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1. Introduction

Due to the extensive research in the last few years quantum computers pose one of
the biggest threats to future secure online communication. As Chen et al. (2016)
[Che+16] stress in their article, they can break encryption, hashing and signing
protocols widely in use. Most notably RSA, Diffie-Hellman key exchange and
elliptic curve cryptosystems are broken. Shor’s algorithm can, on a sufficiently
large quantum computer, efficiently solve the mathematical problems which these
protocols are based on. It can for example easily solve the discrete log problem on
elliptic curves. This means these crypto systems are no longer secure.

It is unknown when exactly such large quantum computers will be available,
but to be prepared the research has to start decades before the first one is build.
This is why in recent years governments started funding various post quantum
cryptography projects and due to some recent breakthroughs have, according to
Chen et al. (2016), even increased the funding. Scientist turn to alternatives
that can withstand Shor’s algorithm and have not yet been broken by any other
quantum algorithm.

Lattice-based cryptography, Code-based cryptography, multivariate polynomial
cryptography and Hash-based signatures are the most promising fields of research
mentioned in Chen et al. (2016). All of these do require a lot more improvements
and validation to be usable in practice, as they require too large keys, too much
computation time to de- or encrypt or have just recently been discovered. Es-
pecially the short amount of time some algorithms are in consideration as a new
cryptography standard makes them possibly vulnerable to undiscovered attacks.
Good cryptography requires years of research and lots of time searching for possible
exploits or new attack vectors.

1.1. Lattice-based cryptography

Out of those fields lattice-based cryptography has gathered a lot of interest, as the
algorithms are simple, efficient and often highly parallelizable. The first promising
lattice-based system was the Hoffstein-Pipher-Silverman public-key-encryption,
also know as ”NTRU”. It was suggested in 1998, but has been heavily improved
since then. This means promising lattice-based encryption has not been around
for a long time compared to for example code-based cryptography which was intro-
duced by McElice in 1978 as mentioned by Bernstein et al. (2009) [BBD09]. But
due to it’s good algorithms it can easily compete with the other systems which are
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in consideration for post quantum use.
This does not mean the optimal system has already been found. Chen et al.

(2016) warn that there are still no precise estimates for every analysis technique
or attack vector, on how secure lattice-based encryption is.

1.2. NIST Post-Quantum Cryptography Standardization
Process

The relevance of Latticed-based cryptography becomes clear when looking at an
ongoing competition hosted by the National Institute of Standards and Technol-
ogy (NIST), which aims at selecting and standardizing possible post quantum
cryptography algorithms. The competition was introduced in December 2016 and
is currently in its second round [Ala+19]. There are still multiple lattice-based
signing and public-key encryption schemes present in the second round.

This bachelor thesis takes a look at NewHope and FrodoKEM. These systems
should work on any machine with a very short execution time. They ideally are
fast and memory efficient so they can even be implemented and used on any small
microcontroller. The NIST has requested the scientific community to extensively
test these algorithms under real world conditions especially on microcontrollers.

This work provides a short introduction to Lattice-based cryptography and the
two systems. Each system is then tested and analysed for its usage of assembly
operations. The paper provides an overview of the amount of operations used and
suggests which operations a microcontroller should exceed at to effectively encrypt
with theses systems.
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2. Lattices

Even though a lattice is simple to describe, there are known problems which cur-
rently are NP-hard to solve. No known quantum algorithm does solve these prob-
lems with a relevant time advantage compared to normal, known and applicable
algorithms.

2.1. Definitions

Definition 2.1.1. A lattice L is a n dimensional structure. It can be constructed
from a set of linear independent vectors. If the set b1, ..., bm of linear independent
vectors in Rn is given. The lattice can be constructed as follows:

L(b1, ..., bm) = {
∑m

i=1 xibi|xi ∈ Z}

This means the lattice of b1, ..., bm is constructed out of all possible integer combi-
nations of the vectors. These vectors are a basis of L and are for simplicity often
written as matrix B.

The vectors may be from any other set, but as the focus in this paper is on
algorithms for classical computers, the sets Cn and In are ignored, as they will be
represented using one of the other sets when being implemented.

Definition 2.1.2. The Euclidean length of a vector v ∈ Rn, where (v1, ..., vn) are
the elements of the vector, will be written as ||v|| and is defined as:

||v|| =
√∑n

i=1 v
2
i

Definition 2.1.3. The distance of a vector t to a lattice Λ is the Euclidean length
of the difference between t and the vector v ∈ Λ which is closest to t. This means
the smallest distance that can be found between t and any vector in Λ.

dist(t,Λ) = inf{||v − t|| : v ∈ Λ} [Pöp+19]
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Definition 2.1.4. The minimal distance λ1 of a lattice L is the Euclidean length
of the shortest vector, excluding the zero vector [Pöp+19].

λ1(L) = minv∈L\{0}||v||

Definition 2.1.5. The n-th minimal distance λn of a lattice L is the Euclidean
length of the n-th shortest vector, excluding the zero vector, which is linearly
independent from all shorter vectors.

A good definition is given by Micciancio: ”The successive minima λi(L) [...] are
defined as the smallest values λi(L) such that the sphere of radius λi(L) centered
around the origin contains at least i linearly in-dependent lattice vectors.”[Mic08,
p. 84]

Definition 2.1.6. In consistency with [Pöp+19] x
$←− χ is used to describe the

sampling of x ∈ R according to χ, if χ is a probability distribution over R.

It may also be written as y
$←− A in this case A is an algorithm, which is run

with a random coin and whose output is assigned to y.

2.2. Problems on Lattices

Multiple interesting problems on and based on lattices exist. The most relevant
problem for the following cryptographic system and lattice based cryptography in
general is the shortest vector problem (SVP). It will be introduced in the following
sections as well as the approximate shortest vector problem (SV Pγ).

2.2.1. SVP

Given a basis B ∈ Qn×n the shortest vector problem is the task to find a non-zero
vector v in the lattice L(B) such that ||v|| = λ1(L(B)). In other words, find one
from all vectors whose Euclidean length is equal to the minimal distance of L(B).

There often are multiple vectors per lattice who solve the SVP. Given the basis

Be = {
(

0
1

)
,

(
1
0

)
} it becomes obvious that 4 possible solutions to the SVP in the

lattice Le(Be) exist. Namely

(
1
0

)
,

(
0
1

)
,

(
−1
0

)
and

(
0
−1

)
as they all have an

Euclidean length of 1, which is the minimal distance of Le(Be). This can also be
seen in Figure 2.1.
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Figure 2.1.: Visual representation of the minimal distance λ1 of the lattice Le
Created with geogebra (21.10.2019)

2.2.2. Approximate SVP

The SVP can easily be expanded to the approximate SVP, also called SV Pγ.
Where γ ≥ 1 is added to λ1 as a factor, to allow an approximate solution. Now
a v with ||v|| ≤ γλ1(L(B)) is required to solve the problem. The precision of the
approximation decreases with the growth of γ, which makes the problem easier to
solve. γ = 1 gives the same result as the SVP.

Reusing the basis Be and setting γ = 2, the Euclidean length of v now only has
to be less than or equal to 2, as γ ∗ λ1(Le(Be)) = 2 ∗ 1 = 2.

This means for example

(
1
1

)
,

(
2
0

)
∈ Le(Be) are now also a solution to the prob-

lem, as ||
(

1
1

)
|| =
√

2 < 2 and ||
(

2
0

)
|| =
√

4 = 2. This can also be seen in Figure

2.2, as well as some more vectors which now solve the problem.

2.2.3. Approximate SIVP

The Approximate Shortest Independent Vectors Problem (SIV Pn,γ) has the pa-
rameters n and γ and asks to find at least n linear independent vectors V in a
lattice L where ||v|| ≤ γ ∗ λn applies to all v ∈ V .

This is the approximation of the n-th minimal distance and can be understood as
multiplying the radius of the circle used in Micciancio’s definition with the factor
γ. While the amount of vectors to find stays the same, the area in which they may
be becomes bigger.

2.2.4. Approximate GapSVP

GapSV Pγ is a variant of SV Pγ which takes an additional parameter d. It decides
if the Euclidean length of the shortest vector of L(B) is smaller than or equal to

5
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Figure 2.2.: Visual representation of the minimal distance λ1 of the lattice Le multiplied
with the approximation factor γ = 2
Created with geogebra (21.10.2019)

d and in this case returns True. If this is not the case False is only returned when
the length is greater than or equal to γ ∗ d. If d < λ1(L(B)) ≤ γ ∗ d the output is
undefined.

GapSV Pγ(B, d) =

 True, if λ1(L(B)) ≤ d
False, if λ1(L(B)) > γ ∗ d
Undefined, otherwise

While it is easy to see that GapSV Pγ can be reduced to SV Pγ, a reduction
from SV Pγ to GapSV Pγ has not been found nor disproven for interesting γ with
2n > γ ≥ 1 [Ebe18]. There is an upper bound for interesting γ as the complexity of
the problem decreases with decreasing precision, as shown in the following section.

2.2.5. Complexity of SVPγ

In the given examples the SV Pγ does not seem very hard to solve, but in reality
it is. The simplicity of the given examples is based on two factors.

Firstly the little number of dimensions. The example only had 2 dimensions
while in cryptography lattices have up to 500. It is obvious that adding 498 more

6
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Figure 2.3.: Bases of different complexity S1 and Be of the same lattice.
Created with geogebra (21.10.2019)

vectors with 500 coordinates each to the base makes the problem more complicated.

The second simplification comes from choosing ideal short vectors. With the
basis Be one can easily imagine the lattice which is constructed out of them. It is
also relatively easy to find an integer combination of these base vectors to get to
any given point in the lattice Le.

Given for example the basis S1 = {
(
−2
3

)
,

(
−1
2

)
} or S2 = {

(
17
16

)
,

(
16
15

)
}

it does not become immediately clear that they indeed are bases of the already
presented lattice Le, as shown for S1 in Figure 2.3. It is also not as easy as with
Be to figure out λ1 without constructing the lattice or transforming the basis.

This is why basis reduction is one of the fundamental tools for solving lattice
problems. Basis reduction can be considered to be the SIVP with γ = 1 and
n = dim(L).

Hardness of SVPγ

While the complexity in the cases above is the result of the dimension n or the
given basis, the hardness of these problems is usually specified for a certain γ while
the actual runtime depends on n. Multiple paper prove different hardnesses for
various γ as shown by Eberhardt [Ebe18] on page 31. The following proves are
sorted by increasing γ and are shown for the `2 norm.

7
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Ajtai [Ajt98] showed that the SV Pγ with the smallest allowed γ, which is γ = 1
and therefore makes this problem equal to the standard SVP, is NP-hard using
randomized polynomial time reduction.

The SV Pγ with the biggest γ which has been proven to be NP-hard is for

γ = 2(logn)1−ε . This was proven by Haviv and Regev [HR07] under the assumption
that NP is not a subset nor equal RTIME(2poly(logn)). A definition of RTIME
can be found in German in [Ebe18] and in English in [HR07].

The next relevant γ mentioned by Eberhardt is γ = O(
√
n/ log n). It was shown

in 1998 by Goldreich and Goldwasser [GG98] that this SV Pγ is in the intersection
of NP and coAM . This means it is unlikely to be NP-hard because as Eberhardt
mentions this would lead to a collapse of polynomial-time hierarchy, which is a
widely used theorem in computational complexity theory. This also implies that
any SV Pγ with γ > O(

√
n/ log n) is most likely not NP-hard.

On the other hand the smallest γ which has been used in a cryptographic function
is γ = Õ(n). According to Eberhardt it has been used in one-way functions. As

it is unlikely to proof NP-hardness for γ > O(
√
n/ log n) researchers try to find

cryptographic systems which move the γ further down to hopefully one day drop
below this border.

2.2.6. CVP

For completeness the closes vector problem (CVP), another problem on lattices, is
also defined.

A basis B ∈ Qn×n and a vector t ∈ Qn are given [Ebe18]. The solution to the
CVP is the vector v with ||v − t|| = dist(t, L(B)).

There also exists an approximate CVP, also called CV Pγ, which introduces γ
for the same reason as the SV Pγ. It is multiplied with dist(t, L(B)) and we now
search a vector v with ||v − t|| ≤ γ ∗ dist(t, L(B).

The CVP is closely related to the SVP, as it is the inhomogeneous version of the
latter [Pöp+19]. It has also been proven to be NP hard up to γ = 2(logn)1−ε with
ε = (log log n)−c fo any constant c < 1

2
[DKS98].
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3. Learning With Errors

Taking another step towards cryptography Learning With Errors (LWE) is in-
troduced. This problem can be used as the foundation of various encryptions,
namely Chosen Plaintext Attack (CPA) and Chosen Cyphertext Attack (CCA)
secure public-key encryption, identity-based encryption and fully-homomorphic
encryption schemes [Pöp+19].

LWE is based on Learning Parity with Noise (LPN) which in turn is based
on Learning Parity (LP). This is why LP is introduced first and afterwards the
problem will become gradually more complicate.

3.1. Learning Parity

Learning parity is a relatively simple problem. For an unknown secret s ∈ {0, 1}n
the solver receives m ≥ n samples. Each sample is a pair of (ap, bp) where ap
is uniformly distributed over {0, 1}n and bp =< ap, s > mod 2, with < ai, s >

=
∑n

i=1 ap[i] ∗ s[i] [Raz18][Pöp+19]. LP can easily be solved by the Gaussian
algorithm in O(n) [Ebe18].

Given the samples {({1, 1, 1}, 0); ({1, 1, 0}, 1); ({1, 0, 1}, 0)}, the following matrix
can be constructed:

a[1] a[2] a[3] b
1 1 1 0
1 1 0 1
1 0 1 0

Subtracting the second from the first row, then the first from the last and finally
the last from the second row, results in the following matrix, which solves the
problem:

a[1] a[2] a[3] b
0 0 1 1
0 1 0 0
1 0 0 1

9



So the secret was {1, 0, 1}.

The amount of samples required varies depending on the algorithm used to
solve it. There are for example algorithms which require an exponential amount
of samples because they focus on space efficiency.

3.2. Learning Parity with Noise

While LP is easy to solve, once we add noise to our sample set this becomes a hard
problem [Pie12]. Learning Parity with Noise (LPN) does even become impossible
to solve with a too small and too noisy set of samples.

The noise rate for LPN is r ∈ R with 0 < r < 0.5. This rate is used for the
Bernoulli distribution Berr, which returns 1 with a chance of r and 0 else.

The noise itself is called e ∈ Z2 and generated from Berr. Each sample bi is
modified by its own e, with bi =< ai, s > +e mod 2 [Pie12].

Looking at the example above, a noise rate of r = 1
3

would most likely introduce
an error in one of the samples, which, no matter which sample is affected, falsifies
the solution. The chance of this issue appearing will be reduced in implementations
by introducing more constraints and using error correcting codes.

3.3. Learning With Errors

The step from LPN to LWE consist of expanding the underlying set. While LPN
is based on the set Z2, samples and secrets in LWE can come from the set Znq , with
n, q ∈ N and q ≥ 2. The distribution of the errors is also changed to the Gaussian
distribution DZ,σ over Zq, denoted the same way as in [Pöp+19]. The parameter σ

is used in the weight assigned to all x ∈ Z in D, which is proportional to exp(−x
2

2σ2 ).
The errors will be rounded to the closest integer.

To give a better understanding a sample LWE instance is constructed. In this
case it is the search LWE (sLWE) problem as the secret s is searched. If the set
Z5

5 is considered our base set a secret could be s = {0, 2, 4, 4, 1} .
The searching party will obviously not know the secret, but only the final output
matrix, which is constructed in the following.

At least five samples are needed: {

{ 2, 3, 3, 4, 1}
{ 4, 1, 1, 3, 0}
{ 4, 1, 4, 4, 2}
{ 4, 4, 3, 4, 2}
{ 4, 0, 4, 4, 2}

}

10



The error can also be pre generated in this case with a standard deviation of
1.

5 consecutive numbers are randomly chosen from a set of 1000 numbers. The
set is generated with random.org but as this is within Z the errors will be rounded
to the next integer.
The errors are: {1, −1, 0, 1, 2}

Therefore our sLWE instance is:

a[1] a[2] a[3] a[4] a[5] b
2 3 3 4 1 1
4 1 1 3 0 2
4 1 4 4 2 1
4 4 3 4 2 4
4 0 4 4 2 2

Solving this with the Gaussian algorithm and sorting the matrix results in:

a[1] a[2] a[3] a[4] a[5] b
1 0 0 0 0 2
0 1 0 0 0 4
0 0 1 0 0 4
0 0 0 1 0 2
0 0 0 0 1 0

This implies the secret has been {2, 4, 4, 2, 0} which is incorrect. Therefore
this instance has too many errors to be solved classically.

3.3.1. LWE and Lattices

The connection between Lattices and LWE is based on the hardness.
Regev [Reg09] showed a quantum worst-case to average-case reduction from

GapSVP and SIVP to LWE. This means that if a solution to LWE in the average
case is found, the same idea can be adapted and used to solve worst-case instances
of GapSVP and SIVP with a quantum computer. These two problems are con-
sidered to be hard to solve as after years of research no efficient way to do so has
been discovered. Therefore the reduction suggests that LWE is also hard to solve,
because otherwise an efficient algorithm could be found.

Peikert [Pei09] added on to these results and showed that for large moduli
q ≥ 2n/2 worst-case GapSVP can even be classically reduced to LWE with a
probabilistic polynomial time reduction.

11
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3.3.2. Decisional LWE

An equivalent problem to sLWE is the decisional LWE (dLWE).

The dLWEn,m,q,χ with m ≥ n is defined as follows:
Given m samples mod q, with n unknowns, an error distribution χ and con-
structed with a random secret s ∈ Znq decide if either all samples are actual

samples of the form (a, b =< s, a > +e mod q) with e
$←− χ or if all have been

randomly chosen from the uniform distribution (a, b)
$←− U(Zn × Zq) [cf. Pöp+19,

p. 5].

An additional property of sLWE and dLWE is, as stated by Pöppelmann et al.
(2019), that a solver for either of them can be modified to solve the other as well.
Therefore their hardness is equivalent.

3.3.3. Decisional Ring LWE

Used in the following systems is a variant of the dLWE over Rings, the decisional
Ring LWE (dRLWEm, q, χ).

As clarification Z[X] is the set of all polynomials a0+a1∗X+a2∗X2+...+aj∗Xj

where

ai =

{
∈ Z, if i ≤ j
0, if i > j

This means Z[X] is the set of all polynomials with X and all exponents in N that
can possibly constructed with factors in Z.

For this problem R (not to be confused with R) will be the ring Z[X]/(Xn + 1),
which means all polynomials modulo Xn + 1. Therefore no polynomial will have
an Xj with j > n.

Additionally Rq is defined as R/qR which means all factors in R (the ai’s) will
be modulo q.
n will also be limited to powers of 2 for simplicity.

The dRLWEm, q, χ asks when given m ≥ 1 samples if either all of them are

proper samples or all are sampled from the uniform distribution (a, b)
$←− U(Rq ×

Rq). A proper sample in this case is for a secret s, uniformly randomly chosen in
U(Rq) and shared by all samples, a sample of the form (a, b = a ∗ s + e mod q)
where e is sampled from the distribution χ for each sample [Pöp+19].
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4. NewHope

The first cryptosystem that is analysed is NewHope as presented by Pöppelmann et
al. (2019) in [Pöp+19]. It consists of two Key Encapsulation Mechanisms (KEM)
namely NewHope-CPA-KEM and NewHope-CCA-KEM. The hardness is based
on the assumed hardness of RLWE. Both KEMs are based on the NewHope-CPA
Public Key Encryption (PKE) scheme which will be presented first, followed by
the transformation to the KEMs.

4.1. CPA and CCA

To get an understanding of the security, CPA and CCA are briefly explained. In
all following scenarios, even outside this section, up to three different imaginary
persons are used to simulate communication. Alice, Bob and Eve. Alice and Bob
try to communicate in a secure way while Eve in our case tries to read the messages
send. For an explanation of CPA and CCA only Alice and Eve are needed.

A system is CPA secure if the following task can not be solved with a probability
not-negligible higher than 50%.

Alice initiates her encryption protocol e.g. she initializes her keys. Eve who
eventually wants to crack this system may now send any message to Alice and re-
ceives in return the encrypted message. Eve uses this information to try and learn
about the encryption used. Once Eve wants to try the task she generates two
messages which have not been used yet and sends them to Alice. Alice randomly
decides which message to encrypt and returns the cypher to Eve. Eve now has to
tell which of the two messages Alice encrypted, without asking Alice for further
cyphertexts. As random guessing yields a chance of 50% Eve must answer not-
negligible more than 50% of the instance correctly to break the system [ADR02].
Any public-key system must be CPA secure as in these cases Eve does not even
have to ask Alice to encrypt a message but can do so herself with the public-key.

A CCA secure system is more secure than a CPA secure system, as it adds onto
the CPA task. To prove CCA security a similar task as above must not be solved
with a probability non-negligible higher than 50%. CCA security is split into two
levels. CCA1, also called lunchtime-attack and CCA2.

For CCA1 Eve gains the ability during her learning phase to additionally send
any Ciphertext to Alice, to which Alice replies with the deciphered message. There-
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fore Eve can not only try and find a way to deduce which message causes which
cyphertext, but also which cyphertext may be caused by which message. Eve
eventually has to answer the same question as above.

For CCA2 Eve does gain the same ability as in CCA1 but additionally the abil-
ity to also ask Alice to decipher any cyphertext after Eve received the cyphertext
to solve. There obviously has be the limitation that Eve may not ask Alice to
decipher the cyphertext which she received as part of her task, but any variation
of it may be deciphered by Alice [CS98][RS92]. Therefore CCA2 even implies that
similar cyphertexts not originate from similar messages.

NewHope-CCA-KEM is only proven to be CCA1 secure, as shown later.

4.2. NewHope-CPA-PKE

4.2.1. Preliminaries

Before introducing the actual algorithms a few basics have to be specified and
defined.

The security parameters n, q, γ are specified for different security levels and are
globally readable by methods. Some methods require certain constraints for the
parameters, as e.g. q < 215. The authors of [Pöp+19] set them to q = 12289, k = 8
and n = 512 or n = 1024. Other parameters fitting the constraints, may be choose,
however the algorithms are optimized for these values.

The 32-byte seed used in key generation should be sampled from an unpre-
dictable true random number generator. In the implementation used for testing
a pseudo-random number generator, which is based on AES256, is used. It is ini-
tialized with the c function rand() which in turn is initialized with the timestamp.
Further information about AES can be found in [Dwo+01].

Furthermore SHAKE256, SHAKE128 and related functions as specified in [ST15]
are used throughout the implementation as hard hash functions. SHAKE256 takes
two arguments, l and d. l is the amount of output bytes which should be generated
and d is a byte array used as initial seed. SHAKE128 works in a similar way. It
can act as a pseudo random number generator.
b2i(x) will be used to describe the transformation of the byte x into an integer.

The definitions are:

Definition 4.2.1. The Hamming Weight of a byte x is the amount of bits set to
1.

HW (x)
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Definition 4.2.2. The bit-reversal of an unsigned integer v and a power of two n
is defined as:

BitRev(v) =
∑log2(n)−1

i=0 (((v � i)&1)� (log2(n)− 1− i))

Definition 4.2.3. The bit-reversal of a whole polynomial s is defined as:

PolyBitRev(s) =
∑n−1

i=0 siX
BitRev(i)

Definition 4.2.4. The Number Theoretic Transform (NTT) is used to transform
a polynomial to another domain. The variable ω is an n-th primitive root of unity
and γ =

√
ω mod q.

NTT (g) = ĝ =
∑n−1

i=0 ĝiX
i

ĝi =
∑n−1

j=0 γ
jgjω

ij mod q

Definition 4.2.5. The inverse of the NTT is used to return a transformed poly-
nomial to the original domain.

NTT−1(ĝ) = g =
∑n−1

i=0 giX
i

gi = (n−1γ−1
∑n−1

j=0 ĝjω
−ij) mod q

The NTT is useful as it allows an easy multiplication of two transformed poly-
nomials. In the standard domain a multiplication of polynomials requires multi-
plication of each element of each polynomial with each element of the other.
To multiply two transformed polynomials only coefficient-wise multiplication has
to be performed. The resulting polynomial can be transformed to the original
domain and will be the same as if the multiplication was performed without the
transform.

Therefore the multiplication of two polynomials a, b ∈ Rq = Zq[X]/(Xn + 1)
with the result c ∈ Rq can be written as c = NTT−1(NTT (a) ◦NTT (b)) where ◦
is used as operator for coefficient wise multiplication [Pöp+19].

NTT usually requires bit-reversal operations which in this case are not part
of the definition but rather executed separately as they may be omitted when
transforming random noise.

Using this transformation reduces the amount of operations used significantly
but as trade-off has limits on the parameter choices. There for example exists a
relation between n and q [BCA04]. The parameters chosen in NewHope fit the
requirements though.

Further reading on NTT can be done in “Some historical notes on number
theoretic transform” [BCA04].
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4.2.2. Algorithms

The most basic algorithm used is SAMPLE, which deterministically samples
polynomials in Rq from ψn8 .

Algorithm 1 Deterministic sampling of polynomials in Rq from ψn8 [Pöp+19, p. 8]

1: function Sample(seed ∈ {0, ..., 255}32, positive integer nonce)
2: r ← Rq
3: extseed← {0, ..., 255}34
4: extseed[0 :31]← seed[0 :31]
5: extseed[32]← nonce
6: for i from 0 to n/64− 1 do
7: extseed[33]← i
8: buf ← SHAKE256(128, extseed)
9: for j from 0 to 63 do

10: a← buf [2 ∗ j]
11: b← buf [2 ∗ j + 1]
12: r64∗i+j = HW(a) + q −HW(b) mod q

13: return b ∈ Rq

Sample is the centered binomial distribution φk with k = 8. k is not a parameter
and is always 8. SAMPLE has a mean of 0, variance k/2 = 4 and a standard

deviation of ζ =
√

8/2 [Pöp+19].
It works by initially taking a random 32-byte seed and a one-byte nonce. The

nonce is added to the seed, so the same seed can be used multiple times with
different nonces. First r is initialized with a n long 0-polynomial and extseed
(as in extended seed) gets assigned with 34 memory bytes whose value may be
anything. Afterwards the seed and the nonce get put into extseed. The following
for-Loop can be imagined as splitting n into intervals of the size 64. This is the
first case which requires n to be a power of 2 and to be greater or equal to 64. Once
in the loop the last byte of extseed is always set to the current index. This gives
a unique seed per nonce and iteration to hash with SHAKE256. It additionally
takes the number 128 as argument, which tells it to output 128 bytes. Having
received the hash the next loop runs exactly 64-times which is half the size of the
hash. Per loop the next two bytes of the hash are being looked at. The Hamming
Weight of each is calculated and used together with q to calculated the coefficient
of r at this point.

Note: −HW (b) ≡ q − HW (b) mod q, however the latter implementation pre-
vents underflow.
SAMPLE eventually returns a random r ∈ Rq.
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GenA expands a seed to an NTT transformed polynomial. First â is initialized
as already NTT transformed polynomial. Then extseed seed is initialized and set
to the given seed, except the 33rd byte. The following for-Loop splits n into 64-
byte intervals again. The index of the current iteration is used as 33rd seed byte.
Using Shake128Absorb a 200 byte state is generated from the seed. Looping 64
times for the current interval SHAKE128Squeeze is called which takes a number
j and a state and returns a 168 ∗ j long byte-array buf and a new state. The
following loop is used to iterate through buf . Again two bytes are being looked
at at the same time. The first operation is to prepend the second byte to the first
one and save the result as integer in val. If val < 5 ∗ q it can be used and assigned
to the current coefficient of â. Afterwards a value for the next coefficient in â can
be searched. If val does not fullfill the condition it is simply discarded. In either
case while there are unassigned coefficients in â left move to the next two bytes in
buf or if none are left or the current interval in n is finished generate a new buf .

Eventually return a NTT transformed polynomial with all coefficients randomly
set to values < 5 ∗ q.

Algorithm 2 Deterministic generation of â by expansion of a seed [Pöp+19, p. 10]

1: function GenA(seed ∈ {0, ..., 255}32)
2: â← Rq
3: extseed← {0, ..., 255}33
4: extseed[0 :31]← seed[0 :31]
5: for i from 0 to n/64− 1 do
6: ctr ← 0
7: extseed[32]← i
8: state← SHAKE128Absorb(extseed)
9: while ctr < 64 do

10: buf, state← SHAKE128Squeeze(1, state)
11: j ← 0
12: for j < 168 and ctr < 64 do
13: val← b2i(buf [j])|(b2i(buf [j + 1])� 8)
14: if val < 5 ∗ q then
15: âi∗64+ctr ← val
16: ctr ← ctr + 1

17: j ← j + 2

18: return â ∈ Rq

Pöppelmann et al. (2019) specify a polynomial encoding and a decoding algo-
rithm, which only works for q < 214.
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EncodePolynomial in this case has an NTT transformed polynomial of the
length n as input. It then creates a new byte-array where for every 4 integers in
the polynomial, 7 bytes are added to the output array. Each integer is represented
by 4 bytes. The total 4 ∗ 4 = 16 bytes of the integers can be compressed into 7, as
every integer is mod q and therefore has a maximum of 14 bit.

7 byte = 7 ∗ 8 bit = 56 bit = 4 ∗ 14 bit.

This means it outputs a byte array of the length 7 ∗ n/4.

Algorithm 3 Encoding a polynomial in Rq to a byte array [Pöp+19, p. 11]

1: function EncodePolynomial(ŝ)
2: r ← {0, ..., 255}7∗n/4
3: for i from 0 to n/4− 1 do
4: t0← ŝ4∗i+0 mod q
5: t1← ŝ4∗i+1 mod q
6: t2← ŝ4∗i+2 mod q
7: t3← ŝ4∗i+3 mod q
8: r[7 ∗ i+ 0]← t0&0xff
9: r[7 ∗ i+ 1]← (t0� 8)|(t1� 6)&0xff

10: r[7 ∗ i+ 2]← (t1� 2)&0xff
11: r[7 ∗ i+ 3]← (t1� 10)|(t2� 4)&0xff
12: r[7 ∗ i+ 4]← (t2� 4)&0xff
13: r[7 ∗ i+ 5]← (t2� 12)|(t3� 2)&0xff
14: r[7 ∗ i+ 6]← (t3� 6)&0xff

15: return r ∈ {0, ..., 255}7∗n/4

DecodePolynomial reverses the encoding and takes a byte array of length
7 ∗ n/4 as input and outputs a NTT transformed polynomial of length n.

Algorithm 4 Decoding of a polynomial represented as a byte array into an element in
Rq [Pöp+19, p. 11]

function DecodePolynomial(v ∈ {0, ..., 255}7∗n/4)
for i from 0 to n/4− 1 do

r ← Rq
r4∗i+0 ← b2i(v[7 ∗ i+ 0])||((b2i(v[7 ∗ i+ 1])&0x3f)� 8)
r4∗i+1 ← (b2i(v[7 ∗ i+ 1])� 6)||(b2i(v[7 ∗ i+ 2])� 2)||

(b2i(v[7 ∗ i+ 3]&0x0f)� 10)
r4∗i+2 ← (b2i(v[7 ∗ i+ 3])� 4)||(b2i(v[7 ∗ i+ 4])� 4)||

(b2i(v[7 ∗ i+ 3]&0x03)� 12)
r4∗i+3 ← (b2i(v[7 ∗ i+ 5])� 2)||(b2i(v[7 ∗ i+ 6])� 6)

return r ∈ Rq
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EncodePK takes the public key, so a polynomial and the public seed, as input.
It transforms the polynomial into a byte array, appends the public seed and returns
the resulting array, which has a length of 7 ∗ n/4 + 32.

Algorithm 5 Encoding of the public key [Pöp+19, p. 11]

function EncodePK(b̂ ∈ Rq, publicseed ∈ {0, ..., 255}32)
r ← {0, ..., 255}7∗n/4+32

r[0 :7 ∗ n/4− 1]← EncodePolynomial(b̂)
r[7 ∗ n/4:7 ∗ n/4 + 31]← publicseed[0 :31]
return r ∈ {0, ..., 255}7∗n/4+32

DecodePK takes a byte array of the length 7 ∗ n/4 + 32 as input. This array
consists of 7 ∗ n/4 bytes which represent an encoded polynomial, while the last
32 represent the public seed. This means the decode function splits off the first
7 ∗n/4 bytes and runs them through DecodePolynomial. It eventually returns the
combination of the decoded polynomial and the last 32 bytes of the entered array,
namely the public seed.

Algorithm 6 Decoding of the public key [Pöp+19, p. 11]

function DecodePK(pk ∈ {0, ..., 255}7∗n/4+32)
b̂←DecodePolynomail(pk[0 :7 ∗ n/4− 1])
seed← pk[7 ∗ n/4:7 ∗ n/4 + 31]
return (b̂ ∈ Rq, seed ∈ {0, ..., 255}32)

The third pair of encoding and decoding functions is to encode a binary message
as polynomial and decode a polynomial to a message.

Encode takes an array of 32 bytes (the message) as input. It iterates of every
byte and for those over each bit. During this loop it assigns each coefficient in a
polynomial v a value of 0 if the current bit is 0 or a value of q/2 if the bit is 1. It
returns a polynomial of length n.
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Algorithm 7 Message encoding [c. Pöp+19, p. 12]

function Encode(µ ∈ 0, ..., 25532)
v ← Rq
for i from 0 to 31 do

for j from 0 to 7 do
mask ← −((µ[i]� j)&1)
v8∗i+j+0 ← mask&(q/2)
v8∗i+j+256 ← mask&(q/2)
if n equals 1024 then

v8∗i+j+512 ← mask&(q/2)
v8∗i+j+768 ← mask&(q/2)

return v ∈ Rq

Decode reverses the encoding and takes a polynomial of length n as input.
The function iterates through all 255 encoded bits and decodes each. If n = 512

and the sum of all coefficients for one bit is bigger than bq/2c the bit is 0, otherwise
it is 1. The threshold for n = 1024 is q.

This functionality is realized by setting t to (q− 1)/2, if the current encoded bit
was 0, or to 1

2
if it was a 1 before encoding.

The following operations can be summarized as t = t∗2 for n = 512 and t = t∗4
for n = 1024.

In the case that n = 512, q/2 will be subtracted from t. Therefore t = q/2−1 > 0
if the old bit was 0, in contrary if it was 1: t = −q/2 + 1 < 0.

If n = 1024, q will be subtracted from t, resulting in q− 2 > 0 if the old bit was
0 and −q + 2 < 0 if the old bit was a 1.

The function now exploits how c implements negative numbers and extracts the
first bit of t indicating if the number is negative. Due to t being always negative
when the old bit was 1, only the indicating bit has to be extracted from t and
inserted at the appropriate place in the array.

Noteworthy is that t is a relatively larger number and therefore compensates
error very well.

The insertion happens by shifting the index down by 3 to only switch the element
of the array every 8th step, as 8 bits are inserted per byte. By running a bit-wise
AND of the index and 7 only the last 3 bytes and therefore only the numbers 0
to 7 are extracted to shift t to the appropriate position in the current byte. The
resulting t is added to the existing bit with a bit-wise OR as this allows a fast
merging of the 1s of both bytes.
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Algorithm 8 Message decoding [c. Pöp+19, p. 12]

function Decode(v ∈ Rq)
µ← {0, ..., 255}32
for i from 0 to 255 do

t← |(vi+0 mod q)− (q − 1)/2|
t← t+ |(vi+256 mod q)− (q − 1)/2|
if n equals 1024 then

t← t+ |(vi+512 mod q)− (q − 1)/2|
t← t+ |(vi+768 mod q)− (q − 1)/2|
t← (t− q)

else
t← (t− q/2)

t← t� 15
µ[i� 3]← µ[i� 3]|(t� (i&7))

return µ ∈ {0, ..., 255}32

Another group of functions is cyphertext compression, decompression, encoding
and decoding. These are used for reducing the size of the cyphertext and com-
pressing a polynomial and the cyphertext together.

Compress takes a polynomial in Rq as input and compresses it to 3
8

of his
original byte size. The method iterates through groups of 8 bytes. These bytes
are each compressed to 3 bits and all concatenated to each other. This results in
3 compressed bytes per 8 original bytes, as 8bytes− > 8 ∗ 3bit = 24bit = 3byte.
Overall this function returns a byte array of the length 3 ∗ n/8 = 3

8
n.

Algorithm 9 Ciphertext compression [Pöp+19, p. 13]

function Compress(v′ ∈ Rq)
k ← 0
t← {0, ..., 255}8
h← {0, ..., 255}3∗n/8
for l from to n/8− 1 do

i← 8 ∗ l
for j from 0 to 7 do

t[j]← v′i+j mod q
t[j]← ((b2i(t[j]� 3) + q/2)/q)&7

h[k + 0]← t[0]|(t[1]� 3)|(t[2]� 6)
h[k + 1]← (t[2]� 2)|(t[3]� 1)|(t[4]� 4)|(t[5]� 7)
h[k + 2]← (t[5]� 1)|(t[6]� 2)|(t[7]� 5)
k ← k + 3

return h ∈ {0, ..., 255}3∗n/8
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Decompress reverses Compress. It takes a byte array of the length 3 ∗ n/8
as input and expands the now compressed bytes back to the originals. As 3
compressed byte represent 8 uncompressed bytes, the function iterates over the
compressed bytes in groups of 3. The set of bytes which is currently selected is
split into 8 parts of 3 bit each. These 3 bits are then each expanded to a full byte
in a sub-loop. The function eventually returns a polynomial in Rq.

Algorithm 10 Ciphertext decompression [c. Pöp+19, p. 13]

function Decompress(h ∈ {0, ..., 255}3∗n/8)
k ← 0
r ← Rq
for l from to n/8− 1 do

i← 8 ∗ l
ri+0 ← h[k + 0]&7
ri+0 ← (h[k + 0]� 3)&7
ri+0 ← (h[k + 0]� 6)|((h[k + 1]� 2)&4)
ri+0 ← (h[k + 1]� 1)&7
ri+0 ← (h[k + 1]� 4)&7
ri+0 ← (h[k + 1]� 7)|((h[k + 2]� 1)&6)
ri+0 ← (h[k + 2]� 2)&7
ri+0 ← (h[k + 0]� 5)
k ← k + 3
for j from 0 to 7 do

ri+j ← (ri+j ∗ q + 4)� 3

return r ∈ Rq

EncodeC takes a polynomial and a compressed cyphertext as input. It encodes
the polynomial and appends the encoded cyphertext to the byte array. The merged
array is returned.

Algorithm 11 Ciphertext encoding [Pöp+19, p. 13]

function EncodeC(û ∈ Rq, h ∈ {0, ..., 255}3∗n/8)
c[0 :7 ∗ n/4− 1] = EncodePolynomial(û)
c[7 ∗ n/4:7 ∗ n/4 + 3 ∗ n/8− 1]← h
return c ∈ {0, ..., 255}7∗n/4+3∗n/8

DecodeC takes a byte array of length 7 ∗ n/4 + 3 ∗ n/8 as input. It then splits
the array before 7 ∗ n/4 and decodes the polynomial in the first half of the array.
It then returns the decoded polynomial and the compressed cyphertext which is
the second part of the input byte array.
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Algorithm 12 Ciphertext decoding [Pöp+19, p. 13]

function DecodeC(c ∈ {0, ..., 255}7∗n/4+3∗n/8)
û← DecodePolynomial(c[0 :7 ∗ n/4− 1])
h← c[7 ∗ n/4:7 ∗ n/4 + 3 ∗ n/8− 1]
return (û ∈ Rq, h ∈ {0, ..., 255}3∗n/8)

All tools needed for the PKE are defined, so the three algorithms for key gener-
ation, encryption and decryption are given.

PKE-Gen generates a secret and public key and requires no input variables.
The first operation is saving the ideally truly randomly sampled 32 byte seed.
Afterwards the seed gets extended to 64 bytes by SHAKE256. The first 32 bytes
of the extended seed are the public seed and will be part of the public key, while the
second 32 bytes are used as noise to sample the other factors and are required to
be kept secret. Now a NTT transformed polynomial is generated from the public
seed using the previously defined GenA. Furthermore our secret key s and its NTT
transformation ŝ are initialized from reversing the output Sample produces from
the noise seed and 0. The error and its NTT transformation will be created the
same way, but using the noise seed and 1 as parameters for Sample. Finally all
parts come together by multiplying the polynomial generated by the public seed
with the secret key (polynomial) and adding the error. The function returns the
encoding of the noisy polynomial and the public seed as public key, which is an
RLWE instance, as well as ŝ as the secret key.

Algorithm 13 NewHope-CPA-PKE Key Generation [Pöp+19, p. 7]

1: function NewHope-CPA-PKE.Gen()

2: seed
$←− {0, ..., 255}32

3: z ← SHAKE256(64, seed)
4: publicseed← z[0 :31]
5: noiseseed← z[32 :63]
6: â← GenA(publicseed)
7: s← PolyBitRev(Sample(noiseseed, 0))
8: ŝ← NTT(s)
9: e← PolyBitRev(Sample(noiseseed, 1))

10: ê← NTT(e)
11: b̂← â ◦ ŝ+ ê
12: return (pk=EncodePK(b̂, publicseed),sk=EncodePolynomial(ŝ))

PKE-Encrypt is used to encrypt the message µ. To do so the method requires
the public key pk, the message µ and a randomly sampled coin as input. First the
public key is decoded. Afterwards â is generated from the public key, which re-
sults in the same â as in the key generation. Now the secret of the sender and two
errors are sampled from coin. The NTT transformation t̂ of the secret is also ini-
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tialized. Following this another RLWE instance is generated by multiplying â and
t̂ and adding the error. Afterwards the message µ is encoded into its polynomial
representation. This representation then gets added to the reversed NTT of the
product of the RLWE instance of the public key b̂ and the new secret t̂. Alongside
the coded message the error e′′ is added as well. The sum is then compressed and
encoded alongside the RLWE instance û to the cipher c.

Algorithm 14 NewHope-CPA-PKE Encryption [Pöp+19, p. 7]

function NewHope-CPA-PKE.Encrypt(pk ∈ {0, ..., 255}7∗n/4+32, µ ∈
{0, ..., 255}32, coin ∈ {0, ..., 255}32)

(b̂, publicseed)← DecodePk(pk)
â← GenA(publicseed)
s′ ← PolyBitRevers(Sample(coin, 0)
e′ ← PolyBitRevers(Sample(coin, 1)
e′′ ← Sample(coin.2)
t̂← NTT(s′)
û← â ◦ t̂+ NTT(e′)
v ← Encode(µ)
v′ ← NTT−1(b̂ ◦ t̂) + e′′ + v
h← Compress(v′)
return c = EncodeC(û, h)

PKE-Decrypt is the simples of the PKE functions. It takes the ciphertext c
and the secret key sk, matching the public key used to encode c, as input. First the
ciphertext is decoded to û and h. The secret key is decoded as well. Afterwards
the polynomial v′ is received by decompressing h. Now the message µ can be
extracted from v′ by subtracting the NTT inverse of û ◦ ŝ.

Algorithm 15 NewHope-CPA-PKE.Decrypt [Pöp+19, p. 7]

function NewHope-CPA-PKE.Decrypt(c ∈ {0, ..., 255}7∗n/4+3∗n/8, sk ∈
0, ..., 2557∗n/4)

(û, h)← DecodeC(c)
ŝ← DecodePolynomial(sk)
v′ ← Decompress(h)
µ← Decode(v′ −NTT−1(û ◦ ŝ))
return µ ∈ {0, ..., 255}32
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The encrypting and decrypting works, as:

µ = Decode(v′ − NTT−1(û ◦ ŝ))

⇔ µ = Decode((NTT−1(b̂ ◦ t̂) + e′′ + v)−
∣∣∣ Replace v′

NTT−1(û ◦ ŝ))

⇔ µ = Decode((NTT−1((â ◦ ŝ+ ê) ◦ t̂) + e′′ + v)−
∣∣∣ Replace b̂

NTT−1(û ◦ ŝ))

⇔ µ = Decode((NTT−1((â ◦ ŝ+ ê) ◦ t̂) + e′′ + v)−
∣∣∣ Replace û

NTT−1((â ◦ t̂+ NTT(e′)) ◦ ŝ))

⇔ µ = Decode((a ◦ s+ e) ◦ s′ + e′′ + v − (a ◦ s′ + e′) ◦ s))
∣∣∣ Calculate NTT−1

⇔ µ = Decode(a ◦ s ◦ s′ + e ◦ s′ + e′′ + v − a ◦ s′ ◦ s− e′ ◦ s))
∣∣∣ Resolve the most inner brackets

⇔ µ = Decode(e ◦ s′ + e′′ + v − e′ ◦ s))
∣∣∣ Remove a ◦ s ◦ s′

⇔ µ = Decode(v + e′′ + e ◦ s′ − e′ ◦ s))
∣∣∣ Reorder

⇔ µ = Decode(Encode(µ) + e′′ + e ◦ s′ − e′ ◦ s))
∣∣∣ Replace v

⇔ µ = µ
∣∣∣ Decode reverts Encode,∣∣∣ while being able to correct for errors.

4.3. NewHope-CPA-KEM

The PKE system can easily be expanded to a Key Encapsulation Method (KEM),
which allows Alice and Bob to switch to a faster symmetric key encryption scheme
after the key exchange.

CPA-KEM-Gen is not different from the PKE-Gen.

Algorithm 16 NewHope-CPA-KEM Key Generation

function NewHope-CPA-KEM.Gen()

(pk, sk)
$←− NewHope-CPA-PKE.Gen()

return (pk, sk)

CPA-KEM-Encaps is a small expansion of PKE-Encrypt, as it at first ran-
domly samples a coin and then generates an new coin coin′ and the seed K for
the shared secret ss out of it using SHAKE256. The seed is then encrypted with
PKE-Encrypt which receives a public key,the seed K and coin′. KEM-Encrypt
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eventually outputs the encrypted seed and the actual shared secret, which is the
result of hashing the seed.

Algorithm 17 NewHope-CPA-KEM Encapsulation [Pöp+19, p. 14]

function NewHope-CPA-KEM.Encaps(pk)

coin
$←− {0, ..., 255}32

K||coin′ ← SHAKE256(64, coin) ∈ {0, ..., 255}32+32

c← NewHope-CPA-PKE.Encrypt(pk;K; coin′)
ss← SHAKE256(32,K)
return (c, ss)

CPA-KEM-Decaps is also not much different from PKE-Decrypt. It receives
the cipher and the private/secret key and delegates decryption to PKE-Decrypt.
It then returns the hash of the secret seed the decryption returns.

Algorithm 18 NewHope-CPA-KEM Decapsulation [Pöp+19, p. 14]

function NewHope-CPA-KEM.Decaps(c, s)
K ′ ← NewHope-CPA-PKE.Decrypt(c, sk)
return ss = SHAKE256(32,K ′)

4.4. NewHope-CCA-KEM

Increasing the security level even further a CCA-KEM can be constructed from
the CPA-PKE.

The security proof for the correct expansion of the model is much more com-
plicated and many systems rely on the Fujisaki-Okamoto (FO) transform [FO99],
which allows construction of a IND-CCA2 secure PKE system from a one-way se-
cure PKE system, while keeping a tight security prove. This transform has been,
in a slight variation, proven to be secure even in the quantum random oracle mode
[TU16] and can therefore not be broken by quantum computers, if the underlying
PKE is secure.

The Fujiskai Okamoto transform and the quantum proof are, however only appli-
cable to error free systems, which RLWE obviously is not. Therefore the NewHope
authors rely on Hofheinz et al. (2017) [HHK17], which constructed a modular trans-
formation, to allow a construction of an IND-CCA secure KEM from an imperfect
IND-CPA secure PKE scheme. They give a definition of QFOy

m, which has been
adapted by Pöppelmann et al. (2019).

QFOy
m requires a PKE with the methods KeyGen, Encrypt and Decrypt. Fur-

thermore M is defined as the set of all possible messages, while lens, lenK , lend
and lenss are parameters. G : {0, ..., 255}∗ −→ {0, ..., 255}lenK×RE×{0, ..., 255}lend
and F : {0, ..., 255}∗ −→ {0, ..., 255}lenss are hash functions.
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Based on QFOy
m, QKEMy

m is defined depending on PKE, G and F, therefore
QKEMy

m=QFOy
m[PKE,G,F] [Pöp+19] and with the following three functions.

QKEMy
m.KeyGen replaces the secret key with a group of the secret key, the

private key and a random byte array with the length lens.

Algorithm 19 QKEMy
m Key Generation [c. Pöp+19, p. 15]

function QKEMy
m.KeyGen()

(pk, sk)
$←− PKE.KeyGen()

s
$←− {0, ..., 255}lens

sk ← (sk, pk, s)
return (pk, sk)

QKEMy
m.Encaps takes the public key as input to encrypt the shared secret. It

first generates a random message and hashes it together with the public key. This
generates a randomK, coin′ and d.The cyphertext c consists of the random message
which acted a seed. The shared secret is hashed from the K, the cyphertext and
d. c will then be replaced by a group of the cyphertext and d. c and the shared
secret are returned.

Algorithm 20 QKEMy
m Encapsulation [c. Pöp+19, p. 15]

function QKEMy
m.Encaps(pk)

µ
$←−M

(K, coin′, d)← G(pk||µ)
c← PKE.Encrypt(pk, µ; coin′)
ss← F (K||c||d)
c̄← (c, d)
return (c̄, ss)

QKEMy
m.Decaps is able to decrypt µ from the ciphertext saved as part of c.

It now generates the hash of the public key together with µ. This should result
in the same K, coin and d. It then compares the original ciphertext and d with a
newly encrypted cyphertext and the newly generated d′. If the compare returns
true, the message was valid and can be used as shared secret. If they do not match
an error occurred or was forced and the shared secret will be generated with the
usage of s which has not been used yet, but was sampled randomly. Therefore
malformed cyphertext are recognized.
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Algorithm 21 QKEMy
m Decapsulation [c. Pöp+19, p. 15]

function QKEMy
m.Decaps((c, d), (sk, pk, s))

µ′ ← PKE.Decrypt(c, sk)
(K ′, coin′′, d′)← G(pk||µ′)
if c = PKE.Encrypt(pk, µ′; coin′′) and d = d′ then

return ss′ ← F (K ′||c||d)
else

return ss′ ← F (s||c||d)

The actual implementation of NewHope-CCA-KEM is similar to the theoretical
algorithms, but the authors added the hash of the public key as 4th value to the
secret key. They also added nested hashing, when hashing more than one value,
by hashing the second value first before hashing the hash with the first value.

As Hash function SHAKE256 is used for G and F, while all len variables are set
to 32.

Therefore the actual algorithms used in the implementation are:

Algorithm 22 NewHope-CCA-KEM Key Generation [Pöp+19, p. 16]

function NewHope-CCA-KEM.Gen()

(pk, sk)
$←− NewHope-CPA-PKE.Gen()

s
$←− {0, ..., 255}32

return (pk, sk = (sk||pk||SHAKE256(32, pk)||s))

Algorithm 23 NewHope-CCA-KEM Encapsulation [Pöp+19, p. 16]

function NewHope-CCA-KEM.Encaps(pk)

coin
$←− {0, ..., 255}32

µ
$←− SHAKE256(32, coin) ∈ {0, ..., 255}32

K||coin′||d← SHAKE256(96, µ||SHAKE256(32, pk)) ∈ {0, ..., 255}32+32+32

c← NewHope-CPA-PKE.Encrypt(pk, µ; coin′)
ss← SHAKE256(32,K||SHAKE256(32, c||d))
return (c̄ = c||d, ss)
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Algorithm 24 NewHope-CCA-KEM Decapsulation [Pöp+19, p. 16]

function NewHope-CCA-KEM.Decaps(c̄, sk)
c||d← c̄ ∈ {0, ..., 255}3∗n/8+7∗n/4+32

sk||pk||h||s← sk ∈ {0, ..., 255}7∗n/4+7∗n/4+32+32+32

µ′ ← NewHope-CPA-PKE.Decrypt(c, sk)
K ′||coin′′||d′ ← SHAKE256(µ′||h) ∈ {0, ..., 255}32+32+32

if c = NewHope-CPA-PKE.Encrypt(pk, µ′; coin′′) and d = d′ then
fail← 0

else
fail← 1

K0 ← K ′

K1 ← s
return ss = SHAKE256(32,Kfail||SHAKE256(32, c||d))

Minor implementation tweaks, like the Montgomery reduction will not be spec-
ified, but can be found at [Pöp+19, p. 22].

This concludes the algorithm specification as every required algorithm for a
IND-CCA-KEM has been defined.

4.5. Runtime Analysis of New Hope

New Hope specifies CPU cycles used for all 4 algorithm implementations, however
this analysis is looking at the actual instructions run during the execution. The
strongest algorithm with the most operations NH-1024-CCA-KEM has been tested
for its assembly operation usage to determine the most important instructions,
hardware should be able to execute efficiently to work optimally with New Hope.

First a suitable test instance has to be created. Therefore testNewHope.c (see
Appendix A.1) has been created.

In testNewHope.c the relevant steps from the provided PQCgenKAT kem.c have
been adapted. It first initializes the c randomiser with the time stamp and then
initializes the internal randomiser with the c randomiser. It then generates a Key-
Pair, encrypts the shared secret and decrypts the shared secret. All three steps
are split with ’breakFunction()’, which only serves the purpose to be recognized
as break point when analysing the code.

To determine which assembly operations are used at runtime the GNU De-
Bugger (GDB) can be used. With the GDB the program can be stopped at break-
points at any point during the execution and examined. Therefore breakpoints are
set to ’crypto kem keypair’, ’crypto kem enc’ and ’crypto kem dec’.

GDB also gives the ability to not continue the program as normal after a break
point, but to only move exactly one operation ahead, which will be called moving
a step. Steps can be split into two kinds, first where GDB steps ahead, but over
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any sub functions that are called, these are then evaluated immediately as one
step, this is the default step operation. The second kind is called ’step into’ and
the matching GDB command is stepi. In this case GDB does also step into each
function that is called and will execute the called function step by step as well. In
these tests only stepi is used.

After performing a step or when arriving at a breakpoint GDB prints the line
number of the compiled program at which it currently is.

To retrieve the assembly operation, which was just executed the line number
can be extracted and given to the GDB command disas. This command takes two
line numbers separated by a comma as input and returns the disassembled code
beginning with the first specified line up to one before the second line. So ’disas
line1, line2’ would disassemble the interval [line1, line2).

To automate this process and allow easy multi-threading a simple Java program
has been written which makes use of the easy cross thread accessibility and the
Java ProcessBuilder. It can be found at appendix A.2.

This implementation has been run on an AMD Opteron Processor 33280 at 2550
MHz with Ubuntu 18.04.3 LTS, gdb 8.1.0.20180409 and gcc 7.4.0.

It generated the output files found in the directory assemblyOps, summarized
in Appendix A.3, A.4 and A.5

The Java implementation produced the mentioned files in 100 iterations for the
optimized implementation.

As Pöppelmann et al. (2019) mentioned there is no difference between the opti-
mized and the reference implementation and thus these results are represent both
implementations.

4.5.1. Results

The tables for all three functions rank the most instructions in a similar order
with just a close by instructions swapping places. The results mainly show the
expected operations at the top.

According to Huang and Peng (2002) [HP02, 12f.] the most frequent operation
is mov with a frequency of 12.5%. If all similar move operations are summarized
they add up to a frequency of 25.7%. The move instruction is the most frequent
operation in this analysis as well, however with a much higher frequency of nearly
40%. Not considering that the related instruction movzbl and movzwl are also in
the top 5 most frequent instructions for all methods. This shows that the move
instruction is heavily used. It therefore is the first and most obvious operation,
hardware running this encryption should perform fast. Improving the execution
time of move instructions can speed up the encryption significantly. Huang and
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Peng (2002) showed that in 2002 the mov instruction could theoretically be im-
proved by reducing the amount of micro operation cycles needed by 11% and the
amount of integers loaded by 20%. This leaves room for speculation if another
speed-up can be found or specifically designed for this KEM. Without speculation
it can be said that choosing hardware with a fast implementation of move is useful
for running New Hope.

The second most frequent instruction is add with a bit less than 10%. In Huang
and Peng (2002) add only ranked fourth with 5.1%. New Hope may differ from
the average case due to the frequent addition of error to the polynomials. This
makes the add instruction another criteria to choose good hardware.

Another instruction that is used frequently, but not in the top 65 instructions in
Huang and Peng (2002), is lea. However les a similar instruction is present. These
two operations may have been swapped due to the usage of LD BIND NOW=1 or
newer implementations. Loading is always an important operation and therefore
no surprise to be found in the top frequent functions in these test or [HP02],
although in different variants. Nevertheless it is the third instruction or rather
instruction group to consider when choosing hardware.

Two more important instructions are xor and imul. They match in frequency in
the tests and in [HP02]. With a frequency of 0.4% and 0.3% they rae not nearly
as frequent as mov, but they still are in the top ten most frequent function.

This can be compiled to a rough list of the most important operations for New
Hope and can give an idea after which additional criteria hardware can be selected.
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5. FrodoKEM

FrodoKEM is the second lattice based algorithm, which is analysed in this paper.
This key encapsulation method has been submitted by Alkim et al. (2019) [Alk+19]
to the NIST competition.

5.1. FrodoPKE

5.1.1. Preliminaries

Its is similar to New Hope as they have same underlying hardness assumptions
based on LWE. The main difference is that FrodoKEM is based on LWE and not
like New Hope based on a sub group, the RLWE problem. Thus the name ’Frodo’
as it got rid of the ring.

The underlying scheme of FrodoKEM originates in Lindner and Peikert (2011)
[LP11]. Furthermore FrodoKEM is an extension of FrodoPKE, which is extended
in a similar way as New Hope with the Fujisaki-Okamoto transform (see section
4.4). Alkim et al. also considered another paper by Jiang et al. (2018) [Jia+18]
which presented a variant of the Fujisaki-Okamoto transform in the quantum ran-
dom oracle model, that requires one hash function less than [TU16], which was
used to proof the quantum security of the FO transform.

The reasoning of Alkim et al. behind removing the ring from the LWE problem
is, that a lattice used for a standard LWE instance is less ”algebraically struc-
tured”, while RLWE and the Module-LWE, which is a problem used in other NIST
submissions [s. Ala+19, p. 10], introduce structure to their lattices, to speed up
computation and efficiently run schemes based on them [c. Alk+19, p. 5]. However
this structure introduces another vector for possible attacks. If algebraic struc-
tures can be abused to solve the underlying problems these schemes are broken,
while FrodoKEM remains secure as it requires no structure within its lattice. This
lack of structure also allows a simple implementation as no advanced mathematics
have to be used to speed up computation, like the NTT (definition 4.2.4) of New
Hope.

FrodoKEM uses a Gaussian distribution to sample its errors. The distribution
has a standard deviation of σ = 2.3 for the security levels 1 and 3 and a deviation
of σ = 1.4 for level 5 [c. Alk+19, p. 7]. As this parameter choice does not allow
the classic full quantum reduction used for LWE problems, Alkim et al. show a
reduction with these parameters [Alk+19, p. 38] and justify the worst case to
average case reduction from hard lattice problems.
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Definition 5.1.1. The function i2b(x) is defined as converting an integer to its
corresponding bit array.

The following constraints and definitions for parameters are give by Alkim et al.
[c. Alk+19, p. 13]. These parameters are globally available:

• ξ is a probability distribution over Z

• q = 2D with D ≤ 16 is used as modulus

• n,m, n with n ≡ 0 mod 8, are used as matrix dimensions

• B < D is the number of bits encoded in each matrix entry

• l = B ∗m ∗ n is the number of bits encoded per matrix

• lenseedA is the length of the seed for pseudorandom matrix generation

• lenseedSE is the length of the seed for pseudorandom error sampling

• x $←− U(y) says that x is randomly sampled from the uniform distribution
over y

• Tχ is a distribution table and defined in more detail later

5.1.2. Algorithms

The first algorithms given in the specification of FrodoKEM are Encode and De-
code.

Encode takes a bit string k of the length l as input and transforms it to a
Matrix K ∈ Zm×nq . It iterates over every column and every row of the matrix
and assigns it its designated value. When currently in the i-th column and j-th
row calculate the unsigned integer represented by the next B bits beginning with
k(i∗n+j)∗B. Then multiply the resulting integer with q/2B = 2D−B ≥ 1 and save
the result in the matrix at Ki,j. Once all elements of K have been filled return it.

Algorithm 25 Encode a bit string into a matrix [c. Alk+19, p. 14]

function Frodo.Encode(k ∈ {0, 1}l)
K ← Zm×nq

for i from 0 to m− 1 do
for j from 0 to n− 1 do

t←
∑B−1

h=0 k(i∗n+j)∗B+h ∗ 2h

Ki,j ← t ∗ q/2B

return K = (Ki,j)0≤i≤m, 0≤j≤n ∈ Zm×nq
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Decode reverses the encoding and creates a bit string from a given Matrix K.
The function iterates over all columns and rows of the Matrix and decodes the
value there. Decoding a value happens by multiplying it with 2B/q < 1, which
is the inverse of value the number got expanded with while encoding. The result
is rounded, reduced mod 2B and converted into a bit array. This bit array then
gets inserted at the right spot in the output bit string k. Once every value has
been decoded k is returned.

Algorithm 26 Decode a matrix into a bit string [c. Alk+19, p. 14]

function Frodo.Decode(K ∈ Zm×nq )

k ← {0, 1}l
for i from 0 to m− 1 do

for j from 0 to n− 1 do
t← i2b(bKi,j ∗ 2B/qe mod 2B)
for h from 0 to B − 1 do

k(i∗n+j)∗B+h ← th

return k ∈ {0, 1}l

Decode is able to decode the correct k even if values in K have an error of up to
+2D−B

2
− 1 = 2D−B−1 − 1 = q/2B+1 − 1 or −2D−B

2
= −2D−B−1 = −q/2B+1 as this

error is rounded away.

The next two function perform a similar task as Encode and Decode, however
without error correction as D bits are packed into each entry in the matrix and
for matrices of the dimensions n1 × n2 rather than m× n.

Pack takes a matrix C ∈ Zn1×n2
q as input. It iterates over all columns and rows

and extracts the D bits of each entry. The bits are then inserted into the bit string,
which is eventually returned. In a real software implementation this string will be
padded with 0’s to make the length a multiple of 8 because it is saved as bytes.

Algorithm 27 Packing a matrix into a bit string [c. Alk+19, p. 14]

function Frodo.Pack(C ∈ Zn1×n2
q )

b← {0, 1}D∗n1∗n2

for i from 0 to n1 − 1 do
for j from 0 to n2 − 1 do

t← i2b(Ci,j)
for h from 0 to D − 1 do

b(i∗n2+j)∗D+h ← tD−1−h

return b ∈ {0, 1}D∗n1∗n2
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Unpack reverses Pack and extracts an integer value from every D bits. To
do so it iterates over all columns and rows as well, extracts the correct bit string,
converts it to an integer and assigns it to the currently selected entry in the matrix
C.

Algorithm 28 Extract a matrix from a bit string [c. Alk+19, p. 14]

function Frodo.Unpack(b ∈ {0, 1}D∗n1∗n2)
C ← Zn1×n2

q

for i from 0 to n1 − 1 do
for j from 0 to n2 − 1 do

Ci,j ←
∑D−1

h=0 b(i∗n2+j)∗D+h ∗ 2D−1−l

return C ∈ Zn1×n2
q

A big difference between the New Hope and Frodo is the implementation of the
Sample function. While New Hope (see algorithm 1) hashed a random seed with a
nonce and then extracted integers by using the hamming weight of two bytes, Frodo
does use a discrete probability density function described by a table. This means
additionally to the random seed a tables of the form Tχ = (Tχ(0), Tχ(1), ..., Tχ(s))
is given as input to Sample, where s is a positive integer and is part of the sup-
ported Set Sχ of χ with Sχ = {−s,−s+1, ...,−1, 0, 1, ..., s−1, s} [c. Alk+19, p. 14].

The table has to satisfy multiple conditions.
Firstly χ(z) = χ(−z) for z ∈ Sχ, therefore only table entries for positive z have to
be specified.
Furthermore Tχ(0) ∗ 2−lenχ = 1

2
χ(0)− 1

and Tχ(z) ∗ 2−lenχ = 1
2
χ(0)− 1 +

∑z
i=1 χ(i) for 1 ≤ z ≤ s

have to be fulfilled [c. Alk+19, p. 14].

Sample therefore does take a seed r of the length lenχ and a table Tχ as input.
It then calculates the integer value t of the seed without the first bit. Afterwards
it iterates over the whole Table Tχ and increases a counting variable e by 1 for
every Tχ(z) < t. Eventually use the first bit of the seed, which was not used yet,
to decide if e should be multiplied with −1 and return e afterwards.
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Algorithm 29 Sampling an integer from Z [c. Alk+19, p. 15]

function Frodo.Sample(r ∈ {0, 1}lenχ , Tχ)

t←
∑lenχ−1

i=1 ri ∗ 2i−1

e← 0
for z from 0 to s− 1 do

if t > Tχ(z) then
e← e+ 1

e← (−1)r0 ∗ e
return e ∈ Z

It is stressed, that the whole table has to be iterated and the comparison be-
tween Tχ and t has to execute in constant time. Only with this condition timed-side
channel attacks can be avoided [c. Alk+19, p. 15].

SampleMatrix is sampling a whole n1 ∗n2 matrix using Sample. This method
has a bit string r of n1 ∗n2 bit strings as input, of which each has a length of lenχ,
as well as a Table Tχ. It then iterates through each column and each row of the
matrix, which is being generated and generates a sample, with a new ri each time,
for all entries. The randomly sampled matrix is eventually returned.

Algorithm 30 Sampling a matrix from Zn1×n2 [c. Alk+19, p. 15]

function Frodo.SampleMatrix(r = (r(0), r(1), ..., r(n1∗n2−1)) ∈ {0, 1}n1∗n2∗lenχ , n1,
n2, Tχ)

E ← Zn1×n2
q

for i from 0 to n1 − 1 do
for j from 0 to n2 − 1 do

Ei,j ← Frodo.Sample(ri∗n2+j , Tχ)

return E ∈ Zn1×n2

Gen is used to generate pseudo random matrices. As input a seed with a length
of lenseedA is given with which AES [Dwo+01] is initialized. It then iterates through
each column of the matrix and 8 rows at a time. The column count and row count
are then encoded as 16 bit long bit strings and extended with 96 0’s. This 128
bit long string is then fed into AES. The 128 bit long string which is returned is
then split into 8 groups of 16 bits, which are transformed into integers, reduced by
mod q and set as value for the next 8 rows of the matrix. Once all entries have
been set the matrix is returned.
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Algorithm 31 Generating a random matrix using AES128

function Frodo.Gen(seedA ∈ {0, 1}lenseedA )
A← Zn×n
for i from 0 to n− 1 do

j ← 0
for j < n do

b← i2b(i)||i2b(j)||{0}96
ci,j ||ci,j+1||...||ci,j+7 ← AES128seedA(b)
for k from 0 to 7 do

Ai,j+k ← b2i(ci,j+k) mod q

j ← j + 8

return A ∈ Zn×nq

There also exists an alternative implementation which uses SHAKE128 and its
modularity. For SHAKE128 a new seed for each column is generated by prepending
the 16 bit value of the current column count to the seed. Now SHAKE128 can
be run with the column unique seed and the parameter specifying how long the
output bit string should be, which is set to 16n. This results in enough bits to fill
the whole column.

Algorithm 32 Generating a random matrix using SHAKE128

function Frodo.Gen(seedA ∈ {0, 1}lenseedA )
A← Zn×n
for i from 0 to n− 1 do

b← i2b(i)||seedA
ci,0||ci,1||...||ci,n−1 ← SHAKE128(b, 16n)
for j from 0 to n− 1 do

Ai,j ← b2i(ci,j) mod q

return A ∈ Zn×nq

These are all basic algorithms needed for FrodoPKE, therefore we define the key
generation, encryption and decryption in the following.

KeyGen does not require any input. It at first randomly chooses a seedA
from the uniform distribution over {0, 1}lenseedA and generates a pseudo random
matrix from it. Then seedSE is randomly chosen from the uniform distribution
over {0, 1}lenseedSE . This seed is prepended with 0x5F and then used as seed for
SHAKE, which is also given the parameter 2 ∗n ∗n ∗ lenχ to output as many bits.
These bits are stored in 2∗n∗n bit strings, each of the length lenχ. The first n∗n
bit strings are used together with n, n and Tχ to sample the secret matrix, while
the second n∗n bit strings are used with the same other parameters to sample the
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error matrix. The B = AS + E is computed and the public key pk = (seedA, B)
and the private key S are returned.

Algorithm 33 FrodoPKE Key generation [c. Alk+19, p. 17]

function FrodoPKE.KeyGen()

seedA
$←− U({0, 1}lenseedA )

A← Frodo.Gen(seedA)

seedSE
$←− U({0, 1}lenseedSE )

r = (r(0), r(1), ..., r(2∗n∗n−1))← SHAKE(0x5F ||seedSE , 2 ∗ n ∗ n ∗ lenχ)
S ← Frodo.SampleMatrix(r(0), r(1), ..., r(n∗n−1), n, n, Tχ)
E ← Frodo.SampleMatrix(r(n∗n), r(n∗n+1), ..., r(2∗n∗n−1), n, n, Tχ)
B ← AS + E
return (pk ← (seedA, B), sk ← S)

Enc does take a message µ and a public key pk as input. First it regenerates
the matrix A from seedA which is included in the public key. Then seedSE is, as in
KeyGen, randomly chosen from the uniform distribution over {0, 1}lenseedSE . The
seed gets prepended with 0x96 this time and put into SHAKE, which is instructed
to output (2 ∗m ∗ n+m ∗ n) ∗ lenχ bits. From the first m ∗ n ∗ lenχ bits a pseudo
random secret S ′ is sampled, from the second an error E ′ and from the remaining
m ∗n ∗ lenχ a second error E ′′, which has different dimensions than the first error.
Now B′ = S ′A + E ′ and V = S ′B + E ′′ are computed. The message is encoded
with Frodo.Encode and added to V . Then the function returns the ciphertext c
which consist of B′ and the sum of V and the encoded message.

Algorithm 34 FrodoPKE Encryption [c. Alk+19, p. 17]

function FrodoPKE.Enc(µ ∈M,pk = (seedA, B) ∈ {0, 1}lenseedA × Zn×nq )
A← Frodo.Gen(seedA)

seedSE
$←− U({0, 1}lenseedSE )

r = (r(0), r(1), ..., r(2∗n∗m+m∗n−1))← SHAKE(0x96||seedSE , (2∗n∗m+m∗n)∗lenχ)
S′ ← Frodo.SampleMatrix(r(0), r(1), ..., r(n∗m−1),m, n, Tχ)
E′ ← Frodo.SampleMatrix(r(n∗m), r(n∗m+1), ..., r(2∗n∗m−1),m, n, Tχ)
E′′ ← Frodo.SampleMatrix(r(2∗n∗m), r(n∗m+1), ..., r(2∗n∗m+m∗n−1),m, n, Tχ)
B′ ← S′A+ E′

V ← S′B + E′′

C1 ← B′

C2 ← V + Frodo.Encode(µ)
return c← (C1, C2)

Dec is very simple. It takes a ciphertext c = (C1, C2) ∈ Zm×nq × Zm×nq and a

secret key sk = S ∈ Zn×nq as input. It then computes M = C2 − C1S, which can
be decoded to the message µ′ with Frodo.Decode. µ′ is then returned.
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µ′ = µ if the errors e which are left, are for each entry −q/2B+1 ≤ e < q/2B+1

as explained after algorithm 26 as well as in [c. Alk+19, p. 17].

Algorithm 35 FrodoPKE Decryption [c. Alk+19, p. 17]

function FrodoPKE.Dec(c = (C1, C2) ∈ Zm×nq × Zm×nq , sk = S ∈ Zn×nq )
M = C2 − C1S
µ′ ← Frodo.Decode(M)
return µ′ ∈M

5.2. Frodo-CCA-KEM

Based on the the Fujisaki-Okamoto transform (see section 4.4), the work by Targhi
and Unruh (2016) [TU16] and the work by Hofheinz et al. (2017) [HHK17] the
Frodo-PKE can be expanded to a CCA secure KEM in a similar way as New Hope
was.

Alkim et al. define a KEMy = FOy[PKE,G1, G2, F ] and the additional pa-
rameters lenS, lenk, lenpkh, lenss. G1 : {0, 1}∗ → {0, 1}lenpkh , G2 : {0, 1}∗ →
R × {0, 1}lenk and F : {0, 1}∗ → {0, 1}lenss are hash functions. M is defined
as message space.

This results in the following KEM algorithms for key generation, encapsulation
and decapsulation:

KEMy.KeyGen generates the key pair with PKE.KeyGen and samples a ran-
dom secret s. It then hashes the public key pkh and combines the secret key, s,
the public key and pkh and sets them as new secret key. The new public/secret
key pair is returned.

Algorithm 36 KEMy Key Generation [c. Alk+19, p. 19]

function KEMy.KeyGen()

(pk, sk)
$←− PKE.KeyGen()

s
$←− {0, 1}lens

pkh← G1(pk)
sk′ ← (sk, s, pk, pkh)
return (pk, sk′)

KEMy.Encaps takes a public key as input. It then samples a random message
from the set of all possible messages. It then hashes the hash of the public key
together with the message and splits the resulting hash into r and k. While r
is used as seed for the encryption k is part of the seed, which the shared secret
gets hashed from. The random message is then encrypted with PKE.Enc, which
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receives the message and the public key as parameters and k as well, which should
be used as seed for SHAKE. The hash of the cyphertext and k is then saved
as shared secret. Eventually the function returns the cyphertext and the shared
secret.

Algorithm 37 KEMy Encapsulation [c. Alk+19, p. 19]

function KEMy.Encaps(pk)

µ
$←−M

(r, k)← G2(G1(pk)||µ)
c← PKE.Encrypt(µ, pk; r)
ss← F (c||k)
return (c, ss)

KEMy.Decaps receives the cyphertext and the secret key, consisting of the
original secret key, s, the public key and pkh. It decodes the message µ′ with
PKE.Dec the cyphertext and the secret. It then hashes pkh with the message and
receives r′ and k′. It now re-encrypts the message with r′ as seed to compare it
to the cyphertext and validate it. If the cyphertexts match generate the shared
secret by hashing c and k′. If they do not match generate a fake shared secret by
hashing c and s. In either way return the shared secret.

Algorithm 38 KEMy Decapsulation [c. Alk+19, p. 19]

function KEMy.Decaps(c, (sk, s, pk, pkh))
µ′ ← PKE.Decrypt(c, sk)
(r′, k′)← G2(pkh||µ′)
if c = PKE.Enc(µ′, pk; r′) then

return ss′ ← F (c||k)
else

return ss′ ← F (c||s)

5.3. FrodoKEM

From these functions and Frodo-PKE an IND-CCA secure KEM can be con-
structed.

FrodoKEM.KeyGen merges the KEM.KeyGen and the Frodo-PKE.KeyGen.
First s, seedSE, z are sampled together from a uniform distribution. seedA is not
sampled but gained by expanding z with SHAKE. After that already described
PKE.KeyGen takes place until right before the end, where B is packed to b. It
then is hashed together with seedA as required by KEM.KeyGen. The returned
public key is no longer a tuple but rather the concatenation of seedA and b. The
secret key also has a concatenation of s, seedA and b as its first value, followed by
S and pkh as separate values, which makes the secret key a 3-tuple.
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Algorithm 39 FrodoKem.KeyGen [c. Alk+19, p. 20]

function FrodoKEM.KeyGen()

s||seedSE ||z
$←− U({0, 1}lens+lenseedSE+lenz)

seedA ← SHAKE(z, lenseedA)
A← Frodo.Gen(seedA)
r = (r(0), r(1), ..., r(2∗n∗n−1))← SHAKE(0x5F ||seedSE , 2 ∗ n ∗ n ∗ lenχ)
S ← Frodo.SampleMatrix(r(0), r(1), ..., r(n∗n−1), n, n, Tχ)
E ← Frodo.SampleMatrix(r(n∗n), r(n∗n+1), ..., r(2∗n∗n−1), n, n, Tχ)
B ← AS + E
b← Frodo.Pack(B)
pkh← SHAKE(seedA||b, lenpkh)
return (pk ← seedA||b; sk′ ← (s||seedA||b, S, pkh))

FrodoKEM.Encaps merges the KEM and the PKE algorithms as well. Given a
public key, it first chooses the random message and then hashes it, but r is replaced
with seedSE. It then generates the pseudo random bit string from seedSE. It then
proceeds with the normal PKE specification until except it uses Frodo.pack to
pack B′ and save it as c1 and uses Frodo.unpack to unpack B from b. It eventually
packs C into c2. It then uses c1 and c2 together with k to generate the shared
secret and returns it. It returns the cyphertext c as well, which is a c2 appended
to c1.

Algorithm 40 FrodoKEM.Encaps [c. Alk+19, p. 20]

function FrodoKEM.Encaps(pk = seedA||b ∈ {0, 1}lenseedA+D∗n∗n)

µ
$←− U({0, 1}lenµ)

pkh← SHAKE(pk, lenpkh)
seedSE ||k ← SHAKE(pkh||µ, lenseedSE + lenk)
A← Frodo.Gen(seedA)
r = (r(0), r(1), ..., r(2∗n∗m+m∗n−1))← SHAKE(0x96||seedSE , (2∗n∗m+m∗n)∗lenχ)
S′ ← Frodo.SampleMatrix(r(0), r(1), ..., r(n∗m−1),m, n, Tχ)
E′ ← Frodo.SampleMatrix(r(n∗m), r(n∗m+1), ..., r(2∗n∗m−1),m, n, Tχ)
E′′ ← Frodo.SampleMatrix(r(2∗n∗m), r(n∗m+1), ..., r(2∗n∗m+m∗n−1),m, n, Tχ)
B′ ← S′A+ E′

B ← Frodo.Unpack(b, nn)
V ← S′B + E′′

c1 ← Frodo.Pack(B′)
C ← V + Frodo.Encode(µ)
c2 ← Frodo.Pack(C)
ss← SHAKE(c1||c2||k, lenss)
return (c← c1||c2; ss)
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FrodoKEM.Decaps is much more complexe than PKE.Decaps, as it merges
it with KEM.DEcaps which requires a ciphertext comparison, therefore a lot of
steps need for encryption have to be repeated. Decaps receives the cipertext and
the secret key as input. Right in the beginning c1 and c2 are unpacked to B′ and
C. With these matrices the message µ′ can be decoded. Afterwards the public
key is parsed and a lot of steps from the encryption are repeated. seed′SE and
k′ are initialized as well as the pseudo random bit string. Now S ′, E ′ and E ′′

are sampled again. A is generated and B is unpacked. Now B′′ and V can be
calculated. The encoded µ′ is added to V to calculate the second ciphertext C ′.
Now the received unpacked ciphertext and the newly calculated one are compared
to check the validity of the received ciphertext. If they match, the received one
has been genuinely calculated by someone else to send a shared secret, which
then is returned. If they do not match either something went wrong or a chosen
ciphertext was injected by an attacker. In this case the shared secret will be
generated with s included, which has randomly sampled and therefore produces
an unrelated random shared secret.

Algorithm 41 FrodoKEM.Decaps [c. Alk+19, p. 20]

function FrodoKEM.Decaps(c = c1||c2 ∈ {0, 1}(m∗n+m∗n)∗D, sk′ =
(s||seedA||b, S, pkh) ∈ {0, 1}lens+lenseedA+D∗n∗n × Zn×nq × {0, 1}lenss)

B′ ← Frodo.Unpack(c1)
C ← Frodo.Unpack(c2)
M ← C −B′S
µ′ ← Frodo.Decode(M)
pk ← seedA||b
seed′SE ||k′ ← SHAKE(pkh||µ, lenseedSE + lenk)
r = (r(0), r(1), ..., r(2∗n∗m+m∗n−1))← SHAKE(0x96||seedSE , (2∗n∗m+m∗n)∗lenχ)
S′ ← Frodo.SampleMatrix(r(0), r(1), ..., r(n∗m−1),m, n, Tχ)
E′ ← Frodo.SampleMatrix(r(n∗m), r(n∗m+1), ..., r(2∗n∗m−1),m, n, Tχ)
E′′ ← Frodo.SampleMatrix(r(2∗n∗m), r(n∗m+1), ..., r(2∗n∗m+m∗n−1),m, n, Tχ)
A← Frodo.Gen(seedA)
B ← Frodo.Unpack(b, nn)
B′′ ← S′A+ E′

V ← S′B + E′′

C ′ ← V + Frodo.Encode(µ′)
if B′||C = B′′||C ′ then

return ss← SHAKE(c1||c2||k′, lenss)
else

return ss← SHAKE(c1||c2||s, lenss)

This concludes the algorithm definitions, for the IND-CCA secure KEM Frodo.
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5.4. Runtime Analysis of FrodoKEM

As the authors of New Hope, the authors of FrodoKEM have analysed CPU cy-
cles and memory usage, however the focus of this paper still lies on assembly
instructions used. FrodoKEM is specified with three different parameter sets for
different security levels. They also offer choices while compiling. Their flexible
make script allows the user to choose between gcc and clang as compilers. They
also offer a choice between three different architectures to compile for, namely x64,
x86 and ARM. Furthermore they added 3 options to choose from how optimized
the output program should be. Firstly the reference compilation which is just
a straightforward compilation, secondly the ’fast generic’ option which optimizes
matrix generation, multiplication and addition. The third option ’fast’ instructs
the compiler to use AVX2 instructions, which are specifically designed for vector
operations and give a significant speed up. It is optional though as not every
system supports AVX2 yet. The last two options are the choice between AES
and SHAKE for matrix generation and if the standard openssl library should be
used or if a custom implementation is preferred. The choice between AES and
SHAKE matters because if a system offers the AES-NI instructions AES is signif-
icantly faster than SHAKE, as these instructions are made for AES. If those are
not present SHAKE is faster. This is also relevant for future usage, as SHAKE
will, as a new standard, most likely receive its own instruction set and therefore
gain another huge speed boost [c. Alk+19, 26f.].

All these options only highlight the fact, that FrodoKEM relies on various in-
struction sets to be efficient. These sets however limit the hardware FrodoKEM
can efficiently run on. These sets are standard in newer processors, however when
running on slightly older hardware or in a virtualized OS they may not be present.

FrodoKEM was tested with a slight variation of the programs used for New
Hope. However not a lot of changes had to be made because the functions were
mainly standardised by the NIST. The new code can be found in appendix B.1 and
appendix B.2. The main changes consists of changing names and paths, however
the biggest change is that EvaluateGDB now breaks upon entering a function
called main, which even is double checked. This was restructured as the optimized
compilation of Frodo changes the breakFunction to an in-place operation, thus the
breakFunction will never be called.

5.4.1. Results

FrodoKEM1344 was tested with ’fast-generic’ instructions and SHAKE, as none
of the available test environments offered the AES-NI instruction set or AVX2.
These tests however yielded no usable results in a reasonable time. 20 Threads
individually logged over 25.000.000 instructions without finishing the key genera-
tion. In comparison New Hope only required around 11.830.587 to complete all
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three algorithms and only about 2.766.105 to finish key generation.
Running FrodoKEM640, after modifying the test code accordingly, also ex-

ceeded 7.000.000 instructions before finishing the key generation and did not pro-
duce any usable data within the test time.

This leads to the conclusion, that testing the whole system in one bruteforce
attempt does not work. FrodoKEM should be revisited with a more selective ap-
proach that for example gathers information about the instruction composition of
functions on a small scale and then upscales them considering the input variables.
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6. Conclusion

While the outcome of the analysis of each of the two different cryptographic sys-
tems was very different they have a major similarity, lattices.

6.1. Lattices in cryptography

When introducing a lattice it seems simple, because its just all integer combinations
of a set of linear independent vectors. But while looking further into the topic one
can easily stumble across many interesting and surprisingly hard to solve problems.
At first it does not seem hard to find the shortest vector or to find the closest one.
That exactly makes lattices so interesting. When an easily describable problem
over an easily describable body is not easily solvable and has not been solved for
years it does suggest that this problem may not have a trivial solution. Many
researchers have tried to prove the hardness or the weakness of lattice problems
and slowly narrow down how hard these problems actually are or at which level of
precision.

The simple problems and yet hard solutions are perfect for cryptography and
have formed multiple groups of cryptographic systems. There are LWE based
systems like FrodoKEM which value their generality over the advantages which
come with structure in the lattices. These structures are for example exploited by
RLWE to which New Hope belongs. And even more systems like Module-LWE
exist, which however have not been discussed in this work.

6.2. New Hope and FrodoKEM

Both discussed systems showed pros and cons, however New Hope performed way
better in the runtime analysis. This is why New Hope seems like a promising
candidate for the NIST competition as it offers a decent security proof, while
using small key sizes and not too many operations.

As the analysis has shown it can also greatly profit by optimizing just a few
instructions. In contrary to FrodoKEM it does not rely on certain instruction sets
to be fast, but can profit from them as well as it uses for example SHAKE too.

FrodoKEM requires without optimized instruction sets so many more instruc-
tions that it could not be properly evaluated. While the lack of these instructions
was no problem when running the PQCrypto-KAT test case to en- and decrypt
based on a deterministic seed, they still cause a bit discrepancy. In some cases
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every operation counts, especially on smaller devices and that is where FrodoKEM
fails. As emphasised in [RI16], Smart Devices arrive in every little niche of the day
to day life, but they yet should be secure. While some micro controller already
offer specialized instructions many do not and the smaller the devices become the
more effort it is to included these sets. Therefore FrodoKEM seems not ideal to be
chosen as new encryption standard. This however may change if micro controller
producers focus on implementing the required instruction sets.

FrodoKEM can convince in the security aspect though, as they do not have possi-
bly exploitable structure in their lattices. If the assumption underlying FrodoKEM
breaks RLWE also breaks. If however RLWE breaks the LWE problem does not
necessarily break. This is why it may be worth, even considering the bad perfor-
mance, to pick a standard with less risk.

Out of these two systems New Hope will probably be faster on micro controllers
and may lead to an immediate jump in security in these areas. FrodoKEM on the
other hand offers long term stability and is simple to implement on any platform.
The requirement of instruction-sets may initially slow the spreading though until
the market catches up and offers these instructions as standard.
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A. NewHope-KEM Assembly Operations

A.1. C-Code to execute all functions

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <time.h>

4 #include "rng.h"

5 #include "api.h"

6
7 #define MAX_MARKER_LEN 50

8 #define KAT_SUCCESS 0

9 #define KAT_FILE_OPEN_ERROR -1

10 #define KAT_DATA_ERROR -3

11 #define KAT_CRYPTO_FAILURE -4

12
13 void breakFunction ();

14
15 int main(void){

16
17 //init srand

18 srand (( unsigned int) time (NULL));

19
20 unsigned char entropy_input [48];

21 unsigned char pk[CRYPTO_PUBLICKEYBYTES], sk[CRYPTO_SECRETKEYBYTES ];

22 unsigned char ct[CRYPTO_CIPHERTEXTBYTES], ss[CRYPTO_BYTES], ss1[

CRYPTO_BYTES ];

23 int ret_val;

24
25 for (int i=0; i<48; i++)

26 entropy_input[i] = rand();

27
28 randombytes_init(entropy_input , NULL , 256);

29
30 // Generate the public/private keypair

31 if ( (ret_val = crypto_kem_keypair(pk, sk)) != 0) {

32 printf("crypto_kem_keypair returned <%d>\n", ret_val);

33 return KAT_CRYPTO_FAILURE;

34 }

35
36 breakFunction ();

37
38
39 if ( (ret_val = crypto_kem_enc(ct, ss, pk)) != 0) {

40 printf("crypto_kem_enc returned <%d>\n", ret_val);

41 return KAT_CRYPTO_FAILURE;
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42 }

43
44 breakFunction ();

45
46 if ( (ret_val = crypto_kem_dec(ss1 , ct, sk)) != 0) {

47 printf("crypto_kem_dec returned <%d>\n", ret_val);

48 return KAT_CRYPTO_FAILURE;

49 }

50
51 breakFunction ();

52
53
54
55 return 0;

56 }

57
58 void breakFunction (){

59 printf("In the break\n");

60 return;

61 }
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A.2. Java-Code to automate GDB

1 import java.io.File;

2 import java.io.FileWriter;

3 import java.io.IOException;

4 import java.io.OutputStream;

5 import java.util .*;

6
7 public class Main {

8
9 /**

10 * A Map of the operations to the lists of how often they have been

counted during each cycle

11 */

12 private static final HashMap <String , ArrayList <Long >> KeyPairOpCount

= new HashMap <>();

13 /**

14 * The amount of completed KeyPair -Generations so far

15 */

16 private static int KeyPairIterations = 0;

17
18 private static final HashMap <String , ArrayList <Long >> EncOpCount =

new HashMap <>();

19 private static int EncIterations = 0;

20
21 private static final HashMap <String , ArrayList <Long >> DecOpCount =

new HashMap <>();

22 private static int DecIterations = 0;

23
24 //Used to customize files

25 private static final long timestamp = System.currentTimeMillis ();

26
27 //Used to validate if parent Thread is still alive.

28 private static boolean running = true;

29
30
31 public static void main(String [] args) throws IOException {

32
33 int totalThreadAmount;

34 int maxParallelThreads;

35
36
37 try {

38 totalThreadAmount = Integer.parseInt(args [0]);

39 maxParallelThreads = Integer.parseInt(args [1]);

40 } catch (Exception e){

41 System.out.println("Error parsing arguments. Specify the

amount of full iterations as the first and the amount of parallel

Threads as the second argument.");

42 return;

43 }

44
45 final ProcessBuilder pb = new ProcessBuilder( "/bin/bash","-c","
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printenv LD_BIND_NOW" );

46 Map <String , String > env = pb.environment ();

47
48 //Set LD_BIND_NOW to 1 to load all dynamic libraries at the start

of the program.

49 //This is needed to prevent errors during debugging.

50 env.put( "LD_BIND_NOW", "1" );

51 Process p = pb.start();

52 System.out.println( "LD_BIND_NOW="+new Scanner(p.getInputStream ()

).nextLine () );

53
54
55
56
57
58 for(int i = 0; i < totalThreadAmount; i++) {

59
60 //Check how many iterations have been started minus the ones

that finished to get the amount of currently running Threads

61 while(i - DecIterations >= maxParallelThreads){

62 try {

63 Thread.sleep (30000);

64 System.out.println(DecIterations+"/"+

totalThreadAmount);

65 } catch (InterruptedException e) {

66 e.printStackTrace ();

67 }

68 }

69
70
71 //Start gdb with the test -file and the & and disown operation

to prevent the process from dying a short while after the starting

user logs out.

72 pb.command("gdb", "testNewHope", "&", "disown");

73
74
75 new Thread (() -> {

76 try {

77 subroutine(pb.start ());

78 } catch (IOException e) {

79 e.printStackTrace ();

80 }

81 }).start ();

82
83 //Sleep to prevent using the same initial sample for the

random number generator.

84 try {

85 Thread.sleep (1001);

86 } catch (InterruptedException e) {

87 e.printStackTrace ();

88 }

89
90 }

91
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92 while (DecIterations < totalThreadAmount){

93 try {

94 Thread.sleep (30000);

95 System.out.println(DecIterations+"/"+totalThreadAmount);

96 } catch (InterruptedException e) {

97 e.printStackTrace ();

98 }

99 }

100
101 writeList("KeyGeneration");

102 writeList("KeyEncryption");

103 writeList("KeyDecryption");

104 }

105
106 private static void subroutine(Process p) throws IOException {

107 OutputStream out = p.getOutputStream ();

108
109 //We want to skip all c-code before and between this to only

examine the relevant functions.

110 // So we can just start the program now and it will automatically

stop there.

111 out.write("break crypto_kem_keypair\n".getBytes ());

112 out.write("break crypto_kem_enc\n".getBytes ());

113 out.write("break crypto_kem_dec\n".getBytes ());

114
115 out.write("run\n".getBytes ());

116 out.flush();

117
118
119 Scanner s = new Scanner(p.getInputStream ());

120
121
122 //The amount each assembler operation has been counted

123 HashMap <String , Long > opCount = new HashMap <>();

124
125 // Ignored all lines produced by startup

126 for(int i = 0; i < 15; i++) s.nextLine ();

127
128 // Ignore the line produced by the ’break crypto_kem_keypair ’

command.

129 s.nextLine ();

130 s.nextLine ();

131 s.nextLine ();

132
133 // Ignore more lines produced by ’run’

134 s.nextLine ();

135 s.nextLine ();

136
137 initiateNextStep(out , s, opCount , "KeyGeneration");

138
139 //Skip to next break point

140 out.write("continue\n".getBytes ());

141 out.flush();

142
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143
144 // Reset the amount each assembler operation has been counted

145 opCount = new HashMap <>();

146
147
148 initiateNextStep(out , s, opCount , "KeyEncryption");

149
150 //Skip to next break point

151 out.write("continue\n".getBytes ());

152 out.flush();

153
154
155 // Reset the amount each assembler operation has been counted

156 opCount = new HashMap <>();

157
158 // Ignore the lines first generated by executing ’run ’.

159 initiateNextStep(out , s, opCount , "KeyDecryption");

160
161
162 System.out.println(Thread.currentThread ().getName ()+" End");

163 }

164
165 private static void initiateNextStep(OutputStream out , Scanner s,

HashMap <String , Long > opCount , String s2) throws IOException {

166 // Ignore the lines first generated by executing ’run’ or ’

continue ’.

167 for (int i = 0; i < 2; i++) System.out.println(Thread.

currentThread ().getName ()+" Skipped after continue: "+s.nextLine ());

168
169 // Print which function the current Thread is now analyzing

170 System.out.println(Thread.currentThread ().getName ()+" Started: "+

s2);

171
172 // Adding the two operations used to initiate the function which

have been skipped.

173 opCount.put("push", 1L);

174 opCount.put("mov", 1L);

175
176 // Analyze the current function

177 opCount = countOps(s, out , opCount);

178
179 addToList(opCount ,s2);

180 }

181
182
183 private static HashMap <String , Long > countOps(Scanner s, OutputStream

out , HashMap <String , Long > opCount) throws IOException {

184
185 Long currentLine = Long.decode(s.nextLine ().split("\\s+")[2]);

186
187 //The amount of lines skipped.

188 int skipCount = 0;

189
190 //To keep track of the iterations
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191 long i = 0L;

192
193 //A helper to merge multiline output

194 StringBuilder construct;

195
196 // Stores current relevant line

197 String line;

198 String [] splitLine;

199
200 //A helper to keep track of the method we are in

201 String method = "";

202
203 // Store the current operation

204 String op;

205
206 // Temporarly store the count of the current operation

207 Long count;

208
209 //To skip the first part if currentLine could not be updated

210 boolean skipDisas = false;

211
212 // While we are not in the designated break function we still

execute operations relevant to the function to analyze.

213 while (! method.equalsIgnoreCase("breakFunction")){

214
215 //Check if parent is still alive

216 if(! running) return null;

217
218 //Give some debug info every 100000 iterations to see the

process is still alive

219 if(i % 100000 == 0) {

220 System.out.println(Thread.currentThread ().getName ()+"

Iteration: "+i);

221 System.out.println(Thread.currentThread ().getName ()+"

Currently in method: "+method);

222 }

223
224 i++;

225
226 //If no line number could be extracted from the last line

skip disassembly.

227 if(! skipDisas) {

228
229 // Disassemble the current line , as LIne+1 is the excluded

line to disassemble up to.

230 out.write(("disas 0x" + Long.toHexString(currentLine) + "

, 0x" + Long.toHexString(currentLine + 1) + "\n").getBytes ());

231 out.flush();

232
233 // Ignore next line

234 s.nextLine ();

235
236 construct = new StringBuilder(s.nextLine ());

237 line = s.nextLine ();
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238
239 //If the line contains assembler as third word ignore it

as it is additional info by gdb

240 if( construct.toString ().split("\\s+").length > 3 &&

construct.toString ().split("\\s+")[3]. equalsIgnoreCase("assembler"))

construct = new StringBuilder ();

241
242 //If the last read line does not end the assembler dump

concat it to the previous line and keep reading

243 while (!line.contains("End of assembler dump.")) {

244 construct.append(line);

245 line = s.nextLine ();

246 }

247
248 String [] constParts = construct.toString ().split("\\s+");

249
250 // Counter inconsistency in the gdb output. It outputs two

different line styles based on information it get generate. These can

be distinguished by the starting character of the second element.

251 if(constParts [2]. startsWith("<")){

252 op = constParts [3];

253 } else{

254 op = constParts [2];

255 }

256
257 count = opCount.get(op);

258
259
260 if (count == null) {

261 opCount.put(op , 1L);

262 } else {

263 opCount.put(op , count + 1);

264 }

265
266 } else{

267 skipDisas = false;

268 }

269
270 //Step into the next operation

271 out.write("stepi\n".getBytes ());

272 out.flush();

273
274
275 line = s.nextLine ();

276
277 try{

278 splitLine = line.split("\\s+");

279
280 //If the line has less than 2 elements it is malformed.

Go to the catch clause

281 if(splitLine.length < 2) throw new NumberFormatException

();

282
283
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284 construct = new StringBuilder(splitLine [1]. trim());

285
286 //If the extracted lineNumber does not start with 0x

indicating it is a hex number it is not a usable line number.

287 if(! construct.toString ().startsWith("0x")) throw new

NumberFormatException ();

288
289 currentLine = Long.decode(construct.toString ());

290
291 //If a method name is specified extract it

292 if(splitLine.length >= 4) {

293 if(! method.equals(splitLine [3])) {

294 method = splitLine [3];

295 }

296 }

297
298 } catch (NumberFormatException e){

299
300 //Count all lines that have been skipped for the

statistics

301 skipCount ++;

302
303 //Skip next disassemble as we have no line -index to

disassemble at

304 skipDisas = true;

305 }

306
307 }

308
309 //Add the skipped lines to the operations

310 opCount.put("LinesSkipped", (long) skipCount);

311
312 return opCount;

313
314 }

315
316
317 /**

318 * Add the operations a thread counted to the total count list.

319 * Synchronized to prevent ConcurrentModificationExceptions

320 * @param count

321 * @param type

322 */

323 private static synchronized void addToList(HashMap <String , Long >

count , String type){

324
325 // Distinguish the 3 cases.

326 if(type.equalsIgnoreCase("KeyGeneration")){

327
328 //For all operations present in the OperationCount Map add

the counted number.

329 // If the operation has not been counted add 0 to keep the

length of all lists consistent

330 for(String key : KeyPairOpCount.keySet ()){
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331
332 Long value = count.get(key);

333 if(value == null) value = 0L;

334 KeyPairOpCount.get(key).add(value);

335
336 count.remove(key);

337
338 }

339
340 //If any new keys are present they are not part of the

OperationCount Map yet.

341 for(String key : count.keySet ()){

342 ArrayList <Long > values = new ArrayList <>();

343
344 //Fill with 0 for all previous iterations to keep list

length consistent

345 for(int i = 0; i < KeyPairIterations; i++) values.add(0L)

;

346
347 values.add(count.get(key));

348 KeyPairOpCount.put(key , values);

349 }

350
351 KeyPairIterations ++;

352 //Write the results to the file every 5 iterations beginning

with the 1st one.

353 if(KeyPairIterations % 5 == 1) writeList(type);

354
355
356 } else if(type.equalsIgnoreCase("KeyEncryption")){

357
358 //For all operations present in the OperationCount Map add

the counted number.

359 // If the operation has not been counted add 0 to keep the

length of all lists consistent

360 for(String key : EncOpCount.keySet ()){

361
362 Long value = count.get(key);

363 if(value == 0) value = 0L;

364 EncOpCount.get(key).add(value);

365
366 count.remove(key);

367
368 }

369
370 //If any new keys are present they are not part of the

OperationCount Map yet.

371 for(String key : count.keySet ()){

372 ArrayList <Long > values = new ArrayList <>();

373 //Fill with 0 for all previous iterations

374 for(int i = 0; i < EncIterations; i++) values.add(0L);

375
376 values.add(count.get(key));

377 EncOpCount.put(key , values);
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378 }

379
380 EncIterations ++;

381 //Write the results to the file every 5 iterations beginning

with the 1st one.

382 if(EncIterations % 5 == 1) writeList(type);

383
384
385 } else if(type.equalsIgnoreCase("KeyDecryption")){

386
387 //For all operations present in the OperationCount Map add

the counted number.

388 // If the operation has not been counted add 0 to keep the

length of all lists consistent

389 for(String key : DecOpCount.keySet ()){

390
391 Long value = count.get(key);

392 if(value == 0) value = 0L;

393 DecOpCount.get(key).add(value);

394 // DecOpCount.put(key , since);

395
396 count.remove(key);

397
398 }

399
400 //If any new keys are present they are not part of the

OperationCount Map yet.

401 for(String key : count.keySet ()){

402 ArrayList <Long > values = new ArrayList <>();

403 //Fill with 0 for all previous iterations

404 for(int i = 0; i < DecIterations; i++) values.add(0L);

405
406 values.add(count.get(key));

407 DecOpCount.put(key , values);

408 }

409
410 DecIterations ++;

411 //Write the results to the file every 5 iterations beginning

with the 1st one.

412 if(DecIterations % 5 == 1) writeList(type);

413 } else{

414 throw new RuntimeException("Invalid type");

415 }

416 }

417
418 private static synchronized void writeList(String type){

419 File dir = new File("assemblyOps");

420 File file = new File("assemblyOps/"+type+"_"+timestamp+".txt");

421
422 if(!dir.exists ()) dir.mkdir ();

423
424 if(!file.exists ()) {

425 try {

426 file.createNewFile ();
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427 } catch (IOException e) {

428 e.printStackTrace ();

429 }

430 }

431
432 try {

433 FileWriter fw = new FileWriter(file ,false);

434 StringBuilder line0 = new StringBuilder("N=");

435 StringBuilder line1 = new StringBuilder ();

436 ArrayList <StringBuilder > lines = new ArrayList <>();

437
438 if(type.equalsIgnoreCase("KeyGeneration")){

439
440 stringifyCount(line0 , line1 , lines , KeyPairOpCount ,

KeyPairIterations);

441
442 } else if(type.equalsIgnoreCase("KeyEncryption")){

443
444 stringifyCount(line0 , line1 , lines , EncOpCount ,

EncIterations);

445
446 } else if(type.equalsIgnoreCase("KeyDecryption")){

447
448 stringifyCount(line0 , line1 , lines , DecOpCount ,

DecIterations);

449
450 } else{

451 throw new RuntimeException("Invalid type");

452 }

453
454 line1.append("\n");

455
456 fw.write(line0.toString ());

457 fw.write(line1.toString ());

458
459 for(StringBuilder sb : lines){

460 fw.write(sb.append("\n").toString ());

461 }

462
463 fw.close ();

464
465
466 } catch (IOException e) {

467 e.printStackTrace ();

468 }

469
470 }

471
472 private static void stringifyCount(StringBuilder line0 , StringBuilder

line1 , ArrayList <StringBuilder > lines , HashMap <String , ArrayList <Long

>> OpCount , int Iterations) {

473 //As all Lists are equally long the amount of lines can be

calculated from any value

474 int linesSize = OpCount.get(OpCount.keySet ().iterator ().next()).
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size();

475
476 // Create a StringBuilder for each line

477 while (lines.size() < linesSize) {

478 lines.add(new StringBuilder ());

479 }

480
481
482 for (String key : OpCount.keySet ()) {

483 // Append the operation name to the first line

484 line1.append(key).append(",");

485 ArrayList values = OpCount.get(key);

486
487 // Append the operation count to the string builder of each

line.

488 // Overall one line represents one iteration.

489 for (int i = 0; i < values.size(); i++) {

490
491 lines.get(i).append(values.get(i)).append(",");

492
493 }

494 }

495
496 line0.append(Iterations).append("\n");

497 }

498
499 }
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A.3. KeyGeneration Instruction Table

The malformed operation ’4155’ will be interpreted as malformed line and thus added
to LinesSkipped.

Table A.1.: Instructions counted for NH-CCA-KEM.KeyGen() in 100 runs, with n = 1024.

Assmbly Instruction Total Average Variance StdDeviation∑
276610484 2766104,84

LinesSkipped 176600 1766 0 0

testb 4000 40 0 0

dec 13000 130 0 0

shufps 39000 390 0 0

aeskeygenassist 13000 130 0 0

subq 5400 54 0 0

cltq 4681720 46817,2 208,727272727272 14,4473967456865

lea 12610304 126103,04 0,079191919191919 0,281410588272579

seta 3000 30 0 0

imul 5734400 57344 0 0

jmp 664103 6641,03 0,029393939393939 0,171446607997765

movabs 3400 34 0 0

jae 9300 93 0 0

neg 1000 10 0 0

cmove 1000 10 0 0

leaveq 28600 286 0 0

mov 109248988 1092489,88 474,914747474748 21,7925388028735

subl 3 0,03 0,02939393939394 0,171446607997765

rep 20000 200 0 0

setne 2000 20 0 0

add 27379862 273798,62 52,2379797979798 7,22758464481599

jne 86003 860,03 0,029393939393939 0,171446607997765

shll 1000 10 0 0

punpcklwd 2000 20 0 0

test 82000 820 0 0

in 2000 20 0 0

sarw 204800 2048 0 0

pshufd 2000 20 0 0

jbe 6252860 62528,6 52,1818181818181 7,22369837284324

push 2326000 23260 0 0

jns 1003 10,03 0,02939393939394 0,171446607997766

jmpq 250800 2508 0 0

shl 4643060 46430,6 52,1818181818181 7,22369837284324

ja 118260 1182,6 52,181818181818 7,22369837284324

jb 1560400 15604 0 0

je 69900 699 0 0

shr 2579800 25798 0 0

jg 110860 1108,6 52,181818181818 7,22369837284324

sub 4919200 49192 0 0

jl 206600 2066 0 0

cmpq 1445400 14454 0 0

retq 2311300 23113 0 0

mul 3400 34 0 0
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addl 1999660 19996,6 52,1818181818181 7,22369837284324

cmp 1796303 17963,03 0,029393939393939 0,171446607997765

cmpl 3048823 30488,23 210,421313131313 14,5059061465085

repz 16000 160 0 0

js 1000 10 0 0

nop 120500 1205 0 0

rol 2872800 28728 0 0

pop 2298400 22984 0 0

xorps 42000 420 0 0

not 3780000 37800 0 0

ror 1512000 15120 0 0

and 8705300 87053 0 0

andq 1000 10 0 0

xor 12047700 120477 0 0

addq 2735000 27350 0 0

pxor 7000 70 0 0

cmpw 109260 1092,6 52,181818181818 7,22369837284324

aesenc 13000 130 0 0

shrq 731200 7312 0 0

jle 1796200 17962 0 0

movzbl 14519843 145198,43 838,267777777777 28,952854397758

or 1176860 11768,6 52,1818181818183 7,22369837284325

sar 4505600 45056 0 0

movzwl 12902400 129024 0 0

movl 320700 3207 0 0

aesenclast 1000 10 0 0

movq 469200 4692 0 0

setg 1000 10 0 0

cmpb 3686400 36864 0 0

callq 2329500 23295 0 0

setb 1000 10 0 0

pushq 100 1 0 0

movslq 3661006 36610,06 0,117575757575757 0,34289321599553

movups 35000 350 0 0

movb 1550403 15504,03 0,029393939393939 0,171446607997765
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A.4. Encryption Instruction Table

The malformed operation ’4155’ will be interpreted as malformed line and thus added
to LinesSkipped.

Table A.2.: Instructions counted for NH-CCA-KEM.Enc() in 100 runs, with n = 1024.

Assmbly Instruction Total Average Variance StdDeviation∑
417959340 4179593,4

LinesSkipped 88300 883 0 0

testb 2000 20 0 0

dec 6500 65 0 0

shufps 19500 195 0 0

aeskeygenassist 6500 65 0 0

subq 7100 71 0 0

cltq 6844920 68449,2 208,727272727272 14,4473967456865

lea 19107800 191078 0 0

seta 1500 15 0 0

imul 9113600 91136 0 0

jmp 990000 9900 0 0

movabs 5300 53 0 0

jae 113700 1137 0 0

neg 26100 261 0 0

cmove 500 5 0 0

leaveq 39300 393 0 0

mov 166744880 1667448,8 469,636363636363 21,6710951185297

rep 10000 100 0 0

setne 1000 10 0 0

jne 55400 554 0 0

add 40493460 404934,6 52,1818181818183 7,22369837284325

shll 1500 15 0 0

punpcklwd 1000 10 0 0

test 41000 410 0 0

in 1000 10 0 0

sarw 204800 2048 0 0

pshufd 1000 10 0 0

jbe 9202560 92025,6 52,1818181818182 7,22369837284325

push 3432100 34321 0 0

jns 500 5 0 0

jmpq 351000 3510 0 0

shl 6889560 68895,6 52,1818181818182 7,22369837284325

ja 113760 1137,6 52,181818181818 7,22369837284324

jb 2204700 22047 0 0

je 47100 471 0 0

shr 3546800 35468 0 0

jg 110860 1108,6 52,181818181818 7,22369837284324

sub 7363900 73639 0 0

jl 309900 3099 0 0

cmpq 1901700 19017 0 0

retq 3424100 34241 0 0

mul 107700 1077 0 0

addl 3213860 32138,6 52,1818181818181 7,22369837284324
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cmp 2638300 26383 0 0

cmpl 4784020 47840,2 208,727272727272 14,4473967456865

repz 8000 80 0 0

js 500 5 0 0

nop 164400 1644 0 0

rol 4468800 44688 0 0

pop 3393300 33933 0 0

xorps 21000 210 0 0

not 5880000 58800 0 0

ror 2352000 23520 0 0

and 13565100 135651 0 0

andq 500 5 0 0

xor 18491500 184915 0 0

addq 3729200 37292 0 0

pxor 3500 35 0 0

cmpw 109260 1092,6 52,181818181818 7,22369837284324

aesenc 6500 65 0 0

shrq 989600 9896 0 0

jle 2875500 28755 0 0

movzbl 21883840 218838,4 834,90909090909 28,894793491373

or 1820660 18206,6 52,1818181818181 7,22369837284324

sar 7091200 70912 0 0

movzwl 19195200 191952 0 0

movl 478800 4788 0 0

aesenclast 500 5 0 0

movq 694100 6941 0 0

setg 500 5 0 0

cmpb 5529600 55296 0 0

callq 3433200 34332 0 0

setb 500 5 0 0

pushq 100 1 0 0

movslq 5966500 59665 0 0

movups 17500 175 0 0

movb 2218400 22184.0.0 0 0
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A.5. Decryption Instruction Table

Table A.3.: Instructions counted for NH-CCA-KEM.Dec() in 100 runs, with n = 1024.

Assmbly Instruction Total Average Variance StdDeviation∑
488488840 4884888,4

LinesSkipped 0 0 0 0

subw 25600 256 0 0

subq 6700 67 0 0

cltq 9057720 90577,2 208,727272727273 14,4473967456865

lea 24912900 249129 0 0

imul 12492800 124928 0 0

jmp 968800 9688 0 0

movabs 5100 51 0 0

jae 213100 2131 0 0

neg 25700 257 0 0

leaveq 139100 1391 0 0

mov 195275480 1952754,8 469,636363636364 21,6710951185297

add 49223360 492233,6 52,1818181818181 7,22369837284325

shll 2000 20 0 0

jne 18500 185 0 0

sarw 307200 3072 0 0

jbe 9292960 92929,6 52,1818181818182 7,22369837284325

push 4404400 44044 0 0

jmpq 439400 4394 0 0

shl 8410360 84103,6 52,1818181818182 7,22369837284325

ja 109260 1092,6 52,1818181818181 7,22369837284324

jb 2350300 23503 0 0

je 17800 178 0 0

shr 5036800 50368 0 0

jg 110860 1108,6 52,1818181818181 7,22369837284324

sub 10528500 105285 0 0

jl 413200 4132 0 0

retq 4403100 44031 0 0

mul 107500 1075 0 0

cmpq 1657900 16579 0 0

addl 3875560 38755,6 52,1818181818182 7,22369837284325

cmp 2976600 29766 0 0

cmpl 5969720 59697,2 208,727272727273 14,4473967456865

nop 159400 1594 0 0

rol 3784800 37848 0 0

pop 4265300 42653 0 0

not 4980000 49800 0 0

ror 1992000 19920 0 0

and 13853800 138538 0 0

xor 16255900 162559 0 0

addq 3684100 36841 0 0

cmpw 109260 1092,6 52,1818181818181 7,22369837284324

shrq 962400 9624 0 0

negb 100 1 0 0

jle 3729700 37297 0 0
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movzbl 23439640 234396,4 834,909090909091 28,894793491373

or 2195160 21951,6 52,1818181818182 7,22369837284325

sar 7910400 79104 0 0

movzwl 26896000 268960 0 0

movl 589200 5892 0 0

movq 628900 6289 0 0

shrw 25600 256 0 0

cmpb 5529600 55296 0 0

callq 4403100 44031 0 0

pushq 200 2 0 0

movslq 8121600 81216 0 0

movb 2194400 21944 0 0
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B. FrodoKEM

B.1. C-Code to execute all functions

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <time.h>

4 #include "../ tests/rng.h"

5 #include "../src/api_frodo1344.h"

6
7 #define MAX_MARKER_LEN 50

8 #define KAT_SUCCESS 0

9 #define KAT_FILE_OPEN_ERROR -1

10 #define KAT_DATA_ERROR -3

11 #define KAT_CRYPTO_FAILURE -4

12
13 void breakFunction ();

14
15 int main(void){

16
17 //init srand

18 srand (( unsigned int) time (NULL));

19
20 unsigned char entropy_input [48];

21 unsigned char pk[CRYPTO_PUBLICKEYBYTES], sk[CRYPTO_SECRETKEYBYTES ];

22 unsigned char ct[CRYPTO_CIPHERTEXTBYTES], ss[CRYPTO_BYTES], ss1[

CRYPTO_BYTES ];

23 int ret_val;

24
25 for (int i=0; i<48; i++)

26 entropy_input[i] = rand();

27
28 randombytes_init(entropy_input , NULL , 256);

29
30 // Generate the public/private keypair

31 if ( (ret_val = crypto_kem_keypair_Frodo1344(pk, sk)) != 0) {

32 printf("crypto_kem_keypair returned <%d>\n", ret_val);

33 return KAT_CRYPTO_FAILURE;

34 }

35
36 breakFunction ();

37
38
39 if ( (ret_val = crypto_kem_enc_Frodo1344(ct, ss, pk)) != 0) {

40 printf("crypto_kem_enc returned <%d>\n", ret_val);

41 return KAT_CRYPTO_FAILURE;

42 }
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43
44 breakFunction ();

45
46 if ( (ret_val = crypto_kem_dec_Frodo1344(ss1 , ct, sk)) != 0) {

47 printf("crypto_kem_dec returned <%d>\n", ret_val);

48 return KAT_CRYPTO_FAILURE;

49 }

50
51 breakFunction ();

52
53
54
55 return 0;

56 }

57
58 void breakFunction (){

59 printf("In the break\n");

60 return;

61 }
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B.2. Java-Code to automate GDB

1 import java.io.File;

2 import java.io.FileWriter;

3 import java.io.IOException;

4 import java.io.OutputStream;

5 import java.util .*;

6
7 public class Main {

8
9 /**

10 * A Map of the operations to the lists of how often they have been

counted during each cycle

11 */

12 private static final HashMap <String , ArrayList <Long >> KeyPairOpCount

= new HashMap <>();

13 /**

14 * The amount of completed KeyPair -Generations so far

15 */

16 private static int KeyPairIterations = 0;

17
18 private static final HashMap <String , ArrayList <Long >> EncOpCount =

new HashMap <>();

19 private static int EncIterations = 0;

20
21 private static final HashMap <String , ArrayList <Long >> DecOpCount =

new HashMap <>();

22 private static int DecIterations = 0;

23
24 //Used to customize files

25 private static final long timestamp = System.currentTimeMillis ();

26
27 //Used to validate if parent Thread is still alive.

28 private static boolean running = true;

29
30
31 public static void main(String [] args) throws IOException {

32
33 int totalThreadAmount;

34 int maxParallelThreads;

35
36
37 try {

38 totalThreadAmount = Integer.parseInt(args [0]);

39 maxParallelThreads = Integer.parseInt(args [1]);

40 } catch (Exception e){

41 System.out.println("Error parsing arguments. Specify the

amount of full iterations as the first and the amount of parallel

Threads as the second argument.");

42 return;

43 }

44
45 final ProcessBuilder pb = new ProcessBuilder( "/bin/bash","-c","
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printenv LD_BIND_NOW" );

46 Map <String , String > env = pb.environment ();

47
48 //Set LD_BIND_NOW to 1 to load all dynamic libraries at the start

of the program.

49 //This is needed to prevent errors during debugging.

50 env.put( "LD_BIND_NOW", "1" );

51 Process p = pb.start();

52 System.out.println( "LD_BIND_NOW="+new Scanner(p.getInputStream ()

).nextLine () );

53
54
55
56
57
58 for(int i = 0; i < totalThreadAmount; i++) {

59
60 //Check how many iterations have been started minus the ones

that finished to get the amount of currently running Threads

61 while(i - DecIterations >= maxParallelThreads){

62 try {

63 Thread.sleep (30000);

64 System.out.println(DecIterations+"/"+

totalThreadAmount);

65 } catch (InterruptedException e) {

66 e.printStackTrace ();

67 }

68 }

69
70
71 //Start gdb with the test -file and the & and disown operation

to prevent the process from dying a short while after the starting

user logs out.

72 pb.command("gdb", "testFrodoAssembly", "&", "disown");

73
74
75 new Thread (() -> {

76 try {

77 subroutine(pb.start ());

78 } catch (IOException e) {

79 e.printStackTrace ();

80 }

81 }).start ();

82
83 //Sleep to prevent using the same initial sample for the

random number generator.

84 try {

85 Thread.sleep (1001);

86 } catch (InterruptedException e) {

87 e.printStackTrace ();

88 }

89
90 }

91
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92 while (DecIterations < totalThreadAmount){

93 try {

94 Thread.sleep (30000);

95 System.out.println(DecIterations+"/"+totalThreadAmount);

96 } catch (InterruptedException e) {

97 e.printStackTrace ();

98 }

99 }

100
101 writeList("KeyGeneration");

102 writeList("KeyEncryption");

103 writeList("KeyDecryption");

104 }

105
106 private static void subroutine(Process p) throws IOException {

107 OutputStream out = p.getOutputStream ();

108
109 //We want to skip all c-code before and between this to only

examine the relevant functions.

110 // So we can just start the program now and it will automatically

stop there.

111 out.write("break crypto_kem_keypair_Frodo1344\n".getBytes ());

112 out.write("break crypto_kem_enc_Frodo1344\n".getBytes ());

113 out.write("break crypto_kem_dec_Frodo1344\n".getBytes ());

114
115 out.write("run\n".getBytes ());

116 out.flush();

117
118
119 Scanner s = new Scanner(p.getInputStream ());

120
121
122 //The amount each assembler operation has been counted

123 HashMap <String , Long > opCount = new HashMap <>();

124
125 // Ignored all lines produced by startup

126 for(int i = 0; i < 15; i++) s.nextLine ();

127
128 // Ignore the line produced by the ’break crypto_kem_keypair ’

command.

129 s.nextLine ();

130 s.nextLine ();

131 s.nextLine ();

132
133 // Ignore more lines produced by ’run’

134 s.nextLine ();

135 s.nextLine ();

136
137 initiateNextStep(out , s, opCount , "KeyGeneration");

138
139 //Skip to next break point

140 out.write("continue\n".getBytes ());

141 out.flush();

142
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143
144 // Reset the amount each assembler operation has been counted

145 opCount = new HashMap <>();

146
147
148 initiateNextStep(out , s, opCount , "KeyEncryption");

149
150 //Skip to next break point

151 out.write("continue\n".getBytes ());

152 out.flush();

153
154
155 // Reset the amount each assembler operation has been counted

156 opCount = new HashMap <>();

157
158 // Ignore the lines first generated by executing ’run ’.

159 initiateNextStep(out , s, opCount , "KeyDecryption");

160
161
162 System.out.println(Thread.currentThread ().getName ()+" End");

163 }

164
165 private static void initiateNextStep(OutputStream out , Scanner s,

HashMap <String , Long > opCount , String s2) throws IOException {

166 // Ignore the lines first generated by executing ’run’ or ’

continue ’.

167 for (int i = 0; i < 2; i++) System.out.println(Thread.

currentThread ().getName ()+" Skipped after continue: "+s.nextLine ());

168
169 // Print which function the current Thread is now analyzing

170 System.out.println(Thread.currentThread ().getName ()+" Started: "+

s2);

171
172 // Adding the two operations used to initiate the function which

have been skipped.

173 opCount.put("push", 1L);

174 opCount.put("mov", 1L);

175
176 // Analyze the current function

177 opCount = countOps(s, out , opCount);

178
179 addToList(opCount ,s2);

180 }

181
182
183 private static HashMap <String , Long > countOps(Scanner s, OutputStream

out , HashMap <String , Long > opCount) throws IOException {

184
185 Long currentLine = Long.decode(s.nextLine ().split("\\s+")[2]);

186
187 //The amount of lines skipped.

188 int skipCount = 0;

189
190 //To keep track of the iterations
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191 long i = 0L;

192
193 //A helper to merge multiline output

194 StringBuilder construct;

195
196 // Stores current relevant line

197 String line;

198 String [] splitLine;

199
200 //A helper to keep track of the method we are in

201 String method = "";

202
203 // Store the current operation

204 String op;

205
206 // Temporarly store the count of the current operation

207 Long count;

208
209 //To skip the first part if currentLine could not be updated

210 boolean skipDisas = false;

211
212 // While we are not in the designated break function we still

execute operations relevant to the function to analyze.

213 while (! method.equalsIgnoreCase("main")){

214
215 //Check if parent is still alive

216 if(! running) return null;

217
218 //Give some debug info every 100000 iterations to see the

process is still alive

219 if(i % 100000 == 0) {

220 System.out.println(Thread.currentThread ().getName ()+"

Iteration: "+i);

221 System.out.println(Thread.currentThread ().getName ()+"

Currently in method: "+method);

222 }

223
224 i++;

225
226 //If no line number could be extracted from the last line

skip disassembly.

227 if(! skipDisas) {

228
229 // Disassemble the current line , as LIne+1 is the excluded

line to disassemble up to.

230 out.write(("disas 0x" + Long.toHexString(currentLine) + "

, 0x" + Long.toHexString(currentLine + 1) + "\n").getBytes ());

231 out.flush();

232
233 // Ignore next line

234 s.nextLine ();

235
236 construct = new StringBuilder(s.nextLine ());

237 line = s.nextLine ();
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238
239 //If the line contains assembler as third word ignore it

as it is additional info by gdb

240 if( construct.toString ().split("\\s+").length > 3 &&

construct.toString ().split("\\s+")[3]. equalsIgnoreCase("assembler"))

construct = new StringBuilder ();

241
242 //If the last read line does not end the assembler dump

concat it to the previous line and keep reading

243 while (!line.contains("End of assembler dump.")) {

244 construct.append(line);

245 line = s.nextLine ();

246 }

247
248 String [] constParts = construct.toString ().split("\\s+");

249
250 // Counter inconsistency in the gdb output. It outputs two

different line styles based on information it get generate. These can

be distinguished by the starting character of the second element.

251 if(constParts [2]. startsWith("<")){

252 if(constParts [2]. contains("main")) break;

253 op = constParts [3];

254 } else{

255 op = constParts [2];

256 }

257
258 count = opCount.get(op);

259
260
261 if (count == null) {

262 opCount.put(op , 1L);

263 } else {

264 opCount.put(op , count + 1);

265 }

266
267 } else{

268 skipDisas = false;

269 }

270
271 //Step into the next operation

272 out.write("stepi\n".getBytes ());

273 out.flush();

274
275
276 line = s.nextLine ();

277
278 try{

279 splitLine = line.split("\\s+");

280
281 //If the line has less than 2 elements it is malformed.

Go to the catch clause

282 if(splitLine.length < 2) throw new NumberFormatException

();

283
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284
285 construct = new StringBuilder(splitLine [1]. trim());

286
287 //If the extracted lineNumber does not start with 0x

indicating it is a hex number it is not a usable line number.

288 if(! construct.toString ().startsWith("0x")) throw new

NumberFormatException ();

289
290 currentLine = Long.decode(construct.toString ());

291
292 //If a method name is specified extract it

293 if(splitLine.length >= 4) {

294 if(! method.equals(splitLine [3])) {

295 method = splitLine [3];

296 }

297 }

298
299 } catch (NumberFormatException e){

300
301 //Count all lines that have been skipped for the

statistics

302 skipCount ++;

303
304 //Skip next disassemble as we have no line -index to

disassemble at

305 skipDisas = true;

306 }

307
308 }

309
310 //Add the skipped lines to the operations

311 opCount.put("LinesSkipped", (long) skipCount);

312
313 return opCount;

314
315 }

316
317
318 /**

319 * Add the operations a thread counted to the total count list.

320 * Synchronized to prevent ConcurrentModificationExceptions

321 * @param count

322 * @param type

323 */

324 private static synchronized void addToList(HashMap <String , Long >

count , String type){

325
326 // Distinguish the 3 cases.

327 if(type.equalsIgnoreCase("KeyGeneration")){

328
329 //For all operations present in the OperationCount Map add

the counted number.

330 // If the operation has not been counted add 0 to keep the

length of all lists consistent
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331 for(String key : KeyPairOpCount.keySet ()){

332
333 Long value = count.get(key);

334 if(value == null) value = 0L;

335 KeyPairOpCount.get(key).add(value);

336
337 count.remove(key);

338
339 }

340
341 //If any new keys are present they are not part of the

OperationCount Map yet.

342 for(String key : count.keySet ()){

343 ArrayList <Long > values = new ArrayList <>();

344
345 //Fill with 0 for all previous iterations to keep list

length consistent

346 for(int i = 0; i < KeyPairIterations; i++) values.add(0L)

;

347
348 values.add(count.get(key));

349 KeyPairOpCount.put(key , values);

350 }

351
352 KeyPairIterations ++;

353 //Write the results to the file every 5 iterations beginning

with the 1st one.

354 if(KeyPairIterations % 5 == 1) writeList(type);

355
356
357 } else if(type.equalsIgnoreCase("KeyEncryption")){

358
359 //For all operations present in the OperationCount Map add

the counted number.

360 // If the operation has not been counted add 0 to keep the

length of all lists consistent

361 for(String key : EncOpCount.keySet ()){

362
363 Long value = count.get(key);

364 if(value == 0) value = 0L;

365 EncOpCount.get(key).add(value);

366
367 count.remove(key);

368
369 }

370
371 //If any new keys are present they are not part of the

OperationCount Map yet.

372 for(String key : count.keySet ()){

373 ArrayList <Long > values = new ArrayList <>();

374 //Fill with 0 for all previous iterations

375 for(int i = 0; i < EncIterations; i++) values.add(0L);

376
377 values.add(count.get(key));
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378 EncOpCount.put(key , values);

379 }

380
381 EncIterations ++;

382 //Write the results to the file every 5 iterations beginning

with the 1st one.

383 if(EncIterations % 5 == 1) writeList(type);

384
385
386 } else if(type.equalsIgnoreCase("KeyDecryption")){

387
388 //For all operations present in the OperationCount Map add

the counted number.

389 // If the operation has not been counted add 0 to keep the

length of all lists consistent

390 for(String key : DecOpCount.keySet ()){

391
392 Long value = count.get(key);

393 if(value == 0) value = 0L;

394 DecOpCount.get(key).add(value);

395 // DecOpCount.put(key , since);

396
397 count.remove(key);

398
399 }

400
401 //If any new keys are present they are not part of the

OperationCount Map yet.

402 for(String key : count.keySet ()){

403 ArrayList <Long > values = new ArrayList <>();

404 //Fill with 0 for all previous iterations

405 for(int i = 0; i < DecIterations; i++) values.add(0L);

406
407 values.add(count.get(key));

408 DecOpCount.put(key , values);

409 }

410
411 DecIterations ++;

412 //Write the results to the file every 5 iterations beginning

with the 1st one.

413 if(DecIterations % 5 == 1) writeList(type);

414 } else{

415 throw new RuntimeException("Invalid type");

416 }

417 }

418
419 private static synchronized void writeList(String type){

420 File dir = new File("assemblyOps");

421 File file = new File("assemblyOps/"+type+"_"+timestamp+".txt");

422
423 if(!dir.exists ()) dir.mkdir ();

424
425 if(!file.exists ()) {

426 try {
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427 file.createNewFile ();

428 } catch (IOException e) {

429 e.printStackTrace ();

430 }

431 }

432
433 try {

434 FileWriter fw = new FileWriter(file ,false);

435 StringBuilder line0 = new StringBuilder("N=");

436 StringBuilder line1 = new StringBuilder ();

437 ArrayList <StringBuilder > lines = new ArrayList <>();

438
439 if(type.equalsIgnoreCase("KeyGeneration")){

440
441 stringifyCount(line0 , line1 , lines , KeyPairOpCount ,

KeyPairIterations);

442
443 } else if(type.equalsIgnoreCase("KeyEncryption")){

444
445 stringifyCount(line0 , line1 , lines , EncOpCount ,

EncIterations);

446
447 } else if(type.equalsIgnoreCase("KeyDecryption")){

448
449 stringifyCount(line0 , line1 , lines , DecOpCount ,

DecIterations);

450
451 } else{

452 throw new RuntimeException("Invalid type");

453 }

454
455 line1.append("\n");

456
457 fw.write(line0.toString ());

458 fw.write(line1.toString ());

459
460 for(StringBuilder sb : lines){

461 fw.write(sb.append("\n").toString ());

462 }

463
464 fw.close ();

465
466
467 } catch (IOException e) {

468 e.printStackTrace ();

469 }

470
471 }

472
473 private static void stringifyCount(StringBuilder line0 , StringBuilder

line1 , ArrayList <StringBuilder > lines , HashMap <String , ArrayList <Long

>> OpCount , int Iterations) {

474 //As all Lists are equally long the amount of lines can be

calculated from any value
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475 int linesSize = OpCount.get(OpCount.keySet ().iterator ().next()).

size();

476
477 // Create a StringBuilder for each line

478 while (lines.size() < linesSize) {

479 lines.add(new StringBuilder ());

480 }

481
482
483 for (String key : OpCount.keySet ()) {

484 // Append the operation name to the first line

485 line1.append(key).append(",");

486 ArrayList values = OpCount.get(key);

487
488 // Append the operation count to the string builder of each

line.

489 // Overall one line represents one iteration.

490 for (int i = 0; i < values.size(); i++) {

491
492 lines.get(i).append(values.get(i)).append(",");

493
494 }

495 }

496
497 line0.append(Iterations).append("\n");

498 }

499
500 }
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