
Department of Theoretical Computer Science

Leibniz University Hanover

Master Thesis

Parallel Computation with Real
Numbers

Timon Barlag

Matriculation Number: 3077970

October 20, 2019

First Examiner: Prof. Dr. Heribert Vollmer

Second Examiner: Dr. Arne Meier

Contents

1 Introduction 1
1.1 General Introduction . 1
1.2 Related Work . 2

2 Preliminaries 3
2.1 Machines over R . 3
2.2 Arithmetic Circuits over R . 5
2.3 R-structures and Logics over R . 14

2.3.1 First-order Logic over R . 15
2.3.2 A few Extensions to FOR . 17

3 Characterizing AC0
R 24

3.1 A Characterization for non-uniform AC0
R 24

3.2 A Characterization for UP -AC0
R . 32

3.3 A Characterization for UL-AC0
R . 34

4 Conclusions 44
4.1 Summary and Main Results . 44
4.2 Outlook . 44

I

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und ohne fremde Hilfe
verfasst habe und keine anderen Hilfsmittel und Quellen als angegeben verwendet habe.

Timon Barlag

II

1 Introduction

1.1 General Introduction

Computational complexity theory is a branch of theoretical computer science which fo-
cuses on the study and classification of problems with regard to their innate difficulty.
This is done by dividing these problems into classes, according to the amount of re-
sources necessary to solve them using particular models of computation. One of the
most prominent such models is the Turing machine – a machine operating sequentially
on a fixed, finite alphabet.

In a day and age where parallel computation is more commonplace than ever, the
limitations of this model are all too real. Programs that run on individual chips, in
large GPU-clusters or even in clouds require different models, to be studied. For the
examination of problems based on their parallel complexity, several different models of
computations have been introduced and studied. The model we are going to have a
closer look at in this thesis is the arithmetic circuit [Vol99], which, as its name suggests,
resembles electrical circuits in its functioning.

Parallel computation is, however, not the only step we are taking away from the Turing
machine. Many real-world problems are in fact real-valued, meaning that they cannot
be solved by using only discrete computation. Of course, our actual computers cannot
perform computations on a non-discrete set either, however, to study these problems
it is useful to first assume that exact computations on the reals are available and then
approximate them using discrete – and available – techniques. Computation models
exist both for real-valued sequential and for real-valued parallel computation [BSS88].

Cucker and Meer showed a few logical characterizations for bounded fan-in real arith-
metic circuit classes [CM99], which is what this thesis builds on. We now expand on that
research by developing characterizations for unbounded fan-in classes; we are particu-
larly concerned with a real analogue to the class AC0 – a class which contains problems
that can be solved in constant time with a reasonable amount of hardware. That class is
also interesting, because it coincides with the class of sets definable by first-order logic
in the classical case. We present logical characterizations for AC0

R and two of its uniform
subclasses and we provide a generalization for certain uniform subclasses of AC0

R.
This thesis is structured as follows: In Chapter 2 we start by giving an introduction to

computation over the reals by presenting machine models and some basic definitions. We
then proceed by defining first-order logic over the real numbers and giving some useful
extensions thereof. The main results of this thesis, namely logical characterizations
for non-uniform AC0

R and two of its uniform subclasses are described in Chapter 3.
Finally, conclusions are drawn and an outlook on potential future research is provided
in Chapter 4.

1

1.2 Related Work

The theory of computation that we deal with in this thesis was first introduced by
Blum, Shub and Smale, to examine computation and complexity over the real numbers
or any ordered ring [BSS88]. An interesting property of this theory is that, as shown
by Michaux, a real analogue to the classical PSPACE would contain every recursive set
over the reals [Mic89], which then makes space complexity much less of an interesting
property when classifying problems. Another interesting result about real computation
is the existence of inherently sequential problems, which has not yet been shown in the
classical case [Cuc92].

Grädel and Meer introduced first-order logic over the reals and used it to provide
some results in descriptive complexity [GM95], on which Cucker and Meer expanded by
giving characterizations for further real complexity classes, including circuit complexity
classes and a real version of NP [CM99]. Meer also investigated counting problems over
the reals and gave a characterization for a real version of #P [Mee00].

For more information on real-valued machine models, see [BCSS98] and for more
information on arithmetic circuits in the classical case, see [Vol99].

2

2 Preliminaries

In the upcoming section, we give an introduction to the machine models and logic over R
used in this thesis – which are mostly taken from [CM99] – and some extensions thereof
which we will make use of later on.

2.1 Machines over R
Even though this thesis mostly concerns itself with parallel computation, we first intro-
duce a computation model for serial computation over R. We do this mainly to later
define uniformity criteria but also to provide a model for real computation akin to the
discrete Turing Machine. The model we use was first introduced by Blum et al. [BSS89]
and later modified by Cucker and Meer [CM99]. It is reminiscent of discrete register
machines such as the Uniform Register Machine (URM) (see, for example [Cut80]).

We start by defining a few notations and operations which we need when talking about
the aforementioned machine model.

Definition 1 (§2 [CM99]). In the following, arbitrarily long R-vectors will be denoted
by R∞, i.e.

R∞ =
⋃
n∈N

Rn (2.1)

For any x ∈ R∞, |x| denotes the length of the vector x, i.e. the only n s.t. x ∈ Rn.
We denote by R∞ the bi-infinite direct sum which contains elements of the form

(..., x−2, x−1, x0, x1, x2, ...)

where xi ∈ R for all i ∈ Z and xk = 0 for sufficiently large |k|. For R∞, we define the
operations shift left σ` : R∞ → R∞ and shift right σr : R∞ → R∞ which shift the indices
of the elements, e.g.

... x−2 x−1 x0 x1 x2 x−2 x−1 x0 x1 x2 ...
σ`((..., 0, π, e, 5, 0, ...)) = (..., π, e, 5, 0, 0, ...)
σr((..., 0, π, e, 5, 0, ...)) = (..., 0, 0, π, e, 5, ...)

Since we would like to talk about finite computations on R∞, we introduce the follow-
ing, rather specific definition, which we will make use of when defining our sequential
machine over R.

3

Definition 2. When we say that a function f : R∞ → R∞ is a finite R∞-map , we mean
that there exist indices `, r ∈ N, where ` < r and there are functions f`, ..., fr : Rr−` → R,
such that

f(..., x`−1, x`, x`+1, ..., xr−1, xr, xr+1, ...) =

(...x`−1, f`(x`, x`+1, ..., xr−1, xr), ..., fr(x`, x`+1, ..., xr−1, xr), xr+1, ...). (2.2)

If for all i, fi is of the form

fi(x1, ..., xr−`) = p(x1, ..., xr−`), (2.3)

for a real-valued polynomial p we say that f is a finite polynomial R∞-map, and if the
fi are of the form

fi(x1, ..., xr−`) =
pi1(x1, ..., xr−`)

pi2(x1, ..., xr−`)
, (2.4)

with real-valued polynomials pi1 and pi2, then we say that f is a finite rational R∞-map.

Definition 3 (Definition 1 [CM99]). A machine over R consists of an input space
I = R∞, an output space O = Rk (k ≤ ∞), a state space S = R∞ and a finite
connected directed graph with nodes that are labeled 1...N and each of which has one
of the following types:

Input nodes There is only one input node, this node is labeled with 1. As-
sociated with this node is a next node β(1) and the input map
gI : R∞ → R∞.

Output nodes There is only one output node which is labeled with N . It has
no next nodes; once it is reached the computation halts and the
output map gO : R∞ → Rk places the result of the computation
in the output space.

Computation nodes A computation node m is associated with a next node β(m)
and a map gm : R∞ → R∞, where gm is a finite polynomial or
rational R∞-map.

Branch nodes A branch node m is associated with two nodes: β+(m) and
β−(m). The next node of m is β+(m) if x0 ≥ 0 and β−(m)
otherwise. Here x0 denotes the zeroth coordinate of the vector
x ∈ S representing the current state.

Shift nodes A shift node m is associated with a next node β(m) and a map
σ : R∞ → R∞, where σ is a left or right shift.

The input map gI places an input (x1, ..., xn) ∈ R∞ in (..., 0, n, x1, ..., xn, 0, ...) ∈ R∞
where the size of the input n is stored in the zeroth coordinate. When the output space
is R∞, gO is the identity map on the first m coordinates of R∞, where m is the number
of consecutive ones stored in the negative coordinates of the input to the output node
inO ∈ R∞. If the output space is Rk for some k ∈ N, we take gO as the identity restricted
to the first k coordinates of R∞.

4

Definition 4 (Definition 1 [CM99]). For any given machine M , we denote by fM the
function which yields the output of M when given an input x ∈ R∞ and call that
function the input-output function of M . For any function f : R∞ → Rk, k ≤ ∞ we say
that f is computable if there is a machine M such that fM = f .

Additionally, we say that a set A ⊆ R∞ is decidable if there is a machine M computing
its characteristic function.

Definition 5. A R-machine is said to work in time f(n) if for every input x ∈ R∞, M
reaches its output node after at most f(n) steps. Although generally, n can be anything,
in this thesis we are mostly concerned with the case where n is part of the input or its
length.

We say that M works in polynomial time if it works in time bounded by an element
of O(nO(1)). Analogously, we say that M works in logarithmic time if it works in time
bounded by an element of O(log(n)).

2.2 Arithmetic Circuits over R
In the following we introduce the main model of computation used in this thesis, namely
arithmetic circuits over the real numbers as introduced by Cucker [Cuc92]. However, we
use a slightly altered version which allows for gates with unbounded fan-in in order to
later consider complexity classes for such circuits. As a consequence, we only consider the
arithmetic operations + and×, which then allow us to immediately construct subtraction
but not division. This is in line with the classical model as given by Vollmer for circuits
with unbounded fan-in [Vol99].

We give definitions about the model of computation and about some resulting com-
plexity classes. We start out by defining the sign function and one variation thereof which
we need during the course of this thesis starting with our introduction of R-circuits.

Definition 6. We define the sign function as follows:

sign(x) :=

1 x > 0

0 x = 0

−1 x < 0

(2.5)

We will also introduce one variation of the sign function here for convenience:

sign′(x) :=

{
1 x ≥ 0

0 x < 0
(2.6)

Remark 7. Since we can easily construct sign′ from sign, as sign′(x) = sign(sign(x)+1),
we will use sign′ freely whenever we have sign available.

5

Definition 8. An arithmetic circuit C over R is a directed acyclic graph. Its nodes (also
called gates) can be of the following types:

Input nodes Input nodes have indegree 0 and contain the respective input val-
ues of the circuit.

Constant nodes Constant nodes have indegree 0 and are labeled with real numbers.
Arithmetic nodes Arithmetic nodes can have an arbitrary indegree only bounded

by the number of nodes in the circuit. They can be labeled with
either + or ×.

Sign nodes Sign nodes have indegree 1.
Output nodes Output nodes have indegree 1 and contain the output values of

the circuit after the computation.

Nodes cannot be predecessors of the same node more than once, which leads to the
outdegree of nodes in these arithmetic circuits being bounded by the number of gates in
the circuit.

In order to later describe arithmetic circuits, we associate with each gate a number which
represents its type. For a gate g these associations are as follows:

g type

input 1
constant 2

+ 3
× 4

sign 5
output 6

In order to talk about complexity classes of computation models, it is necessary to
contemplate which resources one wishes to consider when classifying problems.

For arithmetic circuits, analyzing the longest possible path from an input to an output
node can be regarded as an analogue to time complexity of sequential models.

Similarly, the number of gates used by the circuit can be related to space complexity
in the sequential setting.

We define those two measures as follows:

Definition 9. For an arithmetic circuit C, the size of C is the number of gates in C and
the depth of C is the length of the longest path from an input gate to an output gate.

For convenience, we now define some auxiliary gate types, which will make some con-
structions in the later part of this thesis easier. As we will late see, we can construct
those gate types with the types we have already available and therefore do not gain any
computational power by using them.

6

Definition 10. In addition to the gate types 1 − 6, we also define arithmetic nodes
labeled with − or with the relation symbols =, <, >, ≤ and ≤. All of those nodes have
indegree 2.

We denote the types of these gates as follows:

g type

− 7
= 8
< 9
> 10
≤ 11
≥ 12

We will also refer to nodes of the types 8− 12 as relational nodes.

Definition 11. Let C be an arithmetic circuit with n input gates and m output
gates. We denote x1, ..., xn by x and inductively associate each gate g with a function
fg : Rn → R as follows:

If g is the ith input gate, then fg(x) = xi.
If g is a constant gate labeled α ∈ R, then fg(x) = α.
If g is an arithmetic + gate with prede-
cessors g1, ..., gk,

then fg(x) =
∑

1≤i≤k
fgi(x).

If g is an arithmetic × gate with prede-
cessors g1, ..., gk,

then fg(x) =
∏

1≤i≤k
fgi(x).

If g is a sign gate with predecessor g1, then fg(x) = sign(fg1(x)).
If g is an output gate with predecessor g1, then fg(x) = fg1(x).
If g is an arithmetic − gate with prede-
cessors g1, g2,

then fg(x) = fg1(x)− fg2(x).

If g is a relational = gate with predeces-
sors g1, g2,

then fg(x) =

{
1, fg1(x) = fg2(x)

0, fg1(x) 6= fg2(x)
.

If g is a relational < gate with predeces-
sors g1, g2,

then fg(x) =

{
1, fg1(x) < fg2(x)

0, fg1(x) ≮ fg2(x)
.

If g is a relational > gate with predeces-
sors g1, g2,

then fg(x) =

{
1, fg1(x) > fg2(x)

0, fg1(x) ≯ fg2(x)
.

If g is a relational ≤ gate with predeces-
sors g1, g2,

then fg(x) =

{
1, fg1(x) ≤ fg2(x)

0, fg1(x) � fg2(x)
.

If g is a relational ≥ gate with predeces-
sors g1, g2,

then fg(x) =

{
1, fg1(x) ≥ fg2(x)

0, fg1(x) � fg2(x)
.

We refer to the function ϕC : Rn → Rm associated with C’s output gates as the
function computed by C.

7

Lemma 12. For any arithmetic circuit of polynomial size and constant depth which
uses gates of the types 1 − 12, there exists an arithmetic circuit of polynomial size and
constant depth computing the same function, which only uses gates of the types 1− 6.

Proof. Let C be an arithmetic circuit with n input gates which uses gates of the types
1− 12, with size(C) ≤ nq and depth(C) = d for q, d ∈ N. We will construct a circuit C ′

of polynomial size and constant depth which computes the same function as C.
We start out by C ′ = C and proceed as follows:
First, since we can represent t1 ≤ t2 by

t1 ≤ t2 ≡ t1 < t2 ∨ t1 = t2 (2.7)

for all t1, t2 ∈ R, we replace every ≤-gate in C ′ by a sign gate, followed by an addition
gate, which in turn has a <-gate and a =-gate as its predecessors. Those two gates then
each have the nodes p1 and p2 as their predecessors as shown in Figure 2.1. The sign
and addition gate at the top represent the ∨ in this construction. The overall increase
in size is 3 per ≤-gate, which leads to the overall increase in size being polynomial in
the worst case. The increase in depth is at worst 2 per gate on the longest path from an
input gate to the output gate, which means that the overall increase in depth is constant.
This means that C ′ still computes the same function as C, its size is still polynomial
and its depth is still constant in n and C ′ now does not contain any ≤-gates. For ≥
gates, we proceed analogously.

We continue similarly for the other cases: Since we can represent t1 = t2 by

t1 = t2 ≡ sign′(−(t1 − t2)2) (2.8)

for all t1, t2 ∈ R, we replace every =-gate in C ′ with predecessors p1 and p2 by a sign
gate at the top, followed by an addition gate which in turn has a constant gate labeled
1 and another sign gate as its predecessors. This construction represents sign′. That
second sign gate then has a − gate as its predecessor, which has a constant node labeled
0 and a × gate as its predecessors. The × gate has two + gates as its predecessors, which
in turn each have the same − gate as their predecessor. That − gate then has p1 and
p2 as its predecessors. This construction is visualized in Figure 2.2. Note here that
the + gates here essentially work as identity gates, and we only need them, to have
the value of (p1 − p2) be multiplied with itself in the × node. The overall increase in
size per =-gate in this construction is 9, which means that the total overhead in size
is still polynomial in the worst case. In terms of depth, the increase is at worst 6 per
gate on the longest path from an input gate to the output gate, meaning that the total
increase is still constant. After this step, C ′ computes the same function as C, still has
polynomial size and constant depth in n and does not contain any =-gates.

The construction for <-gates with predecessors p1 and p2 works similarly. We make
use of t1 < t2 being representable by

t1 < t2 ≡ 1− sign′(t1 − t2) (2.9)

8

≤

p1 p2

sign

+

<

p1

=

p2

Figure 2.1: Construction for ≤ gates in Lemma 12

for all t1, t2 ∈ R. We therefore replace every <-gate by a subtraction gate with 1
and a construction for sign′ as above as its predecessors. The sign′ construction then
has a subtraction gate as its predecessor, which in turn has the nodes p1 and p2 as its
predecessors. This construction is shown in Figure 2.3. The increase in size per <-gate
is 6, leading to a polynomial increase at worst and the increase in depth is at worst 4 per
<-gate on the longest path from an input gate to the output, meaning that the overall
overhead is constant. This means that C ′ still has polynomial size and constant depth
in n, still computes the same function as C and now does not contain any <-gates. We
proceed analogously for >-gates.

For subtraction gates, we proceed similarly, since we can represent t1 − t2 by

t1 − t2 ≡ t1 + (−1)× t2 (2.10)

for all t1, t2 ∈ R. We replace every subtraction gate with predecessors p1 and p2
by an addition gate with p1 and a multiplication gate as its predecessors, where the
multiplication gate has a constant node labeled −1 and the node p2 as its predecessors
as shown in Figure 2.4. For each gate, this introduces an increase in size of 2 per − gate,
leading to the overall overhead still being polynomial in the worst case, and an increase
in depth of 1 for each gate on the longest path from an input gate to the output gate,
which leads to the overall depth still being constant. Therefore, C ′ still computes the
same function as C, has polynomial size and constant depth in n and does not contain
any subtraction gates.

In total, C ′ has polynomial size in n, constant depth in n, only contains gates of the
types 1− 6 and computes the same function as C.

9

=

p1 p2

sign

+

sign

−

0 ×

+

−

p1 p2

+

1

Figure 2.2: Construction for = gates in Lemma 12

10

<

p1 p2

−

1 sign

+

sign

−

p1 p2

1

Figure 2.3: Construction for < gates in Lemma 12

−

p1 p2

+

p1 ×

−1 p2

Figure 2.4: Construction for − gates in Lemma 12

11

Remark 13. Since these auxiliary gate types do not give us any additional computational
power, we will assume that whenever we are given a circuit, it only consists of gates of
the types 1− 6. We will, however, make use of the gate types 7− 12, when we construct
circuits ourselves.

An individual circuit can only compute a function with a fixed number of arguments.
In some cases, however, we are interested in functions, which can handle arbitrarily long
inputs. The following definition allows us to consider functions of that sort.

Definition 14. A circuit family over R is a sequence C = (C0, C1, C2, ...) where Cn is a
circuit over R with n inputs for every n ∈ N. Let fn be the function computed by Cn.
We then say that C computes the function fC : R∞ → R∞ where fC(w) = f |w|(w) for
w ∈ R∞.

To denote C and fC, we also write (Cn)n∈N and (fn)n∈N.

Definition 15. We say that a family of circuits C decides a set S ⊆ R∞, if and only if
C computes the characteristic function of S.

Definition 16. For a circuit C, we say that Csub is a subcircuit of C, if all nodes and
edges in Csub are also contained in C and if for all nodes g in Csub it holds that if there
is a path from an input gate to g in C, then this path also exists in Csub.

For any node g in C, we denote by the subcircuit induced by g that subcircuit Csub,g
of C, of which g is the top node. We then also state that g is the root node of Csub,g. It
follows that if we are talking about the root node of a circuit with a single output node,
then this output node is what we refer to.

Since arithmetic circuits can only take inputs of fixed length, we call them a non-uniform
model of computation. Given that this is quite a restriction, we would also like to talk
about a uniform version of this model. To that end, we consider the complexity of
computing the correct circuit for any given input. That means that if we have a circuit
family C and are given an input x = (x1, ..., xn), we would like to classify problems by
how hard it is to construct Cn.

The following definition allows us to talk about complexity classes for uniform circuits.

12

Definition 17. We say that a family of circuits (Cn)n∈N is uniform, if its gates are
numbered, i.e. for each n ∈ N, there is an injective function mapping each gate of Cn to
a natural number, and there is an R-machine M , which on input (n, vnr, pidx) returns
the tuple

(t, pnr, c)

where

1. t is the type of the vnrth gate v in Cn,

2. pnr is the number of the pidxth predecessor of v

3. and c is the value of v if v is a constant gate, the index i, if v is the ith input gate
and 0 otherwise.

If vnr does not encode a gate in Cn, M returns (0, 0, 0) and if v has less than pidx
predecessors M returns (t, 0, 0). If M works in logarithmic time, we say that C is L-
uniform and if M works in polynomial time, we say that C is P -uniform.

For a circuit complexity class C, we will by UL-C denote the subclass of C, which only
contains sets definable by L-uniform circuit families. We will use UP -C to analogously
denote those sets in C definable by P -uniform families.

Remark 18. Note that ordinarily L-uniformity denotes logspace uniformity rather than
logtime uniformity. In the context of R-machines, however, considering space complexity
does not make as much sense as in the context of classical Turing machines [Mic89]
[Cuc92], which is why we this notation is used for logtime uniformity in the real setting.

Definition 19. The complexity classes ACi
R are defined as those sets S ⊆ R∞ that can

be decided by an arithmetic circuit family (Cn)n∈N over R, whose size is polynomial in
n, whose depth is element of O(logi n) and whose gates have unbounded fan-in.

Definition 20. The complexity classes NCi
R are defined similarly to ACi

R, but with the
additional restriction that their circuit families have gates of at most fan-in 2.

Remark 21. Note that the notation NCi
R is also used by Cucker and Meer [CM99],

however there it is used to denote something slightly different. Their definition is closer
to how we would define UL-NCi

R, albeit the circuits of our classes do not have immediate
access to subtraction or division gates.

13

2.3 R-structures and Logics over R
In order to classify some of the aforementioned complexity classes, we introduce first-
order logic over the reals, which was first introduced by Grädel and Meer [GM95].
However, we define it more similarly to how it was defined by Cucker and Meer [CM99]
and Blum et al. [BCSS98] and give a few extensions.

We start by defining structures over R. In order to do this, we use two vocabularies;
one for talking about the finite, discrete part of the problem which we call the skeleton
and one for talking about the arithmetic part of the problem.

If we were for example to talk about our arithmetic circuits, the structure of the gates
and connections of the circuits could be described by the skeleton and the real-valued
computations could be described by the arithmetic part.

Definition 22 (Definition 7 [CM99]). Let Ls, Lf be finite vocabularies where Ls can
contain function and predicate symbols and Lf only contains function symbols. An R-
structure of signature σ = (Ls, Lf) is a pair D = (A,F) where A is a finite structure of
vocabulary Ls which we call the skeleton of D whose universe A we will refer to as the
universe of D. F is a finite set of functions X : Ak → R which interpret the function
symbols in Lf .

We will use StructR(σ) to refer to the set of all R-structures of signature σ and we will
assume that for any fixed signature σ = (Ls, Lf), we can fix an ordering on the symbols
in Ls and Lf .

Remark 23. Whenever it is clear from the context, we will use Ls and Lf to either refer
to the sets of function and predicate symbols as they are defined or – in the context of
a structure – the respective functions and predicates interpreting those symbols.

Definition 24 (Definition 8 [CM99]). We will use |A| to denote the cardinality of the
universe A of A.

A ranking of a R-structure D = (A,F) over signature σ = (Ls, Lf) is a function r
which bijects A with {0, 1, ..., |A| − 1}.

In order to now be able to use our R-structures as inputs for machines, we need to
somehow encode them in R∞. The following definition allows us to do just that.

Definition 25. Every R-structure D = (A,F) can be identified with a point in R∞.
To this end, choose an arbitrary ranking r on A. Then replace all predicates in Ls by
their respective characteristic functions and all functions f ∈ Ls by functions f ′ which
for any input (a1, ..., ak) map to r(f(a1, ..., ak)). Those functions are then considered to
be elements of Lf . Without loss of generality, we assume that all functions in Lf are
total. Then for each f ∈ Lf of arity k, we need to store |A|k values. Using the ranking,
we represent f by concatenating the function values for all possible tuples (a1, ..., ak) in
lexicographical ordering of those tuples according to r. To encode D, we then only need
to concatenate all representations of functions in Lf in the order fixed on the signature.
We will denote this encoding by enc(D).

14

In order to be able to compute |A| from enc(D), we make an exception for constant
functions and predicates, i.e. functions and predicates of arity 0. We treat those as if
they had arity 1, meaning that e.g. we encode a function f1() = 3 as |A| 3s.

Since
|enc(D)| =

∑
f∈Lf

|A|ar(f), (2.11)

where ar(f) is the arity of f (unless that arity is 0, in which case ar(f) is 1), we can
reconstruct |A| from the arities of the functions in Ls and the length of enc(D). We
can do so by using for example binary search, since we know that |A| is between 0 and
|enc(D)|. We can therefore compute |A| when given ϕ and |enc(D)| in time logarithmic
in |enc(D)|.

2.3.1 First-order Logic over R
Fix a countable set V = {v0, v1, ...} of variables. (These range over the skeleton of the
input structure. We do not consider variables ranging over R.)

Definition 26 (First-order logic). The language of first-order logic contains for each
signature σ = (Ls, Lf) a set of formulas and terms. The terms are divided into index
terms which take values in the skeleton and number terms which take values in R. These
terms are inductively defined as follows:

1. The set of index terms is defined as the closure of the set of variables V under
applications of the function symbols of Ls.

2. Any real number is a number term.

3. For index terms h1, ..., hk and a k-ary function symbol X ∈ Lf , X(h1, ..., hk) is a
number term.

4. If t1, t2 are number terms, then so are t1 + t2, t1 × t2 and sign(t1).

Atomic formulas are equalities of index terms h1
.
= h2 and number terms t1

.
= t2,

inequalities of number terms t1 < t2 and expressions of the form P (h1, ..., hk), where
P ∈ Ls is a k-ary predicate symbol and h1, .., hk are index terms.

Remark 27. Since we have t1 < t2 and Boolean connectives, we can easily construct
t1 > t2, t1 ≤ t2 and t1 ≥ t2 and will use them freely when working with first-order logic.

The set FOR is the smallest set which contains the closure of atomic formulas under
the Boolean connectives {∧,∨,¬, =⇒ , ⇐⇒ } and quantification ∃vψ and ∀vψ where
v ranges over A. We do not consider formulas where the quantified variable ranges over
R.

A FOR-formula which does not contain any free variables is called a FOR-sentence. We
explicitly make this distinction here, since in this thesis, we are mostly concerned with
sets defined by sentences. We will get to what exactly this means shortly in Definition 29.

15

Definition 28. The interpretation of a FOR-formula ϕ given a R-structure D = (A,F)
of signature σ = (Ls, Lf) and an assignment µ : V → A, which maps each free variable
in ϕ to an element of A, is as one would expect.

1. If ϕ = h1
.
= h2 for index terms h1, h2, then ϕ evaluates to true if and only if h1

and h2 evaluate to the same value.

2. If ϕ = t1
.
= t2 for number terms t1, t2, then ϕ evaluates to true if and only if t1

and t2 evaluate to the same value.

3. If ϕ = t1 < t2 for number terms t1, t2, then ϕ evaluates to true if and only if t1
evaluates to a value lower than the one t2 evaluates to.

4. If ϕ = P (h1, ..., hk) for a k-ary predicate symbol P ∈ Ls, then ϕ evaluates to true
if and only if P evaluates to true given the values h1, ..., hk as arguments.

5. If ϕ = ψ ∧ ξ for FOR-formulas ψ and ξ, then ϕ evaluates to true if and only if ψ
and ξ both evaluate to true.

6. The other Boolean connectives follow analogously.

7. If ϕ = ∃xψ for a FOR-formula ψ, then ϕ evaluates to true if and only if there
exists a value a ∈ A, such that given D and µ ∪ {x 7→ a}, ψ evaluates to true.

8. If ϕ = ∀xψ for a FOR-formulas ψ, then the interpretation of ϕ follows analogously
to the existential case.

The interpretation of index terms goes as follows: Let h be an index term.

1. If h = x for a variable x, then h evaluates to µ(x).

2. If h = f(h1, ..., hk) for a k-ary function symbol f ∈ Ls and index terms h1, ..., hk,
then h evaluates to f(a1, ..., ak), where ai is the value hi evaluates to.

Analogously let t be a number term.

1. If t = c for c ∈ R, then t evaluates to c.

2. If t = f(h1, ..., hk) for a k-ary function symbol f ∈ Lf and index terms h1, ..., hk,
then t evaluates to f(a1, ..., ak), where ai is the value hi evaluates to.

3. If t = t1 + t2 for number terms t1 and t2, then t evaluates to the sum of the values
t1 and t2 evaluate to.

4. The evaluation for t = t1 × t2 and t = sign(t1) follows analogously.

We say that a FOR-formula is satisfied by a R-structure and an assignment, if when
given those, it evaluates to true.

We say that a FOR-sentence ϕ is satisfied by a R-structure D – in symbols D |= ϕ –
if ϕ when given D (and an empty assignment) evaluates to true.

16

As mentioned previously, we would like to talk about sets which we can describe by
using FOR-sentences. In order to do this, we define the following:

Definition 29. A FOR-sentence ϕ defines a set of R-structures S, if and only if the
structures satisfying ϕ are exactly the structures in S.

Accordingly, the class FOR is then the class of all sets definable by FOR-sentences,
i.e.

FOR =
⋃

R-signatures σ,
FOR-sentences ϕ

{D | D ∈ Struct(σ),D |= ϕ} (2.12)

Definition 30. Two FOR-sentences are called semantically equivalent, if and only if
they define the same set, i.e. they are satisfied by the same R-structures.

2.3.2 A few Extensions to FOR

In the following, we would like to consider logics, which also have access to functions
and relations that are not given by their input structure. To that end, we make a small
addition to Definition 22, where we defined R-structures. Whenever we talk about R-
structures over a signature (Ls, Lf), we now also consider structures over (Ls, Lf , La).
The additional vocabulary La does not have any effect on the R-structure, but it con-
tains function and relation symbols, which can be used in a logical formula with this
signature. This means that any R-structure of signature {Ls, Lf} is also a R-structure
of signature {Ls, Lf , La} for any alphabet La. The interpretation of the symbols of La
is then analogous to the interpretation of the symbols in Ls and Lf .

Definition 31. Let R be a set of finite relations and functions. We will write FO[R]
to denote the class of sets S for which there exists a FOR-sentence ϕ over a signa-
ture σ = (Ls, Lf , La) such that for every input structure there is an interpretation I
interpreting the symbols in La in such a way that ϕ with interpretation I defines S.

Definition 32. Let Arb denote the set of all finite relations and functions. Then
FOR[Arb] contains the sets definable by FOR sentences which can contain function and
relation symbols, whose interpretations have no restrictions in terms of computability
or complexity.

With the goal in mind to create a logic which can define sets decided by circuits with
unbounded fan-in, we introduce new rules for building number terms: the sum and the
product rule. We will also give another rule, which we call the maximization rule, but
will later show that we can define this rule in FOR and thus do not gain expressive
power by using it. We will use this rule to show that we can represent the characteristic
function in FOR.

Those rules should then allow us to represent the unbounded fan-in of circuits deciding
AC0

R sets.

17

Definition 33 (The sum, product and maximization rule). Let t be a number term in
which the variable i occurs freely with other variables w = w1, ..., wj and let A denote
the universe of the given input structure. Then

sum
i

(t(i, w))

is also a number term which is interpreted as∑
i∈A

t(i, w),

that is, the sum over all values v ∈ A, if i is in t replaced by v and the other variables
are replaced by their respective values.

We will analogously define
prod
i

(t(i, w))

to be interpreted as ∏
i∈A

t(i, w)

and
max
i

(t(i, w))

to be interpreted as the maximum value for t if i is replaced by an element of A and the
other variables are replaced by their respective values.

Remark 34. Note that sum
i

, prod
i

and max
i

work essentially in the same way as quantifiers

do. We will for that reason, when dealing with a formula ϕ in which sum
i

, prod
i

or max
i

occur, consider the variable i to be bound in ϕ.

Definition 35. For a logic L, we will by L+SUMR denote L extended by the sum rule
and by L+ PRODR denote L extended by the product rule.

Definition 36. For a number q ∈ N and a number term t in which w = w1, ..., wj occur
and i1, ..., iq occur freely, we will for convenience write

sum
i

q(t(i1, ..., iq, w))

to denote
sum
i1

(...sum
iq

(t(i1, ..., iq, w)))

which is then interpreted in accordance to Definition 33 as∑
i1∈A

...
∑
iq∈A

t(i1, ..., iq, w)

and
prod
i

q(t(i1, ..., iq, w))

18

to denote
prod
i1

(...prod
iq

(t(i1, ..., iq, w)))

which is interpreted as ∏
i1∈A

...
∏
iq∈A

t(i1, ..., iq, w).

We would now like to see which extensions of our first-order logic can already use the
aforementioned rules naturally. We demonstrate that, as mentioned before, we can use
max
i

in FOR without extending it and we can use sum
i

and prod
i

in FOR[Arb]. We will

later show that we can also define sum
i

and prod
i

in a polynomial extension of FOR.

Lemma 37. For any FOR-formula ϕ which contains max
i

-constructions, we can define

a semantically equivalent formula ϕ which does not contain any max
i

-constructions.

Proof. Let ϕ be a FOR formula which contains max
i

-constructions, i.e. number terms of

the form max
i

(t(i, w)) for a number term t. We will show that for every such formula,

we can construct another FOR-formula ϕ′ which is equivalent to ϕ but which does not
contain the term max

i
(t(i, w)). Since max

i
-constructions are number terms, whenever

they occur, they are part of atomic (sub-)formulas. For this reason, we only need to
show, how to turn atomic formulas with max

i
-constructions into semantically equivalent

formulas (that are not necessarily atomic anymore).
For a given atomic formula with max

i
-constructions ϕ, define ϕ′ as follows:

Let ϕ = t1
.
= t2 and let max

i1
, ...,max

ik
be the max

i
-occurrences of ϕ, ordered by level

of nesting, where max
i1

has the lowest level of nesting, the nesting of max
i2

is either the

same as max
i1

or greater by 1 and so on. We assume without loss of generality that the

variables x1, ..., xk and y1, ..., yk do not occur in ϕ. We also assume for now that there
is only one occurrence of max

i
at the lowest level of nesting and that t1 consists only of

that outermost max
i

-construction, i.e. t1 = max
i1

(F1(i1, w1)). To now construct ϕ′, we go

through the max
i

-occurrences in ϕ in reverse order of nesting, i.e. from the deepest level

to the shallowest, and for each occurrence max
im

(Fm(im, wm)), we create a subformula ψm,

which ensures that Fm is being maximized with respect to im. We will use new variables
x1, ..., xk, y1, ..., yk in the subformulas, which will be quantified later, when we connect
those subformulas to construct ϕ′. ϕ′ will then have the form

ϕ′ = ∃x1∀y1...∃xk∀xkψk ∧ ... ∧ ψ1 ∧ ϕ̂, (2.13)

where ϕ̂ represents the structure of ϕ without any max
i

-constructions. In our case, ϕ̂

would just be F1(x1, w1)
.
= t2.

19

We start with the term max
ik

(Fk(ik, ik1 , ..., ikj , wk)), where Fk is the number term in ϕ

getting maximized by max
ik

, ik1 , ..., ikj are the variables used in Fk from max
i

-constructions

which occur at lower levels of nesting in ϕ and wk are all other variables used in Fk.
We now create the subformula

ψik := Fk(xk, xk1 , ..., xkj , wk) ≥ Fk(yk, xk1 , ..., xkj , wk), (2.14)

which makes sure that Fk is maximal with respect to ik.
Afterwards, we proceed in reverse order of nesting with the other max

i
-occurrences

in ϕ (meaning that max
ik−1

is next) and create the subformulas ψk−1, ..., ψ1 similarly. For

m ∈ (k − 1, ..., 1), we proceed as follows:
Let max

im
(Fm(im, im1 , ..., imj , wm)) be the occurrence of max

im
in ϕ with

Fm, im, im1 , ..., imj , wm analogous to before. Now replace in Fm all max
i

-constructions

max
i

(Fi(i, w)) – where w are all variables used in Fi except for i – by parentheses around

Fi, i.e. max
i

(Fi(i, w)) would just become (Fi(i, w)). Denote the result by F ′m. We then

define

ψm := F ′m(xm, xm1 , ..., xmj , wm) ≥ F ′m(ym, xm1 , ..., xmj , wm). (2.15)

Finally, we define

ϕ′ := ∃x1∀y1...∃xk∀yk ψk ∧ ... ∧ ψ1 ∧ F ′1(x1, w1)
.
= t2. (2.16)

This construction now works for our strong assumption that t1 = max
i1

(F1). However, we

only require the following modifications to make it generally applicable: If ϕ contains
only one max

i
-construction at the lowest level, but then operates on that construction,

we can just add the context of that max
i

-construction to the term F ′1 in ϕ′. For example

if ϕ = 7
.
= max

i
(F (i)) + 1, then we could just add the ’+1’ to the F ′1(x1, w1) in For-

mula 2.16. If ϕ contains several max
i

-constructions at the lowest level of nesting, then

we can construct as we have previously and just add the subformulas to the conjunction
in ϕ′.
ϕ′ now does not contain any max

i
-constructions and is therefore a valid FOR-formula.

Since for every max
i

-occurrence in ϕ, there is a subformula in the conjunction of ϕ′

making sure that the term maximized by max
i

in ϕ is also maximal in ϕ′, ϕ′ is also

semantically equivalent to ϕ.
We can construct ϕ′ analogously, if both, t1 and t2 contain max

i
-constructions or if

ϕ = t1 < t2. We have therefore shown that for any FOR-formula with max
i

-constructions,

there exists a semantically equivalent formula which does not contain any such construc-
tions.

20

Example 38. Let ϕ = 7
.
= max

i
(f(i) + 2). Then

ϕ′ = ∃x∀y f(x) + 2 ≥ f(y) + 2 ∧ 7
.
= f(x) + 2 (2.17)

Example 39. Let ϕ = 5
.
= max

i
(max

j
(f(j) + g(i)) + f(i)). Then

ϕ′ =∃x1∀y1∃x2∀y2
f(x2) + g(x1) ≥ f(y2) + g(x1)

∧ (f(x2) + g(x1)) + f(x1) ≥ (f(x2) + g(y1)) + f(y1)

∧ 5
.
= f(x2) + g(x1) + f(x1)

(2.18)

Lemma 40. For any FOR[Arb]-formula ϕ, which contains sum
i

-constructions, we can

define a semantically equivalent FOR[Arb] formula ϕ′ which does not contain sum
i

-

constructions.

Proof. In order to prove this, we will take an arbitrary FOR[Arb]-sentence ϕ in which
number terms of the form sum

i
(t(i, w)) occur and then create an FOR[Arb]-term ϕ′ which

is semantically equivalent to ϕ but which does not contain any such constructions. Note
that the set La of the signature of ϕ′ will be different to that of ϕ.

Let ϕ be a valid FOR[Arb] sentence of signature {Ls, Lf , La} with the exception that
it contains number terms of the form sum

i
(t(i, w)), where t(i, w) is a number term (which

may again contain sum
i

-constructions). Without loss of generality, we assume that for

all number terms of the form sum
i

(t(i, w)), there is no symbol sumt,i in the signature

of ϕ. We now construct a number term ϕ′ which is equivalent to ϕ but which does not
contain any constructions of the aforementioned form.

We define ϕ′ step by step. We start out by ϕ′ := ϕ.
We now take any such instance of a number term sum

i
(t(i, w)) in ϕ′ where t itself does

not contain any instances of sum
i

-constructions. Let D = {Ls, Lf , La} be the signature

of ϕ′. Without loss of generality, D does not contain the symbol sumt,i. Now add to
the set La of D the function symbol sumt,i of arity j = |w| and replace in ϕ′ the term
sum
i

(t(i, w)) by sumt,i(w). The interpretation of sumt,i(y1, ..., yj) for any (y1, ..., yj) ∈ Aj

is the sum over all different values v ∈ A for i if i is in t replaced by v and wk is replaced
by yk for all 1 ≤ k ≤ j, i.e. for all (y1, ..., yk) ∈ A:

sumt,i(y1, ..., yj) :=
∑
i∈A

t(y1, ..., yk) (2.19)

The resulting formula ϕ′ is now semantically equivalent to ϕ, since we just moved
the interpretation of the symbol sum

i
to the function symbol sumt,i, but it does not

contain the instance of sum
i

(t(i, w)) that we just removed. If we repeat this process for

all remaining occurrences of sum
i

in ϕ′, we arrive at a sentence which is semantically

equivalent to ϕ but which does not contain any instances of sum
i

.

21

Example 41. Let ϕ = ∃x 1
.
= sum

i
(f(i) + f(x)). Then

ϕ′ = ∃x 1
.
= sumf(i)+f(x),i(x) (2.20)

where sumf(i)+f(x),i(x) is a function symbol which for any input structure D = (A,F)
is interpreted as ∑

i∈A

f(i) + f(x). (2.21)

Example 42. Let ϕ = ∃x∀y 7
.
= sum

i
(sum

j
(f(i) + g(j)) + f(y)) + g(x) a formula of

signature {Ls, Lf , La}. Then after the first iteration

ϕ′ = ∃x∀y 7
.
= sum

i
(sumf(i)+g(j),j(i) + f(y)) + g(x) (2.22)

and after the second iteration

ϕ′ = ∃x∀y 7
.
= sumsumf(i)+g(j),j(i)+f(y),i(y) + g(x) (2.23)

where sumf(i)+g(j),j(i) is a 1-ary function symbol interpreted as

sumf(i)+g(j),j(i) :=
∑
j∈A

f(i) + g(j) (2.24)

and sumsumf(i)+g(j),j(i)+f(y),i(y) is another 1-ary function symbol interpreted as

sumsumf(i)+g(j),j(i)+f(y),i(y) :=
∑
i∈A

sumf(i)+g(j),j(i) + f(y) =
∑
i∈A

(∑
j∈A

f(i) + g(j)

)
+ f(y)

(2.25)
for an input structure of signature {Ls, Lf , La ∪ {sumf(i)+g(j),j, sumsumf(i)+g(j),j(i)+f(y),i}}.

Corollary 43. For any q ∈ N, we can also define prod
i

, sum
i

q and prod
i

q in FOR[Arb].

Remark 44. For the following, we only consider functional R-structures, i.e. R-structures
whose signatures do not contain any predicate symbols. This does not restrict what we
can express, since any relation P ∈ Ak can be replaced by its characteristic function
χP : Ak → R.

We assume for the same reason that for any logic FOR[R], R only contains functions.

As mentioned before, the reason why we need the maximization rule is that we would
like to write characteristic functions as number terms. The following result is a slight
modification of a result presented by Cucker and Meer [CM99].

22

Proposition 45. Let R be a set of functions and predicates. For every FOR[R]-formula
ϕ(v1, ..., vk), there is a FOR[R] number term describing χ[ϕ].

Proof. We will prove this proposition by induction on the construction of ϕ. If ϕ is
atomic, then it is of the form t1

.
= t2, t1 < t2 for number terms t1, t2, since we only

consider functional R-structures. For atomic formulas, we have

χ[t1
.
= t2] = sign′[−(t1 − t2)2] (2.26)

and
χ[t1 < t2] = 1− [sign′(t1 − t2)]. (2.27)

If ϕ is of the form ϕ = ∃xψ(x), then

χ[ϕ] = max
x

χ[ψ(x)]. (2.28)

If ϕ has the form ϕ = ¬ψ, then

χ[ϕ] = 1− χ[ψ] (2.29)

and if ϕ = ψ ∧ ξ, then
χ[ϕ] = χ[ψ]× χ[ξ]. (2.30)

Since ϕ = ∀xψ(x) and the remaining Boolean connectives can be constructed from the
above, we have now shown that we can describe χ[ϕ] in FOR[R] for any ϕ ∈ FOR[R].

23

3 Characterizing AC0
R

In this section, we show descriptive complexity results for the non-uniform set AC0
R and

some of its uniform subsets. In order to achieve this, we use the previously defined
first-order logic over the real numbers and the extensions we defined.

3.1 A Characterization for non-uniform AC0
R

First of all we show an equality which is close to a classical result presented by Vollmer
[Vol99]. We show that extending our first-order logic over the reals with arbitrary
functions lets us exactly describe the non-uniform set AC0

R.

In the proof for the upcoming theorem, we make use of a convenient property of cir-
cuits deciding AC0

R-sets, namely that for each of those circuits, there exist very tree-like
circuits deciding the same set. We call these circuits full trees.

Lemma 46. For every AC0
R-circuit family (Cn)n∈N, i.e. circuit families with unbounded

fan-in gates, constant depth and polynomial size, there exists an AC0
R-circuit family

(C ′n)n∈N computing the same function, such that for every gate v in C ′n, every path from
an input gate to v has the same length.

Proof. In order to prove this, we construct, for any given AC0
R-family C, an AC0

R-circuit
family C’ which exhibits this property. Note that since we are talking about circuits
deciding sets, we know that the given circuits will each only have one output gate. We
give a generic construction for turning any circuit of C into one of C’ which computes
the same function. To achieve this, we proceed in two steps: for a given circuit we first
create an equivalent circuit where only the input gates have an outdegree > 1, and which
is thus very tree-like. Secondly, we will pad all paths from input gates to the output
gate to have the same length. Due to the tree-likeness of our circuit, this property then
translates to all nodes in the circuit.

Step one:
Let Cn be an AC0

R-circuit which contains non-input gates with outdegree > 1. We
would like to get rid of those gates. To accomplish this, consider all subcircuits of Cn
induced by non-input gates which have outdegree > 1 in which every other non-input
gate has outdegree 1. Since Cn is acyclic, at least one such subcircuit must exist. These
subcircuits are all distinct from each other, because only their respective root node has
multiple successors (barring the input-gates). For each of those subcircuits Csub,gn now
proceed as follows: Let g be the root node of Csub,gn . Replace each connection beyond the
first from g to a successor by a copy of Csub,gn , i.e. by a subcircuit which has the same

24

input-gates as Csub,gn and where all other gates and connections are copies of the gates
and connections in Csub,gn . After this step, the longest distance between the output node
and a non-input node g with multiple successors whose induced subcircuit contains no
non-input gates with > 1 successors is reduced by at least one. Repeat this process until
there are no more non-input gates with multiple successors in Cn and denote the circuit
after the ith step by Cin.

Let q ∈ N be such that size(Cn) < nq. We show that the size of the circuit resulting
in this process is still a polynomial in n by induction. To be exact, we show that
size(Cin) < nq∗(1+2i) for all i ∈ N.

Base case C1n: After the first step of this process we have increased the size of Cn by
less than nq for each of less than nq − 1 root nodes (because the output node cannot
be such a root node) and each of less than nq successors thereof. This means that
size(C1n) < (nq) + (nq − 1) ∗ (nq)2 < (nq)3 = nq∗(1+2).
Induction step Ckn → Ck+1

n : In the kth step, we replaced all subcircuits induced by non-
input nodes with multiple successors in Ck−1n by copies. This means that all root nodes we
consider in the k+1th step have not been altered yet and that there are therefore less than
nq of those. Additionally, since all those root nodes have multiple successors, no nodes
reachable from these roots have been altered either. Therefore, each of those roots has
less than nq successors. The subcircuits these nodes induce, however, have been altered
and are therefore of size less than nq∗(1+2k). After the k+ 1th step, we have replaced less
than nq−1 subcircuits of size less than nq∗(1+k) by less than nq copies each. Therefore it
follows that size(Ck+1

n) < nq∗(1+2k)+nq∗(1+2k)∗nq∗(nq−1) < nq∗(1+2k)∗n2q = nq∗(1+2(k+1)).

Let C ′n denote the circuit after finishing the procedure above. Since we reduce the
distance of the output node to the furthest such root node in each step, we only need to
execute this process for a constant number of steps. Therefore C ′n = Ckn for some k ∈ N,
which means that the size of the C ′n is still a polynomial in n. The depth of C ′n is still
constant as the procedure we performed did not alter the circuits depth. Additionally,
since we only added copies of subcircuits in place of subcircuits with several successors,
we also did not change the computed function. This means that Cn is still an AC0

R-circuit
which computes the same function as Cn but does not contain any non-input gates with
multiple successors.

Step two:
We know that C ′n does not have any nodes with outdegree > 1 beyond the input gates.

Consider now all paths p1, ..., pk from an input gate to the singular output gate. Let d
be the depth of C ′n, i.e. the length of the longest path from any input gate to the output
gate. For every path pi now add d− length(pi) successive addition gates in between the
first node of pi – the respective input gate – and pi’s second node. This ensures that all
paths from input gates to the output gate have the same length. Denote the resulting
circuit by C ′′n. As we will see, this also results in the property that we wanted in the first
place: for every node v in C ′′n, all paths from input gates to v have the same length. We
show this by contradiction:

Assume that there is a gate v in C ′′n to which there are two paths from input gates with
different lengths. We know that v and all its successors have outdegree ≤ 1, therefore

25

out

+

×

6 in1

×

in2

out

+

×

6 in1

×

6

×

in2

out

+

×

6 +

×

×

6

+

in2in1

Step 1 Step 2

Figure 3.1: Example for the two steps in the construction for Lemma 46

we know that there can be only one path from v to the output node. That means that
there would also be two paths of different length from input gates to the ouput node,
which is a contradiction.

As in step one, we have not added any depth to C ′, but we increased its size. The
increase in size, however, is less than size(C ′n) ∗ n ∗ depth(C ′n), since there is at most one
path from input to output for each outgoing edge of the input gates. There are n input
gates and there can be at most size(C ′n) outgoing edges from those, so we have at most
n ∗ size(C ′n) paths. Each path now gets padded by less than depth(C ′n) nodes. In the
end, since size(C ′′n) is a polynomial in n and depth(C ′′n) is constant with respect to n, the
resulting circuit exhibits the properties that we desire and is still of constant depth and
polynomial size. It also computes the same function as C ′n, since addition gates with
only a singular predecessor are essentially just identity gates.

An example of the construction in this proof is given in Figure 3.1.

Before we go ahead with the proof of our description of FOR[Arb], we need to make one
final proposition. When given a circuit family C, we need a way to identify the gates of
Cn which only depends on n. In order to do so, we will make use of the fact that the
size of our circuits is a polynomial in its input length. We therefore state the following:

Proposition 47. For any finite, ordered set S and any constant q, we can uniquely
identify each vector v = (v1, ..., vq) with a number n ∈ N, where vi ∈ S for all i. This
computation can be done in constant time.

Proof. Let r be the function associating each element in S with its position in the
ordering of S. Given v, we compute f(v) = r(v1) + r(v2) ∗ |S|+ r(v3) ∗ |S|2 + ...+ r(vq) ∗
|S|q−1, which uniquely identifies v with a number and which can be done in constant
time with our R-machines.

Theorem 48. FOR[Arb] = AC0
R.

Proof. FOR[Arb] ⊆ AC0
R:

To show that FOR[Arb] is included in AC0
R, we will show that for any FOR[Arb]-sentence

ϕ, we can create an AC0
R circuit family which decides exactly the set defined by ϕ.

Given a fixed size n of input R-structures D = (A,F) (n = |enc(D)|), we can for any
FOR-formula reconstruct |A| from n as per Definition 25. We will denote |A| by u. For

26

...

sign

+

.

Cψ(m1,...,mk,1)
n Cψ(m1,...,mk,i)

n Cψ(m1,...,mk,u)
n

Figure 3.2: Construction of the circuit for Theorem 48 if ϕ = ∃yψ(y).

any such formula ϕ with exactly k free variables x1, ..., xk and for all 1 ≤ m1, ...,mk ≤ u
we then create an arithmetic circuit Cϕ(m1,...,mk)

n with the following property: For any
input structure D it holds that D |= ϕ if and only if enc(D) is accepted by Cϕ(m1,...,mk)

n ,
where xi is substituted by mi for all 1 ≤ i ≤ k. (That means that any such circuit

Cϕ(m1,...,mk)
n for a formula ϕ outputs either 1 or 0.)
At the very top of the circuit is the output node. The rest of the circuit is defined by

induction. A formula ϕ with k free variables x1, ..., xk and natural numbers m1, ...,mk,
with 1 ≤ mi ≤ u for all i are given.

1. Let ϕ = ∃yψ(y). If y does not occur free in ψ, then Cϕ(m1,...,mk)
n = Cψ(m1,...,mk)

n .

Otherwise, the free variables in ψ are x1, ..., xk, y. Cϕ(m1,...,mk)
n now consists of a

sign gate with an unbounded fan-in addition gate as its predecessor which in turn
has the circuits Cψ(m1,...,mk,i)

n as its predecessors for 1 ≤ i ≤ u. This construction is
visualized in Figure 3.2.

2. If ϕ = ∀yψ(y), then Cϕ(m1,...,mk)
n is defined as in the existential case, but with a

multiplication gate below the sign gate.

3. Let ϕ = ¬ψ. Then Cϕ(m1,...,mk)
n consists of a subtraction gate, which subtracts the

sign of Cψ(m1,...,mk)
n from 1.

4. Let ϕ = ψ ∧ ξ. Then Cϕ(m1,...,mk)
n consists of a sign gate followed by a multipli-

cation gate with Cψ(m1,...,mk)
n and Cξ(m1,...,mk)

n as its predecessors. (The sign gate is

27

technically not necessary for this case, but we keep it for consistency with e.g. the
construction for ∨.)

5. If ϕ = ψ ∨ ξ, ϕ = ψ =⇒ ξ or ϕ = ψ ⇐⇒ ξ, then Cϕ(m1,...,mk)
n follows analogously

to ϕ = ψ ∧ ξ.

6. Let ϕ = h1
.
= h2 for index terms h1, h2. Then Cϕ(m1,...,mk)

n consists of an equality
gate with the circuits Ch1(m1,...,mk)

n and Ch2(m1,...,mk)
n as its predecessors.

7. If ϕ = t1
.
= t2 for number terms t1, t2, then Cϕ(m1,...,mk)

n is defined analogously to
the case with index terms.

8. Let ϕ = t1 < t2 for number terms t1, t2. Then Cϕ(m1,...,mk)
n consists of a <-gate with

Ct1(m1,...,mk)
n and Ct2(m1,...,mk)

n as its predecessors.

For the cases 6, 7 and 8, we also need to show how non-formula index and number
terms can be evaluated by our circuit. We will define these by induction as well. Let h
be an index term:

1. Let h = x for x ∈ V . Then x must be xi for an i ∈ 1, ..., k and have previously
been quantified. Then Ch(m1,...,mk)

n consists of the constant gate with value mi.

2. Let h = f(h1, ..., h`) for a `-ary function symbol f ∈ La and index terms h1, ..., h`.

Then Ch(m1,...,mk)
n consists of an unbounded addition gate at the top with u` un-

bounded multiplication gates as its predecessors – one for each possible input to f ,
i.e. for each different encoded tuple (a1, ..., a`), ai ∈ A. Each of these multiplica-
tion gates has then ` equality gates as their predecessors – one for each element of
(a1, ..., a`) – and one constant gate containing the function value f(a1, ..., a`). Of
the equality gates, each has a constant gate with the respective value rank(ai) –
which is the value associated with ai by the ranking of the input structure – as their
predecessor and as its other predecessor the root node of the circuit Chr(m1,...,mk)

n .
The idea behind this construction is to have a subcircuit for each possible input
(a1, ..., a`) to f , which returns 0 if there is at least one hi which does not evaluate
to ai and returns f(a1, ..., a`) if all of them do. The results of all these subcircuits
then get added together, since there is only exactly one, which may return a value
other than 0, namely the one representing the given input to f . The described
construction is visualized in Figure 3.3.

3. If h = f(h1, ..., h`) for a `-ary function symbol f ∈ Ls and index terms h1, ..., h`,

then Ch(m1,...,mk)
n is defined as above but with the input gates describing the function

values of f instead of constant gates. We know where the correct input gate is, since
we know the ordering and arities of the function symbols in the input structure.

Let t be a number term:

1. If t = c for c ∈ R, then Ct(m1,...,mk)
n consists of a constant gate with value c.

28

...

+

. . . ×

. . . =

rank(ar)

. . . f(a1, ..., a`)

. . .

Chr(m1,...,mk)
n

u`

`

i

r

Figure 3.3: Construction of the circuit for Theorem 48 if h = f(h1, ..., h`) for f ∈ La.

29

2. If t = f(h1, ..., h`) for a `-ary function symbol f ∈ La and index terms h1, ..., h`,

then Ct(m1,...,mk)
n is defined analogously to the second case of defining index terms.

3. If t = f(h1, ..., h`) for a `-ary function symbol f ∈ Lf and index terms h1, ..., h`,

then Ct(m1,...,mk)
n is defined as above but with the input gates describing f instead

of constant gates.

4. If t = t1+t2 or t = t1×t2 for number terms t1, t2, then Ct(m1,...,mk)
n consists of a + or

× gate at the top with the circuits Ct1(m1,...,mk)
n and Ct2(m1,...,mk)

n as its predecessors.

If ϕ is a sentence, then this construction leads to a circuit deciding S = {D ∈
Struct(σ) | D |= ϕ}. Since this circuit’s depth does not depend on n and its size is
polynomial in n, S ∈ AC0

R.

AC0
R ⊆ FOR[Arb]:

To show that AC0
R is included in FOR[Arb], we create, for any given AC0

R set S, an
FOR[Arb]-sentence which defines S. In order to achieve this, we want to create a sen-
tence, which talks about the structure of the circuits of the AC0

R-circuit family which
decides S. Since we have access to arbitrary functions, we can essentially just encode
the structure of any given circuit into functions and have the interpretation of the func-
tion symbols we use be dependent on the length of the input n. However, the function
symbols themselves, and thus the formula, do not depend on n.

Since the depth of our circuits is constant and we can assume that they are full trees
as shown in Lemma 46, we can construct a sentence which essentially describes the gates
on each level of the circuit.

Let S ∈ AC0
R via circuit family C, depth(Cn) = d and let q be such that size(Cn) ≤ nq

for all n ∈ N. Without loss of generality, let Cn be a full tree as described in Lemma 46,
i.e. for every gate g in Cn it holds that all paths from input gates to g have the same
length. We now create a FOR[Arb]-sentence ϕ which defines the set decided by C. The
set Lf of the signature of ϕ will only contain one function symbol f , which then for
every input gate v in Cn leads to f(v) being interpreted as the value of v.

Since Cn is of size at most nq, we can uniquely identify the gates of Cn with elements
of Aq. Let v be a gate in Cn encoded by (v1, ..., vq). tn : Aq → R, cn : Aq → R, inn :
Aq+1 → R and predn : A2q → R are functions where tn(v1, ..., vq) is the type of v as per
Definition 8, inn(v1, ..., vq, i) is 1 if v is the input gate i of Cn and 0 otherwise, cn(v1, ..., vq)
is the value of gate v if v is a constant gate or 0, if it is not and predn(v1, ..., vq, w1, ..., wq)
is 1 if v is a predecessor of the gate encoded by (w1, ..., wq) and 0 otherwise. We will use
t, in, c and pred as the respective symbols for these functions. Note that this means
that the interpretation of these symbols depends on the input structure.

We can now create a q-ary number term valx(v1, ..., vq) for every x ≤ d, such that
it holds that if (v1, ..., vq) encodes a gate in Cn on level x (meaning that every path
from an input gate to v has length x) then for all inputs (a1, ..., an) to the circuit Cn,
valx(v1, ..., vq) is the value of the gate encoded by (v1, ..., vq) in Cn’s computation when
given an R-structure D where enc(D) = (a1, ..., an).

30

We will define valx by induction on x. If x = 0 then (v1, ..., vq) must encode an input
gate. We therefore have:

val0(v1, ..., vq) = sum
i

(in(v1, ..., vq, i)× f(i)) (3.1)

For 1 ≤ x ≤ d, define valx as follows:

valx(v1, ..., vq) =χ[t(v1, ..., vq)
.
= 2]× T2,x(v1, ..., vq)

+ χ[t(v1, ..., vq)
.
= 3]× T3,x(v1, ..., vq)

+ χ[t(v1, ..., vq)
.
= 4]× T4,x(v1, ..., vq)

+ χ[t(v1, ..., vq)
.
= 5]× T5,x(v1, ..., vq)

+ χ[t(v1, ..., vq)
.
= 6]× T6,x(v1, ..., vq)

(3.2)

where

T2,x(v1, ..., vq) = c(v1, ..., vq) (3.3)

T3,x(v1, ..., vq) = sum
i

q(pred(i1, ..., iq, v1, ..., vq)× valx−1(i1, ..., iq)) (3.4)

T4,x(v1, ..., vq) = prod
i

q(pred(i1, ..., iq, v1, ..., vq)× valx−1(i1, ..., iq)) (3.5)

T5,x(v1, ..., vq) = sum
i

q(pred(i1, ..., iq, v1, ..., vq)× sign(valx−1(i1, ..., iq))) (3.6)

T6,x(v1, ..., vq) = sum
i

q(pred(i1, ..., iq, v1, ..., vq)× valx−1(i1, ..., iq)) (3.7)

We can now use valx to define a formula ϕ over signature {{}, {f}, {t, in, c, pred}}
which defines the set decided by Cn as follows: (Recall that d denotes the depth of the
circuits of the circuit family defining S.)

ϕ = ∀i1...∀iq(χ[t(i1, ..., iq)
.
= 6 =⇒ vald(i1, ..., iq)

.
= 1]) (3.8)

The formula ϕ is independent of the input length n, however the interpretations of its
function symbols of La are not.

31

3.2 A Characterization for UP -AC0
R

Having now developed a description for the non-uniform set AC0
R, in the upcoming part

of this thesis we derive descriptions for two of its uniform variants. We start by giving
a description for the polynomial time uniform set UP -AC0

R. It turns out that we can
define our previously introduced rules SUMR and PRODR by using a polynomial time
extension to our first-order logic and therefore can use that logic to define the sets of
UL-AC0

R.
For this reason, we introduce another notation here:

Definition 49. By FTIMER(f(n)) we will denote all functions that for a finite set S
and k ∈ N map from Sk to R or to S and that are computable by a R-machine in time
bounded by O(f(|S|)).

Theorem 50. FOR[FTIMER(nO(1))] = UP -AC0
R

Proof. FOR[FTIMER(nO(1))] ⊆ UP -AC0
R:

The construction of the circuit is analogous to the one in Theorem 48. We now need
to demonstrate that the constructed circuit is P -uniform. This follows from the fact that
the circuit’s size is polynomial in the length of its input n and that the construction of
each gate takes at most polynomial time. In fact, the time it takes to construct the next
gate when constructing the circuit in, for example, a depth-first manner is constant in
all cases except for those, in which a function or a predicate of La needs to be evaluated.
In those cases, the required time is polynomial. That means that the entire circuit can
be constructed in polynomial time. We will choose as the numbering of the circuit just
the order, in which the gates are first constructed. Since we can compute |A| from
n = |enc(D)| in logarithmic time as per Definition 25, it follows that there exists a
machine which on input (n, vnr, pidx) can compute (t, pnr, c) as in Definition 17 in time
bounded by a polynomial in n.

UP -AC0
R ⊆ FOR[FTIMER(nO(1))]:

For a given UP -AC0
R set S, we can also create a formula in the same way as in Theorem

48. We only need to show that we can define the number terms t(v1, ..., vq), c(v1, ..., vq),
in(v1, ..., vq, i), pred(v1, ..., vq, w1, ..., wq), sum

i
(F (i1, ..., iq, w)) and prod

i

q(F (i1, ..., iq, w))

in FOR[FTIMER(nO(1))], since we can then just use the construction from Theorem 48.
Let A be the universe of the input structure.

1. Clearly, t(v1, ..., vq), c(v1, ..., vq) and in(v1, ..., vq, i) can be defined in
FOR[FTIMER(nO(1))], since the family defining S is P -uniform.

32

2. sum
i

(F (i1, ..., iq, w)) can be defined in FOR[FTIMER(nO(1))] as follows:

a) If F (i1, ..., iq, w) = c for c ∈ R, then sum
i

(F (i1, ..., iq)) = |A| ∗ c, which can be

computed in a single step.

b) If F (i1, ..., iq, w) = X(h1(i1, ..., iq, w), ..., hk(i1, ..., iq, w)) for X ∈ Lf and
h1, ..., hk index terms, then the evaluation of X takes constant time since
its interpretation is given in the input. The evaluation of each index term
also takes at most polynomial time and X needs to be evaluated no more
than |A|q times. Afterwards, all the results need to be summed up, which can
be done in polynomial time. Therefore the whole evaluation takes polynomial
time.

c) If F (i1, ..., iq, w) = X(h1(i1, ..., iq, w), ..., hk(i1, ..., iq, w)) for X ∈ La and
h1, ..., hk index terms, then the evaluation of X takes polynomial time. But
since this only introduces a polynomial addition to the calculation above, this
evaluation can be done in polynomial time as well.

d) If F (i1, ..., iq, w) = t1(i1, ..., iq, w) + t2(i1, ..., iq, w) or t1(i1, ..., iq, w) ∗
t2(i1, ..., iq, w) or sign(t1(i1, ..., iq, w)) for number terms t1, t2, then clearly
the evaluation takes polynomial time.

3. prod
i

(F (i1, ..., iq, w)) can be defined analogously.

4. pred(v1, ..., vq, w1, ..., wq) can be defined in FOR[FTIMER(nO(1))] in the following
way:

We define the predicate

predk :=

(v1, ..., vq, w1, ..., wq, k1, ..., kq)

∣∣∣∣∣∣∣∣∣∣∣

v is the kth predecessor of w
where v is the gate encoded
by (v1, ..., vq), w is the gate
encoded by (w1, ..., wq) and
k is the number encoded by
(k1, ..., kq).

(3.9)

which we can evaluate in polynomial time, since S is P -uniform. We can now
define pred(v1, ..., vq, w1, ..., wq) in FOR[FTIMER(nO(1))] as follows:

pred(v1, ..., vq, w1, ..., wq) = χ[∃k1, ...,∃kqpredk(v1, ..., vq, w1, ..., wq, k1, ..., kq)]
(3.10)

Therefore we can define S using a FOR[FTIMER(nO(1))] sentence.

33

out

+

×

in1 in2

+

in3

Figure 3.4: The size of this circuit is 7, however its fullsize is 8, since the second input
gate has two successors.

3.3 A Characterization for UL-AC0
R

We have demonstrated that the same construction as in the proof of Theorem 48 can be
applied in the P -uniform case if we restrict our logic to a polynomial extension rather
than a universal one. For the second uniformity result, we will produce a description
for UL-AC0

R sets. The construction is again very similar to the one for the non-uniform
case. This time, however, we need to explicitly extend our logic by the sum and product
rule, since we could not define them in FOR[FTIMER(log(n))] and we assume that they
cannot be defined therein.

Additionally, since the circuits we have constructed with our method so far have been
very tree-like, we would like to take advantage of that and number our gates in a post-
order fashion. To do this while constructing the circuit, we would like to have a measure
of the size of the subcircuit induced by a node. However, since we would like to use
a tree numbering scheme, we cannot just use the actual size of the subcircuit, which
we defined earlier. We know that our circuits are structured exactly as trees, with the
exception of the leaf nodes. The leaf nodes, which are our circuits’ input nodes, can
have several successors. So what we would like is a measure for the size of the circuit if
it were a tree, i.e. in our case if each input node was counted once for each connection
to our circuit.

Definition 51. By the fullsize of a circuit we denote the number of gates of the circuit
where each input gate is counted once for each connection it has to the circuit. An
example for this is given in Figure 3.4.

Remark 52. Note that fullsize does not refer to the size of the full tree of a circuit.
Even though the names sound similar, they refer to different properties!

Since we would like to have access to the fullsize of our circuits during our computations,
we need to see, how efficiently we can compute the fullsize of circuits in our construction.

34

As it turns out, the number of computation steps we need does not depend on the size
of our given input structure and is therefore constant for our purposes.

Lemma 53. For a circuit constructed for a given FOR-sentence and R-structure, as
in Theorem 48, we can compute the fullsize of the circuit for ϕ or any circuit for a
subformula or number or index term of ϕ in constant time with respect to the given input
structure.

Proof. Note that since the variable assignments of the notation for Theorem 48 do not
make a difference for the size of the circuit, we will omit them in this proof.

Let ϕ be the given formula and u = |A| be the size of the input structure. We give
the fullsize of the circuit for every subformula and term of ϕ by induction in the same
way, as the circuit is constructed in the proof of Theorem 48.

1. Let ϕ = ∃yψ(y). Then fullsize(Cϕn) = u ∗ fullsize(Cψn).

2. If ϕ = ∀yψ(y), then the fullsize is computed as in the existential case.

3. Let ϕ = ¬ψ. Then fullsize(Cϕn) = 2 + fullsize(Cψn).

4. Let ϕ = ψ ∧ ξ. Then fullsize(Cϕn) = 1 + fullsize(Cψn) + fullsize(Cξn).

5. If ϕ = ψ ∨ ξ, ϕ = ψ =⇒ ξ or ϕ = ψ ⇐⇒ ξ, then the fullsize can be computed
analogously to ϕ = ψ ∧ ξ.

6. Let ϕ = h1
.
= h2 for index terms h1, h2. Then fullsize(Cϕn) = 1 + fullsize(Ch1n) +

fullsize(Ch2n).

7. If ϕ = t1
.
= t2 for number terms t1, t2, then the fullsize can be computed as for

index terms.

8. If ϕ = t1 < t2 for number terms t1, t2, then the fullsize can be computed as for
equality.

The fullsize of index terms is computed as follows. Let h be an index term.

1. Let h = x for x ∈ V . Then fullsize(Chn) = 1.

2. Let h = f(h1, ..., h`) for a `-ary function symbol f ∈ La and index terms h1, ..., h`.
Then fullsize(Chn) = 1 + u` ∗ (2 +

∑
1≤i≤`

(fullsize(Chin) + 2)).

3. If h = f(h1, ..., h`) for a `-ary function symbol f ∈ Ls, then the fullsize can be
computed as above.

The fullsize of number terms is computed as follows. Let t be a number term.

1. Let t = c for c ∈ R. Then fullsize(Ctn) = 1.

35

2. If t = f(h1, ..., h`) for a `-ary function symbol f ∈ La and index terms h1, ..., h`,
then the fullsize can be computed as with function symbols for index terms.

3. If t = f(h1, ..., h`) for a `-ary function symbol f ∈ Lf and index terms h1, ..., h`,
then the fullsize can be computed as with function symbols for index terms.

4. Let t = t1 + t2 or t = t1 × t2 for number terms t1, t2, then fullsize(Ctn) = 1 +
fullsize(Ct1n) + fullsize(Ct2n).

To get the fullsize of the entire circuit for ϕ, we need to add 1 to the final fullsize,
since the output gate is not considered for subformulas.

We have now shown how to compute the fullsize of the circuit for ϕ and any of its
subformulas and terms. Each individual computation can be done in constant time, and
since the formula is constant, only a constant amount of those operations is required.

Theorem 54. FOR[FTIMER(log(n))] + SUMR + PRODR = UL-AC0
R

Proof. FOR[FTIMER(log(n))] + SUMR + PRODR ⊆ UL-AC0
R:

Just as in the polynomial case, we will use the same construction as in Theorem 48
for the logarithmic case, adding only the construction for sum

i
and prod

i
, which are

quite natural operations for unbounded fan-in circuits. Showing the L-uniformity of the
resulting circuit, however, is not as simple as it was in Theorem 50, since we cannot
just construct the entire circuit to retrieve the information for a singular gate. We can,
however, construct only part of the circuit to arrive at the gate which we would like to
retrieve in order to remain within logarithmic time. We will essentially construct the
path from the output node to the node we are looking for, which has constant length.

Let S be the set of R-structues defined by a given FOR[FTIMER(log(n))]+SUMR+
PRODR-sentence ϕ. To create a circuit family deciding S, define the structure of our
circuity depending on ϕ similarly to the proof of Theorem 48. Here however, we will
make sure that for each gate v, we know the fullsize of all of its direct subcircuits,
i.e. the subcircuits induced by v’s predecessor gates, in order to make sure that we
continue our construction at the right predecessor of v. In doing so, we can always
compute the fullsizes of the predecessor subcircuits of any given node in time constant
in the length of the input. We will additionally number our nodes in post-order, to
ensure that we know where to continue constructing our circuit. The circuit is then
constructed/structured as follows:

Since the input gates do not behave tree-like, we explicitly give the numbering they
get, whenever it is needed: the ith input gate is numbered fullsize(Cn) + i.

At the very top of the circuit, there is the output node numbered fullsize(Cn). Its
predecessor is then numbered fullsize(Cn) − 1 and structured as follows: Let the root
gate of the subcircuit representing ϕ be numbered q.

36

1. Let ϕ = ∃yψ(y). Then the construction is as in Theorem 48. The sign gate is
numbered q, the addition gate is numbered q−1 and the root of the ith predecessor
circuit Cψ(m1,...,mk,i)

n is numbered q − 2− (u− i) ∗ fullsize(Cψ(m1,...,mk,1)
n). (We can

use the fullsize of Cψ(m1,...,mk,1)
n here for each i, because Cψ(m1,...,mk,i)

n has the same
fullsize for each i.)

2. If ϕ = ∀yψ(y), then the construction is as in Theorem 48 and the numbering is
analogous to the existential case.

3. Let ϕ = ¬ψ. Then the construction is as in Theorem 48, the subtraction gate
is numbered q, the constant gate with value 1 is numbered q − 1 and the root of
Cψ(m1,...,mk)
n is numbered q − 2.

4. Let ϕ = ψ ∧ ξ. Then the construction is as in Theorem 48, the sign node is
numbered q, the ×-gate is numbered q − 1, the root of Cψ(m1,...,mk)

n is numbered
q − 2− fullsize(Cξ(m1,...,mk)

n) and the root of Cξ(m1,...,mk)
n is numbered q − 2.

5. If ϕ = ψ ∨ ξ, ϕ = ψ =⇒ ξ or ϕ = ψ ⇐⇒ ξ, then Cϕ(m1,...,mk)
n and its numbering

follows analogously to ϕ = ψ ∧ ξ.

6. Let ϕ = h1
.
= h2 for index terms h1, h2. Then the construction is as in Theorem

48, the equality gate is numbered q, the root of Ch1(m1,...,mk)
n is numbered q − 1 −

fullsize(Ch2(m1,...,mk)
n) and the root of Ch1(m1,...,mk)

n is numbered q − 1.

7. If ϕ = t1
.
= t2 for number terms t1, t2, then Cϕ(m1,...,mk)

n is defined and numbered
analogously to the case with index terms.

8. Let ϕ = t1 < t2 for number terms t1, t2. Then Cϕ(m1,...,mk)
n is defined as in Theorem

48 and numbered analogously to the case of equality.

For the cases 6, 7 and 8, we also need to show how construction and numbering can
be done for non-formula index and number terms. We will define these by induction as
well. Let h be an index term:

1. Let h = x for x ∈ V . Then the construction is as in Theorem 48 (The constant
gate is numbered q).

37

...

+ q

nrh,×,1
. . . ×nrh,x,i

nrh,=,1,r
. . . =

nrh,=,i,r

rank(ar)nrh,=,i,r − 1− size(Chr(m1,...,mk)
n) nrh,=,i,r − 1

. . .
nrh,=,`,r

f(a1, ..., a`)

nrh,x,i − 1

. . .
nrh,×,1

Chr(m1,...,mk)
n

u`

`

i

r

Figure 3.5: Numbering of the circuit for Theorem 54 if h = f(h1, ..., h`) for f ∈ La.

2. Let h = f(h1, ..., h`) for a `-ary function symbol f ∈ La and index terms h1, ..., h`.
Then the construction is as in Theorem 48. The addition gate is numbered
q, the subcircuits induced by the ×-gates each have the same fullsize, namely
sh,× :=

∑
1≤i≤`

(fullsize(C(hi(m1,...,mk))
n) + 2) + 2. Therefore the ith ×-gate is num-

bered nrh,×,i := q − 1 − (n` − i) ∗ sh,×. For the ith ×-gate the constant gate
containing the function value (in the case of characteristic functions 1 or 0) is
numbered nrh,×,i − 1. For the subcircuit induced by the respective rth equality
gate, the numbering is as follows: the equality gate itself is numbered nrh,=,i,r :=

nrh,×,i− 2− (
∑

r+1≤j≤k
fullsize(Chj(m1,...,mk)

n) + 2). The constant gate containing the

value rank(ar) is numbered nrh,=,i,r − 1 − fullsize(Chr(m1,...,mk)
n) and the root of

Chr(m1,...,mk)
n is numbered nrh,=,i,r − 1. This numbering is visualized in Figure 3.5.

38

3. If h = f(h1, ..., h`) for a `-ary function symbol f ∈ Ls and index terms h1, ..., h`,
then the construction is as in Theorem 48 and the numbering is done as above,
but with the input gates numbered according to the rule at the top.

Let t be a number term:

1. If t = c for c ∈ R, then the construction is as in Theorem 48.

2. If t = f(h1, ..., h`) for a `-ary function symbol f ∈ La and index terms h1, ..., h`,
then the construction is as in Theorem 48 and the numbering is done as described
in the case of index terms.

3. If t = f(h1, ..., h`) for a `-ary function symbol f ∈ Lf and index terms h1, ..., h`,
then the construction is as in Theorem 48 and the numbering is done as described
in the case of index terms.

4. If t = t1 + t2 or t = t1 × t2 for number terms t1, t2, then the construction is as in
Theorem 48. The addition gate is numbered q, the root of Ct2m1,...,mk

n is numbered

q − 1 and the root of Ct1(m1,...,mk)
n is numbered q − 1− fullsize(Ct2(m1,...,mk)

n).

5. If t = sum
i

(t1(i)) for a number term t1 in which i occurs freely, then Ct(m1,...,mk)
n

consists of an addition gate at the top, numbered q, with the root nodes of the
circuits Ct1(m1,...,mk,i)

n , 1 ≤ i ≤ u as its u predecessors, numbered q − 1 − (u − i) ∗
fullsize(Ct1(m1,...,mk,i)

n), similar to the case of existential quantification. If i does
not occur freely in t1, then the predecessors of node q are u gates, of which each
induces a copy of the circuit Ct1(m1,...,mk) and which are numbered the same way as
for the case where i is free in t1.

6. If t = prod
i

(t1(i)) for a number term t1, then the construction and numbering is

done as above, just using a multiplication gate instead of an addition gate.

Note that this numbering gives each gate a distinct number and makes sure that for
all non-input gates v it holds that v’s number is higher than those of v’s predecessors.
Additionally, it holds that for any two predecessors v1 and v2 of v, if v1 is numbered
lower than v2, then all nodes in v1’s induced subcircuit are also numbered lower than v2
and vice versa. Since we can compute the fullsize of any subcircuit in constant time,
we can also compute the number of the node where we need to continue in constant
time. Note also that since the input gates do not behave tree-like there are holes in the
numbering.

Now we define an R-machine M which on input (n, vnr, pidx) returns (t, pnr, c) as in
Definition 17. From Definition 25, we know that we can compute |A| from n = |enc(D)|
in time logarithmic in n. To now produce the desired output, we take advantage of
our node numbering. We know that our last node – the output node – has number
fullsize(Cn) and its singular predecessor node has number fullsize(Cn) − 1. Let fsϕ
denote fullsize(Cϕ(m1,...,mk)

n) – which is the same as fullsize(Cϕ(m1,...,mk,i)
n) etc., since

39

the variable assignments do not have an effect on the size of the circuit – and u, as in
the proof of Theorem 48, the size of the universe of the input structure |A|. Now the
machine works as follows:

If vnr > fullsizeCn + n, then return (0, 0, 0).
If vnr = fullsize(Cn) then return (6, fullsize(Cn) − 1, 0) if pidx = 1 and (6, 0, 0)

otherwise.
If vnr = fullsize(Cn) + i, for i ∈ {1, ..., n} then return (1, 0, i).
Otherwise proceed as follows: Let q be the number of the root of the current subcircuit.

(We will use q to describe both the value q and the register in which we store that value.)

1. Let ϕ = ∃yψ(y).

If vnr = q, then return (5, q − 1, 0) if pidx = 1 and (5, 0, 0) otherwise.

If vnr = q − 1, then return (3, q − 2 − (u − pidx) ∗ fsψ, 0) if pidx ≤ u and (5, 0, 0)
otherwise.

Otherwise gate vnr is contained in the subcircuit induced by the gate numbered

y = q− 2− (
⌈
q−1−vnr
fsψ

⌉
− 1) ∗ fsψ where y is the smallest natural number such that

y ≥ vnr and y = q− 2− (u− i) ∗ fsψ for some i ∈ {1, ..., u}. We can compute y in
time logarithmic in u by using binary search on i. We therefore store y in q and
continue with the construction of the subcircuit induced by node y.

2. If ϕ = ∀yψ(y), then the construction is analogous to the existential case.

3. Let ϕ = ¬ψ.

If vnr = q, then return (7, q − 1, 0) if pidx = 1, (7, q − 2, 0) if pidx = 2 and (7, 0, 0)
otherwise.

If vnr = q − 1, then return (2, 0, 1).

Otherwise, store q − 2 in q and continue with the construction of Cψ(m1,...,mk)
n .

4. Let ϕ = ψ ∧ ξ.
If vnr = q then return (5, q − 1, 0) if pidx = 1 and (5, 0, 0) otherwise.

If vnr = q−1 then return (4, q−2−fullsize(Cξ(m1,...,mk)
n), 0) if pidx = 1, (4, q−2, 0)

if pidx = 2 and (4, 0, 0) otherwise.

Otherwise, if vnr ≤ q−2−fullsize(Cξ(m1,...,mk)
n), store q−2−fullsize(Cξ(m1,...,mk)

n) in

q and construct Cψ(m1,...,mk)
n and otherwise store q−2 in q and construct Cψ(m1,...,mk)

n .

5. If ϕ = ψ ∨ ξ, ϕ = ψ =⇒ ξ or ϕ = ψ ⇐⇒ ξ, then proceed analogously to
ϕ = ψ ∧ ξ.

6. If ϕ = h1
.
= h2 for index terms h1, h2, then proceed analogously to the Boolean

connectives.

40

7. If ϕ = t1
.
= t2 for number terms t1, t2, then proceed analogously to the Boolean

connectives.

8. If ϕ = t1 < t2 for number terms t1, t2, then proceed analogously to the Boolean
connectives.

For the cases 6, 7 and 8, we also need to explain how to construct the subcircuits for
non-formula index and number terms. We will define these by induction as well. Let h
be an index term:

1. Let h = x for x ∈ V . Then if the constant gate is numbered vnr, x must be xi for
some xi ∈ V , thus return (2, 0,mi). Otherwise return (0, 0, 0).

2. Let h = f(h1, ..., h`) for a `-ary function symbol f ∈ La and index terms h1, ..., h`.

Note: the numbers nh,×,i and nrh,=,i,r are as they were defined in the structure of
the circuit.

If vnr = q then return (5, q − 1, 0) if pidx = 1 and (5, 0, 0) otherwise.

If vnr = q − 1 then return (3, nrh,×,pidx , 0) if pidx ≤ u` and (3, 0, 0) otherwise.

Otherwise let nr× := min{nrh,×,i | nrh,×,i ≥ vnr, 1 ≤ i ≤ u`}. (The smallest
number nrh,×,i greater than or equal to vnr)

If vnr = nr× then return (4, nh,=,i,pidx , 0) if pidx ≤ `, return (4, nr× − 1, 0) if pidx =
l+1 and return (4, 0, 0), otherwise. (i here is the corresponding i from the definition
of nr×.)

If vnr = nr×−1 then return (2, 0, c) where c is the value of f(a1, ..., a`) if (a1, ..., a`)
is the lexicographically ith input to f .

Otherwise let nr= := min{nrh,=,i,r | nrh,=,i,r ≥ vnr, 1 ≤ i ≤ u`, 1 ≤ r ≤ `}. (The
smallest number nrh,=,i,r greater than or equal to vnr)

If vnr = nr= then return (8, nr=−1−fullsize(Chi(m1,...,mk)
n), 0) if pidx = 1, (8, nr=−

1, 0) if pidx = 2 and (8, 0, 0) otherwise.

If vnr = nr= − 1− fullsize(Chi(m1,...,mk)
n) then return (2, 0, a) where a is the value

of the rth element of the lexicographically ith input to f .

Otherwise store nr= − 1 in q and continue with the construction of Chi(m1,...,mk)
n ,

where i is the respective i from the definition of nr=.

3. If h = f(h1, ..., h`) for a `-ary function symbol f ∈ Ls and index terms h1, ..., h`,
construct analogously to the case above, except for the gates for function values.
Those would be input gates in this case and if vnr was the number of one of those,
the machine would have returned already in the very beginning.

41

Let t be a number term:

1. If t = c for c ∈ R. Then if the constant gate is numbered vnr, return (2, 0, c).
Otherwise return (0, 0, 0).

2. If t = f(h1, ..., h`) for a `-ary function symbol f ∈ La and index terms h1, ..., h`,
then construct analogously to the case of index terms.

3. If t = f(h1, ..., h`) for `-ary function symbol f ∈ Lf and index terms h1, ..., h`,
then construct analogously to the case of index terms.

4. If t = t1 + t2 or t = t1 × t2 for number terms t1, t2, continue constructing as in the
case of Boolean connectives.

5. Let t = sum
i

(t1(i)) for a number term t1.

If vnr = q then return (3, q − 1 − (u − pidx) ∗ fullsize(Cnt1(m1, ...,mk, pidx)), 0) if
pidx ≤ u and (3, 0, 0) otherwise.

Otherwise store q−1−(u−pidx)∗fullsize(Cnt1(m1, ...,mk, pidx)) in q and continue

with the construction of Ct1(m1,...,mk,pidx)
n .

6. If t = prod
i

(t1(i)) for a number term t1, then continue constructing as in the case

of sum
i

.

The way M works, after decoding the input structure, it only ever needs to perform
a constant number of operations on each level of the circuit, with the exception of the
predicates and functions which are not given in the input structure. For those, M needs
logarithmic time. This means in total that since the circuit only has constant depth
and hence a constant number of levels, M works in logarithmic time. Therefore, S is an
element of UL-AC0

R.

UL-AC0
R ⊆ FOR[FTIMER(log(n))] + SUMR + PRODR:

Showing that a set S ∈ UL-AC0
R can be defined using FOR[FTIMER(log(n))]+SUMR+

PRODR is done in the same way as it was done in the polynomial case (Theorem 50).
We construct the formula analogously and we can compute the functions we need for
that construction in logarithmic time as follows:

1. We can compute t(v1, ..., vq), c(v1, ..., vq), in(v1, ..., vq, i) and pred(v1, ..., vq) in log-
arithmic time analogous to Theorem 50, since our circuit family is L-uniform.

2. sum
i

and prod
i

are given in the specification of FOR[FTIMER(log(n))] +SUMR+

PRODR.

42

With the construction shown in the previous theorem we can now generalize that when-
ever we have a variant of AC0

R given by a time complexity uniformity criterion that is
at least logarithmic, we can describe it using first-order logic extended with functions of
that class’ time complexity and the sum and product rule. This result is formalized as
follows:

Corollary 55. For any function f : N→ N with f(n) ≥ log(n) for all n, it holds that

Uf -AC0
R = FOR[FTIMER(f(n))] + SUMR + PRODR, (3.11)

where Uf -AC0
R is the class of sets decidable by circuit families, which can be constructed

analogous to Definition 17 in time bounded by O(f(n)).

Remark 56. The restriction in Corollary 55 to functions that are at least logarithmic
stems solely from the time it takes to decode the size of the universe of an input structure
from its encoding (see Definition 25). If an algorithm were found, which could do so
in time independent from or only sublogarithmically dependent on the length of the
encoding, this restriction could be loosened. This question boils down to this:

For fixed numbers a1, ..., ak, k ∈ N, find the natural root of a polynomial
p(x) = −c+ a1 ∗ x+ a2 ∗ x2 + ...+ ak ∗ xk when given c ∈ N as the input in time in-
dependent from or only sublogarithmically dependent on c.

Remark 57. For the results that we have shown in this thesis, whenever we extended
our first-order logic by sets of functions or predicates as per Definition 31, we only ever
needed functions A` → R for ` ∈ N. Therefore, at least in our case, an extension
containing real valued functions can be seen as equivalent to extensions also containing
predicates and functions mapping into the universe A.

43

4 Conclusions

4.1 Summary and Main Results

In this thesis, we started out by introducing two models of computation over the real
numbers – arithmetic circuits and R-machines – and first-order logic over the reals, sim-
ilar to how they were used by Cucker and Meer [CM99]. We had to make some adapta-
tions to account for unbounded fan-in circuits and we made some extensions to our logic
in order to be able to describe those circuits. Afterwards, we showed characterizations
for AC0

R, UP -AC0
R and UL-AC0

R using the logic and extensions we had introduced.
We found that AC0

R coincides with the class of R-structures definable by first-order
sentences without restriction on the functions and relations used therein, which is in line
with the classical result [Vol99]. We further discovered that we can describe variants of
AC0

R given by a time complexity uniformity criterion by extending our first-order logic
with functions of that time complexity and the sum and product rule.

4.2 Outlook

The results of this thesis suggest several directions for further research.
A question which could immediately improve a result in this thesis is whether retriev-

ing the size of the universe of an encoded R-structure can be done time-independently
of the length of that encoding, thus depending only on its signature. As already briefly
discussed in Remark 56, if such an algorithm were found, Corollary 55 could immediately
be improved.

Moreover, to be able to better put the results of this thesis in the context of the results
presented by Cucker and Meer [CM99], it is worth looking into the relation between the
bounded fan-in circuits which have immediate access to subtraction and division gates
and the unbounded fan-in circuits used here. Similar analysis is of interest concerning
the logics and uniformity definition.

Furthermore, a continued exploration of real-valued parallel complexity and its rela-
tion to classical complexity theory is certainly of interest. The classes NCR, ACR and
a real analogue to the classical TC pose interesting questions, such as whether their
relations behave differently over the real numbers than they do in the classical case.
The ACR hierarchy could be further explored, e.g. to find a general characterization
for ACi

R and its uniform subclasses. In that context, other classical circuit problems,
such as Minimum Circuit Size, also merit investigation in the real setting. These circuit
theoretic questions also warrant examination in their connection to other preexisting
logics, such as team logics.

44

Glossary

fan-in The fan-in of a gate in an arithmetic circuit is the indegree of that gate, i.e. the
amount of predecessor gates it has. 5, 13, 17, 24, 27, 36, 44

functional R-structure A functional R-structure is a R-structure, which does not con-
tain predicate symbols. 22, 23

indegree The indegree of a gate of an arithmetic circuit is the number of predecessors
that gate has. 6, 7

level The level of a gate in an arithmetic circuit which is a full tree is the distance of
that gate to any input gate. 30

outdegree The outdegree of a gate of an arithmetic circuit is the number of successors
that gate has. 6, 24, 25

45

Bibliography

[BCSS98] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity
and Real Computation. Springer, 1998.

[BSS88] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation
over the real numbers; NP completeness, recursive functions and universal
machines (extended abstract). In 29th Annual Symposium on Foundations of
Computer Science, White Plains, New York, USA, 24-26 October 1988, pages
387–397. IEEE Computer Society, 1988.

[BSS89] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and
complexity over the real numbers: NP-completeness, recursive functions and
universal machines. Bull. Amer. Math. Soc. (N.S.), 21(1):1–46, 07 1989.

[CM99] Felipe Cucker and Klaus Meer. Logics which capture complexity classes over
the reals. J. Symb. Log., 64(1):363–390, 1999.

[Cuc92] Felipe Cucker. PR != NCR. J. Complexity, 8(3):230–238, 1992.

[Cut80] Nigel Cutland. Computability: An Introduction to Recursive Function
Theory. Cambridge University Press, 1980.

[GM95] Erich Grädel and Klaus Meer. Descriptive complexity theory over the
real numbers. In Frank Thomson Leighton and Allan Borodin, editors,
Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of
Computing, 29 May-1 June 1995, Las Vegas, Nevada, USA, pages 315–324.
ACM, 1995.

[Mee00] Klaus Meer. Counting problems over the reals. Theor. Comput. Sci., 242(1-
2):41–58, 2000.

[Mic89] Christian Michaux. Une remarque à propos des machines sur R introduites
par blum, shub et smale. (a remark about the machines over R introduced by
blum, shub and smale). Comptes Rendus de l’Académie des Sciences. Série I,
01 1989.

[Vol99] Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 1999.

46

