
Institut für theoretische Informatik

Leibniz Universität Hannover

Bachelorarbeit

Synthesis of Machine Programs
from Execution Traces

von Yannik Mahlau
Matr.Nr. 10013886

Juli 2020

Erstprüfer: Prof. Dr. Heribert Vollmer
Zweitprüfer: Dr. Maurice Chandoo

Selbstständigkeitserklärung
Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und ohne fremde Hilfe
verfasst und keine anderen Hilfsmittel und Quellen als angegeben verwendet habe. Alle
Stellen der Arbeit, die wörtlich oder sinngemäß aus anderen Quellen übernommen wur-
den, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder ähnlicher Form
noch keiner Prüfungsbehörde vorgelegen.

Yannik Mahlau

Contents

1 Introduction . 2

2 Models of Computation . 3
2.1 Counter Machines . 3
2.2 Stack Machines . 4
2.3 Generic Models . 5

3 Trace-based Programming . 7
3.1 Machine Programs . 7
3.2 Traces . 14
3.3 Consistency . 16
3.4 Synthesis of Machine Programs . 16

4 User Manual . 18
4.1 Command Line Interface . 18
4.2 Graphical User Interface . 19
4.3 Example: Multiplication Program . 23

5 Implementation Details . 29
5.1 Command Line Interface . 29

5.1.1 Extend Machine Programs . 31
5.1.2 Extend Traces . 32
5.1.3 Consistency . 33

5.2 Interface between CLI and GUI . 34
5.3 Graphical User Interface . 36

6 Conclusion and Future Work . 39

Lists of Figures, Programs, Traces, and Algorithms i

Bibliography . iii

Appendix A Machine Programs . iv

Appendix B Traces . viii

1

1. Introduction
Novice programmers may have difficulties learning how to program using a specific
programming language. The reason is most programming languages require one to
use complex concepts, even if the programmer only desires to write a simple algorithm.
Examples for such concepts are pointer in C or monads in Haskell. The former is
part of any data structure in C programs; the latter is required for program input and
output in Haskell programs. This overhead in complexity makes learning difficult. At
first glance there are not many alternatives to this learning approach. The learner has
to receive feedback to become aware of possible mistakes. Implementing an algorithm
may be difficult, but it allows for testing and receiving immediate feedback. To solve
this dilemma, Chandoo created a method which supports testing algorithms without
implementing them [Cha20a]. The learner plays the algorithm as a game. They perform
actions on buttons provided by a machine representation. The information required
to decide what action to perform is given by the predicates of the machine. One may
imagine a predicate as an indicator light, which presents partial information about the
current state of the machine. The user generates a trace of the program by taking actions
and checking predicates. This trace is then used to synthesize a program.

As part of this thesis a command line interface (CLI) and graphical user interface
(GUI) was developed. They provide a programming environment to use the described
method. The CLI presents functionality for extending traces and programs as well as
checking consistency between them. The GUI is built on top of the CLI and presents
an additional function for creating traces by playing the game described above.

In the second chapter, I present different machine models used in the framework.
The concept of these models is the basis for machine programs and traces, which are
explained in the third chapter. With these three concepts, it is possible to generate
traces by playing the game mentioned above to synthesize a machine program from
traces. This process is described in Section 3.4. The fourth chapter illustrates the use of
the CLI and GUI to automate parts of the process. Additionally, the complete process
of developing a machine program for multiplication using the GUI is demonstrated in
Section 4.3. Lastly, the details of the CLI and GUI implementation are presented in
order to facilitate further development.

2

2. Models of Computation
Models of Computation (MoC) are a special kind of notional machine. Notional ma-
chines are general abstractions of a machine with the purpose of explaining its behaviour
[Sor13]. An MoC consists of machine states, operations, and predicates. One may think
of a machine state as numbers in registers, bits in memory, or items on a stack. Oper-
ations are actions that alter the machine state. Therefore, an operation is a transition
from one valid machine state into another. Predicates are binary indicators, which
display partial or full information about the machine state to the user.

Definitions 2.1, 2.2, and 2.3 originate in the work of Chandoo [Cha20b]. Definition
2.4 is a formalization of the Turing Machine used in the framework [Cha20a].

Mathematically, an MoC has the following attributes. The term {X → Y } denotes
the set of all functions from X to Y .

Definition 2.1 A Model of Computation (MoC) is a triple (S,O, P), where

S is a countable set
O =

{
S → S

}
is finite

P =
{
S → {0, 1}

}
is finite

S has to be countable to ensure that its elements can be represented as a string. Func-
tions o ∈ O and p ∈ P do not need to be computable in the general definition; however,
it only makes sense to use computable operations and predicates in the framework,
because otherwise it would not be possible to create traces.

2.1. Counter Machines
In the MoC of a Counter Machine (CM), the machine state has k ∈ N registers, each
holding one integer value xi ∈ N0 for 1 ≤ i ≤ k. The only possible operations are
incrementing or decrementing a single register by one or doing nothing. A CM has k
predicates, which indicate if the content of a specific register is equal to zero. The concept
of counter machines is based on the work of Minsky [Min67] and Lambek [Lam61].

Definition 2.2 A Counter Machine (CM) with k registers is an MoC (S,O,P) with:

S := Nk
0

O := {‘Ri+1’, ‘Ri-1’ | 1 ≤ i ≤ k} ∪ {‘NOP’}
P := {‘Ri=0’ | 1 ≤ i ≤ k}

3

The operations ‘Ri+1’, ‘Ri-1’ and ‘NOP’ (No Operation) are defined as:

‘Ri+1’ :=
(
x1, . . . , xk

)
7→
(
x1, . . . , xi−1, xi + 1, xi+1, . . . , xk

)
‘Ri-1’ :=

(
x1, . . . , xk

)
7→
(
x1, . . . , xi−1, xi − 1, xi+1, . . . , xk

)
‘NOP’ :=

(
x1, . . . , xk

)
7→
(
x1, . . . , xk

)
The predicates ‘Ri=0’ are defined as:

‘Ri=0’ :=
(
x1, . . . , xk

)
7→ 1⇔ xi = 0

In the Haskell framework, a machine state is represented as a list of integers [Cha20a].

2.2. Stack Machines
In the MoC of a Stack Machine (SM), a machine state has k ∈ N registers, each repre-
senting one stack. Every stack contains several characters from a given input alphabet as
items. Possible operations are pushing a new item on the stack, removing the top item
from the stack, or doing nothing. The predicates indicate either if the stack is empty
or if the top item on the stack is equal to a given character of the input alphabet. The
input alphabet has to be a subset of the legal input alphabet specified in the framework
[Cha20a]. Legal input characters are:

– Upper and lower case letters: a, . . . , z, A, . . . , Z

– Digits: 0, . . . , 9

– Symbols: + - * / = . , # $ % & ’ " () [] { } < >

A stack machine is defined with the following attributes. The term Σ∗ refers to the
set of all finite words over symbols from Σ.

Definition 2.3 A Stack Machine (SM) with k stacks and an input alphabet Σ =
{c1, . . . , cl} is a triple (S,O, P) with:

S :=
(
Σ∗
)k

O := {‘Ri+c’, ‘Ri-’ | 1 ≤ i ≤ k, c ∈ Σ} ∪ {‘NOP’}
P := {‘Ri=c’, ‘Ri=’ | 1 ≤ i ≤ k, c ∈ Σ}

The operations ‘Ri+c’, ‘Ri-’ and ‘NOP’ are defined as:

‘Ri+c’ :=
(
x1, . . . , xk

)
7→
(
x1, . . . , xi−1, xi ⊕ c, xi+1, . . . , xk

)
‘Ri-’ :=

(
x1, . . . , xk

)
7→
(
x1, . . . , xi−1, xi′, xi+1, . . . , xk

)
‘NOP’ :=

(
x1, . . . , xk

)
7→
(
x1, . . . , xk

)

4

where xi ∈ Σ∗ for 1 ≤ i ≤ k and c ∈ Σ. The operator ⊕ refers to the concatenation
of two strings. xi′ is the word xi without its last symbol, or xi, if xi is empty. The
predicates are defined as:

‘Ri=’ :=
(
x1, . . . , xk

)
7→ 1⇔ |xi| = 0

‘Ri+c’ :=
(
x1, . . . , xk

)
7→ 1⇔ Last symbol of xi is c

In the Haskell framework, the machine state of a stack machine is represented as a list
of strings [Cha20a]. Each string represents one stack.

2.3. Generic Models
All models other than counter and stack machines are represented as generic models.
They do not have specific constraints for machine states, operations or predicates. Thus,
generic models allow developers to implement other MoCs. Currently, the only generic
MoC implemented is a Turing Machine (TM).

The machine state of a TM is a tape with cells. It also has an integer representing
the current position on the tape. Each cell contains a character from a specified input
alphabet Σ. The default character in each cell is a designated blank symbol a ∈ Σ
specified by the user. The tape is arbitrarily long in both directions, but the machine
state only represents the visited cells. All non-visited cells contain the blank symbol and
therefore do not need to be represented. The representation of a machine state is:(

(c0, . . . , ck), i
)

with c0, . . . , ck ∈ Σ, 0 ≤ i ≤ k and i, k ∈ N0. The integer i represents the index of the
current cell position. The operations of a Turing machine are moving one cell to the
right, moving one cell to the left, or writing a character c ∈ Σ to the current cell. A new
cell is prepended (appended) to the representation of the machine state if the current
position is the leftmost (rightmost) visited cell and one moves the current position to
the left (right). This new cell always contains the blank character. A Turing machine
has one predicate for every character c ∈ Σ. The predicates indicate if the current cell
contains the given character [Cha20a].

Definition 2.4 A Turing Machine (TM) with an input alphabet Σ and a designated
blank character a ∈ Σ is a triple (S,O, P) with:

S := {(w, i) | w ∈ Σ+, i ∈ N0, 0 ≤ i ≤ |w|}
O := {‘Wx’ | x ∈ Σ} ∪ {‘L’, ‘R’}
P := {‘=x’ | x ∈ Σ}

The term Σ+ refers to the set of all finite, non-empty words of symbols from Σ. The

5

operations ‘Wx’, ‘L’ and ‘R’ are defined as:

‘Wx’ :=
(
(c0, . . . , ck), i

)
7→
(
(c0, . . . , ci−1, x, ci+1, . . . , ck), i

)
‘L’ :=

(
(c0, . . . , ck), i

)
7→


(
(c0, . . . , ck), i− 1

)
i 6= 0(

(a, c0, . . . , ck), 0
)

otherwise

‘R’ :=
(
(c0, . . . , ck), i

)
7→


(
(c0, . . . , ck), i+ 1

)
i 6= k(

(c0, . . . , ck, a), k + 1
)

otherwise

The predicate ‘=x’ is defined as:

‘=x’ :=
(
(c0, . . . , ck), i

)
7→ 1⇔ ci = x

In the Haskell framework, a machine state of a TM is represented as a String which
contains the tape content as an escaped string and the tape position as a decimal value
[Cha20a].

6

3. Trace-based Programming
Trace-based programming is a systematic approach to programming. It consists of sim-
ple and easily executable steps for program development. In contrast to ad-hoc pro-
gramming, it also provides clear guidelines on how to develop a program. The method is
based on the concepts of machine programs and traces. In this chapter these concepts as
well as the syntactical rules for writing one’s machine programs or traces are presented.
Furthermore, the connection between machine programs and traces can be analyzed by
using consistency, which is presented in Section 3.3. Lastly, the steps of generating a
trace and synthesizing a machine program are explained in detail.

Definition 3.1, 3.4, 3.6, and 3.8 were made by Chandoo [Cha20b].

3.1. Machine Programs
Machine programs are always defined with an MoC. One may imagine a machine program
as a finite state machine. Every state of the machine program except for the start state
is associated with an operation of the MoC. The machine program changes its states
based on the information about the machine state given by the predicates.

Definition 3.1 An M-Program Q is a quadruple (G, v0, α, β), where M = (S,O, P) is
an MoC:

G = (V,E) is a directed Graph
v0 ∈ V with in-degree 0
α : V \{v0} → O

β :
(
E ∪ Z

)
→
{
{0, 1}|P | → {0, 1}

}
, Z ⊆

(
V × {End}

)
G is called flow control graph and v0 is the start state of Q. Each vertex of G is a
program state. α defines the operation for each vertex in the control flow graph. β is
the edge predicate of G, which defines the transitions between program states. For all
program states, only one of the edge predicates of their outgoing edges is allowed to be
true for any given machine state. This ensures a deterministic behaviour of the program.

For example, suppose one has two bags of coins. The first bag contains coins with a
value of one; the second contains coins with a value of two. The task is to compute the
total value of coins in both bags. The problem can be modelled as a counter machine
with two registers. The first register contains the number of coins in the first bag, the
second the number of coins in the second bag. At the end of the computation, the total

7

Figure 3.1.: Control Flow Graph for Coin Bag Example

coin value is supposed to be in the first register. Formally, we want to compute the
function:

(x, y) 7→ (x+ 2y, 0) with x, y ∈ N0

Figure 3.1 shows the control flow graph of a machine program that solves this task.
The vertices ”S1”, ”S2” and ”S3” have an operation associated with them. Additionally,
vertices ”Start” and ”S3” are marked gray as they are terminal states where execution
may stop. The edge predicate α is defined implicitly by binary decision trees (BDT). In
the BDTs, the dotted lines are taken if the predicate is false, the solid lines otherwise.

The control flow graph itself is a redundant display of the program’s functionality.
The binary decision trees alone can display all information in G. This approach is used
in the syntax of a machine program file.

A machine program file contains code that defines the behaviour of a machine program
on a specific MoC. They are text files with the file name extension ”.mp”. The syntax
of a machine program file presented in this section was defined by Chandoo [Cha20a].
A machine program file may contain multiple independent programs, but all programs
have to work with the same MoC. Therefore, the user has to define the MoC in the first
line (only comments and empty lines may precede this definition). The MoC is defined
with the following term, where ID is the identifier of the desired model:

#MOC ID

The MoCs presented in chapter 2 have the identifiers:

Counter Machine: CM N
Stack Machine: SM N C

Turing Machine: TM C

8

where N is the number of registers and C the input alphabet. The first character in the
input alphabet of a Turing Machine is the designated blank symbol. It is recommended
to use the underscore character as a blank symbol, as it is rarely used otherwise and
provides good visibility. As an example, the definition of a Stack Machine with four
registers and binary input alphabet is:

#MOC SM 4 01

Afterwards, the user may start writing a program. A new program starts with the line:

#PROGRAM programName

Programs consist of several program states. Each State consists of a name, an operation,
and a binary decision tree. The state Start is the first state in every program and has
no operation. The name and operation of a state are defined in its first line. The state
Start begins with the line:

Start:

Every other program state begins with the following line:

stateName / operation:

Binary decision trees determine the next state in the program’s execution. Each inner
node of the BDT contains a predicate; the leaf nodes contain either the name of the
next program state or the directive End to terminate the execution. The children of
each node are indented by one tab in a new line, starting at the root node with one tab
indentation.

The first child of a node corresponds to the case that the predicate in this individual
node is false, the second to the case that the predicate is true. This may seem counter-
intuitive for advanced programmers because it is the reverse of the general if-then-else
structure in most programming languages. However, the programming method is pri-
marily intended to be used by novice programmers, who do not share this bias yet.
The reason why this concept may be surprising is the the lack of keywords in machine
programs, which mark the order of cases. This indicates that novice programmers will
not have issues in advancing from programming with machine programs to other pro-
gramming languages. On the contrary, concepts that are marginally different from the
status quo can even be easier to remember due to the minimal counterintuitiveness effect
[Upa10].

It is also possible to add single line comments to machine program code. A comment
starts with two forward slashes (’//’).

Machine Program 3.1 is an example program, which solves the coin bag task mentioned
above. It shows the structural similarities between a machine program and the control
flow graph, i.e. Figure 3.1.

Two more advanced syntactical constructs are subprogram and function calls. They
allow the user to write modularized code. However, the framework currently does not
support import statements. Therefore, machine program code can be modularized, but

9

1 #MOC CM 2
2 # PROGRAM coins
3 Start:
4 R2=0
5 S1
6 End
7
8 S1 / R1 +1:
9 S2

10
11 S2 / R1 +1:
12 S3
13
14 S3 / R2 -1:
15 R2=0
16 S1
17 End

Machine Program 3.1: Coin Bag Example

has to reside in a single machine program file. Both subprogram and function calls can
be used as special, user defined operations.

Subprogram calls execute the specified program on the current machine state. After
termination of the subprogram, the execution of the super-program is resumed. They
can be executed by using the operation $ followed by the name of the subprogram. E.g.
suppose the subprogram coins is to be executed in a program state called S4 of the
super-program. The user can achieve this behaviour by adding the line:

S4 / $coins:

The user may also specify a permutation π ∈ Sn where n is the number of registers. It
permutes the registers for the duration of the subprogram execution. One may imagine
that the registers are simply renamed. Let x be the first argument of the permutation.
Then, the register x is renamed as register one. If y is the second argument of the
permutation then register y is renamed as register two. All registers are relabelled
accordingly.

For example, suppose one uses an MoC with four registers and wants to call a sub-
routine named subprogram. The program state S4 using this call as an operation could
look like this:

S4 / $subprogram 2 3 1 4:

10

The line above describes the mapping:

Reg. 2 7→ Reg. 1
Reg. 3 7→ Reg. 2
Reg. 1 7→ Reg. 3
Reg. 4 7→ Reg. 4

It is important to remember the direction of the mapping because the inverse mapping
would produce a different result. The permutation may also be abbreviated if the last
elements are either mapped to themselves or their mapping is not important for the
computation of the subroutine. I.e. the mapping of register four in the line above could
be omitted. The abbreviation only works for the last elements, because otherwise the
mapping would be ambiguous. The framework completes abbreviated permutations by
mapping the missing elements of the domain to the respectively missing elements of the
codomain in order from lowest to highest register.

Function calls can be used similarly to subprogram calls. They are specified as an
operation by using two dollar signs ($$) as well as the program name. However, the con-
cept of function calls is different from subprogram calls. The difference is that function
calls are executed on a separate machine. The user may specify multiple input registers
and a single output register to control the input and output of the other machine. The
other machine has to use the same MoC as the calling machine, but this is already
enforced as both programs have to reside in the same machine program file. The user
has to define the number of input registers and the index of the output register in the
header line of a program in order for it to be usable as a function.

#PROGRAM name N O

N is the number of input registers and O is the index of the output register. Input registers
are the registers from index 1 to N. The output register may be an input register.

Similarly, the calling program has to define which of its registers should provide the
input as well as the output register to which the result is written. Syntactically, the
input and output registers of the calling function are defined as an index list of length
N + 1 with the last number being the index of the output register:

State / $$func I1 I2 . . . IN O:

An example of a machine program using function calls is Machine Program 3.2, wherein
the program calling calls the function inc. The operation $$inc 3 2 takes the value
in register three, increments it by one, and writes the result to register two. The content
of register three is not changed by this operation.

Partial machine programs are programs without fully defined behaviour. Section 3.4
presents more details about synthesizing a complete program from a partial program and
traces. The user has to specify an undefined state to separate defined and undefined
behaviour. The undefined state needs to be named Undef and its binary decision tree
may only consist of the directive End to terminate execution. It is recommended to

11

1 #MOC CM 4
2
3 // increments register one
4 # PROGRAM inc 1 1
5 Start:
6 S1
7
8 S1 / R1 +1:
9 End

10
11 # PROGRAM calling
12 Start:
13 S1
14
15 S1 / $$inc 3 2:
16 End

Machine Program 3.2: Function Call

assign the operation NOP to the undefined state when using the MoC SM or CM to
ensure clear separation to other program behaviour. However, the user may also use any
other operation. The initial machine state of a program is the machine state s0 ∈ S of
its MoC at the beginning of execution.

Definition 3.2 A machine program Q using an MoC M = (S,O, P) is complete, if for
all initial machine states s ∈ S the execution of Q does not enter an undefined program
state. On the contrary, a machine program is called partial if there exists an initial
machine state s ∈ S such that the execution of Q enters an undefined program state.

Definition 3.3 The binary decision tree (BDT) of a program state is called partial if
at least one of its leaf nodes contains the directive to enter the undefined program state.
A BDT is called complete if it is not partial.

Complete programs may have partial BDTs if the predicates leading to the leaf nodes,
which contain the directive to enter the undefined state, are never true. These programs
are by definition complete, because they never enter the undefined state.

Machine Program 3.3 is an example of a partial program. It has fully undefined
behaviour, which is a useful starting point to develop any program.

Partial BDTs usually occur in complete programs, if the programmer thinks more
predicates have to be checked than necessary. But, there is a procedure to eliminate
partial BDTs from complete programs.

Definition 3.4 Let Q,Q′ be M-Programs for an MoC M = (S,O, P). Q and Q′ are
called equivalent if their machine states are equal for all steps of the execution on initial
machine state s. This has to hold for all initial machine states s ∈ S.

12

1 # PROGRAM undef
2 Start:
3 Undef
4
5 Undef / NOP:
6 End

Machine Program 3.3: Fully Undefined Program

Theorem 3.5 For every complete program with partial BDTs exists an equivalent com-
plete program with only complete BDTs.

Proof. Let Q be a complete program with partial BDTs. One can use the following
procedure to eliminate an undefined node from a partial BDT.

First delete the undefined node. This does not change the program’s behaviour be-
cause the undefined node is unreachable due to the program’s completeness. However,
a syntactically correct BDT must only have inner nodes with exactly two children. The
former parent of the undefined node has only one child at this point. Therefore, re-
place the former parent with its only child node. This does not change the program’s
behaviour, because a path in the BDT from the root to the parent node would always
continue with the sibling node.

The resulting BDT yields the same behaviour and does not include the undefined
node. The process can be repeated for every undefined node in every partial BDT. The
resulting program Q′ is equivalent to Q, because Q is complete and therefore the deleted
undefined nodes unreachable. Naturally, the resulting program Q′ is also complete.

Figure 3.2.: Elimination of Partial BDT in Complete Programs

13

For example, suppose the program containing the BDT in Figure 3.2 is complete. Again,
the dotted lines refer to the case where the predicate is false. First the predicate R1=0 is
checked and then R2=0. Because the program is complete, the predicate R2=0 is always
true. Thus, we can replace the subtree beginning at R2=0 with the node S1, which is
the sibling of the undefined node.

3.2. Traces
Traces are a documentation of the behaviour of a machine program on a given input.
A trace can be represented as a table, wherein every row is one step in the program’s
execution. The mathematical definition of a trace is based on the state space graph G
of the MoC used by the corresponding machine program.

Definition 3.6 The state space graph G = (V,E) of an MoC (S,O, P) is a directed
Graph with:

V := S

E := {(s, s′) | o(s) = s′, o ∈ O, s, s′ ∈ S}

G represents all possible machine states and the operations changing one machine state
to another.

A trace is a path through G, containing the names n and operations o of all vertices
along the path. Additionally, the trace stores the machine states s after every operation
as well as the sequences of predicates f checked at the corresponding program state.
Definition 3.7 is an extension of the definition of traces made by Chandoo [Cha20b].

Definition 3.7 A trace t through a state space graph G = (V,E) of an MoC M =
(S,O, P) used by the M-Program Q is a tuple (n, o, s, f):

n := (‘Start’, n1, . . . , nk) where n1, . . . , nk are any program state names of Q
o := (o1, . . . , ok), with o1, . . . , ok ∈ O and oi(si−1) = si ∀ 1 ≤ i ≤ k

s := (s0, . . . , sk), with s0, . . . , sk ∈ S
f := (f0, . . . , fk) where fi = (p1, . . . , pli), p1, . . . , pli ∈ P, 0 ≤ li ≤ |P |

Definition 3.8 The length |t| of a trace t = (n, o, s, f) is defined as:

|t| = |o|

Trace 3.1 is an example of a trace for Program 3.1 of the coin task. The initial machine
state is (3, 2), which yields a machine state of (3 + 2 ∗ 2, 0) = (7, 0) at the end of the
computation.

Trace files are text files formatted as comma-separated values (CSV). They have the
file extension ”.tr”. Entries of a trace are formatted in a table, in which every line in the
file is one row of the trace. The delimiter between entries is a semicolon. A trace file
starts with a header line, which has to be

14

State Operation R1 R2 Predicate Sequence
Start 3 2 (R2=0, False)
S1 R1+1 4 2
S2 R1+1 5 2
S3 R2-1 5 1 (R2=0, False)
S1 R1+1 6 1
S2 R1+1 7 1
S3 R2-1 7 0 (R2=0, True)

Trace 3.1.: Coin Program

State;Op.;R1;...;Rn;P.s.

for a counter or stack machine. The first column State defines the name of the program
state in every row. Its first entry has to be the state Start.
The second column defines the operation executed in each row. Its first entry is empty,
because the program state Start does not execute an operation.

The columns R1 to Rn represent the machine states of registers one to n in every row.
If a machine state is equal to the state in the previous row then its entry may be omitted,
which is called sparse representation. Naturally, the user is not allowed to use a sparse
machine state representation in the first row of a trace.

The last column defines the predicate sequence checked in every step. Multiple options
for formatting predicate sequences are possible. In general, it has to be a string consisting
of a predicate, followed by an optional boolean, followed by a predicate, and so on.
The first letter of boolean values has to be upper case. A user may add any kind of
parentheses for better readability. However, the parentheses have no semantic meaning.
The optional boolean values may be omitted because the machine state already contains
this information. Notwithstanding, it is recommended to provide all optional boolean
values and use normal parentheses for best readability. This is also the output format of
the CLI for automatically generated traces. The order of the predicates represents the
order of predicates checked in the binary decision tree of a program state. A predicate
sequence may also be empty if no predicates are checked. An example of a predicate
sequence for a counter machine is:

(R1=0, False),(R2=0, True)

Generic models have a marginally different trace format. Their header line is defined as:

State;Op.;MachineState;P.s.

A machine state of a generic model has to be encoded in a single column. This is because
generic models may have varying rules for the amount of registers used or they may not
use registers at all. All other columns have the function and syntax as described above.

Furthermore, one can use sparse representations for generic machine states or predicate
sequences in the same way as described above.

15

3.3. Consistency
The concept of consistency determines if one or more traces fit to a complete or partial
program. This allows a user to check if their traces have the same behaviour as the
machine program. The definition of consistency discussed in this section is an extension
of the concept of consistency introduced by Chandoo [Cha20b].

Definition 3.9 Let Q be a machine program and T a set of traces. All t ∈ T with
t = (n, o, s, f) have to fulfil the following conditions in order for T and Q to be consistent.
s0 is the first machine state in s. t′ = (n′, o′, s′, f ′) is the trace generated by the execution
of Q with initial machine state s0. If the last program state n′l in n′ with l = |t′| is not
the undefined state, then the required condition is:

t = t′

Otherwise, the required conditions are:

ni = n′i ∀ 0 ≤ i ≤ |n′| − 1
oi = o′i ∀ 1 ≤ i ≤ |o′| − 1
si = s′i ∀ 0 ≤ i ≤ |s′| − 1
fi = f ′i ∀ 0 ≤ i ≤ |f ′| − 2
fk =|f ′

k
| f
′
k k = |f ′| − 1

The operation =l refers to equality up to the length of l. The last predicate sequence fk

with k = |f ′| − 1 only has to be equal up to the length of f ′k.

Intuitively, all traces have to be equal to the computation of the corresponding machine
program up to the point of undefined behaviour. It is only required to check if the last
trace row generated by Q describes undefined behaviour, because execution always ends
instantly after entering the undefined program state.

However, Definition 3.9 does not imply that a machine program exists, which produces
all traces in T . For example, let Q be a partial program consistent and T a set of traces.
Then, multiple traces t ∈ T may describe different behaviour after the point of execution
at which Q enters the undefined state. Because of this, synthesis of a machine program
Q′ from a partial program Q and a set of traces T may fail, even if Q and T are consistent.

3.4. Synthesis of Machine Programs
This section describes the process of developing a complete machine program from a
user’s perspective using only trace-based programming. The described method was
developed by Chandoo [Cha20a]. A precondition for using trace-based programming is
that the user has a mental representation of the algorithm they desire to implement.
Additionally, all subroutines or function calls used in the algorithm should already be
implemented. If they are not already implemented, the user should start by using the
method presented in this section to implement the subroutines before proceeding.

16

The first step is to generate traces of the desired program by playing a machine-
computer game. The game can either be played digitally by using the GUI or in an
analogue manner by using pen and paper. It consists of two players: machine and
computer. The machine simulates a specific MoC with an internal machine state invisible
to the computer. The computer may ask the machine if predicates are true for its current
machine state or change the machine’s internal state with operations. Using these two
actions repeatedly, the computer performs the algorithm. A recording of the game is a
trace containing operations, machine states, and predicate sequences, but not program
states.

Therefore, the second step is the assignment of program states to every row of the
generated trace. Two trace rows with different operations cannot correspond to the
same program state. However, trace rows with the same operation do not have to
correspond to the same program state, because multiple program states may have the
same operation. The first program state has to be Start.

In the third step, the user has to extend a partial program with the enriched trace.
If the user does not have a partial program they should start with a fully undefined
program (Machine Program 3.3). By using the information of the trace, the user can
add new program states and extend undefined nodes in the binary decision trees.

The user may stop if the machine program is complete after step three. Otherwise,
they have to repeat steps one to three with different initial machine states until the
program is complete. Any program requires only a finite amount of traces to be complete
[Cha20b]. Algorithm 3.1 presents the method in an abbreviated format.

Algorithm 3.1 Synthesis of a Machine Program from Traces
1: Q← ‘Fully Undefined Program’
2: while Q is not complete do
3: Choose initial machine state s0

4: Generate trace t from s0

5: Assign program states to every row of t
6: Extend Q using t

17

4. User Manual
Trace-based programming can be tedious if traces have to be written by hand or machine
programs have to be manually extended. Therefore, the CLI and GUI were developed
to automate these two tasks. This reduces the work of the programmer to finding all
critical initial machine states and assigning program states to the rows of every trace
generated. This chapter presents the features of CLI as well as GUI and explains how
to use them.

4.1. Command Line Interface
The main functions of the command line interface are extending machine programs and
traces as well as checking consistency. It uses both machine program and trace files with
the syntax described in chapter 3. The CLI can be accessed via any command line tool.

The process of extending a machine program or trace adds the information given
by the corresponding trace or machine program. The extension may fail if traces and
machine program describe different behaviour. For more information on the algorithms
used see Chapter 5.

Machine program and trace files have to be arranged in a specific hierarchical structure
to provide a clear connection between a machine program and its corresponding traces.
This hierarchical structure requires two layers, because a machine program file may
contain multiple programs with each their traces. The top-level contains the machine
program file and a folder with the same name as the machine program file, except for the
file extension ”.mp”. This folder contains one subfolder for each program in the machine
program file. The subfolders need to have the same name as the program names. Inside
the subfolders reside the trace files of the corresponding programs.

For example, a machine program file could contain two programs named prog1 and
prog2. The machine program file has the name machine.mp. The program prog1 has
two traces, namely trace1.tr and trace2.tr. Program prog2 does not have traces.
Figure 4.1 depicts the file hierarchy of such composition.

The name of the executable CLI file is synth cli.exe. It may be executed with the
command:

synth cli.exe path [-c] [-pname name]

The argument path is the file path to either a machine program or a trace file. If it is a
machine program file, the CLI extends the first program of the file with its corresponding
traces given by the file hierarchy. Otherwise, it extends the trace using the corresponding
machine program file. If the argument -c is provided, the CLI only tests for consistency

18

Figure 4.1.: File Hierarchy of Machine Programs and Traces

between the trace and machine program. The user may check the consistency of a single
trace by using the path to the trace with the option -c. Otherwise, the consistency of
the machine program file given by the path with all its traces is checked. The CLI uses
the first program in the machine program file by default. Alternatively, the user may
specify the option -pname name, where name is the name of a program in the machine
program file. This command instructs the CLI to use the specified program instead of
the first program in the file.

For example, suppose one is using the file hierarchy given by Figure 4.1. The command

synth cli.exe machine.mp -c -pname prog1

instructs the CLI to check the consistency of machine program prog1 with all its cor-
responding traces, namely trace1.tr and trace2.tr. The option -pname prog1 is
redundant if we assume that prog1 is the first program in machine.mp.

All other functions of the CLI are mainly used by the GUI to access the framework
mediated by the CLI. For more information on these other functions see Section 5.2.

4.2. Graphical User Interface
The graphical user interface enhances the functions provided by the CLI with better
visuals and ease of use. Additionally, it adds the function of generating traces by playing
a simulation of the machine-computer game presented in Section 3.4. It also hides the
file hierarchy from the user. The user can only work on a single machine program file
per instance of the GUI. Working with multiple machine program files at the same time
requires multiple GUI-Windows. To use the graphical user interface, the user needs to
have Java version 14.0.1 and OpenJavaFX 14.0.1 or newer installed.

Figure 4.2 displays the main stage of the GUI. It consists of three basic areas. The
top left side contains the content of the machine program file. A user may select one
program in the file in a drop down menu. By default, the first program in the file is
selected. The top right area displays the traces of the selected program in multiple tabs.

19

Figure 4.2.: Main Stage of the GUI

Each Tab corresponds to exactly one trace. Tabs are ordered alphabetically. Traces are
displayed in a table granted they are formatted correctly. The area at the bottom is a
read-only console displaying the output or error messages of the CLI.

The three areas are divided by moveable separators. The user can adjust the width
and height of the areas to fit their need. Additionally, the console is collapsible and
extendible with the minus and respectively plus button at the right side.

Above the area displaying machine programs and traces reside buttons to alter the
respective content. These functions include:

– Extend Machine Program: Takes all traces in the trace area and extends the ma-
chine program with their information.

– Save Machine Program: Saves the text in the program area to the machine program
file. If no machine program file exists yet, the user is presented with a prompt to
specify a file location. An alternative way to access this function is pressing CTRL+S
while editing the machine program.

– Load: Loads a new machine program file with its traces. If there is unsaved content
in the current machine program or traces, the user is asked if they want to save.

– Extend Trace: Executes the machine program with the initial machine state of the
currently selected trace. If this yields new information, new rows are added to the
trace. If the execution of the machine program ended in the undefined state, then
it is reported to the user by a message in the console.

– Extend Manual: Starts a simulation of the machine computer game, beginning at
the last row of the currently selected trace. The trace rows generated by playing

20

the game are added to the end of the trace. More information can be found below.

– Add Trace: Opens a window allowing the user to specify the initial machine state
and the name of a new trace. The name has to be unique for all traces of the
currently selected program (see file hierarchy). Also, the user may choose to use
random values for the initial machine state.

– Delete: Deletes the currently selected trace.

Some additional functions are located in the menu bar at the very top of the window.
These functions include:

– Save Trace / Save all Traces: Saves the content of the currently selected trace or
all traces to their trace files.

– Consistency Current / All Traces: Checks the consistency between the currently
selected trace or all traces with the machine program. The result is displayed in
the console.

The functions for extending the machine program, traces, or checking consistency auto-
matically save the content of the machine program and all traces. Additionally, if there
is unsaved content when closing the window then the user is asked if they want to save.

The GUI does not contain any machine programs, traces or console messages at
startup. The typical workflow either starts with writing a new program, i.e. the fully
undefined machine program, or loading an old program file. As soon as the new file is
saved or the old one is loaded, the user may start adding and editing traces.

The machine-computer game facilitates the process of writing traces. After clicking
the ”Extend-Manual” Button, a simulation of the game begins with the last row of the
currently selected trace. Figure 4.3 shows this window for a counter machine with four
registers. The user is presented with a matrix of buttons on the left side. These buttons
execute operations or predicate checks. On the right side the operations and predicate
sequences of the trace are displayed.

Clicking the right mouse button while editing the machine program or a trace cell
opens a menu with options for text editing, e.g. Copy or Paste. Alternatively, one may
use the following shortcuts:

– CTRL+C Copy the selected text.

– CTRL+V Paste the copied text.

– CTRL+Z Undo the last text edit.

– CTRL+Y Redo the last text edit.

Additionally, it is possible to use the shortcut CTRL+S to save the machine program.
There are also keyboard shortcuts make it more comfortable to navigate the trace

tables. A user may start editing a cell by double-clicking it with the mouse or pressing
the RETURN Key. While editing a cell, the user may press one of the following key
combinations to navigate through the table:

21

Figure 4.3.: Machine-Computer Game

– TAB navigates to the next cell to the right. If the current cell is the last column,
the first cell in the next row is taken.

– SHIFT+TAB navigates to the previous cell to the left. If the current cell is in the
first column, the last cell in the previous row is taken.

– RETURN or DOWN ARROW navigates to the cell below. If the current cell is in the last
row, the first cell in the next column is taken.

– SHIFT+RETURN or UP ARROW navigates to the cell above. If the current cell is the
first row, the last cell in the previous column is taken.

It is only possible to edit one cell at a time. However, it is possible to select multiple
cells for deletion:

– Holding CTRL allows the user to select multiple cells by clicking the left mouse
button on them. The cells do not have to be next to each other.

– To select a block of cells select one cell and then press SHIFT and left mouse click
on another cell. This operation selects all cells in between the two cells.

Pressing the DELETE or BACKSPACE key erases the content of all selected cells. Pressing
the right mouse button opens a menu with the options to insert or delete a row. Empty
rows at the end of a trace are automatically deleted.

22

The user may also adjust session-independent settings. These include the text size of
the machine program, the amount of displayed spaces per tab and if the GUI should
automatically add quotations for SM machine states.

Only correctly formatted traces are displayed in a table. Traces may be malformed
due to user error amidst editing trace files directly. A trace is malformed if it does not
contain the correct number of columns in at least one row. The number of columns
is determined by the MoC of the corresponding machine program file. Such traces are
displayed in plain text to allow for error correction. After saving, the corrected version
is displayed in a table. The GUI enforces the correct amount of columns, which implies
that the described error cannot occur as long as the user only edits traces in the GUI.

4.3. Example: Multiplication Program
This section presents the complete development process of a machine program using
trace-based programming with the GUI. The task is to implement an efficient algorithm
for multiplication in a counter machine. It was first introduced by Chandoo to test
trace-based programming using pen and paper. Algorithm 4.1 was developed in the
process [Cha19]. Naturally, the presented steps are not the only viable solution.

The input of the algorithm is given in the registers one and two. The result of the
multiplication is supposed to be written to register three. The MoC is a counter machine
with four registers. Therefore, the algorithm has to compute the function

(x, y, •, •) 7→ (•, •, x ∗ y, •)

where the dots represent any arbitrary values in N0.

Algorithm 4.1 Efficient Multiplication in the CM
1: R3← 0
2: R4← 0
3: if R1 = 0 or R2 = 0 then End
4: while True do
5: R1← R1− 1
6: if R1 = 0 then
7: R3← R3 +R2; R2← 0
8: End
9: R3← R3 +R2; R4← R2; R2← 0

10: R1← R1− 1
11: if R1 = 0 then
12: R3← R3 +R4; R4← 0
13: End
14: R3← R3 +R4; R2← R4; R2← 0

23

This is a good use case for trace-based programming because its general structure is
simple. But, it is complicated to implement the program as there are numerous program
states and long binary decision trees. That is the reason why trace-based programming is
easier to use than ad-hoc programming in this case, because it provides a clear structure
to the implementation process. Algorithm 4.1 displays the algorithm for multiplication.

The algorithm adds the value of R2 to R3 for every decrement of R1. It performs
multiplication by repeated addition. It is efficient to shift the value of R2 between the
registers two and four, because a machine program cannot store a non-constant amount
of information. Therefore, one has to save the content of R2 in another register. It is in
the nature of the MoC CM that the content of the addends is lost during addition. This is
because the addition of two registers can only be performed by repeatedly incrementing
the summand and decrementing the addend.

Suppose one already formed a mental representation of the algorithm. It is important
to realize that the mental representation does not necessarily look like Algorithm 4.1.
It could be a more abstract, simplified idea of the algorithm:

Firstly, empty register three and four. Secondly, decrement register one and
add the value of register two to register three. Repeat step two of the process
until register one is empty. The initial value of register two alternates between
register two and four.

Also, notice that this mental representation is not complete. It does not include edge
cases like the condition checked in line 3 of Algorithm 4.1. Trace-based programming
does not require the user to have a fully developed algorithm at hand as the edge cases
become apparent during the process.

After opening the GUI, the development process begins with writing a fully undefined
program. The MoC used is a CM with four registers. Machine Program 4.1 displays
this initial program.

1 #MOC CM 4
2 # PROGRAM mult
3 Start:
4 Undef
5
6 Undef / NOP:
7 End

Machine Program 4.1: First Program Structure

The user enables the option to add traces in the GUI by saving the program. As the
first step of the mental representation is the elimination of any values in register three
and four it should also be the first feature to implement. It makes sense to start with
a trace that only describes this behaviour. For example, one could add a trace with an
initial machine state (0, 0, 2, 2). Then, the user has to extend the trace by playing the

24

machine-computer game. Afterwards, one has to name the program states of the trace.
There are two different program states required, one for emptying R3 and one for R4. It
is recommended to use descriptive names, i.e. EmptyR3 and EmptyR4. This yields Trace
4.1.

State Op. R1 R2 R3 R4 Predicate Sequence
Start 0 0 2 2 (R3=0,False)
EmptyR3 R3-1 0 0 1 2 (R3=0,False)
EmptyR3 R3-1 0 0 0 2 (R3=0,True),(R4=0,False)
EmptyR4 R4-1 0 0 0 1 (R4=0,False)
EmptyR4 R4-1 0 0 0 0 (R4=0,True)

Trace 4.1.: Empty R3 and R4

By extending the machine program with this trace it receives the two new states. At this
point the first edge case becomes apparent. The values in R1 and R2 in the trace are both
zero, which implies that the result of the multiplication is also zero and the computation
has to end. Furthermore, it is only necessary to check if the value of R1 is zero. This
is because the product of multiplication is zero if one of the factors is zero. Thus, the
user has to start the machine-computer game again and add the predicate (R1=0,True)
to the predicate sequence in the last row. Before extending the machine program again,
one has to replace the directive End with Undef to insert the new predicate check. The
result is displayed in Machine Program 4.3.

1 # PROGRAM mult
2 Start:
3 R3=0
4 EmptyR3
5 Undef
6
7 EmptyR3 / R3 -1:
8 R3=0
9 EmptyR3

10 R4=0
11 EmptyR4
12 Undef

13 EmptyR4 / R4 -1:
14 R4=0
15 EmptyR4
16 R1=0
17 Undef
18 End

Machine Program 4.2: Partial Program after first Extension

Next, the user has to add a trace that includes the multiplication. For example, one
could choose to add a trace with the initial machine state (3, 1, 0, 0). This also includes
the edge case of both of values in R3 and R4 being zero. While extending the trace, the
user has to follow their mental representation of the algorithm. After decrementing R1
they have to shift the value in R2 to R3 and R4. The value in the first register is not

25

zero after a second decrement. Therefore, the value in R4 has to be shifted back to R2
and added to R3. Lastly, the value in R2 is zero after the third decrement. Thus, the
user has to add the value in R2 to R3 one last time. Trace 4.2 is generated during this
process. Again, the program states have to be named by the user. The program state
Dec1a corresponds to line five in Algorithm 4.1. The states Move2To4a/b/c refer to line
nine. Similarly, the state Dec1b belongs to line eleven and the states Move4To2a/b/c
to line fourteen. The last two states Add2To3a/b resemble line seven of the algorithm.
This mapping from program states to the algorithm is just presented for the reader. The
user, however, only has a mental representation of the algorithm.

State Op. R1 R2 R3 R4 Predicate Sequence
Start 3 1 0 0 (R3=0,True),(R4=0,True),(R1=0,False),

(R2=0,False)
Dec1a R1-1 2 1 0 0 (R1=0,False)
Move2To4a R2-1 2 0 0 0
Move2To4b R3+1 2 0 1 0
Move2To4c R4+1 2 0 1 1 (R2=0,True),(R1=0,False)
Dec1b R1-1 1 0 1 1 (R1=0,False)
Move4To2a R4-1 1 0 1 0
Move4To2b R3+1 1 0 2 0
Move4To2c R2+1 1 1 2 0 (R4=0,True),(R1=0,False)
Dec1a R1-1 0 1 2 0 (R1=0,True)
Add2To3a R2-1 0 0 2 0
Add2To3b R3+1 0 0 3 0 (R2=0,True)

Trace 4.2.: Three times One

Nearly all program states of the machine program exist after the user extends the pro-
gram with Trace 4.2. This second partial program is displayed in Machine Program
A.1 in the appendices. The only program states missing belong to the case where the
initial multiplicand is in R4 when the value in R1 is decremented to zero (see line 12 of
Algorithm 4.1). The user can generate a trace including this case by choosing an even
value (greater than zero) for the multiplier in R1. To keep the traces short one should
choose low values for the initial machine state, i.e. (2, 1, 0, 0). Because the computation
at the beginning of this trace is the same as the trace before, the user does not have to
write the whole trace manually. They can automatically compute the first six rows by
using the extend-trace function of the GUI. Afterwards, the user only has to add the
last two rows manually.
The result is Trace 4.3. The two new program states Add4To3a/b refer to line thirteen
of Algorithm 4.1. Extended with this trace, the machine program contains all program
states needed. The resulting program is Machine Program A.2. However, some binary
decision trees still have undefined subtrees. To eliminate them, the user has to retrace
the program’s execution and find initial machine states that lead to these subtrees. For

26

State Op. R1 R2 R3 R4 Predicate Sequence
Start 2 1 0 0 (R3=0,True),(R4=0,True),(R1=0,False),

(R2=0,False)
Dec1a R1-1 1 1 0 0 (R1=0,False)
Move2To4a R2-1 1 0 0 0
Move2To4b R3+1 1 0 1 0
Move2To4c R4+1 1 0 1 1 (R2=0,True),(R1=0,False)
Dec1b R1-1 0 0 1 1 (R1=0,True)
Add4To3a R4-1 0 0 1 0
Add4To3b R3+1 0 0 2 0 (R4=0,True)

Trace 4.3.: Two times One

example, the BDT of the state Start has an undefined subtree at the end of the path
(R3=0, True) and (R4=0,False). Because Start is the first state of a program, one can
conclude that they have to add a trace where the initial value in R3 is zero, but the value
in R4 is not, i.e. (0, 0, 0, 1). The program’s execution with this initial machine state
should enter the state EmptyR4 and then terminate. Thus, the user has to manually
extend the trace. The trace is displayed in Trace B.1 in the appendices. After extending
the machine program with the trace, the undefined subtree is eliminated.

Likewise, all other undefined subtrees have to be eliminated. The user can backtrack
the program’s execution to identify the necessary initial machine states. Then, they can
use a combination of automatic and manual trace extensions to generate the traces. The
following list presents an example of a combination of initial machine states, which gen-
erate traces necessary to complete the program for multiplication. All traces referenced
can be found in the appendix.

– (1, 0, 0, 0) and (0, 1, 0, 0) yield Trace B.2 and Trace B.3 (see Appendix B). They
eliminate the undefined subtrees in program state Start, representing the edge
cases where one of the registers R1 or R2 is the only register with a non-zero
value.

– (0, 0, 1, 0), (1, 0, 1, 0) and (1, 1, 1, 0) can be used as initial machine states for traces
that replace the undefined nodes in the BDT of state EmptyR3 with defined subtrees
(Trace B.4, B.5, and B.6).

– (1, 0, 0, 1) and (1, 1, 0, 1) can be used in a similarly manner for state EmptyR4 (Trace
B.7 and B.8).

– (2, 2, 0, 0) yields Trace B.9, which eliminates undefined nodes in BDT of state
Move2To4c and state Add4To3. This is because the value in R2 is greater than one
and therefore it requires multiple loops to shift the value from R2 to R4.

– (3, 2, 0, 0) eliminates undefined nodes in BDT of state Move4To2c and Add2To3 in
a similar manner (Trace B.10).

27

The program is complete after extending it with all traces mentioned. It is possible to
achieve this with fewer traces by combining different edge cases. The complete program
is presented as Machine Program A.3 in the appendices.

However, the complete program still has partial BDTs. The user can apply the pro-
cedure described in the proof of Theorem 3.5 to states Move2To4c and Move4To2c. This
replaces the subtree beginning at node R1=0 with the node Dec1b and Dec1a, respec-
tively. The resulting program consists only of states with complete BDTs. Therefore, the
undefined state is no longer needed and can be deleted. Machine Program A.4 displays
the final program.

28

5. Implementation Details
The command line interface was developed using the Haskell 2010 programming language
[Mar10]. The graphical user interface was programmed with Java 14.0.1 by Oracle
and OpenJavaFX 14.0.1. It was necessary to use this version for the GUI because it
introduces variable amounts of spaces per tab [jfx20]. This is essential for the proper
formatting of machine programs.

5.1. Command Line Interface
The command line interface is divided into two modules. The main goal of this division
is to separate pure and impure functions. The module synth cli provides an interface
to the user or the GUI. It mainly contains impure functions for user- or file-input and
-output. The other module Synthesizer incorporates functions for consistency checks
as well as machine program and trace extensions. Its functions are pure, as their results
are returned to the functions of the synth cli module.

The algorithms presented in this section display the abstract behaviour of imple-
mented algorithms. Notably, the implemented functions use recursive instead of itera-
tive structures, i.e. loops. This is because Haskell only allows for recursive structures.
Nonetheless, the following algorithms use iterative structures for better readability.

The command line interface works with machine program and trace files. Therefore,
it requires functions to parse machine programs and traces from a file into the data
structures used by the underlying Haskell framework as well as converting them back.
Haskell Programs 5.1, 5.2, and 5.3 display these data structures [Cha20a].

The data structure Program represents a machine program. It contains the binary
decision tree of the start state. Additionally, it holds a mapping from program state
names to tuples consisting of an operation name and a binary decision tree.

1 data Program = Program
2 LabeledTree
3 (Map ProgramState (OperationName , LabeledTree))

Haskell Program 5.1: Program Data Structure

All programs in a machine program file are encapsulated in the data structure
ParsedPrograms. It comprises the name of the MoC used, the name of the first program
in the file, and a mapping from program name to the Program and its argument. The
argument is only used if the program supports function calls.

29

1 data ParsedPrograms = ParsedPrograms
2 ModelName
3 ProgramName
4 (Map ProgramName (Program , ProgramArgument))

Haskell Program 5.2: ParsedPrograms Data Structure

A trace is represented by a list of TraceRows. Each TraceRow consists of the name
of a program state, an optional operation, a string representing the machine state,
the predicate sequence and the name of the next program state. Notably, the Haskell
TraceRow includes the redundant information of the program state in the next trace row
to facilitate computations.

1 data TraceRow = TraceRow
2 ProgramState -- current program state
3 (Maybe OperationName)
4 MachineState
5 [(PredicateName ,Bool)]
6 ProgramState -- next program state

Haskell Program 5.3: TraceRow Data Structure

The most important functions of the Haskell framework are the parsing of a machine
program file into a ParsedPrograms data structure and the execution of a Program
to generate a list of TraceRows. Additionally, it includes the definition of the MoCs
presented in Chapter 2. Chandoo implemented these functions.

The framework only provides a method to parse the content of a machine program file
into the Haskell representation. The other three functions of parsing ParsedPrograms
into a machine program file, a list of TraceRows into a trace file, and vice versa are
implemented by the CLI.

The CLI provides three main functions to the user: extending machine programs,
extending traces, and checking consistency. All three functions need similar data, thus
it parses the command line arguments into a data structure called ParsedInput. This
holds the programs of the machine program file, the name of the program to be used, a
list of traces, and a flag to determine if consistency should be checked.
A ParsedInput is passed to intermediate functions, which extract the required informa-
tion and pass it to one of the three main functions presented below. This intermediate
functions also write the resulting output back to the machine program and trace files.
Additionally, they display error messages to the user.

30

1 data ParsedInput = ParsedInput
2 ParsedPrograms
3 ProgramName
4 [[TraceRow]]
5 Bool --check consistency

Haskell Program 5.4: ParsedInput Data Structure

5.1.1. Extend Machine Programs
The algorithm for extending a machine program Q from a set of traces T is shown in
Algorithm 5.1. It takes a machine program Q and a list of traces T as an input and
returns the extended program. Intuitively, the algorithm evaluates every trace row by
row and checks if the execution of the program would enter undefined behaviour. If so,
it extends the binary decision tree of the current program state. Additionally, the next
program state has to be added to Q, if it does not exist yet. Therefore, the following
functions are required:

– ExtendBDT(n, f) alters the binary decision tree of program state p by adding
the information given in predicate sequence f .

– AddPState(Q, n, o) adds a new program state labelled n with operation o. Its
binary decision tree consists of only a root node containing the directive to enter
the undefined state.

The traces t ∈ T have the format displayed in Haskell Program 5.3. Therefore, the
variable ni corresponds to the current program state in trace row i. oi corresponds
to the operation, si to the machine state, fi to the predicate sequence, and mi to the
next program state. The term Q1(ni, si) refers to the execution of machine program Q
starting in program state ni with the initial machine state si for exactly one step. This
yields one trace row. The term t[i] accesses the trace row at index i in trace t.
Algorithm 5.1 does not display the error and consistency checks performed by the im-
plemented function because they contain many edge cases. A non-exhaustive list is
presented below:

– ∀ 0 ≤ i ≤ |t| : ni 6= "Undef" ∧ mi 6= "Undef" : Traces t ∈ T are not allowed
to have undefined states. This was a design decision to ensure that traces never
terminate earlier than the program. It enforces a clear separation between the
completely defined behaviour in traces and the possibly undefined behaviour of
the machine program.

– ∀ 0 ≤ i ≤ |t| : ni = n′i ∧ oi = o′i ∧ si = s′i: The variables o′i, p′i, s′i refer to the
variables computed in line six in the i-th iteration of the inner loop. If one of the
equalities does not hold, then the trace involves different behaviour than the ma-
chine program. Therefore, the machine program cannot be extended. Operations

31

Algorithm 5.1 Extend Machine Programs
1: function ExtendMP(Q, T)
2: for t ∈ T do
3: for i = 0 . . . |t| do
4: (ni, oi, si, fi,mi) = t[i]
5: (n′, o′, s′, f ′,m′)← Q1(ni, si)
6: if m′ = "Undef" then
7: ExtendBDT(ni, fi)
8: if mi not exists in Q and i 6= |t| then
9: AddPState(Q,mi, oi+1)

10: return Q

o0 and o′0 are mathematically undefined (see Section 3.2), which is represented by
the value Nothing in Haskell [Mar10]. It is necessary to check that both variables
embody this value.

– ∀ 0 ≤ i ≤ |t| : fi = f ′i ∨ (m′i = "Undef" ∧ fi =k f
′
i), with k = |f ′i |: The variables

f ′i and n′i again refer to the i-th iteration of the inner loop. The symbol =k refers
to the equality of the first k items. If the program state in the next row is not the
undefined state, then the predicate sequences of the given and the evaluated trace
have to be equal. Otherwise, the trace rows only have to be equal up to the length
of the evaluated predicate sequence.

– |T | > 0: The program cannot be extended if there are no traces.

5.1.2. Extend Traces
The second important function of the command line interface is extending traces. The
implemented algorithm is displayed in Algorithm 5.2. It takes a machine program Q
and a single trace t as an input. The algorithm returns the extended trace or an error if
the trace cannot be extended with the given machine program. It checks for every trace
row in the input trace if it is equal to the trace row generated by the program. If the
generated trace terminates in the same row as the given trace, then only the last trace
row needs to be updated. If the generated trace is longer than the input trace, then it
simply returns the evaluated trace.

The term Q∗(p0, s0) refers to the execution of Q with initial machine state s0 and
program state n0 until it terminates. Because this computation is possibly infinitely
long, it is not guaranteed that Algorithm 5.2 terminates. This behaviour is unavoidable
because the machine program may contain infinite loops and the halting problem is
undecidable [Tur37]. However, the user may interrupt the algorithm when using the
CLI by pressing CTRL+C. The GUI uses a timeout of five seconds to interrupt long
computations.

32

The decision to allow the predicate sequence of the last trace row to be empty, even
if the machine program checks predicates at this point of evaluation, was by design.
This allows users to extend traces when only the initial machine state is known. This
is essential because it enables the user to generate traces of the machine program’s
execution by only specifying the initial machine state. One does not have to think
about the predicates checked or the behaviour of the program in general.

Algorithm 5.2 Extend a Trace
1: function ExtendTrace(Q, t)
2: (n0, o0, s0, f0,m0)← t[0]
3: t′ ← P ∗(n0, s0)
4: if |t| > |t′| then
5: Error
6: for i = 0 . . . |t| do
7: (ni, oi, si, fi,mi)← t[i]
8: (n′i, o′i, s′i, f ′i ,m′i)← t′[i]
9: if i < |t| and t[i] 6= t′[i] then

10: Error
11: if i = |t| then
12: if ni = n′i and oi = o′i and si = s′i and

(
fi = f ′i or |fi| = 0

)
then

13: t[i]← t′[i]
14: if m′i = "End" then
15: return t

16: else
17: Error
18: if i = |t|+ 1 then
19: return t′

5.1.3. Consistency
The last function allows the user to test consistency between a machine program Q and
a set of traces T . It implements Definition 3.9 as a consistency check. Algorithm 5.3
presents an abbreviated version of the algorithm used. The complete algorithm includes
further checks to ensure that the trace is formatted properly. It returns a boolean value.

The term 6=|f ′
i | refers to inequality up to the length of f ′i . Intuitively, the algorithm

checks for every row of every trace in T if it fits to the trace row generated by executing
Q. A detailed explanation of the conditions checked is given below:

33

– |t| < |t′|− 1: If the input trace is shorter than the evaluated trace without the last
row, then it ends before the machine program terminates.

– ni 6= n′i ∨ oi 6= o′i ∨ si 6= s′i: The name of the program state, the operation, and the
machine state of every row have to be equal (see Definition 3.9).

– fi 6=|f ′
i | f
′
i ∨

(
mi 6= "Undef"∧ fi 6= f ′i

)
: The predicate sequences of the traces have

to be equal or, if the next program state is undefined, equal up to the length of
the generated predicate sequence (See Definition 3.9).

– m′i = "Undef": If all of the conditions above are false and the next program state
is undefined, then the trace is consistent.

–
(
mi = "End"∧m′i 6= "End"

)
∨
(
mi 6= "End"∧m′i = "End"

)
: If the trace ends at a

different point than the program’s execution, then the trace cannot be consistent
with the machine program.

Algorithm 5.3 Consistency
1: function Consistent(Q, T)
2: for t ∈ T do
3: (n0, o0, s0, f0,m0)← t[0]
4: t′ ← Q∗(n0, s0)
5: if |t| < |t′| − 1 then
6: return False
7: for i = 0 . . . |t| do
8: (ni, oi, si, fi,mi)← t[i]
9: (n′i, o′i, s′i, f ′i ,m′i)← t′[i]

10: if ni = "Undef" or mi = "Undef" then return False
11: if ni 6= p′i or oi 6= o′i or si 6= s′i then return False
12: if fi 6=|f ′

i | f
′
i or

(
mi 6= "Undef" and fi 6= f ′i

)
then return False

13: if m′i = "Undef" then break
14: if

(
mi = "End" and m′i 6= "End"

)
or

(
mi 6= "End" and m′i = "End"

)
then

15: return False
16: return True

5.2. Interface between CLI and GUI
The main purpose of the GUI is to present the functions of the CLI more conveniently.
Therefore, it needs to access the functions of the CLI. The only alternative would be to

34

implement these functions directly in the GUI. Some of the functions presented would
not require great effort to be implemented in the GUI. However, this would lead to
duplicate code, which complicates changes and thereby is considered bad programming
practice [BF99].

In addition to the functions discussed in Section 4.1 the CLI provides an interface with
five more functions. The GUI accesses the functions of consistency checking, extending a
program, and extending a trace in the same way as described in Section 4.1. Thus, only
presents the other five functions. They are accessed with the following CLI command:

synth cli.exe id arguments...

The argument id identifies the function to be used. It always begins with two dashes.
The second part arguments... refers to a list of arguments provided as input for the
function where the number of arguments varies between the functions. All functions
write their return value to the standard output file descriptor. If an error occurs it is
written to the standard error stream and no value is returned to the standard output.

The first function computes the number of registers used by a model of computation.
This function is necessary to determine the proper amount of columns in a trace. It
takes the name of an MoC as an argument. The return value is an integer representing
the number of registers used by the given MoC. It can be accessed with the command:

synth cli.exe --nreg model

The next function determines the model of computation of a given model name. The
GUI uses it to provide different user interfaces given different models of computation.
I.e., the option to extend a trace manually is only available, if the current MoC is a
counter machine. Input of the function is a model name and the return value a string
identifier of the model. The three possible identifiers are CM for a counter machine, SM for
a stack machine, and GENERIC for all other generic models. The syntax of the function
call is:

synth cli.exe --moc model

The next two functions are essential for extending traces manually. The GUI has to
check predicates and determine the effects of operations for the current machine state to
compute a trace row. Therefore, the next function computes the new machine state when
applying an operation of a given MoC to a machine state. It returns the new machine
state in a csv-representation, which is a string of values separated by semicolons. The
function is accessed with the command:

synth cli.exe --operation model state op

The argument model is a model name (e.g. "SM 2 01"), which is not to be confused
with the identifiers discussed in the last function (e.g. SM). The state is a Haskell
representation of the machine state. The last argument op is a string containing the

35

operation. For example, a function call using a counter machine with two registers
could look like:

synth cli.exe --operation "CM 2" "[0,1]" "R1+1"
"1;1"

The next function checks a predicate for any given machine state and MoC. It returns
either a zero, if the predicate is false, or a one, if the predicate is true. It uses a syntax
similar to the last function. The argument pred is a string containing the predicate to
check:

synth cli.exe --operation model state pred

The last function is necessary for the machine-computer game of a stack machine in the
GUI. In contrast to a counter machine, the predicates and operations of a stack machine
depend on the input alphabet. The CLI offers the following function to retrieve the
input alphabet of a stack machine:

synth cli.exe --ia model

It is also possible to use the function with a Turing machine; however, this is currently
not necessary.

5.3. Graphical User Interface
The GUI is a stateless interface in a sense that it does not generate a session state
[DHJP08]. Its output is the graphical data displayed to the user, which only depends on
the files used and the input given by the user. However, the GUI does save information
about the machine program to reduce the amount of file input. For example, it saves
the MoC and the number of registers used.

Figure 5.1 shows the main data flow between GUI, CLI, and files. The GUI loads
the machine program and trace files and displays them to the user. Then, the user may
change the content of the machine program or the traces by editing them. These changes
are saved to the files. As an alternative, the user may also call the CLI, which directly
changes the file content. Afterwards, the GUI reloads the content and displays it to the
user.

The main stage of the GUI is divided into three parts: An area for a machine program,
traces, and the console. This division is reflected by the modularization of the control
structures. Hence, the main stage has four controllers to manage the elements of the
user interface. This includes one controller for each of the three areas and a primary
controller to connect all functionality.

The text of the console is saved in a dedicated log file. This is useful because the error
stream of a command line interface process can be appended to this file. The console
itself is a read-only text area, which is synchronized with the log file by the controller of
the console. Also, the controller can append messages generated by the GUI to the log

36

Figure 5.1.: Composition of Interfaces and Files

file, e.g. if the user deletes a trace. Whenever new content is displayed in the console,
the controller automatically scrolls down to the new content.

The session-independent preferences of the user are saved in a preference file. This is
a text file containing key-value pairs. Every pair is located in a new line:

key: value

The keys text-size and tab-size correspond to an integer value. But, the key
add-quotation refers to a lower-case boolean value, e.g. true.

The machine program area consists mainly of an editable text area displaying the
content of the machine program file. Furthermore, there are buttons to load, extend,
and save the machine program. The machine program file is synchronized if the user
clicks one of the dedicated buttons, e.g. the save button. A drop-down menu allows
the user to select one of the programs in the machine program file. The controller of
the machine program handles the synchronization of the machine program file with the
text area. Additionally, in handles the button callbacks as well as the file hierarchy.
This functionality is located in the controller of the machine program file because the
machine program file is the file on the highest level of the hierarchy. Therefore, it can be
considered the anchor of the hierarchy. The position of all other parts of the hierarchy
are computed with respect to the machine program file.

Traces are presented as tabs in a tab pane. The trace controller handles the tab
pane as well as the callbacks of buttons, which alter the content of traces. These are
the buttons for adding, saving, deleting, and extending traces. Similar to the machine
program area, some buttons are located in the menu bar at the top to improve the
user experience. Each tab in the tab pane is associated with one trace file. Only tabs
belonging to the currently selected program in the machine program area are displayed.
Every time the user selects a different program all tabs have to be reloaded.

The items of a trace are arranged in a table, assuming that the trace is properly
formatted. If a trace contains an invalid header line or the wrong amount of columns
it is displayed as plain text. The amount of columns is determined by the MoC of the
corresponding machine program file. Most buttons are disabled if one of the traces is

37

Figure 5.2.: Event Flow after Tabulator-Key Pressed

malformatted because their functions depend on the trace data. The cells in a table
contain either the default text display of a JavaFX-TableCell or a custom text field if
the user is editing the content of the cell. The trace data is updated with the content
of the text field every time the user commits a change in one of the cells. It requires a
complex structure of event messages to detect if a user has finished editing a cell. This
is because every cell handles user induced changes independently.

Figure 5.2 presents an example for the event flow if a user presses the tabulator key
while editing a cell. As described in Section 4.2, this directly selects the next cell to the
right. The event flow begins with a key event caused by the user pressing the tab key
while editing the content of the text field. This event can only be noticed by the text
field as it is the currently focused user interface element. The text field signals the cell
that the user stopped editing and that the changes made are ready to be committed.
The cell signals the table to update its data with the new data. Furthermore, the text
field sends a custom event to the table indicating it should select the next cell and start
editing its content.

38

6. Conclusion and Future Work
In this thesis, I presented two user interfaces for trace-based programming. They intro-
duce novice programmers to trace-based programming, which separates the algorithm
design from the implementation process [Cha20a]. This can be accomplished by playing
the algorithm in a machine-computer game and automatically synthesizing a machine
program from the generated traces.

The main use is intended to be in introductory programming courses. This is because
the major benefit of the method is that a user does not need any experience in a specific
programming language. It could be utilized in highschools or even basic programming
classes at universities. However, the method and the user interfaces have to be tested
first. As of now, Chandoo discovered promising results of the method itself in a test
with two tenth-graders [Cha20a]. That being said, the usability of the interfaces has not
been tested yet.

An option to use subprogram or function calls as operations would improve the
machine-computer game. This would allow the user to split a given task into smaller
subtasks and implement them individually by using only trace-based programming.

Additionally, future work could include adding a simulation of the machine-computer
game for Turing machines to the GUI. This could enable the use of the method in theo-
retical computer science classes. On the contrary, the syntax used for Turing machines
in computer science classes likely differs from the syntax of machine programs. How-
ever, if students are given the task of creating a Turing machine program, trace-based
programming could be used to facilitate the development process. This is because the
difficult part about writing Turing machine programs presumably is implementing the
program, not creating a mental representation of the algorithm. Large-scale tests are,
however, required to verify the described utility.

39

List of Figures
3.1 Control Flow Graph for Coin Bag Example 8
3.2 Elimination of Partial BDT in Complete Programs 13

4.1 File Hierarchy of Machine Programs and Traces 19
4.2 Main Stage of the GUI . 20
4.3 Machine-Computer Game . 22

5.1 Composition of Interfaces and Files . 37
5.2 Event Flow after Tabulator-Key Pressed 38

List of Programs
3.1 Coin Bag Example . 10
3.2 Function Call . 12
3.3 Fully Undefined Program . 13

4.1 First Program Structure . 24
4.2 Partial Program after first Extension . 25

5.1 Program Data Structure . 29
5.2 ParsedPrograms Data Structure . 30
5.3 TraceRow Data Structure . 30
5.4 ParsedInput Data Structure . 31

A.1 Partial Program missing two States . iv
A.2 Partial Program with all States . v
A.3 Mutliplication with partial BDTs . vi
A.4 Mutliplication . vii

i

List of Traces
3.1 Coin Program . 15

4.1 Empty R3 and R4 . 25
4.2 Three times One . 26
4.3 Two times One . 27

B.1 Multiplication Example: (0, 0, 0, 1) . viii
B.2 Multiplication Example: (1, 0, 0, 0) . viii
B.3 Multiplication Example: (0, 1, 0, 0) . viii
B.4 Multiplication Example: (0, 0, 1, 0) . viii
B.5 Multiplication Example: (1, 0, 1, 0) . viii
B.6 Multiplication Example: (1, 1, 1, 0) . ix
B.7 Multiplication Example: (1, 0, 0, 1) . ix
B.8 Multiplication Example: (1, 1, 0, 1) . ix
B.9 Multiplication Example: (2, 2, 0, 0) . ix
B.10 Multiplication Example: (3, 2, 0, 0) . x

List of Algorithms
3.1 Synthesis of a Machine Program from Traces 17

4.1 Efficient Multiplication in the CM . 23

5.1 Extend Machine Programs . 32
5.2 Extend a Trace . 33
5.3 Consistency . 34

ii

Bibliography
[BF99] Kent Beck and Martin Fowler. Refactoring: Improving the Design of Existing

Code, pages 75–76. Addison Wesley, January 1999.

[Cha19] Maurice Chandoo. Games and Interpreter for Counter and Stack Machines.
https://upsl.uber.space/aws19/info.txt, 2019. Accessed: 2020-07-15.

[Cha20a] Maurice Chandoo. Separating Algorithmic Thinking and Programming. In-
stitutionelles Repositorium der Leibniz Universität Hannover, 2020.

[Cha20b] Maurice Chandoo. A Systematic Approach to Programming. CoRR,
abs/1808.08989v3, 2020.

[DHJP08] Laurent Doyen, Thomas A. Henzinger, Barbara Jobstmann, and Tatjana
Petrov. Interface Theories with Component Reuse. In Proceedings of the 8th
ACM International Conference on Embedded Software, EMSOFT 08, pages
79–88, New York, NY, USA, 2008. Association for Computing Machinery.

[jfx20] JavaFX 14 Documentation. https://openjfx.io/javadoc/14/, 2020. Ac-
cessed: 2020-06-28.

[Lam61] Joachim Lambek. How to Program an Infinite Abacus. Canadian Mathemat-
ical Bulletin, pages 295 – 302, 1961.

[Mar10] Simon Marlow. Haskell 2010 Language Report, July 2010.

[Min67] Marvin Lee Minsky. Computation, Finite And Infinite Machines. Prentice-
Hall series in automatic computation. Prentice-Hall, 1967.

[Sor13] Juha Sorva. Notional Machines and Introductory Programming Education.
ACM Transactions on Computing Education, June 2013.

[Tur37] Alan M. Turing. On Computable Numbers, with an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society, S2-
42(1):230–265, January 1937.

[Upa10] Muhammad Afzal Upal. An alternative account of the minimal counterintu-
itiveness effect. Cognitive Systems Research, 11(2):194–203, 2010.

iii

https://upsl.uber.space/aws19/info.txt
https://openjfx.io/javadoc/14/

A. Machine Programs

Machine Program A.1: Partial Program missing two States

1 #MOC CM 4
2
3
4 # PROGRAM mult
5 Start:
6 R3=0
7 EmptyR3
8 R4=0
9 Undef

10 R1=0
11 R2=0
12 Dec1a
13 Undef
14 Undef
15
16
17 EmptyR3 / R3 -1:
18 R3=0
19 EmptyR3
20 R4=0
21 EmptyR4
22 Undef
23
24 EmptyR4 / R4 -1:
25 R4=0
26 EmptyR4
27 R1=0
28 Undef
29 End
30
31 Dec1a / R1 -1:
32 R1=0
33 Move2To4a
34 Add2To3a
35
36 Move2To4a / R2 -1:
37 Move2To4b
38

39 Move2To4b / R3 +1:
40 Move2To4c
41
42 Move2To4c / R4 +1:
43 R2=0
44 Undef
45 R1=0
46 Dec1b
47 Undef
48
49 Move4To2a / R4 -1:
50 Move4To2b
51
52 Move4To2b / R3 +1:
53 Move4To2c
54
55 Move4To2c / R2 +1:
56 R4=0
57 Undef
58 R1=0
59 Dec1a
60 Undef
61
62 Dec1b / R1 -1:
63 R1=0
64 Move4To2a
65 Undef
66
67 Add2To3a / R2 -1:
68 Add2To3b
69
70 Add2To3b / R3 +1:
71 R2=0
72 Undef
73 End
74
75 Undef / NOP:
76 End

iv

Machine Program A.2: Partial Program with all States

1 #MOC CM 4
2
3
4 # PROGRAM mult
5 Start:
6 R3=0
7 EmptyR3
8 R4=0
9 Undef

10 R1=0
11 R2=0
12 Dec1a
13 Undef
14 Undef
15
16 EmptyR3 / R3 -1:
17 R3=0
18 EmptyR3
19 R4=0
20 EmptyR4
21 Undef
22
23 EmptyR4 / R4 -1:
24 R4=0
25 EmptyR4
26 R1=0
27 Undef
28 End
29
30 Dec1a / R1 -1:
31 R1=0
32 Move2To4a
33 Add2To3a
34
35 Move2To4a / R2 -1:
36 Move2To4b
37
38 Move2To4b / R3 +1:
39 Move2To4c
40
41
42
43

44 Move2To4c / R4 +1:
45 R2=0
46 Undef
47 R1=0
48 Dec1b
49 Undef
50
51 Dec1b / R1 -1:
52 R1=0
53 Move4To2a
54 Add4To3a
55
56 Move4To2a / R4 -1:
57 Move4To2b
58
59 Move4To2b / R3 +1:
60 Move4To2c
61
62 Move4To2c / R2 +1:
63 R4=0
64 Undef
65 R1=0
66 Dec1a
67 Undef
68
69 Add2To3a / R2 -1:
70 Add2To3b
71
72 Add2To3b / R3 +1:
73 R2=0
74 Undef
75 End
76
77 Add4To3a / R4 -1:
78 Add4To3b
79
80 Add4To3b / R3 +1:
81 R4=0
82 Undef
83 End
84
85 Undef / NOP:
86 End

v

Machine Program A.3: Mutliplication with partial BDTs

1 #MOC CM 4
2
3
4 # PROGRAM mult
5 Start:
6 R3=0
7 EmptyR3
8 R4=0
9 EmptyR4

10 R1=0
11 R2=0
12 Dec1a
13 End
14 End
15
16
17 EmptyR3 / R3 -1:
18 R3=0
19 EmptyR3
20 R4=0
21 EmptyR4
22 R1=0
23 R2=0
24 Dec1a
25 End
26 End
27
28
29 EmptyR4 / R4 -1:
30 R4=0
31 EmptyR4
32 R1=0
33 R2=0
34 Dec1a
35 End
36 End
37
38
39 Dec1a / R1 -1:
40 R1=0
41 Move2To4a
42 Add2To3a
43
44 Move2To4a / R2 -1:
45 Move2To4b
46

47 Move2To4b / R3 +1:
48 Move2To4c
49
50 Move2To4c / R4 +1:
51 R2=0
52 Move2To4a
53 R1=0
54 Dec1b
55 Undef
56
57 Dec1b / R1 -1:
58 R1=0
59 Move4To2a
60 Add4To3a
61
62 Move4To2a / R4 -1:
63 Move4To2b
64
65 Move4To2b / R3 +1:
66 Move4To2c
67
68 Move4To2c / R2 +1:
69 R4=0
70 Move4To2a
71 R1=0
72 Dec1a
73 Undef
74
75 Add4To3a / R4 -1:
76 Add4To3b
77
78 Add4To3b / R3 +1:
79 R4=0
80 Add4To3a
81 End
82
83 Add2To3a / R2 -1:
84 Add2To3b
85
86 Add2To3b / R3 +1:
87 R2=0
88 Add2To3a
89 End
90
91 Undef / NOP:
92 End

vi

Machine Program A.4: Mutliplication

1 #MOC CM 4
2
3
4 # PROGRAM mult
5 Start:
6 R3=0
7 EmptyR3
8 R4=0
9 EmptyR4

10 R1=0
11 R2=0
12 Dec1a
13 End
14 End
15
16
17 EmptyR3 / R3 -1:
18 R3=0
19 EmptyR3
20 R4=0
21 EmptyR4
22 R1=0
23 R2=0
24 Dec1a
25 End
26 End
27
28
29 EmptyR4 / R4 -1:
30 R4=0
31 EmptyR4
32 R1=0
33 R2=0
34 Dec1a
35 End
36 End
37
38 Dec1a / R1 -1:
39 R1=0
40 Move2To4a
41 Add2To3a
42

43 Move2To4a / R2 -1:
44 Move2To4b
45
46 Move2To4b / R3 +1:
47 Move2To4c
48
49 Move2To4c / R4 +1:
50 R2=0
51 Move2To4a
52 Dec1b
53
54 Dec1b / R1 -1:
55 R1=0
56 Move4To2a
57 Add4To3a
58
59 Move4To2a / R4 -1:
60 Move4To2b
61
62 Move4To2b / R3 +1:
63 Move4To2c
64
65 Move4To2c / R2 +1:
66 R4=0
67 Move4To2a
68 Dec1a
69
70 Add4To3a / R4 -1:
71 Add4To3b
72
73 Add4To3b / R3 +1:
74 R4=0
75 Add4To3a
76 End
77
78 Add2To3a / R2 -1:
79 Add2To3b
80
81 Add2To3b / R3 +1:
82 R2=0
83 Add2To3a
84 End

vii

B. Traces

State Op. R1 R2 R3 R4 Predicate Sequence
Start 0 0 0 1 (R3=0,True),(R4=0,False)
EmptyR4 R4-1 0 0 0 0 (R4=0,True),(R1=0,True)

Trace B.1.: Multiplication Example: (0, 0, 0, 1)

State Op. R1 R2 R3 R4 Predicate Sequence
Start 1 0 0 0 (R3=0,True),(R4=0,True),(R1=0,False),

(R2=0,True)

Trace B.2.: Multiplication Example: (1, 0, 0, 0)

State Op. R1 R2 R3 R4 Predicate Sequence
Start 0 1 0 0 (R3=0,True),(R4=0,True),(R1=0,True)

Trace B.3.: Multiplication Example: (0, 1, 0, 0)

State Op. R1 R2 R3 R4 Predicate Sequence
Start 0 0 1 0 (R3=0,False)
EmptyR3 R3-1 0 0 0 0 (R3=0,True),(R4=0,True),(R1=0,True)

Trace B.4.: Multiplication Example: (0, 0, 1, 0)

State Op. R1 R2 R3 R4 Predicate Sequence
Start 1 0 1 0 (R3=0,False)
EmptyR3 R3-1 1 0 0 0 (R3=0,True),(R4=0,True),(R1=0,False),

(R2=0,True)

Trace B.5.: Multiplication Example: (1, 0, 1, 0)

viii

State Op. R1 R2 R3 R4 Predicate Sequence
Start 1 1 1 0 (R3=0,False)
EmptyR3 R3-1 1 1 0 0 (R3=0,True),(R4=0,True),(R1=0,False),

(R2=0,False)
Dec1a R1-1 0 1 0 0 (R1=0,True)
Add2To3a R2-1 0 0 0 0
Add2To3b R3+1 0 0 1 0 (R2=0,True)

Trace B.6.: Multiplication Example: (1, 1, 1, 0)

State Op. R1 R2 R3 R4 Predicate Sequence
Start 1 0 0 1 (R3=0,True),(R4=0,False)
EmptyR4 R4-1 1 0 0 0 (R4=0,True),(R1=0,False),(R2=0,True)

Trace B.7.: Multiplication Example: (1, 0, 0, 1)

State Op. R1 R2 R3 R4 Predicate Sequence
Start 1 1 0 1 (R3=0,True),(R4=0,False)
EmptyR4 R4-1 1 1 0 0 (R4=0,True),(R1=0,False),(R2=0,False)
Dec1a R1-1 0 1 0 0 (R1=0,True)
Add2To3a R2-1 0 0 0 0
Add2To3b R3+1 0 0 1 0 (R2=0,True)

Trace B.8.: Multiplication Example: (1, 1, 0, 1)

State Op. R1 R2 R3 R4 Predicate Sequence
Start 2 2 0 0 (R3=0,True),(R4=0,True),(R1=0,False),

(R2=0,False)
Dec1a R1-1 1 2 0 0 (R1=0,False)
Move2To4a R2-1 1 1 0 0
Move2To4b R3+1 1 1 1 0
Move2To4c R4+1 1 1 1 1 (R2=0,False)
Move2To4a R2-1 1 0 1 1
Move2To4b R3+1 1 0 2 1
Move2To4c R4+1 1 0 2 2 (R2=0,True),(R1=0,False)
Dec1b R1-1 0 0 2 2 (R1=0,True)
Add4To3a R4-1 0 0 2 1
Add4To3b R3+1 0 0 3 1 (R4=0,False)
Add4To3a R4-1 0 0 3 0
Add4To3b R3+1 0 0 4 0 (R4=0,True)

Trace B.9.: Multiplication Example: (2, 2, 0, 0)

ix

State Op. R1 R2 R3 R4 Predicate Sequence
Start 3 2 0 0 (R3=0,True),(R4=0,True),(R1=0,False),

(R2=0,False)
Dec1a R1-1 2 2 0 0 (R1=0,False)
Move2To4a R2-1 2 1 0 0
Move2To4b R3+1 2 1 1 0
Move2To4c R4+1 2 1 1 1 (R2=0,False)
Move2To4a R2-1 2 0 1 1
Move2To4b R3+1 2 0 2 1
Move2To4c R4+1 2 0 2 2 (R2=0,True),(R1=0,False)
Dec1b R1-1 1 0 2 2 (R1=0,False)
Move4To2a R4-1 1 0 2 1
Move4To2b R3+1 1 0 3 1
Move4To2c R2+1 1 1 3 1 (R4=0,False)
Move4To2a R4-1 1 1 3 0
Move4To2b R3+1 1 1 4 0
Move4To2c R2+1 1 2 4 0 (R4=0,True),(R1=0,False)
Dec1a R1-1 0 2 4 0 (R1=0,True)
Add2To3a R2-1 0 1 4 0
Add2To3b R3+1 0 1 5 0 (R2=0,False)
Add2To3a R2-1 0 0 5 0
Add2To3b R3+1 0 0 6 0 (R2=0,True)

Trace B.10.: Multiplication Example: (3, 2, 0, 0)

x

	Introduction
	Models of Computation
	Counter Machines
	Stack Machines
	Generic Models

	Trace-based Programming
	Machine Programs
	Traces
	Consistency
	Synthesis of Machine Programs

	User Manual
	Command Line Interface
	Graphical User Interface
	Example: Multiplication Program

	Implementation Details
	Command Line Interface
	Extend Machine Programs
	Extend Traces
	Consistency

	Interface between CLI and GUI
	Graphical User Interface

	Conclusion and Future Work
	Lists of Figures, Programs, Traces, and Algorithms
	Bibliography
	Appendix Machine Programs
	Appendix Traces

