies the estimator to

f ∗a = gj(a)2 · fa · Ye +
∑

e∈[n]\{a}

gj(a) · gj(e) · fe · Ye

= fa +
∑

e∈[n]\{a}

gj(a) · gj(e) · fe · Ye. (3.9)

The first part of the sum that constitutes the estimator is the true frequency fa. The
remaining part of the sum can only contribute to the estimate if the hash function
hj() produces a collision since this would yield Ye = 1 and therefore a nonzero addend.
The probability for this event can be considered small and is, in expectation, irrelevant.
The hash function gj() is drawn from a 2-universal family, resulting in an expected
value for both gj(a) and gj(e) of zero since E[gj(a)] = E[gj(e)] = −1

2
+ 1

2
= 0. With

the independence of hj and gj and the linearity of expectation this proves f ∗a to be an
unbiased estimator of fa:

E[f ∗a ] = E[fa] +
∑

e∈[n]\{a}

E[gj(a)] · E[gj(e)] · E[fe] · E[Ye] = fa +
∑

e∈[n]\{a}

0 · 0 · fe · [Ye]

= fa.

The following Lemma makes use of the notation of vector norms. In particular the
`2-norm, also known as the Euclidiean norm, will be used.

Definition 17. Let p ≥ 1 be a real number and let x = (x1, . . . , xn) be a vector. The
`p-norm of x is defined as

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

The `p-norm of the frequency vector f(S) of a stream S is closely related to the p-th
frequency moment Fp(S) of that stream, as per Definition 14. In the cash register or
the strict turnstile model

‖f(S)‖pp = Fp(S)

holds in general, whereas in the non-strict turnstile model negative frequencies are
possible. The above is therefore only true if p is a multiple of two. In any model the
second frequency moment is then given as ‖f(S)‖2

2 = F2(S).

Lemma 9.2. The basic estimator f ∗a obtained through Lemma 9.1 provides a solution
to the Frequent-Estimation problem. The probability that the estimated frequency
of an element a is within a confidence interval of size ‖f−a‖2 around the true value is 1

b
.
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The variable b determines the number of buckets in the hash table. The probability
that an estimate returned by the CountSketch data structure is not within the confidence
interval is therefore a function of the size of the hash table and the data structure as a
whole.

Proof. With the variance of a constant being zero. The variance of the estimator f ∗a in
Equation 3.9 is given as

V ar[f ∗a ] = 0 + V ar

 ∑
e∈[n]\{a}

gj(a) · gj(e) · fe · Ye

 = V ar

gj(a)
∑

e∈[n]\{a}

gj(e)feYe

.
The variance of a random variable X is defined as V ar[X] = E[X2] − E[X]2. The
multinomial theorem states that the exponentiation by two of a sum over n arbitrary

addends xi expands as:
(∑

i∈[n] xi

)2

=
∑

i∈[n] x
2
i +2

∑
i,j∈[n] xixj , where i 6= j. Applying

this to the above yields

V ar[f ∗a ] = E

gj(a)2
∑

e∈[n]\{a}

gj(e)
2f 2
e Y

2
e + 2 ·

∑
e,g∈[n]\{a}

e6=g

gj(e)gj(g)fefgYeYg


− E

gj(a)
∑

e∈[n]\{a}

gj(e)feYe

2

.

(3.10)

This can be simplified with the following facts. The hash function gj() produces
values in {−1,+1}. Therefore gj(·)2 = 1 holds for any input. Ye is an indicator variable
for “hj(e) = hj(a)”, hence

E[Ye] = Pr[hj(e) = hj(a)] · 1 + (1− Pr[hj(e) = hj(a)]) · 0.

With 12 = 1 the same holds for E[Y 2
e ]. The probability of a collision in hj() is given as

1
b
since any hj() is drawn from a 2-universal family. This results in

E
[
Y 2
e

]
= E[Ye] = Pr[hj(e) = hj(a)] =

1

b
.

With E[gj(·)] = 0 already established, the variance of the basic estimator can be
simplified from equation 3.10:

V ar[f ∗a ] =
∑

e∈[n]\{a}

f 2
e ·

1

b
=
‖f(S)‖2

2 − f 2
a

b
. (3.11)

Let f−a denote a variation of the frequency vector f where the component fa was
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set to zero regardless of its original value. The numerator of the variance then becomes
‖f(S)‖2

2 − f 2
a = ‖f−a‖2

2. This result can now be used to give a confidence interval for
the estimator and the associated probability of failure using Chebyshev’s inequality:

Pr[|f ∗a − E[f ∗a ]| ≥ ε] = Pr[|f ∗a − fa| ≥ ‖f−a‖2]

≤ V ar[f ∗a ]

‖f−a‖2
2

=
1

b
.

This proves Lemma 9.2.

The CountSketch data structure consists of t identical and independent basic estima-
tors described by Lemma 9.1 and 9.2. These estimators constitute one row each in the
two dimensional array of the CountSketch.

Analysis. The CountSketch data structure provides an additive approximation for the
Frequent-Estimation. Querying any a in j yields a result f ∗a , such that f ∗a is an
(ε, δ)+-approximation of fa. This is achieved by fixing the number of buckets of an
individual hash table to b = 3

ε2
and by running O(log 1

δ
) of these hash tables in parallel.

Each of these hash tables is an unbiased estimator of fa, as shown by Lemma 9.1 and
Lemma 9.2. Applying the median trick, as described in Section 3.4.1 proves

Pr[|f ∗a − fa| ≥ ε‖f−a‖2] ≤ δ.

There are t hash tables and there are b buckets per hash table. Each bucket is a
binary counter up to m – the length of the stream. This results in O(t · b · logm)

space. Storing t independent hash tables is in O(log n) space individually and hence
in O(t · log n) in total, according to Chakrabarti [15, Section 5.3.2]. This sums up to
O(tb logm+ t log n), and by substituting for t and b yields

O

(
1

ε2
log

(
1

δ

)
· (logm+ log n)

)
.

Processing and computation times can be considered constant in the average case,
due to the use of hash functions.
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4 Concluding Remarks

This thesis aimed to provide insight into the vast field of streaming and randomized
algorithms. With a general survey of past and current research being clearly out of scope,
the focus was quickly laid onto the very beginning of the study of data streams. The
fundamentally important problem of frequency estimation in sublinear space evolved to
be the common thread for this thesis. It was used to apply essential results from the
statistics field, to derive more advanced findings like the universal Chernoff bounds and
the median trick, and also to comprehend a common recipe for analysing and designing
randomized algorithms.

Frequency estimation caused this work to move from deterministic and exact results
to amortized, asymptotic, and probabilistic ones. It was used to develop the need for
“randomness” and for algorithms that appeared to be doing almost nothing. It provided
insights into adjacent problems and fields. Links between frequency moments and
frequency estimation, between data structures and data representation were discovered.

While being successful in providing guidance and entrances, the problem of frequency
estimations in the streaming scenario is far from being exhausted. None of the discussed
algorithms were optimal and almost no provable lower bounds could be investigated.
Interesting challenges remain ahead.
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