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Abstract

A quite alluring part of theoretical computer science is dealing with the existence of
non-computable functions. In other words, problems for which there are no terminating
algorithms. Thanks to Church’s thesis, we can safely affirm that being computable is
equivalent to being Turing-computable. Turing machines are the universal model of
computation as they can translate any computing the human brain could perform.
In this regard, a famous non-Turing-computable problem that has eluded many
mathematicians is the function devised by Tibor Radó, known as the Busy Beaver
function in the modern era. The latter is exceptionally rapidly growing so that it even
exceeds the fast-growing Ackermann function. An interesting question regarding Busy
Beaver is to determine the smallest value of n for which BB(n) is independent of the
modern axioms of mathematics like ZFC. As an opening, we present an introduction
to Busy Beaver and set theory. In the second chapter, we describe the programming
language named Laconic developed by Adam Yedidia, with which he determines an
upper bound to the question raised above. We also cite an overview of another related
language serving the same purpose and producing enhanced results. Furthermore, we
use Laconic to implement a few open mathematical problems both in number theory
and graph theory, thereby proving the undecidability of several Busy Beaver values.
Lastly, we tackle the famous and strenuous P vs. NP problem by demonstrating the
adversity of proving its independence from ZF set theory.
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Acronyms

• Formal systems:

• ZFC Zermelo-Fraenkel Set Theory with the Axiom Of Choice

• ZF Zermelo-Fraenkel Set Theory without the Axiom of Choice

• PA Peano Arithmetic

• SRP Stationary Ramsey Property with the axioms of ZFC

• BB Busy Beaver

• TMD Turing Machine Descriptor

• DAG Directed Acyclic Graph

• NQL Not Quite Laconic
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1. Introduction

In this chapter, we present the concepts of set theory and Busy Beaver, along with the
motivation behind the connection between both notions.

1.1. Motivation and Set Theory

This part is based on explanations from [Lia11]. We present a brief description of
the set theory concerning our problem. Set theory is a branch of mathematics that
treats assemblages of objects. A set represents a collection of distinct objects sharing
the same properties. These objects are called elements of the set. Historically, the
initial works on set theory started in the late 19th century with the advancements of
Georg Cantor and Richard Dedekind. Further works over the 20th century revealed
several paradoxes in set theory, namely Russel’s Paradox [Wikd] which results from
an unrestricted comprehension principle that allows a set to comprise itself. At the
beginning of the 20th century, Ernst Zermelo introduced the first axiomatic set theory.
Later on, Abraham Fraenkel proposed some revisions on Zermelo’s works by adding a
stronger axiom, thereby establishing the axiomatic system that became known as the
Zermelo-Fraenkel (ZF) set theory. Most mathematicians also include the axiom of
choice without reservation, since several generally accepted mathematical results rely
on it in elaborating their proofs. Thus, ZF with the axiom of choice (ZFC) became the
standard axiomatic set theory and the foundation of most contemporary mathematics.

The axiomatic set theory system that defines ZFC handles sets, whose elements are
themselves sets. Consequently, it is formally a one-sorted theory in first-order logic, as
it allows working with only one type of object in the universe, that is sets, and permits
quantifying only over elements of the domain.

Definition 1.1 Let σZFC be the signature (a signature contains the allowed relations
and constants) of ZFC in first-order logic, then:

σZFC = (∈,=)

The set membership ∈ represents a binary relation. For example, for two sets x and y,
the well-formed formula x ∈ y means that x is a member of y.

1



1.1. MOTIVATION AND SET THEORY

Actually, the non-logical equality symbol in the signature could be omitted, as x = y

is none other than an abbreviation of the following conjunction:

∀z(z ∈ x⇔ z ∈ y) ∧ ∀w(x ∈ w ⇔ y ∈ w)

One of the motivations for ZFC is the concept of cumulative hierarchy or the so
called von Neuman universe named after John von Neuman. In this perspective, the
domain of discourse is created step by step, where each step, called stage, is recursively
created from the previous one. Particularly, at stage 0 there is no set. In the next
stage, a set is appended to the domain, if the entirety of its elements were already
added in the previous stage. Therefore, the empty set is added in stage 1, the set that
contains the empty set is added in stage 2, and the set that contains both the empty
set and the set that contains the empty set is added in stage 3, etc. For instance, the
set of natural numbers in ZFC is defined recursively. The following example illustrates
the procedure:

0 = ∅
1 = 0 ∪ {0} = {∅}
2 = 1 ∪ {1} = {∅, {∅}}
3 = 2 ∪ {2} = {∅, {∅}, {∅, {∅}}}
4 = 3 ∪ {3} = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}

The successor of each set n is recursively defined as:

S(n) = n ∪ {n}

With definitions similar in concept, one could define relations, functions, and other
infinite sets like the integers, rational and real numbers. Each theorem characterized
along the process can be proven using the axioms of ZFC and the deductive systems
of first-order logic. The resulting sequences or collections are all anchored by 0. If 0

exists, then so does 1 and 2 and all other ordinals, and each more complex set and rule
built upon them. Hence, ZFC requires the existence of one set, namely the set that
has no element, which we referred to as ∅. The latter is uniquely defined by the axiom
of existence.
For a rigorous description of the 9 axioms and their corresponding proofs, visit [Met],

or take a look at the presentation of the fundamentals of ZFC. [Lia11]
However, Gödel’s incompleteness theorems restrict ZFC just like any other axiomatic

system capable of processing arithmetic and working with natural numbers. The first
incompleteness theorem declares that if a theory is consistent, then there is at least
one provable theorem about the natural numbers that is unprovable using the axioms

CHAPTER 1. INTRODUCTION 2



1.2. BUSY BEAVER

of that theory. The second Gödel’s incompleteness theorem states that if a theory is
consistent, it cannot prove its consistency. As mentioned above, this axiomatic set
theory is the basis of modern built mathematics and other set theories. Hence, all
mathematical theorems and results are built on the assumption that ZFC is indeed
consistent. Adam Yedidia and Scott Aaronson take advantage of this fact to draw a
conclusion on a specific Turing machine. [YA16]

Let M be the Turing machine that uses an effective procedure to list the axioms of
ZFC. Because ZFC is encoded in first-order logic, we can utilize its inference rules to
derive every provable theorem from the axioms and all theorems that have already been
concluded. Let 〈S〉 be the set of sentences that are provable from ZFC axioms using
first-order logic deductive systems. If M , by any chance, finds during the verification
process a formula φ so that φ,¬φ ∈ 〈S〉, then the machine halts. As a result, M will
only halt if and only if it finds an inconsistency in ZFC. Thus M will run forever
if and only if ZFC is consistent. Accordingly, the question M ’s behavior (whether it
halts or loops endlessly) is equivalent to Con(ZFC) (consistency of ZFC). Therefore,
as ZFC is not able to prove its consistency, it also cannot determine the behavior M .
We refer to this unprovability as independence. Hence, the statements "M will halt"
and "M will run forever" are independent of ZFC set theory.
In this context, Adam Yedidia and Scott Aaronson aimed to build such a machine,

not only because its behavior is independent of set theory, but also because they wanted
to find an upper bound on the smallest value n for which BB(n) is independent of
a dominant formal system. They do so by building the machine M and exhibiting
its states. However, Adam and Scott follow another approach and opt instead for a
statement equivalent to Con(ZFC). Stefan O’rear, on the contrary, profits from the
technical results by Adam and Scott to indeed build the machine M that looks for
contradictions in ZFC and achieves a smaller upper bound. Both ideas are discussed
in chapter 2.

1.2. Busy Beaver

1.2.1. Turing Machine

Turing machines are primitive and universal models of computation and have been
the inspiration for the invention of modern computers. As specified by Alan Turing in
his work "On computable numbers" [TUR36], he defines a Turing machine as a model
that allows a tape to use unlimited memory. When the Turing machine starts, the
input is written on tape. In addition to that, there is a read-write head that could
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1.2. BUSY BEAVER

move left, right, or remain at its position (neutral) at each configuration transition.
Formally, the conventional definition of a Turing machine is as follows. [Vol20]

Turing Machine

Definition 1.2 A Turing machine M is a 7-tuple M := (Q,Σ,Γ, δ, q0,�, F ),
whereby the following applies for the each component:

• Q is the set of states.

• Σ is the input alphabet.

• Γ ⊃ Σ is the set of tape symbols.

• q0 is the starting state.

• � is the blank symbol.

• F ⊆ Q is the set of final states.

• δ is the transition function.
For deterministic Turing machines (DTM, TM) the following applies:

δ : Q× Γ→ Q× Γ× {L,N,R}

For non-deterministic Turing machines (NTM) the following applies:

δ : Q× Γ→ P(Q× Γ× {L,N,R})

Busy Beaver Turing machines are a slightly narrowed version of this usual formalization.
Such machines are deterministic, possess a single tape, that is, at the same time, the
input and working tape. The latter is initially filled with the blank symbol and is
overwritten with a non-blank symbol from the working alphabet. Furthermore, Busy
Beavers exclude the neutral movement of the pointer and allow only a transition to
the left or right. Hence, throughout this paper, all the discussed Turing machines have
the following formalization:

CHAPTER 1. INTRODUCTION 4



1.2. BUSY BEAVER

Busy Beaver

Definition 1.3 A Busy Beaver Turing machine M is a 7-tuple M :=

(Q,Σ,Γ, a, δ, q0, F ), whereby the following applies for the each component:

• Q is the set of states, |Q| = n+ 1 , n ∈ N (in relation to BB(n)).

• Σ = {a, b} is the input alphabet.

• Γ ⊃ Σ, Γ = {a, b} is the set of tape symbols.

• q0 is the starting state.

• a is the blank symbol.

• F ⊆ Q, F = {HALT,ERROR} is the set of final states (the ERROR state
is only used for testing and the machine should not commit a transition to
it on correct behavior).

• δ = Q× Γ→ Q× Γ× {L,R} is the transition function (deterministic).

The delta transition function uniquely determines the behavior of the Turing
machine. It takes two inputs: the current state and the symbol read from the tape. It
outputs the next state, the symbol to be written on the tape, and the next direction
of the head.

Semantically, a Busy Beaver Turing machine with n states is the machine that
produces the maximum number of transitions among all other n-state Turing machines
before halting, knowing that it will eventually halt. The Busy Beaver function,
therefore, BB(n) or the shift function S(n), as defined by Radó [RAD61], computes
the number of transitions it takes a n-state Busy Beaver to halt. Radó also described
the function Σ(n), which outputs the number of 1s (here bs) written on the tape before
the machine halts. However, in this paper we stick with BB(n) as it is more intuitive.

1.2.2. Non-Computability of the Busy Beaver Function

Most of the statements in this chapter were pointedly elaborated by Scott Aaronson
[Aar20]. Let T (n) be the set of all n-state Turing machines. One could simply
determine the cardinality of T (n) to be |T (n)| = (4 · n+ 4)2·n as an application of the
generalized formula (symbols × directions × (states + 1))states×symbols to our specific
Turing machines structure. The formula emerges from the possible combinations the
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1.2. BUSY BEAVER

δ transition function could have.
Let M be a Turing machine that terminates. Let s(M) be the number of steps or δ

transitions that M takes before halting. If M stops at the first step, then s(M) = 1,
and if M loops endlessly, we set s(M) =∞.
At this stage, we can formally define our Busy Beaver function BB(n) (or S(n)) as

the following:

BB(n) = S(n) := max
M ∈ T (n) | s(M) <∞

s(M)

Informally, we range over all the finitely many n-state Turing machines. If we can safely
affirm that a Turing machine runs forever, then we disregard it as this contradicts the
definition of a Busy Beaver. Afterward, we maximize over the number of steps the
halting Turing machines take before eventually transitioning into the HALT state.
In his publication [RAD61], Radó describes this iterating over n-state halting Turing
machines as the Busy Beaver game. The latter represents a competition, in which
the winners are machines that achieve the maximum number of steps before halting,
thereby determining the corresponding value of BB(n).
Prior to presenting a straightforward proof of the non-computability of BB in

conjunction with the famous halting problem, let’s start by defining the terms
computability and decidability. The following definitions are present in [Vol20].

Definition 1.4 A function is computabe iff it is Turing-computable.
A function f : Σ∗ → ∆∗ is Turing-computable, if there is a deterministic Turing
machine M , so that for all x ∈ Σ∗ and y ∈ ∆∗: f(x) = y =⇒ M on input x halts with
� . . .�y� . . .� on the output tape (in case of multi-tape machines).
f(x) is undefined =⇒ M on input x runs forever.

Definition 1.5 A language A ⊆ Σ∗ is decidable, if the function cA : Σ∗ −→ {0, 1}
with

cA(w) =

{
1 , w ∈ A
0 , otherwise

.

is (Turing)-computable. cA is called the characteristic function of A.

Definition 1.6 The halting problem is the language:

H = {w#x |Mw halts on input x }

It is widely known that the halting problem is undecidable. To prove this, one could
directly perform a reduction over the special halting problem [Vol20]. In other words,
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there is no Turing machine that on input w#x can decide whether Mw halts on input
x or runs forever.

Based on these statements we can devise a simple proof by contradiction that BB(n)

is not computable. Following that, we suppose that BB(n) is indeed computable.
Hence, there is a Turing machine that, given a natural k as input, outputs BB(k) on
its output tape. We prove that the characteristic function of the halting problem is
computable:

Algorithm 1 Proof of decidability of the halting problem
Input: w#x

1: create Mw with w being a proper godelization of a Turing machine. Let n be the
number of its states

2: compute BB(n)
3: run Mw on input x for BB(n) steps
4: If Mw has not halted yet, then we can evidently conclude that Mw will never halt,

because BB(n) is the maximum number of steps a n-state halting machine can
perform before halting. Output 0

5: if Mw halted before or at BB(n) steps then output 1

Thus, we have just proved that the halting problem is decidable, which we know is
impossible. As a result, the Busy Beaver function is not computable.

Historically, the Busy Beaver game has attracted considerable interest in the quest
of determining as many BB(n) values as possible. The highest lower bound on the
provable Busy Beaver value in modern mathematics systems is 4. Nonetheless, lower
bounds have been proposed for 5, 6 and 7-state Busy Beavers:

BB(1) = 1

BB(2) = 6

BB(3) = 21

BB(4) = 107

BB(5) ≥ 47, 176, 870

BB(6) > 7.4× 1036,5341

BB(7) > 101010
1018,705,353

...

BB(22) > g64 which is an enormously large number called the Graham’s number
[mat10] that results from 64 iterations of the rapidly growing Ackermann function

[mat10].

CHAPTER 1. INTRODUCTION 7



1.2. BUSY BEAVER

Naturally, one could raise an interesting question on the computability of Busy Beaver
values, namely, if we are able to prove BB(n) for n ∈ {1, . . . , 4}, then why don’t we
just utilize the same computation process of ranging overall potential Busy Beavers
in order to determine BB(n) for n ≥ 4. The reason why this is not quite feasible is
the existence of Turing machines, whose behavior is not decisively ascertainable. An
example is the Turing machine M that we described in the previous chapter. Let n
be the number of states of M . As the decision of whether M halts or runs forever is
independent of ZFC axiomatic set theory, then the value of BB(n) is subsequently
unprovable in ZFC. Suppose that the latter is provable, then ZFC can easily prove
the behavior of M . Such proof will consist of running M and keeping track of the
entirety of its transitions. If it halts, then the memorized computation history of the
machine is the halting proof. If it doesn’t, then after exceeding the threshold of BB(n)

steps and by definition of BB, we have proved that M will loop endlessly.
Therefore, the machine M (also called Gödel Machine) suggests another perspective

of approaching the Busy Beaver contest. The question of proving all Busy Beaver
values becomes the question of how many of them are knowable using a fixed axiomatic
arithmetic-encoding theory as a basis for our computations. In other words, from which
n the value BB(n) eludes modern mathematics. Adam Yedidia, Scott Aaronson, and
Stefan O’rear considered this dilemma as a powerful motivation for their works of
finding the highest upper bound, for which the Busy Beaver value is provable in ZFC
set theory. [YA16]

Theorem 1.1 If T is a computable and arithmetic-encoding consistent axiomatic
theory. Then, there exists a constant nT ∈ N, so that for all n ≥ nT , the value of
BB(n) cannot be proved in T .

Proof. Let M be our Turing machine discussed above that, on the all-blank
symbol input, enumerates the axioms and provable theorems and conclusions of T and
terminates iff it finds a contradiction. However, since we assumed that T is consistent,
we know in advance that M will never halt. Nevertheless, T cannot prove that M will
never halt. If it could, then we have ZF |= Con(ZF), which is a direct violation of
the second Gödel’s incompleteness theorem. Now let nT be the number of states in
M , then, for all n ≥ nT , BB(n) is unprovable in T . If such proof existed, then T will
be able to prove that M never halts, simply by simulation M for BB(n) steps. If M
hasn’t halted yet, then we know it will never halt because BB(n) ≥ BB(nT ). �
In the next chapter, we will be discussing, among other topics, the achievements

reached by Yedidia, Aaronson, and O’rear and the ideas implemented in the goal of
finding the smallest possible n for which BB(n) is independent of ZFC set theory.

CHAPTER 1. INTRODUCTION 8



2. The Laconic Programming
Language

Laconic is a strongly typed high-level programming language that was designed to be
convenient and reassemble most common languages like Python and Java, and, at the
same time, be volatile enough to be compiled down into 1−tape 2−symbol parsimonious
Turing machines.

2.1. Concept and Compilation

Here, we present the purpose for developing Laconic and the main contributions of its
compiler.

2.1.1. Motivation

An intuitive wondering immediately surges regarding the purpose of Laconic. Why
would Yedidia develop a new programming language hunting for a goal that other
popular languages could achieve in a highly efficient way?

Simply put, it has to do with the independence of the computational complexity of
Turing machines compared to other models of computation. Using this probably least
powerful model, one could unambiguously affirm that the complexity of the results to
be interpreted is determined solely by the Turing machine. The more complex the
chosen model of computation is, the more complexity of the algorithm is undertaken
by the latter. Thus, misinterpretation might surface regarding the complexity of the
implementation being influenced more by the choice of the model and less by the
actual algorithm. Therefore, there can be no doubt that the choice of the programming
language is artificially contributing to reducing the actual size of the Turing machine.
In their publication [YA16] Yedidia and Aaronson describe Turing machines as follows:

Part of the charm of Turing machines is that they give us a “standard
reference point” for measuring complexity, unencumbered by the details

9



2.1. CONCEPT AND COMPILATION

of more sophisticated programming languages... This is why we prefer
Turing machines as a tool for measuring complexity; not because they are
particularly special, but simply because they are so primitive that their
specifics will interfere minimally with what we mean by an algorithm being
“complicated.”

Besides, Laconic allows utilizing infinite memory, which corresponds to a tape of a
Turing machine.
As one could reasonably conclude, the crucial thing to aim for in designing these

Turing machines is parsimony. Yedidia and Aaronson’s intention was to develop a
Turing machine with the least amount of state possible that proves to be independent
of modern mathematics, unconcerned by any time or space complexity. Similarly,
parsimony expresses the principle of code-golfing through Turing machines.
To achieve parsimony, Yedidia and Aaronson [YA16] used two main concepts.
The first idea is referred to as on-tape processing. It is a way of encoding

commands of a high-level language into a Turing machine parsimoniously. The main
trick resides in replacing the multiplicative factor that results from representing each
command through a set of states by firstly writing the commands on the tape using
an efficient encoding and then creating a fixed set of states with the only purpose of
understanding and interpreting the commands. Hence, sparing the colossal amount of
states due to the multiplicative overhead and converting it into an additive constant. In
Yedidia’s implementation, the set interpreting the commands on the Turing machines
(processor) comprises exactly 3860 states.
The second idea implements the efficient coding mentioned above that is used to write

a binary string representing the high-level commands on the tape: Introspection. It
means: Instead of using the state’s write field to encode each character, which presents
only 2 choices, one could take advantage of the number of states that a single state
could transition to. Thus encoding information in each state’s transition. Both of these
concepts are explained pointedly in the next section.

2.1.2. From Laconic Code to Parsimonious Turing Machine

The following description of the compiler is introduced in Yedidia and Aaronson’s work.
[YA16]
A Laconic program is not directly translated into a 1−tape, 2−symbol Turing

machine. Instead, Yedidia developed another high-level intermediary language which
he named TMD (Turing Machine Descriptor). TMD describes multi-tape, 3−symbol
Turing machines with a function stack. Each tape offers infinite memory in one

CHAPTER 2. THE LACONIC PROGRAMMING LANGUAGE 10



2.1. CONCEPT AND COMPILATION

direction and allows the symbols: _, 1 and E. A regular expression of the content
of each tape can be written as in the form _∗(1|E)+_∞.

The idea behind employing TMD as a bridge between Laconic and a primitive Turing
machine resides in the similarity between multi-tape Turing machines and variables. We
directly allocate one tape for each variable. As a result, each instruction manipulating
a particular variable in the Laconic program is compiled into a TMD command that
modifies its corresponding tape accordingly.

TMD code is in reality not located in a single .tmd file, but is rather spread among
multiple documents that constitute the compiled TMD directory. The latter consists
of 3 types of files: The functions files which contains a list of all functions created and
called by the TMD program, the initvar file, which contains the initialization of each
variable, coded as a non-blank symbol in its appropriate tape. And all other files with
the extension .tfn used to describe functions. For more details on the Laconic-to-TMD
compiler and all components and operations stated in the following descriptions, take
a look at the documents in Yedidia’s GitHub repository. [Yed16]

At compilation time, the TMD program is transformed into a binary string which is
written on the tape of final Turing machine upon its execution.

The latter comprises 3 main sub-machines:

• The initializer creates each register for each variable with a unique identifier.
Each register’s initial value is the value saved in the initvar file mentioned above.
In the same way, it initializes the function stack and pushes to it the first entry
stored in the functions file. The control flow is handled by counters.

• The printer writes down the compiled binary string of the TMD program
on the tape of the Turing machine using an efficient way of encoding called
introspection, which we will describe thoroughly later on.

• The processor interprets the written binary on tape after reading it again,
thereby modifying the variable registers and the function stack during the
machine execution.

The Turing’s machine transition function proceeds from the initializer to the printer
and then the processor. Each component comprises a bunch of states that achieve what
each sub-machine is supposed to do. In other words, there are 6 types of transitions:
From initializer states to initializer states, from initializer states to printer states, from
printer states to printer states, from printer states to processor states, from processor
states to processor states, or from processor states to the HALT state, where the machine
stops. [YA16]

CHAPTER 2. THE LACONIC PROGRAMMING LANGUAGE 11



2.1. CONCEPT AND COMPILATION

Introspection

The printer’s labor is to write down the binary string of the TMD program on the tape
of the Turing machine. A typical idea to achieve this is to encode each character of the
binary with a dedicated state. Figure 2.1 shows an example of this inefficient model.
However, in doing so, a considerable amount of bit space is wasted. As a matter of fact,
each a transition in this naive model points to the next stage, whereas no b transition
occurs as the machine will only read blank symbols. Eventually, only the write field
is used to store information, that is one single bit. In reality, in an n-state Turing
machine, each state may point to n states for each of the two transitions a and b plus
one bit for which symbol to write, thereby possibly encoding 2 · (log2(n) + 1) bits of
information.
Introspection relies on this sparing idea and works as follows: If the binary string is k

bit long, then we define the word size w as the largest value possible so that w ·2w ≤ k.
Then, the binary gets split in nw = d k

w
e words of w bits each (pad with blank symbol

if necessary). In the Turing machine, each word is represented by a data state. Then,
in each data state, the a transition points to the data state that represents the next
word, whereas the b transition points to the data state that encodes the next word.
Figure 2.2 illustrates an example of an introspective encoding.
For the interpreter to process the high-level commands introspectively encoded on

the tape, it needs to read them from the data states first. For this purpose, Yedidia
built an extractor that comprises a certain number of states that is 10 · w + 17. The
extractor queries each data state by removing one b at a time, thereby altering the
content of the tape, then reverts it to its original form. A detailed explanation of the
work scheme of the extractor can be found in [YA16].

In the example that depicts the introspective approach shown in figure 2.2, the
program binary is 10 bits long, so we choose w that takes the largest value so that
w · 2w ≤ 10, which is 2. So we know the data states will encode words of length 2.
Hence, the number of the words, and therefore data state is nw = k

w
= 10

2
= 5. As

mentioned above, the b transition points to the data state that encodes the next word,
whereas the a transition points to the data state representing the next word.

Limits of introspection

Exploiting this efficient encoding only brings benefits when the length of the program
binary is quite large. The example shown in figure 2.2 with 5 data states results actually
in an extractor of size 10 · w + 17 = 10 · 2 + 17 = 37 states to only gain 5 states in
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return. Therefore, even more states than in the naive model are needed.

Gains through introspection

Introspection lives up to its efficiency when utilized for large programs like encoding
mathematical statements and conjectures. The programs mentioned in the following
table are thoroughly explained in the next chapter.

Program Binary
Size

w nw Extractor
Size

#States
(Naïve)

#States
(Introspective)

ZFC 38,864 11 3,534 127 38,864 3,661 = 3,534
+ 127

Lehmer 10,542 10 1,054 117 10,542 1,172
Scholz 11,650 10 1,165 117 11,650 1,282
Total
Coloring

33,538 11 3,049 127 33,538 3,176

Erdős–Gyárfás 25,762 11 2,342 127 25,762 2,469

On tape processing

The final labor of the Turing machine is to process the written commands by the
printer and modify the register variables and function stack. This interpretation takes
place on the tape. On tape-processing is the immediate follow-up of introspection. As
we were taught in the theoretical computer science lecture, every multi-tape Turing
machine that runs in time t can be converted to a single-tape Turing machine that
runs in time O(t2) (polynomial). We do so simply by translating each transition in the
higher-level machine into a set of states in the single-tape machine. This conduces the
multiplicative overhead described in the motivation chapter. By encoding the processor
with a fixed number of states that understand and execute the commands, an additive
overhead of 3860 states replaces the multiplicative one. A step-by-step description of
the processor’s workflow is depicted in [YA16].
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Final Costs

Program Initializer States Printer States Processor States Total States

ZFC 389 3,661 3,860 7,910
Lehmer 379 1,172 3,860 5,411
Scholz 387 1,282 3,860 5,529
Behzad 395 3,176 3,860 7,431
Erdős–Gyárfás 395 2,469 3,860 6,724

The resulting number of states validate the advantages brought by introspection and
on tape processing in the task of achieving parsimony. On initial observation, one
could deduce that optimizing the processor is the primary priority in improving the
results. However, the number of processor states is constant. That is, it will not vary
even if the program is significantly more demanding than those implemented in this
paper. Whereas, the number of the printer states will grow linearly in the length of
the program binary where handling larger problems.
Therefore, meliorating the printer in the first place, the processor in the second

place, and with it, the Laconic programming language presented by Yedidia could be
altogether promising in achieving fewer states.
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Binary string of program: abbabaaabb

Initializer

1 2 3 4 5 6 7 8 9 10

Processor

a: R,a a: R,b a: R,b a: R,a a: R,b a: R,a a: R,a a: R,a a: R,a

a: R,b

Figure 2.1.: naive states allocation of the printer for program binary

Figure 2.2.: an introspective implementation example of the printer with data states
[YA16]
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2.2. Application Examples

Here, we present the works of Adam Yedidia and Scott Aaronson using Laconic as well
as individual application examples in graph theory and number theory.

2.2.1. The Friedman’s Conjecture in Set Theory

In this section, we illustrate the approach and the implementation method of the Turing
machine Z developed by Yedidia and Aaronson [YA16], whose behavior (whether it
halts or loops endlessly) is independent of the ZFC set theory that we discussed in
the above chapter. The fundamental goal of this Turing machine is to prove the lowest
value n for which BB(n) is independent of ZFC set theory. In other words, what is
the smallest number n for which the behavior of a n-state Turing machine can not be
decisively determined using the axioms composing ZFC, assuming ZFC is consistent?

An engaging approach to design the Turing machine Z is to encode the set theory
in first-order logic. And then iterate over all provable statements using axioms of
ZFC and the inference rules of first-order logic. The latter comprises many deductive
systems (resolution, natural deduction, etc.) that allow inferring a formula from
another formula as being a logical consequence.

However, Yedidia and Aaronson decide against this idea of enumerating all inferrable
statements of ZFC because, despite its conceptual simplicity, it requires direct
manipulation of the axioms and the deductive system rules of first-order logic. Hence,
the resulting Turing machine would yield an enormous number of states.

Instead, they decide to take advantage of a statement devised by Friedman, whose
truth is equivalent to the consistency of a set theory strong than ZFC, which is SRP .
That imminently implies that ZFC is also consistent, as SRP is, in fact, an extended
version of ZFC by some additional large cardinal axioms.

Before presenting the works, we explain some mathematical terms that will appear
in Friedman’s statement [Fri14]:

Technical Terms

Order invariant graph: An order invariant graph is a graph containing a
countably infinite number of nodes. In particular, it has one node for each
finite set of numbers.
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In an order invariant graph, two nodes (a, b) have an edge between them if and
only if each other pair of nodes (c, d), that is order equivalent with (a, b), has an
edge between them.
Two pairs of nodes (a, b) and (c, d) are order equivalent if a and c are the same
size and b and d are the same size and if for all 1 ≤ i ≤ |a| and 1 ≤ j ≤ |b|, the
i-th element of a is less than the j-th element of b if and only if the i-th element
of c is less than the j-th element of d. [YA16]

[Q]≤k: This operation refers to all the elements of the power set of Q whose
cardinality is at most k. The power set P(S) of a set S is as follows:

P(S) = {U | U ⊆ S}

The subsets of limited cardinality have a special notation

Pk(S) = {U | U ⊆ S and |U | ≤ k}

Therefore,
[Q]≤k = Pk(Q)

The vertices of a graph on [Q]≤k are elements of [Q]≤k and its edges are
undirected, do not connect a pair of nodes twice, and cannot attach a node to
itself. Each vertex of such a graph comprises a finite set of rational numbers.

Free set: A free set of nodes of a Graph G = (V,E) comprises nodes so that
there is no i and j, 1 ≤ i, j ≤ |V |, for which (vi, vj) ∈ E and vi, vj ∈ V . In other
terms, no pair of vertices are connected by an edge.

Complexity of a number: A number of complexity c can be transformed in a
fraction a

b
, where a and b are integers with absolute values ≤ c. A set has

complexity c if and only if all its elements, which are rational numbers, are of
complexity c.

The ush() function: ush() takes as input a set and returns a copy of that set
with all non-negative numbers in that set incremented by 1.
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≤rlex and reduction: In [Fri14], Friedman defines a way of ordering vertices of
the graph, which is pretty similar to a lexicographic ordering. The last number
of a vertex is the largest. Formally, for two nodes x and y, x ≤rlex y if and only
if x = y or x|x|−i < y|y|−i, where i is the smallest integer so that x|x|−i 6= y|y|−i.
Using this reduction operation, we say a set of vertices X reduces another set of
vertices Y , if for each vertex y in V , there exists a vertex x ∈ X so that x ≤rlex y
and x and y are connected by an edge.

With the use of the above concepts, Friedman [Fri14] asserts the following statement:

Statement 1 for all k, n, r > 0, every order invariant graph on [Q]≤k has a free
{x1, . . . , xr, ush(x1), . . . , ush(xr)} of complexity (8knr)!. Each {x1, . . . , x(8kni)!} of the
latter, for i > 0 and (8kni)! ≤ r, reduces [x1 ∪ · · · ∪ xi ∪ {0, . . . , n}]≤k. [Fri14]

Hence, we ask Z to halt if and only if it finds a counterexample to statement 1 otherwise
it keeps looping endlessly. Subsequently, this Turing machine’s behavior is indubitably
independent of ZFC, because the falsehood of statement 1 is likewise independent of
ZFC, assuming the consistency of SRP . [Fri14]

ZFC inconsistent −→ SRP inconsistent −→ Z halts.
Z loops −→ SRP consistent −→ ZFC consistent.

ZFC cannot prove its consistency −→ Z’s behavior is independent of ZFC

Implementation method:

The following approach is thoroughly described in [YA16].
Encoding Friedman’s statement is conceptually not complicated as each of its

components can be implemented separately then combined in an iteration over all
trios of numbers. Yet, this results in a considerably large laconic program. For
full documentation of the code visit Yedidia’s GitHub repository [Yed16]. I suggest
looking primarily at the documented main loop of file "friedman.lac" to grab a better
understanding of the method.
The main loop of the program starts by iterating over all possible tuples of numbers

(k, n, r), and then generates a list N , in which all numbers of complexity (8knr)! are
stored. These numbers and others will represent the possible vertices of the graph.
Numbers will be appended to the list if and only if they are written in the form i

j
,

where −(8knr)! ≤ i ≤ (8knr)! and 1 ≤ j ≤ (8knr)!. However, a problem surfaces as
Laconic is not able to process float numbers. A solution is to multiply the candidate
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fraction with a huge factor so that the resulting product is an integer. Yedidia and
Aaronson settle for ((8knr)!)!).
At the moment, N contains possible vertices that comprise only one number of

complexity (8knr)!. Although, the statement compels a condition over graphs on
[Q]≤k. For this, we need to appends sets of numbers to N that represent subsets of
Q with cardinality ranging from 2 to k. After the extension, N comprises now all
the possible vertices of the potential order invariant graph for the particular tuple of
integers (k, n, r). As a result, to ensure self-explanation, we rename it to V .
After preparing the possible set of vertices, the program iterates over all binary lists

of length |V |2. This list is a mapping of the possible edges of a graph G = (V,E) as
E ⊆ V × V . In other words, every entry Ei|V |+j in E represents whether the vertices
Vi and Vj are connected (1) or not (0).

The aim is to find a binary list E, so that G = (V,E) satisfies the three following
conditions.

1. Check if G is undirected and does not contain selfloops.

2. Check that G is order invariant: Iterate over all pair of nodes (a,b). If a and
b are connected, then verify that every other pair of nodes (c, d) that is order
equivalent with (a, b) have an edge between them. In the same way, if a and b

are not connected, then verify that every other pair of nodes (c, d) that is order
equivalent with (a, b) does not have an edge between them.

3. G contains a free {x1, . . . , xr, ush(x1), . . . , ush(xr)}, where each {x1, . . . , x(8kni)!}
from the latter, for i > 0 and (8kni)! ≤ r, reduces [x1 ∪ · · · ∪ xi ∪ {0, . . . , n}]≤k.

To verify the last condition, the program looks at each subset of V that has
length r, then computes {ush(x1), . . . , ush(xr)}, checks if it is in V and that
{x1, . . . , xr, ush(x1), . . . , ush(xr)} is a free set. Thereafter, we iterate over each subset
{x1, . . . , x(8kni)!}, for i > 0 and (8kni)! ≤ r and check if it reduces [x1 ∪ · · · ∪ xi ∪
{0, . . . , n}]≤k using the lexicographic ordering ≤rlex developed by Friedman. [Fri14]
For each list of nodes V , if there is no edges-list E so that G = (V,E) is valid

according to the previous criteria, then the program and its corresponding Turing
machine halt, and therefore Friedman’s statement is refuted.
The resulting Turing machine has 7910 states. Hence, it is inconceivable to prove the

value of BB(7,910) without simultaneously proving or disproving the consistency of
SRP and therefore ZFC. As explained above, the behavior of this Turing machine Z
is independent of ZFC. Therefore, the least value n for which BB(n) is independent
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of ZFC is at most 7910. This upper bound is not tight, and related works have been
conducted to find a smaller upper bound. Section 2.3 presents a glimpse of these works.

2.2.2. The Lychrel Numbers

A natural number is said to be palindrome, if reversing its digits lead to the same
number. In other words, there is a vertical axe, that splits the number into 2

symmetrical parts. [Wikc]
A natural number is a Lychrel number if can not turn into a palindrome after the

iterative process of repeatedly reversing its digits and adding the results.
Example: 59 is not a Lychrel number in base 10 because it produces the palindrome

1111 after 3 iterations:

59 + 95 = 154

154 + 451 = 605

605 + 506 = 1111

We formally define the process through the Lychrel function Fb : N −→ N for a base
b ≥ 2 as the following:

Fb(n) = n+
k−1∑
i=0

dib
k−i−1

where k = blogb nc+ 1 is the length of the number in base b and,

di =
n mod bi+1 − n mod bi

bi

The number n is therefore Lychrel if, for all i ∈ N, F i+1
b 6= 2 · F i

b . [Wikc]

Conjecture 1 There exists no base-10 Lychrel number.

This problem is, on several occasions, also referred to as the 196 − algorithm, or the
196 − quest. 196 is indeed the first number for which no palindrome has yet been
determined. It is the lowest candidate Lychrel number and has therefore received the
most attention. The first program ran for this purpose was conceived to last three years,
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in which it computed 2.415.836 iterations and a number composed of 1.000.000 digits
without reaching a palindrome. In 2015 Dolbeau’s calculations attained a number with
a billion digits without coming across a palindrome.

The Laconic program encoding the Lychrel problem compiles into a 5036-state
Turing machine. The machine will halt if it ever finds a Lychrel number. Hence,
it is unattainable to prove the value of BB(5,036) without simultaneously solving the
Lychrel problem. The Laconic program can be found in the appendices below.

2.2.3. The Scholz Conjecture

An interesting problem in number theory is to find the shortest addition chain
given a number n- That is, how can we compute xn with the fewest possible
multiplications? The term addition chain rises from the perception that calculations
involving multiplication and one variable x is highly similar to calculations involving
addition and the natural 1.

Definition 2.1 Let n be a natural number. An addition chain of n is defined as the
following sequence of numbers:

1 = a0, a1, . . . , ar−1, ar = n

with the property that:

ai = aj + ak for j, k wherej ≤ k < i for all i ∈ {1, . . . , r} [PDS81]

In other terms, an addition chain of n is given by a sequence of positive numbers
starting with 1 and ending with n, where each element of the sequence is the sum of
two previous ones. Note these latter might be the same.

Example: (1, 2, 3, 6, 12, 24, 30, 31) represents an optimal addition chain of the
natural 31, at it reaches the number after the minimum amount of additions. The
length of an addition chain is equal to the number of sums needed to reach 31 which
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is 1 less than the cardinality of the chain = 7:

2 = 1 + 1

3 = 2 + 1

6 = 3 + 3

12 = 6 + 6

24 = 12 + 12

30 = 24 + 6

31 = 30 + 1

Accordingly, this method allows computing the exponentiation of n using only 7

multiplications rather than the 30 multiplications of n by itself:

n2 = n · n

n3 = n2 · n

n6 = n3 · n3

n12 = n6 · n6

n24 = n12 · n12

n30 = n24 · n6

n31 = n30 · n

We define the generalized version of this problem: The addition sequence
problem. Here, we do not seek an optimal addition chain that computes only one
natural number. However, we look for a chain that optimally computes a sequence of
positive integers {k1, . . . , kn}. The sought optimum is the least number of additions to
obtain all values of the sequence. [PDS81]

Treating the addition chain as a directed acyclic graph (dag) with a single leaf node
having the value 1 and a single highlighted output node having the value n is preferable,
as the order of the addition chains is irrelevant. Each non-leaf node has two successors,
whose sum is the label (value) of the node. The length of the graph is the number of
its non-leaf nodes. Accordingly, we can also present an addition chain for a sequence
of positive integers the same way but with several distinguished output nodes labeled
with each value of the sequel. We refer to a graph meeting these conditions as an
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addition dag. [PDS81]
The left graph of figure 2.3 depicts a dag of 31, whereas the graph on the right

depicts a dag for the sequence {1, 2, 4, 8, 15}.

1 2

3

6

12

24

30

31

1

2

3

4

7

8

15

Figure 2.3.: non leaf nodes represent partial addition results

Downey, Leong, and Sethi presented a proof [PDS81] that the addition sequence
problem is NP-Complete through a beautiful reduction over the famous Vertex Cover
problem using the directed acyclic graph as a representation of a possible solution.
Strangely enough, it has not still been proven that the particular problem of single-value
addition chains is at least harder than the hardest problems in NP. Furthermore, there
is no efficient algorithm or expression that computes the least number of additions
needed for an addition chain of a natural n. Even though its NP-hardness is not yet
confirmed, we still present a verifier that proves that the addition chain problem is in
NP.
Prior to that, let’s define the problem:

Definition 2.2 AC = {〈n, L〉 | n, L ∈ N and there is an addition dag whose
output node is labeled with n and has length ≤ L}.

A generous upper bound of the complexity of this verifier is O(|G|3). Therefore it
runs in polynomial complexity and AC ∈ NP.
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Algorithm 2 Verifier for AC
Input: 〈n, L,G = 〈V,E〉〉, n, L ∈ N and G is a directed graph formed from vertices

V and edges E. All nodes are labeled with positive integers.
1: check if |V | − 1 ≤ L . runs in O(|V |)
2: check if root node of G has label n . runs in O(1)
3: check if G has only one leaf node with label 1 . runs in O(1)
4: for every node v 6= leaf node in G do . overall loop runs in
O(|V | · (|V | · |E|+ |E|) ⊆ O(|V |2 · |E|)

5: check if v has exactly 2 successors . runs in O(E)
6: check if label of v is sum of its successors . runs in O(|V | · |E|)
7: end for
8: if always true then accept else reject

Enough description of the hardness of addition chains problems, now we present the
actual Scholz conjecture:

Conjecture 2
l(2n − 1) ≤ n− 1 + l(n) ∀n ∈ N

where l(n) presents the length of the shortest addition chain producing n.

Interestingly, results on this conjecture have already been achieved: Clift had proved
that the inequality is actually an equality for all positive integers ≤ 64 [Cli10].
Moreover, he showed that the inequality is true for all naturals ≤ 5784689.

As presented above, finding the shortest addition chain is a tricky problem for which
no feasible approach has been found. Besides, we cannot rely on approximations
algorithms, because they do not provide an optimal solution, which is crucial in our
case. That is, we might end up rejecting the conjecture with a poor solution even
though an optimal solution would still verify it. As a result, we write a brute force
algorithm that creates all possible addition chains until the first addition chain that
ends with n is found. It is guaranteed that this first chain is indeed optimal because
we append the chains with one value at every step. Hence, if the first solution we
found has length k, we can safely affirm that any other solution will have at least
length k. This method is far from efficient, though, as explained above, we do not
focus here on efficiency but rather on parsimony. The Turing machine compiled
from its corresponding Laconic Program has 5529 states. Hence, it is impossible to
prove the value of BB(5,529) without simultaneously proving or disproving the Scholz
conjecture. The Laconic program can be found in the appendices below.
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2.2.4. The Lehmer’s Totient Problem

We present a 5411-state Turing machine that encodes the Lehmer’s totient problem.
Determining if this machine would ever halt is equivalent to determining whether the
Lehmer’s totient problem holds.

The Lehmer’s totient problem asks whether there is any composite number n, in
other words, any number that is not prime and not equal to 1, such that the Euler’s
totient function or Euler’s function ϕ(n) divides n − 1. The latter is an unsolved
problem as no such number has been found yet.

The statement holds trivially for prime numbers: It is known that ϕ(n) = n − 1

if and only if n is prime [Hol19]. It follows that for every prime number p we have
ϕ(p) = p− 1 and, therefore, ϕ(p) divides p− 1.

The Euler’s Phi function is defined in [Hol19] as follows:

Definition 2.3 ∀n ∈ N, n ≥ 2, let n =
∏k

i=1 p
ei

i be the prime factorisation of n. Then
the following applies:

ϕ (n) =
k∏
i=1

pe
i−1

i (pi − 1)

We encode this problem into a Laconic program that iterates over all composite
numbers, calculates each Euler’s function value ϕ(n), and checks if it divides n − 1.
The program will stop if it ever finds such a number. Accordingly, its corresponding
Turing machine will halt.

Hence, it is unachievable to prove the value of BB(5,411) without simultaneously
proving or disproving Lehmer’s totient Problem. The Laconic program can be found
in the appendices below.

2.2.5. The Total Coloring Conjecture

A total coloring represents the combination of vertex-coloring and edge-coloring. In
graph theory, vertex coloring represents a way of coloring a graph’s vertices, such that
no adjacent vertices are assigned the same color. Similarly, edge coloring represents
a way of coloring a graph’s edges, such that no two incident edges are designated the
same color. [Wike]

A total coloring is proper if no adjacent edges and no edge and its end vertices are
assigned the same color. In the following, every coloring is considered proper.

While the chromatic number χ defines the minimum number of colors needed to
obtain a vertex coloring of a graph, the total chromatic number χ′′ of a graph G equals
the fewest colors needed in any total coloring of G. [Wikb]
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The following inequality provides a significant lower bound of the total chromatic
number of a graph G:

χ
′′
(G) ≥ ∆(G) + 1

where ∆(G) is the maximum degree of G (a node has degree n iff it has n adjacent
vertices). However, the task of finding a maximum degree-related upper bound is a
strenuous problem that shook off mathematicians for many years.

Nonetheless, a collection of works on this matter have been achieved: Hind, Molloy,
and Reed were able to develop a polynomial-time algorithm that finds a total coloring
of a graph G with maximum degree ∆ using at most 8 log8 ∆ colors. [HHR98]

However, an aim for a smaller upper bound was consistently present, as many graphs
such as the complete bipartite graphs of the form Kn,n needed exactly ∆(G)+2 colors.
No graph has ever been found that needed more colors. Thus the assumption that the
total chromatic number of any graph G is either ∆(G) + 1 or ∆(G) + 2.

This conjecture was introduced by Behzad during his Ph.D. studies in 1965 and is,
until today, never to be proven. [Beh65]

Conjecture 3
χ
′′
(G) ≤∆(G) + 2

Now, consider the following definitions.

Definition 2.4 The total graph T = T (G) of a graph G is a graph whose vertices
correspond to the vertices and edges of G, and two vertices are adjacent in T if and
only if their corresponding elements are either adjacent or incident in G. [Wike]

Definition 2.5 A total coloring of G is a vertex coloring of T where T = T (G) is its
corresponding total graph.

By utilizing these definitions we can facilitate our undertaking and reformulate
Behzad’s conjecture to:

χ(T(G)) ≤∆(G) + 2

We define the following optimisation problem:
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Definition 2.6 MinVCP

Problem: Minimum Vertex Coloring Problem (MinVCP)

Instances: I = {〈(di,j)1≤i,j≤n〉 | n, di,j ∈ {0, 1}, 1 ≤ i, j ≤ n}. We write

D := (di,j)1≤i,j≤n, (di,j) = 0 for i = j and (di,j) = (dj,i).

Solutions: s(D) is the set of all proper color labelings of D such that no two
adjacent vertices in D are assigned the same label. Let ξ be a proper labeling
of D, then ξ(i) 6= ξ(j) for all i, j where i 6= j , (di,j) = 1 and 1 ≤ i, j ≤ n. ξ
can be defined as follows : ξ : {1, . . . ,n} −→ C, where C is the set of colors
used for the labeling of D.

Measure: m(D, ξ) = |C|

Target: Min

We define its associated decision problem:

Definition 2.7 MinV CPD = {〈(di,j)1≤i,j≤n, K〉|di,j ∈ {0, 1} i, j,K ∈
N, and there is a total computable function ξ : {1, . . . ,n} −→ C such that ξ(i) 6=
ξ(j) for all, i, j i 6= j , (di,j) = 1, 1 ≤ i, j ≤ n and |C| ≤ K}.
MinV CPD is none other than V CP = Vertex Coloring Problem.

An algorithm that solves an optimization problem is called an optimization
algorithm. Similarly, the minimization and maximization problems are more precisely
referred to as the minimization or maximization algorithms. Such algorithm is
polynomial and computes an arbitrary best solution whose measure is the lowest
possible if the target is Min. Knowing that MinVCP ∈ NPO the existence of such
an algorithm will imply MinV CP ∈ PO.

Lemma 1 P ∈ PO⇒ PD ∈ P. Proof in [Mei20]

Given MinV CPD = V CP , we conclude that V CP is in P and P = NP because V CP
is NP-complete, thereby solving the most daunting problem in mathematics. As it is
not the case, such algorithm is not yet to be determined.
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Another seemingly appealing way to approach the problem is to use the so-called
approximation algorithms, which are polynomial algorithms that compute an arbitrary
solution that does not have to be optimal. In other terms, the number of needed colors
for proper labeling is not minimal.

As we are trying to prove that the minimum number of colors needed for a vertex
coloring of the total graph of G is tightly upper bounded, we certainly cannot rely on
approximation algorithms. These could provide valid solutions that might exceed our
upper bound, whereas more rigorous solutions exist.

Therefore, the most trustworthy way to approach the matter is to use the decision
problem because it comes with a threshold. So, instead of creating an algorithm
that searches for the minimum number of colors for a vertex coloring, we develop
an algorithm, that given a graph G and an integer k, checks if it is feasible to achieve
a vertex coloring using at most k colors. If it is not, then a vertex coloring of G needs
necessarily at least k + 1 colors.

It is more accessible to validate an input than to generate it. Even though the
algorithm’s complexity might not be polynomial, it is still more solid than developing
an efficient optimization algorithm. As explained in section 2.1.1, our aim is not to
build efficient algorithms but instead to generate parsimonious Turing machines that
simulate the algorithm with as few states as possible.

The task of generating all graphs of n vertices through brute force is by itself pretty
slow, as it grows exponentially: Given n vertices, the maximum number of edges an

undirected Graph G can have is
n(n− 1)

2
. We define XCi

as the total number of graphs
with n vertices and i edges ∀i ∈ {0, . . . , X}.

Consequently: #different graphs of n vertices =
∑X

i=0XCi
. Simplifying the

expression leads to 2X = 2

n(n− 1)

2 different graphs. This straightforwardly means
that the number of operations needed also grows exponentially. Whenever we increase
n by one, we add n−1 edges into consideration. In other words, we add 2n−1 operations
to the run-time. So, for example, if the algorithm is efficient enough to generate all
graphs of 6 vertices in seconds, then generating all graphs of 7 vertices will shift the
run-time from seconds to minutes, for N = 8 it will result in hours and for N = 9 in
months, etc. Even though time complexity is not as important as parsimony in this
work, we still propose an average complexity of the algorithm, assuming it might halt
after it finds a counterexample in its first iteration. [Kha20]

Finding a counter example in the first iteration will lead in the worst case to a time
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complexity in O

2n·(n−1) · n2 + 2

n(n− 1)

2 · n)

.

The graph coloring method processes disconnected graphs as well. It treats each
connected component as an independent graph and performs the labeling accordingly.
For instance, if a disconnected component has only 1 vertex, then this vertex will be
assigned an arbitrary color from any vertex in a connected component.

Finally, the implementation of the following algorithm in Laconic compiles into a
7431-state Turing machine. Hence, it is inconceivable to prove the value of BB(7,431)

without simultaneously proving or disproving the total coloring conjecture. The
Laconic program can be found in the appendices below.

Algorithm 3 Total Coloring Conjecture
1: totalColoringConjecture← true
2: n← 2 . Number of vertices
3: while totalColoringConjecture do
4: graphs ← generateGraphsOfNVertices(n)
5: for G in graphs do
6: if totalColoringConjecture then
7: totalGraph← generateTotalGraph(G)
8: labeling ← {0} . No color is assigned to any vertex
9: threshold← 0 . The number of colors to check
10: found← false . True if proper vertex coloring is found
11: while !found do
12: threshold← threshold+ 1
13: graphColoring(G, labeling, threshold, found) . Threshold enough?
14: end while
15: minimumV alidColors← threshold
16: maximumDegree← maxDegree(G)
17: upperBound← maximumDegree+ 2
18: if minimumValidColors > upperBound then . Verify the conjecture
19: totalColoringConjecture← false
20: end if
21: end if
22: end for
23: n← n+ 1
24: end while

2.2.6. The Erdős–Gyárfás Conjecture

In 1995 the creative mathematician Paul Erdős and his collaborator András Gyárfás
devised a property on simple cubic graphs [Wika]:
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Conjecture 4 Every cubic graph contains a simple cycle whose length is a power of
2. (cubic graphs are 3-regular- That is, each vertex has exactly degree 3)

Before jumping into the implementation methods, we present some preliminaries on
terms concerning graphs. A graph G = (V,E) is composed of a set of vertices V and
a set of edges E where E ⊆ V × V . A graph is simple if and only if it comprises no
self-loops and no multiple edges between the same vertices. We define a simple path in
a graph G as a sequence of nodes P = {v1, . . . , vn} where vi 6= vj if {i, j} 6= {1, n} for
all i, j ∈ {1, . . . , n} and (vi, vi+1) ∈ E for all i ∈ {1, . . . , n − 1}, n ∈ N and n ≤ |V |.
The length of P is the number of edges connecting every two consecutive vertices. In
the following, we refer to v1 as head and vn as a tail. If the head and the tail of the
simple path are identical, we are talking about a simple cycle. Moreover, we refer to
simple cycles of length k as k-cycles.
The implementation procedure is divided into two parts: Generating all cubic

graphs of n given vertices and iterating through the simple cycles of each
graph.

Generating Cubic Graphs Through Randomization

Even though the focus of this paper is, as mentioned above, mainly on parsimonious
Turing machines, we still prefer to approach programming challenges efficiently if
accorded the opportunity. Opting for brute force like in the total coloring conjecture to
generate cubic graphs is certainly not a way to adopt, because, on closer examination,
the number of cubic graphs of n nodes is meager compared to the number of all
graphs of n nodes. As a result, we end up with an awful amount of computation
and states. Several algorithms generating random k-regular graphs uniformly or close
to uniformly at random were developed. Here, we present a method devised by Steger
and Wormald [SW98] based on the first algorithm for generating d-regular graphs
conceived by Bollobas, where he employs the concept of pairing [Bol80]. Let n be the
number of vertices of the d-regular graph G = (V,E) we are about to create. The
description of the algorithm from [SW98] is as follows:

1. Begin with n·d nodes {1, 2, ..., n·d} (n·d has to be even, otherwise there will be no
such graph as

∑
v∈V deg(v) = n · d = 2 · |E|) in n groups. Let U = {1, 2, . . . , nd},

U denotes the set of unpaired points.

2. Choose two random vertices i and j from U . If i and j are suitable then pair i
with j and delete i and j from U (two nodes are suitable if they lie in different
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groups and no currently existing pair contains points in the same two groups).
Repeat the previous until no two suitable vertices are found.

3. Create G through adding an edge from node q to node p if and only if there is
a pair comprising nodes in the q.th and p.th groups. Afterwards check if G is
d-regular. If so, then output it else repeat from the first step.

The authors [SW98] proved that the run-time of the second step is polynomial and
bounded by O(n·d2+d4). Besides, they also show that the distribution of the generated
d-regular graphs is close to uniform. In our case, d = 3 is fixed as we are generating
cubic graphs.

The introduced algorithm produces a single random graph. However, in order for
us to attempt to prove or disprove the Erdős–Gyárfás Conjecture, we need to iterate
over all cubic graphs. A related issue is the number of k-regular graphs. A formula or
an expression that gives the exact value is not yet determined. Nonetheless, Bollobas
[Bol80] affirms that the numbers of d-regular graphs of n nodes are asymptotically

√
2e

1
4 (λλ(1− λλ))(

n
2)
(
n−1
d

)n
where λ = d

n−1 . In our case, we just replace d by 3. Even though this upper
bound considerably overgrows the actual number of d-regular graphs for a growing
number of vertices n, it is certainly a more convenient threshold then the number of
all graphs of n vetrices. Hence, we execute the random graph generator as many times
as the asymptotic function affirms for a specific n and store merely different generated
3-regular graphs.

Unfortunately, implementing this in Laconic is inconceivable. This is because Laconic
does not provide a way to generate random or pseudo-random numbers. One could
create a random number generator like the linear congruential generator. However,
this will always lead to a predictable cycle of random numbers as the seed itself cannot
be assigned randomly in Laconic. In the end, unfortunately, we had to use the brute
force method.

Enumerating Cycles in a Graph

The second part of the implementation is to search for a cycle whose length is a power
of two in the generated cubic graph. Looking for a valid cycle through iteration overall
potential ones is neither efficient nor parsimonious. Since our central focus is golfing,
we adopt an algorithm introduced by Liu and Wang [LW06] that is relatively efficient
but considerably parsimonious. The latter is simple and gets implemented with few
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variables and statements using Laconic. The algorithm relies on the idea that paths of
length k can be effortlessly generated from paths of length k−1. We directly attach an
edge from the tail to another vertice that does not appear in the path. In like manner,
a k-cycle comprises a path of length k− 1 and an edge connecting the tail to the head.
We slightly alter the presented algorithm by adding a break condition that stops

the iteration over the found paths whenever a cycle whose length is a power of two is
constructed, and by conditioning on vertices rather than edges. Figure 2.4 illustrates
a detailed flowchart of the algorithm.
The resulting Turing machine of the Laconic program comprises 6724 states. Hence,

it is impossible to prove the value of BB(6,724) without simultaneously proving or
disproving the Erdős–Gyárfás conjecture. A link to the Laconic program is in the
appendices below.
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Begin

For a graph G = (V,E)

Push all vertices
v1 . . . vn in a queue Q

Fetch path P from
Q, assign head to
vh and tail to vt

assign |P | to k {vt, vh} ∈ E?

If {vt, vx} ∈ E, where vx >
max({vi |vi ∈ P, 1 ≤ i ≤
k}) then push P + vx to Q

Is k power of 2?

Have all adjacent
vertices of vt been
iterated over?

Is Q empty?

return false

return true

no

yes

no

yes

no

yes

yes

no

Figure 2.4.: Flowchart of enumerating k-cycles algorithm
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2.3. Related Work: Not Quite Laconic

In this section, we briefly present the enhancements obtained by Stefan O’rear in
searching for a stronger lower bound to the lowest value n, for which BB(n) is
independent of ZFC set theory.

Motivated by the achievements of Scott Aaronson and Adam Yedidia in determining
an upper bound on the first BB value eluding ZFC, Stefan O’rear took advantage
of Laconic to develop NQL (Not Quite Laconic), with which he directly searches for
contradictions in a system equivalent to ZFC. Thereby, he eliminates the reliance on
Friedman’s statement as well as on SRP . NQL offers less functional diversity than
Laconic as it has no native support for lists, negative numbers and handles procedures
rather than functions. However, it compensates through optimized performance and
better state count. More details about NQL are to be found in Stefan’s Github
repository. [O’r17a]
State count is affected strongly by logic but much less so by the lengths of axioms.

Because of that, Stefan moved as much complexity as possible into axioms and out
from side conditions. Furthermore, theorems inferred from stronger axioms were not
explicitly iterated over as they will be proved sometime during the execution. The
implementation of Stefan discards the axiom of choice as it does not affect the soundness
of Con(ZFC). The program uses the axiomatization for all universally valid sentences
of predicate logic with identity conceived by Tarski. [TAR64]
The final set of axioms representing first-order logic and ZF is the following:

Predicate Calculus =



Modus Ponens : ϕ & (ϕ→ ψ)⇒ ψ

Generalization : ϕ⇒ ∀xϕ

B1 : (ϕ→ ψ)→ ((ψ → θ)→ (ϕ→ θ)

B2 : (¬ϕ→ ϕ)→ ϕ

B3 : ϕ→ (¬ϕ→ ψ)

B4 : ∀x(ϕ→ ψ)→ (∀xϕ→ ∀xψ)

B6 : ϕ→ ∀xϕ

B7 : ∃x x = y

B8 : x = y → (ϕ→ ψ)

where x, y and z range over variables, and ϕ, ψ and θ range over well-formed
formulas. In B6, x does not appear syntactically in ϕ. ϕ and ψ are atomic formulas in
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B8, and ψ is obtained from ϕ by replacing a single instance of x with y. Therefore, in
order to remove these enclosed conditions, Stefan differentiates 3 cases for each axiom.

Zermelo-Fraenkel =



Extensionality : ∀v2(v2 ∈ v0 ↔ v2 ∈ v1)→ v0 = v1

Replacement : ∀v3∃v1∀v2(∀v1ϕ→ v2 = v1)→ ∃v1∀v2
(v2 ∈ v1 ↔ ∃v3(v3 ∈ v0 ∧ ∀v1ϕ))

Power Sets : ∃v1∀v2(∀v3(v3 ∈ v2 → v3 ∈ v0)→ v2 ∈ v1)

Union : ∃v1∀v2(∃v3(v2 ∈ v1 ∧ v3 ∈ v0)→ v2 ∈ v1
Infinity : ∃v1(v0 ∈ v1 ∧ ∀v0(v0 ∈ v1 → ∃v2(v2 ∈ v1∧

∀v1(v1 ∈ v2 ↔ v1 = v0))))

where v1, v2 and v3 range over variables and ϕ over well formed formulas.

In his implementation [O’r17a], Stefan encodes formulas and proofs as integers. For
this, he exploits the bijective Cantor pairing function, which takes pairs of non-negative
integers and returns a unique identifier for each pair. He denotes with (X ·Y ) the Cantor
value of the pair of integers (X, Y ).

(X · Y ) =
X + (X + Y ) · (X + Y + 1)

2

Applying this function allows a recursive numbering of formulas. For example:

• 〈vi = vj〉 → (i · j) · 0

• 〈ϕ→ ψ〉 → (〈ϕ〉 · |ψ|) · 2

where 〈 〉 denotes the encoded value.´
The following explanation is pointedly cited in Stefan’s ZF -enumerator NQL file

[O’r17b]. The formula with value 0 is (v0 = v0) which is an obvious theorem of ZF .
The formula (v0 ∈ v0) has value 1 and is not a theorem, as it states that all sets contain
themselves. The latter serves as a contradiction, thereby the Turing machine will halt
whenever a proof of 1 is found.

A proof will then consist of a list that contains chunks of 4 integers.
Each group contains an axiom code followed by 3 parameters like
(ACa P1a P2A P3a;ACb P1b P2b P3b; ...) that represent variables or formulas. The
assignment of the codes to each axiom is listed in [O’r17b]. Each proof manipulates
a stack of already proved theorems. Each time an inference rule is applied, one or
two theorems are popped from the stack, and after every step, a theorem is pushed.
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If invalid steps occur, then the trivial theorem (v0 = v0) is pushed. The execution
and with it Turing machine will halt if at any point a proof pushes the contradiction
formula (v0 ∈ v0).
The resulting Turing machine achieves drastic improvements compared to the

machine devised by Yedidia and Aaronson. It comprises 748 states, which is an order
of magnitude smaller than the 7910-state Turing machine that relies on Friedman’s
hypothesis. Therefore, the following theorem:

Theorem 2.1 There is a 748-state Turing machine whose behavior is independent of
ZF . It halts iff ZF is inconsistent. Hence, assuming Con(ZF), ZF cannot prove the
value of BB(748) .
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Independence

The P ?
= NP problem is one of the most significant open issues in modern mathematics

and theoretical computer science. It figures among the Clay Math Institute’s list
of million-dollar prize problems and distinguishes itself as the most prominent and
captivating one. This is due to its versatile nature that goes beyond just being a
math problem to reaching everything from mathematical reasoning to philosophy to
practical computation. Numerous researches were conducted during the past 50 years
in pursuit of a definite answer. In light of the indecisive results, a question was raised,
whether P ?

= NP could somehow be independent of the standard axioms systems of
mathematics such as Zermelo-Fraenkel set theory. Several works have already been
achieved, each approaching the problem from a particular point of view and producing
observations that only affirm its utter harshness. Ineluctably, this problem cannot be
addressed in a sole publication let alone a modest part of it. Therefore, we will only be
briefly discussing two obstacles that compelled researchers to doubt the qualification of
the currently exploited techniques in the journey towards proof of independence. But
before that, we succinctly present the P ?

= NP problem. The following definitions and
concepts are thoroughly explained in the official problem description provided by the
Clay Math Institute. [COO71]

Let P be the following class of languages.

Definition 3.1 P = {L | L = L(M) for some deterministic Turing machine M that
runs in polynomial time (nO(1))}.

The NP class of languages only differs from P in its non-determinism, as the Turing
machine M that accepts a language L could have more than one transition for each
configuration. However, NP is generally defined with an equivalent statement using
the notion of polynomial checking. The following definitions are presented in [Mei20].

Definition 3.2 For some language L over an alphabet Σ, L ∈ NP iff L is polynomially
verifiable. That is, there is exits an algorithm V so that for all inputs w:
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w ∈ L iff there exists x so that V on input 〈w, x〉 accepts. The running time of V on
input 〈w, x〉 is limited by a polynomial in |w|. If V accepts on input 〈w, x〉, then x is
called certificate for w.

In other words, NP is the class of languages for which we can feasibly (polynomially)
check if a candidate solution is proper. Therefore, the P ?

= NP problem can be
paraphrased into an intuitive question: Could the rapidly checkable languages also be
rapidly solvable? That is, conceiving a solution from scratch with a comparable effort
to what was devoted during the checking process.
The relevance of finding a definite answer to this problem grows out of the

NP-Completeness notion devised by Cook and Levin in 1971 and out of the modern
complexity-based cryptography, needless to mention the groundbreaking practical
consequences P = NP might yield.

Definition 3.3 A language L is NP-Complete iff L is in NP, and L′ ≤p L for every
language L′ in NP. L′ ≤p L iff there is a polynomial-time computable function f :

Σ∗1 → Σ∗2 such that x ∈ L′ ⇔ f(x) ∈ L, for all x ∈ Σ∗1.

Properties.

• If L1 ≤p L2 and L2 ∈ P then L1 ∈ P.

• If L1 is NP-Complete, L2 ∈ NP, and L1 ≤p L2, then L2 is NP-Complete.

• If L is NP-Complete and L ∈ P, then P = NP.

As one could already have concluded, NP-Complete problems are the hardest in the
NP class, where coming up with a polynomial-time algorithm for one of them would
immediately collapse P and NP. One such problem is Satisfiability: Given a formula
ϕ in propositional calculus, determine whether there exists a satisfying assignment for
ϕ. A prominent recurring variety of Satisfiability is 3-SAT, an NP-Complete problem
whose instances are formulas in conjunctive normal form with only three literals in
each clause. For instance, the formula

(x ∨ y ∨ z) ∧ (x̄ ∨ y ∨ z̄) ∧ (x ∨ ȳ ∨ t) ∧ (x̄ ∨ z̄ ∨ t̄)

is in 3-SAT since the assignment J satisfies the formula, where J (x) = J (y) = J (t) =

True and J (z) = False.
Since the rise of the concept, numerousNP-Complete languages have been discovered,

comprising many graph problems (given a graph G and a natural k, is there a subset
of k nodes, where all vertices are connected? Can G be colored with k colors, so that
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each vertex gets assigned a color that is different from its neighbors? etc.), also the
famous Traveling Salesman problem and several others. As far as many theoretical
computer scientists are concerned, a strong reason for the P 6= NP hypothesis is the
thousands of NP-Complete problems that have been identified, but, at the same time,
the thousands of problems that are shown to be in P. It would have sufficed, that only
one NP-Complete is at the same time element of P, to immediately collapse P and
NP. Subsequently, the P 6= NP hypothesis had thousands of chances to be falsified
through the hardness proof reductions, yet, it manages every time, somehow, to avoid
the deterministic polynomial-time algorithms.
It’s high time we got straight into the topic of the yet unsolved potential formal

independence of the P ?
= NP. For further readings about P ?

= NP, its notability and
background, the Clay Math Institute provides an assiduous description [COO71]. We
present some of the barriers that make the independence proof harder than we could
imagine.

3.1. The Relativization Barrier

A statement is said to relativize or be relative to some oracle A if it holds in respect
to A. In this context, an oracle A is a set of natural numbers or strings, for which
there is an oracle Turing machine that can simulate all the customary operations of
a standard Turing machine and provides A with an instance (natural number). The
oracle decides afterward whether the given natural is an element of A. Thereby, the
oracle Turing machine will write the characteristic function of A on a distinguished
tape, called the oracle tape, for each queried number. In this way, we could define the
relativized complexity class CA for a complexity class C. We say a language L is in CA

if there exists an oracle Turing machine with oracle A, that decides L and in mostly
the highest time in C. The approaches discussed in this section were surveyed by Scott
Aaronson. [Aar03]

Through oracles, Baker, Gill, and Solovay prove the following. [TBS75]

Theorem 3.1 There exists at least one oracle A such that PA = NPA, and at least
one other oracle B such that PB 6= NPB.

Thanks to the previous result, Hartmanis and Hopcroft show the following.

Theorem 3.2 There exists a Turing machine M that halts on every input, such that
neither PL(M) = NPL(M) nor PL(M) 6= NPL(M) is provable in ZF , assuming ZF is
consistent.
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Proof. The approach starts by considering an oracle A relative to which P = NP 1,
and another oracle B relative to which P 6= NP 2. The existence of such computable
oracles follows from the above theorem by Baker, Gill, and Solovay. Now, consider a
standard enumeration P1, P2, . . . of ZF proofs. Let M be a Turing machine that takes
an integer y as input and lands on a halting state if either

1. y ∈ B and there is a proof among P1, P2, . . . , Py that PL(M) = NPL(M), or

2. y ∈ A and there is a proof among P1, P2, . . . , Py that PL(M) 6= NPL(M).

The construction of M comprises an encoding trick that allows the implication of two
contradictory statements. If we take a look at conditions 1 and 2, we’ll see that as
soon as a proof is found of P = NP relative to L(M), the oracle L(M) equals B “from
that point forward,” as M will accept on input y ∈ B, and B (or anything equal to
B except on some finite prefix) makes P 6= NP. Likewise, as soon as a proof is found
that P 6= NP relative to L(M), the oracle L(M) equals A from that point forward,
as M will accept on input y ∈ A and A makes P = NP. Since both possibilities are
contradictory, the only way out is that P = NP relative to L(M) is neither provable
nor disprovable, which is what we wanted to show (and hence, L(M) is the empty
oracle, although ZFC can’t prove that). [Aar03]

Intuitively, one would want to generalize and ask: Is it conceivable to create a
computable oracle O, relative to which P = NP is independent of ZF , regardless of
the Turing machine that accepts O?

Hartmanis [HH76] shows that such an oracle exists. The idea is summarized as
follows. O is constructed so that for the majority of input lengths PO = NPO holds.
But, for some extensively distant input lengths, like the output of a total computable
function f, PO 6= NPO applies. And that is enough to decisively affirm PO 6= NPO

since there are infinitely many of these separated input lengths. Now, the problem
resides in the fact that f is an extremely rapidly-growing function, so that ZF is
unable to prove its total property or that its definition domain is actually infinite.
Therefore, PO 6= NPO is independent of ZF .

1Considering complexity classes hierarchy, we could take any PSPACE-Complete language A. It is
not hard to see that A collapses PA and NPA to PSPACE, as P ⊆ NP ⊆ PSPACE.

2B can be a random oracle, for which we define a special language L, that allows the separation
between P and NP.
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3.2. The Natural Proofs Barrier

Since relativization techniques were inherently weak to solve hard questions like P
?
= PSPACE, NP ⊆ P/poly and P ?

= NP, more studies involving combinatorial
techniques from the vantage of Boolean circuits cropped up. The idea consists in
proving strong lower bounds for complexity classes. The aim is to prove, for any NP
problem, for instance, SAT, that it does not have any polynomial-size circuits. For this,
Razborov and Rudich [RR96] introduce the notion of natural proofs and demonstrate,
assuming a widely believed cryptographic hardness assumption, that proofs of this
kind are unable to prove super-polynomial lower bounds for general circuits, thereby,
refuting any strong lower bound proof that could naturalize. The notions and concepts
in this part are introduced and thoroughly described in [RR96].

Let’s start by defining natural proofs according to Razborov and Rudich. Natural
proofs are formalised by a natural combinatorial property, which represents a set of
Boolean functions {Cn | Cn ⊆ Fn, n ∈ ω and Fn is the set of all Boolean functions on
n variables}. Thus, a function fn will have then property Cn only if fn is an element
of the set Cn. Now, the property Cn is called natural if it contains a subset C∗n that
satisfies the following criteria:

• Constructivity: The membership of fn in Cn is polynomially provable in the
length of the truth table of f (was empirically shown to be plausible. Details in
[RR96]).

• Largeness: |C∗n| ≥ 1
2n·k
· |Fn|.

A combinatorial property is useful against P/poly if the following applies.

• Usefulness: For any sequence of functions fn ∈ Cn, the circuit size is
super-polynomial.

The largeness condition could be fathomed as the density of C∗n- That is, a random
function fn ∈ Fn has a relatively considerable chance of possessing the property Cn.
To better understand the practical significance of the above definitions, consider a

natural proof that some explicit function hn cannot be computed with polynomial-size
circuits. Let Cn be the natural combinatorial property used during the proof. Then,
the latter will show that every function having the property Cn, including hn, also
does not have polynomial-size circuits, which is equivalent to super-polynomial. That
implies the usefulness of Cn. Therefore, if hn was to be in NP, then this constitutes a
proof that P 6= NP. Specifically, such a proof for P 6= NP proceeds from the following
strategy.
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1. Consider a complexity measure for Boolean functions λ that returns high values
for certain functions and low values for others. Formalize this notion to a
combinatorial property Cn that asserts true for functions with high measure
outputs.

2. Show inductively that for any random function f ∗ computable by polynomial-size
Boolean circuits, the complexity measure λ returns a low value. In this way,
we show that Cn is useful, because any function in Cn would necessarily need
super-polynomial circuits.

3. Show that λ yields a high measure for any NP problem. For example, SAT,
which means that SAT has property Cn.

If all steps of the approach are carried out, then we conclude that P 6= NP. The
catch is that Razbov and Rudich give evidence that such a proof strategy is not
consistent, as it will prove two contradictory statements simultaneously. They show
that a combinatorial property Cn that is natural and useful against P/poly could be
exploited to distinguish any polynomial-time pseudo-random generator from random.
That is, it would contravene the generally accepted hypothesis that there exists a
pseudo-random generator of hardness 2n

O(1) .
As described by Razborov, Rudich, and Aaronson [Aar03], the idea to show that

such a proof is self-crushing is the following: A natural proof that a random function
f is not in the class P/poly would have an algorithm. However, because the proof
needs to distinguish f from pseudo-random functions computable by P/poly, the
proof algorithm would have then broken the (pseudo)-random function f . The proof is
therefore self-crushing, in the sense that it aimed to prove the hardness of f but ended
up yielding a solution to solve a hard problem. So, in the end, the algorithm showed
the function to be harder than P/poly, and simultaneously gave an algorithm that
made it easier!
Within this frame of reference, several fragments of bounded arithmetic formal

systems used the same assumption applied in natural proofs. The latter assumes the
existence of pseudo-random generator that requires Boolean circuits of size Ω(2n

ε
) to

break for some ε > 0. These theories give a lower bound on the length of a proof for
Circuitn where

Circuitn = "SATn requires circuits of size nlogn"

where SATn comprises SAT instances on n variables. Razabov showed that
proofs of these theories, which are considerably weaker than ZF , would naturalize.
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Consequently, such lower bounds are independent of arithmetic bounded theories
(assuming the cryptographic hardness hypothesis).

Regardless of the previous concepts, let’s try to conceive an independence proof in
a technically mathematical way. For this, let Π1 be the set of sentences of the form
"∀ x, Q(x)," where Q is a recursive predicate or function, whose recursiveness can be
proven in Peano Arithmetic. (Peano Arithmetic PA is a strong theory that encodes
arithmetic, it is equivalent to ZF without the axiom of infinity). In the same way, Π2

is the set of sentences that have the form "∀ x, ∃y, Q(x, y)," and so forth.
Clearly, the P vs. NP problem can be arranged as a Π2 sentence: For all Turing

machinesM and polynomials p, there exists a SAT-instance ϕ such that the number
of steps needed for M to halt with a true answer to ϕ exceeds p(n). n represents the
size of ϕ (number of variables).
However, Ben David and Halevi show that some Π1 sentences are equivalent to P

vs. NP [BDH91], despite the latter being a Π2 statement. Consider the following
affirmation A: "SAT is uncomputable with Boolean circuits of size nlogn". A is thus
a Π1 sentence as we only need to range over all possible values of n and stop if we
encounter circuits of size nlogn that compute SAT. Obviously, A entails P 6= NP.
Next, let PA+ Π1 be the theory comprising Peano Arithmetic expanded by the set

of all valid Π1-sentences. Even though this theory is notably strong, it is unable to
prove some Π2 sentences, as in Goodstein’s Theorem [SAS87]. Paris and Harrington
show that the latter is independent of PA+ Π1, and subsequently of PA.
Now, here is the trick. Suppose P vs. NP were independent of PA + Π1- That is,

the assertion A devised above is unprovable within this theory. Then A would simply
not hold, and NP would have Boolean circuits of size nlogn. For if it did, then we must
have a a Π1-sentence among PA+ Π1 that implies P 6= NP, which makes P vs. NP
provable in PA+ Π1, thereby contradicting the assumption. [Aar03]

To summarize, the deeper one digs in the quest of solving this problem, the more
knife-twisting the results appear to be, and the clearer a formal independence proof of
P vs. NP seems to be out of reach of the current techniques.
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4. Summary and Outlook

With the definition of the Busy Beaver Game in 1961, Tibor Radó initiated a
competition that is still relevant today. In order to win this game, the obstacle of
uncomputability must be overcome. This hurdle challenges computer scientists time
and again to find creative approaches for identifying the Busy Beavers. However, in
light of this quest, an equally challenging but less prominent problem emerges: Could
the Busy Beaver values, at some point, elude the foundations of moderns mathematical
theories? This general concept of unknowability is significantly more intriguing than
the prospect of pinning down Busy Beaver values. In this paper, we have presented a
programming language devised by Adam Yedidia, with which two Turing machines
were developed, whose behaviors cannot be proven using the axioms of a certain
theory, assuming its consistency- that is, the corresponding Busy Beaver values of
these machines are independent of set theory. In other words, we have given an upper
bound on the highest provable Busy Beaver value in ZF , which is BB(747). Besides
that, we used Laconic to prove the undecidability of several other Busy Beaver values.
In the end, we touched on an astronomically hard problem that dwells around the
formal independence of the P vs. NP. There, we altercated two barriers that only
but accentuate the utter harshness of an independence proof. Nevertheless, one could
ironically affirm that it is believable that the independence results achieved so far will
eventually subsidize P 6= NP, not because of what they conclude, but because of the
new techniques developed throughout the process.
Even though the achievements of Stefan O’rear present a stupendous improvement

upon the works of Yedidia and Aaronson, the presently obtained value n for which
BB(n) is independent of set theory, namely 748, is still 2 orders-of-magnitude higher
than the largest n, namely 4, for which BB(n) is known to be determinable. It is,
therefore, legitimate to try pinning down the Gödelian boundaries of ZF- the axiomatic
system underpinning almost all modern math. Is it conceivable that the smallest n for
which BB(n) is independent of set theory is far smaller than 748? Could it be BB(20)

or even BB(6)? In his frontier about Busy Beaver, Scott Aaronson [Aar03] sticks his
neck out and conjectures that BB(20) and BB(10) are unprovable in ZF and PA,
respectively. Whether near or far, such thresholds of unknowability definitely exist.
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This restriction is what Gödel’s incompleteness theorems inflicted to the all axiomatic
systems encoding arithmetic. It might turn out, as well, that showing whether ZF
proves BB(20) would be an unimaginably harsher task than solving the P ?

= NP
problem, which is already one of the most challenging mathematical problems.
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A. Appendices

Most implemented programs are available through the presented link to a Github
repository. Yet, the Scholz conjecture’s code is explicitly given as an example.

A.1. Laconic Program: The Scholz Conjecture

func zero(x){
x = 0;
return;

}

func one(x){
x = 1;
return;

}

func incr(x){
x = x + 1;
return;

}

func modulus (x , y , out ) {
out = x;
while ( out >= y ) {

out = out - y;
}
return;

}

func pow(b, e, result ,i){

one(result );
if (e == 0) {

result = 1;
return;

}
if ( e== 1){

result = b;
return;

}
one(i);
while ( i <= e){
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result = result * b;
incr(i);

}
return;

}

func contains(l, value , i, found , length , element ){

zero(i);
zero(found);
length = #l;
while (i < length ){

element = l@i;
if ( value == element ){

one(found);
return;

}
incr(i);

}
return;

}

func additionChain(n, allChains , chain , i, j, k, h, sum , found ,foundLength ,
finalLength , lengthFoundChain , lengthChain ,isContained , bool , element ,
lastElement , chainLength , length , firstSummand ,
secondSummand , chainToAppend ,tmp) {

allChains = :[1 ,2]:;
chain = [];
one(bool);
zero(k);
while (bool & !found ){

chain = allChains@*k;
chainLength = #chain;
zero(i);
while (i < chainLength ){

firstSummand = chain@i;
j = i + 1;
tmp = chainLength -1;
if (i == tmp){
j = i;
}
while ( j < chainLength ){

chainToAppend = chain;
secondSummand = chain@j;
lastElement = chain@tmp;
sum = firstSummand + secondSummand;
zero(found);
/*print sum ;*/
contains(chain , sum , h, found , length , element );
/*print found ;*/
if ( !found ){

zero(found);
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if (sum >lastElement) {
chainToAppend = chainToAppend^sum;
allChains = allChains ^* chainToAppend;
if (sum == n){

finalLength = #chainToAppend - 1;
return;

}
}

}
incr(j);
}

incr(i);
}

incr(k);
}
return;

}

int n;
list2 allChains;
list chain;
int i;
int j;
int k;
int h;
int y;
int sum;
int found;
int greaterFound;
int bool;
int element;
int lastElement;
int chainLength;
int length;
int firstSummand;
int secondSummand;
int chainToAppend;
int tmp;
int foundLength;
int lengthFoundChain;
int lengthChain;
int isContained;
int conjectureVerified;
int finalLength;
int lengthOfAdditionChainOfN;
int lengthOfAdditionChainOfPowerOfN;
int result;
int rightPart;

y = 2;

n = 3;
one(conjectureVerified );
while (conjectureVerified) {

print n;
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additionChain(n, allChains , chain , i, j, k, h, sum , found ,foundLength , finalLength ,
lengthFoundChain , lengthChain ,isContained , bool , element ,lastElement ,
chainLength , length , firstSummand , secondSummand , chainToAppend ,tmp);

lengthOfAdditionChainOfN = finalLength;
print lengthOfAdditionChainOfN;
pow(y, n, result ,i);
result = result - 1;
print result;

additionChain(result , allChains , chain , i, j, k, h, sum , found ,foundLength ,
finalLength , lengthFoundChain , lengthChain ,isContained , bool , element ,
lastElement , chainLength , length , firstSummand , secondSummand ,
chainToAppend ,tmp);

lengthOfAdditionChainOfPowerOfN = finalLength;
print lengthOfAdditionChainOfPowerOfN;
rightPart = n - 1 + lengthOfAdditionChainOfN;
print rightPart;

if (lengthOfAdditionChainOfPowerOfN > rightPart ){
zero(conjectureVerified );

}
print conjectureVerified;
incr(n);

}
halt;

A.2. Laconic Program: The Lychrel Numbers

This is a link to the Laconic program encoding the Lychrel conjecture.

A.3. Laconic Program: The Lehmer’s Totient

Problem

This is a link to the Laconic program encoding the Lehmer’s totient problem.

A.4. Laconic Program: The Total Coloring

Conjecture

This is a link to the Laconic program encoding the total coloring conjecture.
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A.5. LACONIC PROGRAM: THE ERDŐS–GYÁRFÁS CONJECTURE

A.5. Laconic Program: The Erdős–Gyárfás

Conjecture

This is a link to the Laconic program encoding the Erdős–Gyárfás conjecture.
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