iy

ﬂ’ﬂ wi'n
; ‘fﬁfﬂfﬁﬂﬁ HiaEaaaE mﬁ[ﬂw ﬂﬂﬂﬂﬂﬂﬂ ;1‘\unllﬂuunuiwuuwn‘jﬂ) i
nlin 2. 2umain Gl g
ot mmeaE o ¢ el @l el 50 1 rerammE Dl
mJo0im 00000000 W W W[TAlSA M| 0 0 o 0000000 00| m{0)0[lm

ON THE PROGRESSION OF FINDING
THE SMALLEST KNOWN UNIVERSAL TURING MACHINE

Fakultat fir Elektrotechnik und Informatik
der Gottiried Wilhelm Leibniz Universitdt Hannover
Institut fur Theoretische Informatik

Abschlussarbeit

zur Erlangung des akademischen Grades
Bachelor of Science

vorgelegt von

Laura Strieker
10004978

im Februar 2020

Prof. Dr. H. Vollmer
Dr. A. Meier
Prof. Dr. H. Vollmer

Erstpriifer:
Zweitpriifer:
Betreuer:

Erklarung der Selbststandigkeit

Hiermit versichere ich, die vorliegende Bachelorarbeit selbststdandig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel verwendet zu haben. Die Arbeit hat in
gleicher oder dhnlicher Form noch keinem anderen Priifungsamt vorgelegen.

Hannover, den 21. Februar 2020

Vorname Nachname

Contents

1 Introduction

2 Fundamentals

2.1 Universal Turing machines,
2.2 Notation e e
2.2.1 Symbols, States and Transitions
2.2.2 Transition tables L

3 The first universal Turing machine

3.1 The first definition of Turing machines
3.2 Standard Description Lo o
3.3 Turing’s UTM o e
3.3.1 Roughoutline.
3.3.2 Detailed description L
4 The idea of small universal Turing machines
4.1 A universal Turing machine with 2 states
4.2 Impossibility of a one state universal Turing machine
4.3 A universal Turing machine with two tape symbols
5 A competition arises
5.1 Watanabe’s contribution L Lo
5.1.1 The (5,8)-UTM o
5.1.2 The (5,6)-UTM o
5.2 Minsky’s contribution Lo Lo oL
5.2.1 Tagsystems L
5.2.2 Universality through tag systems
523 The (6,6)-UTM
524 The (4,7)-UTM 0
6 How small is possible?
6.1 The Rule 110 cellular automaton
6.2 Universality of Rule 110 L
6.3 The (5,2)-UTM e
6.4 The (3,2)-UTM
6.4.1 Concluding words

7 Overview

Bibliography

11
11
13
13

15
15
15
17
17
17
18
18
22

23
23
23
24
25
27

29

32

1 Introduction

The history of universal Turing machines began when Alan Turing came up with the first
universal Turing machine in 1937 [15]. The following years remained silent measured by
the invention of new universal Turing machines but in the 1950s, Shannon brought the fac-
tor size into the field [12]. This lead to a rigorous competition in the 1960s between various
people to find the smallest possible universal Turing machine, amongst them Watanabe
and Minsky, a universal Turing machine of the latter was the smallest known for several
years [8].

A few more little improvements in size were made through out the years but it was not
until 2002 that another big dent was made in terms of size. Wolfram [19] found two very
small universal Turing machines which are still the smallest known universal Turing ma-
chines today.

The reason smaller and smaller universal Turing machines were found is the creativity
and ingenuity of the researchers. Every new big idea and every smart new approach could
possibly make the next breakthrough in the size of universal Turing machines; striving
further towards a minimum.

This work will examine universal Turing machines with regards to their size and the meth-
ods that were invented over the course of time to reduce this size. How small can universal
Turing machines possibly be? How complex can these small structures get?

2 Fundamentals

Before examining universal Turing machines, it is inevitable to discuss what Turing ma-
chines are in general. The first Turing machine was introduced by Alan Turing in 1937
[15] as a model of computation. He designed these computation machines that were later
named after him, such that they consist of an alphabet of symbols, a set of states, an
infinitely long working tape divided into cells and a head that operates on this tape [15].
The input of the machine is placed on the tape. Each cell of the tape bears a symbol
of the alphabet where one certain symbol is identified with a blank cell, therefore being
called the blank symbol. A O is often used to depict this symbol. The head moves on the
tape by shifting one cell to the left or the right. The head is able to read the symbol on
the single cell that is currently under the head and write a new symbol on that cell.

The machine cannot remember the symbols it has read on the tape directly but the states
can be used to serve as a memory. A pair of the current state and the symbol currently
read on the tape is called a state-symbol pair or a configuration. Each configuration de-
termines a distinct step of computation of a Turing machine. A step consists of changing
the state, writing a new symbol on the current cell of the tape and moving the head on the
tape; this is called a transition. Note that the new state may be the same as the current
state, as well as the new symbol may be the same as the current symbol. The head is not
allowed to move further than one cell to the left or the right but it might stay at the same
cell. For every configuration that may be encountered there is such a transition to a new
state, symbol and cell. The entirety of these transitions make up the transition function.
Turing also defined two groups of symbols: one kind he called figures consisting only of
0 and 1 and another kind that is not defined specifically. In more recent definitions this
is expressed by two different alphabets: an input alphabet, often but not always consist-
ing solely of 0 and 1, and a working alphabet, consisting of all symbols that are used
on the tape, including the input alphabet and the blank symbol. Turing’s rather limited
definition is due to the fact that he envisioned Turing machines to be pure computation
machines that work on binary sequences.

Formally, a Turing machine may be denoted as a 7-tupel (Q, X, T, 6, O, qo, E') where

e () is the set of states {qo, ..., qm}

e > C I' is the set of input symbols

I" is the set of tape symbols, including the blank symbol

§:QxT' — @Q@xI'x{L,N, R} is the partial transition function with {L, N, R} being
the possible head movements shift left, no movement and shift right.

O is the blank symbol

qo is the initial state

e I/ C () is the set of accepting or final states

2 Fundamentals

A Turing machine operates on the input given on its tape such that it reads the first
symbol in the initial state, looks up the corresponding transition, executes it and then
processes the new configuration it is in. This operation cycle continues to be repeated
until the Turing machine halts. A Turing machine halts and accepts, whenever it reaches
a final state and does not move out of it again by some transition. If the transition function
is not defined for a state-symbol pair, the Turing machine is either envisioned to be in an
infinite loop or halt but not accept unless being in a final state.

In addition to Turing’s original idea of a computation machine, Turing machines are able to
recognize semi-decidable languages. A Turing machine recognizes a language, if for every
word of the language, the Turing machine halts in a final state and for every word that
does not belong to the language, it never accepts. Turing’s definition did not include the
possibility of accepting, as the halting of the machine would only occur if the computation
of the binary sequence was finished.

2.1 Universal Turing machines

The first universal Turing machine was also found by Alan Turing in the same paper
in which he invented the Turing machine in [15]. It is important to understand what
universality in Turing machines means and what the size of such a machine is.

A system is called universal or capable of universal computation if it can execute any
algorithm when given the data for the algorithm in some encoded form readable by the
system [3].

A Turing machine is said to be universal if it can simulate every other possible Turing
machine, given the Turing machine that it should simulate as some kind of input. This
means it can universally do every computation that can be done by Turing machines.
As Turing machines compute partial recursive functions due to their partial transition
functions, an universal Turing machine is able to compute every partial recursive function.
The Turing machines that make up the input for the universal Turing machine, need to
be encoded such that the universal Turing machine can reconstruct them unambigiously.
Therefore, some kind of a Goedel number is used to encode these Turing machines. A
Goedel number is a number that unambigiously identifies a word with a certain procedure.
It will later be clear that the choice of encoding for the input has a huge impact on the
size of a UTM.

As mentioned previously, the size of universal Turing machines and how this size was
achieved is the focus of this work. The size of an universal Turing machine is defined as
the product of the number of states and the number of symbols as suggested by Shannon
n [12]. The number of symbols refers to the size of T, i.e. the tape symbols, since these
are the symbols that are used in total. Some definitions of Turing machines do not even
include the input alphabet X. In the following ¥ may be omitted.

2.2 Notation

The notation of Turing machines differs through time and author. To be clear, the way
of notation in this work will be explained briefly. Furthermore, the abbreviations TM
for Turing machine and UTM for universal Turing machine will be used in the following
chapters.

2.2 Notation

2.2.1 Symbols, States and Transitions

The notation of a complete Turing machine and the way these machines work will be
explained using an example. Let M; be the TM that decides whether a binary number is
odd, i.e. if its value is equivalent to 1 mod 2. So M; checks for every input sequence over
the alphabet {0,1} if it is an odd number. A binary number is odd if the last digit is 1.
My = ({90, 9R, 41, Qace }, {0,1},{0, 1,0}, 0,0, G0, {qacc}) Where 0 is defined as:

gd—qgON q00 — qrOR
qol — qrlR qr0 — qrOR
qrl — qrlR qrO0—q OL
@10 — 0N @11 = GacclN

Note that M; is constructed under the assumption that the head is placed on the first
symbol of the input sequence.

The machine checks if the input is empty, if it is not, it moves the head to the end of the
input and checks if the last symbol is a 1.

Note that the transition function alone is able to describe the whole Turing machine, as
every state, symbol and transition is mentioned.

2.2.2 Transition tables

To describe Turing machines briefly, transition tables will be used. Let M7 be the TM as
stated above. The §-function of M7 can also be depicted as a transition table as in Table
2.1.

] o | ar @
0 || gqrOR OR qON
1 || ¢rlR 1R HALT
O oN | OL -
Table 2.1: Transition table of M;

A transition table is read by choosing the current state from the top row and the current
symbol from the left column. The following state, symbol and head movement is stated
in the corresponding cell of the table. If the state does not change, it is not written out.
Note that the transition into the accepting state was changed to the instruction HALT,
as there is no further computation done in state gse.. The dash (-) in the bottom right
cell denotes that there is no transition for this state-symbol pair.

If the specific transitions of a Turing machine are discussed, a transition table will be used
to express these, as it is very compact.

3 The first universal Turing machine

Alan Turing was the one to have the idea of a universal Turing machine as well as the Tur-
ing machine later named after him. In 1937, he published a paper called ”On computable
numbers, with an application to the Entscheidungsproblem” [15] stating his universal Tur-
ing machine. This chapter is dedicated to understanding the first definition of a Turing
machine as well as explaining which underlying mechanisms Turing used to construct his
universal Turing machine.

3.1 The first definition of Turing machines

Turing’s definition differs slightly from the one that is stated above. These differences are
found in the definition of the machine itself as well as the type of calculation it carries out.
Turing understood TMs as computation machines which printed a sequence of 0’s and 1’s
(he calls these symbols figures) on a formerly empty tape. Turing machines are not yet
viewed as a tool to recognize or decide languages.

Another difference is the use of the tape. In this first definition, alternating squares are
used. Every first, or left as you will, cell is called an F-square, bearing a figure of the
calculated sequence. The other, right cells are called E-squares. These cells do not con-
tain any figures belonging to the sequence the machine computes, but rather "mark” the
F-squares to the left with some kind of symbol. This alternating outline of the tape is
not necessary, since it can be made up for with a bigger variety of symbols. If a machine
following Turing’s definition had an alphabet consisting of, say, the figures 0 and 1 for
printing on F-squares and the symbols z,y and z for marking on the E-squares, making
up an alphabet of size 5, the markers could easily be substituted with the figures, say
0z,0y,0,,14,1, and 1,. This would lead to an alphabet size of 8 including the unmarked
figures 0 and 1 but every cell could be used equally.

Besides these structural differences, there are a few definitions that are needed to under-
stand the method of work of Turings universal TM. A configuration is a pair of a state and
a symbol that defines the next action of a Turing machine, namely the symbol printed,
the direction of the head movement and the state entered next. Configurations are not
dependent on any other cells of the tape but the one currently read by the machine. Com-
plete configurations on the other hand include the current state, the current cell read by
the machine (not necessarily the input but the number of the cell) and the whole sequence
on the F-squares of the tape. Please note that no blanks occur in the sequence of the F-
squares. The difference between a configuration and a complete configuration is important
to understand the universal Turing machine correctly.

3.2 Standard Description

Turing came up with his own encoding of Turing machines that is explicit as well as
reversable, similar to a Goedel number. Given such an encoding of a Turing machine,

3 The first universal Turing machine

his UTM is able to compute the same sequence as the encoded machine. He called this
encoding the Standard Description or short S.D. of a machine.
A S.D. is entirely made up of the symbols A, C, D, L, N, R,; where ; acts as a seperating
character. Every transition of a Turing machine is coded on its own, the complete S.D. is
then made up by chaining all encoded transitions after each other, seperating them with
semi-colons. Note that Turing ordered transitions in a different way, the final state comes
last in a transition, e.g. Turing used the order ¢;5; — SpX¢q instead of ¢;S; — qSpX
where X denotes the head movement. The definite method to construct the S.D. of a
Turing machine is as follows:
Let {q1,...,qr} be the set of states where ¢ is the initial state and Sy, S1,S2, ..., Sm, be
the alphabet of the machine, where Sy = 0, S1 =0 and S5 = 1.
Then for every transition

q:S; — Sk Xq

write down
DA'DCIDC*X DA

where X € {L,N,R}. When appending one encoded transition to another, the S.D. is
retrieved. Note that the last semi-colon is not necessary, since there is nothing to seperate.
This Standard Description can be encoded furthermore, such that it only consists of num-
bers. Turing calls this the Description Number of a machine which is basically a Goedel
number for Turing machines. The essential idea is to assign a distinct integer to every
symbol of the S.D. starting by 1 and use the assigned integers instead of the symbol,
creating a sequence solely consisting of numbers.

3.3 Turing’s UTM

Turing’s UTM now uses this Standard Description rather than the Description Number to
simulate another Turing machine. For the remainder of the chapter M will be the Turing
machine which is to be simulated and U will denote the universal Turing machine that
simulates M.

3.3.1 Rough outline

Let M’ be a Turing machine that writes all successive complete configurations on the F-
squares of its tape. Suppose that M’ knows how M works by knowing the S.D. of M
internally. M’ writes down the complete configurations as follows:

For every complete configuration, the complete sequence on the F-squares of the tape is
written out. The current state is written in this sequence, marking the current cell at the
same time by putting it right in front of it. If the sequence of the F-squares is, say, 0010
and the current cell is the one containing 1 and the current state is g5, then the complete
configuration for this scenario would be 00g51. All consecutive complete configurations are
written down after each other, each seperated by a colon.

The complete configurations are further encoded in a similar way to the S.D.:

Every symbol S; of the alphabet is encoded as DAJ and every state ¢; of the set of states
is encoded as DC". For the above example this would yield DADADCCCCCDAA, since
0,1 are encoded as S1, S9, as stated in Chapter 3.2. Again, these successive complete con-
figurations are seperated by colons.

3.3 Turing’s UTM

Every TM has such a corresponding sequence of complete configurations, so M has as
well. If M exists, it is easy to construct a machine M’ that prints out this sequence
on the tape based on the Standard Description of M, as it only needs to append the
same complete configuration with the change of one transiton, i.e. the appendance of
one symbol or the change of one symbol in the sequence and the movement of the head
one cell to the left or right and the change of the state. All this information can be
gathered by looking at the S.D. Turing’s definition of TMs calls for figures to be written
on the F-squares, since these make up the computed sequence. Therefore, M’ has to
print figures. This is done by printing the figures that are new in a complete configuration
between the complete configuration they first appear and the complete configuration before
again seperated by colons. Going back to the example from before; if the next complete
configuration was 001¢gl, encoded as DADADAADCCCCCCDAA, these two succesive
complete configurations would yield

DADADCCCCCDAA : DADADAADCCCCCCDAA
and M’ would then write

DADADCCCCCDAA :1: DADADAADCCCCCCDAA

because a 1 was printed by M between these two successive complete configurations. If
this is done for all complete configurations, the sequence of figures printed by M’ would

then represent the sequence of figures printed by M and therefore M’ would simulate
M.

3.3.2 Detailed description

The universal Turing machine U is implementing the outline given above. The tape of U
is prepared with an o on an F-square and another e on the next E-square. Then follows
the S.D. of M on F-squares; encoded as explained as before. After the S.D., a double
colon :: is written on the next F-square as one single symbol.

Size of the UTM

The alphabet of the UTM U is {A,C, D, L, N, R,0,1,u,v,w,x,y, 2z} reaching a size of 14.
Unfortunately, Turing uses abbreviations for the transitions which he calls m-functions,
making it hard to depict the number of states clearly. But given the fact that he uses
more than three pages throughout the aforementioned paper [15], it is clearly a lot - he
already uses over 50 m-functions. Every m-function stands for some series of transitions
with at least one but probably a few states involved. That said, Turings UTM bears the
idea of simulating other Turing machines but is far off from other results regarding the
size of the UTM, as can be seen in Table 7.1.

Operation cycle

Following the idea stated above, the UTM will print out all consecutive complete configu-
rations and the figures that are new in the last complete configuration between them. Let
one operation cycle be the printing of one complete configuration and the next new figure

3 The first universal Turing machine

if there is one, as M might print a blank.

The UTM begins with the first complete configuration that can be hard coded because it
is always g1 and an empty tape. As all complete configurations, it prints it after the S.D.
on the tape, beginning on the F-square after the double colon. ¢; is per definition the
initial state of M and before the first transition is carried out, the tape will be blank.
The general operation cycle consists of

e printing the complete configuration on the tape right after the last one and

e marking the current configuration, meaning the current state and the current symbol
under the head of the TM, as explained in Chapter 3.1.

e Find the corresponding transition of the marked configuration in the S.D. of M by
comparing the configurations and

e mark the operation to be carried out, the next state and the head movement.

e [f the marked operation involves the printing of 0 or 1; append ”0:” or ”1:” on the
next F-squares after the current complete configuration

e print the next complete configuration on the tape after the last occupied F-square by
reference to the marked transition in the S.D. and the current complete configuration

That is the basic concept of the first universal Turing machine. Note again that Turing
defined these machines under the convention of never leaving an F-square within the
sequence of figures blank and never changing any figure that has already been printed.
Under these conventions, U is indeed an universal Turing machine, i.e. U can simulate
an arbitrary Turing machine M given its Standard Description, such that U prints the
figures of the sequence computed by M and no other figures on F-squares. It does print
other symbols on F-squares but the computed sequence can easily be distinguished from
those, since none of these symbols will be 0 or 1.

Compared to the other universal Turing machines discussed in this work, Turing’s machine
will appear to be one of the easiest regarding the encoding of the simulated Turing machine
and the procedure of calculation. On the other hand this comes with the burden of size,
while Turing did of course not anticipate to create a small UTM.

10

4 The idea of small universal Turing
machines

In 1956, Claude E. Shannon published a paper called ”A universal Turing machine with
two internal states” and thereby introduced the factor size to universal Turing machines
[12].

He examined three things in this paper: first, that it is possible to construct a univer-
sal Turing machine with one tape and two states. Second, that it is not possible to
construct a universal Turing machine with only one state and last, similar to the first
point made, universal Turing machines with two tape symbols are constructable. This
chapter focuses mainly on the machine with two states and how this construction was
achieved.

4.1 A universal Turing machine with 2 states

Shannon did not exactly construct a universal Turing machine but rather gave a method
to transform every possible Turing machine into one with only two states. Therefore,
universal Turing machines with two states can be constructed using this method and
an existing universal Turing machine such as the UTM discussed above by Alan Tur-
ing.

The complete size of the resulting UTM is still depending on the universal Turing machine
that was transformed in the first place. Let A be the UTM that is to be transformed using
Shannon’s method with an alphabet of size m {Aj, A, ..., Ay, } and n internal states
{51,52,...,5,}, m,n € N. Let B be the resulting UTM, then B has 2 states (a and)
and an alphabet size of at most 4mn+m. So as the number of states decreases (there was
no UTM with only two states known when Shannon published this paper), the number of
tape symbols increases. The exact alphabet size can be explained through looking at the
method Shannon proposed:

Machine B should model the behaviour of machine A and display the same result as
machine A at the end of the same calculation. To do this with only 2 states, B emulates
the states of A by coding them in the tape symbols. If A is in state S; and going to state
S;, B counts up to the next state on the next cell of its tape. Therefore, it jumps back
and forth between the current and the next cell on the tape to count from 0 to j, thus
saving the state information of A on the tape. To make sure that the symbol that was in
this next cell beforehand is not lost, the tape symbols used to count carry the information
about the state and the symbol. The old cell on the other hand is already carrying such
a special state-symbol symbol. This has to be converted back to a normal symbol that is
not carrying any information about the state as in machine A after finishing this bouncing
operation, so that the result of the calculation may be the same as the result of machine
A.

Therefore, machine B has m tape symbols B; that directly correspond to the m tape

11

4 The idea of small universal Turing machines

symbols of machine A. Furthermore, B has four tape symbols for each state-symbol pair
of A. These are denoted by B «y, where x and y are binary indices. The indice ¢ describes
the corresponding state of A as before, j denotes the j-th tape symbol of A, y = L or
R saving the motion of the head and x = + or — which corresponds to wether this cell
is receiving (—) or transmitting information (+), as we will discuss later on. These tape
symbols of B make up m*n*2x2 = 4mn, so that we get 4mn-+m tape symbols altogether.
The states a and (8 serve two purposes: in the beginning, « is used to signify that the old
cell is to the right and 8 corresponds to the old cell being to the left. Else, an « signals
the end of the operation.

The definite method is as follows: Machine B has the states a and 8 and tape symbols
as listed above. Regarding the state transitions, the state transitions of A have to be
modeled for B to mimic the behaviour of A. For every

SiAp — S;AIR
in A there is a transition of form
aByi.x — BB+ rE
in B and corresponding for every
SiAp — S; AL

in A there is a transition of form
aBkuiv'1X % aB17.]7+1LL

in B. The remaining state transitions for B are made up as follows:

aB; = aBii-rR,i€1,2,..,m (4.1)

BB; — aBiy 1L,i €1,2,...m (4.2)

BBij-x = aBj (j41)-xT,1 € {1,2,..,m},j€{1,2,...,n—1},x € {L, R} (4.3)
YBij+x = BBi1)+x7 7 € {a, B},1 € {1,2,..,m},j € {2,3,...,n},z € {L,R} (4.4)
vBi1 4+ x = aBix,v € {a, 5}, 1€ {1,2,..,m},z € {L, R} (4.5)

We will discuss this using an example: If machine A is in state S3 and reads symbol
Ao it might go into state So whilst writing A7 on the tape and then move right using a
transition

S3A2 — SQA7R
Then, machine B would have a transition
aBa3_x — B2+ rR (4.6)

and of course all other transitions as stated above. So machine B would read the symbol
By3 . (wether x is L or R is not relevant at this point) and be in state a. We assume
that the symbol on the next cell to the right is By, but it could be any arbitrary symbol of
B. The actions of machine B are denoted in Table 4.1, where the transitions given express

12

4.2 Impossibility of a one state universal Turing machine

Table 4.1: Actions of the two state UTM B

old cell | new cell | state | transition

B2,3,,7x Bg o 4.6

Bra2 4R By B 4.2

Br2+r | Bo1-1 | « 4.4

Briyr | Boi-L| B 4.3

Bri+r | Bo2-1 | « 4.5
By Bo2-1| «a -

the transition used to get from the current line to the next and the fat cell is the one
looked at by B.

The last a does indeed end the operation as described before and the old cell is reset
to a tape symbol directly corresponding to a tape symbol of A. Machine B always ends
up in state a after executing one transition of A. We would now need a transition in A
starting from Ss Ag modeled in B to go on in the same manner and simulate a whole Turing
machine.

Using this method, it is now possible to create a UTM with only 2 states and 4mn + m
tape symbols.

4.2 Impossibility of a one state universal Turing machine

Shannon [12] goes on to prove that it is not possible to construct a UTM with only one
state. He uses the computation of the irrational v/2 to show reductio ad absurdum that a
universal Turing machine with only one state given a suitable description number cannot
compute this number and therefore, it is not possible to construct a universal Turing
machine with only one state.

4.3 A universal Turing machine with two tape symbols

The universal Turing machine with only two tape symbols is similarly constructed as the
one discussed above, rather transforming a given UTM than directly constructing one. In
this case, Shannon [12] introduced more states to compensate the loss of different tape
symbols in a similiar method to the first transformation. In contrary to coding the different
states into the tape symbols, he uses binary sequences of a set length to code the different
symbols only using 0 and 1 and therefore needs more states to process the symbols, as the
machine can only read one cell at a time.

13

5 A competition arises

A few years after Shannon published his paper [12], a competition emerged to find the
smallest possible universal Turing machine, lasting for the better part of the 1960s.
Amongst other participants, Marvin Minsky and Shigeru Watanabe stood out as the two
leading forces of this battle. This chapter focuses on the new ideas they brought up to
reducce the size of universal Turing machines.

5.1 Watanabe’s contribution

Watanabe found several small universal Turing machines as listed in table 7.1, but the main
focus is on his 5-symbol 8-state universal Turing machine published in [17], as his other
UTMs are either constructed very similar or are bigger than this.

5.1.1 The (5,8)-UTM

The 5-symbol 8-state UTM uses the set alphabet {0,1,0’,1’,%}. To be able to use this
alphabet with every Turing machine that could possibly be simulated, the simulated Turing
machine must be expressed in such a way that it uses the alphabet {0,1}. To ensure this,
Shannons method of constructing a Turing machine with only two tape symbols 0 and 1
is used, as mentioned in 4.3. Moreover, the machine has to be transformed into one with
a left end on its tape; otherwise, Watanabe’s method cannot work.

The essence of his method lies in dividing the tape into three different regions:

e the I,-Region
e the Ig-Region
e the W-Region

which are arranged on the tape in a certain order as presented in Figure 5.1.

They all serve a different purpose. Whilst both the I-Regions as instruction regions are
used to encode the states and transitions of the Turing machine N that is to be simulated,
the W-Region is holding the computations of the simulated TM as a working region. The
difference between the I-Regions is that the I,-Region codes the symbol that is to be
written and the head movement that is to be made in the W-Region for every instruction
of N. The Ig-Region, on the other hand, holds all state-symbol pairs of N.

The I,-Region is written out as follows: for every instruction of N, there is a sequence
(10)"0990 written out, where n corresponds to the number of 0’s from the left end of this

Is \ I, w

Figure 5.1: Arrangement of Regions on the tape of the (5,8)-UTM

15

5 A competition arises

table element in the I,-Region until the right end of the element coding the next state of
N in the Ig-Region. This ensures that the UTM can move from the current instruction to
the next state. Furthermore, the first distinction between 0 and 1 shows whether the next
symbol of N is a 0 or a 1 and the second codes whether the next head movement is right
(0) or left (1).

To the left of the I,-Region, the Ig-Region is composed. The Ig-Region is used to mark the
current state and symbol read in the W-Region. For every state there are two sequences:
01™0 for the state paired with symbol 1 and 1™0 for the pairing with symbol 0 written out
right behind each other. The number of 1’s in each sequence corresponds to the number
of 0’s from the right end of this sequence until the left end of the instruction matching the
state-symbol pair coded in this sequence. If we are at state g; and read symbol ¢; in the W-
Region, the number of 1’s corresponds to the number of 0’s until we reach the instruction
gic¢i = giycy X in the I,-Region. At the end (reading from left to right) of the Ig-Region
there is an additional 0 to mark the beginning of the I,-Region.

The tape of the UTM is being prepared with the I,- and Ig-Regions as described above
for a specific Turing machine N that is to be simulated; the W-Region takes the content
of the tape of N at the beginning of the computation. If N is in state ¢, at the beginning
of the computation and the head is on a specific cell of the tape, then the UTM is in its
own starting state A and the head is placed on the corresponding cell in the W-Region.
All 0’s from the left end of the tape until the state-symbol pair (g,,0) in the I3-Region
are converted to x’s. This is needed to be able to start the computation using the correct
starting state of N.

Method of operation

The described universal Turing machine functions in a 5-step manner:
1. Read the current symbol on the tape in the W-Region and go to the Ig-Region

2. Read the current state in the Ig-Region and go to the corresponding entry in the
I,-Region

3. Go to the next state in the Ig-Region and mark it

4. Read the next symbol in the I,-Region and write it in the current cell of the tape
in the W-Region

5. Read the head movement in the I,-Region and execute it in the W-Region

These 5 steps are executed for every instruction that occurs in N during the computa-
tion that is to be done. The steps are intertwined with an intricate coding system to
find the next needed sequence in a different region featuring the number of 0’s between
these elements as described above and marking cells with * or 0’ and 1’ instead of 0 and
1.

The underlying ideas

The main ideas Watanabe used to construct this universal Turing machine are the division
of the tape into two main parts, an instruction region and a working region. The former
is used to code the transitions and states of N, and the latter to act as the tape of the

16

5.2 Minsky’s contribution

simulated machine N.

He also used Shannons method in an unconventional way to reduce the number of symbols.
Instead of using it on his UTM after construction, he uses it to reduce the number of
symbols of the ingoing Turing machine. This allows him to assure that the alphabet of
all simulated TMs is fixed to {0,1}. Furthermore, this enables Watanabe to use a small,
fixed alphabet himself, adding only a few options to mark cells.

5.1.2 The (5,6)-UTM

The fundamental principle of this smaller universal Turing machine is the same as that
of the 8-state UTM. Watanabe modifies the instruction region to save on states. Every
possible transition has its own I,-Region, combining the function of the I,,- and Ig-Region
by using the general layout of the I,-Region but also coding the current symbol into each
instruction. Starting with I; as the rightmost I.-Region, the next state-symbol-transition
sequence is marked in the next I.-Region to the left named I,.y. This UTM has no
left end, as the I,-Region is repeated infinitely often. Therefore, the (5,6)-UTM does
not need to change between an I,- and an Ig-Region and needs fewer states than the
(5,8)-UTM.

5.2 Minsky’s contribution

Minksy on the other hand introduced a completely new method to construct small UTMs
by using tag systems which were originally developed by Emil Post [10]. Amongst Minsky’s
many universal Turing machines, his 6-symbol 6-state UTM using tag systems that he
found in 1962 [8] will be discussed in detail.

5.2.1 Tag systems

Tag systems are string manipulation systems and can also be viewed as machines with
one infinite tape that functions as a FIFO queue.

A tag system consists of an alphabet {ay, ..., an,} of symbols, a set of transitions over this
alphabet and an integer P. These transitions, also called productions, define a string of
symbols for every of the m symbols in the alphabet:

a; — Q31---G4 n;

These strings are also called P;, where i € {1,...,m} is referring to the alphabet symbol.
An operation cycle of a tag system will begin with a certain given input string. The
machine reads the first symbol of the string. If it is a;, it appends P; to the string and
deletes the first P symbols. This procedure is repeated until the string is empty due to
deletions or a special halting symbol ag is read.

There are some parallels between tag system and Turing machines. Both work on some
kind of input string and manipulate it based on a symbol they have read. Tag systems are
more limited in the way they read symbols, as they can only ever read the first symbol of
the input string. They also can not remember anything that happened before, as they do
not have states as Turing machines do. Therefore, tag systems seem to be less complicated
than Turing machines.

17

5 A competition arises

5.2.2 Universality through tag systems

Iff a function can be calculated by a Turing machine, it is partial recursive. Minsky
showed in [7] that there exists a tag system for every partial recursive function h(z) which
calculates the value of h(z) in the following sense:

The alphabet of the tag system consists of A,a, B,b. If the input string is Aa?", the tag
system will generate B2 and no other string starting with B. If B is identified with
the halting symbol, the calculation will stop and h(x) can be encoded from the result.
If there is a Turing machine which can simulate an arbitrary tag system, then this TM
could effectively calculate every partial recursive function h(x) and therefore, do every
calculation another Turing machine could do, given a tag system and an input string. So
this machine would be universal, as it can simulate every Turing machine by the function
it calculates. So the universal Turing machine only needs to be able to simulate the
operations of any given tag system.

5.2.3 The (6,6)-UTM

The 6-symbol 6-state universal Turing machine Minsky developed is able to emulate any
given tag system. So the machine reads the first symbol of the input on the tape, appends
the correct string for this symbol based on a transition of the tag system and erases the
first P symbols of the input string. To do this, he also uses a tape with a left end and
divides it into different regions as seen previously with Watanabe’s UTM. The regions

) Termination region

) Erasure region

) Production region
V) Spacing region

) Erased region

) Working region
(VII) Empty space
The regions are arranged on the tape from left to right, the Termination region being the
leftmost region at the left end of the tape.
The UTM uses the alphabet {A, B, X,Y,I,O} and encodes the different regions using it.
All regions serve a different purpose:
The Termination region is used to halt if the representation of the halting symbol is en-
countered and to detect the end of an operation cycle and restore all conditons before
beginning the next. The encoding of this region is always the same.
The Erasure region is made up of a large number of I’s; I9 and is used when erasing the
first P symbols of the input string. The size of Q) will be discussed later.
The Production region contains an encoding of all transitions of the tag system that is
to be simulated, written down from right to left, as it will be read in this direction. For
every a; of the tag systems alphabet, there is a transition a; = a;q...a;. A production
is encoded from right to left such that it starts with one O followed by a number of O’s
corresponding to a; . followed by an I. This process is repeated for all symbols in the
right side of the production. The production is ended with another I, such that there are
two I’s at the end of every production. Note that only the right side of the production is
encoded. This will be called the production string.
The Spacing region again contains a large number of I’s; I®. The size of R will also be

18

5.2 Minsky’s contribution

discussed later, as it is an imported part of working method of the UTM.

The FErased region is the part of the tape, that formerly held parts of the input string that
have been erased now. It is entirely made up of O’s.

Working region: This region contains a representation of the input string that is worked
on. Every symbol a; has a corresponding number N; and is encoded by Y™i. An A is
used to distinguish between the symbols in the string and marks the end of the current
and the beginning of the next symbol.

Furthest right is the Empty space, the infinite remainder of the tape, completely covered
in O’s, as O is also acting as the blank symbol. It partly becomes part of the Working
region during the appending of symbols to the working string.

After encoding of all regions, the tape will generally look like depicted in Table 5.1.

Table 5.1: Outline of the tape of the (6,6)-UTM

| OXTAAO | 19 | (Py)-.(Py) [I" [000..000 | YN A AYN | 000...

Operation cycle

The procedure for an operation cycle of the tag system can be divided into 4 phases:
Phase 1: Read the first symbol of the working string and find the corresponding production
(P;) in the Production region.

Phase 2: Copy the production to the end of the working string, which is the left end of
the Empty space.

Phase 3: Erase the first P symbol representations of the working string.

Phase 4: Restore all conditions for the next operation cycle.

This basic pattern is repeated until the machine halts. In combination with the encoding
described before, the implementations of the different phases can be explained in greater
detail.

Phase 1

In the first phase, the N; Y’s representing the first symbol of the working string, need to
be read and the corresponding production (P;) needs to be found. We mark the location
of (P;) by changing the intermediate symbols read such that the original symbols can still
be restored. Phase 1 will end as soon as the first A in the working string is encountered.

To ensure that the changing of symbols by the location marker can be reversed, it has
to be unambigious. Up to this point, the encoding only used the symbols I,0, A and Y.
The remaining symbols of the alphabet, B and X, are used to mark the symbols already
visited. Beginning from the left end of the Working region, the location marker will mark
one cell further to the left for every Y read in the working string until an A is encountered.
While doing so, every Y and O read on the way left are changed into an X and every B is
changed to an I. Back on the way to the right every X is changed back to an Y and every
I is changed to a B. The location marker goes left until it reaches the first I that has not
already been changed to a B and is therefore unmarked. It then marks it and starts it
journey out to the right until it reaches the first unmarked symbol of the working string,
marks it with an X and turns again to the left. This is all put into practice through state

19

5 A competition arises

q1, as the smart changing of the symbols spares using more than one state. The particular
transitions are denoted in Table 5.2.
The process of moving the location marker ends exactly at the beginning of the correct
production (F;) through the encoding of the symbols and productions and the smart choice
of R. The Spacing region consists of R I’s. Remember that for every symbol a; there exists
a corresponding number NN; already used in the encoding of the productions and symbols.
Let n; be the nmuber of symbols in the production string (P;). Every production (F;)
contains n; + 1 I’s; one between every symbol representation and two at the end of a
production. Then N; is defined as

i—1

Ni=) (nj+1)+R

j=1
and R will be defined below. If one now moves N; I’s to the left beginning from the right
end of the Spacing region, one reaches exactly the beginning of production (F;) in the
Production region. Note that the beginning of a production is the right end of it, as it is
encoded from right to left. Corresponding to this, every symbol a; is encoded as YVi as
stated before, such that moving one I to the left for every Y in the encoding of the first
symbol of the working string leads to the location marker marking every production until
the one corresponding to this symbol.

Phase 2

In the second phase, the (P;) zone located in phase 1 is read and the production string is
copied to the end of the working string.

As explained before, the productions in the Production region are encoded using O’s and
I’s, where we have N; + 1 O’s for every symbol a; of the right side of the production and
I’s as separation symbols. For every first O in (P;), an A is written down at the left end
of Empty space. For every other O until an [is read, a Y is written down. If an [is read,
the next O will belong to a new symbol and thus be copied again as an A. If 2 I's are
read directly after each other, the end of (P;) is reached and phase 2 is brought to an end.
In detail, this is done by using states qq2, g3, g4 and g5, where g2 decides, whether the end
of a production is reached and the other three states do the copying. If phase 1 ends
because an A was read in state ¢;, the machine moves to g2 and goes back left changing
the symbols on the way in the same manner as ¢; did. Note that go should never encounter
an X in this phase, as all X’s were changed back to O’s in the last iteration of ¢;. The
machine stops going left as soon as it reads the first O and transitions into state g3, which
leads the machine to go right and write an A in the beginning of the Empty space, which
is at the end of the working string. The machine then transitions into a loop of ¢4 and gs,
where g4 means going back left until the next O in (F;) and marking it with an X and g5
means going right again until reaching the Empty space and writing down a Y. The loop
ends as soon as an [is encountered in g4. Then the machine transitions into state ga and
looks at the next symbol to the left. If it is an O, the process can begin again with going
into g3. If it is an I, two consecutive I’s are read, which marks the end of the production
and phase 2 ends.

This process leads to an A for every first O of the encoding of one symbol in the production
string and N; Y’s if the encoded symbol is a; because every symbol in a production
string is encoded using one more O than the corresponding number N; of the symbol
a;.

20

5.2 Minsky’s contribution

Phase 3

The third phase works exactly like the first using the same state. The first symbol of the
working string was already erased in phase 1 through changing the Y’s into X’s as well
as the O’s, so they are non-distinguishable. Therefore, only P — 1 symbols have to be
erased in this phase. Using the same state to erase as in phase 1 is not going to lead to
any copying after this phase because the location marker is not going to be placed in the
Production region. The length of the Erasure region ensures that exactly P symbols are
erased in total for every production cycle. This is controlled by the choice of R and Q. Let
S be the total number of I’s in the Production region, defined by

m

S:Z(ni—i—l)

i=1
where m is the size of the alphabet. Then let R be defined as
R=PS

with P being the deletion number of the tag system and R < N; < R+ S. Lastly @ is
defined as
Q=(P—-1)R-S5

such that the total number of I’s in regions II, IIT and IV is S+ R+ Q = PR. Note that
this number is strictly greater than the number of I’s encountered by the location marker
in phase 1, 2 and 3 for every combination of P —1 symbols at the beginning of the working
string. This means that the Termination region will never be reached in the process of
erasing the first P — 1 symbols. On the other hand, the number of I’s encountered during
the erasure of P symbols would be strictly smaller than PR. So Termination region will
always be reached if P symbols are erased.

This ensures that the two A’s in the Termination region will always be read by the machine
which leads to a transition from ¢; to ¢o and from there to ¢g. So no copying of symbols
will occur and with the transition into gg, phase 4 begins.

Phase 4

In the fourth phase, the location marker has reached the Termination region after erasing
P symbols. This leads the machine to restore the conditions for the next operation cycle
by reversing the marks of the location marker and erasing possible residue of the last
symbol to be erased on the tape including the next A. The machine is then able to start
the next operation cycle with phase 1.

In detail, state gg leads the machine to go right from Termination region until the first
A in the working string. On its way it changes all B’s back to A’s and all X’s and Y’s
to O’s. This restores the tape back into its standard encoding described before including
possible remaining unread Y’s at the beginning of the working string that have not been
processed in the erasure process because the Termination region was reached before all
Y’s of the Pth symbol have been encountered. The next separating A of the working
string is also erased by changing it to an O, as an operation cycle begins with the head of
the machine on the first Y of the working string in Working region. The machine is now
ready to transition back into ¢; and begin the next operation cycle.

21

5 A competition arises

If the machine should halt in this operation cycle instead of beginning a new one, then this
phase will be encountered with the location marker marking exactly all @ I’s in region II.
This is then going to lead to halting of the machine because in all other cases the next
symbol to the left is not going to be an O, which is the rightmost symbol in region I,
but the erasure process of phase 3 is going to be stopped by encountering the two A’s
of region I. The machine only moves the location marker to exactly the leftmost I of the
Production region, if a sequence of Y’s was read in the working string that corresponds
to a special halting symbol ay. This number of Y’s has to be exactly PR as this is the
total number of I’s inbetween the working string and the Termination region. So there
exists a production (Pg) that is encoded as (Py) = ITOPROIOTRO that leads to the
appendance of the string AYPRAY PR to the working string. It is necessary that Y ig
repeated because otherwise this symbol representation may be encountered in an erasure
phase. Then the total number of I’s read would not be PR. But it would lead the machine
to start the next operation cycle with the second Y as a symbol, which then would lead
to marking exactly PR I's and therefore reaching the rightmost O in the Termination
region in state go. This can only occur by reading Ypg in phase 1 and will then lead to
halting because gg will read an O. So the UTM will halt, if and only if a halting symbol
is encountered.

Table 5.2: Transition table of the (6,6)-UTM

[T a] &] 6] o« | & | a6 |
XL | XRqs | ALqs | XRqs | YLqs | HALT
BR | BRq, | BR | ILg; | BR | IR

XL | BR | AR | AL | AR | ORq
L | IL _ 1L _ AR
YR | BLgs | XR | XL | XR | OR
XL XL YR YL YR OR

=< S|~ O

5.2.4 The (4,7)-UTM

Minsky furthermore constructed an universal Turing machine with only four symbols, but
seven states which is also based on simulating tag systems. This UTM can only simulate
tag systems with deletion number P = 2 which is sufficient to construct an universal TM,
as Minsky and Cocke prooved those to be universal in [2]. Fixing this parameter enables
him to cut out the regions I, IT and IV because after erasing the first symbol in phase 1,
the erasure of the second symbol in phase 3 can be hard coded. Furthermore, the alphabet
symbols X and B are not needed anymore. The machine does need one more state for
phase 1 and phase 3 respectively because of this symbol loss.

Otherwise, the encoding is generally the same, as well as the method. This tiny bit of
more information about the tag system that is to be simulated made it possible to decrease
the symbol-state product from 36 to 28, which made the (4,7)-UTM the smallest known
universal Turing machine for several years.

22

6 How small is possible?

After Minsky’s (4,7)-UTM there were some more small UTMs found, improving only
slightly on his results, as denoted in Table 7.1. In more recent times, Stephen Wolfram
found two interesting and very small universal Turing machines, yet again with another
method, improving massively on the previous results. He examined Turing machines by vi-
sualizing them and found one by using the Rule 110 cellular automaton.

6.1 The Rule 110 cellular automaton

A cellular automaton is given an infinitely long row of cells, similar to the tape of a Turing
machine. Each cell bears a symbol. For every time step, a so called new generation is
created, which is a new row of cells mostly displayed to the bottom of the current row.
Cellular automata define the symbol of a cell of the next generation based on the symbol
of the current cell and its neighbors by some transition function.

Rule 110 is one of the so called elementary rules [19] that consist only of two different
symbols, or colours, and decide the symbol of a cell in the next generations based on the
cell itself and its direct neighbours. The transition function of Rule 110 is given in Table
6.1.

Mostly, colours are used rather than symbols. A black cell corresponds to a 1, a white
or blank cell corresponds to a 0. That is why Wolfram uses colours rather than symbols
in his UTMs. The first ten generations are displayed in Figure 6.1 starting with one
black cell. This particular Rule is called Rule 110 because it can be summarized with the
sequence 01101110 for the transition function. If this sequence is interpreted as a binary
number, its decimal value is 110. This numbering system was introduced by Wolfram in
[18].

Table 6.1: Rule 110 transitions

111 | 110 | 101 | 100 | 011 | 010 | 001 | 00O
0 1 1 0 1 1 1 0

6.2 Universality of Rule 110

The universality of the Rule 110 cellular automaton was proven separatly by Wolfram [19]
and Cook [3]. Both use the fact that cyclic tag systems are already proven to be universal
(by simulating tag systems [3]) and show that the rule 110 cellular automaton is capable
of emulating an arbitrary cyclic tag system.

A cyclic tag system is similar to a tag system which was explained before in Chapter 5.2.1.
The differences between those two are mainly that cyclic tag systems have an alphabet

23

6 How small is possible?

Figure 6.1: First 10 generations of Rule 110

that consists of 0 and 1 and only ever erase the first symbol of a string, corresponding to
P =1 in a tag system. Furthermore, the string appended does not depend on the symbol
read. The transition function only consists of strings to be appended, which are appended
in a cyclic manner; starting with the first, then the second until the last and then cycling
back to the first again. But this appendance happens only if the symbol read was a 1, not
if it was a 0.

While both Cook and Wolfram use structures generated by Rule 110 to prove its uni-
versality, the methods of proof differ between them. The details of these proofs are not
discussed, as the rather important information is that Rule 110 is indeed universal. The
(5,2)-UTM of Wolfram emulates Rule 110. Because Rule 110 is universal, any Turing
machine that emulates it is universal, too. Note that none of these machines halt be-
cause cellular automata do not halt and differ in this way from the other universal Turing
machines discussed.

6.3 The (5,2)-UTM

The (5,2)-UTM given by Wolfram in [19] are displayed by the transition table in Table
6.2.

Table 6.2: Transition Table of the (5,2)-UTM

L e | e |
0 AL | BLq
1 || BLg, | CL
Al OR | ORq
B | 1Rg | 1R
C OR qul

The symbols 0 and 1 correspond directly to the symbols 0 and 1 or the color white and
black of the Rule 110 cellular automaton. The symbols A, B and C are used to emulate
the actions of Rule 110. Since a Turing machine cannot look at more than one cell at
the same time, it is necessary to include more symbols and also more than one state to

24

6.4 The (3,2)-UTM

memorize the important colours of the neighbours of a cell. Wolfram initially depicted
the universal Turing machine as a picture, similar to a cellular automaton. So A, B and
C could also be displayed as colors in between 0 and 1 or white and black. This depiction
is used to examine how this UTM works. A is a light grey tone, B a dark grey tone and
C a grey tone in between A and B.

The same kind of Figure as Figure 6.1 is constructed, starting with a slightly altered input,
featuring only one black cell but light grey cells from the left of the rightmost white cell
that is still left of the black cell until the left end, as in Figure 6.2. The way of depiction
will be the same as for a cellular automaton but a new generation, i.e. a new row of cells,
will be added for every step of the universal Turing machine where nothing has changed
besides the one cell that was examined by the machine. If this picture is compressed in its
length, it is identical to the one created by Rule 110. If this is achieved for an arbitrary
input, it does indeed show that the Turing machine simulates Rule 110 and is therefore to
be considered universal.

T M [[T]a

Figure 6.2: Initial complete configuration of the (5,2)-UTM

The picture 6.3 shows the first generations of the UTM as explained before. Note that
the little black drop marks the cell currently looked at and at the same time a downward
drop means the machine is in state ¢; and correspondingly an upward drop denotes that
the machine is in state ¢o.

This makes up to the first 5 generations of the Rule 110 cellular automaton if compressed
such that every uninterrupted line of black or white cells makes up to one generation.
After each interruption by grey cells, the next generation is formed. The result after
compression is depicted in Figure 6.4.

This shows how the universal Turing machine emulates Rule 110. Wolfram does nei-
ther give a thorough proof nor a detailed explanation of how this machine works in
[19].

6.4 The (3,2)-UTM

The (3,2)-UTM was probably an educated guess by Wolfram, as he seemed to have looked
at the visualized behaviour of possible (3,2)-UTMs in his book [19] and found this one to
behave rather complex, i.e. it creates complex structures that do not resolve into simple
forms.

Wolfram himself did not prove this machine to be universal but set up a competition to
prove whether the machine is universal or not. Smith won the prize with his proof of
universality [13], as Wolfram announced on his blog [20]. Table 6.3 shows the transitions
of this very small universal Turing machine.

The proof of universality is very complex; Smith had to construct multiple intermediate
steps to be able to set up every program to be executed by the UTM. The tape of the
machine needs to be prepared with an infinite pattern of bits, taking a whole kind of
compiler to be generated, which is very inefficient. But the computation done to generate
this infinite sequence is not universal; the universal computation is solely done by the
Turing machine, proving its universality. Smith again used cyclic tag systems to encode

25

6 How small is possible?

—_— [}
[
4
— [
[}
[}
?
é
_ [
é
[}
[}
?
é
[
—_— [}
[
[
é
[
[}
— [}
[)
[
s

26
Figure 6.3: Detailed actions of the (5,2)-UTM, Wolfram [19], p.707

6.4 The (3,2)-UTM

Figure 6.4: First 5 ”generations” of the (5,2)-UTM

as the input rather than Turing machines themselves. The (3,2)-UTM also does not halt,
which is a difference to other previously discussed Turing machines and a deviation from
some definitions of universal Turing machines.

Besides the difficulties to encode the input for the (3,2)-UTM, Wolfram claims it is the
smallest possible universal Turing machine [20]. As already discussed in Chapter 4.2, it
is not possible to construct an universal Turing machine with only one state. Therefore,
at least two states are needed. Furthermore, Margenstern published a paper stating that
there is no universal Turing machine with 2 states and 2 symbols because all Turing
machines with these properties have a decidable halting problem [5]. Because the halting
problem is undecidable for Turing machines in general, these machines cannot be universal.

Table 6.3: Transition Table of the (3,2)-UTM

L Lo [& |
A BL | CRq
B AL AR
C BRQQ Aqu

This leads to the understanding that there exists no smaller universal Turing machine than
an UTM with a symbol-state product of 6. The (3,2)-UTM of Wolfram satisfies this con-
dition and is therefore the smallest universal Turing machine that has been found. There
might be more universal Turing machines with this symbol-state product, but definitely
no smaller UTMs.

6.4.1 Concluding words

In conclusion, starting from the first inconceivably big universal Turing machine by Turing
himself (see Chapter 3), to the idea of size of UTMs by Shannon (see Chapter 4) and the
early race of finding the smallest UTM, mainly impelled by Watanabe and Minsky (see
Chapter 5) to the new ideas of Wolfram, the smallest universal Turing machine eventually
was found.

Of course there were some other entries to this competition along the way that were not
discussed in this work. Some of them are mentioned in Chapter 7. But there are still
more universal Turing machines that have been published and are not mentioned in this
work; with more subcategories such as weakly universal Turing machines [21]. These do
not follow the definition of a classical universal Turing machine, e.g. they have more than
one tape. Some simply did not use a breakthrough idea that led to a significant reduction

27

6 How small is possible?

in size. Please note that this work is not comprehensive regarding the progression of small
universal Turing machines.

28

7 Overview

Table 7.1: Overview over published small UTMs

Symbol State Product Reference
2 M 2M Shannon [12], see Chapter 3
N 2 2N Shannon [12], see Chapter 3
6 12 72 Takahashi [14]
6 10 60 Tkeno [4]
3 17 51 Watanabe [16]
2 25 50 Minsky [9]
6 7 42 Minsky [6]
5 8 40 Watanabe [17], see Chapter 4.1
6 6 36 Minsky [8], see Chapter 4.2
5 6 30 Watanabe [17], see Chapter 4.1
4 7 28 Minsky [8], see Chapter 4.2
4 7 28 Baiocchi [1]
6 4 24 Rogozhin [11]
5 2 10 Wolfram [19], see Chapter 5
3 2 6 Wolfram [19], see Chapter 5

Table 7.1 presents a brief overview over small universal Turing machines and their size.
In addition to the previously discussed UTMs, a few mentionable results are named. This
overview is not complete; many more universal Turing machines have been found.

29

List of Figures

5.1

6.1
6.2
6.3
6.4

List

2.1
4.1

5.1
5.2

6.1
6.2
6.3

7.1

Arrangement of Regions on the tape of the (5,8)-UTM 15
First 10 generations of Rule 110 24
Initial complete configuration of the (5,2)-UTM 25
Detailed actions of the (5,2)-UTM, Wolfram [19], p.707 26
First 5 ”generations” of the (5,2)-UTM 27
of Tables

Transition table of My 5
Actions of the two state UTM B 13
Outline of the tape of the (6,6)-UTM 19
Transition table of the (6,6)-UTM 22
Rule 110 transitions oL oL 23
Transition Table of the (5,2)-UTM 24
Transition Table of the (3,2)-UTM 27
Overview over published small UTMs 29

31

Bibliography

1]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

32

C. Baiocchi. Three small universal Turing machines. In International Conference on
Machines, Computations, and Universality, pages 1-10. Springer, 2001.

J. Cocke and M. Minsky. Universality of tag systems with p=2. Journal of the ACM
(JACM), 11(1):15-20, 1964.

M. Cook. Universality in elementary cellular automata. Complex systems, 15(1):1-40,
2004.

N. Ikeno. A 6-symbol 10-state universal Turing machine. In Proceedings, Institute of
Electrical Communications, Tokyo, 1958.

M. Margenstern. Turing machines with two letters and two states. Complex Systems,
19(1):29, 2010.

M. L. Minsky. A 6-symbol 7-state Universal Turing machine. Massachusetts Institute
of Technology, Lincoln Laboratory, 1960.

M. L. Minsky. Recursive unsolvability of Post’s problem of” tag” and other topics in
theory of Turing machines. Annals of Mathematics, pages 437-455, 1961.

M. L. Minsky. Size and structure of universal Turing machines using tag systems.
In Recursive Function Theory. Proceedings of the Symposium in Pure Mathematics,
volume 5, pages 229-238. AMS, 1962.

M. L. Minsky. Universality of (p=2) tag systems and a 4 symbol 7 state universal
Turing machine. 1962.

E. L. Post. Formal reductions of the general combinatorial decision problem. Amer-
ican journal of mathematics, 65(2):197-215, 1943.

Y. Rogozhin. Small universal Turing machines. Theoretical Computer Science,
168(2):215-240, 1996.

C. E. Shannon. A universal Turing machine with two internal states. Automata
studies, 34:157-165, 1956.

A. Smith. Universality of wolfram’s 2, 3 Turing machine. 2007.

H. Takahashi. Keisan kikai ii. Jwanami Gendai Oyo-Sugaku Koza, 14(3):117-128,
1958.

A. M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London mathematical society, 2(1):230-265, 1937.

S. Watanabe. On a minimal universal Turing machine. MCB Report, 1960.

[17]

[18]

[19]
[20]

[21]

Bibliography
S. Watanabe. 5-symbol 8-state and 5-symbol 6-state universal Turing machines.

Journal of the ACM (JACM), 8(4):476-483, 1961.

S. Wolfram. Statistical mechanics of cellular automata. Reviews of modern physics,
55(3):601, 1983.

S. Wolfram. A new kind of science, volume 5. Wolfram media Champaign, IL, 2002.

S. Wolfram. The prize is won; the simplest universal Turing ma-
chine is proved, 2007. https://blog.wolfram.com/2007/10/24/
the-prize-is-won-the-simplest-universal-turing-machine-is-proved/;
accessed on 12.02.2020.

D. Woods and T. Neary. The complexity of small universal Turing machines: A
survey. Theoretical Computer Science, 410(4-5):443-450, 2009.

33

