
Institut für theoretische Informatik

Leibniz Universität Hannover

Bachelorarbeit

Interpreter for Machine Programs on
Arbitrary Models of Computation

Konrad Wienecke

Matrikelnummer: 10005023

2020

Erstprüfer: Prof. Dr. rer. nat. Heribert Vollmer

Zweitprüfer: Dr. rer. nat. Maurice Chandoo

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und ohne fremde Hilfe
verfasst habe und keine anderen Hilfsmittel und Quellen als angegeben verwendet habe.

Konrad Wienecke

Contents

1 Introduction 2

2 Basic Definitions 3
2.1 Model of Computation . 3

2.1.1 Deterministic Finite Automaton 4
2.1.2 Real-Time Deterministic Pushdown Automaton 4
2.1.3 Turing Machine . 5
2.1.4 Linear Bounded Automaton . 5
2.1.5 Counter Machine . 5
2.1.6 Stack Machine . 6

2.2 Machine Program . 6
2.2.1 Exemplary Machine Program . 8
2.2.2 Machine Programs in Text Form 8

3 Relations to Classical Definitions in Automata Theory 10
3.1 Finiteness of Machine Programs . 11
3.2 Reduced Binary Decision Tree . 12
3.3 Conversion of Deterministic Finite Automata 13

3.3.1 DFA to MP . 13
3.3.2 MP to DFA . 14

3.4 Conversion of Real-Time Deterministic Pushdown Automata 16
3.4.1 RDPA to MP . 17
3.4.2 MP to RDPA . 19

3.5 Conversion of Turing Machines . 21
3.5.1 Turing Machine to MP . 22
3.5.2 MP to Turing Machine . 23

3.6 Conversion of Linear Bounded Automata 25

4 The Program Arbipreter 26
4.1 Usage . 26
4.2 Advanced Machine Program Features . 27

4.2.1 Program Calls . 27
4.2.2 Program Calls with Register Permutation 27

4.3 Implementation Details . 28
4.3.1 Parsing . 28
4.3.2 Program Evaluation . 29

4.4 Defining Additional Models of Computation 29

References 31

Appendix 32

1

1 Introduction

Automata have long played an important role in theoretical computer science. They are
well-known for their use in the fields of formal language theory and complexity theory
where they are used to describe classes of languages and problems. Their simplicity and
formalism serves as a good basis for theoretical proofs. Yet automata are structurally
quite dissimilar to real-world computers. Where the notions of hardware and software
are clearly detached from each other in the context of computers, automata show no
clear separation of these two concepts.

That is not to say that this separation is impossible. In [Sco67], the separation of
automata into machine and (machine) program is first proposed. The notion of sequen-
tial models of computation is not far from that of Scott’s machines. Broadly said, a
sequential model of computation describes the actual capabilities of a machine as an
interface. The machine has a hidden internal state, the machine state, which can be
accessed by a program through the machine’s buttons (operations) and indicator lamps
(predicates). 1 Many deterministic automata like finite automata, pushdown automata,
and Turing machines can be modelled as a combination of a sequential model of com-
putation and a corresponding program. Typically, an automaton transitions between
configurations sequentially as defined by its transition function. This process is similar
to how a program sequentially applies operations to a machine state.

Note that this thesis is only concerned with sequential models of computation. Non-
sequential models of computation also exist, for instance lambda calculus, Boolean cir-
cuits, and Petri nets. However, these models describe computations in much different
ways. From here on, we will just use the term model of computation to refer to sequential
models of computation.

Models of computation have uses beyond those of automata. For instance, they can
serve as a notional machine, a concept introduced in [Sor13]. Sorva details how notional
machines can be useful for teaching about programs and program execution by serving
as a mental model to the programmer. Program tracing is described as another useful
process for the purpose of understanding a program.

We present an interpreter which can be used for interpretation and tracing of ma-
chine programs for arbitrary models of computation. The machine programs are written
in a language which allows the use of many different models of computation. The in-
terpreter has been implemented in Haskell as this language lends itself to parsing and
because Haskell’s fundamental integration of higher-order functions lets us easily imple-
ment models of computation.

1This informal description of sequential models of computation is inspired by that given in [Cha20b].

2

2 Basic Definitions

2.1 Model of Computation

While different types of models of computation exist, this thesis is only concerned with
sequential models of computation which we will refer to with the former term from here
on.

The notion of the model of computation stems mainly from automata theory. While
an automaton such as a finite state machine may compute a mathematical function,
that specific machine is limited to that function only. In contrast, when we think of
a computer we carry the notion that it is a general-purpose machine which can be
programmed. If we separate the automaton into program and machine 2 , it structurally
becomes more akin to a conventional computer while retaining its simplicity.

Models of computation describe machines a little bit more abstractly. We can think
of a model of computation as being a sort of programming interface for a machine. It
defines three parts of the machine: The machine state space, a set of operations which
can change the machine’s state, and a set of predicates which show information about
the machine state. Formally:

Definition 2.1 ([Cha20a]). A model of computation M is a triple (S,O, P) where S
is a countable set, O is a finite set of functions from S to S and P is a finite set of
functions from S to {true, false}. The set S is called (machine) state space ofM and
an element s of S is a (machine) state of M; if M is clear from the context we call s a
machine state. A function from O is called an operation ofM and a function from P is
called a predicate of M.

Note that in general, the operations and predicates of a model of computation are only
applied to the hidden state of the same machine. We may therefore omit the argument
of the function as it is implied by the context. Furthermore, as these functions will later
be used as part of machine programs, we will use strings to reference operations and
predicates instead of defining more mathematical symbols.

We may also parametrize models of computation. A parameter can for instance de-
termine the number of registers of a machine with registers, or an alphabet that the
machine works with. Parameters may directly affect the state space and the sets of
functions of the model of computation. In theory however, we could make a parameter
completely change the behaviour of a model of computation; two models of computation
of the same type but with different parameter values do not necessarily have to have
anything in common.

2This concept is one of the main ideas discussed in [Sco67].

3

The following sections outline some models of computation of which all but the last
two are related to types of automata from the field of formal language theory.

2.1.1 Deterministic Finite Automaton

The deterministic finite automaton (DFA) is perhaps the most basic automaton, the
concept first appearing in [MP43]. As a model of computation (deterministic finite
automaton model of computation, DFAMOC), its machine state consists of a list of
symbols representing the input, and a Boolean value, the accept-value, that represents
whether the input has been accepted or not. The input consists of symbols from a
fixed alphabet and this alphabet must be defined as a string parameter for the model of
computation.

The DFAMOC specifies just two operations: The operation NXT removes the first
symbol of the input given that the input is not already empty. If the input is found to
be empty, this operation does not change the machine state. The other operation, ACC,
deletes the remainder of the input and sets the Boolean value to true.

The set of predicates consists of one predicate I=s for each symbol s in the alphabet,
which is true if and only if the first symbol of the remaining input is s. Another
predicate with the name I= is true in case the input is empty.

2.1.2 Real-Time Deterministic Pushdown Automaton

The real-time deterministic pushdown automaton (RDPA) is a somewhat unconventional
and slightly weaker version of the deterministic pushdown automaton (DPA) which does
not allow for ε-transitions 3 . This automaton is originally presented in [PY83].

As a model of computation (real-time deterministic pushdown automaton model of
computation, RDPAMOC), its machine state is similar to that of the DFAMOC: The
RDPAMOC has two symbol lists called the input and the stack, and an accept-Boolean
value as its machine state. One list of symbols, the shared alphabet, is defined as a
parameter with both the input and the stack only being allowed to hold symbols from
this alphabet.

The RDPAMOC shares the ACC-operation with the DFAMOC, which just empties
the input list and sets the accept-value to true (however, the stack is not changed by
this operation). Additionally, there is one operation for each finite string of alphabet
symbols, including the empty string. Given such a string y = s0s1 . . . sk, the operation
Wy does the following changes only if the input is non-empty:

1. The first symbol of the (remaining) input is removed

2. If the stack is not empty, the top-most symbol of the stack is popped

3. If y is not empty, the symbols s0s1 . . . sk are pushed onto the stack so that s0 is
the new top-most symbol

3ε-transitions allow a traditional DPA to transition in between states and write symbols onto the stack
without reading a symbol from the input.

4

In case the input is found to be empty, the operation does not change the machine state.
Finally, the set of predicates includes two functions for each symbol s: I=s is true

if and only if the first symbol of the remaining input is s, and S=s is true if and only
if the top-most symbol on the stack is s. As with the DFAMOC, the predicate I= also
exists and is true in case the input is empty whereas the additional predicate S= is true
in case the stack is empty.

2.1.3 Turing Machine

The machine state of the Turing machine model of computation (TMMOC) consists of
a finite list of symbols which represents the tape, together with an index for the position
of the tape head. As with the RDPAMOC, we only define one list of symbols as a shared
alphabet instead of separating the input and tape alphabets from each other. The first
symbol in this list is the special blank symbol. The tape can only hold symbols from
this alphabet at any moment.

For each symbol s, there is one predicate, =s, which is true if and only if s is the
symbol on the tape at the current head position. Additionally, there is one operation for
each symbol s and each direction d ∈ {L, R, N} which we call WsL, WsR, and WsN. These
operations first write the given symbol onto the tape at the current position before
moving the head either left, right, or not at all. Since we are using a finite list as the
tape, the head can end up at one of the ends. In this case the list is extended in that
direction with a blank symbol.

2.1.4 Linear Bounded Automaton

As the linear bounded automaton model of computation (LBAMOC) is very similar to
the TMMOC, it also uses a finite list of symbols and an index to represent the tape
and head. Again, one alphabet is used to represent both the input and tape symbols,
this time without a special blank symbol. The tape can only hold symbols from this
alphabet at any moment and it can not grow past the extends of the original input.

The predicates of the LBAMOC are extended compared to the TMMOC’s: Alongside
the symbol predicates exist two new predicates, LE and RE. These are true if and only
if the head is currently positioned one cell to the left or one cell to the right of the first
or last cell of the input. These cells are called the left bound and the right bound.

While the operations of the LBAMOC are mostly the same as those from the TMMOC,
there exist some differences when the head is positioned on one of the bounds: In these
cases the writing part of the operation is skipped, and the head can not be moved further
away from the original input cells.

2.1.5 Counter Machine

The counter machine model of computation (CMMOC) has at least one register as its
machine state. Each register contains a single, non-negative integer. We enumerate

5

these registers starting with 1 for the purpose of accessing them with the operations and
predicates. The number of registers of one specific CMMOC is defined as a parameter.

Each register can be independently accessed by the same operations and predicates:
An increment operation and a bounds-safe decrement operation that does not decrement
past 0, as well as a single predicate indicating whether that register’s value is 0. 4 We
use the following notations for these operations and predicates:

• Ri+ denotes incrementing the value in register i by 1

• Ri- denotes safely decrementing the value in register i by 1

• Ri=0 denotes checking whether the value in register i is 0

2.1.6 Stack Machine

The stack machine model of computation (SMMOC) is a logical extension of the CM-
MOC, working with stacks instead of counters. Each stack holds zero or more symbols.
As the name entails, only the top-most symbol is visible and can be manipulated by the
model’s operations and predicates. Stack machines can be modified by two parameters,
one defining the number of stacks and the other defining the stack alphabet. A stack
machine with an alphabet consisting of just one symbol is functionally equivalent to a
counter machine with the same number of registers.

We define the following operations and predicates:

• Ri+s denotes pushing the symbol s onto the i-th stack

• Ri- denotes popping the top-most symbol from the i-th stack

• Ri=s denotes checking whether the top-most symbol on the i-th stack is s

• Ri= denotes checking whether the i-th stack is empty

2.2 Machine Program

A program transforms a given input until it (maybe) terminates, at which point it
returns an output. A machine program does the same while being confined to the
specific components of a machine, or more specifically, the operations and predicates of
a model of computation associated with that machine.

Definition 2.2. Let M = (S,O, P) be a model of computation.
We can express a M-machine program PM = (Z, zStart, zEnd) as a set of program

states Z = {z0, z1, . . . , zn}, a start state zStart ∈ Z, and an end state zEnd /∈ Z. Every
program state Z 3 z = (TPM , o) consists of a binary decision tree TPM (defined in 2.3)
and an operation o ∈ (O ∪ {NOP}). zStart always has the identity operation NOP. 5

4This CMMOC resembles the counter machine described by Minsky [Min61] and by Lambek [Lam61]
, however it differs in that they combine the decrementing operation and the zero-check predicate
into one instruction.

5A similar definition can be found in [Cha20a], which this one is loosely based on.

6

Definition 2.3. Let M = (S,O, P) be a model of computation, PM = (Z, zStart, zEnd)
be a M-machine program. Let Z ′ = (Z \ {zStart}) ∪ {zEnd} be the set of reachable
program states.

A binary decision tree TPM (abbr. BDT) is a binary tree with the following constraints:

(i) every node in the tree has either zero or two children

(ii) every node with zero children (i.e. every leaf of TPM) is in Z ′

(iii) every node with two children (i.e. every branch of TPM) is in P

The right child of a branch is associated with the branch’s predicate being true, while
the left child is associated with the branch’s predicate being false.

As described above, a machine program primarily consists of some states which, in
return, each consist of an operation and a BDT. Figure 2.1 shows an example of a BDT
as it may appear in a program. Program execution follows the procedure which is defined
in Algorithm 2.1.

Algorithm 2.1 Execute a machine program

function runMachineProgram(PM, s)
pstate← zStart
mstate← s
while pstate 6= zEnd do

mstate← pstate.o(mstate)
pstate← evaluateBDT(pstate.T,mstate)

return mstate
function evaluateBDT(T, s)

root← getRoot(T)
if isChild(root) then

return root
if root(s) = true then

newroot← getRightChild(T)
return evaluateBDT(newroot, s)

else
newroot← getLeftChild(T)
return evaluateBDT(newroot, s)

We begin at the given start state zStart and with a given input machine state. In
a repeating process, we first transform the current machine state using the program
state’s operation (although this will just be an identity-transformation in zStart) and then
evaluate the resulting machine state through a series of predicates which are structured
in the BDT of the program state. We terminate if we reach the end state zEnd.

The binary decision trees are evaluated by recursively traversing the tree until a leaf
node is reached. At each branch, one of the two children is chosen by applying the

7

predicate in the node to the machine state: If the predicate is true, we continue with
the right child, otherwise we continue with the left child.

Start:

R3=0

R1=0

R2=0

R4=0

clrR3

End

End

clrR4 mult

Figure 2.1: The start state’s BDT in a program with states Z ⊇ {clrR3, clrR4, mult} ,
for a counter machine with at least four registers.

2.2.1 Exemplary Machine Program

We want to write a machine program for our counter machine from section 2.1.5 with
two registers. The program shall add the two registers up and write the result into the
first register while setting the second register to 0. This program can be implemented
with three states Z = {Start, decR2, incR1}, where Start is the start state and End the
end state of PM. Each state’s operation is given in Table 2.2a and the binary decision
trees can be seen in Figure 2.2b. The binary decision trees for the states Start and
incR1 are identical and shown in one diagram.

State Operation
Start NOP

decR2 R2-1

incR1 R1+1

(a) Operations of PM

Start, incR1:

R2=0

decR2 End

decR2:

incR1

(b) Binary Decision Trees of PM

Figure 2.2: Schematic representation of a machine program PM

2.2.2 Machine Programs in Text Form

With the goal of interpreting our machine programs in mind, we need to find a fitting
textual representation that lends itself to parsing. We define a programming language
MP that lets us define everything necessary to describe a machine program. Note that
this section only describes the features of MP needed for this task. More advanced
features are described in detail in section 4.2.

8

Firstly, the model of computation for which the program is written needs to be defined.
A model of computation is identified by a name and zero or more parameters. Here,
we use the abbreviations from section 2.1 as names. The specific parameters and their
order is also detailed in that section. The model of computation definition is always
contained in the first non-empty, non-comment line of the source file and is introduced
by the keyword #MOC. After that follow the name and the parameters, all separated by
spaces. For example, this is the definition for a stack machine that has 3 registers and
uses the alphabet {A, B, C, x}:
1 #MOC SMMOC 3 "ABCx"

A file may hold multiple programs. All programs share the same model of computation
with each other and are introduced by the line #PROGRAM <pname >, where <pname >

is the name uniquely identifying that program.
Following the program definition, the programs’ states are listed, each together with

its operation (except for the start state where the operation is omitted) and BDT. The
following lines show how the state <name > = (<BDT > , <operation >) is written in
MP :

1 <name > / <operation >:

2 <BDT >

The last basic program component to be described is the BDT. The nodes are written
line by line, in pre-order. This means that the false-associated child of a predicate
node always comes before the true-associated child. The root node is indented by at
least one space or tabular character, which is the first indentation level. All remaining
nodes are indented by one more level than their parent. For example, this is the BDT
shown in Figure 2.1 as written in MP :

1 Start:

2 R3=0

3 clrR3

4 R1=0

5 R2=0

6 R4=0

7 clrR4

8 mult

9 End

10 End

The complete textual representation of the machine program from section 2.2.1 can
be viewed in Figure 1 in the appendix.

9

3 Relations to Classical Definitions in
Automata Theory

In automata theory, programs for different automata can be given in widely different
formats. In fact, when defining an automaton as a tuple, the program is not even
differentiated from the rest of the machine. In [Sco67], these two concepts are separated.
To show how programs for arbitrary machines can be written in MP, we look at how
Scott’s programs can be translated. Scott defines programs as a set of instructions which
each take on one of the following patterns:

start : go to L (1)
L : do F; go to L′ (2)
L : if P then go to L′ else go to L′′ (3)
L : halt (4)

where L, L′ and L′′ are labels in the code (which fulfil the same purpose as our program
states), F is an operation (symbol) and P is a predicate (symbol). The special label
start and the instruction halt correspond to the start and end states of a machine
program. Figure 3.1 shows how each of these instructions can be expressed as a program
state in MP.

When talking about Scott’s programs and machines, one difference to our models of
computation and machine programs that should be mentioned is that Scott defines two
additional sets, the input set and the output set, as well as functions to convert input
instances into machine states and machine states into output instances. It should be

1 Start:

2 L

(a) MP -translation for (1)

1 L / F:

2 L’

(b) MP -translation for (2)

1 L / NOP:

2 P

3 L’’

4 L’

(c) MP -translation for (3)

1 L / NOP:

2 End

(d) MP -translation for (4)

Figure 3.1:
MP-program state definitions for Scott’s instructions

10

noted that our machine programs are fed machine states directly as the input and also
just return their machine state.

The idea with programming in MP is that program states can hold both an operation
and a whole tree of predicates and subsequent program states. Looking again at the
instructions by Scott and their translations, we can make some observations:

Firstly, 3.1d is an instance of 3.1b, since NOP is an operation and End is a state.
Secondly, the binary decision trees of any state can be extended (or shrunk) at will,
allowing for the use of any number of predicates in one tree. Thus, the “concatenation”
of multiple states of scheme 3.1c can be combined into one state by substitution of
program states by their decision trees.6 And thirdly, the concatenation of a state of
scheme 3.1b into one of scheme 3.1c can be combined into one state that takes the
operation F from the first state and the BDT of the second.

We end up with just two general schemes for program states, shown in Figure 3.2.
Next, we will look at how translating some automata can be done directly, without first
having to abstract between machine and program.

1 Start:

2 T

(a) Generic scheme for
the Start state

1 L / F:

2 T

(b) Generic scheme for
any state L ∈ Z \ {zStart}

Figure 3.2: Generic program state schemes in MP. T abbreviates a BDT of any size.

3.1 Finiteness of Machine Programs

Machine programs can generally run forever without terminating regardless of what
model of computation is used. For instance, we can simply omit the End-program
state from every BDT of a machine program and it will never terminate. While non-
terminating behaviour is certainly needed to model a Turing machine, the DFA and the
RDPA will always terminate after a maximum of n transitions when given an input of
length n.

Although machine programs for the DFAMOC or the RDPAMOC may not always ter-
minate, they possess a characteristic similar to termination as long as no NOP-operations
are used. If this is the case, the number of steps (one step is the transition from one
program state to another) that a machine program for these models of computation can
run for before the machine state stays constant is in fact limited. Both of these models
of computation define two types of operations: The ACC-operation deletes the rest of the
input and sets the accept-value to true. In the case of the RDPAMOC, the stack is
unchanged. As for the other type of operation, the DFAMOC defines the operation NXT,
which simply removes one symbol from the input. The RDPAMOC defines a whole set of

6Scheme 3.1a can also be concatenated with following states of scheme 3.1c.

11

operations WY for any finite string Y of input symbols. Essentially, these WY -operations
all work the same and only change the machine state if the remaining input is not empty.
Similarly to the NXT-operation of the DFAMOC however, one input symbol is always
removed in case the input is not already empty.

Clearly, machine programs for these models of computation will empty their given
input in at most n steps. With an empty input, the accept-value is the only part of the
machine state that can still change. If the program has k program states, at most k steps
can be taken in the worst case to reach a program state with an ACC-operation, visiting
each other program state before transitioning into it. Thus, the limit for a machine
program for either the DFAMOC or the RDPAMOC to compute a final machine state
is limited by n+ k steps.

3.2 Reduced Binary Decision Tree

Some models of computation like the DFAMOC and the TMMOC offer sets of predicates
which are mutually exclusive, i.e. at most one predicate can hold for any machine
state. Intuitively, we do not need to check any predicates after we find that one holds;
no predicate needs to appear in a BDT as the right descendant of another predicate.
The resulting tree structure is that of a maximally imbalanced tree where all included
predicates are chained together on the very left side (the left-most path) of the tree. A
BDT which only holds each predicate at most once and only holds predicates on the
left-most path shall be called a reduced binary decision tree.

Definition 3.1. LetM = (S,O, P) be a model of computation. Let PM be a machine
program. Let TPM be the BDT of any program state of PM.

The left-most leaf in a BDT is the leaf node that is reached by starting at the root
and then continuously following the left edge, until a leaf node is reached.

The left-most path in a BDT is the path that starts at the root and always follows
the left edge from there on, until it stops at the left-most leaf.

Binary decision trees for models of computations with mutually exclusive predicates
can be reduced in the following manner: We consider subtrees that are (right) children
of nodes on the left-most path, and incorporate more than one node. During BDT
evaluation, a subtree is entered as a result of its parent predicate being true. As all
predicates are mutually exclusive, we can infer the truth value for every predicate and
find the leaf node that will always be the result of BDT evaluation when that subtree is
entered. We can therefore replace the whole subtree with that leaf node.

Replacing all the previously mentioned subtrees results in a new BDT which is max-
imally imbalanced. However, predicates might still appear twice. Trivially, we simply
replace every non-first occurrence of a predicate with its left sub-tree without changing
the semantics of the tree. The result is a reduced binary decision tree.

12

3.3 Conversion of Deterministic Finite Automata

Definition 3.2 ([HU79]). A deterministic finite automaton (DFA) is a 5-tuple M =
(Q,Σ, δ, q0, F) where

• Q is a finite set called the state set,

• Σ is a finite set called the alphabet,

• q0 ∈ Q is the start state,

• F ⊆ Q is the set of accepting states,

• δ : Q× Σ→ Q is a total function called the transition function.

Definition 3.3. Computation of a DFA M starts with M being in the start state q0.
The first symbol to be read from the input is the left-most symbol.

In any step, the automaton is aware of its current state q ∈ Q and the current input
symbol a ∈ Σ. The automaton transitions into the state q′ = δ(q, a) and moves the
reading head one space to the right to read the next symbol.

The automaton terminates when the input is fully read. At this point, the automaton
accepts the input if an accepting state q ∈ F has been reached. The language L(M)
that is accepted by M is the set of all inputs w ∈ Σ* which are accepted by M , where
* is the Kleene star.

Definition 3.4. A DFAMOC-machine program P accepts the input w if the accept-
value is set to true after the program has run for at most |w|+k steps with w being the
initial input and the accept-value being set to false at the start. The language L(P)
that is accepted by P is the set of all valid inputs (inputs consisting only of symbols
defined by the model of computation) which are accepted by P .

3.3.1 DFA to MP

Given a DFA M = (Q,Σ, δ, q0, F) with Σ = {s0, s1, . . . , sm}, an equivalent machine pro-
gram for the DFAMOC can be written as follows: First of all, the model of computation
is defined using the given symbols, and the program is then introduced:

1 #MOC DFAMOC "s0s1 . . . sm"
2 #PROGRAM P

The accepting behaviour of a DFA is modelled with the ACC-operation. We make use
of this operation by defining a single program state with the same name:

1 ACC / ACC:

2 End

Next, we consider each state qi ∈ Q. For each state qi, we define one program state
which we simply name zi here. The operation for each program state zi will always be
NXT. Its decision tree is formed using the transition function δ: For each symbol sj ∈ Σ,

13

the transition function defines a succeeding state zi,j = δ(zi, sj). The symbols and their
related states are put into the BDT of zi such that the program state zi,j is chosen
exactly when sj is the first of the remaining symbols in the input. If we find that none
of these predicates hold, the input must be empty. In this case we either switch into the
End-program state if qi /∈ F , or we switch into the ACC-Program state if qi ∈ F :

1 zi / NXT:

2 I=s0

3 I=s1

4 . . .
5 I=sm
6 End or ACC

7 zim
8 . . .
9 zi1

10 zi0

Last but not least, the mandatory Start-program state is defined with the same BDT
that z0 has.

Theorem 3.5. The translated machine program from Section 3.3.1 accepts the same
language as the original DFA.

Proof. The machine program starts execution in the program state Start. The BDT is
evaluated to derive the next program state.

If the input is empty, the succeeding state will be End if q0 /∈ F or ACC if q0 ∈ F . In
the first case, the program terminates with a machine state that is not accepting, while
in the second case, the resulting machine state has the accept-value set to true.

Otherwise, let s be the current symbol, i.e. the first symbol of the (remaining) input.
If δ(q, s) = qi, the chosen program state after BDT evaluation will be zi. Subsequently
the operation of zi, which is NXT, is executed and the current symbol is removed from
the input.

The following steps are the same: After executing the NXT-operation of any program
state z ∈ {zi|qi ∈ Q}, the program always reads the current symbol and swaps into the
according program state as dictated by the original δ function and terminates with the
same accept-value when the input has been fully read.

3.3.2 MP to DFA

Definition 3.6. Let M = (S,O, P) be a DFAMOC. Let PM = (Z, zStart, zEnd) be a
machine program for M. Let TPM be a reduced BDT of any state in Z.

We define the set L := {I=ŝi | I=ŝi ∈ P, I=ŝi is included in TPM}. Each symbol
{ŝi | I=ŝi ∈ L} is paired up with one program state zŝi which is the right child of I=ŝi
in TPM . The left-most leaf of the whole tree zš ∈ Z ∪ {zEnd} is paired up with every
remaining symbol {šj | I=ši ∈ P ∧ I=šj /∈ L}. The resulting set of pairs includes one
such pair for every symbol from the alphabet of M.

14

Let PM = (Z = {z0, z1, . . . , zk}, z0, End) be a machine program for a DFAMOC M
with the alphabet s0, s1, . . . , sm. Each program state’s BDT shall be in reduced form
and no program state (except for the start state z0) shall have the identity operation
NOP. Furthermore, the program shall always terminate after reading the whole input,
i.e. if the remaining input is found to be empty, the program either switches into the
End-program state immediately, or just after it switches into a program state with the
operation ACC. We can define a semantically equivalent DFA M = (Q,Σ, δ, q0, F) in the
following way:

First of all, Σ is simply defined as the alphabet of the DFAMOC:

Σ = {s0, s1, . . . , sm}

The set of states Q is closely related to the set of program states and includes the start
state q0:

Q = {q0, q1, . . . , qk, qREJ}

The set of final states is defined as follows. We first set F to be the set of all states
qi where the operation of the related program state zi is ACC. We then add to this set
all the states qj where, when given a machine state where the input list is empty, the
succeeding program state z′j of the related program state zj is an accepting program
state, i.e. it has the operation ACC. The resulting set of final states correlates to the
set of program states which will set the accept-value to true, or will transition into
an accepting program state if and when the remaining input is empty. Moreover, the
machine program will always accept the input when it ends up in one of these program
states with an empty remaining input.

Defining the transition function δ for qREJ and all states qACC where the related
operation is ACC is trivial for every symbol s ∈ Σ:

δ(qREJ , s) = qREJ

δ(qACC , s) = qACC

The reject-state qREJ will be used to model cases where the machine program switches
into the End-program state even if not all of the input has been processed yet. Conversely,
accepting program states will delete the rest of the input and then swap into an end
state because of our limitation on termination with an empty remaining input.

All in all, the original machine program is not concerned with the remaining input in
both of these cases, which is why we model our DFA to just stay in the same state until
termination.

To define the transition function for the remaining states, we consider each program
state zi and its related state qi ∈ Q individually. Each symbol sj ∈ Σ is allotted one
program state zsj for our program state zi as per Definition 3.6. That program state

15

has a related state in Q ∪ {End}, which we call qsj .

δ(qi, sj) =

{
qREJ zsj = End

qsj otherwise

Theorem 3.7. The translated DFA from Section 3.3.2 accepts the same language as
the original machine program.

Proof. Operation of the DFA starts in state q0 and execution of the DFAMOC-machine
program starts in program state z0. We consider the behaviour of the DFA in any given
state qi and that of the machine program in the related program state zi, starting with
the evaluation of the BDT.

If the (remaining) input is empty, the machine program will either directly terminate
in the End-program state or switch into an accepting program state, i.e. a program state
that has the operation ACC, before also terminating in the End-program state. The DFA
will simply terminate in the current state in this circumstance. This state is a final state
if and only if the related program state would result in a true accept-value under the
premise that the input is empty.

In the case that the input is not empty, the machine program will switch into a
program state zs depending on the current symbol s. If zs is the End-program state,
the machine program will terminate and reject the input. In this case, the δ function
dictates that the DFA switches into the state qREJ , in which it will loop until the whole
input has been processed, rejecting it. Should zs not be the End-program state, the
machine program will switch into it and execute its operation, continuing with the next
symbol or accepting the input. Similarly, the DFA will switch into the related state qs
and continue with the next symbol or loop in this state until the whole input has been
processed, this time accepting it.

3.4 Conversion of Real-Time Deterministic Pushdown
Automata

Definition 3.8. 7 A real-time deterministic pushdown automaton (RDPA) is a 7-tuple
M = (Q,Σ,Γ, δ, q0, B, F) where

• Q is a finite set called the state set,

• Σ is a finite set called the input alphabet,

• Γ is a finite set called the stack alphabet,

• q0 is the start state,

• B ∈ Γ is the start symbol which is the only symbol on the RDPA’s stack initially,

7This definition is equivalent to the original definition of a “realtime DPDA” in [PY83].

16

• F ⊆ Q is the set of accepting states,

• δ : Q× Σ× Γ→ Q× Γ* is a partial function called the transition function.

Definition 3.9. Computation of a RDPA starts with M being in the start state q0 and
the start symbol B solely residing on the stack. The first symbol to be read from the
input is the left-most symbol.

In any step, the automaton is aware of its current state q ∈ Q, the current input
symbol a ∈ Σ and the top-most stack symbol x ∈ Γ. If δ(q, a, x) = (q′, y0y1 . . . yn) is
defined, the automaton does three things:

• The automaton transitions into the state q′

• The symbol x is popped from the stack and the symbols y1y2 . . . yk are pushed
onto it so that y1 is the new top-most symbol

• The input reading head moves one space to the right to read the next input symbol

The automaton terminates if δ(q, a, x) is not defined for the current state, input sym-
bol, and stack symbol, or when the input is fully read. It accepts the current input if
an accepting state q ∈ F has been reached after reading the whole input. The language
L(M) that is accepted by M is the set of all inputs w ∈ Σ* which are accepted by M .

Definition 3.10. A RDPAMOC-machine program P accepts the input w if the accept-
value is set to true after the program has run for at most |w| + k steps (k being the
number of program states in the machine program) with this initial machine state: w
is written onto the input, and the accept-value is set to false. Additionally, the stack
holds one symbol, the start symbol, which is the first symbol from the shared alphabet.
The language L(P) that is accepted by P is the set of all valid inputs (inputs consisting
only of symbols defined by the model of computation) which are accepted by P .

3.4.1 RDPA to MP

Let M = (Q,Σ,Γ, δ, q0, B, F) with Σ = Γ = {B, s0, s1, . . . , sm} be a RDPA. To formulate
a semantically equivalent machine program for the RDPAMOC, we first define the model
of computation with its alphabet, and establish a program:

1 #MOC RDPAMOC "Bs0s1 . . . sm"
2 #PROGRAM P

For each state q ∈ Q, input symbol a ∈ Σ, and stack symbol x ∈ Γ for which the
transition

δ(q, a, x) = (p, Y), p ∈ Q, Y = y0y1 . . . yn, n ≥ 0, yi ∈ Γ ∀i

is defined, we create one program state which we give the name q#a#x and the operation
WY :

17

1 q#a#x / WY :

2 T

Its BDT T depends on all the pairs of input symbols ai ∈ Σ and stack symbols xi ∈ Γ
for which δ(p, ai, xi) is defined: Using the predicates I=ai and S=xi, we add a branch
to the BDT for each of these pairs so that during BDT evaluation, the program state
p#ai#xi is reached if and only if the aforementioned predicates hold. 8 Additionally, we
add one branch using the predicate I= which will lead to the program state ACC if p ∈ F ,
or End otherwise. All remaining required leaf nodes will be set as the End-program state
as well; these leaves can represent undefined instances of δ, or simply unreachable leaves
in the BDT.

As for the program state Start, we define its BDT by looking up all the symbols
ai ∈ Σ for which the transitions δ(q0, ai, B) are defined. As with the other program
states, we add a branch to the BDT for each ai so that the program state q0#ai#B is
reached if and only if the predicate I=ai holds. Again, we may omit stack predicates as
we assume that B is the symbol on the stack at the start.

The program state ACC is defined with the operation of the same name, and a BDT
that always results in the End-program state.

Theorem 3.11. The translated machine program from Section 3.4.1 accepts the same
language over the original input alphabet Σ as the original RDPA.

Proof. A step of program execution starts with evaluation of the BDT of the Start-
program state. The input is written in the input list, the stack holds the start symbol,
and the accept-value is false. Depending on the current input symbol a, we switch
into the program state q0#a#B if for p ∈ Q, Y = y0y1 . . . yn, n ≥ 0, yi ∈ Γ ∀i,
δ(q0, a, B) = (p, Y) is defined, otherwise the program terminates as shall be described
later. After switching into this program state q0#a#B, the operation WY is performed.
At this point, we find the machine state to be semantically equivalent to that of the
original RDPA: The first symbol of the input has been removed, and the stack now
consists of the symbols Y with y0 being the top-most symbol given that Y is not empty
in the first place. The accept-value stays false.

For as long as the program does not terminate or switch into the ACC-program state
because the input has been fully processed, the program will evaluate the BDT of the
current program state q and assume some program state p#a#x, given that δ(q, a, x) =
(p, Y) is defined. In this case, we know that the current input symbol is a and the
current stack symbol is x. The program state’s operation WY is then performed. The
first input symbol is again removed, and the symbols Y are written onto the stack after
removing the top-most stack symbol, directly correlating to the change of the RDPA’s
machine state under the given transition.

8Note that the stack-predicates are not always needed: As long as Y consists of at least one symbol,
the top-most stack symbol is known at the time of BDT evaluation. Thus, the current stack symbol
will only need to be checked in binary decision trees of program states where we define the operation
to be W. We can also leave out some transitions δ(p, ai, xi) if we know that xi is not the top-most
symbol on the stack during BDT evaluation.

18

If symbols a and x are found in the input and on the stack for which δ(q, a, x) is not
defined for the current program state q, the machine program will directly terminate
in the End-program state. The accept-value is always false in this case, meaning that
the program rejects the current input. Similarly, the original RDPA will also reject the
input in such a case.

If the input is found to be empty during the evaluation of the BDT of some program
state q#a#x and δ(q, a, x) = (p, Y) is defined, the program will find itself in one of two
states: If p ∈ F , the machine program switches into the ACC-program state, setting the
accept-value to true and terminating. If p /∈ F , the program simply terminates in the
End-program state with the accept-value still set to false.

This is semantically equivalent to the RDPA finding itself in the state p with an empty
input, at which point it will accept or reject the input depending on whether p is a final
state.

3.4.2 MP to RDPA

Let PM = (Z = {z0, z1, . . . , zk}, Start = z0, End = zREJ) be a machine program for
a RDPAMOC M with the alphabet B, s0, s1, . . . , sm. No program state (save Start)
shall specify the identity operation NOP and the program shall always terminate after
reading the whole input, i.e. if the remaining input is found to be empty, the program
either switches into the End-program state immediately, of just after it switches into a
program state with the operation ACC. To add to that, the program is also not allowed
any writing operation on an empty stack during execution. Furthermore, we assume
that no BDT has any leaves that can not be reached during evaluation of the BDT on
any valid machine state, also considering that the top-most stack symbol can be inferred
for any program state that does not have the operation W or ACC. 9 We can define a
semantically equivalent RDPA M = (Q,Σ,Γ, δ, q0, B, F) in the following way, starting
with the alphabets Σ and Γ:

Σ = {s0, s1, . . . , sm}
Γ = Σ ∪ {B}

Again, the set of states Q is closely related to the original set of program states Z and
includes the start state q0. Each program state zi ∈ Z has one corresponding state
qi ∈ Q and the End-program state zREJ corresponds to the state qREJ ∈ Q:

Q = {q0, q1, . . . , qk, qREJ}

Similarly to the translation of a DFAMOC-machine program, the set of final states F is
to be made up of those states qi whose related program states zi have the operation ACC,
and those states qj where, when given a machine state where the input list is empty,

9In the start program state z0 the stack always holds the start symbol B. For states with an operation
WY where Y is not empty, the top-most symbol during BDT evaluation is always the first symbol
from Y .

19

the succeeding program state z′j of the related program state zj is an accepting program
state, i.e. it has the operation ACC.

Considering each original program state v ∈ Z ∪ {zREJ} and its corresponding state
q ∈ Q, we define the following transitions: Any program state zi ∈ Z may mention v in
its BDT as a leaf node which can be reached with at least one combination

(ai,j, xi,j), ai,j, xi,j ∈ {s0, s1, . . . , sm}

of an input symbol and a stack symbol, given that ai,j is the current input symbol and
xi,j the top-most stack symbol during BDT evaluation. For each possible pair (ai,j, xi,j)
for all of those program states zi, we define one entry in the transition function:

δ(qi, ai,j, xi,j) =

{
(q, Y) the operation of v is of the form WY

(q, xi,j) the operation of v is ACC or v is the End-program state

Additionally, for each program state zi whose operation is ACC, we define the entries

δ(qi, a, x) = (qi, x) ∀a ∈ Σ ∀x ∈ Γ

which simply define a loop back to the same state which the RDPA follows until accepting
the input, should it find itself in this state. Note that for the state qREJ /∈ F , no
transitions from that state are defined.

Theorem 3.12. The translated RDPA from Section 3.4.2 accepts the same language
over the alphabet Σ as the original machine program.

Proof. Operation of the RDPA starts in state q0 with a stack consisting only of the start
symbol, and execution of the RDPAMOC-machine program starts in program state z0,
also with a stack consisting only of the start symbol. We consider the behaviour of the
RDPA in any given state qi and that of the machine program in the related program
state zi, starting with the evaluation of the BDT.

If the (remaining) input is empty, the machine program will either (1) directly ter-
minate in the End-program state or (2) switch into an accepting program state, i.e. a
program state that has the operation ACC, before also terminating in the End-program
state (We do not consider these program states in the first case.). The RDPA will simply
terminate in the current state in this circumstance. This state is a final state if and only
if the related program state would result in a true accept-value under the premise that
the input is empty, which is the case only in case (2).

If the input is not empty, the machine program will switch into a program state za,x
depending on the current input symbol a and the top-most stack symbol x. If za,x is the
End-program state, the machine program will terminate and reject the input. In this
case, δ(qi, a, x) = (qREJ , x) and the RDPA also rejects the input. Should za,x not be the
End-program state, the machine program will switch into it and execute its operation:
If the operation is of the form WY , the current input symbol and the top-most stack
symbol are removed, and Y is pushed onto the stack. If the operation is ACC, the

20

machine program will terminate after setting the accept-value to true. Similarly, the
RDPA will switch into the related state qa,x and change its input and stack in the same
way, or loop in a final state until the whole input has been consumed.

3.5 Conversion of Turing Machines

Definition 3.13. 10 A (deterministic) Turing machine is a 7-tuple M =
(Q,Σ,Γ, δ, q0, B, F) where

• Q is a finite set called the state set,

• Σ is a finite set called the input alphabet,

• Γ ⊃ Σ is a finite set called the tape alphabet,

• q0 ∈ Q is the start state,

• B ∈ Γ \ Σ is the blank symbol,

• F ⊆ Q is the set of final states,

• δ : Q×Γ→ Q×Γ×{L,R,N} is a partial function called the transition function.
L means left shift, R means right shift, and N means no shift.

Definition 3.14. The input for a Turing machine consists of a finite string of input
symbols on an infinite tape that has the blank symbol written in every other cell. The
Turing machine starts in the start state and its head is positioned on the first tape cell
of the input, i.e. the first non-blank cell from the left. In one step, the Turing machine
will be aware of the current state q and the symbol s currently under the head. If
δ(q, s) = (q′, s′, d) is defined, the machine will change its state to q′, replace the current
symbol with s′ and then shift its head in the given direction d. If δ is not defined for
the current state and symbol, the machine crashes. If the current state is a final state,
the machine halts.

We say that the language L(M) that is accepted by M is the set of all inputs w ∈ Σ*
for which M halts.

Definition 3.15. A TMMOC-machine program P accepts the input w if the program
terminates with this initial machine state: w is written onto the tape and the tape head
is resting over the first symbol of w.

The language L(P) that is accepted by P is the set of all valid inputs (inputs consisting
only of symbols defined by the model of computation) which are accepted by P .

10This definition strongly resembles that from [HU79]. The only notable difference is the addition of
the “no shift”-transition which does not affect the machine’s computational capability.

21

3.5.1 Turing Machine to MP

Given a Turing machine M = (Q,Σ,Γ, δ, q0,�, F) with Σ = {s0, s1, . . . , sm}, and Γ =
{�} ∪ Σ, an equivalent machine program can be written as follows: First, the model of
computation is defined with the tape alphabet, and a single program with some name
is defined:

1 #MOC TMMOC "�s0s1 . . . sm"
2 #PROGRAM P

Following that, we need to define a program that mimics the semantics of the transition
function δ of M . Each entry which does not result in a final state

δ(q, s) = (q′, s′, d), q′ /∈ F

will be translated into one program state which we name q#s. The program state’s
decision tree is dependent on the symbols {ŝ0, ŝ1, . . . , ŝn} ⊆ Γ for which δ(q′, ŝi) is
defined:

1 q#s / Ws′d:
2 =ŝ0

3 =ŝ1

4 . . .
5 =ŝn
6 CRASH

7 q#ŝn
8 . . .
9 q′#ŝ1

10 q′#ŝ0

In the case where δ is not defined for following state and all symbols, M can crash
in this state. To emulate this, we create a program state CRASH which will write some
arbitrary symbol s into the current cell, stay at the position and then loop forever:

1 CRASH / WsN:
2 CRASH

For entries in δ where the subsequent state is a final state

δ(q, s) = (q′, s′, d), q′ ∈ F

the corresponding program state’s decision tree simply consists of the program state
End:

1 q#s / Ws′d:
2 End

The last program state we need to define is the Start state. This program state does
two things: It finds out which symbol s is currently at the tape head position and moves
into the according state q0#s. Again, {ŝ0, ŝ1, . . . , ŝn} ⊆ Γ are the symbols for which

22

δ(q0, ŝi) is defined:

1 Start:

2 =ŝ0

3 =ŝ1

4 . . .
5 =ŝn
6 CRASH

7 q0#ŝn
8 . . .
9 q0#ŝ1

10 q0#ŝ0

In the trivial case that q0 ∈ F , the whole program can be written with just the
program state Start that transitions into the program state End.

Theorem 3.16. The translated machine program from Section 3.5.1 accepts the same
language over the original input alphabet Σ as the original Turing machine.

Proof. The machine program starts execution in the program state Start. The BDT is
evaluated to derive the next program state. If δ(q0, s) = (q′ /∈ F, s′, d) is not defined for
the current symbol s the next program state will be CRASH, which results in an endless
loop. Otherwise, the next program state will be q0#s. After arriving in this state, the
program executes that state’s operation Ws′d: The symbol at the current head position
is replaced by s′ and the head is moved into the direction d.

The following steps are all the same: If δ(q, s) = (q′ /∈ F, s′, d) is not defined for some
states q and symbols s, the program ends up in an endless loop; otherwise the program
switches into the program state q#s and executes its operation Ws′d. If at any point,
a final state would be transitioned into with δ(q, s) = (q′ ∈ F, s′, d), the next program
state will be End and the program will terminate. In the trivial case that q0 ∈ F , the
program transitions into the End state in the first step and terminates.

An example for this conversion is given in the appendix in the figures 2 (the original
Turing machine) and 3 (the translated machine program). The machine program shown
in the latter figure is also available in the arbipreter repository (see chapter 4) under the
path machine programs/tmmoc/reverse word ab.mp .

3.5.2 MP to Turing Machine

Definition 3.17. Let M = (S,O, P) be a Turing model of computation. Let PM =
(Z, zStart, zEnd) be a machine program for M. Let TPM be a reduced BDT of any state
in Z.

We define the set L := {=ŝi | =ŝi ∈ P, =ŝi is included in TPM}. Each symbol {ŝi | =ŝi ∈
L} is paired up with one program state zŝi which is the right child of =ŝi in TPM . The
left-most leaf of the whole tree zš ∈ Z∪{zEnd} is paired up with every remaining symbol
{šj | =ši ∈ P ∧ =šj /∈ L}. The resulting set of pairs includes one such pair for every
symbol from the alphabet of M.

23

Let PM = (Z = {zStart, z0, z1, . . . , zk}, zStart, zEnd) be a TMMOC-machine program
with the alphabet s0, s1, . . . , sm. Each program state’s BDT shall be in reduced form.

We can define an equivalent Turing machine M = (Q,Σ,Γ, δ, q0, B, F) in the following
way: To start with, we define all symbol-related components of M :

Σ = {s1, s2, . . . , sm}
Γ = Σ ∪ {s0}
B = s0

F will consist of one final state qEnd. For each program state z ∈ Z we define two states
qz and q′z with the start state being qStart:

Q = {qStart, q′Start, qz0 , q
′
z0
, . . . , qzk , q

′
zk
, qEnd}

q0 = qStart

F = {qEnd}

The transition function δ is defined using the operation o and BDT T of every program
state z:

∀si ∈ Γ : δ(qz, si) =

{
(q′z, s, d) , o is of the form Wsd

(q′z, si, N) , otherwise

∀ŝi ∈ L : δ(q′z, ŝi) = (qzŝi , ŝi, N)

∀šj ∈ Γ− L : δ(q′z, šj) = (qzš , šj, N)

Theorem 3.18. The translated Turing machine from Section 3.5.2 accepts the same
language over the alphabet Σ as the original machine program.

Proof. Operation of the Turing machine starts in state qStart. Execution of the machine
program starts in program state zStart. At each step, the operation of the current
program state z is applied: Unless the current state is the start state or the operation
is NOP, an operation of the form Wsd is performed. This behaviour is imitated by the
Turing machine, which in the state qz, writes the symbol s and then moves the head into
the direction d in case the original operation of the program state was Wsd, otherwise
the tape and head position are not changed. The state, however, always changes from
the current state qz to q′z.

After this, the BDT is evaluated: The succeeding state is either zŝi if ŝi ∈ L or zš
otherwise, depending on the current symbol si. If that chosen program state is the end
state, the program terminates. If not, the program continues by again applying the
successor’s operation, and so on. The Turing machine emulates this behaviour in the
state q′z by swapping into the state qzŝi or qzš accordingly, while not changing the tape
and head position. If in the machine program the succeeding program state is the end
state, the new state in the Turing machine is qEnd which is a final state, terminating the
program.

24

3.6 Conversion of Linear Bounded Automata

Definition 3.19 ([HU79]). A (deterministic) linear bounded automaton (LBA) is a
special Turing machine M = (Q,Σ,Γ, δ, q0, B, F) with the following constraints:

• Γ−Σ includes two additional special symbols . and / which are the left and right
bounds of the tape.

• . and / are always the first and last symbols of the input, can not be moved past
and can not be overwritten.

As a LBA is just a Turing machine with additional constraints, its translation from
and to a LBA-machine program is analogous. While the bounds are not represented by
actual symbol on the tape in our model of computation, they present themselves as the
predicates LE and RE which can be regarded as an equivalent representation.

25

4 The Program Arbipreter

Arbipreter is a command-line interface program which can interpret MP -programs for
an expandable set of models of computation. All models of computation from Section
2.1 are implemented and can be used to interpret machine programs.

The source code for Arbipreter is available at https://github.com/kwie98/

arbitrary-interpreter and can be compiled and used with the Haskell Stack build
tool (https://docs.haskellstack.org/). To build the project, the command stack

build can be used. This creates an executable in a stack-specific subdirectory which
can be accessed from the project root with the stack exec-command. Alternatively,
the command stack install additionally copies the executable to the local bin path
to make it more easily accessible.

4.1 Usage

If the executable is run without sufficient arguments, it will print a usage text which
lists all available options for the user, some of which are mandatory for every use-case
(except showing the usage text, of course). The short forms for all options can also be
found in the usage text.

The first argument is the MP -source file path which can contain one or multiple
programs for one specific model of computation. Some example programs are included
in the repository in the folder machine programs.

The next information to be passed to the program is the input machine state, which is
parsed by Haskell’s read function and needs to conform to the machine state format of
the program’s model of computation. The input can be given directly on the command
line using the --input-option, or it can alternatively be read from a file using the
--long-input-option.

If the passed source file includes more than one program, the user additionally needs
to pass the name of the specific program using which is to be interpreted. This is done
using the --program-option.

The option --max-steps allows the user to limit the maximum number of steps that
the program should be interpreted for. One step is counted at each transition from one
program state to another, so if --max-steps=0 is specified, interpretation stops in the
Start-state.

By default, the interpreter executes the program until termination and then outputs
the final program state and machine state. To be shown more information during inter-
pretation, the user can use the --trace-option to have the interpreter print a program

26

https://github.com/kwie98/arbitrary-interpreter
https://github.com/kwie98/arbitrary-interpreter
https://docs.haskellstack.org/

execution trace to the standard output. This trace shows the following information
about each step:

• The current program state

• The machine state after the program state’s operation has been applied

• The list of predicates that were evaluated and their truth values

The trace is printed in a .csv-format with semicolon separators. For the CMMOC and
the SMMOC, the individual registers and stacks are further separated into individual
columns.

4.2 Advanced Machine Program Features

4.2.1 Program Calls

Program calls give the programmer the ability to combine multiple programs from one
file to write more complex programs more easily. In any given program, another program
from that same source file can be referenced as a program state’s operation with a dollar
sign ($) and that program’s name. When such a state is reached during interpretation,
execution of the original program is momentarily stopped as the referenced program is
run on the current machine state until it halts. Then, the original program continues
with the now changed machine state.

For example, the programmer can create a rather simple program for a TMMOC with
the name MOVETOLEFT . This program moves the tape head to the left until it encounters
a blank symbol, at which point it moves the tape head to the right by one symbol. The
programmer can then use this program as an operation in one or more states of another
program by using $MOVETOLEFT as the operation of the state.

Note that steps taken in called programs are not counted for the main program.
Furthermore, program calls are not traced, so the program trace will only show that a
program has been called; the steps taken in that other program are not recorded. Also,
program calls are not to be confused with function calls, which typically execute another
program in a separate environment. With program calls, each program works with the
same shared machine state. To add to that, recursive or looping program calls are not
possible, and programs can only reference other programs that appear before them in
the same source file.

4.2.2 Program Calls with Register Permutation

Register-based models of computation like the CMMOC and SMMOC allow for even
more advanced program calls. Register permutation provides the option of changing
the order of registers before executing the referenced program. This order is specified
as a sequence of integers which correlate to register indices. Mathematically, this order
corresponds to the inverse of the applied permutation, given in one-line notation.

27

Register permutation is mostly useful for referencing programs which only change a
subset of all the registers. For example, the programmer can define an addition program
ADD for the CMMOC which adds the first two registers up and writes the sum into the
first register. If the CMMOC has more than just two registers however, the program can
also be used for any other two registers. If the CMMOC has five registers, the third and
fifth register can be summed up into the latter register with the program call $ADD 5 3,
which is equivalent to the program call $ADD 5 3 1 2 4. Note that programs are never
limited in how many registers they can change, even if the permutation order mentions
just one register.

4.3 Implementation Details

4.3.1 Parsing

This section explains some of the inner workings of the interpreter using Haskell’s
type signatures. Type signatures specify the types of data constructs (data types)
and functions. For functions, the types of all parameters and the returned value are
defined. All custom data types used in the interpreter are defined in one module,
ArbitraryInterpreter.Defs.

Fundamentally, a MP -source file consists of two parts: The definition of the model of
computation, and one or more programs which all use that common model of computa-
tion. These two parts are parsed independently from each other and in this process, the
following two structures are created:

Model of Computation

Models of computation are implemented as a data type MoC. A MoC is made up of three
functions: First and second, the functions ops and preds take the name of an operation
or predicate and, if the name is valid, return the corresponding operation or predicate
in the form of a function. An operation has the type MachineState -> MachineState,
and a predicate has the type MachineState -> Bool. The MachineState type is just a
synonym for the type String. Generally, these strings are show-representations of other
data types, meaning that any data type that is an instance of Haskell’s Show-class can
be used as a machine state. To assure that machine states are valid, the validState

function is defined as the third component of a model of computation. This function has
the type MachineState -> Maybe String and returns an error message if the machine
state is invalid. This function is used to check the machine state before and during
interpretation. If the state is valid, the function simply returns Nothing.

During parsing, the type of model of computation is decided based on the given name.
A model of computation is then constructed based on the given parameters. Optionally,
the model of computation is extended with additional information and functions for
register permutation and customised machine state printing.

28

Machine Programs

The source code describing programs is organised as a hierarchy. The whole file contains
one or more programs. Each of these programs contains one or more states, and each
state consists of a state name, an operation (except for the Start-state) and a BDT.
The parser follows this hierarchy, splitting up the source code into smaller and smaller
parts until each program state is parsed individually. A map is created to represent each
program, mapping state namen to their corresponding operations and binary decision
trees. Each program is then added to a program map one by one. In this process, the
programs are also added as operations to the ops function of the model of computation.

4.3.2 Program Evaluation

Programs are evaluated in an iterative process. Given a program state and a machine
state, the succeeding program state is first determined by evaluating the BDT. If the
End-program state is reached, evaluation stops without any further manipulation of the
machine state. Otherwise, the new program state’s operation is looked up and applied
to the machine state. The new program state and machine state, as well as a trace
of the BDT evaluation, is returned. If the --trace-option is active, this information
is printed at every iteration. Otherwise, only the last program state and the resulting
machine state are printed. Program evaluation may be prematurely stopped by defining
a maximum number of iterations with the --max-steps-option.

4.4 Defining Additional Models of Computation

Support for additional models of computation can be added by following these general
steps, of which all but the first are outlined in more detail after this list:

• Creating a module for the model of computation in ArbitraryInterpreter.MoC

and importing the new module in ArbitraryInterpreter.Parse.ParseMoC

• In this module, writing a function which returns a MoC given a list of parameters:
newMOC :: [String] -> MoC

• Optionally, if the model of computation works on registers: Writing custom per-
mutation and printing functions in ArbitraryInterpreter.MoC.Permuters and
ArbitraryInterpreter.MoC.Prettifiers

• Choosing a uniquely identifying name for the model of computation and adding a
case to ArbitraryInterpreter.Parse.ParseMoC.parseMoC

Defining the constructor. A MoC is constructed purely from a list of zero or more
parameters passed as [String]. For safety, these parameters should be checked first to
see that they are valid. Following after, the components of the MoC which are the ops,
the preds, and the validState functions should be specified.

29

The functions

ops :: OpName -> Maybe (MachineState -> MachineState)

and
preds :: PredName -> Maybe (MachineState -> MachineState)

should return Nothing for invalid operation or predicate names (strings), and Just the
respective operation or predicate otherwise. The special operation NOP is always added
to the MoC and thus should not be implemented here; otherwise a runtime error will
occur during parsing of the model of computation. Operations should also not start
with the dollar symbol ($) as it is used for program calls. The function

validState :: MachineState -> Maybe String

should be defined to return Nothing for valid machine states, and Just an error message
otherwise.

Defining permuters and prettifiers. If the machine state is a data structure with
many ordered values of the same type, it is possible to add support for register permu-
tation and special printing. These features are realised independently as two functions,
permuteMState and printMState, as part of the MoCInfo construct. This construct
also includes a mandatory field for the number of registers. Existing functions for other
models of computation are implemented in the ArbitraryInterpreter.MoC.Permuters
and ArbitraryInterpreter.MoC.Prettifiers modules.

The function

permuteMState :: Maybe ([Int] -> MachineState -> MachineState)

takes a permutation in one-line notation and applies the inverse of that permutation to
the machine state.

The function

printMState :: Maybe (MachineState -> String)

takes a machine state and outputs a .csv-formatted string where all values are separated
by semicolons.

Integration into the parser. In order to make the new model of computation accessible
to the parser, it needs to be integrated into the parseMoC function as a new case-branch.
The model’s unique code-name should be matched against here and the MoC and MoCInfo

constructs should be integrated like the other models of computation.

30

References

[Cha20a] Maurice Chandoo. “A Systematic Approach to Programming”. In: CoRR
abs/1808.08989 (2020). arXiv: 1808.08989.

[Cha20b] Maurice Chandoo. “Separating Algorithmic Thinking and Programming”.
In: (2020). doi: 10.15488/9177.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata theory,
languages, and computation. Reading, Mass: Addison-Wesley, 1979. isbn:
020102988X.

[Lam61] Joachim Lambek. “How to Program an Infinite Abacus”. In: Canadian Math-
ematical Bulletin 4.3 (1961), pp. 295–302. doi: 10.4153/cmb-1961-032-6.

[Min61] Marvin L. Minsky. “Recursive Unsolvability of Post's Problem of ”Tag” and
other Topics in Theory of Turing Machines”. In: The Annals of Mathematics
74.3 (1961), pp. 437–455. doi: 10.2307/1970290.

[MP43] Warren S. McCulloch and Walter Pitts. “A logical calculus of the ideas im-
manent in nervous activity”. In: The Bulletin of Mathematical Biophysics 5.4
(1943), pp. 115–133. doi: 10.1007/bf02478259.

[PY83] Jan Pittl and Amiram Yehudai. “Constructing a realtime deterministic push-
down automaton from a grammar”. In: Theoretical Computer Science 22.1-2
(1983), pp. 57–69. doi: 10.1016/0304-3975(83)90138-x.

[Sco67] Dana Scott. “Some definitional suggestions for automata theory”. In: Journal
of Computer and System Sciences 1.2 (1967), pp. 187–212. doi: 10.1016/
s0022-0000(67)80014-x.

[Sor13] Juha Sorva. “Notional machines and introductory programming education”.
In: ACM Transactions on Computing Education 13.2 (2013), pp. 1–31. doi:
10.1145/2483710.2483713.

31

https://arxiv.org/abs/1808.08989
https://doi.org/10.15488/9177
https://doi.org/10.4153/cmb-1961-032-6
https://doi.org/10.2307/1970290
https://doi.org/10.1007/bf02478259
https://doi.org/10.1016/0304-3975(83)90138-x
https://doi.org/10.1016/s0022-0000(67)80014-x
https://doi.org/10.1016/s0022-0000(67)80014-x
https://doi.org/10.1145/2483710.2483713

Appendix

1 #MOC CMMOC 2

2
3 // R1 <- R1 + R2

4 #PROGRAM ADD

5 Start:

6 R2=0

7 decR2

8 End

9
10 decR2 / R2 -1:

11 incR1

12
13 incR1 / R1+1:

14 R2=0

15 decR2

16 End

Figure 1: Textual representation of a machine program

M = ({q0, qa, qa2, qb, qb2, qL, qF}, {a, b}, {B, a, b}, δ, q0, B, F)

δ(q0,B) = (qF ,B,N)

δ(q0, a) = (qa,B,R)

δ(q0, b) = (qb,B,R)

δ(qa,B) = (qa2,B,L)

δ(qa, a) = (qa, a,R)

δ(qa, b) = (qa, b,R)

δ(qa2, a) = (qL,B,L)

δ(qL,B) = (q0,B,R)

δ(qL, a) = (qL, a,L)

δ(qL, b) = (qL, b,L)

δ(qb,B) = (qb2,B,L)

δ(qb, a) = (qb, a,R)

δ(qb, b) = (qb, b,R)

δ(qb2, b) = (qL,B,L)

Figure 2: A Turing machine which accepts the language {wwR | w ∈ Σ*}

32

Figure 3: A TMMOC-machine program which accepts the language {wwR | w ∈ Σ*}
over the alphabet Σ = {a, b}

1 #MOC TMMOC "Bab"

2
3 #PROGRAM WORD_REVERSEWORD

4
5 Start:

6 =B

7 =a

8 =b

9 crash

10 q0#b

11 q0#a

12 q0#B

13
14 crash / WBN:

15 End

16
17 q0#B / WBN:

18 End

19
20 q0#a / WBR:

21 =B

22 =a

23 =b

24 crash

25 qa#b

26 qa#a

27 qa#B

28
29 q0#b / WBR:

30 =B

31 =a

32 =b

33 crash

34 qb#b

35 qb#a

36 qb#B

33

Figure 3: A TMMOC-machine program which accepts the language {wwR | w ∈ Σ*}
over the alphabet Σ = {a, b}

37 qa#B / WBL:

38 =a

39 crash

40 qa2#a

41
42 qa#a / WaR:

43 =B

44 =a

45 =b

46 crash

47 qa#b

48 qa#a

49 qa#B

50
51 qa#b / WbR:

52 =B

53 =a

54 =b

55 crash

56 qa#b

57 qa#a

58 qa#B

59
60 qa2#a / WBL:

61 =B

62 =a

63 =b

64 crash

65 qL#b

66 qL#a

67 qL#B

34

Figure 3: A TMMOC-machine program which accepts the language {wwR | w ∈ Σ*}
over the alphabet Σ = {a, b}

68 qb#B / WBL:

69 =b

70 crash

71 qb2#b

72
73 qb#a / WaR:

74 =B

75 =a

76 =b

77 crash

78 qb#b

79 qb#a

80 qb#B

81
82 qb#b / WbR:

83 =B

84 =a

85 =b

86 crash

87 qb#b

88 qb#a

89 qb#B

90
91 qb2#b / WBL:

92 =B

93 =a

94 =b

95 crash

96 qL#b

97 qL#a

98 qL#B

35

Figure 3: A TMMOC-machine program which accepts the language {wwR | w ∈ Σ*}
over the alphabet Σ = {a, b}

99 qL#B / WBR:

100 =B

101 =a

102 =b

103 crash

104 q0#b

105 q0#a

106 q0#B

107
108 qL#a / WaL:

109 =B

110 =a

111 =b

112 crash

113 qL#b

114 qL#a

115 qL#B

116
117 qL#b / WbL:

118 =B

119 =a

120 =b

121 crash

122 qL#b

123 qL#a

124 qL#B

36

	Introduction
	Basic Definitions
	Model of Computation
	Deterministic Finite Automaton
	Real-Time Deterministic Pushdown Automaton
	Turing Machine
	Linear Bounded Automaton
	Counter Machine
	Stack Machine

	Machine Program
	Exemplary Machine Program
	Machine Programs in Text Form

	Relations to Classical Definitions in Automata Theory
	Finiteness of Machine Programs
	Reduced Binary Decision Tree
	Conversion of Deterministic Finite Automata
	DFA to MP
	MP to DFA

	Conversion of Real-Time Deterministic Pushdown Automata
	RDPA to MP
	MP to RDPA

	Conversion of Turing Machines
	Turing Machine to MP
	MP to Turing Machine

	Conversion of Linear Bounded Automata

	The Program Arbipreter
	Usage
	Advanced Machine Program Features
	Program Calls
	Program Calls with Register Permutation

	Implementation Details
	Parsing
	Program Evaluation

	Defining Additional Models of Computation

	References
	Appendix

