Random Constraint Optimization

The case of Max-Cut

L.M. Kirousis

Department of Computer Engineering and Informatics, University of Patras

&

RA Computer Technology Institute

Joint work with A.C. Kaporis and E.C. Stavropoulos

^ Research partially supported by European Social Fund (ESF), Operational Program for Educational and Vocational Training II (EPEAEK II); by the Research and Academic Computer Technology Institute (RACTI) and by the Future and Emerging Technologies programme of the EU under contract 001907 “Dynamically Evolving, Large-Scale Information Systems (DELIS).”
Circumventing NP-hardness
Circumventing NP-hardness

Reminder: The introduction of randomness in the design of an algorithm cannot avoid the worst cases of an NP-hard problem.
Circumventing NP-hardness

Reminder: The introduction of randomness in the design of an algorithm cannot avoid the worst cases of an NP-hard problem.

Randomized algorithms are good, e.g. when the input is designed by a limited capacity adversary.

In such a case, randomness in the choice of steps of an algorithm further restricts the adversary’s knowledge.
Circumventing NP-hardness

Reminder: The introduction of randomness in the design of an algorithm cannot avoid the worst cases of an NP-hard problem.

Randomized algorithms are good, e.g. when the input is designed by a limited capacity adversary.

In such a case, randomness in the choice of steps of an algorithm further restricts the adversary’s knowledge.

But has no effect if the adversary is omniscient.

Formally: If $\text{NP} \subset \text{BPP}$ then the polynomial hierarchy collapses at the second level and also $\text{RP} = \text{NP}$.
First approach to NP-Hardness

Introduce randomness in the choice of the inputs. That is, assume inputs are drawn according to a distribution.

- Then *perhaps* a realistic distribution might be found, for which worst case inputs are rare.
- However, an unwisely chosen distribution of inputs might trivialize an interesting problem.
An “easy” SAT distribution

n variables: $\{x_1, \ldots, x_n\}$. m clauses constructed independently as follows: a literal l (positive or negative) is independently placed in each clause with probability $p(n,m)$. Length of a clause is random with expectation $k = 2pn$ (average k-SAT).
An “easy” SAT distribution

n variables: $\{x_1, \ldots, x_n\}$. m clauses constructed independently as follows: a literal l (positive or negative) is independently placed in each clause with probability $p(n, m)$. Length of a clause is random with expectation $k = 2pn$ (average k-SAT).

- [Franco 1986]: depending on the value of p,
 - asymptotically almost all (a.a.a.) instances of average k-SAT are satisfied or
 - a.a.a. instances are not satisfied.

- Also: there are very easy algorithms that return a satisfying assignment or a proof of contradiction, respectively.
Moral: Watch out for trivializing distributions of the input.
Consider a CSP with \(n \) variables, fixed arity \(k \) for the constraints and fixed domain size \(D \) for the variables.

Assume that random input instances are generated as follows:

1. First randomly choose the hyperedges of the constraint hypergraph (a hyperedge comprises of the \(k \) variables that a constraint entails),
2. secondly, for each hyperedge \(C \) choose the \(k \)-tuples of values that are to be non-admissible by the constraint corresponding to \(C \).
Consider a CSP with \(n \) variables, fixed arity \(k \) for the constraints and fixed domain size \(D \) for the variables.

Assume that random input instances are generated as follows:

- First randomly choose the hyperedges of the constraint hypergraph (a hyperedge comprises of the \(k \) variables that a constraint entails),

- secondly, for each hyperedge \(C \) choose the \(k \)-tuples of values that are to be non-admissible by the constraint corresponding to \(C \).

[Achlioptas et al. 1997]: such random instances of CSP are a.a.a.a. not satisfiable (in most interesting cases).
In this presentation we focus on Boolean CSP’s about graphs or Boolean formulas. Random model $G_{n,m}$.
In this presentation we focus on Boolean CSP’s about graphs or Boolean formulas. Random model $G_{n,m}$.

- n: number of vertices or variables,
- m: the number of edges or fixed-length clauses selected uniformly at random from the sample space.
In this presentation we focus on Boolean CSP’s about graphs or Boolean formulas. Random model $G_{n,m}$.

- n: number of vertices or variables,
- m: the number of edges or fixed-length clauses selected uniformly at random from the sample space.

Closely related: the random model $G_{n,p}$.

- p: the probability for an edge or clause to be included (independently) in the instance generated.

In $G_{n,m}$ ($G_{n,p}$, respectively) the number (expected number, respectively) of edges or clauses is assumed to be $\Theta(n)$ (sparse graphs/formulas).
Algorithmics on random graphs

[Frieze and McDiarmid 1996]:

“...average case analysis ...banishes the pessimism of worst-case analysis.”

“...one can criticise the models as being unrealistic but they are probably no more so than the pathological examples used in the proofs of NP-Completeness.”
Algorithmics on random graphs

[Frieze and McDiarmid 1996]:

- "...average case analysis ...banishes the pessimism of worst-case analysis."

- "...one can criticise the models as being unrealistic but they are probably no more so than the pathological examples used in the proofs of NP-Completeness.”

For Example: Hamilton cycles can be found efficiently in $G_{n,m}$, if m large enough to guarantee, in probability, that the min-degree is at least 2.
Second approach to NP-Hardness

In case optimization is the goal, opt for approximation algorithms.

Approximation Factor of an Algorithm: Ratio of the size of the solution returned by the algorithm to the size of the optimal solution (for maximization <1).
Second approach to NP-Hardness

In case optimization is the goal, opt for approximation algorithms.

Approximation Factor of an Algorithm: Ratio of the size of the solution returned by the algorithm to the size of the optimal solution (for maximization <1).

Extended literature both on:

- **Positive approach**: Find efficient approximation algorithms with as large approximation factor as possible.
- **Inapproximability approach**: Under a putative hypothesis (e.g. NP ≠ P) prove that no efficient algorithm exists with approximation factor larger than a certain value.
Combining both approaches

Both randomness of the input and approximation: Go beyond an inapproximability result by assuming the input is drawn according to a distribution.

Basic strategy:

- Find an upper bound u_b such that the size of solutions is a.a.a. at most u_b.

- Design an algorithm that a.a.a. returns a solution with size at least l_b (so l_b can be considered as a typical lower bound).

- Try to show that the ratio l_b/u_b exceeds an approximation factor known to be unattainable (under a putative hypothesis) for all inputs.
Previous results

[Håstad 2001] MAX-3-SAT cannot be approximated by a factor $> 7/8$.

- Improvement [Interian 2004] to $19/20$.

Dagstuhl Seminar “Complexity of Constraints”, October 2006 – p. 11/26
Previous results

[Håstad 2001] MAX-3-SAT cannot be approximated by a factor $> 7/8$.

- Improvement [Interian 2004] to $19/20$.

Above results do not make use of the degree structure of literals in the random input (degree of a literal = number of its occurrences in the formula).

So cannot be directly extended to problems where “degree” is more important than in MAX-SAT, like MAX-CUT.

MAX-CUT: Color the vertices of a graph either red or blue, so that the number of bichromatic edges is maximized.
Upper bounds

To show that ub is an upper bound (**First Moment Method**):

- Start with Markov inequality:

 $$\Pr[\exists s : |s| > ub] \leq \text{Ex}(|\{s : |s| > ub\}|).$$

- Show that the rhs expectation above is asymptotically zero.

Lottery phenomenon: The probability of winning might be almost zero but the expectation of earnings “measurably positive.”
FMM has been used to get upper bounds for random versions of \(\text{MAX}-3\text{-SAT} \), \(\text{MAX}-k\text{-SAT} \) and \(\text{MAX-CUT} \).

However, results obtained by the “naive” FMM are mostly far from optimal.

Exception: \(\text{MAX}-k\text{-SAT} \), where asymptotically with \(k \) the “naive” FMM gives good upper bounds [Achlioptas, Naor & Peres 2003].
Fine FMM

- To make the rhs of Markov inequality

\[\Pr[\exists s : |s| > \text{ub}] \leq \text{Ex}(|\{s : |s| > \text{ub}\}|) \]

closer to its lhs, exclude large solutions that may only occur in small-probability instances.

- NB: Care must be taken so that an instance with a non-empty set of solutions, still retains at least one solution after the exclusion of its large solutions.

Application: \textsc{Max-Cut} [Kaporis et al. 2006]
Results for deterministic MAX-CUT:

- [Goemans & Williamson] 1994 Approximation factor $\alpha_{GW} \approx 0.87856$
- [Håstad 2001] No approximation with factor $> 16/17 \approx 0.94118$ (unless $P=NP$).
- [Khot et al. 2004] Even α_{GW} is optimal assuming the Unique Games and Majority is Stablest conjectures.

NB: some slightly stronger conjectures recently falsified [Charikar et al. 2006]

Goal: Go beyond Håstad’s threshold for Random MAX-CUT.
Apply FMM to **majority** cuts:

- At least half of the edges incident on any vertex are bichromatic.
- Any vertex of even degree whose exactly half edges are bichromatic is red.

NB: After recoloring a vertex violating any of the above conditions either

- the cut size increases,
- or the cut size remains the same but the number of red vertices increases.
Degree considerations

To compute the expected number of majority cuts exceeding a threshold μ_b (as a function of the density $d = \frac{m}{n}$, the edges-to-variables ratio), assume that:

G is random conditional that the number of vertices of degree k is fixed and equal to the expectation as if the degree of each vertex were Poisson distributed with mean $2d$.

In other words, we assume that the degree sequence of the random graph is typical.
More about the degrees

Observation: To compute the max cut of a graph, ignore the edges that are incident to a vertex of degree 1 (those must be included in a maximum cut). Therefore:

- Start with a random graph G with typical degree sequence.
- Then recursively delete edges incident on vertices of degree 1, to get a new graph G' known as the 2-core of G.

Reminder: the k-core of a graph is the maximal subgraph of G obtained
- by edge deletion only,
- and such that all vertices are either isolated or have degree $\geq k$.
Compute (analytically) the degree sequence of G' by solving the system of differential equations that describes the mean path of the edge deletion process (Wormald’s technique).

Then compute the expected number of *majority* cuts on G' (a non-trivial analytic computation).

NB: G' is random conditional its degree sequence.

Apply FMM.

Thus: for each given value $d > 0$, numerically obtain an upper bound of the max cut $\text{ub}(d)$ that holds for a.a.a. graphs with density d.
The bound $\mathfrak{u}_b(d)$ computed as previously juxtaposed with the bound obtained by direct application of FMM by e.g. [Bertoni et al. 1997] (dashed line).
General strategy:

- Design an algorithm that finds a cut.

- Then for each given density d compute a $\text{lb}(d)$ such that the algorithm a.a.a. returns a cut of size at least $\text{lb}(d)$.

- Method of differential equations (Wormald) for the probabilistic analysis of the algorithm.

- Previously analyzed algorithms did not take advantage of the typical degree sequence, nor of the fact that we can start with the 2-core.
Bird’s eye view of the algorithm

[Kaporis et al. 2006]

- Start with a random graph \(G \), with a typical degree sequence corresponding to density \(d \).
- Find the 2-core \(G' \) of \(G \). The edges deleted to get \(G' \) are part of the cut.
- Successively color one selected vertex of \(G' \) either red or blue.
- Discrepancy of a vertex \(v \) after a coloring step \(t \):

\[
D(v) = |d_b(v) - d_r(v)|, \text{ where}
\]

\[
d_b(v) = \text{number of currently blue neighbors of } v
\]

\[
d_r(v) = \text{number of currently red neighbors of } v
\]
Algorithm—cont/ed

- Always select a vertex with max discrepancy.
- Color it greedily (to guarantee that the number of bichromatic edges to be generated at the current step is maximized).
- Break ties (same max discrepancy) by choosing a vertex where the number of yet uncolored neighbors is minimized (to minimize the impact of the selection on future selections).
Analysis of the algorithm

Method of differential equations:

- Compute the degree sequence of the 2-core G' of G.

- Model with differential equations the evolution—at each step of the algorithm—of the following parameters of G':
 - The number of vertices v with a given pair of values for $d_b(v)$ and $d_r(v)$,
 - the number c of the currently bichromatic edges (current cut size).

Previously analyzed algorithms that compute typical-case lower bounds did not make use of the degree sequence.
The bound $lb(d)$ computed as previously juxtaposed with the values of algorithms by [Coja-Oghlan et al. 2003] (dashed) and [Coppersmith et al. 2003] (dotted).
Putting everything together

The approximation ratio $\frac{\text{lb}(d)}{\text{ub}(d)}$. The lower dashed line corresponds to Håstad inapproximability threshold $\frac{16}{17}$, while the upper dashed line to the approximation ratio $0.952 > \frac{16}{17}$ [Kaporis et al. 2006].