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1. Introduction

The travelling salesman problem (TSP) is a well known combinatorial optimisation prob-
lem; its goal is to find a tour of minimum cost in an undirected graph given a weight
function on the edges.
The corresponding decision problem (TSPD) of deciding whether a tour of cost at most

some value K exists is NP-complete, therefore there is no known efficient algorithm for
solving it and finding one would imply P=NP. In order to see why TSP is NP-hard the
problem of deciding whether a Hamiltonian cycle exists in a graph can be reduced (6pm)
to the problem of deciding whether a Hamiltonian cycle of cost at most some value K
exists which is equivalent to TSPD. Karp [Kar72] showed that the Hamiltonian cycle
problem is NP-complete which implies that TSPD is NP-hard, it is also in NP because a
certificate in form of an edge set can be verified in polynomial time by checking whether
the solution is a valid tour and whether the total cost of the tour is at most K.
Therefore TSP (the optimisation problem) is NP-hard, which means that every prob-

lem in NP is Turing-reducible to TSP. Furthermore it is NP-hard to approximate TSP
given arbitrary edge weights but there are polynomial time approximation algorithms for
the so-called metric TSP, in which edge weights satisfy the triangle inequality w(u, v) +
w(v, w) > w(u,w) for vertices u, v and w. One such example is the 3

2 -approximation
algorithm discovered by Christofides [Chr76].
In contrast, no constant-factor approximation algorithm was known for the asymmetric

version of the travelling salesman problem (ATSP) until recently. ATSP takes a directed
graph as input allowing for asymmetric edge weights, it is a more general version of TSP.

Definition 1.1. The input for ATSP is a pair (G,w), where G is a strongly connected
directed graph (digraph) and w is a nonnegative weight function defined on the edges
satisfying the triangle inequality. The objective is to find a closed walk of minimum
weight that visits every vertex at least once.

We could also assume the graph is complete by letting the weight of an edge from u
to v be equal to weight of the shortest path between u and v in the original graph. The
new weights also satisfy the triangle inequality and this lets us skip vertices that were
already visited in a walk like in the Christofides algorithm. Therefore we would not need
to visit a vertex more than once. In this version of the problem we do not require the
graph to be complete and vertices can be visited multiple times.
The reduction of A to B in the context of optimisation problems, means that a good

approximation algorithm A for B can be turned into a good approximation algorithm
for A, which uses A as a subroutine. In [Sve15] approximating ATSP is reduced to
finding a so-called α-light solution to Local-Connectivity ATSP which will be presented

1
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Figure 1.1.: a timeline of the best approximation guarantee for ATSP

in Chapter 6. Previously the best approximation guarantee for ATSP was in O( logn
log logn)

where n is the number of vertices [Asa+10]. Svensson, Tarnawski, and Végh [STV18]
describe the first constant factor approximation algorithm for ATSP by reducing the
problem of approximating ATSP to approximating ATSP on more structured instances
called vertebrate pairs and then solving Local-Connectivity ATSP for vertebrate pairs
resulting in an approximation algorithm for ATSP using the results in [Sve15].
In order to obtain more structured instances linear programming (discussed in Sec-

tion 2.2) is used. Linear programming provides a mathematical model for optimisation
problems in which the goal is to find an assignment of real numbers to some variables,
subject to linear inequality constraints, such that a linear objective function is optimised.
ATSP can be formulated as an integer linear program, in which the variables are con-
strained to be integers. These are NP-hard to solve in general, but if the integrality
constraints of the variables are relaxed the problem can be solved in polynomial time,
and the solution to the relaxed problem is a lower bound on the cost of an optimal tour.
The relaxed linear program is called the Held-Karp relaxation (Section 3.1) and its op-
timal value is called the Held-Karp lower bound. Therefore an algorithm that finds a
solution to ATSP with cost at most a constant α times the Held-Karp lower bound is
also a α-approximation algorithm for ATSP.
The goal of this thesis is to clearly describe and explain the algorithm presented by

Svensson, Tarnawski, and Végh [STV18]. Chapter 2 covers the necessary preliminaries on
linear programming, while the following chapters present a series of reductions to easier
problems. In Chapter 3 the problem is reduced to approximating ATSP on laminarly-
weighted instances by using the Held-Karp relaxation. In Chapter 4 the problem is
further reduced to approximating ATSP on irreducible instances via an algorithm that
contracts certain vertex sets and then recursively solves the smaller instance. Chapter 5
provides a high level overview of the reduction to vertebrate pairs. Vertebrate pairs are
instances together with a subtour B which is used to solve Local-Connectivity ATSP. In

2



Chapter 6 we present a more detailed treatment of the reduction from ATSP to Local-
Connectivity ATSP. Finally the algorithm for Local-Connectivity ATSP is presented in
Chapter 7, where we first focus on the special node-weighted case. The reader is assumed
to have the basic knowledge of complexity theory taught by Meier [Mei18].
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2. Preliminaries

In this chapter we introduce the notation that will be used throughout the thesis and
present the basics of linear programming and network flow problems.

2.1. Notation

In this section we introduce the notation that will be used throughout the thesis. The
notation is directly quoted for the most part and identical to that used by Svensson,
Tarnawski, and Végh [STV18].
The support of a function f : X → R+ is the subset {x ∈ X | f(x) > 0}. For a subset

Y ⊆ X, we also use f(Y ) =
∑

x∈Y f(x). For multisets A,B we let their intersection
A∩B be the multiset containing the elements that are contained in both A and B with
multiplicity equal to the highest multiplicity in either set, e.g. {1, 1, 2} ∩ {1, 2, 3} =
{1, 1, 2}.
A walk is a sequence of edges where each edge is incident to the next. A walk that

starts and ends in the same vertex is a subtour, and it is a tour if it visits every vertex
at least once.
A directed graph G = (V,E) is called Eulerian if the number of incoming edges is

equal to the number of outgoing edges for every vertex. For a vertex set U ( V , we
let G[U ] denote the subgraph induced by U . That is, G[U ] is the subgraph of G whose
vertex set is U and whose edge set consists of all edges in the original edge set with both
endpoints in U . We also let G/U denote the graph obtained by contracting the vertex
set U , i.e., by replacing all the vertices in U by a single new vertex u and redirecting
every edge with one endpoint in U to the new vertex u. This may create parallel edges in
G/U . We keep all parallel copies; thus, every edge in G/U will have a unique preimage
in G.
For vertex sets S, T ⊆ V we let δ(S, T ) = {(u, v) ∈ E | u ∈ S\T, v ∈ T\S}. For

a set S ⊆ V we let δ+(S) = δ(S, V \S) denote the set of outgoing edges, and we let
δ−(S) = δ(V \S, S) denote the set of incoming edges. Further, let δ(S) = δ−(S)∪ δ+(S).
For a vertex v ∈ V we let δ+(v) = δ+({v}) and δ−(v) = δ−({v}). An edge (multi)set F
is called Eulerian if |δ+(v) ∩ F | = |δ−(v) ∩ F | for all v ∈ V . A subtour is equivalent to
an Eulerian multiset of edges that forms a single component.
For a set S ( V we let Sin and Sout be those vertices of S that have an incoming

edge from outside of S and those that have an outgoing edge to outside of S, respectively.
That is,

Sin = {v ∈ S | δ−(S) ∩ δ−(v) 6= ∅}, and Sout = {v ∈ S | δ+(S) ∩ δ+(v) 6= ∅}.
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2.2. Linear Programming

For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn we say x 6 y if and only if xi 6 yi for
i = 1, . . . , n.

2.2. Linear Programming

The following section is based on the textbook Linear programming by Chvátal [Chv83].
Linear programming (LP) is the problem of maximising or minimising the value of a
linear function of n variables subject to m linear constraints. A linear program of the
form

maximise
n∑
j=1

cnxn,

subject to
n∑
j=1

aijxj 6 bi (i = 1, 2, . . . ,m),

xj > 0 (j = 1, 2, . . . , n),

is said to be in standard form and can also be written as

max. cTx,
s.t. Ax 6 b,

x > 0,

where c ∈ Rn, b ∈ Rm and A = (aij) ∈ Rm×n. The linear function cTx is called the
objective function. The goal of this LP problem is to find a vector x ∈ Rn maximising
the objective function and satisfying the constraints.
In general some of the constraints might be linear equations or inequalities of the form

ax > b. Furthermore the goal might be to minimise the objective function instead of
maximising it, which can be seen in the LP formulation of ATSP (Section 3.1). However,
every such LP can be transformed into an equivalent problem in standard form using the
following equivalences:

• min cTx⇔ max (−c)Tx

• ax > b⇔ −ax 6 −b

• ax = b⇔ ax 6 b ∧ −ax 6 −b

• x > 0 missing ⇔ add variables xpos, xneg > 0 and replace x with xpos − xneg

therefore we will only consider problems in standard form in this section.
A point x satisfying all of the constraints is called a feasible solution and the set

P = {x ∈ Rn | Ax 6 b, x > 0} of all feasible solutions is called the feasible region.
We call a linear program feasible if it has a feasible solution. For a linear inequality
a1x1 + a2x2 + · · ·+ anxn 6 b the set of points x ∈ Rn satisfying the inequality is called

5



2. Preliminaries

a half-space. Furthermore the intersection of finitely many half-spaces is called a convex
polyhedron, which may be unbounded. If the feasible region is unbounded then the value
of the objective function on the feasible region may also be unbounded.
These terms stem from the following geometric interpretation. Geometrically the fea-

sible region P of a linear program can be interpreted as a convex polyhedron, because
it is the intersection of the half-spaces corresponding to the constraints (see Figure 2.1).
Such a set is always convex which means that for any two points in P the line segment
connecting the two points is also contained in P . Optimal solutions correspond to ver-

2 4 6 8

2

4

6

x1

x2

Figure 2.1.: geometric interpretation of a linear program (n = 2,m = 3)

tices of the polyhedron, or points on an edge (without the endpoints) in which case all the
points along that edge (including the endpoints) are also optimal solutions. This means
that if an optimal solution exists then there must be a vertex of the feasible region that
is an optimal solution. One way of solving LP problems is the simplex method which
checks the vertices by walking along the edges of the feasible region until an optimal so-
lution is found, this is guaranteed to find an optimal solution if one exists but may take
exponential time in the worst case, and the number of iterations increases proportionally
to the number of constraints.
In theory linear programs can be solved efficiently using the ellipsoid method, which

is discussed in Section 2.2.3. Even though it runs in polynomial time, the method is not
well suited for practice due to numerical instability and slow convergence [BGT81]. In
practice the simplex method is more effective even though it runs in exponential time
in the worst case. Interestingly though, the ellipsoid method can be used to solve linear
programs with exponentially many constraints in polynomial time.

2.2.1. Duality

For a linear program whose goal is to maximise the objective function any feasible solution
x gives a lower bound cTx on the optimal value. Now consider the problem of finding an

6



2.2. Linear Programming

upper bound for the optimal value of the linear program

max. c1x1 + · · ·+ cnxn,

s.t. ai1x1 + ai2x2 + · · ·+ ainxn 6 bi (i = 1, 2, . . . ,m),

xj > 0 (j = 1, 2, . . . , n).

Let y1, y2, . . . , ym be variables. Multiplying the i’th constraint by yi gives

y1(a11x1 + a12x2+ · · ·+ a1nxn) 6 y1b1
...

yn(an1x1 + an2x2+ · · ·+ annxn) 6 ynbn,

and by adding the inequalities we get

(y1a11 + y2a21 + · · ·+ ynan1)︸ ︷︷ ︸
constrain to be >c1

x1 + · · ·+ (y1a1n + y2a2n + · · ·+ ynann)︸ ︷︷ ︸
constrain to be >cn

xn 6
m∑
i=1

yiby.

In order to find an upper bound the coefficients of the xi on the left-hand side should
be greater than or equal to their coefficients ci the objective function. If the variables
satisfy the above conditions and x is feasible, then clearly

∑m
i=1 yiby is an upper bound

on cTx which leads to the dual problem of finding the tightest upper bound

minimise
m∑
j=1

bnyn,

subject to
n∑
j=1

ajiyj 6 bi (i = 1, 2, . . . , n),

yj > 0 (j = 1, 2, . . . ,m),

which can also be written as

min. bT y,

s.t. AT y > c,
y > 0.

the original problem is called the primal problem. If x and y are feasible primal and dual
solutions, then we have

cTx 6 (AT y)Tx = yTAx 6 yT b, (2.1)

where the first inequality holds because c 6 AT y and the second holds because Ax 6 b.

Lemma 2.1. Consider the linear program and its dual problem as defined above. If x and
y are feasible primal and dual solutions such that cTx = bT y then x and y are optimal
solutions.

7



2. Preliminaries

Proof. Assume x and y are feasible solutions to the primal and dual problem respectively.
The value of any solution to the dual is an upper bound on the optimal value of the primal
therefore if cTx = bT y and y is a feasible dual solution then cTx is an upper bound on
the optimal value of the primal. But x was assumed to be a feasible solution therefore it
must be optimal.

Theorem 2.1 (duality). Consider the linear program and its dual problem as defined
above. If the primal has an optimal solution x∗ ∈ Rn, then the dual has an optimal
solution y∗ ∈ Rm such that

cTx∗ = bT y∗.

Assume x∗ is an optimal solution to the primal then if we can find a feasible solution
y∗ such that cTx∗ = bT y∗ it is an optimal one by Lemma 2.1. The full proof of this
theorem is not given here. The simplex method, which we will not discuss guarantees
such a solution y∗.

Theorem 2.2 (complementary slackness). Let x∗ and y∗ be feasible solutions to the
primal and dual problems respectively. Then x∗ and y∗ are optimal solutions if and only
if the following conditions hold

(i)
m∑
i=1

aijy
∗
i = cj or x∗j = 0 (or both) for every 1 6 j 6 n

(ii)
n∑
j=1

aijx
∗
j = bi or y∗i = 0 (or both) for every 1 6 i 6 m.

This means that the j’th constraint in the dual is tight or the corresponding primal
variable is zero for every 1 6 j 6 n, and the i’th constraint in the primal is tight or the
corresponding dual variable is zero 1 6 i 6 m.

Proof. Let x∗ and y∗ be feasible solutions. Then

x∗ and y∗ are optimal 2.1⇐⇒ cTx∗ = bT y∗
(2.1)⇐⇒ cTx∗ = (AT y∗)Tx∗ = y∗TAx∗ = y∗bT

⇐⇒ x∗j = 0 or cj =
∑

aijy
∗
i and y∗i = 0 or bi =

∑
aijx

∗
j

2.2.2. Integer Linear Programming

Many optimisation problems can be formulated as integer linear programs. Integer linear
programming (ILP) is a variation of linear programming, where the variables and the
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2.2. Linear Programming

entries in A, b and c are constrained to be integers. That is, a problem of the form

max. cTx,
s.t. Ax 6 b,

x > 0,

x ∈ Zn.

where c ∈ Zn, b ∈ Zm and A ∈ Zm×n.
The problem of 1-0 integer linear programming is a special case of ILP where the

variables are constrained to be either one or zero. The problem of deciding whether an
1-0 ILP problem is feasible is one of Karp’s 21 NP-complete problems [Kar72], where
its NP-hardness is shown via reduction from SAT. Therefore, solving the optimisation
version of such problems, and consequently ILP problems in general, is NP-hard. Certain
ILP problems may be solvable in polynomial time, e.g. finding an integral circulation in
a flow network (Section 2.3).
The LP problem where the integrality constraints on the variables are removed is called

the linear programming relaxation of an ILP problem. Clearly the feasible region PI of
the ILP is contained within the feasible region P of the LP, because it consists of all those
points in P whose entries are integers. Therefore the value of the optimal solution to
the LP relaxation is an upper bound on the value of the optimal solution of the original
problem.
While it is not known whether there is a polynomial time algorithm for solving ILP,

the LP relaxation of such problems can be solved in polynomial time. One strategy
of approximating ILP is to solve the LP relaxation and then round the solution to an
integral one but this strategy depends on the “quality” of the LP relaxation, of which the
integrality gap is an indication.

Definition 2.1 (integrality gap). Consider an optimisation problem with a set of in-
stances I and a goal t ∈ {min,max}, that can be expressed using ILP. For an instance
x ∈ I of the problem let OPT ILP(x) be the value of the optimal solution and OPT LP(x)
be the value of the optimal solution to the LP relaxation. Then

IG =

supx∈I
OPT LP(x)
OPT ILP(x)

, for t = max

supx∈I
OPT ILP(x)
OPT LP(x)

, for t = min

is called the integrality gap. The integrality gap is at least one.

A high integrality gap means that the LP relaxation is in a sense, too optimistic and
therefore it could be difficult to round a solution for the relaxed problem to a good
integral solution. A low integrality gap (close to one) indicates a good LP relaxation.
In Section 3.1 the LP relaxation of the ILP formulation of ATSP called the Held-Karp

relaxation is introduced. The best lower bound on the integrality gap for ATSP is 2
[CGK06] and previously the best upper bound for the integrality gap for ATSP was in
O(poly log log n) [AG14]. In practice it seems hard to find ATSP instances that have

9



2. Preliminaries

OPT LP
OPT ILP

greater than 2. An α-approximation algorithm for ATSP with respect to its LP
relaxation (3.1) implies an upper bound of α on the integrality gap for ATSP because
such an algorithm guarantees an integral solution of weight at most αOPT LP > OPT ILP

for every instance, and therefore OPT ILP
OPT LP

6 α. The contraposition states that if IG > α
then there exists no α-approximation algorithm with respect to the LP relaxation.

2.2.3. Ellipsoid Method

The ellipsoid method is an algorithm for deciding whether a linear program is feasible
and can also be used to solve linear programs in polynomial time [Kha79]. This section
explains the intuition behind this method and how it can be used to solve LP. A detailed
description of the algorithm can be found in [KV12, Chapter 4]. Consider the linear
program max. cTx, s.t. Ax 6 b, x > 0 from the beginning. The ellipsoid method decides
whether the feasible region P = {x ∈ Rn | Ax 6 b, x > 0} is empty and if not returns a
vector x ∈ P . We will learn how this can be used to find an optimal solution.
The set of points x ∈ Rn satisfying a linear equation aTx = b, where a, b ∈ Rn

is called a hyperplane. The set of points x ∈ Rn satisfying an equation of the form
(x− v)TA(x− v) 6 1, where A ∈ Rm×n, v ∈ Rn is called an ellipsoid. Ellipsoids are the
generalised n-dimensional version of ellipses.
In non-degenerate cases it is possible to bound the volume of P , so the algorithm starts

with a ball E0 containing P . In every iteration a smaller ellipsoid Ek+1 is calculated,
which is guaranteed to contain P . Eventually the center of the ellipsoid is a point in P ,
in which case the algorithm terminates, or the ellipsoid is too small, in which case P is
empty and the problem is infeasible. Let the center of the current ellipsoid be z /∈ P .

z

E0

E1

P

Figure 2.2.: one iteration of the ellipsoid method
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2.2. Linear Programming

Then there exists a hyperplane separating z from P , because P is convex. For at least
one inequality we have

∑n
j=1 aijzj > bi and therefore

∑n
j=1 aijxj 6 bi 6

∑n
j=1 aijzj

for all x ∈ P because all points in P satisfy all of the inequalities. The hyperplane
H = {x |

∑n
j=1 aijxj =

∑n
j=1 aijzj}, which goes through the point z and is parallel to

the hyperplane corresponding to the broken inequality, separates z from P . The half-
space {x |

∑n
j=1 aijxj 6

∑n
j=1 aijzj} corresponding to H contains P (see Figure 2.2). In

order to check if a point is in P the method uses a separation oracle.

Definition 2.2. Consider a linear program as defined at the beginning of the chapter.
A separation oracle for that linear program is an algorithm which takes a vector x ∈ Rn
as an input, and outputs whether x is a feasible solution. If not it returns a violated
constraint

n∑
j=1

aijxj > bi for some 1 6 i 6 m.

In each iteration the ellipsoid Ek+1 is constructed to contain the intersection of Ek
with the half-space corresponding to a separating hyperplane. The number of iterations
is in O(poly(n,L)) where L is the entry in A and b with the highest absolute value.
Surprisingly solving LP can be reduced to deciding feasibility. The ellipsoid method

together with a separation oracle that runs in polynomial time can be used to solve LP
problems in polynomial time. In order to see this define a new linear program with n+m
variables by combining the linear program with its dual:

max. 0,
s.t. Ax 6 b,

AT y > c,

cTx = bT y,

x > 0,

y > 0.

If this linear program is feasible, then any feasible solution (x∗, y∗) corresponds to feasible
solutions to the primal and dual. Furthermore, because the condition cTx∗ = bT y∗ holds,
both x∗ and y∗ are optimal primal and dual solutions respectively due to Lemma 2.1.
Therefore deciding feasibility and returning a feasible solution if the problem is feasible
can be used to solve LP.
The problem with this method, is that the runtime of the ellipsoid method depends on

the number of variables, and if the number of constraints m is exponential in the number
of variables n then the runtime is exponential. It is possible to bound the absolute value
of the optimal solution by some value h ∈ R based on L and n. Let l = −h. Another
way of solving linear programs using the ellipsoid method is using binary search on the
interval [l, h] which contains the optimal value. First add the constraint cTx > l+h

2 to
the original linear program and use the ellipsoid method to check for feasibility. If the
resulting linear program is feasible then the optimal value lies in the interval [ l+h2 , h], if

11



2. Preliminaries

not it lies in the interval [l, l+h2 ]. The search terminates once the interval becomes too
small to contain two distinct vertices with different objective values which happens after
polynomially many iterations. Using this method the ellipsoid method can be used to
solve LP problems with exponentially many constraints in polynomial time as long as
there is polynomial time separation oracle for the problem.

2.3. Flow Problems

This section gives a brief overview of flow problems and is based on [Sch03].

Definition 2.3. Let G = (V,E) be a digraph, s, t ∈ V and c : V → R+ a capacity
function. A function f : V → R is called an s− t flow subject to c if

(i) f(δ+(v)) = f(δ−(v)) for each v ∈ V \ {s, t}

(ii) 0 6 f(e) 6 c(e) for each e ∈ E.

The value of an s− t flow f is

val(f) = f(δ+(s))− f(δ−(s)).

Definition 2.4. Let G = (V,E) be a digraph, s, t ∈ V and c : V → R+. A set U ( V
with s ∈ U and t ∈ V \U is called an s− t cut. The capacity of an s− t cut is c(δ+(U)).
If f is a flow subject to c then

val(f) 6 c(δ+(U)).

Definition 2.5. Let G = (V,E) be a digraph, s, t ∈ V, c : V → R+ and f an s − t
flow subject to c. Define the edge set Ef = {e ∈ E | f(e) < c(e)} ∪ {(v, u) | (u, v) ∈
E, f((u, v)) > 0}. Gf = (V,Ef ) is called the residual graph of f.

Theorem 2.3 (max-flow min-cut). Let G = (V,E) be a digraph, s, t ∈ V and c : V →
R+. Then the maximum value of an s − t flow subject to c is equal to the minimum
capacity of an s− t cut.

Ford and Fulkerson provide an algorithm for finding a maximum flow [FF62]. A
maximum flow in a flow network can be found in polynomial time using a variation of
Ford and Fulkerson’s algorithm [EK72]. If f is a maximum s− t flow, then a minimum
capacity s− t cut is defined by the set of vertices reachable from s in the residual graph
of f . Finding minimum s − t cuts will be used to construct a separation oracle for the
Held-Karp relaxation.
In a flow problem the amount of incoming flow through a vertex v can be constrained

by splitting it into two vertices v−, v+ that are connected by an edge. Then all edges
(u, v) are replaced by (u, v−) and all edges (v, u′) are replaced by (v+, u

′). Now a capacity
can be enfored on the edge (v−, v+) which acts as a bottleneck limiting the flow on the
edges in δ(v).
Circulation problems are a variant of flow problems, where there is no source or sink.

12



2.3. Flow Problems

Definition 2.6. Let G = (V,E) be a digraph. A function f : E → R is called a circulation
if

f(δ+(v)) = f(δ−(v)) for each v ∈ V

Theorem 2.4 (Cycle decomposition). Let G = (V,E) be a digraph and f : E → R be a
nonnegative circulation. Then f can be written as a nonnegative linear combination of
at most |E| directed cycles.

This means that the circulation f is equal to the sum of certain circulations on a set
of cycles in the graph. These cycles do not have to be disjoint. Flows can be written as
a linear combination of s− t paths and cycles.

Theorem 2.5 (Hoffman’s circulation theorem). Let G = (V,E) be a digraph and let
d, c : E → R with d 6 c. Then there exists a circulation f satisfying d 6 f 6 c if and
only if

d(δ(U)) 6 c(δ(U)) for each U ⊆ V.

If moreover d and c are integer, f can be taken integer.

Edmonds and Karp showed that a minimum cost circulation can be found in polynomial
time [EK72].

Corollary 2.5.1. Let G = (V,E) be a digraph and let f : E → R be a circulation. Then
there exists an integer circulation f ′ with

bf(e)c 6 f ′(e) 6 df(e)e for each e ∈ E

Proof. Take d := bfc and c := dfe in Theorem 2.5.

Integer circulations are used to solve Local-Connectivity ATSP in Chapter 7.
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3. Reduction to Laminarly-Weighted
Instances

In this chapter solving ATSP on general instances is reduced to solving ATSP on laminarly-
weighted instances (defined in Section 3.2) by using linear programming. This allows us
to focus on solving ATSP on these instances, which makes the problem easier because
they carry additional information about the original instance.
In the following, let (G = (V,E), w) be an ATSP instance with n vertices and m

edges. Assuming the instance has a solution in the form of an edge multiset F , it can
be written as a vector x∗ ∈ Nm0 . The vector has an entry x∗e for every edge in E, which
is to be interpreted as the number of times that edge is present in F . As mentioned in
Chapter 2, ATSP can be modelled as an integer linear program that has a variable xe
for each edge. The following section introduces the LP relaxation of that ILP problem,
in which the variables can take on positive real values. Even though it seems like this is
of not much use, because an edge cannot be “taken” 0.5 times in a tour as the proverbial
salesman cannot split himself in half, the duality of the linear program (Section 2.2.1)
can be used to gain additional information about the instance. We will also discuss how
to solve the LP relaxation which is called the Held-Karp relaxation in order to obtain a
more structured instance.

3.1. Held-Karp Relaxation

The Held-Karp relaxation is the following linear program, which was first studied by
Held and Karp [HK70; HK71]. Its optimal value is called the Held-Karp lower bound.

minimize
∑
e∈E

w(e)x(e) (LP)

subject to x(δ+(v)) = x(δ−(v)) for v ∈ V,
x(δ(S)) > 2 for ∅ 6= S ( V,

x > 0.

In this formulation x is also treated as a function on the edges, so x(F ) =
∑

e∈F xe
for some edge set F . The first set of constraints state, that the solution should be
Eulerian. These constraints also imply x(δ+(S)) = x(δ−(S)) for S ⊆ V . The second set
of constraints are called the subtour-elimination constraints of which there are 2n − 2,
they guarantee that the solution is connected and does not consist of multiple disjoint
subtours. An integral solution to the above linear program is a solution to ATSP because
such a solution corresponds to an edge multiset that is a minimum cost tour of the graph.
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3.1. Held-Karp Relaxation

The Held-Karp relaxation has 2n + 2n − 2 constraints and therefore the method of
combining the problem with its dual and then using the ellipsoid algorithm from Sec-
tion 2.2.3 is not suitable for solving it. In order to solve the problem in polynomial time
using the ellipsoid method we need a separation oracle, which decides whether a given
vector x ∈ Rm is a feasible solution to LP. The degree constraints on the vertices and
the positivity constraints of the variables can easily be checked in polynomial time. In
order to check the subtour-elimination constraints the given vector x is used as a capacity
function on the edges, that is c(e) = xe, for every e ∈ E which results in a flow network.
If at least one of the constraints is violated for some vertex subset S ( V then the s− t
cut given by that subset has a capacity of less than one for some s ∈ S, t ∈ V \ S.
Therefore O(n2) minimum s − t cuts are computed in order to check the constraints,
which can be done in polynomial time, leading to the following algorithm.

Algorithm 1 Separation oracle for the Held-Karp relaxation
input: a vector x ∈ Rm

1: for all v ∈ V do
2: check the degree constraint x(δ+(v)) = x(δ−(v))
3: end for
4: for all e ∈ E do
5: check the positivity constraint xe > 0
6: end for
7: let the capacity c of each edge e ∈ E be defined as c(e) = xe
8: for all (s, t) ∈ V × V with s 6= t do
9: compute a minimum s− t cut U in G with the capacity function c

10: if the capacity of the s− t cut is less than 1 then
11: return the subtour-elimination constraint corresponding to the cut U
12: end if
13: end for
14: return x

The binary search method in Section 2.2.3, together with the separation algorithm can
be used to solve the Held-Karp relaxation in polynomial time.
The dual problem to the Held-Karp relaxation is

maximise
∑
∅6=S(V

2 · yS (DUAL)

subject to
∑

S∈{R(V |(u,v)∈δ(R)}

yS + αu − αv 6 w(u, v) for (u, v) ∈ E,

y > 0.

The dual problem is obtained by transforming the primal (LP) as discussed in Sec-
tion 2.2.1 and it has a variable for every constraint in the primal and therefore exponen-
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3. Reduction to Laminarly-Weighted Instances

tially many (in the number of vertices n). Here the αv variables correspond to the degree
constraints, and the yS variables correspond to the subtour-elimination constraints.
A linear program with exponentially many variables cannot be solved in polynomial

time with the ellipsoid method, but the solution to the primal can be used to formulate
an equivalent linear program with less variables. When solving the primal, polynomially
many calls to the separation oracle are made, which returns a violated constraint each
time. Consider a modified version of LP, where all (subtour-elimination) constraints
are dropped, except those corresponding to a broken constraint returned by the sepa-
ration oracle when solving the primal. The new linear program has polynomially many
constraints, because the ellipsoid method only does polynomially many queries to the sep-
aration oracle. Because the ellipsoid method is deterministic and its result depends on
the broken constraints returned by the separation oracle, the ellipsoid algorithm returns
the same result for the modified linear program.
Due to Theorem 2.1 the optimal value of the new linear program is the same as that of

its dual which is equal to the optimum value of the original DUAL problem. Therefore
it suffices to find an optimal solution to the dual of the new linear program. The new
dual can be solved in polynomial time, because it has polynomially many variables and
constraints and they can easily be checked in polynomial time.

3.2. Laminarly-weighted ATSP and Uncrossing

In the previous section we learnt how the Held-Karp relaxation and its dual can be solved
in polynomial time. This section introduces laminarly-weighted instances, which use an
optimal solution to LP and a laminar optimal solution to DUAL.

Definition 3.1. Let V be a finite set. A family of subsets L ⊆ P(V ) is called laminar if
for any two sets S, T ∈ L either S ∩ T = ∅, S ⊆ T or T ⊆ S.

We say a solution (y, α) to DUAL is laminar, if the support L = {S ( V | yS > 0} of y
is laminar.

Lemma 3.1. There exists a laminar optimal solution to DUAL and it can be computed
in polynomial time.

Proof. Let (y∗, α∗) be an optimal solution to DUAL. Define a new linear program by
adding the constraint ∑

∅6=S(V

2 · yS =
∑
∅6=S(V

2 · y∗S (3.1)

to DUAL and defining a new objective function to be minimized as∑
∅6=S(V

|S|yS .

The new linear program can be solved in polynomial time using the method discussed in
the previous section and the optimal solution (y, α) is laminar.
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3.2. Laminarly-weighted ATSP and Uncrossing

A B

Figure 3.1.: Two crossing vertex sets.

Two sets A,B ( V cross if they intersect in a nontrivial way, that is A ∩ B,A \ B
and B \ A are non-empty. If no sets in L = {S ( V | yS > 0} cross, then it is
laminar. Assume there are two sets A,B ∈ L that cross and suppose that, without loss
of generality, yA 6 yB. Then obtain a new solution (ỹ, α) to DUAL by modifying y in
the following way

• ỹA = 0 (removing it from L)

• ỹB = yB − yA

• ỹB\A = yB\A + yA (potentially adding it to L)

• ỹA\B = yA\B + yA (potentially adding it to L)

• ỹS = yS for all the remaining subsets

The objective value of the new solution is the same as that of the old one, because yA is
both added and subtracted twice. Furthermore ỹ satisfies all of the constraints inDUAL
because for all (u, v) ∈ δ(A ∩B, V \ (A ∪B)) we have∑

S∈{R(V |(u,v)∈δ(R)}

ỹS =
∑

S∈{R(V |(u,v)∈δ(R)}

yS − 2yA

because (u, v) crosses both A and B, but not A \ B or B \ A (see the red edge in
Figure 3.1). For all other edges that cross A or B the sum stays the same, for example
any edge in δ(A \ B, V \ (A ∪ B)) crosses A and A \ B which means yA was added and
subtracted once. Therefore (ỹ, α) is also an optimal solution to DUAL. However∑

S∈L
|S|(yS − ỹS) = (|A|+ |B| − |A \B| − |B \A|)yA > 0,

which is a contradiction to the fact that (y, α) is an optimal solution to the new linear
program minimising

∑
∅6=S(V |S|yS . Therefore (y, α) is a laminar optimal dual solution.
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3. Reduction to Laminarly-Weighted Instances

Definition 3.2 (laminarly-weighted instances). A tuple I = (G,L, x, y) is called a
laminarly-weighted ATSP instance if G is a strongly connected digraph, L is a lami-
nar family of vertex subsets, x is a feasible solution to LP, and y : L → R+. We further
require that xe > 0 for every e ∈ E and that every set S ∈ L be tight with respect to x,
i.e. that x(δ+(S)) = x(δ−(S)) = 1. We define the induced weight function wI : E → R+

as
wI(e) =

∑
S∈{R∈L|e∈δ(R)}

yS for every e ∈ E.

In the following it is shown, that an α-approximation algorithm for ATSP on laminarly-
weighted instances can be turned into an α-approximation algorithm for general in-
stances. Laminarly-weighted instances are easier to solve, because they contain additional
structure and are a more general version of node-weighted instances in which the weight
function is defined as w(u, v) = f(u)+f(v) where f : V → R+. Node weighted-instances
correspond to laminarly-weighted instances, in which the laminar family L contains only
singleton sets (containing only a single vertex) and Svensson [Sve15] provides an algo-
rithm for Local-Connectivity ATSP on such instances (see Chapter 7).

Theorem 3.1. Assume we have a polynomial-time algorithm that finds a solution of
weight at most α times the Held-Karp lower bound for every laminarly-weighted ATSP
instance. Then there is a polynomial-time algorithm for the general ATSP problem that
finds a solution of weight at most α times the Held-Karp lower bound.

Proof. Let x be an optimal solution to LP and (y, α) an optimal laminar solution to
DUAL which can be computed using Lemma 3.1.
Define E′ = {e ∈ E | xe > 0}, G′ = (V,E′) and L = {S ( V | yS > 0}. Then
I = (G′,L, x, y) is a laminarly-weighted instance and due to complimentary slackness
(Theorem 2.2) all of the constraints in the dual are tight for all edges e in E′ and therefore
the following holds for the induced weight function:

wI(u, v) =
∑

S∈{R∈L|(u,v)∈δ(R)}

yS = w(u, v)− αu + αv for (u, v) ∈ E′.

We will show that a solution of weight at most α times the Held-karp Lower bound for
(G′, wI) is also an α-approximate solution in the original instance (G,w). Because x is
a solution to LP, the corresponding edge multiset is Eulerian and therefore the α values
cancel out in ∑

e∈E′
wI(e)x(e) =

∑
(u,v)∈E′

∑
S∈{R∈L|(u,v)∈δ(R)}

yS · x(u, v)

=
∑

(u,v)∈E′
(w(u, v)− αu + αv)x(u, v)

=
∑
e∈E′

w(e)x(e).

It follows, that the optimal value to the Held-Karp relaxation for the instance (G′, wI)
is equal to the original Held-Karp lower bound.
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3.3. Tight Sets

We define the LP value of a vertex set S to be

valueI(S) = 2
∑

R∈L,R(S
yR

The LP value of the entire vertex set valueI(V ) = value(I) is equal to the Held-Karp
lower bound.

3.3. Tight Sets

From now on Theorem 3.1 allows us to can focus on laminarly weighted instances of the
form I = (G,L, x, y). Due to complementary slackness (Theorem 2.2) all sets ∅ 6= S ( V
with yS > 0 have x(δ(S)) = 2. Such sets are called tight and have certain nice properties.
The following lemmas given without proof provide some useful information about tight

sets.

Lemma. For a tight set S ( V we have the following properties:

(a) Every path from a vertex u ∈ Sin to a vertex v ∈ Sout (and thus every path traversing
S) visits every strongly connected component of S.

(b) For every u ∈ Sin and v ∈ S there is a path from u to v inside S. The same holds
for every u ∈ S and v ∈ Sout.

Lemma. Let S ( V be a non-empty set such that L∪ {S} is a laminar family. Suppose
u, v ∈ S are two vertices such that there is a path from u to v inside S. Then we can in
polynomial time find a path P from u to v inside S that crosses every set in L at most
twice. Thus, the path satisfies w(P ) 6

∑
R∈L:R(S 2 · yR = value(S).

Remarkably, the new weight function wI , which is equal to the sum of the y values of
all the sets crossed by an edge, is symmetric. Laminarly weighted instances contain alot
of additional structure, but finding an algorithm for Local-Connectivity ATSP for such
instances still seems too hard, therefore the problem is reduced even further in order to
gain more structure.
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4. Reduction to Irreducible Instances

In this chapter our problem is reduced to irreducible instances via an algorithm for
laminarly-weighted instances that uses an algorithm for irreducible instances as a sub-
routine. This is done by contracting and inducing on tight vertex subsets in our instance,
these operations are introduced in Section 4.1. After contracting a set, the resulting in-
stance should ideally be easier to solve than the original instance and can therefore be
solved recursively.
For a set S ∈ L and u, v ∈ S we let

DS(u, v) =
∑

R∈{A∈L|u∈A,A(S}

yR + dS(u, v) +
∑

R∈{A∈L|v∈A,A(S}

yR,

where dS(u, v) is equal to the cost of a minimum weight path from u to v inside S, or
dS(u, v) = ∞ if no such path exists. For vetices u ∈ Sin and v ∈ Sout, 2yS + DS(u, v)
equals the cost of entering S via u, visiting all of the strongly connected components of
S, and then exiting through v.
We let δ = 3/4. This constant affects the approximation guarantee, and can be chosen

differently in order to optimise the algorithm.

Definition 4.1. We say that a set S ∈ L is reducible if

max
u∈Sin,v∈Sout

DS(u, v) < δ · value(S),

otherwise we say that S is irreducible. We also say that the instance I is irreducible if
no set S ∈ L is reducible.

The intuition behind this is that irreducible instances are easier to solve because they
resemble node-weighted instances in a sense. Laminarly-weighted instances where L only
contains singletons are always irreducible, because contracting single vertices results in
no decrease in LP value. Such instances are also node-weighted instances for which we
already have a constant-factor approximation algorithm.
Reducible sets are sets, that result in a large decrease of the LP value of the in-

stance when contracted (see Definition 4.2). Here we require the decrease to be at least
1
4 value(S). The idea behind the reduction presented in Section 4.2 is that if there exists
a reducible set S then it would be nice to contract it, solve the resulting smaller instance
and then lift the solution back to a subtour of the original instance. Finally that subtour
needs to be turned into a tour which can be done if we can find a tour of the instance
obtained by inducing on the set S. In order for this to work, we need to assign an
appropriate y-value to the vertex corresponding to the contracted set.
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4.1. Contracting and Inducing

A smaller value of δ means that we require a larger reduction in LP value after con-
tracting a set. Choosing a smaller value for δ would improve the approximation guarantee
for laminarly-weighted instances (Algorithm 6) because the instances become alot easier
after contracting a vertex set. However, it would also lead to a worse guarantee for irre-
ducible instances (Algorithm 7) because more work has to be done in order to solve the
instances that are considered irreducible. Furthemore, δ must be greater than one half.

4.1. Contracting and Inducing

Definition 4.2 (contracting a tight set). The instance (G′,L′, x′, y′) obtained from I =
(G,L, x, y) by contracting S ∈ L, denoted by I/S, is defined as follows:

• G′ = G/S, let s denote the new vertex in G′ corresponding to the set S

• x′(e′) = x(e) for each edge e′ ∈ E(G′) where e ∈ E(G) is the preimage of e′ in G

• The laminar family L′ contains all remaining sets of L:

L′ = {R \ S ∪ {s} | R ∈ L, S ⊆ R} ∪ {R | R ∈ L, S ∩R = ∅}

• The vector y′ equals y on all sets but {s}. For {s} we define

y′s = yS +
1

2
max

u∈Sin,v∈Sout

DS(u, v)

For the value of the new instance obtained by contracting S we have

value(I/S) = value(I)− (value(S)−max
u∈Sin,v∈Sout

DS(u, v)) 6 value(I) (4.1)

Definition 4.3. For a tour T of I/S we define its lift to be the subtour of I obtained
from T by replacing each consecutive pair (uin, s), (s, vout) of incoming and outgoing
edges incident to s by their preimages (uin, vin) and (uout, vout) in G, together with a
minimum-weight path from vin to uout inside S.

Definition 4.4. We say that S ∈ L is contractible with respect to an Eulerian multiset
F ⊆ E of edges if the lift of any tour of I/S plus the edge set F is a tour of I.

Lemma 4.1. Let T be a tour of the instance I/S. Then the lift F of T satisfies wI(F ) 6
wI/S(T ).

Definition 4.5 (inducing on a tight set). The instance (G′,L′, x′, y′) obtained from
I = (G,L, x, y) by inducing on S ∈ L, denoted by I[S], is defined as follows:

• G′ = G/(V \ S), let s denote the new vertex in G′ corresponding to the set V \ S

• x′(e′) = x(e) for each edge e′ ∈ E(G′) where e ∈ E(G) is the preimage of e′ in G
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4. Reduction to Irreducible Instances

• The laminar family L′ contains {s} and all the sets that are strict subsets of S:

L′ = {R ∈ L | R ( S} ∪ {{s}}

• The vector y′ equals y on the sets common to L′ and L. For the new set {s} we
define y′s = value(S)

The new value is
value(I[S]) = 2 value(S). (4.2)

Lemma 4.2. Given a tour T of I[S], we can in polynomial time find an Eulerian multiset
of edges F ⊆ E such that S is contractible with respect to F and wI(F ) 6 wI[S](T ).

4.2. Algorithm for Laminarly-Weighted Instances

This section contains the reduction to irreducible instances.

Theorem 4.1. Let Airr be a polynomial-time ρ-approximation algorithm for irreducible
instances. Then there is a polynomial-time 2ρ

1−δ -approximation algorithm for general in-
stances.

For the proof, let Airr be a polynomial-time ρ-approximation algorithm for irreducible
instances. The reduction is given by the following algorithm, which works by selecting a
reducible set containing no other reducible sets R ( S in L and making it contractible
via Lemma 4.2. Then S is contracted and the resulting instance I/S is solved recursively.
The instance I[S] contains all subsets R ( S ∈ L, which are all irreducible by the choice

Algorithm 2 Alam
input: I = (G,L, x, y)

1: if I is irreducible then
2: call Airr
3: else
4: select a minimal reducible set S ∈ L . I[S] is irreducible
5: find a tour TS in I[S] using Airr
6: find an edge set FS via Lemma 4.2 such that S is contractible w.r.t. FS
7: recursively call Alam on I/S
8: return FS plus the lift of the resulting tour T of I/S
9: end if

of S, together with a set {s} which is irreducible because it is a singleton. Therefore I[S]
is irreducible and the set S can be made contractible via Lemma 4.2, after using Airr to
find a tour of the instance.
After contracting S the resulting instance contains an additional set {s} ∈ L, which is

irreducible because it is a singleton. Furthermore for any superset R ∈ L of S the value
of maxu∈Rin,v∈Rout DR(u, v) can not decrease after contracting S. Thus the number of
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4.2. Algorithm for Laminarly-Weighted Instances

reducible sets in L decreases by at least one with each recursive call to Alam eventually
becoming zero. In this case an approximate tour can be found by simply calling Airr.
The algorithm terminates in polynomial time because at most |L| recursive calls to
Alam are made, in which both Airr is called and Lemma 4.2 is invoked both requiring
polynomial time.
Finally we prove that Alam is a 2ρ

1−δ -approximation algorithm.
Base case: if I contains n = 0 reducible sets, then the algorithm calls Airr which is a
ρ-approximation algorithm.
Inductive step: Suppose the statement holds for instances with at most n reducible
sets. Let I be an instance with n+ 1 reducible sets and S be the minimal reducible set
chosen by the algorithm. Then the algorithm returns the edge set FS ∪F where F is the
lift of the tour T of I/S and FS is an edge set making S contractible.
The edge set TS was obtained by callingAirr on I[S], therefore wI[S](TS) 6 ρ value(I[S]) =

2ρ value(S) and Lemma 4.2 guarantees that wI(FS) 6 wI[S](TS). The instance I/S has
at most n reducible sets so by the induction hypothesis wI/S(T ) 6

2ρ
1−δ value(I/S) and

due to Lemma 4.1 we have wI(F ) 6 wI/S(T ). Therefore

wI(FS ∪ F ) = wI(FS) + wI(F )

6 wI(FS) + wI/S(T )

6 2ρ value(S) +
2ρ

1− δ
value(I/S)

< 2ρ value(S) +
2ρ

1− δ
(value(I)− (1− δ) value(S))

=
2ρ

1− δ
value(I)

where the last inequality follows from (4.1) and the fact that S is a reducible set. This
shows that the statement holds for instances with n + 1 irreducible sets completing the
proof by induction. �

23



5. Reduction to Vertebrate Pairs

In this chapter the problem of approximating ATSP on irreducible instances is reduced
to approximating ATSP on vertebrate pairs. We will not give any proofs instead the aim
is to provide an overview of the reduction.

Definition 5.1. We say that an Instance I = (G,L, x, y) and a subtour B form a
vertebrate pair if every S ∈ L with |S| > 2 is crossed by B, i.e., δ(S) ∩ B 6= ∅. The set
B is referred to as the backbone of the instance.

This problem resembles node-weighted instances even more. If the instance has no sets
S ∈ L with |S| > 2 then the instance is node-weighted in which case Local-Connectivity
ATSP is easy to solve. Otherwise the backbone crosses all such sets, which will be used
in order to solve Local-Connectivity ATSP.

Theorem 5.1. Let Aver be a polynomial-time algorithm that, given a vertebrate pair
(I ′, B), returns a tour of I ′ with weight at most κ value(I ′) + ηwI′(B)(for some κ, η >
0). Then there is a polynomial-time ρ-approximation algorithm for irreducible instances,
where ρ = κ+η(αnw+3)

1−2(1−δ) .

The input for the algorithm is an irreducible instance.
First a quasi-backbone is constructed which is a subtour that crosses a large fraction

of the sets in L weighted by their LP value. The fraction of sets we require to be crossed
depends on the choice of δ. The following lemma used to construct a quasi-backbone
requires an approximation algorithm for node-weighted instances. Section 7.1 describes
an algorithm for Local-Connectivity ATSP for such instances. The approximation guar-
antee of the algorithm for node weighted instances is αnw = 18 + ε which is obtained
using the reduction to Local-Connectivity ATSP discussed in Chapter 6 (Theorem 7.1).

Lemma 5.1. There is a polynomial-time algorithm that, given an irreducible instance
I = (G,L, x, y), constructs a quasi-backbone B such that w(B) 6 (αnw+3) value(I) and
B ∩ δ(S) 6= ∅ for every maximal non-singleton set S ∈ L.

The proof of this lemma will not be given. The quasi-backbone is constructed by
contracting all maximal sets in L and then finding a tour B′ in the resulting node-
weighted instance. Then B′ is lifted back to the original instance and modified such that
it satisfies the desired properties.
After obtaining a quasi-backbone B all maximal non-singleton sets in L which are

not crossed by B are contracted. Clearly B is a backbone in the resulting instance I ′
which can then be solved using the algorithm for vertebrate pairs. The output of the
algorithm is the lift of the tour of I ′ together with a set of subtours making the sets
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in I that were contracted contractible. In order to make these vertex sets contractible
the algorithm is recursively called on the instances induced by those sets which are also
irreducible. The resulting tours of the induced instances are then used to make the vertex
sets contractible.
The full algorithm can be found in Appendix A (Algorithm 7).
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6. Reduction to Local-Connectivity
ATSP

The following chapter is based on [Sve15] in which Svensson reduces the problem of
approximating ATSP to the problem of finding a so-called α-light solution for Local-
Connectivity ATSP which is defined in the following section. The reduction works for
general ATSP instances (G,w) even though we only require an algorithm for vertebrate
pairs in Theorem 5.1. Due to the generality of the reduction an algorithm for Local-
Connectivity ATSP for vertebrate pairs implies an algorithm for ATSP for vertebrate
pairs.

6.1. Local-Connectivity ATSP

Let C(E′) = {G̃1 = (Ṽ1, Ẽ1), G̃2 = (Ṽ2, Ẽ2), . . . G̃k = (Ṽk, Ẽk)} denote the set of sub-
graphs corresponding to the k strongly connected components of the graph (V,E′).
Let a lower bound function lb : V → R+ be fixed, so that lb(V ) =

∑
v∈V lb(v) is equal

to the Held-Karp lower bound which is a lower bound on the cost of the optimal tour.
Intuitively lb(v) expresses how much we would like to “pay” in order to visit a vertex v.
In order for the reduction to work the function lb should also be efficiently computable.
For a graph G̃ let lb(G̃) denote the sum of the lb-values of the vertices in G.
Having defined a lower bound function we can now describe the quality of a subtour F

visiting the vertices in V ′ ⊆ V in terms of lb: w(F )/ lb(V ′) should be small. This leads
to the definition of Local-Connectivity ATSP:

Definition 6.1 (Local-Connectivity ATSP). The input for Local-Connectivity ATSP is
a directed graph G = (V,E), a weight function on the edges w and a partitioning of the
vertices V = V1 ∪V2 ∪ · · · ∪Vk such that the graph induced by Vi is strongly connected for
i = 1, . . . , k.
The goal is to find an Eulerian multiset of edges F such that

|δ+(Vi) ∩ F | > 1 for i = 1, . . . , k and max
(Ṽ ,Ẽ)∈C(F )

w(Ẽ)

lb(Ṽ )
is minimised.

The lower bound function can not have access to the partitioning.
A solution to Local-Connectivity ATSP is an Eulerian edge multiset that crosses all

of the partitions; the solution does not have to be connected. We can think of this as a
solution to ATSP where the subtour-elimination constraints that require connectivity are
relaxed to only include the k constraints corresponding to the subsets in the partition.
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6.2. From Local to Global Connectivity

The objective function says each connected component corresponding to a subtour in the
solution should have a low cost. Consider, for example, the partition consisting of all the
singleton sets {v}, v ∈ V then a solution is a vertex cycle cover.
In the following section approximating ATSP is reduced to finding an α-light solution

for Local-Connectivity ATSP. A solution F to Local-Connectivity ATSP is called α-light
if it satisfies

w(Ẽ)

lb(Ṽ )
6 α for all subgraphs (Ṽ , Ẽ) ∈ C(F ). (6.1)

An algorithm for Local-Connectivity ATSP is called α-light, if it always finds a solution
satisfying 6.1.
Finding an approximation algorithm for ATSP that finds a tour of weight at most α

times the Held-Karp lower bound is at least as hard as finding an α-light algorithm for
Local-Connectivity ATSP because such an algorithm guarantees a tour F with w(F ) 6
α lb(V ) and thus w(F )/ lb(V ) 6 α. The tour visits every vertex and consists of only a
single component therefore it is also an α-light solution to Local-Connectivity ATSP.

6.2. From Local to Global Connectivity

In this section the reduction is presented. Frieze, Galbiati, and Maffioli [FGM82] give a
log2 n-approximation algorithm for ATSP by starting with a minimum cost cycle cover
and then selecting a vertex in each component in that cycle cover. Then a minimum cost
cycle cover is computed in the subgraph induced by those vertices, this is repeated until
only one component is left. The number of connected components is at least halved each
time and the weight of each cycle cover is at most the cost of an optimal tour resulting
in a log2 n-approximate tour.
The idea behind this reduction uses a similar approach in that it starts with a cycle

cover E∗ and then iteratively adds cycles until C(E∗) contains only a single component.
The connected components in C(E∗) partition the graph into k strongly connected com-
ponents which is used as the input for Local-Connectivity ATSP. In each iteration cheap
cycles together with a subset of the edges obtained by solving Local-Connectivity ATSP
are added. The lower bound function can be chosen freely, as long it is fixed having
no information about the partitioning and lb(V ) = value(V ). The difficulty then lies in
finding an α-light algorithm with the chosen lb function.

Theorem 6.1. Let A be an algorithm for Local-Connectivity ATSP and consider an
ATSP instance G = (V,E,w). If A is α-light on G, there exists a tour of G with value
at most 5α lb(V ). Moreover, for any ε > 0, a tour of value at most (9+ ε)α lb(V ) can be
found in time polynomial in the number n = |V | of vertices, in 1/ε, and in the running
time of A.

In the following let A be an α-light algorithm for Local-Connectivity ATSP. The first
part of the theorem states, that a 5α-approximate tour exists and this section presents
an algorithm for finding such a tour.
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6. Reduction to Local-Connectivity ATSP

Definition 6.2. We say that graphs H1 = (V1, E1), H2 = (V2, E2), . . . ,Hk = (Vk, Ek)
form an Eulerian partition of G = (V,E) if the vertex sets V1, . . . , Vk form a partition
of V and each Hi is a connected Eulerian graph where Ei is a multisubset of E. An
Eulerian partition is called α-light if

w(Ei) 6 α lb(Vi) for i = 1, . . . , k

For the initialisation we start with a 2α-light Eulerian partition H∗1 = (V ∗1 , E
∗
1), H

∗
2 =

(V ∗2 , E
∗
2), . . . ,H

∗
k = (V ∗k , E

∗
k) with the following properties. The component H∗1 is chosen

to be the connected component with the highest lb-value that has a tour of weight at
most 2α times its lb-value and H∗2 is the largest such component which is disjoint from
H∗1 and so on. This means that H∗i is the connected component with the highest lb-
value that has a tour of weight at most 2α lb(H∗i ) and is disjoint from the components
H∗1 , . . . ,H

∗
i−1. The partitions are ordered such that lb(V ∗1 ) > lb(V ∗2 ) > · · · > lb(V ∗k ).

We do not have a polynomial time algorithm for finding such a partition because if a
5α-light tour exists, finding a 5α-light Eulerian partition satisfying the above properties
would require finding a tour. However we can modify the algorithm later by starting
with a cycle cover instead which results in a polynomial time algorithm with a slightly
worse approximation ratio of (9 + ε)α.
Let the edge multiset E∗ = E∗1∪E∗2∪· · ·∪E∗k be the union of the edges of the partitions.

Then C(E∗) contains the k components in the Eulerian partition. The total cost of the
edges in E∗ is at most 2α lb(V ). In the following merge procedure certain partitions are
connected by adding Eulerian sets of edges. This decreases the number of components
in C(E∗) in every iteration and is repeated until E∗ contains a tour. The cost of the tour
can then be bounded by using the properties of the initial partitioning.
For a connected subgraph G̃=(Ẽ, Ṽ ) of G, let low(G̃) = H∗

min {i|V ∗i ∩Ṽ 6=∅}
which is the

subgraph H∗i in the Eulerian partition that intersects G maximising lb(V ∗i ).

Algorithm 3 Merge procedure
input: E∗

1: use A to find an Eulerian edge set F crossing all of the partitions in C(E∗)
2: remove edges in F of connected components in C(F ) that are completely contained

in a component in C(E∗) (except trivial singleton components)
3: let X = ∅
4: select the component G̃=(Ẽ, Ṽ )∈C(F ∪X ∪ E∗) that minimises lb(low(G̃))
5: if there exist a cycle C=(VC , EC) in G of weight w(C) 6 α lb(low(G̃)) that connects
G̃ to another component in C(E∗ ∪ F ∪X) then

6: add EC to X and goto 4
7: else
8: E∗ ← E∗ ∪ (Ẽ ∩ F ) ∪ (Ẽ ∩X)
9: end if

We show that the merge procedure runs in polynomial time and reduces the number
of connected components in C(E∗). The set of connected components can easily be
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6.2. From Local to Global Connectivity

computed in polynomial time using depth first search. In order to find a cycle connecting
G̃ to another component (on line 5) consider the cycle consisting of an edge (u, v) together
with a shortest path from v to u for all outgoing edges (u, v) ∈ δ+(Ṽ ). Furthermore the
algorithm starts with k 6 n connected components, and therefore in each call to the
algorithm at most k cycles can be found reducing the number of connected components
in C(E∗ ∪ F ∪X).
The algorithm reduces the number of connected components in C(E∗) because in the

final step it adds an Eulerian edge set Ẽ ∩ F and G̃ is a component in C(E∗ ∪ F ∪X).
Furthermore, F is guaranteed to cross all of the components in C(E∗) so the edges in
Ẽ ∩ F must connect at least two of the components.
Using the properties of the initial Eulerian partition H∗1 , . . . ,H∗k we want to bound the

weight of an Eulerian set of edges, which connect the partitions in order to form a tour.
This can be done in the following two cases which will be used to bound the weight of
the edges added in Algorithm 3.
The weight of a strongly connected Eulerian subgraph G̃ = (Ṽ , Ẽ) with w(Ẽ) 6

α lb(Ṽ ) can be bounded as follows:

lb(Ṽ ) 6 lb(low(G̃)), (6.2)

which implies w(Ẽ) 6 α lb(low(G̃)).

Proof. Assume lb(Ṽ ) > lb(low(G̃)). We have w(Ẽ) 6 α lb(Ṽ ) 6 2α lb(Ṽ ). If low(G̃) =
H∗i then G̃ is disjoint from H∗1 , . . . ,H

∗
i−1. This contradicts the fact that H∗i was chosen

to be the subgraph of highest lb-value containing a tour of weight at most 2α lb(H∗i ) that
is disjoint from H∗1 , . . . ,H

∗
i−1.

This means that any such Eulerian subgraph has weight at most α times the lb-value of
the component in the partitioning with the highest lb-value that it intersects. Intuitively,
this gives us a way to bound the weight of an α-light Eulerian set of edges that connects
all of the partitions. If each of the partitions appears only once in the above inequality,
then the total weight of the edges is at most α lb(V ). This would imply a tour the original
instance of weight at most (1 + 2)α lb(V ) because the initial partitioning was 2α-light.
Furthermore, for disjoint Eulerian subgraphs H1 = (V1, E1), . . . ,Hl = (Vl, El) with

w(Ej) 6 α lb(Vj) and low(Hj) = H∗i for j = 1, . . . , l we have

l∑
j=1

lb(Vj) 6 2 lb(V ∗i ) (6.3)

This implies
∑l

j=1w(Ej) 6 2α lb(V ∗i ).

Proof. Assume
∑l

j=1 lb(Vj) > 2 lb(V ∗i ). Consider the subgraph H = (V ′, E′) consisting
of the union of H∗i and H1, . . . ,Hl. Then H has lb(V ′) > lb(V ∗i ) furthermore, H is
disjoint from H∗1 , . . . ,H

∗
i−1 because low(Hj) = H∗i for j = 1, . . . , l. If w(E′) 6 2α lb(V ′)

this would contradict the fact thatH∗i was chosen to be subgraph maximising lb(H∗i ) that
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6. Reduction to Local-Connectivity ATSP

has a tour of weight at most 2α lb(H∗i ) and is disjoint from the subgraphs H∗1 , . . . ,H∗i−1.
So we must have 2α lb(V ′) < w(E′) and therefore

2α
l∑

j=1

lb(Vj) 6 2α lb(V ′) < w(E′)

and because w(E′) 6 α
∑l

j=1 lb(Vj) + 2α lb(V ∗i ) we have

2α
l∑

j=1

lb(Vj) 6 α
l∑

j=1

lb(Vj) + 2α lb(V ∗i )⇔
l∑

j=1

lb(Vj) 6 2 lb(V ∗i )

which contradicts the assumption.

This means that if we can connect all of the initial partitions by adding an Eulerian edge
set F such that the partition with the lowest index that is crossed by any component
in C(F ) is H∗i . Then the total weight of those edges is at most 2α lb(V ∗i ). Similarly
to the above case, this would imply a tour of the original instance of weight at most
(2 + 2)α lb(V ).
Now we can use the inequalities (6.2) and (6.3) in order to show that the weight of

the tour gained by repeatedly calling the merge procedure is at most 5α lb(V ). Lets say
T 6 k calls to the merge procedure are required before finding a tour. Let G̃t = (Ṽt, Ẽt)
be the current selected component and Ft, Xt be the selected edge sets after the else
branch is taken in the t-th call to the merge procedure (on line 8) for 1 6 t 6 T . Further,
let F̃t = Ft ∩ Ẽt, X̃t = Xt ∩ Ẽt be the edges added to E∗ each call.

Lemma 6.1. We have w(∪Tt=1X̃t) 6 α lb(V ).

Proof. Each X̃t consists of a set of cycles in the component G̃t selected in the final
iteration in the merge procedure. Let C1, C2, . . . , Cc be the cycles in ∪Tt=1X̃t.
Lets say low(G̃t) = H∗i and Cj is the first cycle that connects G̃t to another compo-

nent G′ = (V ′, E′). Then lb(low(G′)) > lb(V ∗i ) because G̃t was selected to minimise
lb(low(G̃)) (we can assume the inequality is strict without loss of generality). Further-
more, in the following steps G′ and G̃t stay connected. Therefore any new component
G̃t′ that is selected later on cannot have low(G̃t′) = H∗i , because low is by definition the
partition intersecting our component maximising its lb-value and G′ already intersects a
component (low(G′)) of higher lb-value.
The cycle was chosen to have w(Cj) 6 α lb(V ∗i ) (line 5) and this together with the fact

that each V ∗i appears at most once by the reasoning above implies that w(∪cj=1Cj) =

w(∪Tt=1X̃t) 6 α
∑k

i=1 lb(V
∗
i ) = α lb(V ).

Lemma 6.2. We have w(∪Tt=1F̃t) 6 2α lb(V ).

Proof. Let F t denote the set of the Eulerian subgraphs corresponding to the connected
components in C(F̃t) where we disregard the trivial components that only consist of
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6.2. From Local to Global Connectivity

a single vertex. Define F ti = {H ∈ F t | low(H) = H∗i }. Then w(F̃t) = w(F t) =∑k
i=1w(F ti ).
We now show that for each i = 1, . . . , k the set F ti is non-empty for at most one

t = 1, . . . , T .

Proof. Let 1 6 i 6 k and 1 6 t0 < t1 6 T . Assume that F t0i ,F
t1
i 6= ∅.

The partition H∗i is contained within G̃t0 because G̃t0 ∈ C(F ∪X ∪E∗) and F
t0
i , which

is contained in G̃t0 , intersects H∗i . Therefore lb(low(G̃t0)) > lb(V ∗i ).
Let H = (V̂ , Ê) be a component in F t1i . Then H cannot be contained within G̃t0

because otherwise it would have been removed from F in step 2 of the t1-th call to the
merge procedure. We also have w(Ê) 6 α lb(V̂ ) 6 α lb(V ∗i ) where the first inequality is
due to the fact that F is α-light and the second is due to equation (6.2).
This means that H connects G̃t0 to another component in C(F ∪X ∪E∗) and w(Ê) 6

α lb(V ∗i ) 6 α lb(low(G̃t0)). And therefore there must exists a cycle C in H of weight
at most α lb(low(G̃t0)) that connects G̃t0 to another component. This is a contradiction
because G̃t0 is the selected component after the else branch is taken in the t0-th call to
the merge procedure which means there is no such cycle, otherwise the if branch would
have been taken. �

Each H = (V ′, E′) ∈ F ti is Eulerian and has w(E′) 6 α lb(V ′) because F is an α-light
solution to Local-Connectivity ATSP. Therefore lb(F ti ) 6 2 lb(V ∗i ) by fact (6.3) (here
lb(F ti ) denotes the sum of the lb values of all the components in F ti ). Using this we have

w(∪Tt=1F̃t) =

T∑
t=1

k∑
i=1

w(F ti ) 6 α
T∑
t=1

k∑
i=1

lb(F ti ) 6 2α

k∑
i=1

lb(V ∗i ) = 2α lb(V )

where the last inequality follows from the fact that F ti 6= ∅ for at most one call to the
merge procedure.

Finally using Lemma 6.1 and 6.2 the weight of the tour is

w(∪Tt=1F̃t) + w(∪Tt=1X̃t) +
k∑
i=1

w(E∗i ) 6 (2 + 1 + 2)α lb(V ) = 5α lb(V ).

While the merge procedure runs in polynomial time, we do not have an algorithm for
finding the 2α-light Eulerian partition in the initialisation. In order to get a polynomial
time algorithm we start with the partitioning consisting of the sets {v}, v ∈ V , which
is trivially 3α-light. Therefore E∗ is initially empty and C(E∗) contains the subgraphs
consisting of single vertices. As mentioned at the start solving Local-Connectivity ATSP
for this partitioning results in a cycle cover. Then we run a modified merge procedure
on the partitioning where the requirement for the cycles added to X is relaxed, until we
have a tour. And in each call to the merge procedure we verify that the condition (6.4)
holds. The following lemma which we will not prove guarantees that the resulting tour
has weight at most (9 + ε)α lb(V ).
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6. Reduction to Local-Connectivity ATSP

Lemma 6.3. Assume that the algorithm is initialised with a 3α-light Eulerian partition
H∗1 , H

∗
2 , . . . ,H

∗
k so that, in each repetition t of the modified merge procedure, we add a

subset F̃t such that

lb(F ti ) < 3 lb(H∗i ) +
ε lb(V )

n
for i = 1, 2, . . . , k. (6.4)

Then the returned tour has weight at most (9 + 2ε)α lb(V ).

Here F ti is defined as in the proof of Lemma 6.2. If condition (6.4) is violated in any
repetition of the modified merge procedure, then the entire algorithm is restarted with an
Eulerian partition guaranteed by the following lemma, given without proof. This process
is repeated until the condition is satisfied in each repetition of the merge procedure,
resulting in a tour of the desired weight.

Lemma 6.4. Suppose that repetition t of the (modified) merge procedure violates condi-
tion (6.4) when run starting from a 3α-light Eulerian partition H∗1 , H

∗
2 , . . . ,H

∗
k . Then

we can, in time polynomial in n, find a new 3α-light Eulerian partition Ĥ∗1 , Ĥ
∗
2 , . . . , Ĥ

∗
k̂

so that
k̂∑
j=1

lb(Ĥ∗j )
2 −

k∑
j=1

lb(H∗j )
2 >

ε2

3n2
lb(V )2 (6.5)

Lets say we start with the partition H∗1 , H∗2 , . . . ,H∗k and denote the sum
∑k

j=1 lb(H
∗
j )

2

of the squared lb values by S0. We will let Sl denote the sum of the squares of the lb
values of the partition after invoking Lemma 6.4 for the l-th time.
If a repetition of the modified merge procedure violates the condition (6.4) after starting

with that partition then Lemma 6.4 guarantees a second Eulerian partition with S1 >
ε2

3n2 lb(V )2+S0. If a repetition of the merge procedure violates the condition again, then
the lemma guarantees a third partition with

ε2

3n2
lb(V )2 6 S2 − S1 6 S2 −

(
ε2

3n2
lb(V )2 + S0

)
⇔ 2ε2

3n2
lb(V )2 + S1 6 S2

and so on. This means that the sum Sl increases by ε2

3n2 lb(V )2 every time the algorithm
is restarted, however for any Eulerian partition H1, H2, . . . ,Hk we have

∑k
i=1 lb(Hi)

2 6
(
∑k

i=1 lb(Hi))
2 = lb(V )2. Therefore we can find such a new Eulerian partition at most

3n2/ε2 times, or we would have a partition with S > lb(V )2+S0 which is a contradition.
Furthermore the algorithm guarantees a new partition if the condition (6.4) is ever

violated in a repetition of the merge procedure. Therefore the algorithm has to be
restarted at most 3n2/ε2 times before terminating without ever violating the condition.
The final algorithm for vertebrate pairs, together with the modified merge procedure

can be found in Appendix A (Algorithm 8).

32



7. Algorithm for Local-Connectivity
ATSP

In the previous chapters approximating ATSP was reduced to approximating ATSP on
vertebrate pairs, which contain additional structure making Local-Connectivity ATSP
easier to solve. The final problem is to find an α-light algorithm for Local-Connectivity
ATSP on vertebrate pairs (I, B), which implies an approximation algorithm for ATSP
on vertebrate pairs using Theorem 6.1.
Note that the reduction to Local-Connectivity ATSP in Chapter 6 works for general

ATSP instances and does not take the additional structure provided by vertebrate pairs
into account. In the algorithm for vertebrate pairs (Algorithm 8), however, Aloc is
only called on vertebrate pairs so the backbone can be used in order to solve Local-
Connectivity ATSP. Because the backbone already crosses all the non-singleton sets in
L the problem becomes similar to the node-weighted case.

Definition 7.1 (node-weighted ATSP). The input for node-weighted ATSP is a strongly
connected directed graph G = (V,E) and a weight function w : E → R+ such that there
exists a weight function f : V → R+ satisfying w(u, v) = f(u). The goal is to find a tour
of minimum weight.

Equivalently we can require w(u, v) = h(u) + h(v) by setting h(u) = 1
2f(u). The weight

of any tour is the same because it has to be Eulerian.

7.1. Singleton instances

Laminarly-weighted instances I where L contains only sets with one element are node-
weighted instances because any edge (u, v) crosses at most two sets in L, namely {u}
and {v} therefore wI(u, v) = yu + yv. Before looking at the algorithm for arbitrary
vertebrate pairs, we prove the following theorem which provides a 2-light algorithm for
these singleton instances.

Theorem 7.1. There exists a polynomial time 2-light algorithm for Local-Connectivity
ATSP on singleton instances.

The input is a node-weighted instance I = (G,L, x, y) together with a partitioning
V = V1 ∪ V2 ∪ · · · ∪ Vk. For the lower bound function define lb(v) = 2yv. The output is
a Eulerian edge set F satisfying

|δ+(Vi) ∩ F | > 1 for i = 1, . . . , k and
w(Ẽ)

lb(Ṽ )
6 α for all subgraphs (Ṽ , Ẽ) ∈ C(F ).
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7. Algorithm for Local-Connectivity ATSP

The vector x is a circulation because it satisfies the degree constraints in the linear pro-
gram LP. In the following x will be modified and then rounded to an integral circulation
satisfying the above conditions.
This algorithm adds a vertex Ai for all partitions Vi and then redirects exactly one

unit of flow from x to go through Ai (see Figure 7.1). This is always possible because
the subtour-elimination constraints in LP guarantee that x(δ−(Vi)) > 1. Furthermore
x(δ−(v)) = 1 holds for all v ∈ V with yv > 0 due to complementary slackness.

Algorithm 4 redirecting flow
input: circulation x, partitioning V = V1 ∪ V2 ∪ · · · ∪ Vk
output: modified (multi)graph G′ and circulation x′

1: for i = 1, . . . , k do
2: add a vertex Ai
3: for all (u, v) ∈ δ−(Vi) do . redirect one unit of flow to Ai
4: add an edge (u,Ai)

5: x′(u, v)← x(u, v)
(
1− 1

x(δ−(Vi))

)
6: x′(u,Ai)← x(u, v)

(
1

x(δ−(Vi))

)
7: end for
8: for all (u, v) ∈ δ+(Vi) do . redirect one unit of flow from Ai
9: add an edge (Ai, v)

10: x′(u, v)← x(u, v)
(
1− 1

x(δ−(Vi))

)
11: x′(Ai, v)← x(u, v)

(
1

x(δ−(Vi))

)
12: end for
13: for all (u, v) with u, v ∈ Vi do . restore flow conservation
14: x′(u, v)← x(u, v)

(
1− 1

x(δ−(Vi))

)
15: end for
16: end for

The result x′ is a circulation in G′ because flow conservation holds for all vertices.
Consider the i’th iteration of Algorithm 4. The flow on all of the edges having at
least one endpoint in the set Vi is multiplied by a factor of (1− 1/x(δ−(Vi))). For
all edges (u, v) in δ−(Vi) the outgoing flow of u does not change because we add a flow of
x(u, v)(1/x(δ−(Vi))) on the edge (u,Ai). For all edges (u, v) in δ+(Vi) the incoming flow
of v does not change because we add a flow of x(u, v)(1/x(δ−(Vi))) on the edge (Ai, v).
Therefore the incoming and outgoing flow of a vertex v ∈ Vi is x(δ−(v)) (1− 1/x(δ−(Vi))).
We now have x′(δ−(Ai)) = 1 for all i = 1, . . . , k and x′(δ−(v)) 6 1 still holds for all v ∈ V
with yv > 0.
Recall that degree constraints can be enforced on a vertex v in a flow problem by

splitting v into two vertices v−, v+ and then enforcing the degree constraints as capacities
or lower bounds on the edge (v−, v+) (see Figure 7.1). This means we can enforce an
upper bound of one on the incoming flow for each v ∈ V with yv > 0 as well as an upper
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and lower bound of one for the Ai. We can now round x′ to an integral circulation z′

in polynomial time using Corollary 2.5.1. The circulation z′ satisfies the same degree
bounds as x′ because the degree constraints were already integral. The degree bounds
on vertices with yv = 0 do not matter, because these vertices can be visited for free as
we can write the cost of an edge (u, v) as w(u, v) = 2yv.
The circulation z′ in G′ is then mapped back to G by adding the flow on the edges

entering and exiting Ai back onto the original edges. Note that G′ may have parallel
edges so that all edges (u,Ai) and (Ai, v) have a unique preimage in δ−(Vi) and δ+(Vi),
respectively. Now the partition Vi has at least one unit of incoming flow from one of the
edges going to the vertex Ai as well as one unit of outgoing flow from one of the edges
coming from Ai.
The resulting flow z in G may not be a circulation because the in-degree and out-

degree may not be equal for two vertices in each Vi. Let the incoming edge (uin, vin)
and outgoing edge (uout, vout) be the edges that got one unit of flow added to them. If
vin = uout then flow conservation holds, if not, in order to fix this calculate a path Pi
from vin to uout inside Vi. The output F is the multiset containing each edge e with
multiplicity z(e) together with the paths Pi.
Clearly all the partitions are crossed by F , because each of the vertices Ai had one unit

of incoming flow before mapping back to the original graph. Furthermore each vertex v
with yv > 0 is visited at most twice because a degree constraint of one was enforced on v
and the flow from the Ai together with the path Pi add at most one visit to each vertex
in Vi. Therefore for any (Ṽ , Ẽ) ∈ C(F ) we have

wI(Ẽ) =
∑
e∈Ẽ

wI(e) =
∑
v∈Ṽ

|δ(v) ∩ Ẽ|yv = 2
∑
v∈Ṽ

|δ−(v) ∩ Ẽ|yv 6 4
∑
v∈Ṽ

yv = 2 lb(Ṽ ).

Using Theorem 6.1 this implies an (18+ε)-approximation algorithm for Local-Connectivity
ATSP which is required for the reduction to vertebrate pairs in Theorem 5.1.

7.2. Non-Singleton Instances

Vertebrate pairs may contain non-singleton sets in their laminar family L and this makes
them harder to solve, but they also contain a backbone B which crosses all non-singleton
sets in L, therefore the algorithm is designed to taking this additional structure into
account.
The first step in solving Local-Connectivity ATSP is designing a lower bound function

lb : V → R+ such that lb(V ) equals the Held-Karp lower bound. Define the lower bound
function

lb(v) = value(I) · lb(v)
lb(V )

, where lb(v) =

{
1

|V (B)|(value(I) + w(B)/4) if v ∈ V (B),

2yv otherwise.

The idea is to round the circulation x to an integral one like in the singleton case while
additionally forcing at least one unit of flow to visit a vertex of the backbone whenever a
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Vi Ai
v

v− v+

Figure 7.1.: On the left a fraction of the total flow is redirected to go through Ai. On
the right a vertex is split into two, enforcing a capacity on the edge (v−, v+)
is the same as enforcing a degree bound on v.

non-singleton set is crossed by the circulation. This results in one large component of the
solution containing the backbone together with all of the edges crossing a non-singleton
component, this means that the lower bound value of that component is at least lb(B).
The analysis for the remaining components in the solution is similar to the singleton
case.

Theorem 7.2. There is a polynomial-time algorithm for Local-Connectivity ATSP that
is (8 + w(B)/ value(I))-light for vertebrate pairs (I, B).

The input for Local-Connectivity ATSP is a partitioning V = V1 ∪ V2 ∪ · · · ∪ Vk. The
output is an Eulerian edge multiset F ∗ = B ∪ P ∪ F .
Because the instance already has a backbone B which crosses all the sets S ∈ L

with |S| > 2 it is added as part of the output F ∗. Any partition Vi that is crossed by
the backbone therefore already has |δ+(Vi) ∩ F ∗| > 1. If the backbone is completely
contained inside a partition then we add a subtour P connecting the backbone to any
other partition otherwise let P = ∅.
The set F crosses the remaining partitions that are not already crossed by the back-

bone. It is obtained using the following lemma, which is given without proof.

Lemma 7.1. There is a polynomial-time algorithm that solves the following problem.
Let (I, B) be a vertebrate pair, and let U1, . . . , Ul ⊆ V \V (B) be disjoint non-empty
vertex sets such that the subgraphs G[U1], . . . , G[Ul] are strongly connected and for every
S ∈ L>2 and i = 1, . . . , l we have either Ui ∩ S = ∅ or Ui ⊆ S. Then the algorithm finds
an Eulerian multiset F ⊆ E of edges such that:

(a) w(F ) 6 3 · value(I),

(b) |δ−F (U)| > 1 for every i = 1, . . . , l,
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7.2. Non-Singleton Instances

(c) |δ−F (v)| 6 4 for every v ∈ V with x(δ−(v)) = 1,

(d) any subtour in F that crosses a tight set in L>2 visits a vertex of the backbone.

This allows us to construct the required low cost Eulerian set of edges by choosing
the Ui as specific subsets of the partitions Vi that aren’t crossed by the backbone. The
full algorithm can be found in Appendix A (Algortihm 9). This implies a (9 + ε)(8 +
w(B)/ value(I))-approximation algorithm for vertebrate pairs.
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8. Conclusion

The final approximation guarantee of the algorithm presented here is 4177. In the latest
version of the paper Svensson, Tarnawski, and Végh [STV17] improve the constant down
to 506 by optimising the reductions. By introducing a specialised version of Local-
Connectivity, the fact that Aloc (Algorithm 9) is always called on vertebrate pairs can be
exploited. Instead of using the reduction from [Sve15] which provides a general reduction
from ATSP to Local-Connectivity ATSP, they reduce solving ATSP for vertebrate pairs
to this new problem, which takes the backbone into account.
A 506 approximation algorithm for ATSP with respect to the Held-Karp relaxation

gives an upper bound of 505 on the integrality gap of ATSP because it guarantees a
solution F of weight w(F ) 6 506 value(I) for every instance I and therefore OPT 6
506 value(I) which implies IG = OPT

value(I) 6 506 for every instance. This is improved
down to 319 by constructing a non polynomial time approximation algorithm with a
better approximation guarantee using the first part of Theorem 6.1.
In order to beat the log2 n-approximation algorithm of Frieze, Galbiati, and Maffioli

[FGM82] (see Figure 1.1) the number of vertices n would have to be greater than 2506

therefore the algorithm is not suitable for practical use. However, achieving a constant
factor is an important theoretical advancement. Improving on the methods used in
[STV18] in order to get a better approximation guarantee is an open problem, but in
order to get close to the conjectured integrality gap of 2, new methods are probably
necessary.
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A. Full Description of Algorithm

The following series of reductions was made

1. Algorithm for laminarly-weighted instances ⇒ algorithm A for general instances

2. Algorithm for irreducible instances ⇒ algorithm Alam for laminarly-weighted in-
stances

3. Algorithm for vertebrate pairs ⇒ algorithm Airr for irreducible instances

4. Algorithm for Local-Connectivity ATSP ⇒ algorithm Aver for vertebrate pairs

All of the algorithms used in the reduction steps are listed below. The final algorithm
Aloc solves Local-Connectivity ATSP for vertebrate pairs.

Algorithm 5 A
input: G = (V,E), w : V × V → R+

1: find optimal solutions x and (α, y) to LP and DUAL
2: if y is not laminar then
3: y ← a laminar optimal solution obtained via uncrossing y (Section 3.2)
4: end if
5: let
6: E′ = {e ∈ E(G) | x(e) > 0}
7: G′ = (V,E′)
8: L = {S ( V | yS > 0}
9: w′(u, v) = w(u, v)− αu + αv

10: call Alam on I = (G′,L, x, y) . wI = w′
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A. Full Description of Algorithm

Algorithm 6 Alam
input: I = (G,L, x, y)

1: if I is irreducible then
2: call Airr
3: else
4: select a minimal reducible set S ∈ L . I[S] is irreducible
5: find a tour TS in I[S] using Airr
6: find an edge set FS via Lemma 4.2 such that S is contractible w.r.t. FS
7: recursively call Alam on I/S
8: return FS plus the lift of the resulting tour T of I/S
9: end if

Algorithm 7 Airr
input: irreducible instance I = (G,L, x, y)

1: construct a quasi-backbone B using Lemma 5.1
2: let L∗max be the set of all maximal non-singleton sets in L that B does not cross
3: for all S ∈ L∗max do
4: recursively call Airr on I[S] to find a tour TS of I[S]
5: find an edge set FS via Lemma 4.2 making S contractible
6: end for
7: let I ′ be the instance obtained by contracting all S ∈ L∗max
8: Assert: B is now a backbone of I ′
9: call Aver on (I ′, B) resulting in a tour T ′ of I ′

10: return the lift of T ′ together with
⋃
S∈L∗max

FS
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Algorithm 8 Aver
input: vertebrate pair (I, B)

1: start with each vertex as a subgraph (trivially 3α-light and Eulerian)
2: E∗ ← ∅ (the edges of the initial Eulerian partitions)
3: while condition (6.4) holds and there is more than one partition do
4: run merge on the partitioning
5: end while
6: if (6.4) is violated then
7: restart with a new partitioning via Lemma 6.4
8: end if
9: return E∗

10: function merge(partitioning)
11: use Aloc to find an Eulerian edge set F crossing all of the partitions
12: remove edges in F of connected components in C(F ) that are completely contained

in a component in C(E∗) except trivial singletons
13: let X = ∅
14: select the component G̃=(Ẽ, Ṽ )∈C(F ∪X ∪ E∗) that minimises lb(low(G̃))
15: if there exist a cycle C=(VC , EC) in G of weight w(C) 6 α(3 lb(low(G̃)) +

ε lb(V )/n) that connects G̃ to another component in C(E∗ ∪ F ∪X) then
16: add EC to X and goto 14
17: else
18: E∗ ← E∗ ∪ (Ẽ ∩ F ) ∪ (Ẽ ∩X)
19: end if
20: end function

41



A. Full Description of Algorithm

Algorithm 9 Aloc for Local-Connectivity ATSP
input: partitioning V = V1 ∪ V2 ∪ · · · ∪ Vk, backbone B
output: B ∪ P ∪ F where P and F are obtained as follows

1: if there is no partition class that contains all the vertices of B then
2: let P = ∅
3: else
4: let Vi be the partition class with V (B) ⊆ Vi
5: select arbitrary vertices u ∈ V (B) and v ∈ V \Vi
6: let P be the edges of a minimium-weight path from u to v plus the edges of a

minimium-weight path from v to u.
7: end if
8: index the partition classes so that V1, . . . , Vl are those sets that are disjoint from the

vertices of the backbone (we have 0 6 l < k)
9: for i = 1, . . . , l do

10: let V ′i be the intersection of Vi with a minimal set S ∈ L>2 ∪{V } with S ∩Vi 6= ∅
11: consider a decomposition of V ′i into strongly connected components
12: let Ui ⊆ V ′i be the vertex set of a source component in this decomposition
13: end for
14: let F be the edge set guaranteed by Lemma 7.1
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